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Mode locking in a periodically forced resonate-and-fire neuron model

Azadeh Khajeh Alijani∗

Mathematics Institute, University of Warwick, Coventry, United Kingdom, CV4 7AL

The Resonate-and-fire (RF) model is a spiking neuron model which from a dynamical systems
perspective is a piecewise smooth system (impact oscillator). We analyze the response of the RF
neuron oscillator to periodic stimuli by expressing the firing events in terms of an implicit one
dimensional time map. Based on such a firing map, we describe mode-locked solutions and their
stability, leading to the so called Arnol’d tongues. The boundaries of these tongues correspond to
either local bifurcations of the firing time map or grazing bifurcations of the discontinuity of the
flow. Despite the fact that the periodically driven RF system shows periodic firing, its behavior
may become chaotic when the forcing frequency is near the resonant frequency. We compare these
results with numerical simulations of the model undergoing sinusoidal forcing. Furthermore, upon
varying a system parameter, the RF system can be reduced to the Integrate-and-fire system, and in
this case we show the consistency of the results on mode-locked solutions.

PACS numbers: 87.19.L-, 05.45.-a, 87.19.ln

I. INTRODUCTION

Biological neurons exhibit a wide range of ionic con-
ductances in their soma and dendrites. These different
currents are responsible for action potential generation
and may also lead to complex dynamics including burst-
ing, periodic oscillations, etc. Of particular interest are
the creation of resonance and subthreshold damped os-
cillations as a result of interaction between specific cur-
rents. The resonant behavior, in which the response of
the induced oscillating voltage peaks at a preferred in-
put frequency, has been observed in many biological neu-
rons. For example in thalamic [19, 36], cortical neurons
[15, 17, 22], hippocampal CA1 pyramidal cells [29], and
interneurons [35]. It is known that receptor cells in audi-
tory and electro receptive systems of many species show
electrical resonance, also in amphibian cochlea, hair cells
behave like small electrical resonant elements [27]. The
resonant and oscillatory behavior is also believed to play
an important role in brain activities, e.g., the possible
functional importance of resonance and oscillations ob-
served in thalamic and cortical neurons lies in the known
participation of these neurons in various brain rhythms:
The low frequency resonances in the cortex and thala-
mus appear suited to support the thalamocortical delta
wave oscillations which are particularly prominent dur-
ing deep sleep. The higher frequency oscillatory behav-
ior and underlying resonance in pyramidal and inhibitory
neurons of the neocortex might have some involvement
with higher frequency rhythms that appear in the cortex
during cognition [18].
To understand these nontrivial ideas neurodynamical
models based on spiking neurons are used. They play an
increasing role in the interpretation of neurophysiological
data [10]. Importantly, we are interested in studying the
precise timing of firing events that is thought to underly
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several different forms of sensory processing [39]. We use
the Resonate-and-fire (RF) neuron model to explore the
effects of periodic forcing on the firing dynamics of the
resonant neurons. Analyzing the response of neurons to
periodic forcing has long been investigated [14, 42]. Also
many interesting neuron models have been previously
used to analyze the response of spiking neurons to peri-
odic stimuli [4, 7, 10, 13, 23–25, 28, 34]. Among them, the
integrate-and-fire (IF) models and the modified IF mod-
els are of particular interest, as they are the simplest spik-
ing neuron models capable of reproducing a great deal of
known features of real neurons. For example the peri-
odically forced leaky integrate-and-fire model reproduces
rectification and phase locking behavior [2, 37, 41] and
can display quasiperiodic and periodic firing trains [10],
integrate-and-fire-or-burst reproduces temporal tuning of
both postinhibitory rebound bursting and tonic spiking
[13], the ghostbursting model can exhibit chaotic burst-
ing [28], and the integrate-and-fire model with threshold
fatigue [7] can exhibit chaotic behavior. However these
simple models fail to generate subthreshold damped oscil-
lations and resonance that have been observed in certain
neurons [17, 30] and in almost all biophysically detailed
Hodgkin-Huxley (HH) type neuron models [17, 18]. This
motivated the introduction of the RF model [6, 20, 38]
(called the generalized integrate-and-fire model in [6, 38])
to describe more accurately these types of subthreshold
properties.
The RF model is the simplest possible model to exhibit
subthreshold resonance. It has piecewise smooth dynam-
ics such that the effect of the flow reaching threshold is to
cause an instantaneous jump in the flow, so that a com-
plete description in terms of smooth differential equations
is no longer possible. This kind of dynamics is described
in the context of impact oscillators or more generally of
hybrid systems [3].
The effect of resonance on the firing properties of the neu-
rons has been investigated in [6, 38]. It is found that a
sufficient level of noise is necessary for the subthreshold
resonance to be seen in the firing rate modulation and
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when noise is weak, the firing rate response is amplified
at the background firing frequency. However, we show
here that even in the absence of noise, the subthresh-
old resonance is revealed such that the firing times show
chaotic behavior near the resonant frequency. In this
paper our approach for a periodically driven RF system,
similar to that in [10, 28], is based on firing map formula-
tion, analyzing the mode-locked solutions, and construct-
ing their instability borders in parameter space leading
to the Arnol’d tongues structure. A dynamical systems
approach also allows us to go further and classify period-
ically forced RF dynamics as periodic, quasiperiodic, and
chaotic. It is believed that variability in the firing times
of periodically forced neurons is not necessarily due to
noise but could be also due to chaotic behavior [1, 16].
Using the Liapunov exponent notion, we show here that
the RF system can exhibit chaotic behavior.
An outline of the article is as follows. In Sec. II and III
we introduce the RF neuron model by applying the lin-
earization theory of Koch [27] for the Hodgkin-Huxley
(HH) equations with just one ionic current. In Sec. IIIA
and Sec. III B, the periodically forced RF system is con-
sidered such that the effect of the flow crossing threshold
is to cause both voltage and current to be reset. We can
express the firing times of the RF model in the form of
an implicit one dimensional time map, and can describe
mode-locked solutions by formulating a set of nonlinear
simultaneous equations that any mode-locked solutions
must satisfy. Then we continue in Sec. III C by treating
the stability of these solutions which can be affected by
smooth and nonsmooth bifurcations and show our nu-
merical results on the Arnol’d tongues. In Sec. IV using
the idea of impact oscillators [32], we are able to derive
an expression for the largest Liapunov exponents of the
RF system. We will show that the system can move
from periodic to chaotic behavior (positive Liapunov ex-
ponent) as the forcing frequency is close to the resonant
frequency. Finally, in Sec. V, we discuss the results of
this paper and suggest some extensions of our work.

II. LINEARIZED VOLTAGE DEPENDENT
CURRENTS

It is a well known fact that a small excitatory synap-
tic input in the presence of voltage dependent channels
will lead to a local depolarization, followed by hyperpo-
larization. Such an overshooting response indicates the
presence of the so called RLC circuits which include re-
sistances, capacitances as well as inductances [27]. Al-
though a real neuron does not have any elements like
inductance, neuron membranes within certain types of
voltage and time dependent conductances can behave as
if they contained inductances. This phenomenological in-
ductance, was first described by Cole [8, 9] in the squid
axon. We use the Koch theory [26, 27] to explain how an
inductance like behavior can arise from a membrane by
linearizing the Hodgkin-Huxley (HH) equations .

FIG. 1: Equivalent electrical circuit for voltage gated current I
with nonlinear conductance g and reversal potential v.

In order to demonstrate the principle behind this lin-
earization, let us consider the HH equation in which the
dynamics of membrane voltage satisfies

c v̇ = −gL(v − vL)−
M∑

k=1

Ik + Iapp(t), (1)

where c is the physical capacitance of the bilipid mem-
brane, gL is the leakage conductance, vL is leakage rever-
sal potential, Iapp is the applied current, and Iks are ionic
currents. Instead of the total ionic current in 1, we con-
sider a generic current I(v, n1, ∙ ∙ ∙ , nM ) as a function of
membrane voltage and M gating variables (n1, ∙ ∙ ∙ , nM ).
The equivalent electrical circuit of the current I with non-
linear conductance g is shown in Fig.1. The conductance
is shown with an arrow to indicate that it can vary with
the membrane voltage. The gating variables nk’s satisfy

d

dt
nk = αk(v)(1− nk)− βk(v)nk, k = 1, ∙ ∙ ∙ ,M, (2)

where αk and βk are voltage dependent rates. Now con-
sider small variations of the ionic current I around some
fixed point. We can express such a variation as

δI =

(
∂I

∂v

)

ss

δv +

M∑

k=1

(
∂I

∂nk

)

ss

δnk, (3)

where subscript ss denotes that derivatives are evaluated
at the equilibrium point. Retaining only the first order
terms, we expand (2) for a small variation into the fol-
lowing form:

d

dt
(δnk) = δαk − (δαk + δβk)nk − (αk + βk)δnk. (4)

Since both αk and βk are only dependent on the mem-
brane potential, their variations can be expressed as

δαk =

(
dαk

dv

)

δv, δβk =

(
dβk

dv

)

δv. (5)
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FIG. 2: Electrical circuit when ionic current I(v, n1, ∙ ∙ ∙ , nM ) of
Fig. 1 is linearized around the equilibrium point.

Substituting (5) into (4) leads to

d

dt
(δnk) =

(
dαk

dv

)

δv − (αk + βk)δnk

− nk

(
d(αk + βk)

dv

)

δv.

(6)

This can be formally written as

( d
dt
+ αk + βk

)
δnk =

[(dαk
dv

)

− nk
(d(αk + βk)

dv

)]
δv.

(7)

After substituting this result into equation (3), we get
the following equation for the first order of variation of
current I:

δI =




G+

M∑

k=1

ak
d

dt
+ bk




 δv, (8)

where G =
(
∂I
∂v

)
ss
. Two parameters ak and bk need to

be evaluated at the steady state such that

ak =

(
∂I

∂nk

)

ss

[(dαk
dv

)

ss
− nk,∞

(
d(αk + βk)

dv

)

ss

]

δv,

(9)
and bk = (αk + βk)ss, where nk,∞ = αk/(αk + βk) is
the steady state. In order to understand equation (8),
consider Fig. 2 and write the voltage of each inductance
branch as

δv =

(
1

gk
+ Lk

d

dt

)

δIk, k = 1, ∙ ∙ ∙ ,M, (10)

where δIk is the current through both components gk and
Lk. It is similar to the second term on the right hand
side of (8). Indeed, the voltage δv across the electrical
circuit with M + 1 branches drawn in Fig. 2 is the same

as δv in (8) if

gk = τk

( ∂I
∂nk

)

ss

[(dαk
dv

)

ss
−nk,∞

×

(
d(αk + βk)

dv

)

ss

]
,

(11)

where τk = 1/(αk + βk), and if we set inductances to

Lk =
1

gk(αk + βk)
=
τk

gk
, k = 1, ∙ ∙ ∙ ,M. (12)

Hence for a small perturbation δv the steady state voltage
vss, the current I responds as though the conductance G
is in parallel with the M impedance lines. As in Fig. 2,
each of these impedance lines are a conductance gk in
series with an inductance Lk.
From (8, 10) the linearized HH equations will be

c
dv

dt
= −G̃v −

M∑

k=1

Ik + Iapp, G̃ = G+ gL, (13)

Lk
dIk

dt
= −
Ik

gk
+ v, k = 1, ∙ ∙ ∙ ,M. (14)

III. THE RESONATE AND FIRE NEURAL
MODEL

The integrate-and-fire (IF) and the resonate-and-fire
(RF) models are the simplest spiking neuron models that
capture the essence of integrator and resonator neurons
[20, 21]. Their importance comes from the fact that they
are computationally efficient and suitable for simulations
of large networks of spiking neurons. A simple descrip-
tion of both models is that whenever voltage reaches the
threshold potential, a spike is registered, the system state
is instantly mapped to some reset value and the dynam-
ics continues.
The RF model is similar to the IF neuron model except
that it can exhibit subthreshold resonance. That is the
subthreshold membrane potential response of the neuron
driven with a small oscillatory drive depends on the drive
frequency and can be peaked at particular frequency [6].
This property that enables neurons to selectively respond
to activities of other neurons is called selective commu-
nication [21].
The RF model is defined by functions that are piecewise
smooth but event driven, in the sense that smoothness
is lost at instantaneous events, for example upon appli-
cation of the reset map. It has fascinating dynamics and
a rich underlying mathematical structure. The RF sys-
tem corresponds to the linearized HH equations (13) and
(14) with only one inductive path way. Therefore the
subthreshold behavior of the periodically forced RF sys-
tem satisfies

c
dv

dt
= −

v

R
− I + Iapp(t), R =

1

G̃
, r =

1

g
,

L
dI

dt
= v − rI,

(15)
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where v is the voltage, I is a resonant current, e.g.,
delayed rectifier K+ or Ih, and Iapp(t) is periodic ap-
plied current such that Iapp(t + T ) = Iapp(t). The spe-
cific case we will study for our numerical simulations is
Iapp(t) = I0 + ε sin(ω0t), where ε is the amplitude of
forcing, I0 is a constant current, and ω0 is the forcing
frequency. It proves convenient to consider system (15)
in the following form,

ẋ = Ax+ f(t), (16)

where

A =

(
−(Rc)−1 −c−1

L−1 −rL−1

)

, (17)

and

x =

(
v
I

)

, f(t) =

(
Iapp(t)

c
0

)

.

Let us assume the threshold potential can be defined by
the zero set of a smooth function h(x, t) = v − k(t),

threshold = {x(t) : h(x(t), t) = 0} , (18)

where k(t) is a continuous function and in the simplest
case can be constant. Therefore the n-th firing time tn
is defined as

tn = inf {t|h(x(t), t) ≥ 0, t ≥ tn−1, v
′(t) 6= k′(t)} ,

where a prime denotes a derivative. Therefore, whenever
the RF orbit intersects the threshold transversely, the
instant transition from threshold takes place, which in
fact changes the position of the RF orbit according to a
reset map R,

h(x, t) = 0 : x 7→ R(x, t).

Suppose a spike occurs at time tn. Let x
− and x+ rep-

resent the intersection of the RF flow with the threshold
both immediately before and immediately after the cross-
ing so that x− = limt→t−n x(t) and x

+ = limt→t+n x(t).
Hence we can write the resetting mechanism of the tra-
jectory at each firing time as

x+ = R(x−, t). (19)

The subthreshold behavior of the system (16) is linear
and therefore easy to analyze. Its solution can be written
as

x(t) = G(t)x(0) +

∫ t

0

G(t− s)f(s) ds, (20)

where G(t) is the matrix exponential (Green’s function)
G(t) = exp(At).
System (16) can show different types of subthreshold be-
havior associated with different neuronal characteristics.

We are interested in resonant behavior and its corre-
sponding region of parameters. In the parameter region
where resonant behavior occurs, the system has either a
stable node or a stable focus. As we want to focus on
the occurrence of the mode-locked solutions and chaos,
we do not describe different regimes here. For a complete
classification of the subthreshold regime see [6, 38].
If the RF system has a stable focus then matrix A has
a complex conjugate pair of eigenvalues α ∓ iω with
α = −(crR + L)/(2cRL) and ω2 = (R + r)/(cRL)− α2.
For λ = α + iω, the associated complex eigenvector is ν
such that ν = νR + iνI ∈ C2,

ν =

(
r + Lα
1

)

+ i

(
Lω
0

)

.

In this case G(t) = eαtPRωP
−1, where

Rω =

(
cos(ωt) − sin(ωt)
sin(ωt) cos(ωt)

)

,

P =
(
νI νR

)
=

(
Lω r + Lα
0 1

)

.

Therefore G(t) has the explicit form

G(t) =

(
G11(t) G12(t)
G21(t) G22(t)

)

, (21)

with

G11(t) =
eαt

Lω
(Lω cos(ωt) + (r + Lα) sin(ωt)) , (22)

G12(t) = −
eαt

Lω

(
(Lω)2 + (r + Lα)2

)
sin(ωt), (23)

G21(t) =
eαt

Lω
sin(ωt), (24)

G22(t) =
eαt

Lω
(Lω cos(ωt)− (r + Lα) sin(ωt)) . (25)

Similarly the case of a stable node, G(t) is given by

G11(t) =
eλ1t(r + Lλ1)− eλ2t(r + Lλ2)

L(λ1 − λ2)
, (26)

G12(t) =
(r + Lλ1)(r + Lλ2)(e

λ2t − eλ1t)
L(λ1 − λ2)

, (27)

G21(t) =
eλ1t − eλ2t

L(λ1 − λ2)
, (28)

G22(t) =
eλ2t(r + Lλ1)− eλ1t(r + Lλ2)

L(λ1 − λ2)
. (29)

where λ1 and λ2 are negative real eigenvalues of matrix
A.

A. The firing time map

For simplicity we assume that the RF oscillator is
driven by a constant input I0 so that in the absence of
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any periodic forcing it still oscillates. The RF system
evolves smoothly between firing times so that we can de-
fine a discrete firing times map that expresses the system
state at one firing time as a function of the state at the
previous firing time. Using (20), we can write

x(tn+1) = G(Δ
n)x(tn) +

∫ Δn

0

G(s)f(−s+ tn+1) ds.

(30)
where Δn = tn+1−tn is the interspike interval (ISI). Now
we assume the simple case of the threshold function as

h(x, t) = v − 1, (31)

and define the resetting mechanism by

x+ = R(x−, t) = 0. (32)

Substituting these conditions into (30) gives a one-
dimensional time map in the implicit form

F (tn, tn+1) ≡
∫ Δn

0

G11(s)Iapp(−s+ tn+1) ds− c = 0,

(33)
as well as an expression to evaluate the current at firing
time tn+1

I(tn+1) = c
−1
∫ Δn

0

G21(s)Iapp(−s+ tn+1) ds. (34)

Efficient numerical methods exist to compute the smooth
flows, to determine the firing times and to follow these
as the system parameters vary. In the next section, we
focus on mode-locked solutions.

B. Mode-locked solutions

To classify possible rhythms of the firing time of the
RF system we use the theory of mode-locking, which re-
lates the period of the output spike train to the period
of forcing rationally. That means the RF orbit repeats
exactly after a fixed number, p, of spikes and a fixed num-
ber, q, of forcing period T , the resulting train is called a
p : q mode-locked state. Therefore the winding number
of a p : q mode-locked solution is p

q
, that is, the average

number of firing events per period of the forcing. We
can construct mode-locked solutions explicitly and ana-
lyze how their existence changes as we vary a parameter.
It is convenient to introduce the nth firing time of a
p : q mode-locked solution as in [10, 28] as

tn =

([
n

p

]

+ φn(p)

)

qT, n = 0, 1, 2 . . . ,

n(p) = n mod p,

(35)

where φ0, . . . , φp−1 ∈ [0, 1) are a collection of firing
phases, [∙] denotes the integer part and T is the period
of applied current.

FIG. 3: An example of a 3:2 mode-locked solution showing the
membrane voltage trajectory that may arise in a sinusoidally
driven RF system given in equations (16, 31, 32) with

Iapp = 2.23 + sin(2πt), R = c = L = 1, and r = 0.1. Note that the
system fires three spikes (with phases φ0, φ1, and φ2) for every

two periods of applied current.

Figure 3 shows an example of 3:2 mode-locked state
of the RF system represented by the voltage orbit for
Iapp(t) = 2.23 + sin(2πt). As one expects, within each
two periods of the driving signal three spikes are fired
with corresponding phases φ0, φ1, and φ2.
Substituting equation (35) into (33), we find that the p
firing phases (φ0, . . . φp−1) are determined by the p equa-
tions

Fn(Φ, qT ) ≡
∫ Δn

0

Iapp

(
− s+ φn+1(p)qT

)

×G11(s) ds− c = 0,

(36)

where Φ = (φ0, φ1, ∙ ∙ ∙φp−1) and n = 0, ∙ ∙ ∙ p − 1. How-
ever, not all of the values of Φ obtained by such a proce-
dure actually correspond to a p : q mode-locked solution.
They must also satisfy conditions that guarantee that
such an orbit is physically possible. From the definition
of firing times and the resetting map, we already know
that one such restriction is

dv

dt
(tn) 6= 0, n = 0, ∙ ∙ ∙ , p− 1.

As parameters in the system vary, this condition may be
broken at certain isolated values, giving rise to grazing
bifurcation points, at which the qualitative properties of
the solution change, often in a dramatic manner. This
kind of bifurcation, which is the result of crossing and re-
setting rules, is called a Discontinuity-induced-bifurcation
(DIB), and we address them later (for more details see
[3]). Therefore in general we can find the p : q mode-
locked solutions by simultaneously solving the p equa-
tions (36). Moreover, the average of the firing period is

defined by 〈Δ〉 = limN→∞ 1/N
∑N
n=0Δ

n. Therefore, us-
ing (35) the average of a p : q mode-locked solution satis-
fies 〈Δ〉 = q

p
. For periodically forced systems, there typ-

ically exist regions in parameters space in which mode-
locked solutions exist. These regions are called Arnol’d
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tongues, emanating from rational points on the zero forc-
ing (ε = 0) and opening up into regions where the forc-
ing strength is turned on. Each tongue corresponds to
a locked solution for which the ratio of the forcing fre-
quency to the firing frequency is q

p
for p, q ∈ Z. The

boundaries of these tongues are determined by finding
the conditions of instability of the relevant mode-locked
orbit. By mapping out these boundaries, we can try to
partition the parameter space in terms of the qualitative
behavior of the system.

C. Stability

The structure of Arnol’d tongues can be affected by
various bifurcations. We can classify them as smooth bi-
furcations of the firing map when mode-locked solutions
lose their stability, and nonsmooth bifurcations arising
from the discontinuity of the system (DIBs). Here we
aim to explain these bifurcations.
To detect smooth bifurcation the stability of mode-locked
solutions must be examined. Hence, similar to that in
[10, 28], we perturb the nth firing time about a mode-
locked solution such that

tn → tn + δn = t
∗
n.

The perturbation of firing map (33) is then expressed as

F (t∗n+1, t
∗
n) ≡

∫ t∗n+1−t∗n

0

G11(s)Iapp(−s+ t
∗
n+1)ds−c = 0.

(37)
Retaining only the first order term, we arrive at

∂F

∂tn+1
δn+1 +

∂F

∂tn
δn = 0, (38)

where the partial derivatives are evaluated at the mode-
locked solution. We can rewrite (38) as

δn+1 =
Γn
Φn
δn ≡ κnδn, (39)

where the coefficients are

Γn =−
∂F

∂tn
= G11(Δ

n)Iapp(tn),

Φn =
∂F

∂tn+1
= Γn +

∫ Δn

0

G11(s)
dIapp

dt
(−s+ tn+1)ds.

(40)

Therefore, the stability of a p : q mode-locked state is
determined by the behavior of the map

δn+1 = κ(p) δn+1−p, (41)

where

κ(p) = κ0κ1 ∙ ∙ ∙κp−1. (42)

FIG. 4: Grazing bifurcations whenever a tangential crossing of
the firing threshold occurs. (a) A local maximum increases

through the firing threshold and creates a new firing time. (b) A
local maximum decreases through the threshold, causing the

solution to be lost in a nonsmooth bifurcation [28].

If ln |κ(p)| < 0 the corresponding mode-locked solution
is stable. Upon variation of a parameter, when |κ(p)|
passes through one, some bifurcations occur. Specifically
we expect to observe tangent bifurcation when κ(p) = 1
and period-doubling bifurcation when κ(p) = −1.
Tangent bifurcation is not the only way in which the
periodic orbits of the RF system can change their qual-
itative behavior as the parameters governing the system
vary. Also if periodic solutions have tangential intersec-
tions with the threshold curve, grazing bifurcation occurs
[3] in which we see changes in behavior that are different
from those of the smooth system. The linear stability
analysis of the firing map will not detect such kinds of
bifurcations (DIBs) that occur when mode-locked solu-
tions interact with discontinuities of the firing map. In
general, there could be two types of grazing bifurcations
[3, 28]:
Type one grazing arises when varying a parameter in the
RF system causes a local maximum to increase through
the firing threshold, leading to a new firing event that
occurs at some time earlier than usual and between two
existing firing times, see Fig.4(a). With this assumption,
a Type one nonsmooth bifurcation is defined by

v(tnew) = 1, tn < tnew < tn+1, (43)

dv

dt
(tnew) = 0, (44)

where at tnew, a tangential crossing with the threshold
function occurs and tn+1 is the appropriate solution of
F (tn, tn+1) = 0. For p : q mode-locked solutions, to find
the graze phase and p firing phases, we need to solve p+2
nonlinear algebraic equations. These are the p equations
(36) defining the mode-locked solutions with the extra
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FIG. 5: Boundaries of 1:1, 4:3, 3:2, 5:3, 2:1, and 5:2 tongues,
constructed from the union of smooth bifurcations of the firing
map and nonsmooth bifurcations induced by discontinuity of the
system. Solid lines indicate a tangent bifurcation of the firing
map, and dashed lines a nonsmooth grazing bifurcation of the
underlying flow. Parameters are as in the caption of Fig. 3.

two being (43, 44). Equations (43, 44) can be written as

∫ tnew−tn

0

G11(s)Iapp(−s+ tnew)ds− c = 0,

∫ tnew−tn

0

G11(s)
dIapp

dt
(−s+ tnew)ds

+G11(tnew − tn)Iapp(tn) = 0.

(45)

Note that for this kind of nonsmooth bifurcation, we
should specify between which two existing firing times
the graze occurs. Therefore, for small changes in param-
eters, it is then possible to have p + 1 : q mode-locked
solution from p : q solution.
In Fig. 5 we exhibit the analytical Arnol’d tongues struc-
ture. The boundaries of Arnol’d tongues are determined
by both tangent bifurcations (solid lines) and Type one
grazing bifurcations (dashed lines). As we see, unlike
the case of the smooth circle map [5, 31], the tongues
do not intersect each other anymore. Figure 5 also il-
lustrates another feature of the Arnol’d tongues, namely
that those emanating from the zero forcing amplitude
are arranged such that between the p : q and the p′ : q′

tongues one can expect to see the p+ p′ : q + q′ tongue,
e.g., between 3:2 and 2:1, the 5:3 tongue, between 2:1
and 3:1, the 5:2 tongue, and between 1:1 and 3:2, the
4:3 tongue can be seen. This concatenation of the peri-
odic orbits shows a striking resemblance with the well-
known series in number theory proposed by Farey, and
this phenomenon is referred as Farey arithmetic. It has
been shown in [3] that periodic orbits of one-dimensional
discontinuous piecewise linear map exhibits the same in-
teresting relationship between nearby periodic orbits.
We can also verify the occurrence of the graze by look-
ing at the voltage trajectory on the graze locus. This is
shown in Fig. 6 for I0 = 2.27 and ε = 2.65 where one
expects to see three spikes, namely φ0, φ1, and φ2 within
every two periods of Iapp(t). Moreover, it is clear that
the graze as a local maximum arrives between φ0 and φ1

FIG. 6: Voltage trajectory of the RF system for the parameter
values I0 = 2.27 and ε = 2.65 on the graze locus of the 3:2 tongue
shown in Fig. 5. Other parameters are as in Fig. 3. The voltage
orbit crosses the threshold at phases φ0, φ1, and φ2 transversely
and, as we expect it tangentially touches threshold between φ0

and φ1 at a new phase φnew.

while touching the threshold surface tangentially. This is
a bifurcation point for the creation of a new firing time
where the 3:2 mode-locked solution turns into the 4:2
mode-locked solution.
The method to exhibit a p : q Arnol’d tongue in the
(I0, ε)-parameter plane is to find a p-periodic point on
the tangent bifurcation curve. It can be done by simul-
taneously solving p equations (36) which satisfy κ(p) = 1.
Continuation of this solution on the tangent-bifurcation
locus in the ε and I0 plane constructs part of the bound-
ary of the tongue. The continuations of Arnol’d tongues
are one-parameter continuations in two-parameter space.
For a complete discussion on the computing of Arnol’d
tongues see [40] and for discussion on the smooth cir-
cle map, its bifurcations, and the corresponding Arnol’d
tongues see [5, 31].
Grazing of Type two also occurs whenever varying a pa-
rameter causes the voltage to reach the threshold but
with dv

dt
= 0 at that time, rather than dv

dt
> 0, see

Fig. 4(b). This may also cause the solution to be lost
in a nonsmooth bifurcation [3, 10] where for small vari-
ation of parameters the p : q mode-locked state turns
into the p − 1 : q mode-locked state. This bifurcation
could be detected by appending the condition dv

dt
(tn) = 0

to the p equations (36) defining the mode-locked orbit.
Care must be taken to determine at which firing time the
graze takes place.
Therefore, considering both smooth bifurcations of the
firing map and the grazing bifurcations of the underlying
discontinuous flow, we were able to construct the Arnol’d
tongue structure of the periodically driven RF system. In
the determination of the tongues, period-doubling bifur-
cation does not occur and Type two grazing bifurcation
does not seem to play a large role, although is present.
Whenever the grazing bifurcations occur, the map of fir-
ing times becomes discontinuous. This discontinuity sit-
uation close to a grazing point is due to the fact that a
trajectory starting close to the graze either intersects the



8

threshold with small value of dv
dt
or does not intersect the

threshold locally. This causes a drastic difference in sub-
sequent behavior of the trajectories close to the graze.
Using (39), the derivative of the firing times map is ob-
tained as

∂tn+1
∂tn

=
Γn
Φn
, (46)

and it becomes unbounded whenever Φn = 0. In both
types of the grazing bifurcations, the derivative of the
map becomes unbounded, and the map of firing times
is discontinuous. For example in the case of 1:1 mode-
locked solutions, using the fact that tn+1 − tn = T and
tn = nT + φ0, the discontinuity condition for the firing
map reads:

G11(T )Iapp(φ0) +

∫ T

0

G11(s)
dIapp

dt
(−s+ φ0)ds = 0,

which is satisfied if

∫ T

0

d

dt
G11(s)Iapp(−s+ φ0) ds+ I0 < ε. (47)

In general it is complicated to determine the parameter
regions in which Φn = 0, but as illustrated in the ana-
lytical Arnol’d tongue structure, for a p : q mode-locked
solution the firing map is discontinuous on the locus of
the graze. This is shown with dashed lines on Fig. 5.
If the RF firing map is continuous, it is only invertible if
Γn 6= 0. In this case from the firing map (33) we know
that if F (t, s) = 0, then F (t + T, s + nT ) = 0 for n = 1
indicating that F is the lift associated to a degree one
circle map. Therefore the firing map is an invertible cir-
cle map when Iapp(tn) 6= 0, and G11(Δn) 6= 0.
It is straightforward to see that Iapp(tn) 6= 0 when I0 > ε.
Given that the RF system has stable node and using (26),
the condition G11(Δ

n) 6= 0 is satisfied and for the RF sys-
tem with stable focus, using (22) this condition translates
into:

Lω

r + Lα
6= − tan(ωΔn).

Therefore in the region of 1:1 mode-locked solutions, the
firing map is invertible circle map if

∫ T

0

d

dt
G11(s)Iapp(−s+ φ0) ds ≥ 0, (48)

and if the RF system has stable focus, both conditions
(48) and Lω/(r + Lα) 6= − tan(ωT ) must satisfy.
The map of firing times is not necessarily onto. To
ensure that the firing map is onto, the slope of the
voltage at the firing times must be larger than the slope
of the threshold, that is d

dt
v(tn) > 0.

Now using a dynamical systems approach, we investi-
gate the dynamics of the RF model in terms of chaotic
behavior. This is achieved by calculation of Liapunov

exponents. If the largest Liapunov exponents is positive,
the system is recognized as chaotic. We need to use the
idea originally developed for the study of impact oscil-
lators [32] to calculate the largest Liapunov exponents.
This idea has been also used for calculation of the Lia-
punov exponents of the IF model [12] and IF model with
threshold fatigue [7]. For completeness and subsequent
conclusion, in the next section we focus on the notion of
Liapunov exponents for the RF system.

IV. LIAPUNOV EXPONENTS

For our purpose which is to determine the existence of
chaos, we establish that there are region in parameters
space in which the RF model displays sensitive depen-
dence on initial conditions as indicated by positive Lia-
punov exponent. To this end, we calculate an expression
for the Liapunov exponents of the RF model given in
equation (16).
Liapunov exponents of the RF model can be derived
by determining the slopes of the firing map at successive
firing times. While the subthreshold dynamics of the
RF system is continuous, the effect of the flow reaching
threshold is to cause an instantaneous jump in the flow,
and introduces a nonlinearity into the dynamics. There-
fore the standard approach of calculation of Liapunov
exponents is not applicable for the RF model. Instead,
we use the ideas developed for the study of impact oscilla-
tors [32] to estimate Liapunov exponents. The main step
in this method is to evaluate the consequence of these
discontinuities on solutions starting from nearby initial
conditions.
Consider the RF system (16) with threshold and resetting
conditions given in (31) and (32). Let us assume there
is a small perturbation δx(t0) = (δv(t0), δI(t0))

T (where
the superscript T denotes vector transposition) on an ini-
tial condition x(t0) = (v(t0), I(t0))

T . In the absence of
firing in the interval [0, t], the initial perturbation evolves
to the value

δx(t) =

(
δv(t)
δI(t)

)

= G(t)δx(t0),

where G(t) is given in (21). To calculate the Liapunov ex-
ponents, we follow the temporal generation of this pertur-
bation and trace it immediately before the unperturbed
orbit crosses the threshold, denoted by δx− and imme-
diately after the perturbed orbit crosses the threshold,
denoted by δx+. We assume the unperturbed solution
reaches threshold before the perturbed one at time t1,
then we have

δx(t) = G(t− t1)B(t1)G(t1 − t0)δx(t0), (49)

where matrix B is related to the derivation of δx+ and
is calculated as below.
Let us assume the perturbed solution, x̃(t), intersects
threshold at time t1 + δt1. The situation is illustrated
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FIG. 7: Illustration of the method for calculating the Liapunov
exponents of the RF model given in equations (16, 31, 32). The
unperturbed solution x(t) intersects the threshold at times tn
while the perturbed solution x̃(t) intersects at time tn + δtn. In

order to calculate Liapunov exponents, we trace
δx+ = x̃(tn + δt

+
n )− x(tn + δt

+
n ) as explained in the text.

in Fig. 7. The goal is to derive an expression for δx+ =
δx(t1 + δt

+
1 ) as a function of δx

− = δx(t−1 ) keeping only
first order terms.
Using the crossing condition (31) and the fact that x̃(t) =

(ṽ(t), Ĩ(t))T , δv(t) = ṽ(t)− v(t), and δI(t) = Ĩ(t)− I(t),
at time t1 + δt1 we have

0 =h(x̃(t1 + δt1)) = ṽ(t1 + δt1)− 1

≈ṽ(t1) + δt1ṽ
′(t1)− 1

≈δv(t1) + δt1v
′(t1),

(50)

where a prime denotes a derivative. Therefore the per-
turbation of firing time t1 is approximately given by:

δt1 =
−δv(t1)
v′(t1)

, (51)

where we have assumed the denominator is not zero. At
t = t1 + δt

+
1 , using the resetting condition (32) we have

δv+ = δv(t1 + δt
+
1 )

= ṽ(t1 + δt
+
1 )− v(t1 + δt

+
1 )

≈ −δt1v
′(t+1 ).

(52)

Furthermore, we have

δI+ = Ĩ(t1 + δt
+
1 )− I(t1 + δt

+
1 )

≈ −I(t+1 )− δt1I
′(t+1 ) = 0.

(53)

Equations (51− 53) result in:

δv+ = α(t1)δv(t1), δI
+ = 0,

where

α(t) =
Iapp(t)

Iapp(t)−R−1 − I(t)
. (54)

In this way we have

B(t) =

(
α(t) 0
0 0

)

.

Now for the general case where there are n spikes at times
0 ≤ t1 < ∙ ∙ ∙ < tn < t, we get

δx(t) = G(t− tn)B(tn)G(tn − tn−1) ∙ ∙ ∙G(t2 − t1)

×B(t1)G(t1 − t0)δx(t0).
(55)

The Liapunov exponents measure the average rate of ex-
pansion or compression of this quantity, and are defined
as

λ = lim
t→∞

1

t
ln
( |δx(t)|
|δx(t0)|

)
.

It proves convenient to estimate the Liapunov exponents
by starting and ending the computation at firing times,
therefore using equation (55) and the definition of matrix
B we have

δx(tn) =Mnδx(t0),

where

Mn =

(
Mn,1 0
0 0

)

,

with

Mn,1 =

n∏

i=1

α(ti)G11(ti − ti−1). (56)

Then the two Liapunov exponents can be defined from
the eigenvalues of matrix Ln =MnM

T
n . If λn is an eigen-

value of Ln, the corresponding Liapunov exponent, λ, is
defined by

λ = lim
n→∞

1

2n
ln(λn). (57)

One of the eigenvalues of the matrix Ln is zero resulting
the Liapunov exponent μ such that μ→ −∞. Calculat-
ing the other eigenvalue and using equations (54), (56),
and (57), we have the largest Liapunov exponent of the
RF model as

λ = lim
n→∞

1

tn
ln

n∏

i=1

∣
∣α(ti)G11(Δ

i−1)
∣
∣ . (58)

In the cases of the stable focus and the stable node of
the RF model, it’s easy to see from (22) and (26) that two
factors contribute to the Liapunov exponent λ, one from
the smooth flow between successive firing events and the
other from the discontinuity induced by the resetting.
Figures 8(a) and 10 show the Liapunov exponent (color
coded) associated with (58). At each point in the pa-
rameter plane the Liapunov exponent is approximated
over 3000 firing times, and the first 100 firing times were
ignored as transients. Figure 8(a) shows the Liapunov
exponent as a function of I0 and ε for ω0 = 2π. Other
parameters are as in the caption of Fig. 3. When ε = 0,
i.e. there is no temporal modulation of the input current,
the model displays periodic or quasi-periodic behavior
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(a) (Color online) The Liapunov exponent of the RF model given in
(58) as a function of I0 and ε.

(b) Plot of 〈Δ〉−1 as a function of I0.

FIG. 8: (a) (Color online) The Liapunov exponent as a function
of I0 and ε for ω0 = 2π on a mesh of size 300× 300, corresponds
with the bifurcation diagram in Fig. 5 and (b) The average of the
firing frequency of the RF model as a function of I0 with constant
ε = 1. Note that the dominant mode-locked solutions are 1:1, 4:3,
3:2, and 2:1 (with increasing I0). Other parameters are as in the

caption of Fig. 3.

(λ ≤ 0). We observe the Arnol’d tongues emanating
from the ε-axis (compare with Fig. 5), the largest being
the 1:1 tongue. As we see the model does not show
chaotic behavior. Figure 8(b) shows a winding number
diagram corresponding to the Arnol’d tongue structure
in Fig. 8(a) for ε = 1. Every step on the devil’s stair-
case is associated with a rational value of 〈Δ〉−1. As
can be seen from devil’s staircase, the winding number
in locking regions follows the Farey sequence. For ε = 1
we also exhibit the bifurcation diagram of the interspike
interval Δn = tn+1 − tn as a function of I0 in Fig. 9(a)
and its corresponding Liapunov exponent for the same
range of I0 in Fig. 9(b). We see that the Liapunov ex-
ponent is either negative or zero so no chaotic behavior
is observed. In Fig. 9(a) we observe periodic solutions at
different values of I0, for example while increasing I0, we
have period-1, period-4, period-3, period-5, and period-2
solution indicated by labels in the figure. As expected
their corresponding regions in Fig. 9(b) exhibit negative
Liapunov exponent. In Fig. 10, we show the Liapunov
exponent as a function of the forcing frequency, ω0 and
ε for I0 = 2.45. As seen in Fig. 8(a), when I0 = 2.45,

(a) ISI Δn = tn+1 − tn as a function of I0.

(b) The Liapunov exponent, λ as a function of I0.

FIG. 9: For constant ε = 1 in Fig. 8a, we represent (a) the
bifurcation diagram for ISI. The lines in the bifurcation diagram
correspond to periodic solutions. Some periodic regions are

indicated with labels showing their period. (b) The corresponding
Liapunov exponent, as we see λ is either negative or zero. We
used 1000 firing times to estimate λ at each value of I0. Other

parameters are as in the caption of Fig. 3.

FIG. 10: (Color online) The Liapunov exponent of the RF
model given in equation (58) as a function of ε and ω0 with
I0 = 2.45. Other parameters are as in the caption of Fig. 3.

the system does not show chaotic behavior, however in
Fig. 10 (color coded) we observe that increasing the forc-
ing amplitude can move the system from periodic to
chaotic behavior as ω0 increases and passes through the
resonant frequency at approximately 1.2. For ε = 1.02,
Fig. 11(a) represents the impact of varying ω0 on the
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(a) Bifurcation diagram of ISI Δn as a function of forcing frequency
ω0. The arrows show some regions in which we have periodic

solution.

(b) The Liapunov exponent λ as a function of ω0.

FIG. 11: Bifurcation diagrams for fixed ε = 1.02 and I0 = 2.45
in Fig. 10. In part (a) and (b) we exhibit the bifurcation diagram
of the interspike interval and the Liapunov exponent, respectively,
as a function of forcing frequency. These are in good agreement.
As one expects regions with λ < 0 in (b) correspond to periodic

solutions in (a). For ω0 near to the resonant frequency
1.2 < ω0 < 1.6, we observe chaotic behavior corresponding to

λ > 0.

interspike interval bifurcation diagram, while Fig. 11(b)
shows the RF Liapunov exponent λ for the same range
of ω0. In the regions of periodic solutions, as expected,
we observe negative Liapunov exponent. Some intervals
of values of ω0 for which periodic orbit exists are indi-
cated with labels in Fig. 11(a). However, as ω0 is de-
creased we see windows of periodic solutions alternating
with windows of chaotic dynamics. Besides the existence
of chaos, Fig. 11(a) gives valuable information about the
transitions leading to chaos. It reveals the phenomenon
of period-adding [3] leading to chaos. As ω0 is decreased,
we see periodic solutions such that their period increases
in an arithmetic sequence. In this situation, either be-
tween periodic solutions of period n and n+1 we observe
an interval of ω0 for which chaotic dynamics occurs or no
chaotic behavior occurs and periodic solutions overlap
for small intervals of ω0. A similar dynamics is observed
in square-root map arising as local approximation to the
Poincaré maps associated with grazing bifurcations in im-
pacting systems [3]. We discuss this behavior below.

FIG. 12: Enlargement of the bifurcation diagram shown in
Fig. 11(a) in the range ω0 = 1.55 to ω0 = 2.5, showing transition
to chaos. The circles are indicating the discontinuity points of the

firing map.

FIG. 13: The bifurcation diagram in the range ω0 = 0.8 to
ω0 = 1.3, showing period-adding phenomenon.

In Fig. 12 we show an enlarged section of Fig. 11(a) in
the range ω0 = 1.55 to ω0 = 2.5. At ω0 = 2.5 there is
a period-4 solution. Upon decreasing ω0, the period-4
orbit undergoes period-doubling at ω0 ≈ 2.24 and there-
after the orbit evolves to period-5 orbit at ω0 ≈ 2.19.
Between period-4 and period-5 interval, there is a small
interval of ω0 where the periodic solutions overlap.
Decreasing ω0, the period-5 orbit doubles at ω0 ≈ 1.94,
the orbit then passes through the discontinuities at ω0 ≈
1.93, ω0 ≈ 1.92, and ω0 ≈ 1.85 where we see the inter-
sections in the interspike interval diagram (shown with
the circles in Fig. 12). At these points the orbit crosses
threshold tangentially, corresponding to the discontinu-
ities of the firing map.
The dynamics within the range of 1.8 < ω0 < 1.86 be-
comes chaotic. As ω0 is lowered from 1.8, period-6 orbit
appears. Then the orbit doubles at ω0 ≈ 1.7, giving rise
to a chaotic interval in the range 1.3 < ω0 < 1.67.
In Fig.13 we show ISI bifurcation diagram for 0.8 < ω0 <
1.3. We observe alternating windows of periodic solu-
tions and chaotic motions, as ω0 is decreased from 1.3
to 1. Thereafter, decreasing ω0 in the range ω0 = 1 to
ω0 = 0.8, we have period-adding scenario without chaotic
intervals. At ω0 = 1 we see period-7 orbit which evolves
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(a) I0 = 2.45, ε = 1.02, ω0 = 1.35. (b) I0 = 2.42, ε = 0.5, ω0 = 4.

(c) I0 = 2.45, ε = 1.23, ω0 = 3.21. (d) I0 = 2.45, ε = 1.97, ω0 = 4.14.

FIG. 14: Cobweb diagrams for the firing map (33) showing: (a) chaotic behavior, (b) quasi-periodic behavior, (c) period-3 attractor,
and (d) period-5 attractor. Other parameters are as in Fig. 3.

smoothly to period-8 at ω0 ≈ 0.95, then the period-8
orbit gives rise to a period-9 orbit at ω0 = 0.85. Note
that there is overlapping between these periodic orbits
for small range of ω0.
A useful way of studying one-dimensional map is via cob-
web diagrams which plot tn+1 against tn. An example of
cobweb diagrams for the RF firing map is given in Fig.14.
As we see by varying parameters the system may have
(a) chaotic, (b) quasi-periodic, or (c,d) periodic behavior
(showing, respectively, period-3, and period-5 orbit).
In the limit of large r, one expects that the RF model
can be reduced to the IF model. To verify this, let us
take r = 800, L = 0.01, and c = 1 with forcing frequency
ω0 = 2π and the constant current I0 = 2. For the sake
of consistency with the results of Arnol’d tongues for the
IF system [10, 11], we show the bifurcation diagram in
(ε, R) plane. The result is given in Fig. 15. Here, solid
lines and dashed lines demonstrate tangent and grazing
bifurcations, respectively. This is in good agreement with
the results shown in [11].

V. DISCUSSION

We have exactly analyzed the response of the RF neu-
ron model to an arbitrary periodic modulation of its in-

FIG. 15: The Arnol’d tongues of the RF system in the limit of
large r is compatible with those of the IF system shown in S.

Coombes and P. C. Bressloff, Phys. Rev. E 63, 059901(E) (2001).
The forcing frequency is ω0 = 2π, the constant current is I0 = 2,
and the other parameters are r = 800, L = 0.01, and c = 1. The
boundaries of the tongues is determined by both tangent

bifurcations (solid lines) and grazing bifurcations (dashed lines).

put current. The focus was on the occurrence of the
mode-locked solutions and chaotic behavior. We have
found that the analytically calculated regions of stabil-
ity of mode-locked solutions, the Arnol’d tongues, are
in excellent agreement with those of the numerical inte-
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gration of the model (compare Figs. 5 and 8(a)). The
behavior of the system when periodically forced can be
largely understood by tracing boundaries of the Arnol’d
tongues. The boundaries of these tongues correspond to
either local bifurcations of the firing time map, or graz-
ing bifurcations induced by the discontinuity of the flow.
To the author’s knowledge, this is the first time this type
of analysis has been applied to mode-locking in a neural
model that describes resonance. We showed that the be-
havior of the RF system can become chaotic when the
forcing frequency is close to the resonant frequency. This
is an important result as it was shown that the period-
ically driven leakage integrate-and fire oscillators fail to
reproduce chaotic behavior [10], whereas this form of be-
havior has been observed experimentally. Although it is
known that some modified IF neuron models subjected to
periodic forcing such as the ghostbursting model [28] and
IF with threshold fatigue [7] can exhibit chaotic behav-
ior, they cannot describe resonant behavior and are not
suitable for modeling resonant neurons. Furthermore,
the RF model can be reduced (by choosing a large r)
to the leaky IF neuron model, and in this case there is
good agreement between the result (see Fig. 15). There-
fore the analysis of the periodically forced RF model is a
good extension of previous works related to mode-locked
solutions of the IF models. On the other hand, it was
shown in [6, 38] that a sufficient amount of noise was
necessary for the subthreshold resonance to cause a fir-
ing rate resonance. Our results highlight that even in

response to the non-noisy periodic inputs the subthresh-
old resonance generates chaotic firing events.
As the RF model is the simplest neuron model repro-
ducing resonant behavior, it is suitable for further math-
ematical analysis of network phenomena involving res-
onant neurons. It is certainly of great interest to un-
derstand the effect of noise on the firing events, mode-
locked solutions, and the structure of Arnol’d tongues of
the RF system. Also considering the resetting map to
reset just voltage obtains a two-dimensional firing map.
In this case it is worth understanding the properties of
the firing times and the dynamics in terms of chaotic or
periodic behavior. For two strongly coupled RF models,
the synchronization state and the effect of the resetting
function have been studied in [33]. Another interesting
issue we would like to address is to analyze the response
of a weakly connected population of firing RF neurons.
One may then investigate the underlying conditions for
synchronization or desynchronization states.
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