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ABSTRACT

Calculation of Highly Oscillatory Integrals by Quadrature Methods. (May 2012)

Krishna Thapa
Department of Physics
Texas A&M University

Research Advisor: Dr. Stephen Fulling
Department of Mathematics

Highly oscillatory integrals of the form I(f) =
∫∞
0
dxf(x)eiωg(x) arise in various

problems in dynamics, image analysis, optics, and other fields of physics and math-

ematics. Conventional approximation methods for such highly oscillatory integrals

tend to give huge errors as frequency (ω) → ∞. Over years, various attempts have

been made to get over this flaw by considering alternative quadrature methods for

integration. One such method was developed by Filon in 1928, which Iserles et al.

have recently extended. Using this method, Iserles et al. show that as ω → ∞, the

error decreases further as the error is inversely proportional to ω. We use methods

developed by Iserles’ group, along with others like Newton-Cotes, Clenshaw-Curtis

and Levin’s methods with the aid of Mathematica. Our aim is to find a systematic

way of calculating highly oscillatory integrals. In particular, our focus is on the os-

cillatory integrals that came up in earlier study of vacuum energy by Dr. Stephen

Fulling.
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CHAPTER I

INTRODUCTION

Highly oscillatory integrals such as∫ 1

0

dxf(x)eiωg(x) (1.1)

appear in dynamics, image analysis, and many other branches of physics and mathe-

matics. Conventional numerical approximation methods tend to give huge errors as

the frequency of the integrand goes to infinity.

Among various integration rules, trapezoidal rule and Simpson’s rule fall under the

class of Newton-Cotes rule, which are useful when one knows the value of the inte-

grand at equally spaced integral points. On the other hand, the intervals between

interpolation points vary in Gaussian quadrature rule. Here quadrature rule simply

means a way of integration. In Newton-Cotes or Gaussian quadrature rule, an inte-

gral
∫ 1

−1 f(x)dx is approximated by
∑n

i=1wif(xi),where wis are chosen so that the

formula is exact when f(x) is any polynomial of sufficiently low degree.

In the case of highly oscillatory integrals, approximation from conventional meth-

ods become less accurate with an increase in the frequency(ω). Filon[1] , in 1928,

had developed a new quadrature rule for integration of trigonometric functions. In

Filon’s method, the integral 1.1 is approximated by a sum of type
∑n

i=1wif(xi), and

the criterion for choosing wi is that the rule should be exact when f(x) is asimple

polynomial. Unlike in conventional methods, the error of integration decreases with

the integrand frequency (ω). However, in case of Filon’s method, one needs to be

able to find
∫ b
a
dxxkeiωx integrals called ‘moments’, which is not a trivial task.

This thesis follows the style of IEEE Transactions on Automatic Control.
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Iserles et al. [2, 3, 4] have recently utilized Filon’s quadrature rule, along with Levin’s

method [5] to find a better way to approximate highly oscillatory integrals. They

approximate the integral as a linear combination of derivatives and function value at

end points. This increases the accuracy of integration with an increase in frequency.

Olver[6] recently came up with a method to calculate highly oscillatory integrals

without using the derivatives approach.

Flinn [7] modified Filon’s method in 1960, which Levin and Iserles et al. further

developed in later years. Around the same time, I.B. Longman [8] and Clenshaw and

Curtis [9] took a different approach in calculating oscillatory integrals. Clenshaw-

Curtis method uses the roots of Chebyshev polynomial to discretize the integrals.

These methods will be discussed in more detail in chapters to follow.

In the study of vacuum energy near a boundary, Fulling et al. [10] were unable to

calculate the highly oscillatory integrals by conventional approximation methods. I

intend to utilize the various available integration methods to calculate such highly

oscillatory integrals. By doing so, our hope is to find a efficient method to calculate

similar oscillatory integrals that are bound to arise in future work on vacuum energy.

One of our test integral, which came up in Dr. Fulling’s earlier research, is

T (z) =
1

π3

∫ ∞
0

dρ

∫ 1

0

dp
√

1− p2 cos(2zρp− 2δ(ρp)) (1.2)

where,

tan(δ(p)) = −p
(Ai(−p2)

Ai′(−p2)

)
. (1.3)

This 1.3 becomes
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δ(p) = Arctan
(
− p
(Ai(−p2)

Ai′(−p2)

))
(1.4)

0.5 1.0 1.5 2.0 2.5 3.0

-4

-2

2

4

Figure 1. Plot showing arctan(δ(p)) and δ(p) functions

tan(δ(p)) and δ(p) were plotted in Fig. 1. However, δ(p) shows discontinuous jumps;

it consists of displaced segments because of the branch of the inverse tan function. We

redefined a new Mathematica function that take those jumps partially into account.

δ(p)new = −Arctan[Ai′[−p2], p*Ai[−p2]] + π (1.5)

The new delta function is much more smoother than old delta function, which is

shown in Fig. 2.

The correct delta function has asymptotic behaviour as follows:

δ(p) ∼


p32/3Γ(4

3
)/Γ(2

3
), p→ 0

2p3

3
+ π

4
, p→∞

(1.6)
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0.5 1.0 1.5 2.0 2.5 3.0
p

2

4

6

Figure 2. Plot showing δnew and δ(p) functions

We choose z = −1 in the cosine function[10]. Before integrating the T (z) function,

we also went ahead and approximated the delta function by pade approximation

method.

Pade approximation

Pade approximation is a technique used to approximate certain function as a ratio

of two power series.

f(x) ≡ Pn(p)

Qm(p)
(1.7)

where Pn(p) and Qm(p) represent two polynomials of degree n and m.

Pade approximation technique is mostly employed for functions with poles. We use

this method to approximate equation 1.2 by a ratio of two polynomials. At first we

suppose that Pn(p) = a1p + a2p
2 + a3p

3 + a4p
4 + a5p

5 and Qm(p) = 1 + b1p + b2p
2.

So, our approximated function becomes

deltapade(p) =
Pn(p)

Qm(p)
=
a1p+ a2p

2 + a3p
3 + a4p

4 + a5p
5

1 + b1p+ b2p2
(1.8)
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The constants for this equation are found by using equation (1.6). This comes out

to be

deltapade(p) =
1.37172p+ 0.301752p2 + 0.666667p3 + 0.146654p4 + 0.256135p5

1 + 0.219981p+ 0.384203p2

(1.9)

This approximation is highly accurate for our delta function (1.6). We confirmed

this by taking limits to both functions deltapade(p) and δ(p)new as p → 0 and as

p→∞.

100 100 100 100

-1.0

-0.5

0.5

1.0

(a) From p=100 to p=100.0002

100.01 100.02 100.03 100.04

-1.0

-0.5

0.5

1.0

(b) From p=100 to p=100.04

Figure 3. cos(δ(p)new) and cos(deltapade(p)) functions

In the figure 3, both functions are plotted between p = 100 to p = 100.0002 and from

p = 100.0002 to p = 100.04. This also gives us a glimpse of the oscillatory nature of

our integrand.

We try to integrate 1.2 with various numerical techniques with the use of both delta-

pade and δnew(p) functions. We expect this integral to converge to some number.

First thing to note is that the integrand is convergent in distributional sense only.

Therefore, we also apply Riesz-Cesaro method [11] along with the quadrature meth-

ods.

At first, I started out with Iserles’[2] method for integration. I also made an attempt
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to calculate it by Olver’s method [6]. Apart from that, I also made use of Math-

ematica’s default integration techniques for highly oscillatory integrals like Levin

method, and Clenshawcurtis method. I choose these two particular methods be-

cause they tend to work best among the other available integration routines. With

all of these quadrature methods at hand, my aim is to find a method that calculates

the oscillatory integral most efficiently.
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CHAPTER II

METHODOLOGY

We used Mathematica extensively in our calculation of the integrals. Since the pur-

pose of the research is to find appropriate integration methods for the oscillatory

integrals, we made use of different in-built Mathematica functions. We calculated

the oscillatory integrals by the use of those various functions. We then compared the

result from different integration methods to choose the best method that does the

calculation faster.

We had initially intended to use Iserles’ method in calculation of our oscillatory

functions. We were, however, unable to calculate our test integral by Iserles’ method

because of the discontinuous nature of the derivative at the end points. We were

able to use this method for other oscillatory integrals and we were able to get the

desired convergence.

Our next attention was on the method developed by Olver[12, 6, 13]. This method

was an extension of the method developed by Levin [5, 14], which did not require

calculation of moments. We thought this would be a good starting point for us

because we were unable to take Iserles’ derivative approach. We had realized that

finding the right moment for any integral is much more difficult than we had antic-

ipated. From our conversation with Olver, we got convinced that the methods that

Olver and Levin developed were incorporated in Mathematica to some extent. We

then focused much of our attention to using various quadrature methods available

in Mathematica to calculate our integrals.

While calculating oscillatory integrals from built-in Mathematica function, we re-

alized that some quadrature methods worked better in case of oscillatory integrals
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than others. For instance, Levin, and ClenshawCurtis rules in Mathematica often

produced much better result than the function NIntegrate. We basically took an os-

cillatory integral that could be calculated analytically and then calculated the same

integral with NIntegrate, and the above-mentioned integration rules to compare the

absolute error. Levin and ClenshawCurtis rule often produced result with lesser

absolute error and also often were much faster.

With this success, we try to narrow down which method works better among Levin

and ClenshawCurtis rule. We’ve tried it on different functions but the result is not

consistent. As of now, both method generally calculate oscillatory integrals much

faster than the NIntegrate fucntion, and often with lesser absolute error. Our plan is

to pick one of these two integrals and start calculating the integrals that we wanted

to integrate.
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CHAPTER III

QUADRATURES FOR INTEGRATION

Newton-Cotes quadrature

Among the various quadratures available for integration, Newton-Cotes formula is

the most straightforward method. The integrand is divided in various blocks to

integrate with the help of polynomials. Trapezoidal rule is a type of Newton-Cotes

quadrature method which uses two end points x1 and x2 of the function. Similarly,

Simpson’s rule makes use of two end points x1, x2 and midpoint (x1 + x2)/2 for

integration [15].

Unlike Trapezoidal rule which does straight point fit between points x1 and x2, Simp-

son’s rule uses quadratic polynomials to fit from point x1 to the midpoint, and from

the midpoint to point x2. As such, Simpson’s rule can give a good approximation

of integrands with third degree polynomial. One can increase the number of points

between x1 and x2 to get better approximation of the integrand.

x1 x2h
x

y

Figure 4. Plot showing integration by trapezoidal rule
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Gaussian quadrature

Unlike in Simpson’s rule or Trapezoidal rule, this method tries to find best abscissas

for approximation. In other words, it looks for best xi within end points of the

integrand. In case of Trapezoidal rule,∫ b

a

f(x)dx ≈ c1f(a) + c2f(b) =
(b− a)

2
(f(a) + f(b)).

However, in the case of Gaussian quadrature method, a and b are not known yet.

This method picks best xi on [a, b] such that
∫ b
a
f(x)dx ≈ c1f(x1) + c2f(x2). Here,

c1, c2, x1, and x2 are all unknowns. In this case, these four constants are found by

integrating third order polynomials and equating the coefficients. Upon calculation,

one can find that

x1 =
b− a

2

−1√
3

+
b+ a

2
,

x2 =
b− a

2

1√
3

+
b+ a

2
,

c1 =
b− a

2
, and c2 =

b− a
2

.

This process is repeated for higher order integrands, and for higher number of abscis-

sas by assuming that there exists a polynomial of higher order that can be calculated

exactly. Ultimately, these calculations for absissas give the roots of orthogonal poly-

nomial and some weighing function within that interval[15]. Gauusian quadrature

for a given integral on the closed interval [a, b] is given by

Qn =
n∑
µ=1

cµnf(xµn) (3.1)

for some real numbers c1n, c2n....cnn
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Filon’s method

In 1928, Louis Napoleon George Filon [1] developed this method especially for oscil-

latory integrals of the form∫ b

a

f(x) sin(ωx)dx and

∫ ∞
0

f(x)

x
sin(ωx)dx

For a given function within a closed interval [a, b], he divided the interval into 2n

sections where each section has width h such that∫
f(x) sin(ωx)dx =

2µ+2∑
m=µ

f(x) sin(ωx).

Within each section, he applied modified Simpson’s rule; i.e., within the endpoints

of the section, he had a midpoint where he could approximate the function by a

quadratic. So, at each section, the integral becomes a product of quadratic and

oscillatory function, which is much easier to calculate. The quadratic for each section

is determined by requiring

mµ(xµ) = f(xµ),mµ+1(xµ+1) = f(xµ+1), and mµ+2(xµ+2) = f(xµ+2).

Then, the approximation is

f(x) sin(ωx) ≈
2µ+2∑
i=µ

wif(xi),

where wi are found by requiring

∫ b

a

mµ(x) sin(ωx)dx =

2µ+2∑
i=µ

wimµ(xi)

The calculation of the wi therefore hinges on calculating the moments
∫ b
a
xneiωg(x)dx.

Unlike traditional approximation methods, the accuracy of the function increases

with the increase in frequency of the integrand. For a given order of accuracy, this
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method thus reduces computation time than other methods.

Levin and Iserles’ method

Computation of moments for
∫ b
a
f(x)sin(ωg(x)) where g(x) is something other than

x is itself a difficult task. In 1982, David Levin developed a method that does not

require calculation of moments. Iserles and others also developed similar method

where they were able to get better values by the use of higher derivatives of the

integrand.

Iserles et al. [2] define a generalized Filon method as,

QF
s [f ] =

∫ 1

0

f̃(x)eiωg(x)dx =
ν∑
l=1

θj∑
j=0

bl,j(ω)f j(cl) (3.2)

where θi, θj ≥ s and bi,j =
∫ 1

0
αl,j(x)eiωg(x)dx and αi,j is a polynomial of degree n−1.

For a simple case of g(x) = x, s = 2, ν = 2, c1 = 0, c2 = 1, and θ1 = θ2 = 0, they get,

QF
2 [f ] =

(
− 1

iω
− 6

1 + eiω

iω3
+ 12

1− eiω

ω4

)
f(0) (3.3)

+
(eiω
iω

+ 6
1 + eiω

iω3
− 12

1− eiω

ω4

)
f(1)

+
(
− 1

ω2
− 2

2 + eiω

iω3
+ 6

1− eiω

ω4

)
f ′(0)

+
(eiω
ω2
− 2

1 + eiω

iω3
+ 6

1− eiω

ω4

)
f ′(1)

Iserles et al. also purpose another rule

QA
2 [f ] =

eiωf(1)− f(0)

iω
+
eiωf ′(1)− f ′(0)

ω2
(3.4)

which they call ‘asymptotic approximation’. They define aymptotic approximation
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as the truncation of the asymptotic series of the integral obtained by integration by

parts.

Clenshaw-Curtis method

C.W.Clenshaw and A.R. Curtis in 1960 proposed a method for numerical integration

that expands the integrand f(x) in Chebyshev polynomials[9]. For a continuous and

bounded function f(x) in the interval (a,b),

f(x) = F (t) =
1

2
a0 + a1T1(t) + a2T2(t) + ...+

1

2
anTn(t), (a ≤ x ≤ b) (3.5)

where,

Tn(t) = cos(n cos−1(t), t =
2x− (b+ a)

b− a
(3.6)

and this eventually reduces to

f(x) =
a0
2
T0(x) +

∞∑
n=1

anTn(x), xn = cos(
nπ

N
). (3.7)

This method could also be used over oscillatory functions over an infinite range.

This is useful to us because Gauss method are not suitable for indefinite integration.

One can employ technique used by Longman to transform such indefinite integrals

to series through Euler transformation[8].

Xiang’s method

Xiang [16, 17] took a different approach in calculating the oscillatory integrals. In-

stead of finding moments or using derivatives, they simply took Taylor expansion

of the oscillatory function. For an integral
∫ b
a
f(x)eiωg(x)dx, they defined nth order
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order Taylor polynomial as

Fn(iωg(x)) = 1 + iωg(x) +
(iωg(x))2

2!
+

(iωg(x))3

3!
+ ...+

(iωg(x))n

n!

and the nth order remainder from the Taylor expansion as

Tn(x) = eiωg(x) − Fn(iωg(x))

.

Interesting thing to note is that the remainders are not oscillatory. In effect, we end

up integrating non-oscillatory functions only. For instance,∫ b

a

f(x)eiωg(x)dx =

∫ b

a

f(x)(eiωg(x) − 1 + iωg(x))dx+

∫ b

a

f(x)(1 + iωg(x))dx.
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CHAPTER IV

RESULTS

The purpose of this research is to find efficient ways of calculating oscillatory inte-

grals. To that end, we test various available methods for integration. I first test out

simpler integrals that have analytical solution to see which method works better.

Our aim then is to calculate other similar oscillatory integrals.

Table I

F (X) = COS(50X) AND G(X) = (1−X2)COS(50X) FROM X = 0 TO X = 50

Method Timing(f(x)) Value(f(x)) Timing(g(x)) Value(g(x))

NIntegrate 0.008396 -0.00693073 0.010357 4.30601

MonteCarlo 0.063852 0.156891 0.065183 -0.471589

TrapezoidalRule 0.060079 -0.38405 0.056084 17.1676

LevinRule 0.008979 -0.00693073 0.010698 4.30601

ClenshawCurtis 0.091474 -0.00693073 0.090774 2.57343

Mathematica picks various quadrature methods to integrate depending on the na-

ture of the integrand. To illustrate this, I chose some random oscillatory functions

cos(50x) and (1− x2) cos(50 x), which are shown in Fig. 5 . Table I shows that the

value of integral for g(x) from trapezoidal rule is huge in comparision to other values.

This illustrates the limitations of simple polynomial expansion of integrand in the

case of oscillatory integrands. Similarly, the value of integrand from Montecarlo rule

for both f(x) and g(x) are off by a large factor. Interestingly, Clenshaw curtis rule
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gives same value as NIntegrate and Levin rule for f(x) but is off by a factor of about

1
2

in the caes of g(x).

Table I also shows that the NIntegrate value and the value from Levin rule for these

oscillatory functions f(x) and g(x) match up. This could mean that Mathematica

picked Levin rule by default to calculate the oscillatory integrals f(x) and g(x).

However, this is not always the case. One could get better result than from NIntegrate

by specifying the kind of method to use for integration. More on this will be presented

later.

1 2 3 4 5 6 7

-1.0

-0.5

0.5

1.0
cosH50 xL

1 2 3 4 5 6 7

-40

-20

20

40

I1 - x2M cosH50 xL

Figure 5. Oscillatory integrals cos(50x)and(1− x2) cos(50x)

In our integral 1.2, we set airydelta and deltapade functions to be 0 for simplicity.

Then, with z = −1, the integrand becomes

1

π3
r
√

1− u2 cos(2ru). (4.1)

This integral is in the form of
∫ 1

0
dxf(x)eiωg(x). We applied Iserles’ method to calcu-

late similar integral with f(x) = cos(x), and g(x) = x. The result is shown in table

II. Here, the asymptotic and derivative are the two methods presented in the paper

by Iserles et al.[2].
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Table II

COMPARISION WITH ISERLES’ ANALYTICAL AND DERIVATIVE METHOD

n Analytical NIntegrate Iserles(Asymp.) Iserles(Derivative)

1 0.0234573 0.0234573 0.0 -0.0222489

10 -0.00072755 -0.00072755 -0.000720275 -0.000698636

100 -0.0000905864 -0.0000905864 -0.0000905774 -0.0000905598

300 -0.0000580651 -0.0000580651 -0.0000580644 -0.0000580631

700 0.0000135879 0.0000135879 0.0000135879 0.0000135878

1500 -0.0000115449 -0.0000115449 -0.0000115449 -0.0000115449

2500 -4.53484E-6 -4.53484E-6 -4.53484E-6 -4.53484E-6

Table II shows that at sufficiently high frequency, one can get the desired convergence

from Iserles’ methods. At the same time, same convergence could be attained by

using NIntegrate and also from analytical expansion. We tried to use this method

for other oscillatory integrals to see whether this method is any better than existing

routines. However, we could not get this to work consistently for all the functions

we tried.

In the particular case of our test integral 4.1 , we could not use this method because

of the zero derivative from
√

1− u2 at the end points. We even tried to change

variables to get around the problem but we were still unable to not get this method

to work. Neverthenless, we can safely claim that both asymptotic and derivative

approaches are efficient for oscillatory integrals.

In order to understand the behaviour of integral 1.2, we first study its inner integral.
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To that end, we define two new functions as

ruintpade[u, r, z] =
1

π3
r
√

1− u2 cos(2zru− 2deltapade(ru)), (4.2)

and

ruint[u, r, z] =
1

π3
r
√

1− u2 cos(2zru− 2airydelta(ru)) (4.3)

which are the inner integral of double integral 1.2 . We studied the asymptotic

behaviour of 4.2 and 4.3 by applying Riesz means [11]. One should not confuse

this technique with quadrature methods. To apply Riesz means, we just multiply

ruintpade(u, r, z) function by (1− r
λ
), (1−

(
r
λ

)2)
, (1−( r

λ
))2, which we called paderiez0,

paderiesz1, and paderiesz2 respectively. We did the same for ruint(u, r, z) functions

to get reiesz0, reiesz1, and reiesz2 functions respectively. These new functions were

then integrated by various quadrature methods . For instance,

paderiesz(z, λ) = NIntegrate[ruintpade[u, r, z]
(
1− r

λ

)
, {u, 0, 1}, {r, 0, λ}]. (4.4)

And similarly,

riesz(z, λ) = NIntegrate[ruint[u, r, z]
(
1− r

λ

)
, {u, 0, 1}, {r, 0, λ}] (4.5)

In table III and table IV , I calculated paderiesz and ruint functions with various

quadrature methods and then compared the absolute error. We can see from table III

that Levin rule is much closer to the NIntegrate value than other quadrature methods.

On the other hand, value from Clenshawcurtis rule is much coser to NIntegrate value

the one from Levin rule in table IV. In both comparisions, I am assuming the

NIntegrate value is closer to the analytical value.
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Table III

INNER INTEGRAL OF THE TBAR(Z) FUNCTION WITH DELTAPADE(RU)

Rules Values % difference from paderiesz

Paderiesz 0.0023625557305484 0

Paderiesz0 0.0023741697265276 0.491586117

Paderiesz1 00223708311341421 5.310884967

Padereiesz2 00251125634090229 6.294057255

Trapezoidal 0.0023625555082653 9.40859E-06

Levin Rule 0.0023625557314199 3.68877E-08

ClenshawCurtisRule 0.0023625557329978 1.03672E-07

-2.0 -1.5 -1.0 -0.5

0.002

0.004

0.006

0.008

-2.0 -1.5 -1.0 -0.5

0.002

0.004

0.006

0.008

Figure 6. (1 - (r/λ))ruintpade function with Levin and ClenshawCurtis method

Integral of equation 4.2 is plotted against z in Fig. 6. Here, r goes from 0 to λ = 4.

Both the figures converge towards same numerical value. Furthermore, I used ρ = 2 in

the ruintpade function and plotted against lambda for simplicity. We were expecting

to get asymptotic convergence for larger lambda. However, as illustrated by Fig. 7,
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Table IV

INNER INTEGRAL OF THE TBAR(Z) FUNCTION WITH AIRYDELTA(RU)

Rules Values % difference from reisz

riesz 0.0023869517962175 0

riesz0 0.0022516532851762 5.668254854

riesz1 0.0021138325581312 11.44217652

riesz2 0.0023894740211370 -0.105667191

Trapezoidal 0.0023869504733150 5.54223E-05

Levin Rule 0.0023869518667603 2.95535E-06

ClenshawCurtisRule 0.0023869517968927 2.82872E-08

the result from both the Levin rule and Clenshawcurtis rule is not convergent.

We apply Riesz method and plot it similarly, as shown in Fig. 8. The result from

Levin method is convergent in this case. This process was repeated with higher Riesz

means of
(
1 − (r/λ)2

)
, and

(
1 − (r/λ)

)2
. We got consistent result from Levin rule

but the Clenshawcurtis rule kept giving non convergent result.
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Figure 7. Plot of ruintpade integral
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Figure 8. Plot of
(
1− (r/λ))

)
ruintpade integral
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CHAPTER V

CONCLUSION

In my study of oscillatory integrals, I looked at various quadrature methods that one

could employ to calculate oscillatory integrals. I chose what methods I’d use and

then compare the results to other methods. In the first semester, I mostly focused

my attention to applying the methods developed by Iserles’ group. I was able to get

the desired convergence in the case of highly oscillatory trigonometric function that

one could calculate analytically. I was, however, unable to get such convergence for

the Tbar integral because of the vanishing derivative at the end points.

I then spent some time in calculating the T (z) integral without using derivatives,

namely in applying Olver’s method. Olver’s method of finding moments essentially

needed assistance from computational programs like Mathematica and Matlab. Olver

himself told me that some aspect of his methods are already included in Mathe-

matica’s built in functions. As such, we decided to simply use various quadrature

methods available in Mathematica for comparision.

We approximated the delta function in the argument of cosine function by pade ap-

proximation. We then studied the asymptotic nature of T (z) integral by applying

Riesz methods. For that, we mostly used Montecarlo, trapezoidal, Levin and Clen-

shawcurtis rule to see which method converges faster. From the tests that we did, we

narrowed down our choice to Levin and Clenshawcurtis methods. Montecarlo and

trapezoidal were failed to give satisfactory result for any of the oscillatory integrals

that we tried.

For the most part, both Levin and Clenshawcurtis methods were faster than the

NIntegrate function. Often, when Mathematica identified the integral as ‘Levin type’,
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the timing matched between Levin rule and NIntegrate. With this in mind, one can

apply these methods judiciously to calculate highly oscillatory integrals. Among

others, as in Dr. Fulling’s study of vacuum energy, the application of these methods

will definitely be a help in calculating oscillatory integrals efficiently.
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APPENDIX A

MATHEMATICA FILE

We have included a supplementary Mathematica file ‘Appendix.nb’. This file shows

sample calculation of an integral by the asymptotic, and derivatives methods de-

veloped by Iserles et. al . We have also included calculation of ruintpade integral

for fixed u values in ’fixedupadereisz0ur.nb’ and ’fixedupadereisz1ur.nb’ files. We

also use Riesz method to see the asymptotic behaviour. We’ve used Levin rule and

ClenshawCurtis rule in both cases.
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