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ABSTRACT

Vacuum Energy for Static, Cylindrically Symmetric Systems. (May 2012)

Cynthia Trendafilova
Department of Mathematics

Department of Physics
Texas A&M University

Research Advisor: Dr. Stephen Fulling
Department of Mathematics

In my previous thesis for the Undergraduate Research Scholars program I have calculated,

both in terms of the scalar field and in terms of the cylinder kernel, the components of the

stress-energy tensor of a quantized scalar field for a static, cylindrically symmetric system

in the case of locally flat space. I then took these components and expressed them in terms

of the known cylinder kernel in cylindrical coordinates. Using these results, I examine

the vacuum energy density and pressure in some detail for several different cylindrically

symmetric space-times. Results are presented for point-splitting along the t direction, and

also for point-splitting along z. Geometries studied include flat space, a cone with various

deficit angles, an infinite wedge, and the infinite-sheeted Sommerfeld-Dowker manifold.

For all of these cases, the energy density and three pressure components are given for

ξ = 1
4 coupling, and the correction terms for other values of ξ are given as well.
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CHAPTER I

INTRODUCTION

Within the field of physics, the theory of quantum mechanics, developed in the 1920s,

describes the behavior of matter at very small scales. Although we have some physical

intuition based on our interactions with the world on a daily basis, the behavior of matter

at the smallest scales is much different. Quantum mechanics states that certain physical

quantities are quantized and can only occur in discrete amounts rather than a continuous

spectrum. Although useful, the theory lacked the scope to describe certain phenomena

such as relativistic situations and production and annihilation of particles. By extending it

to describe fields, rather than fixed numbers of particles, and taking the fields as the basic

physical objects instead, quantum field theory was developed, allowing such issues to be

addressed [1, p.48].

By applying quantum field theory, one discovers that vacuum itself usually has a nonzero

vacuum energy even where there is no matter present [1, p.96]. This vacuum energy can

be calculated for various geometries, and it has been done previously for the cases of flat

plates and spherical geometries [2]. Work has also been done to find the pressure on a

spherical boundary [2]. Schwartz-Perlov and Olum have calculated the components of the

stress-energy tensor previously for the case of a static, spherically symmetric system [3],

and the pressure on a boundary has been calculated previously for the spherical case as

well [2]. This has also been done for flat, perfectly reflecting boundaries, but it becomes

more complicated when the boundaries become curved, because the simple method of im-

ages no longer applies; however, there are several methods that can be used [4].

This thesis follows the style of the European Journal of Physics.
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Other previous work in the field includes Lukosz’s work to find the change in the elec-

tromagnetic zero-point energy of vacuum in the presence of perfectly conducting surfaces

in situations where the problems can be solved by the method of images, such as an infinite

wedge of arbitrary angle and a rectangular cavity [5]. Work has also been done by Dowker

regarding Green functions for cones and wedges [6] and the Casimir effect in space-times

possessing a conical singularity [7]. There has been interest in studying the properties of

cylindrical space-times due to their relevance to cosmic strings, which are thin cylinders

surrounded by vacuum and usually filled with a non-Abelian gauge field, since the space

outside of such strings is described by a cone [8].

However, in spite of this progress in calculating vacuum energy in a variety of cases, there

are still problems with the theory which are not fully understood, such as those regarding

the energy-balance equation,
∂E
∂h

=−
∫

S
ph, (1.1)

where h is a general parameter, ph is the pressure along h, and S is the area of interest.

In the cutoff theory used to calculate the energy, this equation is violated [2]. Perhaps

examining some properties of cylindrical geometry, which exhibits translational symme-

try along an axis and also rotational symmetry around said axis, may provide additional

insight into these current paradoxes. While most previous work has examined only to-

tal energy, we will also look at energy density and pressure to hopefully provide a better

physical interpretation.

In my previous thesis for the Undergraduate Research Scholars program, I focused on

vacuum and non-vacuum cylindrically symmetric solutions of Einstein’s field equations in
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general relativity. I also calculated, both in terms of the scalar field and in terms of the

cylinder kernel, the components of the stress-energy tensor of a quantized scalar field for

a static, cylindrically symmetric system in the case of locally flat space, using a method

analogous to the one utilized by Schwartz-Perlov and Olum [3]. One can make use of the

stress-energy tensor formula given in their paper,

Tµν = ∂µφ∂νφ − 1
2

ηµν∂
λ

φ∂λ φ +ξ [ηµν∂λ ∂
λ (φ 2)−∂µ∂ν(φ

2)], (1.2)

where φ is a massless real scalar field satisfying φ̈ = ∇2φ and ξ is the curvature coupling

parameter [3]. They first calculate the components of the stress-energy tensor on the x-axis

and then generalize this result to radial and tangential pressures; I used a similar procedure

for the case of cylindrical symmetry [3]. I then took these components and expressed them

in terms of the known cylinder kernel in cylindrical coordinates. My resulting formulas

were

T00 = ρ =−1
2

∂
2
t T +β [∂r∂r′T +∂

2
r T +

1
r

∂rT ] (1.3)

Trr = pr =−
1
4
[∂r∂r′T −∂

2
r T ]− 1

r
β∂rT (1.4)

T⊥⊥ = pθ =
1
4r

∂rT +
1

2r2 ∂
2
θ T −β [∂r∂r′T +∂rT ] (1.5)

Tzz = pz =
1
2

∂
2
z T −β [∂r∂r′T +∂

2
r T +

1
r

∂rT ], (1.6)

where β = ξ − 1
4 . All off diagonal terms are zero. When I performed these calculations,

however, I assumed that the geometry was such that the expectation value of φ 2 does not

depend on θ . This need not always be the case, and there will be some situations examined

in this thesis in which this is not true. In the more general case when φ 2 may depend on θ ,

there is an extra term in the expression for T⊥⊥ which does not vanish, and the end result
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is that T⊥⊥ becomes

T⊥⊥ =
1
4r

∂rT +
1

4r2 [∂θ
2T −∂θ ∂θ ′T ]−β [∂r∂r′T +∂rT ]. (1.7)

The cylinder kernel has been found previously by Smith [9] and has also been calculated

by Mai Truong [10], in agreement with [9], [11], [12], and [5]. The result in our notation

is, for 4-dimensional spacetime,

T (t,r,θ ,z,r′,θ ′,z′) =− 1
2πθ1rr′ sinh(u)

sinh(2π

θ1
u)

cosh(2π

θ1
u)− cos(2π

θ1
(θ −θ ′))

, (1.8)

with u given by coshu = r2+r′2+z2+t2

2rr′ [10]. This, along with the components of the stress-

energy tensor, can be used to find the vacuum energy and pressure for various cylindrical

systems.

There are several configurations for which we examine the vacuum energy density and

pressure in some detail. In general, a cylindrically symmetric system has axial symmetry

(metric components are independent of the angular coordinate φ ) and translational sym-

metry along z (components are also independent of z). One situation we consider is that of

a cone, which is described by the metric

ds2 =−dt2 +dr2 + r2dφ
2 +dz2. (1.9)

This represents flat space missing a wedge of deficit angle ∆φ = 2π−φ∗, where φ∗ is the

range of the periodic coordinate φ and not necessarily equal to 2π . If φ∗ > 2π , a wedge is

added. Ordinary Minkowski space occurs when φ∗ = 2π , and this is studied as well as the

cone configuration. We also examine the infinite wedge geometry, and the infinite-sheeted

Sommerfeld-Dowker manifold given by φ∗→ ∞ and whose Green’s function is given in

[11].
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For all of these cases, the energy density and three pressure components are given for

ξ = 1
4 coupling, and the correction terms for other values of ξ are given as well.
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CHAPTER II

FLAT SPACE, DOWKER SPACE, AND CONES

In order to proceed with vacuum energy calculations, there are several tools we need. The

first is the components of the stress-energy-momentum tensor, Tµν , which describe the

energy density and pressure components within a region of space. In the case when the

space-time of interest is cylindrically symmetric, static, and locally flat, these components

have been calculated in my previous thesis [13]. They are given here in the introduction,

with the appropriate generalization made to when the expectation value of φ 2 may de-

pend on the θ coordinate. They are presented in terms of the cylinder kernel, T , which

is given by ∂T
∂ t = T , where x = (r,θ ,z) and x′ = (r′,θ ′,z′) are two different points in

space. T is defined by ∂ 2T
∂ t2 =−∇2T with appropriate boundary conditions, the initial con-

dition T (0,x,x′) = δ (x−x′) = ∂T
∂ t (0,x,x

′), and a requirement that T (t,x,x′) is bounded as

t→+∞ [14]. In the notation used above, the “⊥” component has been defined to be along

the θ direction, but with respect to an orthonormal basis, so that it has the same physical

units as the other components. The parameter β = ξ − 1/4 is the curvature-coupling pa-

rameter, which we initially take to be β = 0 for simplicity. However, we also examine the

correction terms for β 6= 0 as well.

As mentioned in the introduction, the cylinder kernel has been calculated before, and is

given in equation (1.8). The parameter θ1 describes the periodicity of the θ coordinate in

the space-time of interest. Without loss of generality, we have set t ′ and z′ equal to 0, but

if we require derivatives with respect to these primed coordinates, we need only replace z

by z− z′, etc. We will use this cylinder kernel to study the vacuum energy and pressure for

several different geometries.
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When performing the calculations in this chapter, we use the point-splitting regulariza-

tion with the point-splitting in the t direction, in order to avoid divergent stress-energy

tensor terms. When taking the necessary derivatives, we leave x and x′ as separate points.

After differentiating, we can set some of these coordinates equal to each other, but we

must leave a non-zero separation along one of the coordinates. In this chapter, after taking

derivatives, we let r′ = r, θ ′ = θ , and z = 0, leaving a nonzero separation only in the t

direction, t ′ = 0 and t 6= 0. Also, we found that t4Tµν (after setting z = 0) depends on r

and t only in r/t. Because of this, we can simply plot t = 1 to observe the behavior for all

positive values of t. As the plots show, the energy density and pressures are given as func-

tions of r/t. Where solid curves appear, they give the functions with cutoff still in place.

Dashed curves give the behavior when t = 0. These curves are calculated by performing

a power series expansion of the Tµν components about t = 0 and taking the coefficient of

the first term. Also, multiple plots within one figure are sometimes plotted with different

vertical scales, in order to better show the behavior of the functions.

We now present results computed with Mathematica using the formulas and methods de-

scribed above. The first, and simplest, case which we consider is that of flat space; then

θ1 = 2π . In this case, the cylinder kernel becomes

T =
1

4π2rr′
1

coshu− cosθ
. (2.1)

The resulting energy density is ρ = 3
2π2t4 , and the pressure components are pr = pθ =

pz =
1

2π2t4 . These are independent of the three spatial coordinates, as expected for flat

space. As t approaches 0, the components clearly blow up, so we choose to leave a non-

zero separation in the t coordinate. Since these quantities are divergent as t approaches

the origin, vacuum energy calculations for non-flat spacetimes are often “renormalized”
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by subtracting off these divergent terms. We do so for the calculations of energy density

and pressure in the Dowker and cone space-times that follow.

The next case we look at is the infinite-sheeted Dowker manifold, where θ1→ ∞. Then

the cylinder kernel becomes

T (t,r,θ ,z,r′,θ ′,z′) =− 1
2π2rr′ sinh(u)

u
u2 +θ 2 . (2.2)

After subtracting the free space term from the energy density and pressure components,

we let r′ = r, θ ′ = θ , and z = 0. Although we have exact expressions for the components

of the stress-energy tensor, the formulas are bulky and cumbersome, so we present the

results graphically instead; they are given in figure 1, showing the r/t dependency. All

components are independent of the angular coordinate θ . As we move further out into the

Dowker space-time, away from the central axis, the energy density and pressure vanish.

For Tpp and Trr, they diverge as we approach r → 0. Although in the figure they also

appear divergent for T00 and Tzz, taking limits in Mathematica shows that they are in fact

finite, with values 1440π2t4T00→−2160 and 1440π2t4Tzz→−720.

We can also take θ1 to be finite but not equal to 2π as in the case of flat space. The

resulting spacetime is then a cone, which is flat space with a wedge of angle ∆θ = 2π−θ1

removed. T is given by

T =− 1
2πθ1rr′ sinh(u)

(
sinh(2πu/θ1)

cosh(2πu/θ1)− cos(2π(θ −θ ′)/θ1)

)
. (2.3)

It can be recovered from the Dowker space-time by taking an infinite sum over images.

The stress-energy tensor components can be calculated here as well, and as mentioned

previously, we subtract the divergent free space term. Plots of the components are pre-

sented in figure 2 as functions of r/t. All four components remain finite even at r = 0.
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(a) Energy density (b) Radial pressure

(c) Tangential pressure (d) Axial pressure

Figure 1. Energy density and pressure as a function of r/t in the Dowker spacetime.

The components have no θ dependency, as one would expect from the symmetry of the

situation. In addition to looking at a few specific cases, we can also examine how the Tµν

components vary with θ1. Letting r = 1 and z = 0 leaves the components as functions of

θ1 only. These are plotted in figure 3. The energy density and pressure components all

have a sign change at θ1 = 2π , which is when the cone becomes flat space with a wedge

added rather than subtracted. All components are divergent as θ1→ 0.

All of these results have been for the case when ξ = 1/4 and thus β = 0. There are, how-

ever, additional correction terms to the energy density and pressure components in the case
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(a) Energy density (b) Radial pressure

(c) Tangential pressure (d) Axial pressure

Figure 2. Energy density and pressure as a function of r/t in the cone spacetime, with
θ1 = π/4, 1, and π/2 (blue, red, yellow).

of different values of the coupling parameter which yield a nonzero β . The components

given in the following plots are just the additional terms which arise when β is not zero,

rather than the whole stress-energy tensor term. For example, ρ = β [∂r∂r′T +∂ 2
r T + 1

r ∂rT ]

with β = 1. In the case of flat space, these correction terms are all zero, so no plots are

given.

We first revisit the Dowker spacetime. The β terms are given in figure 4. The terms

diverge as we approach the central axis.
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(a) Energy density (b) Radial pressure

(c) Tangential pressure (d) Axial pressure

Figure 3. Energy density and pressure as a function of θ1 in the cone spacetime, with r = 1.

For the cone space-time, we look at the correction terms for various values of θ1. These

are plotted in figure 5, as functions of r/t. As in the case of the main part of the stress-

energy tensor components given previously in the β = 0 case, these additional terms are

not dependent on θ due to the symmetry of the geometry. They are also finite everywhere.

We conclude this chapter by examining the dependence of the correction terms in the

cone geometry on the θ1 parameter. The results are given in figure 6 for r = 1. As with

the main part of the stress-energy tensor components, these terms change sign at θ1 = 2π ,

when the cone has a wedge added rather than subtracted.
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(a) Energy density (b) Radial pressure

(c) Tangential pressure (d) Axial pressure

Figure 4. Energy density and pressure correction terms as a function of r/t in the Dowker
spacetime, with β = 1.
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(a) Energy density (b) Radial pressure

(c) Tangential pressure (d) Axial pressure

Figure 5. Energy density and pressure correction terms as a function of r/t in the cone
spacetime, with θ1 = π/4, 1, and π/2 (blue, red, yellow).
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(a) Energy density (b) Radial pressure

(c) Tangential pressure (d) Axial pressure

Figure 6. Energy density and pressure correction terms as a function of θ1 in the cone
spacetime, with r = 1 (the concavities visible in (a) and (d) are presumably nu-
merical artifacts).
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CHAPTER III

WEDGES

We now consider the wedge geometry, consisting of infinite reflecting plates located at

θ = 0 and θ = α . In this case, T can be constructed by taking an infinite sum over positive

and negative images in the infinitely-sheeted Dowker space studied in the previous chapter.

The result is

T =− 1
4παrr′ sinh(u)

(
sinh(πu/α)

cosh(πu/α)−cos(π(θ−θ ′)/α)

− sinh(πu/α)
cosh(πu/α)−cos(π(θ+θ ′)/α)

)
. (3.1)

The wedge cylinder kernel can also be constructed by simply taking one image in the cone

space-time, with θ1 = 2α . We use the same expressions for the components of Tµν as we

used in chapter 2.

We begin by using the exponential ultraviolet cutoff, as we did for the previous geometries.

We let r = r′, θ = θ ′, and z = 0, with t 6= 0. In the calculations that follow, the Tµν com-

ponents have been renormalized by subtracting the divergent flat-space terms calculated

in the previous chapter. Also, as in the previous chapter, dashed curves are for t = 0 and

solid curves are with the cutoff still in place. Plots are once again given as functions of r/t.

We focus only on the wedge of opening angle α = π/2, but there is no great qualitative

difference in the results for other values of α , including those that are not simple rational

multiples of π .

When β = 0, for a wedge of opening angle α = π/2, results are given in figure 7. This

figure gives the energy density and pressures as functions of r/t for various values of θ .
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Unlike the case of the cone, the wedge Tµν components depend on θ as well as r. In

figure 8, we plot Tµν components as functions of θ for fixed values of r. The functions are

symmetric about θ = α/2.

(a) Energy density (b) Radial pressure

(c) Tangential pressure (d) Axial pressure

Figure 7. Energy density and pressure as a function of r/t in a wedge of angle π/2, for
θ = π/8 (blue) and θ = π/4 (red).

We also consider the case when β 6= 0. Some correction terms are given for the wedge of

angle α = π/2, after letting β = 1. Figure 9 gives the corrections to Tµν as functions of

r/t, while figure 10 presents them as functions of θ .
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(a) Energy density (b) Radial pressure

(c) Tangential pressure (d) Axial pressure

Figure 8. Energy density and pressure as a function of θ in a wedge of angle π/2, for r = 2
(blue), r = 4 (red), and r = 8 (yellow).
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(a) Energy density (b) Radial pressure

(c) Tangential pressure (d) Axial pressure

Figure 9. Energy density and pressure corrections as a function of r/t in a wedge of angle
π/2, for θ = π/8 (blue) and θ = π/4 (red).
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(a) Energy density (b) Radial pressure

(c) Tangential pressure (d) Axial pressure

Figure 10. Energy density and pressure corrections as a function of θ in a wedge of angle
π/2, for r = 2 (blue), r = 4 (red), and r = 8 (yellow).



20

CHAPTER IV

POINT-SPLITTING ALONG Z

As mentioned in the introduction, one current problem with quantum field theory is that

in the cutoff case examined in the previous chapters, the energy-balance equation (1.1) is

violated. For example, consider the wedge with α = π/2, and look at the plane at θ = α .

One would think that the torque on that plane is balanced by the derivative of the energy

density as we change the wedge angle α; in other words, we would expect that

∂E
∂α

=−
∫

S
rpp, (4.1)

where S is the surface at θ = α and pp is the pressure in the direction perpendicular to that

plane. However, in the cutoff case studied in chapters 2 and 3, this equation is not satisfied.

We are not restricted to only considering point-splitting in the t direction, however. One

may instead perform the point-splitting in a “neutral” direction parallel to the plane, such

as the z direction in this case. This method has been used previously in the case of flat

space with two reflecting boundaries at z= 0 and x= 0, with the direction of point-splitting

along y [15]. The resulting pressure and energy density were found to satisfy the energy-

balance equation. We hoped that applying a similar procedure in the case of cylindrical

geometries would also provide results that satisfy the equation. In the case of the wedge

with α = π/2, we have verified that our results for T00 and Tpp at the reflecting boundaries

agree with the corresponding energy density and pressure results for the Cartesian case.

However, it currently appears that the torque in the wedge is not canceling; we are not yet

confident enough in our calculations to present results here, so examination of this prob-

lem will be continued in future work.
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In this chapter, we present some preliminary graphical results with the direction of point-

splitting along z. We let r = r′, θ = θ ′, and t = 0, with z 6= 0. As was the case with

point-splitting along t, we also find that z4Tµν depends on r and z only in r/z, so we can

plot as functions of r/z. The Tµν components have been renormalized by subtracting the

divergent flat-space terms, which are given in this case by ρ = − 1
2π2z4 , pr = pθ = 1

2π2z4 ,

and pz =− 3
2π2z4 . Dashed curves are for the no-cutoff case. We also note that because the

Trr and T⊥⊥ components of Tµν depend on only r and r′ derivatives of T , their values in

the cases of point-splitting along t and z are identical. Because of this, we present only

plots of T00 and Tzz in this chapter. Similarly, the plots for the β 6= 0 correction terms are

also unaffected, so we do not repeat them here.

The first geometry we reexamine is that of the Dowker space-time. Results are pre-

sented in figure 11, demonstrating the r dependence (for comparison with the results

with point-splitting in the t direction, see figure 1). Taking limits reveals that the en-

ergy density and axial pressure are finite as r→ 0, with values 1440π2z4T00 → 720 and

1440π2z4Tzz → 2160. We also examine the cone with finite θ1. The plots are given in

figure 12 for various θ1 values (compare with figure 2). As we did previously, we can

examine how the components of Tµν depend on θ1, and this dependence is given in figure

13 for r = 1 (compare with figure 3).

The next geometry we revisit is the wedge studied in chapter 3. We once again let α = π/2,

and the results are given in figures 14 (compare with figure 7) and 15 (compare with figure

8), as functions of r (for fixed values of θ ) and functions of θ (for fixed values of r).
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(a) Energy density (b) Axial pressure

Figure 11. Energy density and axial pressure as a function of r/z in the Dowker spacetime.

(a) Energy density (b) Axial pressure

Figure 12. Energy density and axial pressure as a function of r/z in the cone spacetime,
with θ1 = π/4, 1, and π/2 (blue, red, yellow).
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(a) Energy density (b) Axial pressure

Figure 13. Energy density and axial pressure as a function of θ1 in the cone spacetime,
with r = 1.

(a) Energy density (b) Axial pressure

Figure 14. Energy density and axial pressure as a function of r/z in a wedge of angle π/2,
for θ = π/8 (blue) and θ = π/4 (red).
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(a) Energy density (b) Axial pressure

Figure 15. Energy density and axial pressure as a function of θ in a wedge of angle π/2,
for r = 2 (blue), r = 4 (red), and r = 8 (yellow).
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CHAPTER V

CONCLUSION

We have successfully calculated the vacuum energy density and pressure for various cylin-

drically symmetric systems (flat space, the infinitely sheeted Sommerfeld-Dowker mani-

fold, cones of finite angle, and an infinite wedge). Calculations were initially performed

using point-splitting in the t direction, and plotted in comparison to the results with no

cutoff in place. When using this cutoff, however, the energy-balance equation is often

violated. Things may be rectified if one performs the point-splitting in a neutral direction;

this has been done for the case of two intersecting planes in Cartesian coordinates, and

the energy balance equation was satisfied there. Some preliminary calculations have been

presented here using point-splitting in the z direction, but further analysis is required to

determine if the energy-balance equation is satisfied here as well. Future work may focus

on such calculations, in order to help us understand this particular issue.
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APPENDIX A

MATHEMATICA FILES

We include three supplementary files in the form of Mathematica notebooks. These pro-

vide examples demonstrating the procedure used for calculations in this thesis. The first

file, “AppendixA1.nb”, includes calculations for flat space with point-splitting in the t di-

rection. The second file, “AppendixA2.nb”, shows various calculations for the cone space

with point-splitting once again in the t direction. The final file, “AppendixA3.nb”, contains

calculations for the wedge with point-splitting in the z direction.
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