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ABSTRACT 

 

All generation facilities have to report their generator un-availabilities to their 

respective Independent System Operators (ISOs). The un-availability of a generator is 

determined in terms of its probability of failure.  

Generators may serve the role of two kinds, base units which operates all the 

time and the others are peaking units which operate only for periods of time depending 

on load requirement. Calculation of probability of failure for peaking units using 

standard formulas gives pessimistic results owing to its time spent in the reserve shut 

down state. Therefore the normal two state representation of a generating unit is not 

adequate. A four state model was proposed by an IEEE committee to calculate the forced 

outage rate (unavailability) of such units. 

This thesis examines the representation of peaking units using a four-state model 

and performs the analytical calculations and Monte Carlo simulations to examine 

whether such a model does indeed represent the peaking units properly. 
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NOMENCLATURE 

 

FOR Forced Outage Rate 

LOLE Loss of Load Expectation 

HLOLE Hourly Loss of Load Expectation 

EFORd Equivalent Forced Outage Rate on Demand 

λ Failure Rate 

μ Repair Rate 

IEEE Institute of Electrical and Electronics Engineers 

RTS Reliability Test System 

 



 

vi 
 

TABLE OF CONTENTS 

 

              Page 

ABSTRACT ..............................................................................................................  ii 

DEDICATION ..........................................................................................................  iii 

ACKNOWLEDGEMENTS ......................................................................................  iv 

NOMENCLATURE ..................................................................................................  v 

TABLE OF CONTENTS ..........................................................................................  vi 

LIST OF FIGURES ...................................................................................................  viii 

LIST OF TABLES ....................................................................................................  ix 

CHAPTER I  INTRODUCTION  .........................................................................  1 

1.1 Introduction………………………………………………………. ..............   1 
1.2 Power System Reliability……………………………………………………      2 
1.3 Importance of Research…………………………………………...  .............        3 
1.4 Problem Statement………………………………………………..  .............        4 

CHAPTER II  BACKGROUND AND LITERATURE REVIEW ........................  6 

2.1 Two State Model of Base Units ....................................................................  6 
2.2 Four State Model of Peaking Units ...............................................................  8 

 
CHAPTER III METHODS FOR CALCULATING FORCED OUTAGE RATES 10 
 

3.1 Analytical Method .........................................................................................      10 
3.1.1 Unit Addition Method ..........................................................................  14 
3.1.2 IEEE Reliability Test System Illustration ............................................      20 

3.2 Monte-Carlo Simulation ................................................................................    23 
3.2.1 Random Number Generation ...............................................................      24 
3.2.2 Steps for Monte-Carlo Simulation .......................................................      27 

 

 



 

vii 
 

                                                                                                                            Page 

CHAPTER IV RESULTS AND CONCLUSIONS ................................................  29 

REFERENCES ..........................................................................................................  33 

APPENDIX A  ...........................................................................................................  35   
 
   
   
  

   

4.1 Conclusion ...................................................................................................       32 



 

viii 
 

LIST OF FIGURES 

 

                                                                                                                                       Page 
 
Figure 1 Generator two state model .........................................................................  6 
 
Figure 2  Four state model of a generator .................................................................  8 
 
Figure 3  Four state model of a peaking unit ............................................................  10 
 
Figure 4  15 State Markov model .............................................................................  17 
 
Figure 5  5 State model .............................................................................................  18 
 
Figure 6 Load model  ...............................................................................................  29 
 
Figure 7 IEEE-RTS area-1 .......................................................................................  36  
 



 

ix 
 

LIST OF TABLES 

 

                                                                                                                                  Page 

Table 1    Simple system load model………………………………………………..   14 

Table 2    Capacity outages and cumulative probabilities after adding first unit…...   15 

Table 3    Capacity outages and cumulative probabilities after adding second unit..   15 

Table 4    Capacity outages and cumulative probabilities after adding third unit….    16 

Table 5    Capacity outages and cumulative probabilities using unit-addition….....     16 

Table 6    Capacity outages and cumulative probabilities using Markov process…… 19 

Table 7    Capacity outages and cumulative probabilities after adding first unit…...    21 

Table 8    Capacity outages after adding second unit………………………………    21 

Table 9    Capacity outages and cumulative probabilities after adding second unit..    21 

Table 10  Capacity outages and cumulative probabilities after adding third unit....     22 

Table 11 FORs from simulation and EFORDs from analytical method  .................    31 

Table 12 HLOLE results from unit-addition and analytical method ........................    32 

Table 13  Weekly peak load in percentage of annual load ........................................    37 

Table 14  Daily loads in percent of weekly peak ......................................................    38 

Table 15  Hourly peak load in percent of daily load .................................................    39 

Table 16 Generator locations in IEEE-RTS .............................................................    40 

Table 17 Generator data in IEEE-RTS .....................................................................    41 



 

1 
 

CHAPTER I 

INTRODUCTION 

 

1.1 Introduction 

The goal of a power system is to supply electricity to customers in an economic 

and reliable manner. To ensure continuity of supply, planning and operating generating 

and transmission facilities are crucial [1]. The criteria used to plan may be deterministic 

or probabilistic.  

Typical deterministic criteria used in practical applications are: 

1) Planning generating capacity – installed capacity equal the expected maximum 

demand plus a fixed percentage of the expected maximum demand. 

2) Operating Capacity – spinning capacity equals expected load demand plus a 

reserve equal to one or more largest units. 

3) Planning network capacity – The networks are so planned that a single 

contingency or a combination of two contingencies will not jeopardize the ability 

of the system to supply load to customers. This often called n-1 or n-k criteria. 

The knowledge of various reliability parameters of the power system and its 

components is important to run it in a reliable manner. One of the important components 

of a power system is the generators. Others being transmission lines, transformers, 

distribution equipment etc. Of all equipment, generators are observed to fail more 

frequently. Especially the large generators may spend considerable time in the de-rated 

states. The reliability of generation system has received considerable attention in the 
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power industry. This thesis presents methods to determine the reliability indices of the 

generators which are discussed in the next section. The equivalence of two methods is 

examined and the advantages and disadvantages are also discussed. 

 

1.2 Power System Reliability 

Reliability is the probability of a device or system performing its function 

adequately, for the period of time intended, under the specified operating conditions. The 

reliability of a power system pertains to its ability to satisfy its load demand under the 

specified operating conditions and supporting policies.  

Some of the most commonly used reliability measures are as follows 

1. Forced Outage Rate (FOR) is the probability of failure of a generator and it is 

usually measured as a ratio of failure hours to total service hours. This index, 

being a probability measure is dimensionless. It should be noted that that when 

FOR is used for transmission line, it indicates the failure rate of the line. 

2. Loss of Load Probability (LOLP) is the probability that a system will fail to 

satisfy its load demand under the specified operating conditions and policies. 

This index, being a probability measure is also dimensionless. 

3. Loss of Load Expectation (LOLE) is the expected period of time during which 

the system will fail to meet its load demand, over a given period. Typical unit is 

hours/year, and the LOLE in hours/year can be obtained by multiplying the 

LOLP by 8760 (hours in a year). 
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4. Expected Un-served Energy (EUE) is the expected amount of energy which the 

system will be unable to supply to the consumers as a result of failures. This 

index is alternatively known as Expected Energy Not Served (EENS). Typical 

unit of measure is MWhr/year. This parameter helps in planning and expansion 

of the system. 

 

1.3 Importance of Research 

The generator unit is usually represented by a set of states in which it can reside. 

The states of a generator using a two state model are UP and DOWN, i.e., working state 

and failed state. The unit transits from one state to another in accordance with the 

transition rates called as failure rate and repair rate. These states represent the actual 

operating conditions of a generator unit.  

A two-state model is a reasonable representation of a smaller unit. For larger 

units three state models are used but are often reduced to two state equivalent models. In 

a system with generators and loads, the generators are dispatched according to the load 

requirement. The load on the system would be non-uniform throughout the operation. 

The units supplying the continuous part of load are called base load units. Then there are 

cycling units that are taken out when not needed. The units serving during the peak 

hours are the peaking units. These units operate for relatively short-periods of time 

depending on the load profile. Probabilities of failure of peaking units cannot be 

calculated as a ratio of failure times to total failure times and operating times, as such a 

calculation gives pessimistic results. 
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Many attempts were made to address this problem; a four-state model was 

developed to differentiate the peaking generator from a base unit [2]. The effect of 

startup failures, startup delays, de-rated generator states are incorporated in [3] and [4]. 

Accurate calculation of reliability indices for peaking units is important for planning 

studies. 

 

1.4 Problem Statement 

The two main approaches for reliability parameters evaluation are  

1) Analytical Methods and  

2) Simulation Techniques 

1) Analytical Methods 

In analytical methods, state space methods and min cuts methods are used. In 

state space approach, system is represented in all its possible states and their reliability 

indices are calculated by mathematical equations. Majority of techniques in generation 

reliability are analytically based. This is now changing, and an increasing interest is 

being shown in modeling the system behavior more comprehensively and in evaluating a 

more informative set of system reliability indices. This implies the need to consider 

Monte Carlo simulation.  

2) Simulation Techniques 

Monte-Carlo simulation creates artificial histories of the system by using the 

probability distributions of component state residence times. For a network, a specific 

state of the system components corresponds to specific states for the load points. In other 
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words, supply outage may cause loss of load. If there is surplus generation, some amount 

of generation outage may not necessarily cause loss of load. Generation capacity 

reliability evaluation is concerned with the adequacy of generation to supply the load. 

Hence, every state change in Monte Carlo of any system component requires an 

evaluation of the status of load demand satisfaction. 

The reliability indices are then estimated by statistical inference from service 

hours and failure hours which is same as if done on a real system. Both the methods 

have their own advantages and disadvantages in reliability evaluation. The equivalence 

of analytical and Monte-Carlo methods are observed. Representation of peaking units in 

four-state model and calculation of reliability indices and HLOLE using two main 

approaches is carried out. In this thesis, Sequential Monte Carlo simulation is used for 

reliability parameters evaluation.  
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CHAPTER II 

BACKGROUND AND LITERATURE REVIEW 

 

2.1 Two State Model of Base Units 

Reliability analysis of the power network is done by modeling the components of 

the network using their failure and repair characteristics. Frequently used model for 

generators is a two-state Markov model of full capacity or zero capacity. Figure 1 shows 

a 2-state Markov model of a generator with failure and repair transition rates.  

Any generator can be represented by two states, namely UP (working) and 

DOWN (failure) states as shown in Figure 1. 

 

       State - 1 

                                      λ                   μ 

     

     State - 2   

Fig 1: Generator two state model 

Let UP state be ‘1’ and DOWN state be ‘2’   

Transition from 1 to 2 is failure rate. It is defined as the mean number of transitions from 

up to down state per unit of time in state 1. 

           λ = n12/T1 

   = 1/(T1/n12) 

   = 1/MUT 

UP 

DOWN 
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Where MUT = mean up time; n12 are number of transitions from state 1 to 2. 

Similarly transition from 2 to 1 state = repair rate 

           μ = n21/T2 

   = 1/(T2/n21) 

   = 1/MDT 

Where MDT = mean down time of a component. 

Frequency of encountering state 2 from state 1 is the expected (mean) number of 

transitions from state 1 to state 2 per unit time. 

Fr(12) = Frequency of transition from state 1 to state 2. 

   = n12/T 

   = (T1/T)*(n12/T1) 

   = p1*λ12 

Where p1=steady state probability of system in state 1. 

P1+P2= 1; the generator can reside either in UP or DOWN state. 

In steady state, the frequency of entering a state is equal to frequency of exiting a state. 

P1*λ = P2*μ; where λ=failure rate and μ=repair rate. 

Thus P1=
 

   
 and P2 = 

 

   
 

This model can be used if the generator is a base unit, i.e., operates all the time.  
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2.2 Four State Model of Peaking Units 

Peaking units operate for relatively short periods and thus have more than two 

states that they can reside in. Thus the basic two-state model is extended to four-state 

model designed by IEEE Task Force of Probability Methods Subcommittee, two of them 

being the reserve shut down states and other two states are the working states [2] and are 

shown in Figure 2. 

                   
 (1-Ps)/T 

               UP UP 
                1/D     
  
                                1/r                       Ps/T         1/m      1/r 

 
1/T 

 DOWN      DOWN 
1/D 

 
      

  

Fig 2: Four state model of a generator 

The states of the model are 

P0 – Probability of Reserve Shut down period. 

P1 – Probability of Forced Out but not in need. 

P2 – Probability of generator in Service when in need. 

P3 – Probability of Forced Out when needed. 

 

 

P0 P2 

P1 P3 

Reserve Shut Down 
States 

Working States 



 

9 
 

The respective parameters are defined as 

T – Average reserve shutdown time between periods of need, exclusive of periods for   

maintenance or other planned unavailability. 

D – Average in-service time per occasion of demand in hours 

m – Average in-service time between occasions of forced outage 

r – Average repair time per forced outage occurrence in hours 

Ps – Probability of a starting failure resulting in inability to serve load during all or part 

of a demand period. 

All the above parameters can be calculated from regularly reported data.  

The conditional probability of a generator not able to serve the load, given the demand 

period, is 
32

3

PP
P


which is called as forced outage rate. 



1
r = MTTF = Mean Time to Failure 



1
m = MTTR = Mean Time to Recover 
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CHAPTER III 

METHODS FOR CALCULATING FORCED OUTAGE RATES 

 

The methods for calculating the forced outage rates of the peaking units are: 

1) Markov Process (Analytical method) 

2) Monte-Carlo Simulation 

 

3.1 Analytical Method                  

                                                       (1-Ps)/T 

  
                     1/D      
  
                                1/r                       Ps/T         1/m      1/r 

 
                                                     1/T 
        
                                                      1/D 
 

Fig 3: Four state model of a peaking unit 

The analytical method is commonly used by the industry to calculate the FOR of the 

peaking units. 

The frequency of entering into a state = frequency of exiting a state,  

Frequency balance equations for all the states are written as 

 

 

P0 P2 

P1 P3 
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Solving the above equations, the probabilities of each state are found [6]. 
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Here Ps = probability of starting failure resulting in inability to serve load. If Ps 

is assumed to be zero, i.e., all the generators are assumed to start without failure 

whenever they are started from reserve shut down or after recovering from failure, The 

probabilities of all states are
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))(( 2

22

2 TmrDmrDTrDTmDrTD
DrmTmrDmTDP






  (3)
 

))(( 2

222
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
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  (4)
 

The probability of failure of a generator from figure 2 is given as, 
231

31

PPP
PP

P



  

Where 31 PP   give the total down time of any generator, which includes reserve shut 

down hours during which the generator is not in need (state-1). 

Thus above probability P when calculated for a peaking unit gives pessimistic results. To 

address this problem, another reliability parameter named as equivalent forced outage 

rate on demand (EFORd) is defined. 

Calculation of EFORd uses the failure hours during demand and thus defines the exact 

forced outage rate of a generator. 

The probability of Equivalent forced outage rate on demand (EFORd) of a generator is 

defined as, 
23

3

PP
P

EFORd


 . 

When the values of P2 and P3 from equations (3) and (4) given above are substituted in 

the above equation, the Equivalent Forced Outage Rate on demand (EFORd) is 

calculated. 

TmrDmrDTmDrDTr
DrDTrEFORd




 2

2
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The above equation can be represented by  

SHFOHF
FOHF

EFORd
f

f




*
*

 

231

31

)(*
)(*
PPPF

PPF
EFORd

f

f
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


 

FOH = forced outage hours; hours in state-1 and state-3. 

SH = service hours; hours in state-2. 

Ff = weighing factor on forced outage hours to reflect the cumulative forced outage 

hours occurring during periods of demand [2], [5] and [6]. 









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











DTr

TrF f 111

11

. ------- (5) 

Thus Ff*FOH gives the number of hours spent by generator in state-3. 

As per the four-state model, the probability of the forced out state of a peaking generator 

is EFORd = 
32

3

PP
P


 

The parameters in equation (5) are obtained from historical data, and later the 

probabilities are computed. 

Historical data, however, cannot be appropriately used if the load profile or the usage of 

generators changes. Monte-Carlo method is proposed for computation of forced outage 

rates. 
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3.1.1 Unit Addition Method 

This method is used for embedding a unit in the generation system model. It 

evaluates the probabilities of all possible states of generation in a system. 

The Generation system model is described by  

Ci = ith element of C 

    = discrete capacity outage levels 

Pi = ith element of P 

    = probability of capacity outage greater than or equal to Ci 

Fi = ith element of F 

    = frequency of capacity outage greater than or equal to Ci 

System Illustration 

The reliability indices FOR and HLOLE for a system are evaluated using unit 

addition method. The load model of the system is given in Table 1. 

 
TABLE 1 

Simple system load model 

Hour 

Load 

(MW) 

P(Load) 

1 to 4 48 0.5 

4 to 8 102 0.333 

8 to 12 152 0.1667 

12 to 16 102  

16 to 24 48  
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The system has 4 generators; each has a full generation capacity of 50MW or 0MW 

when failed. The failure rates of each generator is 0.1 per day and mean repair time is 24 

hours. So λ = 0.1 and μ = 1. 

Probability of failure of each unit is = 0.1/1.1 =0.09091 

Probability of repair of each unit is = 1.0/1.1 = 0.9091 

All the possible generation states are obtained by adding one unit at a time, adding first 

unit of 50MW; possible states and their cumulative probabilities are in Table 2. 

 
TABLE 2 

Capacity outages and cumulative probabilities after adding first unit 

States Ci Pi (Cumulative Capacity Outage Probability) 

1 0 P1 = 1 

2 50 P2= 0.09091 

 
 
Adding second unit of 50MW; possible states and cumulative probabilities are in Table 3 
 
 
 

TABLE 3 
Capacity outages and cumulative probabilities after adding second unit 

States Ci Pi Pi 

1 0 1 P1 = 1 

2 50 0.9091*0.09091+0.09091*1 P2= 0.17356 

3 100 0.09091*0.09091 P3=0.00826 

 

 



 

16 
 

Adding third unit of 50MW; cumulative probabilities of all states are given in Table 4. 

 
TABLE 4 

Capacity outages and cumulative probabilities after adding third unit 

States Ci Pi Pi 

1 0 1 P1 = 1 

2 50 0.9091*0.17356+0.09091*1 P2 = 0.2487 

3 100 0.9091*0.00826+0.09091*0.17356 P3=0.02329 

4 150 0.00826*0.09091 P4= 0.000751 

 
 
Adding fourth unit of 50MW; cumulative probabilities of states are given in Table 5. 

 
 
 

TABLE 5 
Capacity outages and cumulative probabilities using unit-addition 

States Ci Pi Pi 

1 0 1 P1 = 1 

2 50 0.9091*0.2487+0.09091*1 P2 = 0.317 

3 100 0.9091*0.02329+0.09091*0.2487 P3=0.04378 

4 150 0.9091*0.000751+0.09091*0.02329 P4 = 0.0028 

5 200 0.09091*0.000751 P5 = 0.0001 
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Fig 4: 15 State Markov model 
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Figure 4 shows the 15 state Markov model of the system, each state shows the total generation capacity and respective 

generation states.  

This can be reduced to a total of 5 states as shown in figure 5. 

 

 

     µ    4λ      2µ     3λ     3µ    2λ              4µ        λ 

Fig 5: 5 State model 

The probability of each state is 
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The probabilities and cumulative probabilities of each state are given in Table 6. 

 
TABLE 6 

Capacity outages and cumulative probabilities using Markov process 

States Capacity 
Outage 

State 
Probabilities (P’

i) 
Cumulative Probabilities 

1 0 0.68304 P1 = 0.68304+0.3169 = 1 

2 50 0.2732 P2 = 0.2732+0.04378 = 0.3169 

3 100 0.04098 P3= 0.04098+0.0028 = 0.04378 

4 150 0.002732 P4 = 002732+0.0000683=0.0028 

5 200 0.0000683 P5 = 0.0001 

 

From the load data, probability of loss of load is evaluated. 

DMCCPPPHLOLE
m

i
ilii *)(*)(

1
1 








 



 =1.619hours/day  

           = 590.935 hours/year 

Where  

Pi = cumulative probability of generation 

Pl = cumulative probability of Load 

m = number of generation states 

M = Margin for LOLE calculation. 

D = Duration of Study; here D = 24 hours. 
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3.1.2 IEEE Reliability Test System Illustration 

The IEEE Reliability Test System (RTS) was developed by the Subcommittee on 

the Application of Probability Methods in the IEEE Power Engineering Society to 

provide a common test system which could be used for comparing the results obtained 

by different methods. 

A test power system called as IEEE-RTS is used to compare the analytical and 

Monte-Carlo methods. The system consists of 32 generators; the hourly load on the 

system and bus load data is defined. The peak load for the system is 2850MW and all 

other loads are percentages of the peak loads. The installed capacity of the system is 

3405MW. Single area generating capacity reliability evaluation is done on the system. 

The failure and repair rates of all the generators are given. Detailed Information 

for IEEE-RTS is given in Appendix –A. 

Method for evaluating all the states of the generator 

When first generator (400MW) is added, the states of generator are 0MW and 

400MW. When second generator (400MW) is added, the states are 0, 400, 800MW. 

When third generator (350MW) is added, the states are 0, 350, 400, 750, 800, 1150MW 

and so on, all the generators are added and all possible states of the generator are found. 

For all the 32 generators in the system, 3180 generator states are obtained. Now for 

finding the probability of capacity outages for all possible generator states, 

After adding first unit, the capacity outage table is given in Table 7. 
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TABLE 7 
Capacity outages and cumulative probabilities after adding first unit 

States Ci Pi 

1 0 P1=1 

2 400 P2=0.12 

 

Where  

Ci = capacity outage and Pi’s are the cumulative probabilities of capacity outages >=Ci 

When 2nd unit (with forced outage rate 0.12) is added, pf = 0.12 and ps = 0.88 

 
TABLE 8 

Capacity outages after adding second unit 

Capacity_outage 
before adding 2nd unit 

New Capacity_outage after 
adding 2nd unit 

Cumulative 
Probabilities 

0 400 P2 

400 800 P3 

 
 

TABLE 9 
Capacity outages and cumulative probabilities after adding second unit 

Capacity 
Outages 

Pi Pi 

0 P(Ci>0)=ps*P(Ci>0)+pf*P(Ci>0) P1 = 1 

400 P(Ci>400) = ps*P(Ci> 400) + pf*P(Ci>0) P2= 0.2256 

800 P(Ci>800) = pf*P(Ci> 400) P3 = 0.0144 
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Table 8 and 9 shows the capacity outages and cumulative probabilities after adding 

second unit. After 350MW (FOR = 0.08) unit is added, all possible capacity outages and 

their cumulative probabilities are given in Table 10.  

 
TABLE 10 

Capacity outages and cumulative probabilities after adding third unit 

Capacity 
outages 

Cumulative Probabilities Pi 

0 P(Ci>0) = ps*P(Ci>0) + pf*P(Ci>0) 1 

350 P(Ci>350) = ps*P(Ci>400) + pf*P(Ci>0) 0.28755 

400 P(Ci>400) = ps*P(Ci> 400) + pf *P(Ci> 400) 0.2256 

750 P(Ci>750) = ps*P(Ci> 800) + pf *P(Ci> 400) 0.031296 

800 P(Ci>800) = ps*P(Ci> 800) + pf*P(Ci> 800) 0.0144 

1150 P(Ci>1150) = pf*P(Ci> 800) 0.001152 

 
 
 
This procedure is carried out until all 32 generators are added and their respective 

cumulative probabilities of capacity outages are found. 

The load data information at each hour is used to calculate the probability of load. 

For calculating loss of load in the system; 

Loss of load occurs when the demand is not met by the generation. The probability of all 

generation capacities being less than load and probability of that load hour is taken into 

consideration and is calculated as; 





8760

1
)(*)_(

i
ii LoadPLoadCapacityGenPHLOLE
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Where i=load hour in a year. 

P(Gen_capacity<Loadi) = Cumulative probability of generator being less than Loadi. 

P(Loadi) = Probability of load being Loadi. 

 

3.2 Monte Carlo Simulation 

Monte Carlo simulation simulates the failures and repairs of the generators by 

taking into account the randomness of generator failures and repairs. It is flexible for 

implementing complicated operations such as load uncertainty, weather effects and 

starting and shutting down generators in response to load.. Since it can mimic a real 

system, any operating characteristic can be implemented. The main advantages of the 

sampling simulation techniques are high flexibility and detail in the simulation of 

complex system operation and/or configuration conditions. 

Disadvantages may or may not be (according to different situations which the 

utilities must face as regards the cost of computing time), the rather long CPU time 

which depends on the level of detail used in modeling the system and particularly its 

operation, and on the level of statistical convergence of the simulation process results; 

the number of samples generated are very large and depends on the system reliability 

level. 

Monte-Carlo methods can be classified as 

1) Random Sampling or Non-sequential sampling 

Random sampling or non-sequential sampling, consists of performing random 

sampling over the aggregate of all possible states the system can assume during the 
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period of our interest, i.e., the state of each component is sampled and system state is 

non-chronologically determined. 

a) Proportional Probability Method 

b) Probability Distribution Method 

2) Sequential sampling  

In sequential method, mathematical model of the system is made to generate 

artificial history of failures and recoveries of generators, i.e., system state is sequentially 

determined. It is appropriate for both independent and dependant events. 

a) Fixed Time Interval Method 

b) Next Event Method  

The detailed explanation of these methods is given in [7]. 

Sequential method requires more calculation time than random sampling method. 

In this thesis, Monte-Carlo’s Sequential sampling Fixed Time Interval method is used. In 

this method, a time interval of Δt is chosen, Δt depends on various operative 

considerations. In this case Δt is chosen to be 1 hour, since the load requirement in the 

IEEE-RTS model changes every hour. The state residence times of each component are 

determined by distributions of continuous random variables. Therefore determining the 

value of random variable is an essential step. 

3.2.1 Random Number Generation 

A random number can be generated by either a physical or a mathematical 

method. The mathematical method is most common as it can guarantee reproducibility 

and can be easily performed on a digital computer. A random number generated by a 
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mathematical method is not really random and therefore is referred to as pseudo-random 

number. In principle, a pseudo-random number sequence should be tested statistically to 

assure its randomness. 

The basic requirements for a random number to be used in Monte-Carlo 

simulation are as follows. 

1) Uniformity: The random numbers should be uniformly distributed in interval [0, 

1]. 

2) Independent: There should be minimal correlation between random numbers 

3) Long Cycle Time: The repeat period should be sufficiently large. 

Let z be the random number in the range 0 or 1 with a uniform probability density 

function. 

Let 
























1,1
10,

0,0
)(

Z
Zz

Z
zF  

Let F(x) be the distribution function from which the random observations are to be 

generated, and z=F(x) 

Solving the equation for x gives a random observation of X. Thus, the generated 

observations have F(x) as the probability distribution. 

z =F(x) 

x = F-1(z) = ψ(z) 

Now, x is the random number generated. To determine its probability distribution,  

Pr(x<X) = Pr(F(x)<F(X)) = Pr(z<F(X)) = F(x) 
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The distribution function of x is F(x) as required. Many techniques were developed for 

efficient random numbers generation.  

Exponential distribution has the probability distribution of the following; 

P(x <X) = 1 - e-ρx; where 1/ρ is the mean of the random variable X. 

Let z be the random variable between 0 and 1, z = 1 - e-ρx; 

If z is a random variable, then 1- z is also a random variable. 

Then z = e-ρx 



)ln(zx 
  

Which is the desired random observation from the exponential distribution have 1/ρ as 

the mean. ρ here can be failure (λ) or repair (µ) transition rate of the generator. x is the 

time of a generator in a particular state which is failure time when ρ = λ and it is the 

repair time when ρ = µ. 

These steps are carried out until a statistical convergence of the probability 

indices calculated are seen. Statistical inferences like failure hours during needed state 

and reserve shut down state, service hours during needed and reserve shut down state are 

drawn from this simulation. After sufficient amount of time, this statistical information 

is used to evaluate various probability parameters. 

For each generator, when committed into service, the corresponding failure time 

is determined and when it is in failed state, its recovery time is determined, thus for each 

generator, the total failure time and total service time is determined and hence its 

probability of failure is determined. 
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3.2.2    Steps for Monte-Carlo Simulation 

1) Starting at t = 0; time is advanced by Δt = 1, the generators are dispatched in 

their priority order according to the load requirement. The expected failure times 

of all the generators committed into service are calculated. 

2) Additional generators are committed to service to compensate some sudden or 

unexpected generators failure (reserve capacity). This is concerned with the 

adequacy of generation to supply the load, transmission constraints are not 

considered. 

3) The load requirement at every hour is checked and additional generators are 

committed if required and generators which are not required are put to reserve 

shut down if they satisfy the criteria for shut down. 

4) The minimum UP and DOWN time of different generators and their respective 

transition rates are given in [8]. 

5) Then the system is checked for occurrence of any event. The event could be 

either committing a new generator into service, failure of an existing generator or 

recovery of a new generator. 

6) Failure of a generator is observed during its operation. It is assumed that the 

generator fails after the designated failure time which is determined when it is 

put into service. 

7) The generator is expected to start without any failure after its repair. Hence starts 

up failures are neglected. 

Operating considerations taken into account are; 
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1) Any generator when scheduled to work should be in service for a minimum UP 

time as given in [8]. 

2) Reserve capacity of the system is at least the maximum unit of the generator in 

the system, thus providing security during (n-1) service contingency. 

3) Generator (usually base units) cannot be switched ON within 1 - 2 hours after it 

is shut down, hence if a generator is needed after two or three hours of its non-

requirement, it should not be shut down. 

After all these conditions are taken into account during the simulation, service 

times and failure times of all the generators are collected. The probabilities of failures of 

all generators are calculated as 

needduringhoursServicestateneededduringtimesFailure
stateneededduringtimesFailureFOR

_______
____


  

Loss of load in the system is defined as an instant when the available generation 

is not sufficient to serve the load, thus leading to curtailment of load. This might occur 

due to the failure of generators at that instant or sudden increase in load. Loss of load in 

the system can be determined using the simulation when the demand is observed to be 

greater than the generation available. The simulation gives more realistic results as it 

mimics the real system operation with high flexibility and detail. 
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CHAPTER IV 

RESULTS AND CONCLUSIONS 

 

Using the IEEE-RTS data, Monte Carlo program is written taking all operating 

considerations into account. To validate the accuracy of the program, a simple daily load 

cycle is used as shown in Figure 6. 

1 – 8 hours: 1400MW 

9 – 16 hours: 2600 MW 

17 – 24 hours: 1400MW 

            

     
Fig 6: Load model 

For hours 1 – 8, to serve the load of 1400MW, generators 400 MW (2), 350 MW 

(1) and 197 MW (3) are committed to service, which provide a total generation of 1741 

MW.  
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During peak loading hours 9 – 16 hours, additional generators 155 MW (4) and 

100 MW (3), total 2661 MW are brought into service. The peaking units are put to 

reserve shut down from hours 17 – 24 hours and 1 – 8 hours the next day. This cycle is 

repeated throughout. 

The failure transition rates of peaking units are reduced to 1/100th of their actual value to 

increase the probability that the generators do not fail. The duty cycle values of all 

generators are collected from the simulation.  

From the load cycle, it’s observed that if the units did not fail the duty cycle of peaking 

units would be 

startsactual
timesserviceD

_
_

  =
1
8 ;  

Peaking units operates for 8 hours daily and each generator starts once from its 

reserve shut down state. Also during this process we assume that the generators don’t 

fail since their failure rates are negligible.   

The simulation results also give the same value for duty cycle D, which supports 

the accuracy of the program to collect the failure and service hours. The simulation is 

run with the load cycle given in the IEEE-RTS. The generator failure times and service 

times are collected and forced outage rates (FORs) are calculated. Data such as number 

of starts, Failure times, Service times, Number of Shut-downs, Number of Failures, etc 

are collected from the simulation. The above data collected is used to find various 

parameters like Ff, Fp, D, T and EFORd as is the standard practice. 

startsactual
timesserviceD

_
_

 ; 
hoursAvailable

timesserviceFp
_

_
 ; 

startsTotal
hoursAvailableTD

_
_

  
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

1
r ; 



1
m ; 

DTr

TrFf
111

11





 ; 
SHFOHFf

FOHFfEFORd



*

*

 

The FORs from simulation, EFORds from analytical methods are shown in Table 11. 

 
TABLE 11 

FORs from simulation and EFORDs from analytical method 

Generator FOR 

(from 

Monte 

Carlo) 

EFORd 

(from 

Analytical 

Method) 

Generator FOR 

(from Monte 

Carlo) 

EFORd 

(from 

Analytical 

Method) 

1. 0.12 0.12 17. 0.0010 0.0005 

2. 0.12 0.12 18. 0.0007 0.0003 

3. 0.08 0.08 19. 0.0008 0.0004 

4. 0.0500 0.0500 20. 0.0019 0.0012 

5. 0.0500 0.0500 21. 0.0020 0.0011 

6. 0.0500 0.0500 22. 0.0024 0.0014 

7. 0.0400 0.0400 23. 0.0044 0.0032 

8. 0.0400 0.0400 24. 0.0790 0.0323 

9. 0.0400 0.0400 25. 0.0767 0.0303 

10. 0.0041 0.0031 26. 0.0892 0.0343 

11. 0.0046 0.0032 27. 0.0889 0.0314 

12. 0.0041 0.0027 28. 0.0119 0.0065 

13. 0.0048 0.0031 29. 0.0153 0.0092 

14. 0.0012 0.0005 30. 0.0147 0.0080 

15. 0.0003 0.0001 31. 0.0094 0.0050 

16. 0.0007 0.0002 32. 0.0101 0.0056 
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The loss of load expectation for various peak loads observed is given in Table 12 and [9] 

 
TABLE 12 

HLOLE results from unit-addition and analytical method 

System Model Reliability Indices Obtained by 

UNIT ADDITION METHOD 

Reliability Indices Obtained by 

MONTE-CARLO METHOD 

LOLE (hr/year) LOLE(hr/year) 

IEEE-RTS 

(Peak Load = 

2850MW) 

 

9.389 

 

10.77 

IEEE-RTS 

(Peak Load = 

3050MW) 

 

32.3389 

 

34.28 

IEEE-RTS 

(Peak Load = 

2650MW) 

 

3.1502 

 

2.59 

 

4.1 Conclusion 

The data for analytical method is obtained from historical data. So when the load 

data changes, the historical data may not be valid. Monte-Carlo simulation takes 

changing load into account, and thus gives more valid results as it does not depend on 

the historical data but more intrinsic parameters of failure and repair rates as well as load 

characteristics. The use of analytical methods for calculating the EFORD thus may need 

to be revisited.  
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APPENDIX A 
 

THE IEEE 24 – BUS RELIABILITY TEST SYSTEM 

 

The IEEE Reliability Test System (RTS - 79) is an enhanced test system which 

was developed with the objective of providing a comparative and benchmark studies to 

be performed on new and existing reliability evaluation techniques. Details of the RTS 

and its components are available in [8]. The first version of the IEEE-RTS was 

developed and published in 1979 by the Application of Probability Methods (APM) Sub-

committee of the Power System Engineering Committee. After it was developed in 

1979, system data has been enhanced twice in 1986 and 1996. 

The IEEE-RTS is a 24 – bus system, with 32 generators and 38 transmission 

lines. The configuration is shown in Fig. 7 and the generation data is given in Tables 17. 

Load Model: The basic annual peak load for the test system is 2850 MW. Table 13 gives 

data on weekly peak loads in percentage of the annual peak load. If week 1 is taken as 

January, Table 13 describes a winter peaking system. If week 1 is taken as a summer 

month, a summer peaking system can be described. Table 14 gives a daily peak load 

cycle, in percentage of the weekly peak. The same weekly peak load cycle is assumed to 

apply for all seasons. The data in Table 13 and Table 14 together with the annual peak 

define a daily load model of 52 x 7 = 364 days with Monday as the first day of the year. 

Table 13 gives weekday and weekend hourly load models for each of three seasons. 

Combination of Tables 13, 14 and 15 with the annual peak load defines an hourly load 
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model of 364 x 24 = 8736 hours. Table 17 gives the number of generators, their 

transition rates, minimum UP and DOWN times and their priority order of commitment. 

 

 

Fig 7: IEEE-RTS area-1 
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TABLE 13 
Weekly peak load in percentage of annual load 

WEEK PEAK 

LOAD 

WEEK PEAK 

LOAD 

WEEK PEAK 

LOAD 

WEEK PEAK 

LOAD 

1 86.2 14 75.0 27 75.5 40 72.4 

2 90.0 15 72.1 28 81.6 41 74.3 

3 87.8 16 80.0 29 80.1 42 74.4 

4 83.4 17 75.4 30 88.0 43 80.0 

5 88.0 18 83.7 31 72.2 44 88.1 

6 84.1 19 87.0 32 77.6 45 88.5 

7 83.2 20 88.0 33 80.0 46 90.9 

8 60.6 21 85.6 34 72.9 47 94.0 

9 74.0 22 81.1 35 72.6 48 89.0 

10 73.7 23 90.0 36 70.5 49 94.2 

11 71.5 24 88.7 37 78.0 50 97.0 

12 72.7 25 89.6 38 69.5 51 100.0 

13 70.4 26 86.1 39 72.4 52 95.2 
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TABLE 14 
Daily loads in percent of weekly peak 

DAY PEAK LOAD 

Monday 93 

Tuesday 100 

Wednesday 98 

Thursday 96 

Friday 94 

Saturday 77 

Sunday 75 
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TABLE 15 
Hourly peak load in percent of daily load 

 
 

HOUR 

WINTER WEEKS SUMMER WEEKS SPRING/FALL 

WEEKS 

1-8 & 44-52 18-30 9-17 & 31-43 

WKDY WKND WKDY WKND WKDY WKND 

12-1 am 67 78 64 74 63 75 

1-2 63 72 60 70 62 73 

2-3 60 68 58 66 60 69 

3-4 59 66 56 65 58 66 

4-5 59 64 56 64 59 65 

5-6 60 65 58 62 65 65 

6-7 74 66 64 62 72 68 

7-8 86 70 76 66 85 74 

8-9 95 80 87 81 95 83 

9-10 96 88 95 86 99 89 

10-11 96 90 99 91 100 92 

11-noon 95 91 100 93 99 94 

noon-
1pm 

95 90 99 93 93 91 

1-2 95 88 100 92 92 90 

2-3 93 87 100 91 90 90 

3-4 94 87 97 91 88 86 

4-5 99 91 96 92 90 85 

5-6 100 100 96 94 92 88 

6-7 100 99 93 95 96 92 

7-8 96 97 92 95 98 100 

8-9 91 94 92 100 96 97 

9-10 83 92 93 93 90 95 
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TABLE 15 continued 

 
 

HOUR 

WINTER WEEKS SUMMER WEEKS 

 
 
 

SPRING/FALL 

WEEKS 

1-8 & 44-52 9-17 & 31-43 1-8 & 44-52 

WKDY WKND WKDY WKND WKDY WKND 

10-11 73 87 87 88 80 90 

11-12 63 81 72 80 70 85 

 
 
Where WKDY = week day   WKND = week end 
 
 
 

TABLE 16 
Generator locations in IEEE-RTS 

BUS UNIT 

(MW) 

UNIT 

(MW) 

UNIT 

(MW) 

UNIT 

(MW) 

UNIT 

(MW) 

UNIT 

(MW) 

1 20 20 76 76   

2 20 20 76 76   

7 100 100 100    

13 197 197 197    

15 12 12 12 12 12 155 

16 155      

18 400      

21 400      

22 50 50 50 50 50 50 

23 155 155 350    
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TABLE 17 
Generator data in IEEE-RTS 

UNIT 

GRO

UP 

UNIT 

SIZE 

(MW) 

UNIT 

TYPE 

FORCED 

OUTAGE 

RATE 

MTTF 

(Hour) 

MTTR 

(Hour) 

No OF 

UNITS IN 

AREA-1 

PRIORITY 

ORDER 

MINIMUM 

DOWN TIME 

(Hours) 

MINIMUM 

UP TIME 

(Hours) 

U400 400 Nuclear 0.12 1100 150 2 1 1 1 

U350 350 Coal/Steam 0.08 1150 100 1 2 48 24 

U197 197 Oil/Steam 0.05 950 50 3 3 10 12 

U155 155 Coal/Steam 0.04 960 40 4 4 8 8 

U100 100 Oil/Steam 0.04 1200 50 3 5 8 8 

U76 76 Coal/Steam 0.02 1960 40 4 6 4 8 

U50 50 Hydro 0.01 1980 20 6 7 NA NA 

U20 20 Oil/CT 0.10 450 50 4 8 1 1 

U12 12 Oil/Steam 0.02 2940 60 5 9 2 4 

 

 

  

  




