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ABSTRACT 

 

The reliability of protection systems has emerged as an important topic because 

protection failures have critical influence on the reliability of power systems. The goal of 

this research is to develop novel approaches for modeling and analysis of the impact of 

protection system failures on power system reliability. 

It is shown that repairable and non-repairable assumptions make a remarkable 

difference in reliability modeling. A typical all-digital protection system architecture is 

modeled and numerically analyzed. If an all-digital protection system is indeed 

repairable but is modeled in a non-repairable manner for analysis, the calculated values 

of reliability indices could be grossly pessimistic. 

The smart grid is emerging with the penetration of information-age technologies 

and the development of the Special Protection System (SPS) will be greatly influenced. 

A conceptual all-digital SPS architecture is proposed for the future smart grid. 

Calculation of important reliability indices by the network reduction method and the 

Markov modeling method is illustrated in detail. 

Two different Markov models are proposed for reliability evaluation of the 2-out-

of-3 voting gates structure in a generation rejection scheme. If the model with 

consideration of both detectable and undetectable logic gate failures is used as a 

benchmark, the simple model which only considers detectable failures will significantly 

overestimate the reliability of the 2-out-of-3 voting gates structure. 
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The two types of protection failures, undesired-tripping mode and fail-to-operate 

mode are discussed. A complete Markov model for current-carrying components is 

established and its simplified form is then derived. The simplified model can 

appropriately describe the overall reliability situation of individual components under 

the circumstances of complex interactions between components due to protection 

failures. 

New concepts of the self-down state and the induced-down state are introduced 

and utilized to build up the composite unit model. Finally, a two-layer Markov model for 

power systems with protection failures is proposed. It can quantify the impact of 

protection failures on power system reliability. Using the developed methodology, we 

can see that the assumption of perfectly reliable protection can introduce errors in 

reliability evaluation of power systems. 
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1. INTRODUCTION 

 

1.1. Research Objectives 

 

Reliability evaluation is one of the most important tasks of power system 

analysis. During the past few decades, quantitative analysis based on probability theory 

has been applied to power systems and considerable progress has been made in power 

system reliability modeling and computation [1]-[67]. 

In addition, reliability of protection systems has emerged as an important topic 

because protection failures have critical impact on the reliability of power systems [68]. 

There are two aspects of protection system reliability, i.e. dependability and security. 

Dependability indicates the ability of the protection system to perform correctly when 

required. Unsatisfactory dependability corresponds to the fact that the protection system 

may fail to operate when required due to hidden or undetected faults in it. On the other 

hand, security is the ability of the protection system to avoid unnecessary operation 

during the absence of fault or faults outside the protection zone. Unsatisfactory security 

will result in undesired tripping of the associated circuit breaker(s). 

The goal of this research is to develop novel approaches for modeling and 

analysis of the impact of protection system failures on power system reliability. It 

includes the following specific objectives. 
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(1) Analysis of the repair factor that may influence the reliability modeling of 

protection systems; 

(2) Developing new perspectives for analyzing the impact mechanism of 

protection system failures; 

(3) Developing applicable methodology for power system reliability evaluation 

including protection system failures. 

 

1.2. Nature of the Problem 

 

Protection systems are indispensable to power systems. If assumed perfectly 

reliable, they will provide isolation of faulted current-carrying components in the power 

system to minimize the impact to the rest of the power system. However, the protection 

system itself is also complex and it usually consists of various types and sets of 

protective relays. Actually, it may fail to operate or cause undesired tripping action 

associated with dependability and security issues, respectively. Consequently, more 

components of the power system than necessary will be out of service and the reliability 

situation of the power system will be worse than that with perfect protections. Thus, 

assuming the protection system to be perfectly reliable may give optimistic estimation of 

the reliability of the power system. The nature of the problem can be illustrated by 

Figure 1-1 as following. 
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Figure 1-1.  The nature of the problem. 

 

According to Figure 1-1, there are hierarchical layers of three levels for this 

problem. These layers are listed as follows. 

(1) Layer 1 (the lower level): This is the protection system level. The main issue 

of this level would be how to model and evaluate the protection system reliability, 

considering interactions among the elements of a protection system. The possible 

research topics could be but not limited to traditional protection systems and the new all-

digital protection systems. 

(2) Layer 2 (the intermediate level): This is the current-carrying component level. 

The main issue of this level would be how to model and evaluate the reliability situation 

of current-carrying components, considering interactions between protection systems 

and the protected components. The possible research topics could be but not limited to 
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the impact of fail-to-operate protection failures and the impact of undesired-tripping 

protection failures. 

(3) Layer 3 (the upper level): This is the power system level. The main issue of 

this level would be how the power system reliability is affected by protection system 

failures, considering interactions among current-carrying components due to protection 

failures. The possible research topics could be but not limited to the influence on system 

states and reliability indices. 

 

1.3. Present Status of the Problem 

 

In the past few decades, considerable research has been done on reliability 

modeling of conventional protection systems. For Layer 1 and Layer 2, researchers have 

drawn attention to hidden or undetected failures of protection systems and a unique 

concept for the analysis of protection system reliability was introduced by the idea of 

“unreadiness probability” [69]. Based on this concept of “unreadiness probability”, some 

other reliability indices such as “abnormal unavailability” and “protective system 

unavailability” [70]-[72] have been developed in order to provide appropriate reliability 

analysis of protection system failures. Much of these works and reliability indices are 

based on the macro-level analysis of conventional protection systems in which the 

interaction is between the protection systems and the current-carrying components 

protected. 
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However, a new concept called all-digital protection system is now developing 

which is different from conventional ones in many ways. In such a system, not only 

relays are digital (computer relays), but also the output signals of instrument 

transformers which are now non-conventional are digital. These digital signals are 

conveyed to the digital relays through a digital process bus [73], [74]. Reliability 

analysis of the all-digital protection can play an important role in evaluating its merits 

and guiding its development in a cost-effective and reliable manner. 

A typical all-digital protection system is mainly composed of merging units, 

Ethernet switches, time synchronization sources, digital protective relays, and Ethernet 

communication media. An all-digital protection has more components and of different 

type than the conventional one, which should have some influence on its reliability 

indices. Thus it is also important to evaluate reliability based on the micro-level analysis 

in which the interaction among components of the all-digital protection system is 

considered. In recent years, some architectures of all-digital protection systems have 

been proposed and some reliability indices including MTTF have been analyzed [75]. 

However, this analysis has not considered the effect of component repair. 

For Layer 2 and Layer 3, researchers have been continuously trying to identify 

the effects of protection failures on power systems, to incorporate protection failures into 

power system analysis, and to enhance power system reliability evaluation considering 

protection failures [76]-[89]. Nevertheless, in spite of the mentioned efforts, the 

methodology of analyzing power system reliability including protection failures has not 

gone yet far enough. In typical composite power system reliability analysis, the 



 

 

6 

 

protection systems are still assumed to be perfectly reliable, which means that the failure 

of a current-carrying component results in the removal of that component, and that if the 

power can be redispatched to satisfy all loads, the system state is assumed to have no 

load loss. It is worth pointing out that even if the protection systems worked perfectly, 

the removal of a transmission line can lead to cascading failures as a result of the post-

fault overloading or transient stability problems but such events are not considered in a 

typical composite power system reliability analysis, although they can be included. 

However, when the protection failure modes and their probabilities are included, 

complicated interactions among current-carrying components do exist such that both 

component and system states experience intricate changes. There is a finite probability 

of more components than the faulted one being isolated. Thus, we need to reconsider the 

reliability situation of current-carrying components including the impact of protection 

failures, as protection system failures can change their operation behavior drastically. 

Analysis at power system level may be inadequate and even misleading if we do not 

incorporate protection system failures into the component modeling. 

When a fault occurs on a current-carrying component in the power system, the 

status of adjacent components may also be affected depending on the operation of the 

protection system. If the protection system is healthy and acts as intended, the faulted 

component alone is isolated. However, a protection system may be faulted but its 

unhealthy condition may not be known unless it is called upon to do its job. In such a 

situation, adjacent components other than the faulted one may also be isolated due to the 

operation of back up protection. To consider such a possibility, a three-stage multistate 
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Markov model for a single current-carrying component was proposed, which identified 

the most complex undetected faults in the protection system [80].  

Based on this three-stage multistate model, reliability analysis of the composite 

generation and transmission systems can be more practically achieved [90]. 

Nevertheless, the number of states for even a single component is still so large that direct 

application of this model in power system reliability is indeed limited. Thus, new models 

and concepts are necessary for reliability analysis including protection system failures at 

both the current-carrying component level and the power system level. 

 

1.4. Organization of Dissertation 

 

The dissertation will be organized as follows. Section 2 explores the impact of 

including component repair on the reliability modeling of all-digital protection systems. 

Section 3 proposes a conceptual all-digital SPS architecture for the future smart grid and 

shows how to apply the reliability analysis approaches. Section 4 focuses on reliability 

modeling of the 2-out-of-3 voting gates structure in a generation rejection scheme. 

Section 5 reconsiders the reliability modeling of current-carrying components with 

protection system failures from a new perspective. Section 6 develops new models and 

concepts for incorporating the effect of protection system failures into power system 

reliability evaluation. Section 7 gives the conclusions of the dissertation. The References 

and the Appendix are attached at the end. 
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2. RELIABILITY MODELING OF ALL-DIGITAL PROTECTION SYSTEMS 

 INCLUDING IMPACT OF REPAIR * 

 

2.1. Introduction 

 

The Mean Time To Failure (MTTF) and the Mean Time To First Failure 

(MTTFF) are important indices in the area of reliability analysis. Although their exact 

definitions may differ in various applications, we can give their descriptive meanings as 

following. 

In general, MTTF represents the average time between system breakdowns or 

loss of service. For reasons of avoiding confusion, the same concept is sometimes 

expressed as the Mean Up Time (MUT) or the Mean Time Between Failures (MTBF). 

In contrast, MTTFF represents the mean value of time from the moment system 

starts operating until it fails for the first time. It is, in fact, the concept of the first passage 

time applied to the reliability engineering field [2]. 

 

 

 

____________ 

* Part of this section is reprinted from copyrighted material with permission from IEEE. 

©2010 IEEE. Reprinted, with permission, from Kai Jiang and Chanan Singh, 

“Reliability modeling of all-digital protection systems including impact of repair”， 

IEEE Trans. Power Delivery, vol. 25, no. 2, pp. 579-587, Apr. 2010. 

For more information go to 

http://thesis.tamu.edu/forms/IEEE%20permission%20note.pdf/view. 

 

http://thesis.tamu.edu/forms/IEEE%20permission%20note.pdf/view
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It is important to differentiate between the concepts of MTTF and MTTFF. We 

can illustrate this difference graphically by a system realization as shown in Figure 2-1. 

Here we use a sequence of Ui to represent each time period that the system is in success 

states, and a sequence of Di to represent time periods of system failures. Then MTTF is 

the mean value of all the Ui, while MTTFF is the expected value of U1, the first one of 

the Ui sequence. 

 

 

Figure 2-1.  Illustration of MTTF and MTTFF. 

 

This section mainly discusses the relationships between repairable and non-

repairable MTTF and MTTFF for all-digital protection system modeling. The remainder 

of the section is organized as follows. Section 2.2 first describes the analysis and insights 

of basic structures. Section 2.3 then analyzes an all-digital protection system including 

some numerical results. Section 2.4 is the summary of this section. 
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2.2. Theoretical Analysis of Basic System Structures 

 Consisting of Two Components 

 

Because the overall all-digital protection system can be considered as a complex 

of series and parallel structures, it is important to examine the theoretical analysis of 

basic system structures consisting of two components. This could help us not only gain 

an intuitive appreciation, but also understand better the analysis of the more complex 

structure of an all-digital protection system. 

 

2.2.1. Repairable Systems 

 

2.2.1.1.  Parallel systems 

 

The system structure and the Markov model for a repairable parallel system are 

shown in Figure 2-2. The letters ‘U’ and ‘D’ in the figure represent the up and down 

states of the component. 
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(a) System structure                                                           (b) Markov model 

Figure 2-2.  Repairable parallel system consisting of two components. 

 

2.2.1.1.1. MTTF of the system 

 

For steady state, the probabilities of system failure and system success are shown 

below. 
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The MTTF is the reciprocal of the system failure rate, i.e. 
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2.2.1.1.2. MTTFF of the system 

 

The calculation of MTTFF is more complex than that of MTTF and it can be 

obtained from the transition rate matrix of the system [2] as follows. 
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Thus, the MTTFF of the system is obtained as below. 
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2.2.1.2.  Series systems 

 

The system structure and the Markov model for a repairable series system are 

shown in Figure 2-3. 

 

 

(a) System structure                                                           (b) Markov model 

Figure 2-3.  Repairable series system consisting of two components. 
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2.2.1.2.1. MTTF of the system 

 

The system failure rate and the MTTF are given below. 
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2.2.1.2.2. MTTFF of the system 

 

For a repairable series system, the full system transition rate matrix is 
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2.2.2. Non-repairable Systems 

 

For a non-repairable system, the MTTF is actually the same as MTTFF. This is 

because when the system enters its failed states for the first time, it can never return to a 

success state. 

 

2.2.2.1.  Parallel systems 

 

The reliability of a non-repairable parallel system is 
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By definition [92], [93], 

 



0

)( dttRMTTF sys . 

Thus, 

 
2121

0

)( 111
)( 2121






 




dteeeMTTF
ttt , 

 
2121

111

 
 MTTFMTTFF . (2.5) 

 

 

 



 

 

16 

 

2.2.2.2.  Series systems 

 

The reliability of a non-repairable series system is 

 ttt

ssssys eeeppptR
)(

21
2121)(
 

 . 

Hence, 

 
21

0

)(

0

1
)( 21






 






dtedttRMTTF
t

sys
, 

 
21

1

 
 MTTFMTTFF . (2.6) 

 

2.2.3. Differences of Repairable and Non-repairable MTTF and MTTFF 

 

It is easy to see that for a repairable system, MTTF is different from MTTFF.  

The reason is that when a system returns to success status after repair, it does not always 

return to the same state given that the number of success states is more than one. In 

special situations when the system has only one success state or it always returns to the 

same state after repair, the MTTF and MTTFF become identical and actually series 

system represents one example of such systems. 

 

2.2.3.1.  Comparisons of parallel systems 

2.2.3.1.1. MTTFF and MTTF of repairable systems 

From (2.1) and (2.2), we can see that 
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Since 2121 ,,,   are all positive values, we know that the result of (2.7) must 

be greater than zero. Thus, for a repairable parallel system, the value of MTTFF is 

greater than that of MTTF. 

 

2.2.3.1.2. MTTFF of repairable and non-repairable systems 

 

From (2.2) and (2.5), we have 
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 NR MTTFFMTTFF . (2.8) 

Again, we know that the result of (2.8) must be greater than zero because 

2121 ,,,   are all positive. Thus, the value of MTTFF of a repairable parallel system is 

greater than that of a non-repairable one. 

 

2.2.3.1.3. MTTF of repairable and non-repairable systems 

 

From (2.1) and (2.5), we get 
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 NR MTTFMTTF . (2.9) 

It is easy to see that for 12    and 21   , expression (2.9) has a positive 

value. It means the MTTF of a repairable parallel system would be greater than that of a 

non-repairable one if these conditions are satisfied. 
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The physical meaning of this result is obvious. If one component of the 

repairable parallel system is failed, as long as it can be repaired before the other 

component fails, the system can still be in state of success. Given this condition, the 

repairable parallel system is sure to survive better than the non-repairable one. 

However, we find it interesting to note that the MTTF of a repairable parallel 

system could be smaller than that of a non-repairable one, depending on the sign of 

the numerator in expression (2.9). This phenomenon can easily be observed especially in 

case 12    and 21    simultaneously. 

 

2.2.3.2.  Comparisons of series systems 

 

2.2.3.2.1. MTTFF and MTTF of repairable systems 

 

From (2.3) and (2.4) we can see that 

 0 RR MTTFMTTFF . 

 

2.2.3.2.2. MTTFF of repairable and non-repairable systems 

 

From (2.4) and (2.6) we also have 

 0 NR MTTFFMTTFF . 
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2.2.3.2.3. MTTF of repairable and non-repairable systems 

 

Similarly, from (2.3) and (2.6) we get 

 0 NR MTTFMTTF . 

 

We can easily conclude from the above comparisons that for a series system, the 

values of MTTFF and MTTF are all the same, no matter the system is repairable or not. 

It sounds reasonable because any component failure of a series system will cause the 

system to fail. 

 

2.3. Analysis of All-digital Protection Systems 

 

Compared to the basic systems with only two components, all-digital protection 

systems have a variety of more complex structures and thus the reliability results are not 

easy to obtain directly. However, the methodology that we used previously to analyze 

the basic systems can still be applied to all-digital protection systems. 

Since the overall protection system will not work properly without correct signal, 

we assume the digital instrument transducers to be extremely reliable. Hence, they are 

not considered in the following analysis. For simplicity, we also assume that one 

merging unit can perform the full function needed for one set of protection, instead of 

several units in reality processing different signals, respectively. In addition, the Ethernet 

interface is assumed to be a part of the corresponding IED device (i.e. computer relay, 
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merging unit, Ethernet switcher) and its reliability is already included in these devices 

[75]. 

The main functional parts of a protection system are usually designed to be 

located in isolated places where the physical distances between them are far enough to 

avoid mutual interference. Hence, we can assume that all the components of the all-

digital protection system are independent of each other in most cases. In addition, the 

component state durations are assumed to be exponentially distributed. 

The major threats that can cause the common mode failures are intentional 

destruction (e.g. war, terrorism), fire, and more commonly power failures. However, the 

role of the protection system is so important that every set of protection is designed to be 

supplied by multiple power sources simultaneously, including AC, batteries, and UPS, 

etc. So, we can assume its power supplies to be extremely reliable. Now that almost 

every monitoring and control cabinet is designed with effective measures against fire 

spread by cables, we also assume the common mode failures by fire to be neglected for 

simplicity. As for intentional destruction, it is naturally not considered. 

Based on the previous assumptions, we will analyze a typical all-digital 

protection system architecture as shown in Figure 2-4 [75] but similar analysis can be 

conducted for other configurations. In this architecture, the protection system consists of 

two redundant full functional units and each unit comprises a set of digital protective 

relay (PR), Ethernet switch (SW), merging unit (MU), time synchronization source (TS), 

and Ethernet communication media (EM). In order to reduce the probability of system 
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failure due to time synchronization, the time synchronization sources of the two units are 

shared with each other and thus act as mutual backup of each other. 

 

 

Figure 2-4.  An example all-digital protection system architecture. 

 

2.3.1. Non-repairable System Model 

 

Reference [75] assumes this system to be non-repairable and its MTTF is 

obtained as 
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Given that the Ethernet communication media have a failure rate of 

1003.0  yearem , and all other components as 101.0  yearprswmuts  , the 

MTTF of the system is calculated to be 37.3 years [75]. 

 

2.3.2. Repairable System Model 

 

As we know, if there is any recognized problem with the protection, utilities 

would either fix or replace the problematic components so as to keep the whole 

protection system up. Thus, we need to analyze the protection system reliability with a 

repairable model. Since the estimated repair time for any failed equipment is usually 

prescribed in power industry and the maintenance staff always conforms to this 

guideline, we can assume constant repair rates for our repairable model. 

 

2.3.2.1.  MTTF of the repairable protection system 

 

Using the concept of equivalent transition rates [91], we simplify the original 

reliability block diagram shown in Figure 2-5(a) [75] to the one in Figure 2-5 (b). The 

simplified system will have the same value of the MTTF as that of the original one. 

 



 

 

23 

 

 

(a) Original reliability block diagram 

 

(b) Simplified reliability block diagram 

Figure 2-5.  Simplification of the reliability block diagram. 

 

For the series chain A1 in Figure 2-5(a), the steady state probabilities and the 

transition rates are 
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Similarly, for the series chain A2 in Figure 2-5(a), the steady state probabilities 

and the transition rates are 
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Since the series chains A1 and A2 have the same probabilities and the transition 

rates, we can get the probabilistic results of the parallel structure A in Figure 2-5(b) as 

following. 

 

2

11

1
,2,1, 












AA

A
fAfAfA ppp




 

 

2

11

1
,, 11 












AA

A
fAsA pp




 

 121 2 AAAA    

 
11

2

1

,

,

,

,

,

,

2

2

AA

A

sA

AfA

sA

sA

sA

fA

A
p

p

p

Fr

p

Fr







  

For the parallel structure TS in Figure 2-5(b), we have 
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Thus, we could get the system failure rate as 

 ATSsys   . 

Therefore, the MTTF of the all-digital protection system is 

 
ATSsys

MTTF
 


11

. 

In order to get a comparable result with the non-repairable system, we use the 

same component failure rates as in [75], i.e. the Ethernet communication media 

1003.0  yearem  and all other components 101.0  yearprswmuts  . In 

addition, we assume that the Ethernet communication media could be fixed or replaced 

in 2 days and all other components in 7 days, i.e. 

 
15.182)2/(1  yeardaysem , 

 114.52)7/(1  yeardaysprswmuts  . 

These are perhaps conservative values for the repair rates of the components. 

And we calculate the MTTF of the repairable protection system as 21016 years which is 

much larger than 37.3 years as in [75]. 
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2.3.2.2.  MTTFF of the repairable protection system 

 

For the MTTFF of an all-digital protection system, the formula that we used 

previously to analyze the basic systems is still valid. We rewrite this formula below for 

convenience. 

 kURpMTTFF 1

11 ))(0( 

   (2.10) 

However, it is really not simple to utilize this formula for practical calculations. 

Unlike the analysis of the basic structures, we do not know just at a glance how many 

success states this system would have. We only know its total number of states as 

4096212   since the system consists of 12 components. In addition, it seems that we 

also cannot give the details of vectors )0(p  and kU  unless we know the number of 

states of system success, or the dimension of the matrix 11R . But the details of 11R  are 

even more difficult to know. So, we must use a systematic strategy to obtain the MTTFF 

value of the all-digital protection system. The key issue is that we can get 11R  after we 

obtain the full system transition rate matrix R which is 1212 22   in its size. The strategy 

to obtain this is illustrated in the following steps.  

 

2.3.2.2.1. Step I: Initializing the state matrix 

We initially form a state matrix which can represent the status of the system and 

all of its components. In this state matrix, each row represents a distinct state of the 
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system and each column represents a component state. For a system consisting of n 

components, the size of this state matrix would be nn 2 . For our all-digital protection 

system to be analyzed, this state matrix size is 12212  . Now every element of this 

matrix represents the status of a component in a specific system state. If we use the 

values 0 and 1 indicating the success and failure states of a component, respectively, the 

complete system states can be represented by this state matrix consisting of exhaustive 

combinations of 0’s and 1’s as shown in Table 2-1. 

 

Table 2-1  Initial state matrix 

Components TS1 MU1 EM1 SW1 EM3 PR1 TS2 MU2 EM2 SW2 EM4 PR2 

State 0001 0 0 0 0 0 0 0 0 0 0 0 0 

State 0002 0 0 0 0 0 0 0 0 0 0 0 1 

State 0003 0 0 0 0 0 0 0 0 0 0 1 0 

State 0004 0 0 0 0 0 0 0 0 0 0 1 1 

State 0005 0 0 0 0 0 0 0 0 0 1 0 0 

                          

State 4092 1 1 1 1 1 1 1 1 1 0 1 1 

State 4093 1 1 1 1 1 1 1 1 1 1 0 0 

State 4094 1 1 1 1 1 1 1 1 1 1 0 1 

State 4095 1 1 1 1 1 1 1 1 1 1 1 0 

State 4096 1 1 1 1 1 1 1 1 1 1 1 1 
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2.3.2.2.2. Step II: Identifying system states of success and failure 

It is natural to think that we can use the minimal cut set method to distinguish 

system states of success and failure. The procedure could be carried out in three steps: 

Firstly, we find all the minimal cut sets of the system; Secondly, we use minimal cut sets 

to find all the system states of failure; Finally, the rest of the states are the system states 

of success. However, this method is not smart and convenient for our all-digital 

architecture to be analyzed. One reason is that it is not easy to find out all the minimal 

cut sets if the number of components of the system is relatively large. Another reason is 

that there will be some overlapping system states of failure based on different minimal 

cut sets. Unless we can identify all the overlapping states, this method is prone to yield a 

wrong number of system states of failure. 

Here we propose a better way to distinguish system states of success and failure 

for our all-digital architecture. Although this method is also based on the concept of cut 

set, the distinguishing difference is that we do not need to search all the minimal cut sets 

of the system. Since the reliability block diagram of this all-digital protection system can 

be decomposed into combinations of simple series and parallel structures, we can get the 

logical chain of the system as shown in Figure 2-6. 











































fails (PR2)  (EM4)  (SW2)  (EM2)  MU2)(fails (A2)

fails (PR1)  (EM3)  (SW1)  (EM1)  MU1)(fails (A1)

fails (A)

fails (TS2)

fails (TS1)

fails (TS)

fails System

OROROROR

AND

OROROROR
OR

AND

 

Figure 2-6.  Logical chain of the system. 
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In the previous Step I of initializing the state matrix, we have already used the 

values 0 and 1 indicating the success and failure states of a component, respectively. 

Now in the logical chain in Figure 2-6, let us replace each component by its state value 

(0 or 1) and treat the conditions “AND” and “OR” as the corresponding logical operation 

symbols. Thus, the logical chain in Figure 2-6 is translated into a Boolean calculation. 

And the final result of the Boolean calculation is just the indication of the system state, 

i.e., the value 0 of “System fails” indicates the system success and the value 1 as system 

failure. If we scan each row of the initial state matrix already set up in Step I and do the 

Boolean calculation, all the system states can be distinguished as success or failure 

without omission or overlapping. 

For our all-digital architecture to be analyzed, the number of states of system 

success and failure are counted to be 189 and 3907, respectively. After all the system 

states are identified, we can reorder for better use the initial state matrix as shown in 

Table 2-2, i.e., all the system states of success are moved to the first 189 rows of the 

state matrix and all the system states of failure are gathered in the latter part of 3907 

rows in our case. 
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Table 2-2  Rearranged state matrix 

Components TS1 MU1 EM1 SW1 EM3 PR1 TS2 MU2 EM2 SW2 EM4 PR2 

S
u

cc
es

s 

State 

0001 
0 0 0 0 0 0 0 0 0 0 0 0 

                          

State 

0189 
1 1 1 1 1 1 0 0 0 0 0 0 

F
ai

lu
re

 

State 

0190 
0 0 0 0 0 1 0 0 0 0 0 1 

                          

State 

4096 
1 1 1 1 1 1 1 1 1 1 1 1 

 

 

2.3.2.2.3. Step III: Forming the full system transition rate matrix R 

 

Since we have identified all the system states of success and failure and 

rearranged the state matrix, it is now possible for us to obtain the full system transition 

rate matrix R. However, the diagonal and off-diagonal elements of the transition rate 

matrix R are very different. They represent the single-step transition rates from a given 

state to itself and to another state, respectively. As a strategy, we need to know the off-

diagonal elements of the transition rate matrix R first and then obtain the diagonal 

elements from the non-diagonal elements. 

There are two types of relationships between any two system states [94]. Suppose 

we choose two arbitrary system states i and j. If we need at least two components to 

change their status for a transition between system states i and j, the interstate 

relationship is not a single-step transition and thus the corresponding transition rates do 
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not exist, i.e., the elements (i, j) and (j, i) of the matrix R are both zeroes. If, however, 

there is only one component, say component k, that changes its status between system 

states i and j, then the interstate relationship is indeed a single-step transition and the 

corresponding transition rates do exist. Further in this case, if the component k is 

working in system state i and fails in system state j, then the transition rate from state i to 

j is the failure rate of the component k, i.e., the element (i, j) of the matrix R is k . 

Similarly, the transition rate from state j to i is the repair rate of the component k, i.e., the 

element (j, i) of the matrix R is k . After we scrutinize all the interstate relationships of 

any two distinct system states, we can get all the off-diagonal elements of the transition 

rate matrix R. Figure 2-7 is a brief flow chart of this algorithm. 

Now it is easy to calculate the diagonal elements of the full transition rate matrix 

R because they have a definite relationship with the off-diagonal ones of the same row 

[2], i.e. 

 0
ij

ijii rr  

wherein iir  and ijr  represent diagonal and off-diagonal elements, respectively. The 

subscripts i and j here represent the indices of row and column of the matrix R, 

respectively. Then the diagonal elements can be obtained by the formula as below. 

 



ij

ijii rr  

Thus, the full system transition rate matrix R can be obtained after we know all 

of its elements. 
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Figure 2-7.  Algorithm to obtain off-diagonal elements of the matrix R. 
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2.3.2.2.4. Step IV: Extracting the submatrix R11  from the full system transition rate 

matrix R 

 

If we form the full system transition rate matrix R based on the rearranged state 

matrix as shown in Table 2-2 of Step II, we can see that it is quite easy to obtain 11R , the 

set of transition rates between states of system success. Because all the system states of 

success are located in the first 189 rows of the rearranged state matrix, 11R  is just the 

upper left square submatrix (size 189189 ) of the matrix R (size 40964096  ) obtained 

in Step III. In a word, we can extract the submatrix 11R  directly from the matrix R as 

shown in Figure 2-8. 
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Figure 2-8.  Extraction of submatrix R11 from matrix R. 

 

 

 

 



 

 

34 

 

2.3.2.2.5. Step V: Computing the MTTFF of the system 

 

As the final step of the strategy, we are now able to compute the MTTFF of the 

all-digital protection system by using (2.10). Since we have obtained the submatrix 11R , 

we can give the details of vectors )0(p  and kU  as following. 

The probability vector of system success states for the initial state (all 

components up) is 

 ]0001[)0(

s'0   188


p . 

The unit vector of dimension k which is equal to the number of states of system 

success is 

 
T

kU ]111[

s1'   189


 . 

Using the same failure and repair rates of the components as we did in 

calculating the repairable MTTF, we figure out that the MTTFF of this repairable all-

digital protection system is 21029 years. 

 

2.3.3. The Influence of Repair in Protection System Modeling 

 

2.3.3.1.  Difference of repairable and non-repairable system MTTF and MTTFF 

 

The calculated results of our all-digital protection system model are summarized 

in Table 2-3. We can see that for the repairable model, the value of MTTFF is larger 
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than that of MTTF though the difference is rather small. In addition, the values of 

repairable MTTFF and MTTF are both remarkably larger than those of corresponding 

non-repairable indices. 

 

Table 2-3  Calculation of repairable and non-repairable system models 

Indices Repairable system model Non-repairable system model 

MTTFF 21029 years 37.3 years 

MTTF 21016 years 37.3 years 

 

 

The relative behavior of MTTFF and MTFF of repairable and non-reparable all-

digital system can be explained and proven as follows.  Our all-digital protection system 

can, in fact, be regarded as a combination of basic parallel and series structures. Since 

the basic series structures have no influence on the differences of repairable and non-

repairable MTTF and MTTFF, we can intuitively sense that their differences of the 

overall protection system are the accumulated contributions of its basic parallel 

structures. The proof is briefly given below. 

Let us first look at the series chain A1 in Figure 2-5. If it is non-repairable, its 

reliability would be 

 

t

ttttt

sPRsEMsSWsEMsMUsAsys

prswemmu

premswemmu

e

eeeee

pppppptR

)2(

,1,3,1,1,1,1)(















.

 

Hence, 
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 prswemmu

sysNN dttRMTTFMTTFF
 

 


2

1
)(

0

. 

However, if A1 is repairable, we already have previously 

 prswemmuA   21 . 

Thus, 

 
prswemmuA

RMTTF
 


2

11

1

. 

Alternatively, it is not difficult to get 

 )2(11 prswemmuR   , 

 1)0( p , 

 1kU , 

 
prswemmu

kR URpMTTFF
 

 


2

1
))(0( 1

11 . 

Therefore, 

 NNRR MTTFMTTFFMTTFMTTFF  . 

Similarly, the series chain A2 will also have the same result. 

Next, let us regard the series chains A1 and A2 as two composite components 

with their derived transition rates. They definitely form a basic parallel structure, i.e. A 

in Figure 2-5, which has been discussed in Section 2.2. Once we have derived the 

equivalent transition rates for A1 and A2, the expressions (2.7), (2.8), and (2.9) can be 

used. The only difference is that we need to substitute the subscripts A1 for 1 and also 

A2 for 2. 
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Similarly, components TS1 and TS2 form a basic parallel structure, i.e. TS in 

Figure 2-5. We can also obtain the results using (2.7), (2.8), and (2.9), just substituting 

the subscripts TS1 for 1 and TS2 for 2. 

Finally, TS and A compose the overall protection system which is just a simple 

series structure with only two composite components. As discussed in Section 2.2, we 

can easily obtain 

  ,
1

,, RARTS

RR MTTFMTTFF
 

  

 
NANTS

NN MTTFMTTFF
,,

1

 
 . 

Here RARTS ,,   ,   refer to the repairable systems and NANTS ,,   ,   are for non-repairable 

systems. 

It can be seen from the above derivation that, the parallel structure provides the 

actual contribution to the differences of the MTTFF and MTTF of our all-digital 

protection system. 

Since all the transition rates are positive values, using (2.7), (2.8), and (2.9) we 

can conclude the following for our protection system discussed: 

(1) The repairable system MTTFF is undoubtedly larger than its repairable 

MTTF; 

(2) The repairable MTTFF is unconditionally larger than its non-repairable 

MTTFF; 
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(3) The repairable MTTF is generally greater than but under certain conditions 

can be smaller than its non-repairable MTTF. In other words, the repairable MTTF 

cannot be guaranteed to be greater than the non-repairable MTTF. 

Further for the third point, if we choose parameters in (2.9) such that 12 AA    

and 21 AA   , and at the same time that 12 TSTS    and 21 TSTS   , then the repairable 

MTTF will be smaller than the non-repairable one. A simple way to guarantee this is just 

choose failure rates of all the components sufficiently larger than the corresponding 

repair rates, as we will see later. Our previous numerical data shows that the repairable 

MTTF is greater than the non-repairable one. This is because all the component repair 

rates are chosen much bigger than the corresponding failure rates, which is normal in 

industrial reality. 

By the way, there is also a practical meaning to keep the repairable MTTF and 

MTTFF larger than the non-repairable ones. In power industry, if no in-time remedy is 

done for an out-of-work component of a still working protection system, the system will 

tend towards a critical situation and eventually go down much more quickly as more and 

more components go out of work. 

 

2.3.3.2.  The influence of repair on system modeling concerning MTTF and MTTFF 

 

In order to observe the varying trend of the system MTTF and MTTFF with 

repair, we fix all the component failure rates as in previous data and change 

simultaneously the entire component repair rates in multiples of the previous ones. The 
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result is shown in Table 2-4 below. The value of non-repairable MTTF(F) is also 

included in Table 2-4 for comparison. 

 

Table 2-4  Influence of repair on system MTTF and MTTFF 

Multiples of the original  ’s MTTFF (years) MTTF (years) 

10 209996 209983 

5 105015 105002 

2 42026 42013 

1 21029 21016 

2-1 10531 10518 

5-1 4232 4219 

10-1 2133 2120 

10-2 243 230 

10-3 55.9 41.1 

10-4 39.3 23.0 

10-5 37.9 21.9 

10-6 37.7 21.8 

Non-repairable system 37.3 

 

 

From the data in Table 2-4, we can see that as component repair rates increase, 

the system MTTF and MTTFF increase simultaneously. When component repair rates 

decrease, the system MTTF and MTTFF also decrease simultaneously. In other words, 

the system MTTF and MTTFF are monotonically influenced by the component repair 
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rates. This sounds reasonable since higher repair rates actually mean that faster remedies 

could be made to the failed components. Thus the mean time to failure (MTTF) and the 

mean time to first failure (MTTFF) of the system are likely to be prolonged. 

Table 2-4 justifies our previous findings. First, we find in Table III that for any 

given set of component transition rates, the value of repairable MTTFF is always larger 

than that of repairable MTTF. Secondly, the value of repairable MTTFF is surely greater 

than that of non-repairable MTTFF. 

In addition, as all the component repair rates decrease towards zero, the value of 

repairable MTTFF approaches just the value of the non-repairable system MTTFF. We 

can naturally see that the non-repairable system MTTFF is just the lower limit of the 

repairable system MTTFF. This can be proved as follows. 

As the conclusion of previous discussion, the parallel structure is the actual 

contributor to the differences of the MTTFF and MTTF of our all-digital protection 

system. Since we can obtain the result for our protection system in the same manner as 

for basic parallel structure just by the substitution of subscripts, let us look at the 

parameters in (2.8). If the failure rates are fixed and the repair rates tends to zero, we 

have 

 


















 2

2121

21212121

0
0

0
0 )(

)()(
lim)(lim

2

1

2

1 









NR MTTFFMTTFF

. 

It is obvious that the numerator of this limit tends to zero while its denominator tends to 

a finite non-zero value. Therefore, 
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which means that a repairable system will eventually turn out to be a non-repairable one 

as all the repair rates become zero. 

However, the value of repairable MTTF is NOT guaranteed to be greater than 

that of non-repairable one. In fact, as the repair rates decrease to a certain value (e.g. 10
-4

 

smaller in magnitude of the original  ’s as in Table 2-4), the value of repairable MTTF 

would become smaller than that of non-repairable one. We further observe that the 

important condition that the repair rate of each component being greater than the 

corresponding failure rate is no longer satisfied at this time. The repairable MTTF also 

approaches a value but smaller than that of non-repairable MTTF, as all the component 

repair rates go down towards zero. It should, however, be noted that the equations used 

for computing the repairable MTTF assume a finite repair rate and cannot be used when 

the repair rate is actually zero. 

In summary, as all the component repair rates decrease, the value of repairable 

system MTTFF approaches that of non-repairable one, while the value of repairable 

MTTF approaches a value smaller than that of non-repairable one. Since a non-

repairable system has the same value for MTTFF and MTTF, it just reflects the fact that 

the MTTF of a non-repairable system has indeed the same meaning as its MTTFF. The 

interesting relationship between repairable and non-repairable system MTTF and 

MTTFF can be clearly seen in Figure 2-9 which is drawn from data in Table 2-4. 
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Figure 2-9.  The relationship between repairable and non-repairable system MTTFF and MTTF. 

 

We also find in Table 2-3 and Table 2-4 that many repairable MTTF and MTTFF 

data seems too large to be acceptable in reality. This is because the pre-chosen 

component failure rates are very small in magnitude compared to the repair rates that we 

chose. If we fix our component repair rates and change simultaneously the entire failure 

rates in multiples of the original ones, we can find the computed results become more 

conservative as shown in Table 2-5 below. 
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Table 2-5  Influence of failure rate on system MTTF and MTTFF 

Multiples of the original  ’s MTTFF (years) MTTF (years) 

1 21029 21016 

2 5266 5259 

5 846 844 

10 213 212 

20 54.2 53.5 

50 9.06 8.80 

100 2.43 2.30 

 

 

2.4. Summary 

 

It is shown that repair plays an important role in all-digital protection system 

modeling concerning MTTF and MTTFF. For the all-digital protection system that we 

have analyzed, we can draw the following conclusions. 

(1) For the given component failure rates, the system MTTF and MTTFF are 

monotonically influenced by the component repair rates. As the component repair rates 

increase, the system MTTF and MTTFF increase simultaneously. When the component 

repair rates decrease, the system MTTF and MTTFF also decrease simultaneously. 

(2) For the given component transition rates, the value of repairable system 

MTTFF is always larger than that of repairable system MTTF irrespective of how small 

the difference is, i.e. 
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 RR MTTFMTTFF  . 

(3) For the given component transition rates, the value of repairable system 

MTTFF is greater than that of non-repairable system MTTFF, i.e. 

 NR MTTFFMTTFF 
. 

In addition, as the component repair rates decrease towards zero while the component 

failure rates stay fixed, the value of repairable system MTTFF approaches that of non-

repairable system MTTFF. A repairable system will eventually turn out to be a non-

repairable system as all of its component repair rates become zero. 

(4) The value of repairable system MTTF is NOT guaranteed to be greater than 

that of non-repairable system MTTF. In fact, as the component repair rates decrease 

below a certain level with the component failure rates unchanged, the value of repairable 

system MTTF would become smaller than that of non-repairable system MTTF. This 

case is always accompanied by the violation of generally assumed condition that the 

repair rate of each component is greater than the failure rates of all other components. As 

component repair rates decrease towards zero, the value of repairable system MTTF 

approaches a value smaller than that of non-repairable system MTTF. 

Perhaps the most important point for practical purposes is that if an all-digital 

protection system is indeed repairable but is modeled in a non-repairable manner for 

analysis, the calculated values for the mean time to failure (MTTF) and the mean time to 

first failure (MTTFF) could be grossly pessimistic [95]. 
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3. RELIABILITY EVALUATION OF A CONCEPTUAL ALL-DIGITAL 

SPECIAL PROTECTION SYSTEM ARCHITECTURE 

 FOR THE FUTURE SMART GRID * 

 

3.1. Introduction 

 

The Special Protection System (SPS), also called Remedial Action Schemes 

(RAS) or special protection schemes, is an automatic protection system which is 

designed to detect abnormal or predetermined system conditions, and take corrective 

actions to maintain system reliability [96]. It is well accepted that the SPS has critical 

influence on the power system reliability [97], [98]. Therefore, the reliability of SPS has 

always been an important issue in the research area of SPS [99]-[102]. 

 

 

 

 

____________ 
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The smart grid is emerging with the penetration of information-age technologies 

bringing potentially significant changes in the development of instrumentation, 

monitoring, control, and protection systems in power industry, including SPS. As 

microprocessors become more powerful with even lower cost, they could prevail in the 

future for the choice of SPS logic solvers. It is notable that digital communication will 

play an important role in the future power industry. A new concept of digital process bus 

has been presented in IEC 61850 [73], [74]. With the realization of the electronic 

hardware sensor, a “one unique” secondary platform, called merging unit (MU), has 

been developed to interface all other substation equipments such as protection, metering 

and control devices, also called Intelligent Electronic Devices (IED) [103]. Using the 

IEC 61850 process bus, a merging unit is capable of executing the trip and control 

commands as well as communicating to IED its input signals including AC sampled 

values, contact status information, and a variety of transducer inputs [104]-[106]. 

Although sensors and actuators of the SPS are different in functions, their data flow can 

now be integrated in the same platform of the merging unit. 

In addition, non-conventional instrument transformers have already been 

available which can directly output digital signals of current and voltage measurements 

[103], [107]. These digital signals are all conveyed to the IED through the IEC 61850 

process bus. With the help of the Global Positioning System (GPS), a device capable of 

synchronization called Phasor Measurement Unit (PMU) has been developed rapidly. 

PMU can provide synchronous measurements of phasors for the same time stamp and 
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become the foundation of various kinds of wide-area protection and control schemes 

[108]-[111]. If PMU is utilized as the SPS measurement device, the voltage and current 

synchrophasors over a large area can be easily obtained and the SPS actually becomes a 

powerful scheme with capability of wide-area protection and control [112]. 

It seems that the power industry is getting ready for more aggressive steps by 

replacing switchyard copper wires with plug-and-play fiber-based schemes [113]. We 

can envision that a possible SPS scheme in the future can be typically composed of 

digital logic solvers, Ethernet switches, digital communication media, merging units, 

time synchronization sources, and phasor measurement units. All the signals in them are 

digitally conveyed through a virtual IEC 61850 process bus. Since the all-digital SPS 

scheme has obviously more electronic components than a conventional hardwired one, it 

should have some influence on its reliability. Thus, reliability analysis of the all-digital 

SPS can play an important role in evaluating its merits and guiding its development in a 

cost-effective and reliable manner. 

The remainder of this section is organized as follows. Section 3.2 firstly proposes 

a conceptual all-digital SPS architecture. Section 3.3 then illustrates the reliability 

evaluation of the proposed SPS architecture by using the network reduction method and 

the Markov modeling method to compute the specific reliability indices. Section 3.4 

gives the numerical case study of the proposed SPS architecture. Section 3.5 is the 

summary of this section. 
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3.2. Conceptual All-digital SPS Architecture 

 

There could be various configurations and realizations for an all-digital SPS in 

the future. In the area of all-digital protection systems, researchers have already 

presented some possible architectures [75]. Based on the idea of these configurations, 

here we propose a conceptual all-digital SPS architecture as consideration for future SPS 

development as shown in Figure 3-1. 

 

 

Figure 3-1.  A conceptual all-digital SPS architecture. 

 

Because SPS has critical influence on the reliability of the power system, two 

redundant functional sets are considered in order to achieve a high level of SPS 

reliability. In the architecture of Figure 3-1, each set can perform the full SPS function 

independently and consists of a digital logic solver (LS), an Ethernet switch (SW), the 

Ethernet communication media (EM), the merging unit devices (MU), a time 

synchronization source (TS), the phasor measurement unit equipments (PMU), and the 
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digital communication media channels (CM) for PMU. In more detail, components TS1, 

MU1, EM1, SW1, LS1, PMU1, and CM1 constitute one set of SPS while components 

TS2, MU2, EM2, SW2, LS2, PMU2, and CM2 make up the other set. 

Time synchronization is so important to an all-digital system that the signal 

processing is meaningless without a proper time stamp. In order to reduce the probability 

of system failures because of time synchronization problems, the time synchronization 

sources of the two sets are shared with each other. No matter which source fails (TS1 or 

TS2), the other is assumed available immediately for the set of SPS missing its original 

time synchronization source. 

A merging unit device can have several functional modules processing different 

signals simultaneously. If the SPS is complex and needs to control several equipments, a 

group of merging unit devices may also be necessary to meet the requirements. But for 

simplicity, we do not distinguish either the modules or differences of the merging units. 

Here we just assume that one merging unit (MU1 or MU2) alone can perform the full 

function needed for one set of SPS. 

Phasor measurement units are preferred for future SPS applications especially in 

case the information of a large area is needed to determine the logic of SPS alarm and/or 

actuation. PMU Redundancy is also necessary due to its unique significance in data 

collection. Thus, two PMU equipments are considered for each location as shown in 

Figure 3-2, where PMU1i and PMU2i are mutual backup to each other for location i. 

Therefore, PMU1 and PMU2 in Figure 3-1 are not two individual units but two groups 
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of PMU sets. Specifically, PMU1 is the group of apparatus PMU1i ),,2,1( ni   and 

PMU2 is the group of apparatus PMU2i ),,2,1( ni  . 

 

 

Figure 3-2.  Illustration of PMU configuration for SPS implementation. 

 

Similarly, CM1 and CM2 in Figure 3-1 are also two groups of digital 

communication media channels CM1i ),,2,1( ni   and CM2i ),,2,1( ni  , 

respectively as shown in Figure 3-2. Here we suppose CM1i and CM2i are dedicated to 

the two SPS functional sets, respectively. However, the information of location i, i.e. 

data of PMU1i and PMU2i can be transmitted to SPS through either of the two channels 

CM1i and CM2i for best usage and availability of PMU resources. 

We will analyze the proposed all-digital SPS scheme using a repairable model 

because in practice, if there is any fault in the component recognized by either self-test 
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routine or manual test procedure, utilities would either fix or replace the problematic 

component so as to keep the whole protection and control system up and ready to 

perform. In addition, we also make some other assumptions for feasible reliability 

analysis such as: (1) The components of the all-digital SPS are independent of each 

other; (2) The component state durations are exponentially distributed; (3) The power 

supplies to SPS are extremely reliable; (4) The communication interface is a part of the 

host device (i.e. MU, SW, LS, PMU, etc.) and its reliability is included in the host 

device. 

Although the SPS scheme in Figure 3-1 is only one of the possible architectures, 

here we focus on how to apply reliability analysis approaches to the conceptual all-

digital SPS in the future. Evaluation of important reliability indices such as probability 

of system failures, frequency and duration of system failures, the mean time to failure 

(MTTF), and the mean time to first failure (MTTFF) will be illustrated in detail. For 

other possible SPS configurations, their reliability analysis can be conducted in a similar 

way. 

 

3.3. Reliability Evaluation of the SPS Architecture 

 

In the proposed SPS architecture, some components are exclusively used for one 

set of SPS such as the digital logic solver, the Ethernet switch with its corresponding 

Ethernet media, the merging unit, and the digital communication media channel for 

PMU. If any of these components fails, this set of SPS can no longer perform its 
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function properly. Thus, these components are actually functioning in a series 

relationship from reliability standpoint. As for the time synchronization source and the 

PMU, they are not designed as dedicated to only one specific set of SPS. Instead, their 

redundancies are for the reliability of the whole SPS application. Therefore, we can draw 

the reliability block diagram of the proposed SPS architecture according to the 

functional relationships of the components as shown in Figure 3-3. 

 

 

Figure 3-3.  SPS reliability block diagram. 

 

In fact, PMU, CM1, and CM2 in Figure 3-3 are conceptually aggregate 

components including all necessary PMU locations for SPS implementation. According 

to previous configuration assumptions, their reliability block diagram can be detailed as 

in Figure 3-4. 
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(a) Aggregate component PMU 

 

 (b) Aggregate component CM1 

 

 (c) Aggregate component CM2 

Figure 3-4.  Reliability block diagram of aggregate components. 

 

In general, it is not easy to obtain the reliability indices directly for such a 

complex system. However, we can use the network reduction method to analyze the SPS 

reliability. Here we suppose the failure and repair rates of a general component i by i  

and i , respectively. In addition, we use fisi pp ,,  ,  and fisi ff ,,  ,  for component i to 

represent the probabilities of its success and failure states, and the steady state 

frequencies encountering its state of success and failure, respectively. 
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3.3.1. Treatment of Aggregate Components 

 

In order to reduce the dimension of the problem, we need to merge the models of 

the aggregate components first before analyzing the system reliability. It also helps us 

understand the problem from a hierarchical point of view. We can achieve this by using 

the concept of equivalent transition rate [91]. Then the aggregate component will have 

the same values of transition rates, state probabilities, and corresponding frequencies as 

those of its representing group of individual elements taken as an integral part. 

 

3.3.1.1.  Aggregate component PMU 

 

For each location i, PMU1i and PMU2i are in parallel as we can see in Figure 3-

4(a). Hence, the equivalent repair rate is 
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The steady state frequencies are 
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The equivalent failure rate is 
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For the aggregate component PMU, it is all locations connected in series as 

shown in Figure 3-4(a). Thus, the equivalent failure rate is 
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The steady state frequencies are 
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The equivalent repair rate is 
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3.3.1.2.  Aggregate components CM1 and CM2 

 

The aggregate components CM1 and CM2 are both simple series chains as we 

can see in Figure 3-4(b) and Figure 3-4(c), respectively. Similar to handling the 

aggregate component PMU, we can obtain the equivalent transition rates for CM1 and 

CM2 as below, where }2  ,1{j . 
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After we have obtained the equivalent transition rates of the aggregate 

components, we can from now on regard PMU, CM1, and CM2 as if they were single 

components in the SPS reliability block diagram of Figure 3-3. 

 

3.3.2. Reliability Analysis of SPS 

 

3.3.2.1.  Reliability analysis by using the network reduction method 

 

As we observe in Figure 3-3, components MU1, EM1, SW1, LS1, and CM1 

comprise the subsystem S1 of a series structure. If we regard S1 as a new composite 

component using the concept of equivalent transition rate again, this composite 
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component will have the same values of failure and repair rates, probabilities of success 

and failure states, and frequencies of encountering success and failure states as the 

original subsystem. Similarly, we can use another composite component to represent the 

series subsystem S2 formed by components MU2, EM2, SW2, LS2, and CM2. Then the 

reliability block diagram can be reduced to a simpler one as shown in Figure 3-5. The 

equivalent transition rates of subsystems S1 and S2 can be calculated as following, 

where we suppose }  ,  ,  ,  ,{ CMjLSjSWjEMjMUjSj  , }2  ,1{j . 
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Figure 3-5.  Reduction of SPS reliability block diagram. 

 

Now let us see the reduced SPS reliability block diagram of Figure 3-5. There are 

two parallel structures in this diagram, i.e. components TS1 and TS2 comprise the 

parallel subsystem TS, while the composite components S1 and S2 form the parallel 

subsystem S. Again, if we regard these subsystems as two composite components in a 
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higher level, we can further simplify the SPS reliability block diagram to a much concise 

one as shown in Figure 3-6. By the concept of equivalent transition rate, the new higher-

level composite components will have the same values of transition rates, state 

probabilities, and corresponding frequencies as the original subsystems TS and S, 

respectively. The equivalent transition rates of the higher-level subsystems TS and S can 

be calculated as follows, where we suppose }  ,{ STSi . 
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Figure 3-6.  Simplified SPS reliability block diagram. 

 

The simplified SPS reliability block diagram of Figure 3-6 consists of only three 

composite components in series. Thus, it is now easy to get the reliability indices of the 

whole system of SPS using the parameters of composite components derived previously. 

The system reliability of SPS (i.e. probability of SPS success) is 

 
   PMUPMUSSTSTS

PMUSTS
sSPSp






,

. (3.17) 

The system failure rate of SPS is 
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 PMUSTSSPS   . (3.18) 

The frequency of SPS system failure is 
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The mean cycle time of SPS is 
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The Mean Down Time (MDT) of SPS is 
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The Mean Time To Failure (MTTF) represents the average time between system 

breakdowns or loss of service. For reasons of avoiding confusion, the same concept is 

sometimes expressed as the Mean Up Time (MUT) in the system modeling with repair. 

Here for our SPS architecture 

 
PMUSTSSPS

MDTMCTMUTMTTF
 


11

. (3.22) 

 

3.3.2.2.  Reliability analysis by using the Markov modeling method 

 

We already know from Section 2 that the value of Mean Time To First Failure 

(MTTFF) cannot be obtained from the previous network reduction method. In fact, the 

calculation of MTTFF is more complex than that of MTTF. Based on the model of 
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continuous parameter Markov process, we can derive the ultimate formula for 

calculating MTTFF using the transition rate matrix of the system as follows [2]. 

 kURpMTTFF 1

11 ))(0( 

   (3.23) 

Here, 11R  is the sub-matrix of the full system transition rate matrix 
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R  and represents the set of transition rates from system success to system 

success. )0(p  is the probability row vector of system success states for the initial state 

(i.e. all components up), while kU  is the unit column vector of dimension k which is 

equal to the number of states of system success. 

In practice it is not simple to utilize this formula for computing the MTTFF of 

the SPS. So, we must use a systematic strategy to obtain the MTTFF value of our SPS. 

The key issue is that we can get 11R  after we obtain the full system transition rate matrix 

R  which is 1313 22   or 81928192   in its size. The implementation of this strategy is 

already illustrated in detail in Section 2.3.2.2. As a result, the structural expressions of 

the parameters needed in (3.23) are illustrated as follows. 
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3.4. Numerical Case Study 

 

For better understanding reliability analysis of the proposed all-digital SPS 

architecture, we give a numerical study as follows. We assume the same parameters for 

the same type of components, which are shown in Table 3-1. In addition, parameters of 

aggregate components PMU, CM1, and CM2 are given directly. The computation results 

of some SPS reliability indices are listed in Table 3-2. 

 

Table 3-1  Reliability parameters of components 

Components Failure rate (1/year) Repair rate (1/year) 

TS1 / TS2 0.01 876 

MU1 / MU2 0.01 876 

EM1 / EM2 0.01 876 

SW1 / SW2 0.01 876 

LS1 / LS2 0.01 876 

CM1 / CM2 0.03 876 

PMU 0.006 786 
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Table 3-2  SPS reliability indices 

Reliability indices Calculated values 

Probability of SPS failure 0.0000076 

Frequency of SPS failure (1/year) 0.00601 

Mean time to first failure (MTTFF) (years) 166.4 

 

 

The component failure rates do have an influence on the reliability of SPS. Table 

3-3 shows different results of SPS reliability indices by increasing all component failure 

rates to two, three, and five times of their original values while keeping their repair rates 

the same as before. From the data in Table 3-3, we observe that as component failure 

rates increase, the SPS reliability indices get worse accordingly. It simply quantifies the 

fact that the reliability of SPS will become degraded if its components are less reliable. 

 

Table 3-3  SPS reliability indices for different component failure rates 

Reliability indices Original Two times Three times Five times 

Probability of SPS failure 0.0000076 0.000015 0.000023 0.000038 

Frequency of SPS failure (1/year) 0.00601 0.0120 0.0181 0.0303 

MTTFF (years) 166.4 83.02 55.24 33.02 

 

The factor of repair also plays an important role when considering the reliability 

of SPS. Figure 3-7 and Figure 3-8 illustrate the trend of probability of SPS failure and 
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MTTFF of the SPS, respectively, by changing all component repair rates in multiples of 

the original data simultaneously while fixing their failure rates the same as in Table 3-1. 

From the figures we can see that increasing the component repair rates is helpful to 

enhance the system reliability of SPS. It sounds reasonable since higher repair rates 

actually imply that faster remedies could be made to the failed components. Hence, the 

probability of SPS failure could be reduced and the mean time to first failure (MTTFF) 

of the SPS is likely to be prolonged. 

 

 

Figure 3-7.  Probability of SPS failure for different component repair rates. 
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Figure 3-8.  MTTFF of the SPS for different component repair rates. 

 

3.5. Summary 

 

In the era of smart grid, the penetration of information-age technologies can 

bring significant changes to the area of instrumentation, monitoring, control, and 

protection in power systems. The development of the special protection system (SPS) is 

also likely to be influenced. 

This section proposes a conceptual all-digital SPS architecture for the future 

smart grid. Since the reliability of SPS is critical to the power system reliability, the 

focus of this section is how to apply reliability analysis approaches to the new all-digital 

SPS schemes. Evaluation of important reliability indices by using the network reduction 

method and the Markov modeling method is illustrated in detail. 
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The reliability of SPS is closely related to the reliability of its components. If 

components tend to be less reliable, the SPS reliability will be degraded. However, 

increasing component repair rates will be helpful to enhance the reliability of SPS. From 

the numerical case study, we find that the approaches applied in this section can quantify 

these effects and help in cost-benefit trade-off and selection of components as well as 

configurations [114], [115]. 
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4. RELIABILITY EVALUATION OF THE 2-OUT-OF-3 VOTING GATES 

STRUCTURE IN A GENERATION REJECTION SCHEME 

 USING MARKOV MODELS * 

 

4.1. Introduction 

 

Generation Rejection Scheme (GRS) is one of the widely used Special Protection 

Systems (SPS), accounting for about 21.6% of all SPS used by utilities according to an 

industry survey. It is designed to improve the transient stability performance of a power 

system. Figure 4-1 shows a portion of the IEEE Reliability Test System (RTS) together 

with an illustration of the GRS logic. In this power system line 12~13 and line 13~23 are 

critical lines. The function of the GRS is that when it detects a line outage on either of 

these two lines, it promptly trips only one generator to keep the other two generators in 

service [116]. 

 

 

 

 

____________ 

* Part of this section is reprinted from copyrighted material with permission from 

PMAPS 2012 Organizing Committee. 

©PMAPS 2012. Reprinted, with permission, from Kai Jiang and Chanan Singh, 

“Reliability evaluation of the 2-out-of-3 voting gates structure in a generation rejection 

scheme using Markov models”, presented at the 12th International Conference on 

Probabilistic Methods Applied to Power Systems (PMAPS 2012), Istanbul, Turkey, Jun. 

2012. 
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The working logic of the GRS is explained as follows. When there is a fault on a 

critical line, the breakers on this line will open. Thus an open signal (high level signal) 

from any of these breakers energizes the output of the OR logic gate. Then the high level 

signal from the OR gate output, together with the high level arming signal, will set all 

AND logic gates outputs in high level, which are inputs to the 2-out-of-3 voting scheme. 

When two or more of the voting scheme input signals are high, the voting scheme output 

signal is high; otherwise, it is low. The high level signal from the voting scheme will trip 

the selected generator [117]. 

We know from the GRS working logic that the three AND logic gates in the 2-

out-of-3 voting scheme play an important role. The design of this voting scheme can 

tolerate loss of one AND gate without problem regarding its output signal. However, if 

two or more AND gates fail, the voting scheme can no longer function correctly. Thus 

the reliability evaluation of these gates is one of the key factors to determine the overall 

reliability of the generation rejection scheme. In this section we will focus on these 2-

out-of-3 voting gates and regard them as a system for reliability analysis using the 

Markov model approach. 
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Figure 4-1.  The 2-out-of-3 voting gates in a generation rejection scheme. 

 

The remainder of this section is organized as follows. Section 4.2 shows a simple 

Markov model for analyzing the system reliability of the 2-out-of-3 voting gates 

structure. Section 4.3 illustrates an advanced Markov model for reliability evaluation in 

details with consideration of two different types of logic gate failures. Section 4.4 gives 

the numerical case study of both models proposed. Section 4.5 is the summary of this 

section. 

 

4.2. Model I - Simple Markov Model 

 

In practice, each AND logic gate represented in such a generation rejection 

scheme could be an individual electronic circuit module. In addition, all these three 

Bus 23 

Bus 12 
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working gates in a specific scheme application are often using the same type of module 

from the same manufacturer for reasons of interchangeable and economical solution of 

spare module backups. 

From this point of view, we can model the AND logic gates of the 2-out-of-3 

voting scheme as three independent and identical components. Thus, the state durations 

of these components will have the same distribution. Suppose their durations are 

exponentially distributed and their failure and repair rates are represented by   and  , 

respectively. Then the system Markov Model for the 2-out-of-3 voting gates structure 

can be drawn as shown in Figure 4-2. 

 

 

Figure 4-2.  Model I - Simple Markov model. 

 

In Figure 4-2, 
0P  represents the system state with all gates in good condition, 

while 
1P , 

2P , and 
3P  refer to groups of system states with one, two, and three gates 
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failed. Also, we use the symbols for states to indicate their corresponding probabilities. 

The following equations for each system state can be simply obtained using the 

frequency balance approach. 

 03 10   PP  (4.1) 

 023)2( 201   PPP  (4.2) 

 032)2( 312   PPP  (4.3) 

 03 23   PP  (4.4) 

Since all state probabilities should add up to unity, we have 

 1
3

0


i

iP . (4.5) 

Using any three of the four equations (4.1)-(4.4) together with (4.5), we can solve 

and obtain the state probabilities. Here we replace (4.3) with (4.5) and obtain the matrix 

form of the equations as follows. 

 III VPR   (4.6) 

wherein 
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According to the 2-out-of-3 voting scheme designed, we can then compute the 

state probabilities of system success and failures by the following equations. 

 
10 PPP s

sys  ,     
32 PPP f

sys   (4.9) 

The frequency of entering the states of system failure is 

 21  PFsys
 (4.10) 

The Mean Up Time (MUT) and Mean Down Time (MDT) of the system can be 

obtained as follows. 

 sys

s

sys FPMUT   (4.11) 

 sys

f

sys FPMDT   (4.12) 

 

4.3. Model II - Advanced Markov Model 

 

Although the Markov model shown in Figure 4-2 (Model I) is simple, it might be 

inappropriate to evaluate the reliability of a practical 2-out-of-3 voting gates structure 

used in this section. The reason is that Model I is based on an important assumption that 

all failures of a gate are detected and known immediately after their occurrences. Here 

we refer to this kind of failures as detectable. However, the assumption may not be true 

in reality. 

A protection scheme including SPS can be realized by different types of 

components, including electromechanical, analog electronic, or digital electronic 

(microprocessor-based) devices. Each scheme could have a self-monitoring function. 
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Generally, the electromechanical one has the lowest capability to monitor itself. In 

contrast, the one using digital electronics can have the most powerful mechanism of self-

monitoring and may be even capable of self-diagnosis. No matter what type of the 

scheme is used, a warning signal will be sent to the control center through the alert 

message system once a failure is detected. Thus either operators or the maintenance staff 

can know the failure immediately and start the repair procedure. 

Therefore, detectability of failures heavily depends on the self-monitoring 

mechanism of the protection design. In practice no type of self-monitoring mechanism 

can cover 100% parts of the whole protection scheme, including but not limited to 

hardware, software and firmware issues. In addition, the self-monitoring mechanism 

itself may suffer a failure. Thus some of the device failures may happen but cannot be 

known automatically. Fortunately, almost all these failures can be identified by an 

appropriate maintenance test. 

Unlike some other active components in a power system such as rotating 

generators, most protection devices including generation rejection schemes are 

“dormant” during the majority of their life cycles. Although they can be armed for a long 

time in the working environment, they will not act until the predetermined action 

conditions are met. This special characteristic just reveals the fact that some protection 

failures are hidden and cannot be detected immediately until the protection is called 

upon to action or inspected for maintenance. In this section, we define this kind of 

hidden failures as undetectable. 
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Thus we have to take account of undetectable failures along with detectable ones 

in order to model our 2-out-of-3 voting gates structure more accurately. Suppose we still 

use   and   to represent failure and repair rates of detectable gate failures and use   

and   to represent those of undetectable ones. This important consideration will result 

in a more complicated system model because each gate now has three states and there 

will be 2733   system states in total. Here we still assume all three gates to be 

independent and identical and all transitions between system states are one-step 

transitions. 

 

4.3.1. System State with All AND Logic Gates Working 

 

We continue to use 
0P  to represent the system state with all gates in good 

condition and also its probability. Although the system state itself is the same as in the 

previous Model I, the transitions related to this state is slightly different than before. 

In this section we use a bar overhead and at the bottom of the gate number to 

represent its detectable and undetectable failures, respectively. So the system state with 

all gates working well is detailed by )3,2,1(  as circled in Figure 4-3. We can see that the 

system state 
0P  can make transitions in six different ways because each gate can fail due 

to detectable or undetectable failures. 

 



 

 

74 

 

 

Figure 4-3.  System state with all AND logic gates working. 

 

4.3.2. System State with One AND Logic Gate Failed 

 

In this case, the 2-out-of-3 voting scheme is still working, though one of the gate 

has failed. We continue to use 
1P  to represent the system state and its probability with 

one gate failed. Since there are two types of gate failures, the system state 
1P  can be 

further divided in two different groups, i.e., the system state 
11P  with one gate failed and 

detectable, and the system state 
21P  with one gate failed but undetectable. For 

illustration, we assume gate 1 to be the failed one in both scenarios. 

 

4.3.2.1.  One AND logic gate failed and detectable 

 

In this case the system state can be detailed by )3,2,1(  as circled in Figure 4-4. 
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Figure 4-4.  System state with one AND logic gate failed and detectable. 

 

We see in Figure 4-4 that if gate 1 is repaired, the system will transit back to state 

)3,2,1( . However, if another gate, say gate 2, fails before gate 1 being repaired, the 

system will transit either to state )3,2,1(  or to state )3,2,1( as shown in Figure 4-4, 

depending on which type of failures occurs on gate 2. As we can see in Figure 4-4, there 

are four possible transitions for state )3,2,1(  toward system states with two gates failed. 

 

4.3.2.2.  One AND logic gate failed but undetectable 

 

In this case the system state can be detailed by )3,2,1(  as circled in Figure 4-5. 

Similarly, the system can transit back to state )3,2,1(  if gate 1 is repaired. The system can 

also transit to four possible system states with two gates failed. 
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Figure 4-5.  System state with one AND logic gate failed but undetectable. 

 

4.3.3. System State with Two AND Logic Gates Failed 

 

If two gates have failures on them, the 2-out-of-3 voting scheme will no longer 

function correctly. In other words, the system has failed. Due to different types of gate 

failures, it will be difficult for analysis if we use only one system state such as 
2P  in 

Model I of Figure 4-2 to model this case. In fact, we need three categories to classify all 

these system states. 

 

4.3.3.1.  System failed and detectable 

 

We use 
12P  to represent the system states of this category. In this scenario, the 

failures of two failed gates are both detectable. Thus the system failure can be identified 
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right after it occurs. Suppose gates 1 and 2 are the two failed gates. The system state can 

now be detailed by state )3,2,1(  as circled in Figure 4-6. 

 

 

Figure 4-6.  Detectable System failure with two AND logic gates failed. 

 

Since each failed gate can be repaired, there will be two transitions for state 

)3,2,1(  toward system states with only one gate failed, i.e. state )3,2,1(  and state )3,2,1(

as in Figure 4-6. Because gate 3 may also fail before either gate 1 or 2 gets repaired, 

there are two other transitions for state )3,2,1(  toward system states with all gates failed 

as shown in Figure 4-6. 
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4.3.3.2.  System failed but undetectable 

 

We use 
22P  to represent the system states of this category. In this scenario, the 

failures of two failed gates are both undetectable. Thus the system failure cannot be 

identified after it occurs. Suppose gates 1 and 2 are the two failed gates. The system state 

can be detailed by state )3,2,1(  as circled in Figure 4-7. 

 

 

Figure 4-7.  Undetectable System failure with two AND logic gates failed. 

 

We can see in Figure 4-7 that the mode of possible transitions for this 

undetectable system failure is similar to that of previous detectable system failures in 

Figure 4-6. However, the transitions are totally different due to different system states 

and different transition rates. 
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4.3.3.3.  System failure neither detectable nor undetectable 

 

We use 
32P  to represent the system states of this category. In this scenario, there 

are two failed gates but one is detectable while the other undetectable. This category of 

system states is the most confusing one because the system failure can neither be 

determined as detectable nor be defined as undetectable. It just depends on the system 

state where it comes from. For illustration, we assume gate 1 failed and detectable while 

gate 2 failed but undetectable. Then the system state 
32P  can be detailed by state )3,2,1(  

as circled in Figure 4-8. 

 

 

Figure 4-8.  System failure with two AND logic gates failed, one detectable and the other undetectable. 

 

There are two possible transitions to state )3,2,1(  from system states with only 

one gate failed. In Figure 4-8, if the transition originates from state )3,2,1( , then the 
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system failure can be treated as undetectable. Although the failure of gate 1 is detectable, 

it was before the system fails. When the system fails, it is triggered by the undetectable 

failure of gate 2. Thus the system failure remains unknown until next action or 

maintenance test. 

On the other hand, if the transition originates from state )3,2,1( , the system 

failure can be paid attention to because the triggering event of gate 1 failure is 

detectable. Thus the system failure can be regarded as detectable since other gates may 

be examined for their status. 

No matter the system failure is detectable or undetectable, the ambiguous system 

states of this kind can be handled appropriately as long as we group them as a separate 

category 
32P  different from previous system states 

12P  or 
22P . As we can see in Figure 

4-8, because gate 3 can fail either detectably or undetectably before any repair to gate 1 

or 2, there exist two possible transitions for state )3,2,1(  toward system states with all 

gates failed. 

 

4.3.4. System State with All AND Logic Gates Failed 

 

It seems unnecessary to analyze the details of the 2-out-of-3 voting gates 

structure with all gates failed, given the system has already failed since the failures of a 

second gate. However, we realize that even the system states with all gates failed can 

distinguish themselves from each other and have different modes that may impact both 

analytical modeling and maintenance scheduling. Of course this is again caused by 
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detectable and undetectable gate failures. We need to avoid using only one system state 

such as 
3P  in Model I of Figure 4-2 to model this situation. Instead, we have four groups 

of these system states. 

 

4.3.4.1.  All gates failed and detectable 

 

We use 
13P  to represent the system state of this group. In this scenario, because 

the failures of all failed gates are detectable, the system failure can be identified 

definitely. There is only one state of this kind and it can be detailed by state )3,2,1(  as 

circled in Figure 4-9. 

 

 

Figure 4-9.  System failure with all AND logic gates failed and detectable. 

 

It is easy to see that there are three system states that state )3,2,1(  can transit to 

or from, i.e., state )3,2,1( , state )3,2,1( , and state )3,2,1( . In addition, these three system 

states belong to the same group 
12P . 



 

 

82 

 

 

4.3.4.2.  All gates failed but undetectable 

 

We use 
23P  to represent the system state of this group. In this scenario, because 

all gates have failed but none of them is detectable, the system failure surely cannot be 

known right after it occurs. There is only one state of this kind and it can be detailed by 

state )3,2,1(  as circled in Figure 4-10. There are three system states of the same group 

22P  that state )3,2,1(  can transit to or from, i.e., states )3,2,1( , )3,2,1( , and )3,2,1( . 

 

 

Figure 4-10.  System failure with all AND logic gates failed but undetectable. 

 

4.3.4.3.  All gates failed, two detectable and one undetectable 

 

We use 
33P  to represent the system states of this group. In this scenario, because 

two of the three failed gates are detectable, the system failure can be identified, too. 
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We notice that the two types of gate failures in the system state will impact the 

transitions. For better understanding, we suppose gates 1 and 2 failed and detectable 

while gate 3 failed but undetectable. The system state group 
33P  can now be detailed by 

state )3,2,1(  as circled in Figure 4-11. We can see that among the three system states 

that state )3,2,1(  can transit to or from, state )3,2,1(  belongs to group 
12P  while states 

)3,2,1(  and )3,2,1(  belong to group 
32P . 

 

 

Figure 4-11.  System failure with all AND logic gates failed, two detectable and the other undetectable. 

 

4.3.4.4.  All gates failed, one detectable and two undetectable 

 

We use 
43P  to represent the system states of this group. In this last scenario, we 

just cannot tell whether the system failure can be identified or not because two of the 

three failed gates are undetectable. It depends on the system state where it comes from, 

which is similar to the explanation of previous system state group 
32P . 
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Nevertheless, we can still know the impact of gate failures on the system state 

transitions. For illustration, we suppose gate 1 failed and detectable while gates 2 and 3 

failed but undetectable. The system state group 
43P  can now be detailed by state )3,2,1(  

as circled in Figure 4-12. We can see that among the three system states that state 

)3,2,1(  can transit to or from, states )3,2,1(  and )3,2,1(  belong to group 
32P  while state 

)3,2,1(  belongs to group 
22P . 

 

 

Figure 4-12.  System failure with all AND logic gates failed, one detectable and the other two 

undetectable. 

 

4.3.5. The Advance Markov Model 

 

In brief, we have ten groups of system states to model the 2-out-of-3 voting gates 

structure when the failures of AND logic gates are considered either detectable or 

undetectable. Table 4-1 is the summary of all these groups of system states. 
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Using the concept of equivalent transition rate [91], we can give an advanced 

Markov model for reliability evaluation of the 2-out-of-3 voting gates structure as in 

Figure 4-13. 

 

Table 4-1  Summary of system state groups 

System state 

group 

# of gates 

failed 

System 

failed? 

System failure 

detectable? 
Detail of system states 

0P  0 No - )3,2,1(  

11P  1 No - )3,2,1( )3,2,1( )3,2,1(  

21P  1 No - )3,2,1( )3,2,1( )3,2,1(  

12P  2 Yes Yes )3,2,1( )3,2,1( )3,2,1(  

22P  2 Yes No )3,2,1( )3,2,1( )3,2,1(  

32P  2 Yes Depending 
)3,2,1( )3,2,1( )3,2,1(  

)3,2,1( )3,2,1( )3,2,1(  

13P  3 Yes Yes )3,2,1(  

23P  3 Yes No )3,2,1(  

33P  3 Yes Yes )3,2,1( )3,2,1( )3,2,1(  

43P  3 Yes Depending )3,2,1( )3,2,1( )3,2,1(  

 

 

Using the frequency balance approach, we can obtain a set of equations and solve 

for state probabilities of the advanced Markov model (Model II). This set of equations is 

expressed in the matrix form as in (4.13). The detail of (4.13) is shown in (4.14). 

 IIIIII VPR   (4.13) 
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Figure 4-13.  Model II - Advanced Markov model. 
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The state probabilities of system success and failures are 

 
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sys PPP , (4.15) 
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The frequency of entering the states of system failure is 

 





2

1

1)(2
i

isys PF  . (4.17) 

The formulae to calculate the Mean Up Time (MUT) and Mean Down Time 

(MDT) of the system are the same as (4.11) and (4.12), respectively. 

 

4.4. Numerical Case Study 

 

In order to compare the two different Markov Models for reliability evaluation of 

the 2-out-of-3 voting gates structure, we use a numerical case study as follows. 

Table 4-2 gives the reliability parameters of the AND logic gate that we used for 

calculation. For simplicity, we assume that for the total number of gate failures in Model 

II, two thirds of them are detectable and one third undetectable. In addition, we consider 

the mean repair time to be 6 hours and the maintenance test interval as 6 months [116]. 
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Table 4-2  Transition rates of the AND logic gate 

Transition rates Model I Model II 

 (1/year) 0.03 0.02 

 (1/year) - 0.01 

 (1/year) 1460 1460 

 (1/year) - 2 

 

The computed results for both models proposed in this section are shown in 

Table 4-3 and Table 4-4. Table 4-3 lists the group probabilities of each model. For 

comparable states between models, the state probabilities of Model II with the same 

number of failed gates are added up. Table 4-4 gives the reliability indices of the two 

models. From these tables we can see that the differences between the results of the two 

models are significant. Compared with the advanced Markov model (Model II), the 

simple one (Model I) overestimates the reliability of the 2-out-of-3 voting gates structure 

significantly. 

 

Table 4-3  Group probabilities of system states 

State probabilities Model I Model II 

0P  (All gates good) 999938.0  985108.0  

1P  (One gate failed) 510164.6   
210482.1   

2P  (Two gates failed) 910267.1   
5107.429   

3P (All gates failed) 15109   
710242.1   
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Table 4-4  Reliability indices of the voting gates structure 

Reliability indices Model I Model II 

Probability of system failure 910267.1   
5107.441   

Frequency of system failure (1/year) 610698.3   
4108.890   

Mean up time (hours) 9102.369  
6109.853  

Mean down time (hours) 000.3  2.733  

 

4.5. Summary 

 

The special protection systems are critical to power system reliability. As one of 

the most widely used SPS, the generation rejection scheme plays an important role in 

improving the transient stability performance of power systems. 

This section focuses on reliability modeling of the 2-out-of-3 voting gates 

structure in a generation rejection scheme. Due to different assumptions, two Markov 

models are proposed for reliability evaluation. The major difference between these two 

models is whether the failures of a logic gate are distinguished as detectable or 

undetectable. 

From the numerical case study, we found that the reliability indices obtained 

from these two models could be very different. While using the advanced Markov model 

with consideration of both detectable and undetectable logic gate failures as a 

benchmark, the simple Markov model which only considers detectable failures will 

overestimate the reliability of the 2-out-of-3 voting gates structure significantly [118]. 
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5. NEW RELIABILITY MODELS FOR CURRENT-CARRYING 

COMPONENTS INCLUDING PROTECTION SYSTEM FAILURES * 

 

5.1. Introduction 

 

The three-stage multistate Markov model for a single current-carrying 

component [80] mentioned in Section 1 is the basis for new concepts and models 

developed in the following research. Thus, we need to review the details of this model as 

shown in Figure 5-1 before we go further. 

 

 

 

 

 

 

 

____________ 

* Part of this section is reprinted from copyrighted material with permission from IEEE. 

©2009 IEEE. Reprinted, with permission, from Kai Jiang and Chanan Singh, “The 

concept of power unit zone in power system reliability evaluation including protection 

system failures”, in Proc. 2009 IEEE Power & Energy Society Power Systems 

Conference and Exposition (PSCE 2009), pp. 1-10, Mar. 2009. 

©2011 IEEE. Reprinted, with permission, from Kai Jiang and Chanan Singh, “New 

models and concepts for power system reliability evaluation including protection system 

failures”, IEEE Trans. Power Systems, vol. 26, no. 4, pp. 1845-1855, Nov. 2011. 

For more information go to 

http://thesis.tamu.edu/forms/IEEE%20permission%20note.pdf/view. 
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Figure 5-1.  Three-stage multistate model of a current-carrying component. 

 

In this model, the faulted current-carrying component is supposed to be isolated 

by a set of two circuit breakers, denoted by set I , and this set of breakers bounds the 

protection zone of the component. In practice, a component may associate with more 

than two breakers, and the configurations of breakers do have influence on substation 

and system reliability [119]. However, it would be clearer and preferable to describe the 

modeling concepts assuming only two equivalent breakers for a component, each one of 

which represents the behavior of the practical breaker(s) associated with the relay and 

communication schemes. Thus, as the result of protection failures, a combination of 

breakers can fail to respond to a fault in the protection zone. The various possible 

combinations are indicated by subsets IIk  , i.e. 0I  (null), }1breaker {1 I , 
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As shown in Figure 5-1, stage 0 is the up state (unfaulted state) of the current- 

carrying component. Stages 1 and 2 contain down states (faulted states) of the 

component before and after switching (the unfaulted components isolated by backup 

protection systems being restored to service), respectively. These down states are 

indicated by two numbers, the first showing the stage and the second the state number in 

that stage. State k  in stage 1 or 2 means that breakers in subset kI  fail to trip 

simultaneously. For example, state 13 means that the two breakers of the faulted 

component fail to trip, causing all its adjacent healthy components on both sides tripped 

by backup protections. State 23 means that after the checking process, both breakers of 

the faulted component are manually opened and then the adjacent components 

previously tripped are restored to service. 

The sequence following a fault on a component is as follows. Depending on the 

operation of the protection, one or more components may be isolated. Then after the 

correct identification of the faulted component, unfaulted components may be restored to 

service. Therefore, the transitions from the up state to the down states in stage 1, 

transitions from the states in stage 1 to corresponding states in stage 2, and eventually 

transitions from states in stage 2 to the up state are unidirectional. The failing, switching 

and repair processes are not independent and thus should be integrated into the same 

model with the probabilities of these states adding to unity. The parameters in Figure 5-1 

are defined as: 

  failure rate of the current-carrying component 

kp  unreadiness probability of breakers in IIk   
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k  switching rate from state k1  to state k2  

k  repair rate of the current-carrying component from state k2  

The Markov model described in Figure 5-1 assumes the switching (from state k1 ) 

and repair (from state k2 ) times to be exponentially distributed. It should be noted that 

there is a single transition into and a single transition out of the state k1  or k2 . It is 

shown in the Appendix that to compute the steady state probabilities for this special 

situation, the state residence times can always be assumed exponentially distributed with 

the equivalent constant transition rates ( k  and k ) equal to the reciprocals of the mean 

value of the state duration times, irrespective of the actual distribution. 

The objective of this section is to contribute to developing new concepts and 

models for including protection system failures in reliability analysis at current-carrying 

component level. The remainder of this section is organized as follows. Section 5.2 

describes the example power system to be analyzed to illustrate the basic concepts. The 

necessary assumptions on which the analysis is based are also given. Section 5.3 sets up 

the initial models for component failures caused by the two types of protection system 

failures. Section 5.4 discusses decoupling the complicated interactions between 

components caused by protection failures. Section 5.5 then establishes a complete 

Markov model for the component. Section 5.6 further simplifies this model into a more 

applicable and concise one and illustrates the overall reliability situation of individual 

current-carrying components. Section 5.7 gives the numerical case study of the proposed 

models. Section 5.8 is the summary of this section. 
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5.2. The Example Power System and Assumptions 

 

For a clear illustration of concepts and methodology, a simple example power 

system shown in Figure 5-2 is used. Suppose two current-carrying components (e.g. 

transmission lines) A and B are connected in series and each is bounded by two circuit 

breakers, i.e. A1, A2, and B1, B2, respectively. In Figure 5-2, S1 and S2 are two source 

systems supplying power while L is the load fed by components A and B together. 

 

 

Figure 5-2.  Example power system. 

 

Generally, the protection systems are designed in the following way. If there is a 

fault on component B and the protective relay installed at location B1 fails to trip, the 

relay installed at location A1 will provide remote backup protection while the relay at A2 

will provide local backup protection. Thus, component A will be tripped. For simplicity, 

we do not distinguish the local backup and remote backup any more since they actually 

have the same result that A is tripped. We just assume that the protection system of 

component A (protection A) acts as the backup to the protection system of component B 

(protection B). Similarly, protection B is also assumed to be the backup to protection A 

in case breaker A2 fails to trip when there is a fault on component A. 
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In addition, we assume that source system S1 provides backup protection to 

component A in case breaker A1 fails to trip when there is a fault on component A, while 

source system S2 provides backup protection to component B in case breaker B2 fails to 

trip when there is a fault on component B. These backup protections will detach the 

source system from the corresponding component (A or B) when called upon to act. 

Some other important assumptions are listed as following. These assumptions are 

generally made in power system reliability analysis. 

(1) The component state durations are exponentially distributed, which implies 

that all transition rates are constant. 

(2) The failures of protection systems happen independently of the faults of 

current-carrying components. 

(3) The repair of protection systems is always faster than that of the 

corresponding protected components, which is normal in power industry. 

(4) All the protection systems are well coordinated and all the backup functions 

are perfectly reliable. 

(5) All the source systems and the buses connecting components and feeding 

loads are perfectly reliable. 

(6) All the source systems and the components have sufficient power capacity to 

satisfy the load. 
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5.3. Initial Modeling of Protection System Failures 

 

There are two significant failure modes of the protection system [80]. One is the 

fail-to-operate mode, which refers to undetected or hidden faults of the protection system 

and is associated with the concept of unreadiness probability. The other is the undesired-

tripping mode, in which the unfaulted component is tripped by its faulted protection 

system. 

For the fail-to-operate protection failures of components A and B, they can be 

modeled by the three-stage multistate models as shown in Figure 5-3(a) and Figure 5-

3(b), respectively. In fact, these models are directly obtained from that in Figure 5-1, 

with the only difference being of component symbols A and B added. 

As to undesired-tripping protection failures, they can increase the component 

down-state probability. However, we notice that this failure mode of a protection system 

has influence only on its own component without interaction with other components. In 

other words, protection A will only trip component A and protection B will only trip 

component B. Thus, we can use a two-state process to model the effect of this failure 

mode, as state A  in Figure 5-4(a) and state B  in Figure 5-4(b). 
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(a) Component A 

 

 

(b) Component B 

Figure 5-3.  Modeling a component with its fail-to-operate protection failures. 
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(a) Component A 

 

 

(b) Component B 

Figure 5-4.  Modeling a component with its protection system failures. 
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successfully incorporate the two significant failure modes of the protection system into 

the current-carrying component modeling. 

 

5.4. Interaction Decoupling and the Complete Model 

 

We need to point out that the Markov models in Figure 5-4 are still incomplete 

for the components because they have not depicted the overall reliability status of the 

components. 

In fact, we observe that a component is possible to trip without any fault either 

on itself or with its protection system. It is induced by component interactions but is not 

reflected in the models of Figure 5-4. For example, an uncleared fault on component B 

could trip component A, which would be explained in the following. Thus, it is quite 

necessary to decouple the complex interactions between current-carrying components 

caused by their protection system failures. 

 

5.4.1. Decoupling Component Interaction by Protection Failures 

 for Modeling Component A 

 

As in the example system of Figure 5-2, if there is a fault on component B and 

protection B fails to trip its breaker B1, protection B is in the situation of unreadiness to 

trip. Since protection A is the backup of protection B, it will trip component A to isolate 

faulted component B. In such case, there is no fault on component A, nor is with 
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protection A, but component A is down. This is the interaction between components A 

and B caused by failures of protection B. 

Since both components are down simultaneously due to backup protection, we 

can model the effect of this interaction as a special common mode failure of components 

A and B. However, there are two cases we need to consider. 

In one case, breaker B2 trips but breaker B1 fails to trip. There would be three 

steps and the state transitions of each component in these steps are illustrated in Table 5-

1. The state 11

~
BA  in Table 5-1 is a new down state of component A caused by failures of 

protection B. The subscript of the state symbol is used to indicate the source of impact. 

 

Table 5-1  State transitions of components in Case One 

Step 

Transition of component B Transition of component A 

Direction Rate Direction Rate 

1 110 BB   BBp 1  
110

~
BAA   BBp 1  

2 2111 BB   1B  
011

~
AAB   1B  

3 021 BB   1B  Independent of component B 

 

 

In step 1, component B transfers from state 0B  to state 11B  while component A 

transfers from state 0A  to the new down state 11

~
BA . Components A and B have the same 

failure rate BBp 1  due to common mode failure of the two components. In step 2, 

component B transfers from before-switching state 11B  to after-switching state 21B  
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while component A returns from state 11

~
BA  (down state) to state 0A  (up state). 

Components A and B also have the same transition rate 1B  because of the switching 

operation. In step 3, component B transfers from state 21B  to state 0B  with the repair 

rate 1B , but this time the transition of component A is independent of component B. 

Thus, if we are only concerned with transitions between up and down states of 

component A, this case of common mode failure makes component A experience a two-

state process with its transition rates derived from component B. 

In the other case, both of the breakers B1 and B2 fail to trip. Its analysis is quite 

similar to the first case if we only consider its impact on component A. There would also 

be three steps and the state transitions of each component in these steps are shown in 

Table 5-2. The state 13

~
BA  in Table 5-2 is another new down state of component A caused 

by failures of protection B. 

 

Table 5-2  State transitions of components in Case Two 

Step 

Transition of component B Transition of component A 

Direction Rate Direction Rate 

1 130 BB   BBp 3  
130

~
BAA   BBp 3  

2 2313 BB   3B  
013

~
AAB   3B  

3 023 BB   3B  Independent of component B 
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Therefore, the interactions between components by their protection system 

failures can be decoupled by modeling them as common mode failures. Given protection 

A is the backup of protection B as in the example power system of Figure 5-2, their 

interaction is caused by the unreadiness probability of protection B associated with 

breaker B1. Its impact on component A can be modeled by two two-state processes 

associated with states 11

~
BA  and 13

~
BA , respectively. Figure 5-5 gives an intuitive picture 

of decoupling interactions caused by failures of protection B. 

 

 

Figure 5-5.  Decoupling interactions caused by failures of protection B. 

 

It is necessary to point out that the unreadiness probability of protection B 

associated only with breaker B2 should not have such influence on component A. Since 
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interaction between the two components. In fact, component B will also be detached 

from source system S2 by its protection (backup protection) in this situation. 

 

5.4.2. Decoupling Component Interaction by Protection Failures 

 for Modeling Component B 

 

Since protection B is also the backup of protection A, there exists another 

component interaction which is now caused by the unreadiness probability of protection 

A associated with breaker A2. However, the decoupling methodology of this interaction 

is all the same as that of the previous one. 

The interaction between components A and B caused by failures of protection A 

can also be decoupled by modeling them as common mode failures. There are also two 

cases that are necessary to consider as shown in Figure 5-6. Its impact on component B 

can be modeled by two independent two-state processes represented by states 12

~
AB  and 

13

~
AB , respectively. The transition rates of these new processes of component B as shown 

in Figure 5-6 are actually derived from the existing model of component A as in Figure 

5-4(a). 

 



 

105 

 

 

 

Figure 5-6.  Decoupling interactions caused by failures of protection A. 

 

For the similar reason, the unreadiness probability of protection A associated 

only with breaker A1 should not have interactive impact on component B. As we have 

assumed before, component A will be detached from source system S1 by its protection 

(backup protection) in this situation, too. 

 

5.4.3. The Complete Markov Model for Components 

 

After we have decoupled the interactions between current-carrying components 

caused by their protection system failures, we add new states to the initial component 

models in Figure 5-4 for completeness. Now the complete Markov model for the 

components can be obtained as shown in Figure 5-7, which is capable of describing their 

overall reliability situation. 
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(a) Component A 

 

 

(b) Component B 

Figure 5-7.  Complete Markov model for current-carrying components. 
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In Figure 5-7, we should bear in mind that although the new states 11

~
BA  and 13

~
BA  

of component A are individually presented in this component modeling, they are always 

dependent on some down states of component B as already illustrated in Figure 5-5. In 

addition, the transition rates of these new states are derived from those of component B. 

Similarly, the individually presented new states 12

~
AB  and 13

~
AB  of component B are 

always dependent on some down states of component A as illustrated in Figure 5-6. The 

transition rates of these new states are also derived from those of component A. 

 

5.5. Simplification of the Complete Model 

 

Although the reliability models in Figure 5-7 for current-carrying components 

are complete, they appear to be so complex that it may discourage their application in 

the analysis of power systems. Thus, it is necessary to simplify these Markov models. 

For reasons of avoiding confusion, we first use the model of component A to illustrate 

the simplification process in detail. 

 

5.5.1. Simplification of Modeling Component Failure Due to Its Own Fault 

 

We have depicted failures of component A due to its own fault by a three-stage 

multistate model, which is already shown in Figure 5-3(a) and is also a significant part in 

Figure 5-7(a). This model not only incorporates fail-to-operate faults of protection A, but 
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also identifies each case of unreadiness probability of protection A. It is important and 

indispensable to model component A in this way in order to decouple the component 

interactions caused by the unreadiness probability of protection A and further to identify 

the impact of the interactions on other related components. 

However, it is unnecessary to use such a sophisticated model directly because 

power system reliability is determined significantly by up-and-down status of its 

components. We can next see that the unreadiness probability of protection A cannot 

influence component A regarding its up and down states. 

In case there is a fault on component A, it will surely transfer from the up state to 

down state (either by primary protection or backup protection), despite the status of 

protection A. In case component A is in the up state, the undetected faults of protection 

A cannot turn component A into down state unless a fault happens to occur on 

component A. These facts just imply that the unreadiness probability of protection A 

cannot alter the failure rate of component A. 

Although there are various states before and after switching in the previous three-

stage multistate model of component A, all these states (in stages 1 and 2) belong to and 

exhaustively compose the down state of component A due to its own fault. If we assume 

that the repair of protection systems is faster than that of the corresponding protected 

components, which is normal in the power industry, the repair rate of component A from 

the down state to up state will also not be changed by the unreadiness probability of 

protection A. 
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Therefore, the unreadiness probability of protection A can only influence other 

components but not component A regarding up-and-down status. We no longer need to 

identify the down-state details of component A according to the unreadiness probability 

of protection A. We can simply use a two-state process represented by state Â  in Figure 

5-8 to model the failures of component A due to its own fault. This model is actually all 

the same as if we had the perfect protection of component A. The transition rates are just 

the parameters of component A, i.e., its failure rate A  and its repair rate A . 

 

 

Figure 5-8.  Modeling failures of component A due to its own fault. 
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caused by protection system failures, but also incorporates sufficient information for 

applicable quantitative analysis. 

 

 

Figure 5-9.  Simplified model for component A. 
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For the process between states 0A  and A , we have 
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For the process between states 0A  and 11

~
BA , we have 
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For the process between states 0A  and 13

~
BA , we have 
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It is obvious that 
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Substitute (5.1), (5.2), (5.3), and (5.4) into (5.5), we can get 
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Therefore, 
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and 
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The probabilities of all the down states are 
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Let us look at the down states of the simplified complete model for component A 

in Figure 5-9 again. There is something interesting if we compare them from various 

points of view. 

From the viewpoint of faults occurring on primary or secondary equipments, all 

the down states of component A can be classified into two groups. The first group is 

component A failure caused by faults on the component itself, which consists of the 

down state Â  only. All other down states A  , 11

~
BA , and 13

~
BA  belong to the second 

group, which represents component A failure caused by protection system failures. If we 

remove the second group, the model of component A can actually fall back to the one 

with perfect protection systems. 
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From the viewpoint of tripping effect, all the down states of component A can 

also be generalized into two types. The down state Â  is the only one of the first type, 

which represents “desired” tripping of component A because there is a fault on 

component A. The second type includes all other down states A , 11

~
BA , and 13

~
BA , which 

can be regarded as “undesired” tripping of component A because they have the same 

tripping effect that component A is down without its own fault. It means that states 11

~
BA  

and 13

~
BA  are like virtual undesired-tripping states, just the same tripping effect for 

component A as the real undesired-tripping state A . However, the down states 11

~
BA and 

13

~
BA  are actually caused by the unreadiness probability of protection B. This important 

tripping effect just reminds us that the two apparently different failure modes of 

protection systems, i.e., the undesired-tripping mode and the fail-to-operate mode, have 

intrinsically intimate relationship with each other. The impact of the fail-to-operate 

mode, i.e., unreadiness probability, of protection B is showing up as an undesired-

tripping mode of protection A due to backup function. It is this effect transformation of 

protection failure modes that causes the interactions between current-carrying 

components so complex and confusing. Now we know that after proper decoupling, the 

resulting down states A , 11

~
BA , and 13

~
BA  can all be regarded as undesired-tripping states 

of component A. The only difference among them is their transition rates because they 

are provided by different components. 

It is worth noting that although the simplified component model shown in Figure 

5-9 is better for use in computations, its equivalent parameters must be derived from data 
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which is only available for the corresponding complete Markov model shown in Figure 

5-7(a). These parameters are derived using equations (5.9) and (5.10). 

 

5.5.3. The Simplified Model for Component B 

 

In the same way, we can obtain from Figure 5-7(b) the simplified model for 

component B as shown in Figure 5-10, in which 0B , B̂ , B , 12

~
AB  and 13

~
AB  represent the 

up state, the down state due to faults on component B, the down state due to undesired-

tripping failure of protection B, and the down states due to the unreadiness probability of 

protection A, respectively. 

 

 

Figure 5-10.  Simplified model for component B. 
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If we use 
0BP , BP̂ , BP , 

12

~
ABP , and 

13

~
ABP  to represent the probabilities of states 0B , 

B̂ , B , 12

~
AB  and 13

~
AB , respectively, they can be determined to be given by 

 B

B
K

P
1

0
 , (5.15) 

 BB

B
B

K
P




ˆ , (5.16) 

 
BB

B
B

K
P








 , (5.17) 
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~
~

A

A

A
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B
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P



 , (5.18) 
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~
~

A

A

A
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B

B
K

P



 , (5.19) 

wherein 
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13

12

12

~

~

~

~

1

A

A

A

A

B

B

B

B

B

B

B

B
BK





















 , (5.20) 

and 

 22 1212

~     ,
~

ABAAB AA
p   , (5.21) 

 33 1313

~     ,
~

ABAAB AA
p   . (5.22) 
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5.6. Numerical Case Study 

 

In brief, the simplified models that we have built in Figure 5-9 and Figure 5-10 

are actually not “simple” ones. They are derived from sophisticated modeling with 

numerous parameters and then reduced into the concise form. By the methodology of 

decoupling and the concept of equivalent transition rate, the simplified model stands out 

in the form of the component and successfully includes all the significant information of 

the complex interactions among corresponding components due to their protection 

system failures. Thus, it is an important Markov model which completely depicts the 

reliability situation including protection system failures at the current-carrying 

component level. For better understanding, we next give a simple case study as follows 

to illustrate how this simplified model effectively represents the component reliability 

situation including protection system failures. 

The example power system we are using consists of two transmission lines and 

the configuration is the same as shown in Figure 5-2. Suppose the protection system of 

transmission line A (protection A) is designed to provide backup to the protection 

system of transmission line B (protection B). Here we are interested in the reliability 

situation of transmission line A. The necessary reliability parameters of the transmission 

lines and their protection systems are chosen [70], [72] and listed in Table 5-3. 
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Table 5-3  Data for transmission lines and their protection systems 

Transmission lines A B 

j (1/year) 2 2 

j (1/year) 175 -- 

j (1/year) 0.05 -- 

j (1/year) 876 -- 

1jp  -- 0.02 

2jp  -- 0.02 

3jp  -- 0.01 

1j (1/year) -- 876 

2j (1/year) -- 876 

3j (1/year) -- 876 

    Note: j represents A or B 

 

 

The state probabilities of transmission line A considering protection system 

failures are calculated and summarized in Table 5-4. The calculation results with perfect 

protection systems are also provided in the same table for comparison. We can easily see 

from data in Table 5-4 that the protection failures have degraded the reliability situation 

of transmission line A. 
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Table 5-4  State probabilities of transmission line A 

Probabilities Simplified complete model Perfect protection model 

0AP  (up state) 0.988578 0.988701 

AP̂  (down state) 0.011298 0.011299 

AP  (down state) 0.000056 -- 

11

~
BAP  (down state) 0.000045 -- 

13

~
BAP  (down state) 0.000023 -- 

Total down states 0.011422 0.011299 

 

 

5.7. Summary 

 

If protection systems were perfectly reliable, the modeling of current-carrying 

components would be quite simple. However, the consideration of protection system 

failures introduces a significant influence on the modeling. There are two types of 

protection system failures, the undesired-tripping mode and the fail-to-operate mode, 

which can cause difficulties in power system reliability evaluation. 

The undesired-tripping mode protection failure of one component has no 

interaction with other components. We can simply use a two-state process to model the 

effect of this failure mode. The fail-to-operate mode protection failure is represented by 

unreadiness probability. The protection unreadiness probability of one component does 

not affect its own up-and-down status. Nevertheless, it will cause external undesired-



 

119 

 

 

tripping mode failures to the adjacent component whose protection system is providing 

the backup function. 

By the methodology of interaction decoupling and with the concept of equivalent 

transition rate, we have obtained the complete Markov model for components and then 

derived its simplified form. The simplified model not only contains important 

information of the component itself, but also incorporates significant information of 

related protection system failures for quantitative analysis. It can appropriately describe 

the overall reliability situation of individual components under the circumstances of 

complex interactions between components due to protection system failures [120], [121]. 
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6. NEW MODELS AND CONCEPTS FOR POWER SYSTEM RELIABILITY 

EVALUATION INCLUDING PROTECTION SYSTEM FAILURES * 

 

6.1. Introduction 

 

In Section 5, we have derived the complete Markov model and its simplified 

form for reliability analysis including protection system failures at the current-carrying 

component level. Based on these applicable models, we further aim at developing new 

concepts and models for including protection system failures for application in overall 

power system reliability analysis. 

 

 

 

 

 

 

____________ 

* Part of this section is reprinted from copyrighted material with permission from IEEE. 

©2009 IEEE. Reprinted, with permission, from Kai Jiang and Chanan Singh, “The 

concept of power unit zone in power system reliability evaluation including protection 

system failures”, in Proc. 2009 IEEE Power & Energy Society Power Systems 

Conference and Exposition (PSCE 2009), pp. 1-10, Mar. 2009. 

©2011 IEEE. Reprinted, with permission, from Kai Jiang and Chanan Singh, “New 

models and concepts for power system reliability evaluation including protection system 

failures”, IEEE Trans. Power Systems, vol. 26, no. 4, pp. 1845-1855, Nov. 2011. 

For more information go to 

http://thesis.tamu.edu/forms/IEEE%20permission%20note.pdf/view. 
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The objective of this section is to develop concepts and techniques for modeling 

and analyzing the complex and interrelated effects of protection failures resulting in 

isolation of multiple components rather than just the faulted one. It is intuitively clear 

that as multiple outages happen because of protection system failures, the probability of 

cascading failures as a result of post-fault events will be higher than when only one 

component is assumed on outage. The scope of this research is limited to assess the 

probability of multiple component outages resulting from the protection failures. These 

models can also be further combined, if desired, with the models considering cascading 

events as can be the models that do not consider protection failures. 

The remainder of this section is organized as follows. Section 6.2 introduces new 

concepts of down states and proposes the composite unit model as a key analysis tool. 

Section 6.3 illustrates how to use the composite unit model for reliability evaluation of 

simple power systems in detail. Section 6.4 generalizes the usage of the composite unit 

model for assessing the impact of protection failures on modeling system states and 

develops the methodology for reliability evaluation of large power systems including 

protection system failures. Section 6.5 is the summary of this section. 

 

6.2. Self-down State, Induced-down State, and Composite Unit Model 

 

We usually define the range of a current-carrying component bordered by its 

surrounding circuit breakers. This is also the duty zone that its protection system should 
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protect. From the standpoint of this component range, we recall Figure 5-2 of the 

example power system, Figure 5-9 of the simplified Markov model for component A, 

and Figure 5-10 of the model for component B to deliver new concepts and to derive 

new models for further application. 

 

6.2.1. Self-down State and Induced-down State 

 

In Figure 5-9, all down states of component A can be divided into two parts 

according to the range of component A. The first part is the down states resulting from 

internal causes, which is composed of two states Â  and A . State Â  can be regarded as 

a self-fault-tripping state, while state A  can be seen as a self-undesired-tripping state. 

The second part is the down states from external causes, which comprises the other two 

states 11

~
BA  and 13

~
BA . These two states can be deemed as externally-induced-tripping 

states. If we consider the component and its protection within the range together as a 

virtually composite unit, we can alternatively name the first part as self-down state and 

the second part as induced-down state. 

Similarly, all down states of component B in Figure 5-10 can also be summarized 

into these two parts. The self-down state includes two states B̂  and B , and the induced-

down state consists of the other two states 12

~
AB  and 13

~
AB . 

For the self-down state, the number and form of its substates are always fixed. In 

addition, the transition rates between the self-down state and the up state of a component 
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are independent of other components. On the contrary, the induced-down state does not 

have fixed substates. It can be varying due to the coordination design of the backup 

protection systems. The transition rates between the induced-down state and the up state 

of a component definitely depend on other components. 

 

6.2.2. Composite Unit Model 

 

The number of states in component modeling plays an important role in 

reliability evaluation of power systems. The fewer they are, the easier it is for 

application. Therefore, we will merge substates of the self-down state using the concept 

of equivalent transition rate [91] to further reduce the number of states in the previous 

simplified models. 

 

6.2.2.1.  Composite unit model for component A 

 

If we use A  to represent the self-down state of component A, the simplified 

model in Figure 5-9 can be further reduced to the composite unit model as shown in 

Figure 6-1. We have also omitted the subscript “0” of the up state for simplicity, i.e. 

substituting 0A  with A. 
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Figure 6-1.  Composite unit model for component A. 

 

We can obtain the equivalent failure and repair rates between the up state and 

self-down state of the composite unit model for component A, i.e., A  and A , as 

follows. Here we use AP , AP̂ , AP , and AP  to represent the probabilities of states A , Â , 

A , and A , respectively. 

In Figure 5-9, for the process between states )0(A  and Â , we have 

 
A

A

A
AAAAA PPPP




  ˆˆ . (6.1) 

For the process between states )0(A  and A , we have 

 
A

A

A
AAAAA PPPP









 . (6.2) 

Since Â  and A  are mutually exclusive states, we can obtain the probability of 

state A  from (6.1) and (6.2) as below. 

 A

A
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Compare Figure 5-9 and Figure 6-1 using the concept of equivalent transition 

rate, we can easily know that 

 

AAAAAA PPP   . (6.4) 

Hence, the equivalent failure rate is 

 AAA   . (6.5) 

In Figure 6-1, for the process between states A  and A  we have 

 A

A

A
AAAAA PPPP




  . (6.6) 

If we substitute (6.3) and (6.5) into (6.6), then we get the equivalent repair rate 

 
AAAA

AAAA
A











)(
. (6.7) 

 

6.2.2.2.  Composite unit model for component B 

 

Similarly, we can obtain from the simplified model in Figure 5-10 further to the 

composite unit model for component B as shown in Figure 6-2, in which we use B  to 

represent the self-down state of component B and omit the subscript “0” of the up state 

for simplicity, i.e. substituting 0B  with B. 
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Figure 6-2.  Composite unit model for component B. 

 

In the same way, we can obtain the equivalent failure and repair rates between 

the up state and self-down state of the composite unit model for component B as 

following. 

 BBB    (6.8) 

 BBBB

BBBB
B











)(
 (6.9) 

 

6.3. Illustration of Analyzing Simple Power Systems 

 

With the concept of self-down and induced-down states and the composite unit 

model for current-carrying components, it becomes feasible to analyze the impact of 

protection failures on modeling system states. In this section, we will use the same 

example power system in Figure 5-2 to illustrate how to analyzing a simple power 

system by using the composite unit model. 

 

 

B B
B

B

12

~
AB 13

~
AB

12

~
AB

12

~
AB

13

~
AB 13

~
AB



 

127 

 

 

6.3.1. Integration of the Induced-down State 

 

6.3.1.1.  Treatment of component A 

Although substates of the induced-down state of a current-carrying component 

are generally not fixed, they can be determined so long as the coordination design of the 

backup protection systems is clear. For the example power system in Figure 5-2, the 

effect of induced-down state of component A has been modeled by two independent 

two-state processes associated with states 11

~
BA  and 13

~
BA  as in Figure 6-1. 

We already know that the two states 11

~
BA  and 13

~
BA  in Figure 6-1 are both down 

states of component A caused by the unreadiness probability of protection B. Thus, if we 

use a new general state BA
~

 to represent the down state of component A caused by the 

impact of component B, the two processes regarding states 11

~
BA  and 13

~
BA  can be 

combined into a new two-state process associated with state BA
~

 using the concept of 

equivalent transition rate as shown in Figure 6-3. 

 

 

Figure 6-3.  Treatment of the induced-down state of the composite unit model for component A. 
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Suppose the equivalent failure and repair rates of this new process are 

represented by 
BA

~
 and 

BA
~ , respectively. These parameters can be easily derived by the 

frequency balance approach as shown in the following. Here we use AP , 
11

~
BAP , 

13

~
BAP , and 

BAP
~

 to represent the probabilities associated with states  A , 11

~
BA , 13

~
BA , and BA

~
, 

respectively. 

For the process between states A  and 11

~
BA , we have 

 A

A

A

AAAAA PPPP

B

B

BBBB

11

11

11111111 ~

~
~~~~




  . (6.10) 

For the process between states A  and 13

~
BA , we have 

 A

A

A

AAAAA PPPP

B

B

BBBB

13

13

13131313 ~

~
~~~~




  . (6.11) 

Since 11

~
BA  and 13

~
BA  are mutually exclusive states, we can obtain the probability 

of state BA
~

 from (6.10) and (6.11) as below. 
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A

A

A
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
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~
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






 (6.12) 

Using the concept of equivalent transition rate, we can know that 

 
1311

~~~
BBB AAAAAA PPP   . (6.13) 

Hence, the equivalent failure rate is 

 1311

~~~
BBB AAA   . (6.14) 
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For the process between states A  and BA
~

 we have 

 A

A

A

AAAAA PPPP

B

B

BBBB 


 ~

~
~~~~

 . (6.15) 

If we substitute (6.12) and (6.14) into (6.15), we get the equivalent repair rate 

 

11131311

13111311

~~~~
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BBBB
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B

AAAA

AAAA

A








 . (6.16) 

Note equations (5.9) and (5.10) for the details of 
11

~
BA , 

11

~
BA , 

13

~
BA , and 

13

~
BA . 

Substitute them into (6.14) and (6.16), then the equivalent transition rates 
BA

~
 and 

BA
~  

are finally represented by 

 BBBA pp
B

 )(
~

31  , (6.17) 

 1331

3131 )(~

BBBB

BBBB
A

pp

pp
B 







 . (6.18) 

After above integration treatment of the induced-down state, the composite unit 

model for component A in Figure 6-1 is now reduced to a concise three-state model as 

shown in Figure 6-4. The parameters of this model refer to equations (6.5), (6.7), (6.17), 

and (6.18). 
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Figure 6-4.  Three-state model for component A. 

 

6.3.1.2.  Treatment of component B 

 

In the same way, we can also reduce the composite unit model for component B 

in Figure 6-2 to the three-state model as shown in Figure 6-5. 

 

 

Figure 6-5.  Three-state model for component B. 

 

In Figure 6-5, the new state AB
~

 represents the down state of component B caused 

by the impact of component A, which equivalently replaces the two induced down states 

12
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model refer to equations (6.8) and (6.9), respectively. The equivalent failure and repair 

rates 
AB

~
 and 

AB
~  can also be easily derived by the frequency balance approach and the 

resulting expression is given below. 

 AAAB pp
A

 )(
~

32   (6.19) 

 2332

3232 )(~

AAAA

AAAA
B

pp

pp
A 
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




  (6.20) 

 

6.3.2. Reliability Evaluation of the Example Power System 

 

In a power system, the system state is determined by the status of its current-

carrying components. Since each of components A and B has three states as shown in 

Figure 6-4 and Figure 6-5, the example power system in Figure 5-2 should theoretically 

have nine system states, which can be represented by AB , BA , ABA
~

, BA , BA , ABA
~

, 

BAB

~
, BAB

~
, and AB BA

~~
, respectively. However, there are actually three impossible 

system states which are ABA
~

, BAB

~
 and AB BA

~~
. 

For the system state BAB

~
, we already know that BA

~
 is the induced-down state of 

component A. As we can see from the previous interaction decoupling in Figure 5-5, 

component B is always down simultaneously as long as component A is transferred into 

its induced-down state. Thus, component A cannot be in the induced-down state if 

component B is in the up state, which means that the system state BAB

~
 cannot exist. For 

the same reason (refer to Figure 5-6), the system state ABA
~

 cannot exist, too. 
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For the system state AB BA
~~

, we have previously assumed that all the backup 

functions are perfectly reliable. In addition, we can see from Figure 5-5 that the induced-

down state of component A not only is always accompanied by the self-down state of 

component B, but also has already returned to the up state of component A before 

component B leaves its self-down state. Similarly, we can see from Figure 5-6 that the 

induced-down state of component B not only is always accompanied by the self-down 

state of component A, but also has already returned to the up state of component B 

before component A leaves its self-down state. Hence, the system state AB BA
~~

 indeed 

cannot exist. 

The above information simply indicates that the probabilities of system states 

ABA
~

, BAB

~
 and AB BA

~~
 are all zero and we do not need to consider them anymore. 

Therefore, the example power system has only six possible system states and we can 

directly draw the system state transition diagram as shown in Figure 6-6. Note in the 

single transition from system state AB  to system state BA , the failure rate becomes 

)
~

(
BAB    instead of just B . This is because as component B is considered in the 

system state AB , the failure rate 
BA

~
 is actually a portion of B  and is already 

distributed to another single transition from system state AB  to system state BAB

~
. The 

relationship detail between 
BA

~
 and B  refers to equations (6.8) and (6.17). For the same 

reason, the failure rate of the single transition from system state AB  to system state BA  
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becomes )
~

(
ABA    instead of just A . The relationship detail between 

AB
~

 and A  

refers to equations (6.5) and (6.19). 

 

 

Figure 6-6.  System state transition diagram of the example power system. 

 

By using the frequency balance approach for Figure 6-6, the probability of each 

system state and the reliability indices such as the Loss Of Load Expectation (LOLE) 

and the Expected Unserved Energy (EUE) can all be easily figured out for the example 

power system. 

Here we use 1P , 2P , 3P , 4P , 5P , and 6P  to represent the probabilities associated 

with system states AB , BA , BA , BA , BAB

~
, and ABA

~
, respectively. In order to find 

these probabilities, we write an equation of frequency balance for each of the six system 

states. 

For the system state AB , we have 
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For the system state BA , we have 

 )(~)
~

( 2541 BAAAAB PPPP
BB

  . (6.22) 

For the system state BA , we have 

 )(~)
~

( 3641 BABBBA PPPP
AA

  . (6.23) 

For the system state BA , we have 

 )(432 BABA PPP   . (6.24) 

For the system state BAB

~
, we have 

 
BB AA PP  ~~

51  . (6.25) 

For the system state ABA
~

, we have 

 
AA BB PP  ~~

61  . (6.26) 

Since the probabilities of system states ABA
~

, BAB

~
 and AB BA

~~
 are all zero, we get 

 1
6

1


i

iP . (6.27) 

Using any five of the six equations (6.21)-(6.26) together with equation (6.27), 

we can solve and obtain the state probabilities. 

For the example power system in Figure 5-2, the Loss Of Load Expectation 

(LOLE) and the Expected Unserved Energy (EUE) are calculated as below. 

 (h/year)    8760)( 654  PPPLOLE  (6.28) 

 (MWh/year)    LOLELEUE   (6.29) 
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6.3.3. Numerical Case Study 

 

Now we use some numerical data to illustrate the impact of protection system 

failures on reliability evaluation of the example power system. The necessary parameters 

of current-carrying components and their protection systems are chosen [70], [72] and 

listed in Table 6-1. 

 

Table 6-1  Parameters of components and their protection systems 

Components A B 

j  (1/year) 2 2 

j  (1/year) 175 175 

j  (1/year) 0.05 0.05 

j  (1/year) 876 876 

1jp  0.02 0.02 

2jp  0.02 0.02 

3jp  0.01 0.01 

1j  (1/year) 876 876 

2j  (1/year) 876 876 

3j  (1/year) 876 876 

L (MW) 10 

    Note: j represents A or B 
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The reliability indices of the example power system are calculated and 

summarized in Table 6-2. The corresponding results with the perfect protection model 

are also provided for comparison. It is obvious that protection system failures do have 

influence on probabilities of all the system states. For the reliability indices LOLE and 

EUE, we find that they both have been doubled over those of the perfect protection 

model. Thus, the reliability situation of the example power system has been degraded 

tremendously due to the impact of protection system failures. 

 

Table 6-2  Reliability indices of the example power system 

Reliability indices Composite unit model Perfect protection model 

1P  (state AB ) 0.977288 0.977529 

2P  (state BA ) 0.011225 0.011172 

3P  (state BA ) 0.011225 0.011172 

4P  (state BA ) 0.000129 0.000128 

5P  (state BAB

~
) 0.000067 -- 

6P  (state ABA
~

) 0.000067 -- 

LOLE (h/year) 2.302 1.118 

EUE (MWh/year) 23.021 11.185 

 

Since components A and B in a sense are symmetrical in the example power 

system of Figure 5-2, we change parameters of protection B only to see the trend how 

protection failure rates influence the system reliability. Table 6-3 gives the computation 

results of reliability indices for different protection failure rates of component B with all 
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other parameters the same as in Table 6-1. Here we need to point out that the reliability 

indices assuming perfect protection model will remain the same as in Table 6-2 because 

no change happens on the component transition rates. From Table 6-3, we can easily see 

that the system reliability indices become much greater as protection system failures are 

considered. 

Table 6-3  Reliability indices for different protection failure rates 

Unreadiness 

probability 1Bp  

Failure rate B   

(1/year) 

Loss Of Load Expectation 

(LOLP) 

Expected Unserved Energy 

(EUE) (MWh/year) 

0.02 0.05 2.302 23.021 

0.02 0.10 2.308 23.076 

0.02 0.25 2.324 23.240 

0.02 0.50 2.351 23.514 

0.02 1.00 2.406 24.062 

0.05 0.05 2.888 28.883 

0.05 0.10 2.894 28.937 

0.05 0.25 2.910 29.101 

0.05 0.50 2.937 29.373 

0.05 1.00 2.992 29.917 

0.10 0.05 3.865 38.651 

0.10 0.10 3.870 38.705 

0.10 0.25 3.887 38.867 

0.10 0.50 3.914 39.136 

0.10 1.00 3.967 39.675 

Perfect protection model 1.118 11.185 
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Figure 6-7 and Figure 6-8 are diagrams of the incremental percentage of EUE 

versus B   and 1Bp , respectively. From Figure 6-7 we find that as the undesired-tripping 

mode protection failure rate increases, the expected unserved energy of the example 

power system will increase accordingly. From Figure 6-8 we see that the expected 

unserved energy will also increase as the unreadiness probability of the fail-to-operate 

mode protection failure increases. If we look at these two diagrams together, we can 

intuitively see that EUE is by far more sensitive to parameter 1Bp  than to B  . It simply 

indicates that there could be significant errors in reliability evaluation of power systems 

if we ignore protection system failures especially the fail-to-operate mode protection 

failures. 

The diagrams of incremental percentage of LOLE versus B   and 1Bp  are quite 

similar to Figure 6-7 and Figure 6-8. We can also find the same conclusion for LOLE as 

above for EUE. It sounds reasonable as we can see from (6.29) that EUE and LOLE are 

linearly correlated for our numerical case study. 
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Figure 6-7.  Incremental percentage of the Expected Unserved Energy (EUE) vs. undesired-tripping mode 

protection failure rate ( B  ). 

 

 

Figure 6-8.  Incremental percentage of the Expected Unserved Energy (EUE) vs. unreadiness probability 

of fail-to-operate mode protection failure ( 1Bp ). 
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6.4. Methodology for Analyzing Large Power Systems 

 

For large power systems, more challenges can be expected than those of simple 

ones like the example power system we analyzed in Section 6.3. Since there are a lot of 

components in a large power system, the system states are far more in numbers and the 

protection coordination is much more complex. In a practical power system, every 

current-carrying component is primarily protected by its own protective relays. In 

addition, almost each component is further protected by backup protection from adjacent 

component protection zones. Thus, it is important to model the system states and their 

relationships in a general form. 

 

6.4.1. Impact of Protection Failures on Modeling System States 

 

We can still use the concept of self-down and induced-down states and the 

composite unit model for current-carrying components to analyze the impact of 

protection failures on modeling system states. As we have mentioned before, a 

component may associate with more than two breakers. But we still prefer to assume 

only two equivalent breakers for a component so as to deliver the concept and to 

illustrate the model clearer. 

Suppose arbitrarily a component i is connected through its breakers i1 and i2 to 

two sets of adjacent components, say H and J, respectively. As shown in Figure 6-9, h 

and j are arbitrary components of these two sets, respectively. 
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Figure 6-9.  Component i and its adjacent components. 

 

If there is no component induced-down state, the system state would be a simple 

combination of component self-down states because the self-down state of a component 

is independent of each other. The single-step transition rates between any two system 

states would be the equivalent failure and repair rates of the composite unit model for the 

component, say i, which changes its status in this transition. Similar to expressions (6.5) 

and (6.7), or (6.8) and (6.9), we can obtain without difficulty the formulae to calculate 

these transition rates of component i as follows. 

 
iiii

iiii
iiii











)(
          ,  (6.30) 

However, the existence of component induced-down states makes the system 

state more complicated. Besides the system states consisting of component self-down 

states only, there are some new system states comprised of both component self-down 

and induced-down states. For each new system state, the component induced-down 

states are dependent on and can only be together with a specific component self-down 

ih



j







1i 2i

H J
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state which contains the inducing source, i.e. the unreadiness probability of protection 

failures. It will be clearer to illustrate this by Figure 6-10. 

 

 

Figure 6-10.  Impact of protection failures on modeling system states. 

 

In Figure 6-10, component i is considered for a single-step transition. The system 

states )  (  i  and )  (  i  have all components in the same status except 

component i being up and down, respectively. These two system states merely consist of 

self-down states. 

Suppose there is at least one adjacent component Hh  and Jj  which is in 

the up state and provides backup protection to component i. According to different cases 

of protection unreadiness probability of component i, there will be three possible new 

system states ) 
~

(  iH , )
~

 (  Ji , and )
~~

(  JiH  which are 

comprised of component self-down and induced-down states. For example, in the system 

state ) 
~

(  iH , all components of set H previously being in the up state are now in 

 JiH
~~

)( 0 iiip  
     i

 Ji
~

  

     i
i

   
~

iH

iip 1

iip 2

iip 3

1i

2i
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their induced-down state together with component i being in its self-down state, and the 

status of all other components are the same as those in system states )  (  i  and 

)  (  i . From previous component modeling analysis we know that the transition 

rates associated with this system state ) 
~

(  iH  are iip 1  and 1i  as shown in 

Figure 6-10. Similar explanations also apply to modeling system states )
~

 (  Ji  

and )
~~

(  JiH . 

Since new system states have been added, the transition rates between system 

states  )  (  i  and )  (  i  may need to be modified. Specifically, the failure 

rate can no longer be i  because the failure rates iip 1 , iip 2 , and iip 3  associated with 

unreadiness probabilities allocated to the three new system states in Figure 6-10 should 

be subtracted from i . From expression (6-30) and previous simplification process 

illustrated in Figure 5-8, it is not difficult to know that the resulting failure rate after this 

subtraction is )( 0 iiip   . As for the repair rate i , there is no need to change at all. 

 

 

6.4.2. Markov Modeling of Power Systems with Protection Failures 

 

6.4.2.1.  Reliability modeling of power systems with perfect protections 

 

We normally assume that the failure mode of a current-carrying component due 

to faults on itself is independent. If the protection systems are perfect, the reliability 
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modeling of power systems is a one-layer Markov processes as shown in Figure 6-11. In 

this figure, each block represents a system state and all transitions between any two 

system states are single-step transitions. 

 

6.4.2.2.  Reliability modeling of power systems with protection failures 

 

However, the impact of protection failures on modeling system states will also 

influence the reliability modeling of power systems shown in Figure 6-11. From the 

previous analysis in Section 6.4.1, we see that for every single-step transition of 

component i, there will be a group of three new system states added reflecting 

interactions and dependencies of current-carrying components. This group of states is 

attached to and forms a closed loop along with the independent single-step transition as 

shown in Figure 6-10. Considering arbitrariness in the selection of component i, the 

reliability modeling of power systems including protection system failures will be a two-

layer Markov processes as illustrated in Figure 6-12. 
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Figure 6-11.  Reliability modeling of power systems with perfect protections. 
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Figure 6-12.  Reliability modeling of power systems with protection failures. 
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The first layer is shown as the bold part in Figure 6-12, which we name the 

primary layer. The primary layer Markov processes consist of only the independent 

system states with single-step transitions. Although, in structure, it looks the same as if 

we model power systems with perfect protections in Figure 6-11, it has totally different 

meanings and transition rates for its system states are different. 

The second layer is shown as the dotted part in Figure 6-12. It is a dependent 

layer attached to the primary one, reflecting interactions and dependencies of current-

carrying components by the impact of protection system failures. Each element of the 

second layer is actually a group of system states with common mode failures, which has 

been analyzed in detail just in the previous content of Section 6.4.1. 

It is evident that system states in the second layer have more components down 

simultaneously than the corresponding system states of the primary layer, which 

generally indicates worse situation for system reliability. Since elements of the second 

layer are attached to every single-step transition in the primary layer, we can have an 

intuitive sense why protection failures could worsen the power system reliability. 

 

6.4.2.3.  Methodology for power system reliability evaluation 

 

The general methodology for power system reliability evaluation including 

protection system failures can be stated as follows. 
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(1) Set up the primary layer Markov processes as if with perfect protection 

systems. The single-step failure and repair rates of a given component i are i  and i , 

respectively. 

(2) Replace the transition rates by component self-down failure and repair rates, 

i.e. i  and i , as given in expression (6.30). The primary layer Markov process has 

been updated to include undesired-tripping mode protection failures. 

(3) Set up the second layer Markov processes and attach it to the primary layer as 

shown in Figure 6-10 and Figure 6-12. Then modify the failure rate of the primary layer 

from i  to )( 0 iiip   . Now the fail-to-operate mode protection failures are also 

integrated into the system model. 

(4) Evaluate the power system reliability. 

 

 

6.4.3. Power System Reliability Evaluation Including Protection System Failures 

 

There are two general approaches for reliability assessment of a system: the 

analytical method and the simulation method. For the system Markov model already set 

up in the previous Section 6.4.2, applications of these two approaches are illustrated as 

follows. 
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6.4.3.1.  Analytical method 

 

Although various analytical methods exist for assessing the system reliability, 

their applications to reliability evaluation of power systems with protection failures 

could be restricted. The main reason for this is the dependence of failures as we can see 

from the system Markov model in Figure 6-12. 

Nevertheless, the frequency balance approach can still be used for steady state 

analysis in spite of dependencies in the system. For each system state of the Markov 

processes in Figure 6-10, we can write an equation of frequency balance as below. 

For the system state )  (  i , we have 

 )()( )()(  
n

niii

m

mmii
PPP  

. (6.31) 

For the system state ) 
~

(  iH , we have 

 1)
~

(1)( iiHiii PpP 
  . (6.32) 

For the system state )
~

 (  Ji , we have 

 2)
~

(2)( iJiiii PpP 
  . (6.33) 

For the system state )
~~

(  JiH , we have 

 3)
~~

(3)( iJiHiii PpP 
  . (6.34) 

For the system state )  (  i , we have 

 
)(

)()(

)(

3)
~~

(2)
~

(1)
~

(0)(









s

sii

r

rriJiHiJiiiHiiii

P

PPPPpP









. (6.35) 
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Here )(P  represents the probability of system state )( . The subscripts m and n 

are used for other system states not seen from Figure 6-10 but existing in Figure 6-12 

with direct transitions to and from system state )  (  i , respectively. Similar 

explanation applies to subscripts r and s with respect to system state )  (  i . We 

also use the symbol   to represent the corresponding transition rates. 

If there are finite number, say  , of system states, we can theoretically obtain a 

set of   such equations. Then we solve for system state probabilities combining any 

1  equations with the following total probability equation. 

 1
1






k

kP  (6.36) 

It is obvious that this approach is only suitable for systems with a small number 

of system states. For a large power system, the state space could be so huge that it 

becomes impractical to solve simultaneous equations for all the system states. Thus, a 

feasible simulation method is proposed as following for handling large power systems. 

 

6.4.3.2.  Monte Carlo simulation method 

 

The Monte Carlo simulation methods can be classified into two categories: 

random sampling and sequential simulation. The random sampling approach is non-

sequential and thus difficult to deal with cases of dependent transition modes such as our 

system Markov model. So, the sequential simulation approach is selected and the system 



 

151 

 

states are generated sequentially by transition from one state to the next using probability 

distributions of component state durations and the random numbers [122], [123]. 

Suppose a component i with its state duration represented by a random variable 

iD . If iZ  is a random number, then the observation of iD  can be obtained by 

 )(1

iii zFd   (6.37) 

wherein iF  is the duration distribution function of component i. For exponential 

distribution, (6.37) would be 

 
i

i
i

z
d



)ln(
  (6.38) 

wherein i  is the transition rate of component i. 

Although the component with minimal time makes a transition and causes system 

transition as in the standard simulation procedure, two special treatments are necessary 

during the simulation to accommodate our system modeling. 

The special treatment type I is for component transitions from its up state to self-

down states. As we can see in Figure 6-10, there are four such possible transitions for 

component i with transition rates )( 0 iiip   , iip 1 , iip 2 , and iip 3 , respectively. 

Since all these transitions are independent of other components, this is actually a 

multistate problem in sequential simulation. It can be handled by using four random 

numbers to generate four transition time values with respect to these possible transitions. 

Then the transition with the minimal value is chosen as the effective for simulation 

process [124]. 
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The special treatment type II is for component transitions into and out from 

induced-down states. Since a certain component induced-down state is dependent on 

some other component, such a transition is passive and we cannot assign it an extra 

random number to avoid transition time conflict with the self-down and/or switching 

transitions inducing it. Instead we handle the case in the way described as follows. 

If component i is sampled in the up state and chosen for the next system event 

with the transition time iT  obtained from its transition rate iip 1  using (6.38), it means 

that the system will change after time iT  from system state )  (  i  to system state 

) 
~

(  iH  as shown in Figure 6-10. Then at the moment of this transition, besides 

handling component i, we also need to check the status of all components belonging to 

set H. For those components already in down states (their protection systems thus cannot 

provide backup function), nothing needs to be done. But for each component in the up 

state, we need to change it to the down state so as to reflect the dependent induced-down 

transition. In addition, we override the transition time of this component with a new 

value the same as the switching time of component i with respect to the switching rate 

1i . Thus, the switching process is also simulated. 

Now we give the steps of the whole simulation algorithm: 

Suppose the thn  transition has just taken place at time nt . 

Step 1) Determine the value of iT , the effective time to the next transition of  

component i. 
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Case a) If component i is in the up state, iT  is obtained using the special 

treatment type I described previously. 

Case b) If component i is in one of its self-down state with unreadiness 

probabilities, check all its adjacent components on the 

corresponding side and make necessary changes using the special 

treatment type II described previously. 

Case c) For all other cases, iT  is obtained in the normal way using (6.38), 

no special action needs to be taken. 

Step 2) The time to the next system transition is given by 

 

}min{ iTT  . (6.39) 

If this T  corresponds to pT , the next transition is determined by the thp

component. Note that there could be several such components to change 

their states simultaneously due to Case b) of Step 1). 

Step 3) The simulation time is now advanced. 

 Ttt nn 1  (6.40) 

Step 4) The residual time to transition of component i is 

 TTT i

r

i  . (6.41) 

Step 5) The residual time for component p causing the transition becomes zero 

and the time to its next transition pT  is determined the same as in Step 1). 

Step 6) The time iT  is then set as 
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,
. (6.42) 

Step 7) From nt  to 1nt , the status of equipment stays fixed and the following 

steps are performed. 

(a) The load for each node is updated to current hour. 

(b) If no node has load loss, the simulation proceeds to the next hour, 

otherwise remedial actions are called. 

(c) If after remedial actions all loads are satisfied, then simulation 

proceeds to next hour. Otherwise, this is counted as loss of load hour 

for those nodes and the system. If in the previous hour there was no 

load loss, it is counted as one event of loss of load. 

(d) Repeat steps (a)-(c) until simulation time 1nt . 

Step 8) Go back to Step 2) and continue the simulation until convergence 

criterion is satisfied or the preset maximal number of simulation is 

reached. 

Step 9) Terminate the simulation and calculate reliability indices as needed. 

 

 

6.4.4. Numerical Case Study 

 

The 24-bus IEEE Reliability Test System (RTS) is used for our numerical case 

study and the one-line diagram of this power system is shown in Figure 6-13 [125], 
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[126]. The original parameters of current-carrying components are used with a flat load 

curve of the annual peak load for 8760 hourly values. However, important parameters 

associated with protection system failures are not a part of the RTS database. 

It is necessary to point out here that data are of great significance for model 

application and system evaluation. As to the protective relays, the reliability 

characteristics are quite different for various types such as electromechanical relays, 

analog electronic relays, and microprocessor-based relays. Even for the same type of 

equipments, their reliability behavior could be influenced by many factors such as 

installation environment, test interval, and maintenance quality. Thus, the reliability 

parameters of each practical protection system can be regarded as “unique”. For 

important parameters such as undesired-tripping failure rate i  and the unreadiness 

probability ikp , they can be computed by appropriately developed reliability models if 

the failure and repair rates of elements of protection systems are known [69], [80]. As an 

alternative approach, these parameters could also be estimated from field data using the 

following equations. 
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Figure 6-13.  24-bus IEEE Reliability Test System (RTS). 
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Here ikN  is the number of times all breakers in subset kI  fail to trip, and tcN  is the 

number of trip commands [80]. In practice, these estimated parameters should be 

accumulating data, which means that not only the historical information representing the 

past transition behavior needs to be collected, but also new information about recent 

failures when available should be included to keep the parameters updated. 

Since protection data for components of RTS are currently unavailable, we 

assume for simplicity that all protections have the same behavior. A set of protection 

reliability parameters is adopted based on reasonable estimation from various sources 

such as research, testing, and experience data [70]-[72], [76]-[78], [125], [126]. 

(1) Protection failure rate 

The protection failure rate is often shown in the range of 0.01-0.5/year without 

indicating distinct types. Sometimes failure rate data are given for undesired-tripping 

mode between 0.01-0.08/year and for fail-to-operate mode 0.1-0.4/year. By comparison, 

we see that the fail-to-operate mode dominates the two types of protection failures. 

Conservatively, we take the value of 0.05/year for the undesired-tripping mode 

protection failures. 

We observe from RTS data that the transmission line outage rate mainly resides 

in the range of 1-3/year, given both permanent and transient outages are considered. 
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Thus we take about 5% of the component outages accounting for hidden protection 

failures. It yields the fail-to-operate mode protection failure rate to be 0.05-0.15/year, 

which we think is reasonable based on previous discussion of data. 

For the current-carrying component model used in our research, the two breakers 

are considered identical in behavior and have the same chance of consequences due to 

fail-to-operate protection failures. However, the probability of both breakers failing to 

operate should be much less than only one of them failing to operate. Therefore, the 5% 

of the component outages is further decomposed into 2%, 2%, and 1% for three types of 

unreadiness probabilities. Of course the remaining 95% are for component outages 

without protection failures. 

(2) Protection repair rate 

The majority of data show that the protection repair process in power industry 

can be done within 2-10 hours, though some extreme data indicate that the length could 

be as long as 40 hours. Conservatively, we consider that 10 hours would be an 

appropriate estimate, yielding the repair rate to be 876/year. 

(3) Switching rate 

Given a faulted component fails to trip, its adjacent healthy components will be 

tripped quickly by backup protections. However, switching these tripped healthy 

components back to service could take quite a few hours. It can only be carried out after 

some checking processes including but not limited to investigating tripping causes, 

locating the actual fault, and manually isolating the faulted components, etc. So, we 

consider 10 hours as appropriate for all model applications.\ 
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The protection reliability parameters we adopted are summarized in Table 6-4. 

 

Table 6-4  Parameters associated with protection system failures 

Parameters  Values   Parameters  Values   

i  (1/year) 0.05 i  (1/year) 876 

1ip  0.02 1i  (1/year) 876 

2ip  0.02 2i  (1/year) 876 

3ip  0.01 3i  (1/year) 876 

0ip  0.95 -- -- 

 

 

 

The Monte Carlo simulation is used for evaluating the system reliability. The 

reliability indices are estimated by the sequential simulation method programmed in 

MATPOWER software [127]. Figure 6-14 is a sampling of the system Loss Of Load 

Probability (LOLP) with 100,000 samples. 
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Figure 6-14.  Sampling of the system Loss Of Load Probability (LOLP). 

 

 

Figure 6-15 gives the system reliability indices of LOLP and frequency of system 

loss of load, compared with the corresponding results of the model assuming perfectly 

reliable protections. The results in Figure 6-15 have quantified the expectation that 

protection system failures do have an influence on system reliability. We can see that 

these indices show an increase over those of the perfect protection model. Thus, the 

system reliability situation has been degraded due to the impact of protection failures. 
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Figure 6-15.  System reliability indices. 

 

 

6.5. Summary 

 

For the purpose of application in the overall power system reliability analysis 

including protection failures, concepts of self-down state and induced-down state are 

introduced. Then the composite unit model is built for quantitatively assessing the 
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impact of protection failures on modeling system states. Finally, the reliability Markov 

model of power systems with protection failures has been proposed. The methodology 

for reliability evaluation of power systems including protection system failures is also 

illustrated in detail. From the numerical case studies, we can see that assumption of 

perfectly reliable protection can introduce errors in power system reliability evaluation 

[120], [121]. 
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7. CONCLUSIONS 

 

The reliability of protection systems has critical influence on the reliability of 

power systems. The existence of protection failures can significantly impact reliability 

evaluation of power systems. According to the nature of the problem, the hierarchical 

layers of three levels have been proposed. These layers provide a broad view of how the 

problems concerning protection system failures relate to each other. However, this 

research does not intend to cover everything but focuses on the following issues within 

the proposed three layers. 

(1) Research scope of Layer 1: Reliability modeling of all-digital protection 

systems including special protection systems with consideration of repair; 

(2) Research scope of Layer 2: Modeling the overall reliability situation of 

current-carrying components including protection system failures; 

(3) Research scope of Layer 3: Developing applicable methodology for power 

system reliability evaluation including protection system failures. 

 

7.1. Summary of Contributions 

 

The contributions of this research are summarized as follows. 

(1) Section 2 explores the impact of including component repair on the reliability 

modeling of all-digital protection systems. It is shown that repairable and non-repairable 

assumptions make a remarkable difference in the computed reliability indices of the 
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MTTF and MTTFF. A typical all-digital protection system architecture is modeled and 

numerically analyzed. Some interesting results are found by comparing reliability 

indices of MTTF and MTTFF and explanations of these results are provided. 

(2) Section 3 proposes a conceptual all-digital SPS architecture for the future 

smart grid. The smart grid is emerging with the penetration of information-age 

technologies and the development of the SPS will be greatly influenced. The focus of 

this section is how to apply reliability analysis approaches to the new all-digital SPS 

schemes. Calculation of important reliability indices by the network reduction method 

and the Markov modeling method is illustrated in detail. 

(3) Section 4 focuses on reliability modeling of the 2-out-of-3 voting gates 

structure in a generation rejection scheme. Due to different assumptions, two 

corresponding Markov models are proposed for reliability evaluation. The major 

difference between these two models is whether the failures of a logic gate are 

distinguished as detectable or undetectable. The numerical case study shows that the 

reliability indices obtained from these two models could be very different. 

(4) Section 5 reconsiders reliability modeling of current-carrying components 

including protection system failures from a new perspective. The two types of protection 

failures, i.e. undesired-tripping mode and fail-to-operate mode, and their impact on 

reliability modeling are discussed. A complete Markov model is established and its 

simplified form is then derived. The simplified model not only contains important 

information of the component itself, but also incorporates significant information of 

related protection system failures for quantitative analysis. 
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(5) Section 6 develops new models and concepts for incorporating the effect of 

protection system failures into power system reliability evaluation. New concepts of the 

self-down state and the induced-down state are introduced and then utilized to build up 

the composite unit model. This new model is the key for quantitatively assessing the 

influence of protection failures on modeling system states. Finally, a two-layer Markov 

model for power systems with protection failures is proposed for system reliability 

evaluation. The proposed methodology is also illustrated in detail. 

 

7.2. Research Conclusions 

 

The conclusions of this research are summarized as following. 

(1) Repair plays an important role in reliability modeling of all-digital protection 

systems concerning MTTF and MTTFF. If an all-digital protection system is indeed 

repairable but is modeled in a non-repairable manner for analysis, the calculated values 

for the MTTF and MTTFF could be grossly pessimistic. 

(2) If components tend to be less reliable, the SPS reliability will be degraded. 

However, increasing component repair rates will be helpful to enhance the reliability of 

SPS. The approaches applied in this research can quantify these effects and help in cost-

benefit trade-off and selection of components as well as configurations. 

(3) If the Markov model with consideration of both detectable and undetectable 

logic gate failures is used as a benchmark, the simple Markov model which only 
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considers detectable failures will significantly overestimate the reliability of the 2-out-

of-3 voting gates structure in a generation rejection scheme. 

(4) The simplified complete Markov model for current-carrying components is 

applicable for quantitative analysis. It can appropriately describe the overall reliability 

situation of individual components under the circumstances of complex interactions 

between components due to protection system failures. 

(5) The proposed composite unit model and the two-layer system Markov model 

can quantify the impact of protection failures on power system reliability evaluation. 

Using the developed methodology, we can see that assumption of perfectly reliable 

protection can introduce errors in reliability evaluation of power systems. 

 

7.3. Suggestions for Future Work 

 

It is worth noting that although the scope of this research is limited to assessment 

of the probability of multiple component outages resulting from the protection failures, 

these models can be further combined with the models considering cascading events as 

can be the models that do not consider protection failures. 
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APPENDIX: DISTRIBUTIONS OF SWITCHING AND REPAIR TIMES 

 

It has been shown in [128] that for calculation of steady state probabilities and 

frequencies, irrespective of the form of distribution, an equivalent constant transition rate 

from state i to state j can be given by 

 

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ikik

ij

ij
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
 , 

wherein 

ij = transition probability from state i to state j, 

ik = mean duration of state i given that the next transition is to state k. 

Now if there is only one possible transition from state i to state j, then 1ij  and 

thus 

 
ij

ij



1

 . 

For this situation, for steady state calculations, one can always use the reciprocal 

of the mean time of residence in the state as a constant transition rate which implies an 

exponential distribution. In other words, in this case, irrespective of the actual form of 

the distribution one can always assume exponential distribution without introducing any 

error. 


