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ABSTRACT 

 

Meteorological drought indices are commonly calculated from climatic stations 

that have long-term historical data and then converted to a regular grid using spatial 

interpolation methods. The gridded drought indices are mapped to aid decision making 

by policy makers and the general public. This study analyzes the spatial performance of 

interpolation methods for meteorological drought indices in the United States based on 

data from the Co-operative Observer Network (COOP) and United States Historical 

Climatology Network (USHCN) for different months, climatic regions and years. An 

error analysis was performed using cross-validation and the results were compared for 

the 9 climate regions that comprise the United States. 

Errors are generally higher in regions and months dominated by convective 

precipitation. Errors are also higher in regions like the western United States that are 

dominated by mountainous terrain. Higher errors are consistently observed in the 

southeastern U.S. especially in Florida. Interpolation errors are generally higher in the 

summer than winter.   

The accuracy of different drought indices was also compared. The Standardized 

Precipitation and Evapotranspiration Index (SPEI) tends to have lower errors than 

Standardized Precipitation Index (SPI) in seasons with significant convective 

precipitation. This is likely because SPEI uses both precipitation and temperature data in 

its calculation, whereas SPI is based solely on precipitation. 
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There are also variations in interpolation accuracy based on the network that is 

used. In general, COOP is more accurate than USHCN because the COOP network has a 

higher density of stations. USHCN is a subset of the COOP network that is comprised of 

high quality stations that have a long and complete record. However the difference in 

accuracy is not as significant as the difference in spatial density between the two 

networks. For multiscalar SPI, USHCN performs better than COOP because the stations 

tend to have a longer record. 

The ordinary kriging method (with optimal function fitting) performed better 

than Inverse Distance Weighted (IDW) methods (power parameters 2.0 and 2.5) in all 

cases and therefore it is recommended for interpolating drought indices. However, 

ordinary kriging only provided a statistically significant improvement in accuracy for the 

Palmer Drought Severity Index (PDSI) with the COOP network. Therefore it can be 

concluded that IDW is a reasonable method for interpolating drought indices, but 

optimal ordinary kriging provides some improvement in accuracy. 

 The most significant factor affecting the spatial accuracy of drought indices is 

seasonality (precipitation climatology) and this holds true for almost all the regions of 

U.S. for 1-month SPI and SPEI. The high-quality USHCN network gives better 

interpolation accuracy with 6-, 9- and 12-month SPI and variation in errors amongst the 

different SPI time scales is minimal. The difference between networks is also significant 

for PDSI. Although the absolute magnitude of the differences between interpolation with 

COOP and USHCN are small, the accuracy of interpolation with COOP is much more 

spatially variable than with USHCN.
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1. INTRODUCTION 

1.1 Introduction 

Drought is a recurring climatic phenomenon that can have a significant impact on 

the environment and human life (deMenocal 2001). Bryant (1991) compared different 

natural hazards based on key characteristics such as severity, length, and total areal 

extent and demonstrated that drought is one of the most serious natural hazards. The 

economic impacts of drought have been documented in a number of different studies. 

For example, drought conditions that occurred during 2009 across parts of the Southwest 

U.S., Great Plains, and southern Texas caused agricultural losses in numerous states 

(TX, OK, KS, CA, NM, AZ) exceeding $5 billion (2009 values) (Lott et al. 2010). It is 

estimated that droughts cause an average of $6 to 8 billion (1995 values) in losses per 

year in the United States (FEMA 1995). Ross and Lott (2003) calculated that droughts 

accounted for 41% of estimated $349 billion (2002 values) in losses caused by weather 

disasters in the United States between 1980 and 2003.  

Decision makers who are responsible for taking action during a drought rely on 

quantitative drought information from multiple sources to understand the severity and 

spatial extent of drought. An example of an interactive system that disseminates 

quantitative drought information is the drought data viewer provided by the National 

Integrated Drought Information System (http://drought.gov). An accurate representation 

of the drought conditions that can be readily understood by people with different levels 

of technical expertise helps ensure efficient utilization of resources during drought 

response. There are many challenges to providing decision makers with an accurate 
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representation of drought conditions. This includes aggregating current weather data 

from different sources, qualitatively and quantitatively combining different drought 

indices, accounting for missing values, and interpolating to a continuous grid using 

spatial interpolation methods. Creating drought monitoring products involves different 

sources of error such as observational error, function fitting error, and spatial 

interpolation error. Spatial interpolation error is important because it influences the 

accuracy of local drought information and how decision makers use and interpret 

gridded drought indices.  

Multiple techniques exist to overcome the issues mentioned above. Sometimes 

when local information is lacking: 

1. The lack of weather observations can be partly addressed by using remotely 

sensed data. 

2. Additional low-cost weather stations can be deployed and configured to 

provide real-time updates wirelessly. (e.g., devices manufactured by private vendor 

ambient weather).   

3. Spatial accuracy can be improved by augmenting information from private and 

independent sources such as private airports, volunteer networks etc. 

Interactive WebGIS-based dynamic applications are being increasingly used to 

disseminate real-time climate and drought information around the world (Wei et al. 

2009). These applications depict the current drought conditions for a particular region as 

well as give the user options to interactively change the temporal resolution, time period, 

and other parameters that are being depicted. Other customized information can also be 



 

3 

 

provided to create a rich user experience (Carbone et al. 2008). The widespread use and 

availability of gridded spatial data makes it important to quantify the accuracy of 

different interpolation methods so that users understand their limitations. 

Drought or excessive moisture measures (commonly referred to simply as 

drought indices) are primarily based on historical climatic records at a particular 

location. The historical record allows for identifying the frequency of extreme events 

(Hayes 2002). For example, a water planner may use historical precipitation record to 

design a reservoir for various drought scenarios. Different drought indices are used to 

measure different representations of moisture. A drought index such as the Standardized 

Precipitation Index (SPI) is based solely on precipitation and measures moisture as a 

function of precipitation for a given duration vis-à-vis normal precipitation at that 

location. Indices such as Palmer Drought Severity Index (PDSI) and Standardized 

Precipitation and Evapotranspiration Index (SPEI) use the difference between 

precipitation and potential evapotranspiration as an indicator of moisture conditions. 

Multiple drought indices are needed to represent drought on different time scales. 

A representation of moisture conditions in the form of a near real-time map is 

shown in Figure 1.1. This representation requires data assimilation from multiple 

sources. Figure 1.1 shows the current drought conditions across the world as generated 

by the University College London Drought Monitor. Although the map depicts global 

moisture conditions, its spatial accuracy varies from location to location and is 

influenced by a number of factors, including quality of source data, length of temporal 

record, duration under consideration, and the climatic region.  
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The accurate depiction of moisture conditions using maps is important because 

many stakeholders, decision makers and others rely on drought index maps as a primary 

source of information. The accuracy of these maps is primarily influenced by the 

accuracy of interpolation of drought indices, the observational error at a station and how 

accurately the drought index represents the actual conditions at a station. Different 

drought indices have their own advantages and disadvantages and each index may not 

represent the drought conditions at every location correctly (Vicente-Serrano 2008). The 

Palmer Drought Severity Index is not designed to handle seasonal variation in vegetation 

or frozen soil (Karl et al. 1987). The SPI does not account for the influence of 

temperature (Vicente-Serrano et al. 2010) and this shortcoming neglects the effects of 

water demand and evapotranspiration on drought conditions. The Standardized 

Precipitation and Evapotranspiration Index is a relatively new index (Vicente-Serrano et 

al. 2010) and there are not many studies concerning its suitability vis-à-vis SPI and 

PDSI. It is important to understand the influence of the three sources of errors and 

although they cannot be eliminated completely, an attempt to understand their magnitude 

and prevalence will be helpful in decision-making. There are various ways to quantify 

and correct for observational errors (NCDC 2007; Xie and Arkin 1996). A mechanism to 

quantify the spatial accuracy and use of a performance metric such as normalized 

absolute error can help in identifying the most accurate approach (Isaaks and Srivastava 

1989).  
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Figure 1.1 Global drought monitor: Annual (12-month) drought conditions across the world in 

November 2011. (University College – London, 2011) 
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1.2. Study Objectives 

This study uses leave out one cross-validation to examine the spatial performance 

of different drought indices under a comprehensive set of conditions. The cross-

validation technique involves comparing predicted values with actual values by 

iteratively removing one station at a time and using the remaining stations to predict the 

value at the missing station. The goal of this study is to use large datasets that cover a 

broader and more diverse area than has been considered in the past to examine the 

spatial performance of drought indices. The calculation of interpolation errors over 

different months, multiple years and in different climatic regions will enable us to derive 

answers to many other relevant questions concerning spatial accuracy. The spatial extent 

of this study is the contiguous United States. The two primary datasets that are utilized 

are the United States Historical Climatology Network (USHCN) and the National 

Weather Service’s Co-operative Observing Network (COOP).  

The primary objectives of this research are: 

1. Quantify the accuracy of IDW and kriging and determine which is most suitable 

for interpolating different drought indices.  

2. Compare the relative interpolation accuracy of three drought indices (PDSI, SPI 

and SPEI) using normalized errors. 

3. Assess seasonal variations in the accuracy of drought index interpolation by 

comparing interpolation errors for January, July and October. 

4. Assess the spatial variability of interpolation accuracy by comparing the mean 

accuracy over 9 climatic regions. 
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5. Compare the performance of interpolation using USHCN and COOP to illustrate 

the influence of spatial density of stations on interpolation accuracy.  
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2. BACKGROUND 

2.1 Drought Indicators 

A drought indicator is calculated using data such as precipitation or soil moisture 

to provide a measure of the moisture conditions at a location. Drought indicators are 

calculated with respect to normal moisture conditions.  

Figures 2.1 and 2.2 depict the variation of August precipitation and precipitation 

departure from normal at Houston Intercontinental airport from 1969 to 2010. The 

precipitation departure from normal can be considered a drought indicator. 

 

 

 

 

Figure 2.1 August precipitation (mm) for Houston IAH (1969-2011); (NCDC, 2011) 
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Figure 2.2 August precipitation (mm) departures from normal (1969-2011) for Houston IAH;    

(NCDC 2011)   
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cannot be compared spatially because such departures may be more common at some 
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conditions (or their departure from normal conditions) across spatial regions and across 
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2.2 Meteorological Drought Indices 

  There is no uniform method to characterize drought conditions and there are a 

variety of drought indices that can be used as tools to monitor meteorological drought 

(Quiring 2009). The input variables required for the calculation of meteorological 

drought indices vary depending on the drought index in question, but include 

precipitation, temperature, available water holding capacity of the soil and others that are 

representative of the moisture in the system. Some examples of meteorological drought 

indices are the Palmer Drought Severity Index (PDSI), Palmer Z-Index, the Standardized 

Precipitation Index (SPI), the Standardized Precipitation and Evapotranspiration Index 

(SPEI), the Effective Drought Index, and deciles. The rationale for selecting PDSI, SPI 

and SPEI for evaluation in this thesis is that they are popular indices that use different 

approaches for characterizing drought conditions. The PDSI, although given a low score 

in an evaluation performed by Quiring (2009), is a popular drought index especially in 

the United States. The SPI and SPEI are similar to each other in calculation, but use two 

different inputs (precipitation versus precipitation and temperature) and can be 

calculated for any time scale of interest. 
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2.3 National Drought Monitoring 

 Bordi and Sutera (2001) summarized different methods for drought monitoring 

and forecasting at the national scale and concluded that using an ensemble of different 

methods is the best approach for providing information for drought risk assessment and 

planning. In the United States, the National Drought Mitigation Center 

(www.drought.unl.edu) is an organization that helps people and institutions develop and 

implement measures to reduce societal vulnerability to drought. The National Integrated 

Drought Information System (www.drought.gov) was established in 2006 to provide 

information about current drought conditions, forecasting, impacts and planning. A web-

based GIS from NOAA provides the information in an interactive format (Brewer and 

Symonds 2009). State and local agencies can use the above information, supplemented 

with more localized information, to evaluate and contextualize local drought conditions 

and determine how to respond. Table 2.1 lists some of the drought monitoring tools 

available in the U.S. and their spatial resolution. Figure 2.3 shows the state of drought 

monitoring plans as of 2011 in different states of USA. 
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Table 2.1. Drought monitoring tools available in the United States 

Drought Index Developed by Indicators/Inputs 
Resolution 

available 

Crop moisture 

index – MAP 
(Palmer, 1965) 

Difference in 

potential and actual 

evapotranspiration 

344 NCDC 

climate 

divisions 

National 

Weather 

Service: 

Precipitation 

Analysis- MAP 

National Weather Service 

(http://water.weather.gov/precip/) 
Precipitation 4*4 km grid 

NLDAS 

Drought 

Monitor 

(Huang et al. 1996) Soil moisture 

344 NCDC 

climate 

divisions 

PDSI (Palmer, 1965) 

Precipitation, 

temperature, 

available water 

holding capacity 

344 NCDC 

climate 

divisions 

Daily Gridded 

SPI 

(McKee et al. 1993; McKee et al. 

1995) 
Precipitation 

COOP 

stations, 0.4 

degrees 

U.S. Drought 

Monitor 

National Drought Mitigation 

Center 

(http://droughtmonitor.unl.edu/) 

Multiple drought 

indices and impact 

reports 

- 

Percent of 

normal 

precipitation 

PRISM group, Oregon state 

(http://www.prism.oregonstate.edu) 

Precipitation, 

normal precipitation 
4*4 km grid 
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Figure 2.3 Status of state drought plans as of 2011 (National Drought Mitigation Center, 2011) 

 

 

 

 

2.4 Literature Review  

 

The commonly assessed spatial interpolation methods for drought indices are 

Inverse Distance Weighted, thin plate splines and ordinary kriging (Akhtari et al. 2009; 

Ali et al. 2011; Carbone et al. 2008). Jin and Heap (2008) analyzed the frequency of use 

of major interpolation methods in the environmental sciences and found that three most 

frequently used types of methods were IDW, ordinary kriging and thin plate splines. 

These three methods follow three different techniques of prediction (Jin and Heap 2008) 

which are deterministic, geostatistical and mathematical. Numerous studies have been 
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done to assess the influence of interpolation methods on variables such as precipitation 

and temperature. Since the variable that is being interpolated, the climatic region, and 

the topography of the study area all can influence the accuracy of the interpolation, this 

influence needs to be quantified to understand it better.  

Carbone et al. (2008) assessed the suitability of IDW, thin plate splines, kriging 

and Thiessen polygons using cross validation for 316 COOP stations in North and South 

Carolina for both PDSI and SPI (~12 stations per 10,000 km
2
). They concluded that 

IDW and kriging performed similarly and both outperformed thin plate splines and 

Thiessen polygons by a significant margin. 

Akhtari et al. (2009) compared IDW, ordinary kriging and thin plate splines over 

the Tehran province of Iran for 43 stations (~22 stations per 10,000 km
2
) using the 1-

month SPI and Effective Drought Index (EDI). They observed that IDW and kriging 

outperformed thin plate smoothing splines. Although kriging gave slightly better results, 

IDW was preferred for its simplicity. Ali et al. (2011) repeated a similar procedure for 

27 climatic stations in Boushehr province of Iran (~12 stations per 10,000 km
2
) and 

found similar results. IDW performed slightly better than kriging for SPI and the 

opposite was true for EDI.  

The above three studies compared SPI and/or PDSI for three major types of 

interpolation methods, but all of the studies were conducted over relatively small areal 

extents (North and South Carolina, Tehran and Bousher provinces of Iran). A study that 

spans larger areal extent with variations in climatic regions, topography and station 
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density can help identify the influence of other sources of spatial variability of drought 

indices. 

Kuilenburg et al. (1982) assessed IDW, kriging and thin plate splines for 

interpolating soil moisture on a small plot of 359 ha in Netherlands (1.5 stations per ha; 

1.5 x 10
6
 per 10000 km

2
) and found similar performances in all methods. This study 

demonstrates that under ideal conditions (e.g., station density, topography) many 

interpolation methods give similar results. Goovaerts (2000) suggests that deterministic 

interpolation methods such as IDW work well with dense networks, whereas 

geostatistical approaches are better for sparse networks. Dirks et al. (1998) suggests that 

a dense network is one that has a density of 13 stations over 35 km
2
(~3700 stations per 

10000 km
2
). This density is not typically possible in practice. For example, the average 

density of COOP network (with sufficient long term data) over contiguous U.S. is ~4.80 

stations per 10,000 km
2
 and for USHCN the average density is 1.5 stations per 10,000 

km
2
. 

Piazza et al. (2011) analyzed interpolation methods (IDW, ordinary kriging, 

linear and geographically weighted regression, artificial neural networks) for monthly 

and annual precipitation data over 247 stations in Sicily, Italy (~96 stations per 10,000 

km
2
). They observed that ordinary kriging performed better than other univariate 

methods and the multivariate methods that considered elevation data improved the 

results (linear regression, geographically weighted regression). The inclusion of 

elevation is important because Sicily is an island with significant topographical 

variation.  
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Vicente-Serrano et al. (2003) assessed IDW, thin plate splines, regresson models, 

and a number of kriging methods (ordinary, block, universal and co-kriging) for 

interpolating annual precipitation and temperature in middle Elbro valley in Spain (>200 

stations per 10,000 km
2
). They compared the interpolated values with independent 

weather stations and found that the best interpolation methods were different for 

precipitation and temperature. The best results for precipitation were obtained using 

geostatistical methods and regression worked better for temperature. When the 

geostatistical and regression methods incorporated elevation information, they 

performed better than the methods that did not use elevation.  

The above two studies demonstrate the importance of incorporating elevation 

information when interpolating variables such as precipitation, especially in regions with 

uneven topography. This is also supported by an interpolation study that examined daily 

precipitation in the Luohe watershed (~80 stations per 10,000 km
2
) where incorporation 

of elevation improved results (Zhang and Srinivasan 2009). 

Although many interpolation methods have been analyzed for common 

environmental variables at a variety of temporal and spatial scales, there have been 

relatively few studies comparing interpolation methods for drought indices over a large 

spatial extent that spans diverse topography and climate regions. The literature review 

suggests that it is useful to compare deterministic (IDW), geostatistical (kriging) and 

mathematical (splines) methods and that using variables such as elevation (or variables 

characterizing spatial complexity) may improve interpolation accuracy. 
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Chen et al. (2010) is one study that spans a large area. They compared ordinary 

kriging, IDW, radial basis function, local polynomial and nearest neighbor for daily 

precipitation values over 753 stations spanning the extent of China (~0.84 stations per 

10,000 km
2
). The spatial density of stations is significantly higher in the eastern part of 

the country than the western part and that is reflected in the results. Cross validation 

suggested that ordinary kriging and IDW (power =2) performed better than all other 

methods and the difference between them is not substantial. This is an example of study 

that covers a very large area and has a low density of the stations where IDW works 

almost as well as kriging. 

In the present study, preliminary research was done to compare the three basic 

methods (IDW, thin plate splines and kriging) and incorporated elevation data into 

kriging with external drift. Preliminary research demonstrated that thin plate splines are 

computationally intensive and the method performed significantly worse than ordinary 

kriging and IDW. Therefore, thin plate splines were not considered further. In addition, 

in preliminary tests, the accuracy of kriging did not improve when combined with 

elevation data and therefore this approach was not evaluated further. This study will 

focus on evaluating two versions of IDW and the optimal method of kriging over the 

contiguous U.S. to determine the best approach for interpolating meteorological drought 

indices. The goal is to draw general conclusions about interpolation that can be applied 

to other variables and other regions and not necessarily to test all spatial interpolation 

methods.  
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3. DATA AND METHODS 

3.1 United States Historical Climatology Network (USHCN) 

The United States Historical Climatology Network (USHCN) version 2 is a high-

quality set of 1218 observing stations (Figure 3.1) across the 48 contiguous states that 

provide daily and monthly records of basic meteorological variables. Daily data include 

observations of maximum and minimum temperature, rainfall amount, snowfall amount, 

and snow depth. Monthly data consist of monthly-averaged maximum, minimum, mean 

temperature and total monthly precipitation 

(http://cdiac.ornl.gov/epubs/ndp/ushcn/background.html). Most of these stations are U.S. 

Cooperative Observing Network stations that are generally in rural locations, while some 

are National Weather Service First-Order stations that are commonly located at airports. 

The monthly data required for calculations of drought indices were downloaded from 

USHCN version 2 database and used for calculating drought indices for every station. 

The network has a duration of record from 1895-present (Menne et al. 2009). The 

average station density is 1.5 stations per 10,000 km
2
. The USHCN stations are 

evaluated for data quality and subjected to time of observation bias adjustments and 

homogeneity testing (Menne and Williams 2009). 

3.2 National Weather Service Co-operative Observation Network (COOP) 

The co-operative observation (COOP) network consists of volunteer observers 

that span the continental United States with over 11,000 observers taking measurements 

for daily variables. The monthly data from COOP network was downloaded from the 
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National Climatic Data Center's website (http://www.ncdc.noaa.gov/oa/ncdc.html). The 

guidelines for taking measurements were established by the National Weather Service 

(NWS 2010). Since all of the stations do not have the requisite length of record for 

calculating drought indices, the stations were filtered and only those with >30 years of 

data were used in this study. The data was filtered based on the flags provided for every 

observation. Observations with missing values were excluded. The estimated and 

adjusted values were included in the calculation. The data available from National 

Climatic Data Center (NCDC) consisted of >20,000 present and past stations with many 

temporal breaks and uneven record lengths. These stations were distilled down to ~4,000 

suitable stations for each month (Figure 3.2) for calculation of drought indices. The 

average station density is ~5.80 stations per 10,000 km
2
.  
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Figure 3.1 USHCN stations in the contiguous U.S. and the 9 climatic regions (~1200 stations); 

(USHCN 2011)  

 

 

 

 

Figure 3.2 NWS COOP filtered stations in the contiguous U.S. and the 9 climatic regions 

(~4000 stations); (NCDC 2011) 
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Temperature and precipitation data from USHCN and COOP were used to 

calculate the drought indices. The SPI is based solely on precipitation data, while the 

SPEI and PDSI are based on temperature and precipitation data. The PDSI also requires 

the available water holding capacity of the soil at each station. These data (available 

water holding capacity) were obtained from a dataset called the Global Soil Texture and 

Derived Water Holding Capacities (Webb et al. 2000) that has a 1 degree 

latitude/longitude resolution. 

3.3 Methods 

The following section summarizes the calculation of moisture (drought) indices, 

spatial interpolation methods, statistical comparisons and the cross validation technique. 

The COOP data were filtered to remove stations with incomplete and missing data. Only 

months with simultaneous availability of precipitation and temperature data are 

considered so as to enable comparison between all indices. The criteria used for 

selecting COOP stations is that every station with at least 30 years of historical record 

for all months are selected. The higher quality of USHCN station data meant that much 

less filtering was needed. The data obtained from USHCN and NWS COOP were used 

to calculate drought index values for all months and years available. These drought 

index values (in selected years 2001 to 2010 excluding 2004 and 2008) were subjected 

to cross validation to evaluate the accuracy of each interpolation method. The mean 

absolute errors for stations were calculated and stations with at least 6 years of mean 

absolute errors were used to calculate average mean absolute error at a single station.  

Separate evaluations were done for each dataset, month, and moisture index. The 
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average values for all the years in a certain location are considered for some 

comparisons like evaluation of spatial variation of errors across the extent of USA.  

Paired t-tests are performed to compare the performance of each pair of spatial 

interpolation methods for each of the different cases, the comparison of interpolation 

errors between indices and between months. To account for the effect of spatial 

autocorrelation in comparing absolute errors the paired t-tests are performed using n/2 

degrees of freedom instead of the typical n-1 degrees of freedom. An example of how 

this influences the results is shown at the end of this section. The examination of spatial 

variation of error is done using mean error values for all stations based on 2001 to 2010. 

The absolute cross validation error is used for comparing interpolation methods across 

months and climatic regions. The sample size for every individual paired t-test is 

restricted to a particular month and climatic region and the output of the test is stored as 

a categorical variable (e.g., for the case kriging performs significantly better than IDW 

2.5). The degrees of freedom are n/2 for each instance. Multiple tests are performed for 

the comparisons under consideration. The results of these multiple tests are categorized 

to make deductions. Multiple stations distributed over a climatic region and number of 

years considered give a large sample size. The paired t-tests work for different 

comparisons because at the most basic level the absolute errors being compared have a 

one to one correspondence at the station level and a number of differences are checked 

for normal distribution. While comparing absolute errors of individual drought indices 

using paired t-tests the PDSI values were normalized by the standard deviation of PDSI 
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for every instance of comparison. These normalized values are used to enable 

comparison between PDSI and the other two indices. 

3.4 Drought Indices 

3.4.1 Palmer Drought Severity Index (PDSI)             

The PDSI is one of the oldest and most widely used drought indices (Palmer 

1965). It requires precipitation, temperature and available water holding capacity of the 

soil for calculation.  

The moisture anomaly index (Z-index) is part of the PDSI and it is a measure of 

how monthly moisture levels compare to expected values calculated based on at least 30 

years of data. The expected moisture level is determined based on a water balance 

equation. The moisture anomaly for the month is standardized for the month and 

location using a weighting factor. 
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    - difference between existing precipitation and precipitation appropriate for existing 

climatic conditions, an indicator for water deficiency 

   - weighting factor calculated using equation above 
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    - average of absolute values of di  

    - depends on average supply and demand calculated using a different formula 

17.67 was an empirical co-efficient initially suggested by Palmer for the original Palmer 

Z-index that is modified in the formula for calculating the self-calibrated version of the 

PDSI. The PDSI is a combination of Z-index for the current month and PDSI for the 

previous month.   

    (
  

 
)             

 

The Z-index can vary greatly from month to month, whereas PDSI fluctuates 

more slowly because it is influenced by PDSI values in previous months. Guttman et al. 

(1992) demonstrated that the PDSI was not comparable spatially in terms of identifying 

rare events. Wells et al. (2004) introduced a self-calibrating PDSI which replaced the 

empirical constants by dynamically calculating values for each location. The evaluation 

of the self-calibrated PDSI showed it to be more spatially comparable than the original 

PDSI. In this study the self-calibrated PDSI was used. The inherent time-scale of PDSI 

is about 9 months, which means that the PDSI represents moisture conditions for this 

duration. 

Software published by the National Drought Mitigation Center 

(www.greenleaf.unl.edu) was used for calculating the self-calibrated PDSI. A batch 

process was set up using python scripts. PDSI values were not calculated for months in 

which precipitation or temperature data were absent (Wells 2004; Greenleaf 2011). This 
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includes all months affected by the missing values in addition to the months with 

missing values themselves.  

3.4.2 Standardized Precipitation Index 

The Standardized Precipitation Index was developed by McKee et al. (1993) and 

is supposed to overcome the shortcomings of PDSI (e.g., cannot be used for multiple 

time scales, original PDSI could not be compared spatially). SPI uses only precipitation 

data for its calculation and fits a mathematical function to the historical precipitation 

data. The SPI is designed to be spatially and temporally comparable because the values 

are standardized by the fitting function. Different probability distributions give slightly 

different values and for the sake of spatial comparison the same function is used at all 

the locations. The SPI values are standardized such that the mean is zero and negative 

and positive values indicate drier than normal and wetter than normal conditions, 

respectively. The commonly used probability density functions for calculation of SPI are 

log-logistic, Gamma and Pearson Type 3. One advantage of SPI is that it can be 

calculated for any time period of interest (i.e., it is multiscalar) provided sufficient data 

are available. After fitting the historical precipitation record with a probability density 

function, the record is transformed using an inverse normal function (Guttman 1999). 

Table 3.1 shows the SPI values and associated moisture conditions defined by McKee et 

al. (1993). 
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Table 3.1 SPI classification, McKee et al. (1993) 

SPI values Probability 
Moisture 
conditions 

< -2 2.30% Extremely dry 

> -1.5 and < -2.0 4.40% Very dry 

> -1.0 and < -1.5 9.20% Moderately dry 

> -1.0 and < 1.0 68.20% Near normal 

> 1.0 and < 1.5 9.20% Moderately wet 

> 1.5 and < 2.0 4.40% Very wet 

> 2.0 2.30% Extremely wet 

 

 

 

  The SPI for 1-, 6-, 9- and 12-month time-scales were evaluated in this study. 

The Gamma distribution used for the SPI is given by Thom (1966) as: 

 ( )  
 

   ( )
                                                     

  is a scale paramter ,   is a shape parameter ,  ( ) is an ordinary gamma function of  .  

 Probabilities are given by the distribution function as 

 ( )  ∫  ( )  
 

 
                                                            

 

A mixed distribution function (Thom 1951) is used by SPI as the precipitation 

distribution may contain zeroes as given by where q is the probability of a zero, and is 

estimated by m/n, in which m is the number of zeros in a precipitation time series n. 

 ( )      (     ) ( )                                            
 

SPI is finally calculated using a rational approximation approach (Hastings 1955) 
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 for 0 < H(x) ≤ 0.5        

 

    (  
           

               )            

             

for 0.5 < H(x) ≤ 1.0         
 
c0 = 2.515517 

c1 = 0.802853 

c2 = 0.010328 

d1 = 1.432788 

d2 = 0.189269 

d3 = 0.001308        

 

The R package SPEI (Begueria and Vicente-Serrano 2011) was used to calculate 

the SPI. The software calculates the SPI for different durations (from 1 to 12 months) 

using the gamma distribution. No SPI values were calculated for months with missing 

precipitation data. All SPI months that included missing months were set to missing and 

not considered in the analysis.  

3.4.3 Standardized Precipitation and Evapotranspiration Index 

  Vicente-Serrano et al. (2010) proposed a new drought index called the 

Standardized Precipitation and Evapotranspiration Index (SPEI). The SPEI is based on 

temperature and precipitation data. This index accounts for water demand due to 

evapotranspiration and according to Vicente-Serrano et al. (2010), it is comparable to the 

self-calibrating PDSI. The advantage of SPEI over PDSI is that it can be calculated over 

multiple time periods like SPI and hence can be used to understand drought severity over 

different time scales. The calculation of SPEI is similar to SPI except that the function is 
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fit to precipitation minus potential evapotranspiration (P-PET) values. The PET value 

can be calculated using different equations that link it to the temperature value. The 

Thornthwaite (1948) equation was used to estimate PET in this study. 

                  (
   

 
)  

 

                          

 

In the above equation T is monthly temperature in degree Celsius  

i is heat index derived from 12 monthly index values calculated as a sum of 12 monthly 

index values i, which is calculated as given in the equation below 

 
  (

 

 
)      

 

 

 

m is a coefficient depending on i, and k is a correction coefficient computed as a 

function of the latitude and month. 

The difference between precipitation and potential evapotranspiration provides a 

measure of water surplus or deficit for the month and this is compared over time and 

standardized to get the value of SPEI. 

            

 

 

 

   - a difference of precipitation and potential evapotranspiration for month i. 

The process for SPEI calculation skipped missing values and SPEI is not 

calculated for months in which no data are available. This includes all SPI periods 

affected by the missing months. The Gamma distribution was used for calculating the 



    

29 

 

SPEI using R package SPEI (Begueria and Vicente-Serrano 2011). The calculation of 

SPEI is analogous to SPI, but since the difference between precipitation and potential 

evapotranspiration can be either positive or negative a 3-parameter gamma distribution 

(which can take both positive and negative values) is used to calculate the SPEI. 

 

3.5 Spatial Interpolation Methods  

 This study focuses on the interpolation of moisture (drought) indices that are 

calculated using temperature and precipitation. Although there have been numerous 

studies that have focused on interpolation methods for temperature and precipitation, 

they may not be directly applicable to moisture indices since the spatial variability of 

these indices is different. As an example, spatial interpolation is more accurate for 

temperature data as compared to precipitation data because there are fewer factors that 

affect its variation (Vicente-Serrano et al. 2003). Jin and Heap (2008) evaluated the 

frequency of use of a number of different spatial interpolation methods used in the 

environmental sciences and the results are summarized in the Figure 3.3. They found 

that the most commonly used spatial interpolation methods are inverse distance weighted 

(IDW), inverse distance squared (IDS), ordinary kriging (OK) and thin plate splines 

(TPS). The IDW, OK and TPS methods were initially selected for the study. Preliminary 

research showed that TPS performed far worse than both IDW and OK methods and that 

it is computationally demanding. Therefore, TPS was not considered further. Preliminary 

research also compared OK to other variants of kriging with external drift. As the latter 

did not produce significant improvement over OK, this thesis will focus on evaluating 
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two variants of IDW (power parameters 2 and 2.5) and a version of OK that uses optimal 

fitting for the semivariograms. 

 

 

 

 

Figure 3.3 Frequency of spatial interpolation methods used in the environmental sciences  

     (Jin and Heap 2008) 
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The general formula for spatial interpolation is: 

 
 (   )  ∑    (   )

 

   

 
 

 

 

Where: 

 (  ) = measured value at the ith location 

    = weight for the measured value at the ith location 

    = prediction location 

  = number of measured values 

 (  ) = value at prediction location. 

3.5.1 Inverse Distance Weighting (IDW) Method 

Inverse distance weighting estimates the value at an unsampled location based on 

a specified number of surrounding points or a number of points within a certain radius. 

This is a deterministic method and no estimate concerning the accuracy of prediction is 

available. Weights are assigned to each of these points as an inverse function of their 

distance from this point. An additional parameter called the power parameter controls 

the relative weight to be given to the distance variable. A number of iterations are 

generally needed before deciding on factors such as number of surrounding points to be 

used, maximum or minimum radius, and the power parameter. Cross validation is one 

method that can be used to determine the most appropriate parameters for IDW. The 

coefficient for IDW method is defined as  
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In above equation    is the coefficient value to be used for a particular point at a 

distance    from the point whose value is to be interpolated. These coefficients are 

calculated for all points within a certain radius or a specified number of points (and 

summation is done accordingly). The maximum number of points used in this method 

was 15 for COOP (10 for USHCN) and with a radius limitation of 150 km for COOP 

and 200 km for USHCN. Preliminary analyses demonstrated good performance for IDW 

using power parameters ranging from 2 to 2.5. Therefore, these two power parameters 

were used in the final analysis. Note that IDW with power parameter 2 is called as 

inverse distance squared method. The preliminary analyses demonstrated that 

performance decreased when higher or lower power parameters were used.  

3.5.2 Kriging 

Kriging is the generic name for a family of generalized least squares regression 

algorithms that originated with the pioneering work of Daniel Krige (Krige 1951). 

Kriging requires exploratory analysis of the data prior to interpolation. In ordinary 

kriging the weight depends on a model fitted to the measured points, the distance to the 

prediction location and the spatial relationship amongst the measured values near the 

prediction location. 
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Kriging is based on the concept of spatial autocorrelation and it assumes that the 

observations are an outcome of some spatial correlation function which can be estimated 

from the available data. Kriging assumes that the value at a location is a realization of a 

process which can be modeled by a semivariogram. A semivariogram models the 

semivariance between all pairs of points against the distance between the pairs of points 

as shown in Figure 3.4. 

 

 

 

Figure 3.4 Example of a semivariogram (Rossiter 2011). 



    

34 

 

  

 

 

The empirical semivariogram (i.e., variogram based on data) is calculated as: 

  ( )  
 

  ( )
   ( )   (    ) 

  ( )
     

 

 

 

Where: 

m (h) is the number of point pairs separated by some range 

Point pairs are indexed by i, and the notation x+hi means the tail of a point pair is 

separated from the head by a separation vector hi. This function is modeled with an 

appropriate theoretical variogram.  

For COOP stations the nearest 500 stations are used for modeling the variogram 

(200 for USHCN) for every station under consideration. The functions used for fitting 

the variogram are Gaussian, Spherical and exponential model using least squares fitting 

by R library Automap (Hiemstra et al. 2008). Although many different semivariograms 

are available, in this study it is not possible to perform exploratory data analysis and 

determine the most appropriate semivariogram for each instance. Therefore, the 

theoretical semivariogram fitting was achieved using least squares fitting based on 

library automap that iterated over three models and fitted the best model. This method 

provides an objective approach for fitting the semivariogram. Kriging with external drift 

using elevation, precipitation and temperature data was compared with OK in 
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preliminary research, but as there was no overall improvement in accuracy using this 

approach, optimal ordinary kriging was used in this study. 

3.6 Cross Validation Method          

Cross validation is a technique used to evaluate the accuracy of a predictive 

model (Isaaks and Srivastava 1989). In this case, the spatial interpolation method 

“predicts” the value of a drought index at unsampled locations based on values at 

neighboring stations. Typically it is not possible to know how close the predicted value 

at the unsampled location is to the true value. The cross validation technique used in this 

study is a leave-one out cross-validation. In this approach one climatic station is 

removed and the value at that location of the station is interpolated (predicted) using the 

remaining stations, this value is called the predicted value. This method is valid because 

removal of one point from a very large number of points will not have a significant 

effect on overall prediction. The difference between actual value at a particular location 

and the predicted value is the residual error and its absolute value is called the absolute 

error. The absolute error and normalized absolute error (calculated over a group of 

absolute errors (e.g., all stations within a climatic region)) are measures of the predictive 

accuracy for that instance. These values are used as performance metrics to evaluate the 

accuracy of interpolation methods. The cross-validation procedure was implemented 

using code written in ‘R’.   
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3.7 Overview of Methods 

 

Python was used for batch programming and calculating PDSI. The statistical 

package “R” was used for spatial interpolation and calculating values of SPI and SPEI. 

Data conversions were achieved using Excel. Figure 3.5 provides an overview of the 

approach that was used to evaluation interpolation methods in this study. The accuracy 

of IDW 2, IDW 2.5 and optimal ordinary kriging are assessed using a leave-one-out 

cross validation. The results of the interpolation accuracy evaluation are summarized for 

9 climatic regions, 3 months (January, July and October) based on data from 2001-2010 

(excluding years 2004 and 2008). The SPI and SPEI results are compared individually 

for different scales (1-, 6-, 9-, and 12-months) under consideration. This is done for 

USHCN and COOP datasets independently.  
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Datasets: USHCN (~1200 stations) and COOP (~4000 stations) 

Months: January, July, October 

 Indices – SPI, PDSI, SPEI 

 Years - 2001 to 2010 excluding 2004 and 2008 

Figure 3.5 Overview of methods 
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3.8 Paired t-test Modification 

To account for autocorrelation in the absolute error values at nearby stations, n/2 

degrees of freedom have been used instead of n - 1. This changes the critical value 

required to reject the null hypothesis and gives a more conservative result. However as 

the sample size in each case is large, the effect of using n/2 degrees of freedom is 

minimal. A sample comparison is shown below. 

Comparison between normalized values of PDSI and 9-month SPEI for 

Northwest climatic region for the month of October. 

Sample size = 1471 

test statistic t = -2.454 

critical value for n-1 degrees of freedom (1470) = 1.646 

critical value for n/2 degrees of freedom (735) = 1.650 

The null hypothesis (that the difference is 0) is rejected in both cases. 

3.9 Climatic Regions 

Figure 3.6 shows the different climatic regions of the United States 

(administrative) and these are used to compare aggregated results spatially. These are the 

climatic regions established by National Climatic Data Center (NCDC) and they are 

defined in Table 3.1. Table 3.2 shows the total area, number of stations and station 

density for each region. Figure 3.7 shows the variation of mean annual precipitation for 

each region using values from USHCN dataset. 
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Figure 3.6 Climatic regions of the contiguous United States (NCDC 2011) 

 

 

 
Table 3.2 Legend: Climatic regions of the contiguous United States  

 

No. Region 
States  

1 NorthEast 

Connecticut, Delaware, Maine, Maryland, New Hampshire, New 

Jersey, New York, Pennsylvania, Rhode island, Vermont 

2 SouthEast 

Alabama, Florida, Georgia, North Carolina, South Carolina, 

Virgina 

3 Central 

Kentucky, Illinois, Indiana, Missouri, Ohio, Tennesse, West 

Virginia 

4 EastNorthCentral Iowa, Michigan, Minnesota, Wisconsin 

5 South Arkansas, Louisiana, Kansas, Mississippi, Oklahoma, Texas 

6 SouthWest Arizona, Colorado, New Mexico, Utah 

7 WestNorthCentral Montana, Nebraska, North Dakota, South Dakota, Wyoming 

8 West California, Nevada 

9 NorthWest Idaho, Oregon, Washington 
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Table 3.3 Number of stations per climatic region 

 

Region 
Area  

(10,000 km2) 

USHCN: 
Number of 

stations 

USHCN:  
Station 
density per 
10,000 km2 

COOP: 
Number of 

stations 

COOP:  
Station 
density per 
10,000 km2 

1 45.06 135 3.00 261 5.79 

2 72.79 121 1.66 382 5.25 

3 79.33 164 2.07 512 6.45 

4 63.87 96 1.50 385 6.03 

5 143.70 184 1.28 658 4.58 

6 109.00 118 1.08 415 3.81 

7 120.28 166 1.38 543 4.51 

8 68.84 60 0.87 225 3.27 

9 65.53 103 1.57 299 4.56 
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Figure 3.7 Mean monthly precipitation (mm) in 9 climatic regions (NCDC 2011)
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4. RESULTS 

 

4.1. Comparison of Interpolation Methods  

4.1.1. 1-month SPI 

 The descriptions below refer to Figures 4.1 and 4.2 that show the mean absolute 

error (MAE) for 1-month SPI for the 9 climatic regions in the contiguous United States. 

These errors are calculated for COOP (hereafter denoted by C) and USHCN (hereafter 

denoted by U) networks. The results are explained independently for each climatic 

region. The comparisons between months or station density are done using cross 

validation errors for kriging method. 

NorthEast 

Kriging had the lowest error for 1-month SPI for all months (MAE: C=0.35, 

U=0.39) followed by IDW 2.5 (MAE: C=0.37, U=0.41) and IDW 2 (MAE: C=0.39, 

U=0.42) and this can be seen for most of the months (Figure 4.1 and 4.2). The maximum 

errors occurred in July and August (MAE: C=0.47, U=0.52) and the minimum in 

October and November (MAE: C=0.28, U= 0.32). Figure 3.7 shows that the highest 

average precipitation over the NorthEast region occurs in the months of June to August 

(>100 mm) and lowest from December to February (<80 mm). There is relatively little 

seasonal variation in precipitation in this region. This region has the highest density of 

USHCN stations (3.00 per 10,000 km
2
) and a relatively high density of COOP stations  

(5.80 per 10,000 km
2
) as compared to the other regions. 

 The difference between extreme errors (maximum and minimum) are:  
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seasonality (MAE: C=0.22, U=0.23), interpolation method (MAE: C=0.059, U=0.049) 

and density of stations (MAE: 0.069). Precipitation climatology is the most significant 

factors that influences intra-annual variations in accuracy. The highest errors occur in 

months with the most precipitation (July and August) and the lowest errors occur in 

months with lower precipitation and more uniform precipitation distribution (October 

and November). A significant portion of the winter precipitation in this region comes 

from storms called nor'easters that produce lot of snowfall/rain over a large region in a 

short amount of time (Rohli and Vega 2011). During the warm season, precipitation is 

generally from mesoscale convective systems (Murray and Colle 2010) and the remnants 

of tropical cyclone from south and southeast (Deluca et al. 2002). As a result, 

interpolation errors are generally higher during the warm season because of the different 

mechanisms that produce more spatially heterogeneous patterns of precipitation. The 

values show that variations in accuracy due to the effect of interpolation methods and 

density of stations are relatively minor in comparison. 

SouthEast  

Kriging had the lowest error for 1-month SPI for all months (MAE: C=0.39, 

U=0.43) followed by IDW 2.5 (MAE: C=0.40, U=0.45) and IDW 2 (MAE: C=0.44, 

U=0.49) as observed for most combinations in Figures 4.1 and 4.2. The highest errors 

occur in July and August (MAE: C=0.56, U=0.61) and the lowest in October and 

November (MAE: C=0.30, U=0.34). Figure 3.7 shows that the highest average 

precipitation over Southeast region occurs in months of June to August (>120 mm) and 

lowest in October and November (<80 mm). This region has a fairly high density of 
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COOP stations (5.25 per 10,000 km
2
) and medium density for USHCN stations (1.67 per 

10,000 km
2
) as compared to other climatic regions. 

 The difference between extreme errors (maximum and minimum) are:  

seasonality (MAE: C=0.26, U=0.27), interpolation method (MAE: C=0.098, U=0.09) 

and density of stations (MAE: 0.059). Precipitation climatology is again clearly the most 

important driver of variations of accuracy with the errors being highest in the months 

with the highest precipitation (July and August) as compared to winter months when 

precipitation is lower. Soule (1998) states that convective storm activity in the form of 

late afternoon thunderstorms supply most of precipitation for southeast in summer. 

Larson et al.(2005) mentions that upto ~20% of precipitation in summer along the Gulf 

of Mexico coast comes from landfalling tropical cyclones. Maximum convective activity 

occurs in the central part of Florida due to convergence of air masses from Gulf of 

Mexico and Atlantic Ocean (Lydolph 1985). This gives higher errors in this region and 

can also be seen in the error maps produced in Section 4.4. Although the density of 

stations for COOP is more than three times that of USHCN, the improvement in 

accuracy is marginal. Kriging gives a fair amount of improvement over IDW for this 

instance.  

Central 

Kriging gave the best performance for 1-month SPI for all months (MAE: 

C=0.34, U=0.39) followed by IDW 2.5 (MAE: C=0.36, U=0.41) and IDW 2 (MAE: 

C=0.41, U=0.46) and this can be seen for all combinations in Figure 4.1 and 4.2. The 

maximum errors occurred in July and August (MAE: C=0.48, U=0.52) and the minimum 
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in October and November (MAE: C=0.25, U= 0.27). Figure 3.7 shows that the highest 

average precipitation over Central region occurs in months of May to August (>100 mm) 

and lowest from October to February (<75 mm). 

 The difference between extreme errors (maximum and minimum) are:  

seasonality (MAE: C=0.23, U=0.25), interpolation method (MAE: C=0.091, U=0.097) 

and density of stations (MAE: 0.066). Precipitation climatology is again the main driver 

of accuracy with highest errors in late summer when precipitation is high and lowest 

errors in October and November coinciding with lower precipitations. An exception is 

the month of May, which has the highest precipitation but relatively lower errors. 

Villarini et al. (2011) states that extreme rainfall events in the midwest occurs most 

frequently in the May-August period and this relates well with the influence on spatial 

accuracy.  

EastNorthCentral 

Kriging had the lowest error for 1-month SPI for all months (MAE: C=0.35, 

U=0.43) followed by IDW 2.5 (MAE: C=0.38, U=0.46) and IDW 2 (MAE: C=0.42, 

U=0.50) and this can be seen for all combinations in Figure 4.1 and 4.2. The highest 

errors occurred in July and August (MAE: C=0.44, U=0.53) and the lowest in October 

and November (MAE: C=0.25, U=0.32). Figure 3.7 shows that the highest average 

precipitation over EastNorthCentral region occurs in months of June to August (~100 

mm) and lowest from December to February (<30 mm). The precipitation varies greatly 

from season to season in this region. 

 The difference between extreme errors (maximum and minimum) are:  
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seasonality (MAE: C=0.20, U=0.22), interpolation method (MAE: C=0.105, U=0.112) 

and density of stations (MAE: 0.107). Precipitation climatology is an important driver of 

errors but the overall variation of errors seasonally is lesser than previous cases. A 

substantial portion of precipitation in midwest and great plains in this period occurs from 

mesoscale convective precipitation systems (Tollerud and Collander 1993; Maddox et al. 

1980). Ashley et al. (2003) shows that these occurrences are highest for this region in the 

months of June and July which coincides with lower interpolation accuracy. Both 

interpolation methods and station density have a larger effect on accuracy than other 

regions. The COOP network has a density almost four times the USHCN network in this 

region and this is reflected in the difference in accuracy between the two networks. 

South 

Kriging gave the lowest errors for 1-month SPI for all months (MAE: C=0.36, 

U=0.41) followed by IDW 2.5 (MAE: C=0.38, U=0.44) and IDW 2 (MAE: C=0.43, 

U=0.49) and this can be seen for all combinations in Figures 4.1 and 4.2. The maximum 

errors occurred in July and August (MAE: C=0.48, U=0.56) and the minimum in 

October (C=0.27) and November, (C=0.33). The errors are low from October through 

March in South. Figure 3.7 shows that the highest average precipitation over South 

region occurs in months of April to July (>85 mm) and lowest from November to 

February (<70 mm).  

The difference between extreme errors (maximum and minimum) are: 

seasonality (MAE: C=0.20, U=0.23), interpolation method (MAE: C=0.109, U=0.124) 

and density of stations (MAE: 0.085). Precipitation climatology has the most significant 
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effect on errors and the highest and lowest errors clearly correspond to months with 

higher and lower precipitation amounts. An exception is the month of May. This region 

covers a large area which is the southern part of the Great Plains and its climatology is 

influenced by proximity to Gulf of Mexico. Louisiana, Mississippi and Arkansas have 

significantly higher precipitation than the remaining states where an east-west gradient 

exists for most of the months with Soule (1998) stating that precipitation is maximized 

along the Gulf of Mexico. Ashley et al. (2003) notes that about 7-10% of precipitation of 

warm season (May to September) for this region occurs from mesoscale convective 

systems which results in higher errors. The effect of interpolation methods is more 

significant than the density of stations (although station density for COOP is more than 

three times USHCN in this region).  

SouthWest  

Kriging had the lowest error for 1-month SPI for all months (MAE: C=0.39, 

U=0.43) followed by IDW 2.5 (MAE: C=0.41, U=0.45) and IDW 2 (MAE: C=0.44, 

U=0.47) and this can be seen for all combinations in Figures 4.1 and 4.2. The maximum 

errors occurred in July and August  (MAE: C=0.57, U=0.59) and the minimum in 

October and November (MAE: C=0.37, U=0.40) and the variation across seasonality is 

very low except for the extreme values. Figure 3.7 shows that the highest average 

precipitation over Southwest region occurs in months of July and August (>40 mm) and 

is uniform in the remaining months. Precipitation in this region is lower than all other 

climatic regions, as is the intra-annual variation of precipitation (Guirguis and Avissar 

2008). 
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 The difference between extreme errors (maximum and minimum) are:  

seasonality (MAE: C=0.24, U=0.23), interpolation method (MAE: C=0.057, U=0.056) 

and density of stations (MAE: 0.063). Although this region has significantly lower 

precipitation than others the accuracy is clearly influenced by the variation of 

precipitation over the year. The highest errors occur in months with highest precipitation 

(July and August). Sheppard et al. (2002) states that Arizona and New Mexico receive 

50% of their precipitation in the summer months from July to September. This is a part 

of the North American monsoon (Adams and Conrie 1997) which mainly influences 

mesoscale conditions making day to day forecasting difficult (Sheppard et al. 2002). The 

monsoon results in significantly higher errors in these months. The errors are lower in all 

other months where precipitation amounts are similar and evenly distributed throughout 

the months.  

This region contains mountainous terrain towards the northern part in the states 

of Colorado and Utah. Intermittent topographical changes occur in Arizona and New 

Mexico as well and this results in overall higher errors and can be seen in the maps 

shown in Section 4.4. The influence of interpolation methods and density of stations is 

less than the influence of seasonality.  

WestNorthCentral 

Kriging had the lowest error for 1-month SPI for all months (MAE: C=0.39, 

U=0.45) followed by IDW 2.5 (MAE: C=0.41, U=0.48) and IDW 2 (MAE: C=0.45, 

U=0.51) and this can be seen for most combinations in Figures 4.1 and 4.2. The 

maximum errors occurred in July and August (MAE: C=0.47, U=0.52) and the minimum 
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in October and November (MAE: C=0.28, U=0.32). Figure 3.7 shows that the highest 

average precipitation over WestNorthCentral region occurs in months of May and June 

(>65 mm) and lowest from November to February (<20 mm). 

 The difference between extreme errors (maximum and minimum) are:  

seasonality (MAE: C=0.19, U=0.21), interpolation method (MAE: C=0.073, U=0.073) 

and density of stations (MAE: 0.13). Except for the months of May and June (when 

precipitation is highest but errors are relatively low) the highest errors in July and 

August coincide with higher precipitation and lowest errors (October and November) to 

relatively low precipitation. This shows the significance of precipitation climatology, the 

precipitation distribution is a more significant factor than the amount of precipitation as 

small precipitation amounts distributed heterogeneously will have low spatial 

autocorrelation. The density of stations has a significant impact on accuracy (station 

density is 3 times greater for COOP than USHCN) as compared to other regions. 

Although the region varies from Rockies (mountainous terrain) to Great Plains the 

influence of interpolation methods is lower. 

West 

Kriging had the lowest error for 1-month SPI for all months (MAE: C=0.30, 

U=0.38) followed by IDW 2.5 (MAE: C=0.31, U=0.39) and IDW 2 (MAE: C=0.33, 

U=0.42) and this can be seen for most combinations in Figures 4.1 and 4.2. The 

maximum errors occurred in July and August for COOP (MAE: C=0.41), May for 

USHCN (MAE:  U=0.43) and the minimum in December and November (MAE: 

C=0.25, U=0.34). Figure 3.7 shows that the highest average precipitation over West 
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region occurs in months of December to February (>75 mm) and lowest from June to 

September (<10 mm). 

 The difference between extreme errors (maximum and minimum) are:  

seasonality (MAE: C=0.16, U=0.10), interpolation method (MAE: C=0.044, U=0.064) 

and density of stations (MAE: 0.13). The precipitation variation of this region is 

completely different from other regions except for Northwest. The seasonal difference of 

extreme errors is very low as compared to other regions especially for USHCN (MAE: 

U=0.10). The accuracy is affected again by spatial variation of precipitation as can be 

seen during the summer months. During the summer there is less precipitation, but it is 

highly variable spatially and therefore interpolation accuracy is lower than in other 

seasons. The distribution of precipitation in the western U.S. varies widely based on 

synoptic-scale, meso-scale and local-scale features (Mock 1996). This region has a 

winter precipitation regime with maximum precipitation occurring in January to March 

months that relates to cyclonic storms activity and the southward progression of the jet 

stream (Mock 1996; Trewartha 1981) and lowest precipitation occurs in the summer 

months. It is difficult to attribute high error in July for COOP to any particular factor. 

The effect of density of stations is quite significant, with the significant variation of 

topography and the fact that station density is very low in this region. The effect of 

interpolation methods is relatively small. 

NorthWest 

Kriging had the lowest error for 1-month SPI for all months (MAE: C=0.34, 

U=0.39) followed by IDW 2.5 (MAE: C=0.34, U=0.40) and IDW 2 (MAE: C=0.37, 
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U=0.42) and this can be seen for most combinations in Figures 4.1 and 4.2. The 

maximum errors occurred from January through July (MAE: C=0.37, U=0.41) and then 

decreased, with minimum values occurring in October and November (MAE: C=0.28, 

U= 0.38). The highest average precipitation over NorthWest region occurs in months of 

November to January (>90 mm) and lowest in July and August (<20 mm). 

 The difference between extreme errors (maximum and minimum) are:  

seasonality (MAE: C=0.09, U=0.10), interpolation method (MAE: C=0.048, U=0.043) 

and density of stations (MAE: 0.082). The precipitation variation of this region is 

different from other climatic regions (except West) with lowest precipitation occurring 

in summer and highest in winter. This region has the lowest seasonal variation of spatial 

accuracy. This region has a cold season precipitation maximum occurring from 

November to January due to cyclonic storms originating in the Pacific (Guirguis and 

Avissar 2008) and dry summers. There exists significant topographic variation across 

this region and its effect on spatial accuracy can be observed in maps shown in Section 

4.4 where the eastern part of this small region gives higher errors that cannot be seen in 

aggregated errors. However the variation in spatial accuracy is still lower for 

interpolation methods as well as station density despite the fact that this region has 

significant topographic variation.   
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Figure 4.1 Monthly 1-month SPI for 9 climatic regions: COOP network  
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Figure 4.2 Monthly 1-month SPI for 9 climatic regions: USHCN network 
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Figure 4.3 Monthly 1-month SPI averaged for the entire U.S.: COOP network  

 

 

 

 

Figure 4.4 Monthly 1-month SPI averaged for the entire U.S.: USHCN network 
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Figures 4.3 and 4.4 show the errors for entire USA and it is clearly seen that the 

highest errors are observed in the months of June to August and lower values in October 

and November.  

COOP 

The average of the difference of extreme seasonal values (maximum and 

minimum for 12 months) for every instance calculated individually over 9 climatic 

regions is 0.19. The average mean absolute error over the whole U.S. varies from 0.27 

(October) to 0.47 (July). The corresponding average of extreme errors between climatic 

regions (maximum and minimum for 9 regions) for every instance calculated over 12 

months is 0.14. The average errors for the entire year vary from 0.30 (West) to 0.39 

(WestNorthCentral). The lowest errors observed for a particular instance are for 

December in the West (0.25) and the highest for a particular instance are August in the 

Southeast (0.56).  

USHCN 

The average of the difference of extreme seasonal values (maximum and 

minimum for 12 months) for every instance calculated individually over 9 climatic 

regions is 0.20. The average mean absolute error over entire USA varies from 0.32 

(October) to 0.51 (July). The corresponding average of extreme errors between climatic 

regions (maximum and minimum for 9 regions) for every instance calculated over 12 

months is 0.14. The average errors over the entire year vary from 0.38 (West) to 0.45 

(Southeast). The lowest errors observed for a particular instance are for January in the 
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Northeast (0.26) and the highest for a particular instance are for July in the Southeast 

(0.62).  

 The above values show that the variation of spatial accuracy is greater across 

seasons than climatic regions. The lowest errors amongst climatic regions are observed 

in the West and Northwest regions (C=0.30, U=0.39) and the highest in the 

WestNorthCentral and Southwest regions (C=0.38, U=0.45). The examination of results 

across climatic regions individually exposed particular cases where the effect of density 

and interpolation methods is particularly significant (e.g. West North Central region).  

 The West and Northwest regions with their winter precipitation regime, 

mountainous terrain, and proximity to the Pacific ocean, show the least variation in 

errors across seasons as compared to rest of the United States where seasonality is the 

most significant factor. In previous studies for SPI, IDW and kriging both performed 

equally well and better than thin plate splines (Akhtari et al. 2009; Ali et al. 2011; 

Carbone et al. 2008). This study, which uses the larger spatial extent of the U.S., 

reaffirms these findings. It also demonstrates that variations in interpolation accuracy 

due to seasonal variability of precipitation are larger than variations in accuracy due to 

the selection of the interpolation method. Chen et al. (2010) also observed that ordinary 

kriging and IDW performed similarly for 753 stations across China for interpolating 

daily precipitation. This study is similar to our case in terms of extent and station density 

with the only difference being the variable considered. 
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 Since the SPI is based solely on precipitation, it is influenced the most by 

precipitation mechanisms and the resulting inter-annual variations in precipitation spatial 

heterogeneity. The results also show that climatic regions (and hence location) and 

station density affect the accuracy more than the choice of interpolation method. 

 

 

 

Table 4.1 Summary of paired t-tests for 1-month SPI for 27 combinations: 9 climatic regions 

and 3 months, Kriging versus IDW 2.0 

Result 

Number of occurrences 

COOP USHCN 

1 Kriging performs better than IDW 2.0 at 90% 

confidence level 24 22 

2 IDW 2.0 performs better than Kriging at 90% 

confidence level 0 0 

3 There is no statistically significant difference between 

the two methods at 90% confidence level 3 5 

 

 

 

Table 4.2 Summary of paired t-tests for 1-month SPI for 27 combinations: 9 climatic regions 

and 3 months, Kriging versus IDW 2.5 

 

Result 

Number of occurrences 

COOP USHCN 

1 Kriging performs better than IDW 2.5 at 90% 

confidence level 20 22 

2 IDW 2.5 performs better than Kriging at 90% 

confidence level 0 1 

3 There is no statistically significant difference between 

the two methods at 90% confidence level 7 4 
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Table 4.3 1-month SPI, Mean absolute errors, COOP 

  Kriging  IDW 2.0  IDW 2.5 

Mean 0.36 0.42 0.38 

Median 0.27 0.32 0.29 

 

 

 

Table 4.4 1-month SPI, Mean absolute errors, USHCN 

  Kriging  IDW 2.0  IDW 2.5 

Mean 0.41 0.47 0.44 

Median 0.31 0.36 0.33 

  

 

 

Tables 4.1 and 4.2 show the comparison of the individual instances using paired t 

-tests. It is clearly seen that kriging performs better than IDW 2.5 and IDW 2.0. 

However as seen in Tables 4.3 and 4.4, the means of all three methods are very close and 

do not differ by a considerable amount. 
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4.1.2 1-month SPEI 

The descriptions below refer to Figures 4.5 and 4.6 that shows the MAE for 1-

month SPEI for 9 climatic regions. These errors are calculated for COOP and USHCN 

datasets. The results are analyzed for 9 climatic regions independently. 

NorthEast 

Kriging performed the best for 1-month SPEI for all months (MAE: C=0.34, 

U=0.34) followed by IDW 2.5 (MAE: C=0.35, U=0.37) and IDW 2 (MAE: C=0.38, 

U=0.39) and this can be seen for most combinations in Figures 4.5 and 4.6. The 

maximum errors occurred in February, July and August (MAE: C=0.40, U=0.44) and the 

minimum in October, November and May (MAE: C=0.28, U=0.27).  

 The difference between extreme errors (maximum and minimum) are:  

seasonality (MAE: C=0.12, U=0.17), interpolation method (MAE: C=0.055, U=0.053) 

and density of stations (MAE: 0.073). As in the case of SPI, the variation in error is 

driven primarily by precipitation climatology. However the variation of errors seasonally 

is lower in this case because of the effect of temperature. The difference between two 

datasets is also small.  

SouthEast 

Kriging had the lowest error for 1-month SPEI for all months (MAE: C=0.32, 

U=0.31) followed by IDW 2.5 (MAE: C=0.33, U=0.33) and IDW 2 (MAE: C=0.36, 

U=0.37) and this can be seen for all combinations in Figures 4.5 and 4.6. The maximum 

errors occurred in July and August (MAE: C=0.37, U=0.40) and the minimum in 

February (MAE: C=0.24, U=0.26).  
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 The difference between extreme errors (maximum and minimum) are:  

seasonality (MAE: C=0.15, U=0.14), interpolation method (MAE: C=0.079, U=0.096) 

and density of stations (MAE: 0.03). As in the case of SPI, the errors are affected by 

precipitation climatology with the months of July and August giving far higher errors 

than remaining months, but again the seasonal variation is considerably lower than SPI 

due to temperature input. The errors are slightly lower than corresponding SPI values. 

The effect of density of stations is negligible in this case with both datasets performing 

similarly.  

Central 

Kriging had the lowest error for 1-month SPEI for all months (MAE: C=0.30, 

U=0.30) followed by IDW 2.5 (MAE: C=0.32, U=0.33) and IDW 2 (MAE: C=0.35, 

U=0.37) and this can be seen for most combinations in Figures 4.5 and 4.6. The 

maximum errors occurred in July for COOP (MAE: C=0.34) and December for USHCN 

(MAE: U=0.36) and the minimum in May (MAE: C=0.26, U=0.25).  

 The difference between extreme errors (maximum and minimum) are:  

seasonality (MAE: C=0.09, U=0.11), interpolation method (MAE: C=0.094, U=0.098) 

and density of stations (MAE: 0.059). The effect of precipitation climatology is 

important but the seasonal variation is significantly lower than for SPI. The errors are 

lower than for SPI. This effect of interpolation methods for both the datasets is fairly 

significant and although this region has the highest density of COOP stations the 

difference in performance of the datasets is not very high. 
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EastNorthCentral 

Kriging had the lowest error for 1-month SPEI for all months (MAE: C=0.32, 

U=0.37) followed by IDW 2.5 (MAE: C=0.35, U=0.41) and IDW 2 (MAE: C=0.39, 

U=0.46) and this can be seen for all combinations in Figures 4.5 and 4.6. The maximum 

errors occurred in August for COOP (MAE: C=0.37), February for USHCN (MAE: U= 

0.44) and the minimum in October (MAE: C=0.25, U= 0.28).  

 The difference between extreme errors (maximum and minimum) are:  

seasonality (MAE: C=0.12, U=0.16), interpolation method (MAE: C=0.112, U=0.128) 

and density of stations (MAE: 0.10). The seasonal variation is significantly lower than 

SPI which is attributed to temperature input and the errors are slightly lower than 

corresponding SPI values. The significant difference between interpolation methods and 

datasets is clearly seen in these results. The COOP network has a station density that is 

about four times greater than USHCN and this can be observed in the difference of 

spatial accuracy of the two datasets. 

South 

Kriging had the lowest error for 1-month SPEI for all months (MAE: C=0.28, 

U=0.27) followed by IDW 2.5 (MAE: C=0.31, U=0.30) and IDW 2 (MAE: C=0.34, 

U=0.35) and this can be seen for all combinations in Figures 4.5 and 4.6. The maximum 

errors occurred in October for COOP (MAE: C=0.32), January for USHCN (MAE: 

U=0.32) and the minimum in February for COOP (MAE: C=0.25), April for USHCN 

(MAE: U=0.23).  

 The difference between extreme errors (maximum and minimum) are:  
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seasonality (MAE: C=0.07, U=0.09), interpolation method (MAE: C=0.055, U=0.13) 

and density of stations (MAE: 0.049). The seasonal variation is again significantly lower 

than SPI but still an important factor in spatial accuracy. The errors are slightly lower 

than corresponding SPI values. USHCN performs almost as well as COOP stations. The 

seasonal variation is lowest amongst different regions considered for 1-month SPEI. 

SouthWest 

Kriging had the lowest error for 1-month SPEI for all months (MAE: C=0.35, 

U=0.36) followed by IDW 2.5 (MAE: C=0.36, U=0.38) and IDW 2 (MAE: C=0.39, 

U=0.42) and this can be seen for all combinations in Figures 4.5 and 4.6. The maximum 

errors occurred in August for COOP (MAE: C=0.46), January for USHCN (MAE: 

U=0.46) and the minimum in May (MAE: C=0.31, U=0.29).  

 The difference between extreme errors (maximum and minimum) are:  

seasonality (MAE: C=0.15, U=0.17), interpolation method (MAE: C=0.072, U=0.085) 

and density of stations (MAE: 0.086). As in the case of SPI the errors are influenced by 

seasonal variation of precipitation climatology with highest errors occurring during the 

monsoon. The errors are lower than SPI for corresponding duration. The effect of station 

density is moderately higher as compared to other regions as is the influence of 

interpolation method. 

WestNorthCentral 

Kriging had the lowest error for 1 month SPEI for all months (MAE: C=0.31, 

U=0.33) followed by IDW 2.5 (MAE: C=0.32, U=0.35) and IDW 2 (MAE: C=0.35, 

U=0.39) and this can be seen for all combinations in Figures 4.5 and 4.6. The maximum 
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errors occurred in January (MAE: C=0.36, U=0.43) and the minimum in October and 

November (MAE: C=0.26, U= 0.28).  

 The difference between extreme errors (maximum and minimum) are:  

seasonality (MAE: C=0.10, U=0.15), interpolation method (MAE: C=0.045, U=0.069) 

and density of stations (MAE: 0.064). The seasonal variation for this region is very low 

for 1-month SPEI. The effect of station density is less than it was for the 1-month SPI. 

West 

Kriging had the lowest error for 1-month SPEI for all months (MAE: C=0.32, 

U=0.34) followed by IDW 2.5 (MAE: C=0.33, U=0.36) and IDW 2 (MAE: C=0.35, 

U=0.39) and this can be seen for all combinations in Figures 4.5 and 4.6. The maximum 

errors occurred in July and August (MAE: C=0.45, U=0.44) and the minimum error in 

April (MAE: C=0.25, U=0.28).  

 The difference between extreme errors (maximum and minimum) are:  

seasonality (MAE: C=0.20, U=0.16), interpolation method (MAE: C=0.064, U=0.068) 

and density of stations (MAE: 0.101). Even with a winter precipitation regime, the 

highest errors occur in June and July and the seasonal variation is slightly higher than 

SPI. The effect of station density is significant in this case. 
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NorthWest 

Kriging performed better for 1-month SPEI for all months (MAE: C=0.33, 

U=0.35) followed by IDW 2.5 (MAE: C=0.34, U=0.36) and IDW 2 (MAE: C=0.36, 

U=0.38) and this can be seen for all combinations in Figures 4.5 and 4.6. The maximum 

errors occurred in January (MAE: C=0.36, U=0.45) and the minimum in November for 

COOP (MAE: C=0.30), May for USHCN (MAE: U=0.29).  

 The difference between extreme errors (maximum and minimum) are:  

seasonality (MAE: C=0.06, U=0.15), interpolation method (MAE: C=0.065, U=0.067) 

and density of stations (MAE: 0.087). As in the case of SPI, the errors are affected by 

monthly variations in precipitation. The seasonal variation is slightly lower than SPI for 

COOP and slightly higher than USHCN. The highest errors coincide with months of 

high precipitation. The errors are slightly lower than corresponding SPI values and the 

influence of station density is important. 
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Figure 4.5 Monthly 1-month SPEI for 9 climatic regions: COOP network 
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Figure 4.6 Monthly 1-month SPEI for 9 climatic regions: USHCN network  
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Figure 4.7 Monthly 1-month SPEI averaged for the entire U.S.: COOP network 

 

 

 

 

 
Figure 4.8 Monthly 1-month SPEI averaged for the entire U.S.: USHCN network 
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Figures 4.7 and 4.8 show the variation of 1-month SPEI average over the entire United 

States. 

COOP 

The average of the difference of extreme seasonal values (maximum and 

minimum for 12 months) for every instance calculated individually over 9 climatic 

regions is 0.12. The average mean absolute errors over the U.S. vary from 0.29 

(November, October) to 0.37 (July, August). The corresponding average of extreme 

errors between climatic regions (maximum and minimum for 9 regions) for every 

instance calculated over 12 months is 0.10. The average errors over the entire year vary 

from 0.29 (South) to 0.35 (Southwest). The lowest errors observed for a particular 

instance is for February month in the Southeast (0.24) and the highest for a particular 

instance is for August in the Southwest (0.46).  

USHCN 

The average of the difference of extreme seasonal values (maximum and 

minimum for 12 months) for every instance calculated individually over 9 climatic 

regions is 0.15. The average mean absolute errors over the U.S. vary from 0.29 (May, 

October) to 0.39 (January). The corresponding average of extreme errors between 

climatic regions (maximum and minimum for 9 regions) for every instance calculated 

over 12 months is 0.12. The average errors over the entire year vary from 0.27 (South) to 

0.37 (East North Central). The lowest errors observed for a particular instance is for 

April in the South (0.23) and the highest for a particular instance is for January in the 

Southwest (0.46).  
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 The above results confirm that there are larger variations in spatial accuracy 

across seasons than climatic regions and the variations in spatial accuracy for 1-month 

SPEI are lower than 1-month SPI. The climatic region results exposed particular cases 

where the effect of density and interpolation methods is particularly strong.  

 Since the SPEI is a drought index that depends on both precipitation and 

temperature it can be interpolated more accurately than the 1-month SPI. The self-

calibrated PDSI and SPEI can detect drought caused by water demand 

(evapotranspiration). Because the self-calibrated PDSI measures more of a long-term 

drought signal, it also has relatively lower seasonal and spatial (over climatic regions) 

variation than the 1-month SPI as can be seen in Section 4.1.3.  

 The influence of station density, and climatic regions are lower for the SPEI than 

the SPI due to the impact of temperature on its calculation. The effect of station density 

and interpolation methods are less for the 1-month SPEI, but the best options available 

(e.g., ordinary kriging and COOP) should be used to achieve the highest accuracy. 
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Table 4.5 Summary of paired t-tests for 1-month SPEI: 9 climatic regions * 3 months = 27 

combinations, Kriging versus IDW 2.0 

Result 

Number of occurrences 

COOP USHCN 

1 Kriging performs better than IDW 2.0 at 90% confidence 

level 25 27 

2 IDW 2.0 performs better than Kriging at 90% confidence 

level 0 

0 

 

3 There is no statistically significant difference between the 

two methods at 90% confidence level 2 0 

 

 

 

Table 4.6 Summary of paired t-tests for 1-month SPEI: 9 climatic regions * 3 months = 27 

combinations, Kriging versus IDW 2.5 

Result 

Number of occurrences 

COOP USHCN 

1 Kriging performs better than IDW 2.5 at 90% confidence 

level 20 25 

2 IDW 2.5 performs better than Kriging at 90% confidence 

level 1 0 

3 There is no statistically significant difference between the 

two methods at 90% confidence level 6 2 

 

 

 
Table 4.7 1-month SPEI, Mean absolute errors, COOP 

  Kriging  IDW 2.0  IDW 2.5 

Mean 0.31 0.36 0.33 

Median 0.24 0.29 0.26 

 

 

 

Table 4.8 1-month SPEI, Mean absolute errors, USHCN 

  Kriging  IDW 2.0  IDW 2.5 

Mean 0.33 0.39 0.35 

Median 0.25 0.31 0.27 
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Tables 4.5 and 4.6 show the results of paired t-tests used to compare different 

interpolation methods for different instances of 1-month SPEI. Kriging clearly performs 

better than IDW 2.5 and IDW 2.0, however as seen in Tables 4.7 and 4.8 the differences 

are small. The difference in accuracy of interpolation methods is not the most significant 

factor affecting spatial accuracy of 1-month SPEI. 

4.1.3. Self-calibrated PDSI 

 The descriptions below refer to Figures 4.9 to 4.12 that show the variation across 

9 climatic regions and 12 months of self-calibrated PDSI for USHCN and COOP 

datasets. As the PDSI is not standardized the same way as SPI and SPEI, the errors are 

not directly compared with the corresponding SPI and SPEI values. Only comparisons of 

relative influence of different factors are made in this section. The PDSI represents more 

long-term moisture trends than the 1-month SPI and SPEI, but may be compared to 6-, 

9- or 12-month SPI and SPEI. 

NorthEast 

Kriging had the lowest error for PDSI for all months (MAE: C=1.00, U=1.13) 

followed by IDW 2.5 (MAE: C=1.25, U=1.16) and IDW 2 (MAE: C=1.27, U=1.19) and 

this can be seen for all combinations in Figures 4.9 and 4.10.The difference between 

extreme errors (maximum and minimum) are: seasonality (MAE: C=0.19, U=0.20), 

interpolation method (MAE: C=0.31, U=0.08) and density of stations (MAE: 0.06). The 

seasonal variation is significant for both datasets and clearly changes in seasonal 

precipitation patterns produce significant variations in spatial accuracy. Although the 

errors are not standardized, and the PDSI has higher errors, it can be seen that the 
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seasonal variation in errors for the PDSI is lower than for 1-month SPI and comparable 

to 1-month SPEI. The difference between interpolation methods is very high for the 

COOP dataset, with kriging performing far better than IDW 2.5 or IDW 2.0 

SouthEast 

Kriging had the lowest error for PDSI for all months (MAE: U=0.87, C=1.14) 

followed by IDW 2.5 (MAE: C=1.20, U=1.16) and IDW 2 (MAE: C=1.24, U=1.23) and 

this can be seen for all combinations in Figures 4.9 and 4.10. The difference between 

extreme errors (maximum and minimum) are: seasonality (MAE: C=0.20, U=0.21), 

interpolation method (MAE: C=0.42, U=0.11) and density of stations (MAE: 0.25). The 

seasonal variation is significant for both datasets and seasonal variations in precipitation 

drives variations in spatial accuracy. The difference between interpolation methods is 

again very high for the COOP dataset with kriging performing far better than either IDW 

2.5 or IDW 2.0, this difference is lower for USHCN. The difference of errors between 

the datasets is also significant in this region. 

Central 

Kriging had the lowest error for PDSI for all months (MAE: C=0.90, U=1.04) 

followed by IDW 2.5 (MAE: C=1.16, U=1.10) and IDW 2 (MAE: C=1.22, U=1.15) and 

this can be seen for almost all combinations in Figures 4.9 and 4.10. The difference 

between extreme errors (maximum and minimum) are: seasonality (MAE: C=0.14, 

U=0.12), interpolation method (MAE: C=0.39, U=0.18) and density of stations (MAE: 

0.11). The seasonal variation is low for both datasets. The seasonal variation for PDSI is 

lower than the corresponding variation for 1-month SPI and 1-month SPEI. The 
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difference between interpolation methods is large for the COOP dataset with kriging 

performing better than either IDW 2.5 or IDW 2.0. The difference between interpolation 

methods is lower for USHCN, but still higher than other regions. The difference of 

errors between the datasets is fairly low in this region. 

EastNorthCentral 

Kriging had the lowest error for PDSI for all months (MAE: C=0.86, U=1.09) 

followed by IDW 2.5 (MAE: C=1.05, U=1.15) and IDW 2 (MAE: C=1.12, U=1.24) and 

this can be seen for all combinations in Figures 4.9 and 4.10. The difference between 

extreme errors (maximum and minimum) are: seasonality (MAE: C=0.11, U=0.12), 

interpolation method (MAE: C=0.29, U=0.18) and density of stations (MAE: 0.17). The 

seasonal variation is low in this region. The seasonal variation is lower for PDSI than for 

1-month SPI and 1-month SPEI. The difference between interpolation methods is large 

for both COOP and USHCN datasets with kriging performing far better than either IDW 

2.5 or IDW 2.0. The difference between the datasets is not large when compared to other 

regions.  

South 

Kriging had the lowest error for PDSI for all months (MAE: C=0.95, U=1.09) 

followed by IDW 2.5 (MAE: C=1.22, U=1.12) and IDW 2 (MAE: C=1.27, U=1.19) and 

this can be seen for all combinations in Figures 4.9 and 4.10. The difference between 

extreme errors (maximum and minimum) are: seasonality (MAE: C=0.10, U=0.18), 

interpolation method (MAE: C=0.34, U=0.14) and density of stations (MAE: 0.082). 

The seasonal variation is not large, although the extreme values for USHCN are almost 
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twice that of COOP. The seasonal variation in PDSI is lower than for 1-month SPI and 

1-month SPEI. The difference between interpolation methods is quite large for the 

COOP dataset with kriging performing far better than either IDW 2.5 or IDW 2.0, but 

the difference between interpolation methods is much less for USHCN. The difference 

of errors between the USHCN and COOP datasets is not very large in this region. 

SouthWest 

Kriging had the lowest error for PDSI for all months (MAE: C=0.96, U=1.09) 

followed by IDW 2.5 (MAE: C=1.19, U=1.09) and IDW 2 (MAE: C=1.21, U=1.13) and 

this can be seen for most combinations in Figures 4.9 and 4.10.T he difference between 

extreme errors (maximum and minimum) are: seasonality (MAE: C=0.14, U=0.26), 

interpolation method (MAE: C=0.29, U=0.06) and density of stations (MAE: 0.052). 

The seasonal variation is lower for COOP and almost twice as large for USHCN. The 

seasonal variation in PDSI is lower than for 1-month SPI and 1-month SPEI. The 

difference between interpolation methods is quite large for the COOP dataset with 

kriging performing far better than both IDW 2.5 and IDW 2.0, however the differences 

between interpolation methods are almost nonexistent for USHCN. The difference in 

spatial accuracy between the USHCN and COOP datasets is less in this region. 

WestNorthCentral 

Kriging had the lowest error for PDSI for all months (MAE: C=0.94, U=1.09) 

followed by IDW 2.5 (MAE: C=1.15, U=1.11) and IDW 2 (MAE: C=1.17, U=1.13) and 

this can be seen for all combinations in Figures 4.9 and 4.10. The difference between 

extreme errors (maximum and minimum) are: seasonality (MAE: C=0.104, U=0.20), 
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interpolation method (MAE: C=0.26, U=0.06) and density of stations (MAE: 0.034). 

The seasonal variation is lower for this region and the extreme errors for USHCN are 

almost twice as large as COOP. The difference between interpolation methods is quite 

large for the COOP dataset with kriging performing far better than either IDW 2.5 or 

IDW 2.0, but the differences are trivial for USHCN. The difference of errors between the 

datasets is also insignificant. 

West 

Kriging had the lowest error for PDSI for all months (MAE: C=0.83, U=1.10) 

followed by IDW 2.5 (MAE: C=1.07, U=1.15) and IDW 2 (MAE: C=1.10, U=1.19) and 

this can be seen for all combinations in Figures 4.9 and 4.10. The difference between 

extreme errors (maximum and minimum) are: seasonality (MAE: C=0.12, U=0.27), 

interpolation method (MAE: C=0.29, U=0.10) and density of stations (MAE: 0.17). The 

seasonal variation is relatively higher for USHCN network and very low for COOP 

network as is shown by the extreme values. The difference between interpolation 

methods is quite large for the COOP dataset with kriging performing far better than 

either IDW 2.5 or IDW 2.0, but these differences are not as large for USHCN. COOP 

provides a fair amount of improvement in spatial accuracy as compared to USHCN. 
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NorthWest 

Kriging had the lowest errors for PDSI for all months (MAE: C=0.92, U=1.05) 

followed by IDW 2.5 (MAE: C=1.15, U=1.12) and IDW 2 (MAE: C=1.15, U=1.11) and 

this can be seen for most combinations in Figures 4.9 and 4.10. The difference between 

extreme errors (maximum and minimum) are: seasonality (MAE: C=0.10, U=0.13), 

interpolation method (MAE: C=0.24, U=0.07) and density of stations (MAE: 0.06). The 

seasonal variation in this region is minimal for both the USHCN and COOP datasets. 

The difference between interpolation methods are large for the COOP dataset, with 

kriging performing far better than either IDW 2.5 or IDW 2.0, but they are minimal for 

USHCN. The difference of errors between the datasets is low in this region.
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Figure 4.9 Monthly PDSI for 9 climatic regions: COOP network 
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Figure 4.10 Monthly PDSI for 9 climatic regions: USHCN network 
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Figure 4.11 Monthly PDSI averaged over the U.S.: COOP network 

 

 

 
 

 
Figure 4.12 Monthly PDSI averaged over the U.S.: USHCN network 
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Figures 4.11 and 4.12 show the variation of mean absolute errors over 9 climatic 

regions for PDSI over entire U.S. They reaffirm the previous results described above for 

each climatic region. The seasonal variation for PDSI is very low when compared to 1-

month SPI and 1-month SPEI values. This is because PDSI represents long-term 

moisture conditions as compared to the monthly SPI and SPEI. The difference between 

interpolation methods is much more important for the COOP network as compared to 

USHCN.  

COOP 

The average of the difference of extreme seasonal values (maximum and 

minimum for 12 months) for every instance calculated individually over 9 climatic 

regions is 0.13. The average mean absolute errors over entire U.S. vary from 0.89 

(November) to 0.94 (January). The corresponding average of extreme errors between 

climatic regions (maximum and minimum for 9 regions) for every instance calculated 

over 12 months is 0.21. The average errors over the entire year vary from 0.83 

(NorthWest) to 1.00 (NorthEast). The lowest errors observed for a particular instance is 

for April in Southeast (0.77) and the highest for a particular instance is February in 

Northeast (1.10).  

USHCN 

The average of the difference of extreme seasonal values (maximum and 

minimum for 12 months) for every instance calculated individually over 9 climatic 

regions is 0.19. The average mean absolute errors over entire U.S. vary from 1.06 (May) 

to 1.13 (August). The corresponding average of extreme errors between climatic regions 
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(maximum and minimum for 9 regions) for every instance calculated over 12 months is 

0.19. The average errors over entire year vary from 1.04 (Central) to 1.13 (Southeast). 

The lowest errors observed for a particular instance is for January in West (0.97) and the 

highest for a particular instance is July in Southwest (1.25).  

 COOP has higher variations in error across the climatic regions than across the 

seasons. For USHCN, there were only minor differences in the magnitude of the errors 

for the climatic regions versus the seasons. The maps in Section 4.4 show there are 

significant local variations in errors for COOP that are not present in USHCN. This 

means that although the error values for the two datasets are similar, the performance 

varies substantially at the local scale. Therefore, a finer scale examination of spatial 

variations in interpolation accuracy is necessary for PDSI.  

The spatial accuracy of the interpolation varies due to a number of factors. It is 

clear that interpolation methods significantly influence the accuracy of interpolation 

using the COOP network and this is more significant than the variation of spatial 

accuracy by season or by networks. Carbone et al. (2008) have shown that IDW and 

kriging both had similar accuracy for interpolating PDSI over North and South Carolina. 

Sensitivity studies of PDSI have shown it to be significantly dependent on the weighting 

factor (Heim 2002), the value for available water holding capacity of the soil (Karl 1983) 

and the calibration period used for calculation (Karl et al. 1987). COOP contains few 

stations with significantly higher lengths (>50 years), whereas most of the USHCN 

stations contain a good long term record. These differences influence the calculation of 
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PDSI and account for the performance difference between COOP and USHCN 

networks. 

 

 

 
Table 4.9 Summary of paired t-tests for PDSI: 9 climatic regions * 3 months = 27 combinations, 

Kriging versus IDW 2.0 

Result 

Number of occurrences 

COOP USHCN 

1 Kriging performs better than IDW 2.0 at 90% 

confidence level 26 27 

2 IDW 2.0 performs better than Kriging at 90% 

confidence level 0 0 

3 There is no statistically significant difference between 

the two methods at 90% confidence level 1 0 

 

 

 

Table 4.10 Summary of paired t-tests for PDSI: 9 climatic regions * 3 months = 27 

combinations, Kriging versus IDW 2.5 

Result 

Number of occurrences 

COOP USHCN 

1 Kriging performs better than IDW 2.5 at 90% 

confidence level 27 23 

2 IDW 2.5 performs better than Kriging at 90% 

confidence level 0 0 

3 There is no statistically significant difference between 

the two methods at 90% confidence level 0 4 
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Table 4.11 PDSI, Mean absolute errors, COOP 

  Kriging  

IDW 

2.0  

IDW 

2.5 

Mean 0.92 1.20 1.16 

Median 0.63 0.99 0.92 

 

 

 

Table 4.12 PDSI, Mean absolute errors, USHCN 

  Kriging  

IDW 

2.0  

IDW 

2.5 

Mean 1.09 1.18 1.13 

Median 0.86 0.99 0.9 

 

 

 

Tables 4.9 and 4.10 demonstrate that kriging is better than IDW 2.0 and IDW 2.5 

in almost all cases. Tables 4.11 and 4.12 show that the difference in interpolation 

accuracy between different interpolation methods is small for USHCN, but it is much 

more important for COOP. This suggests that the main factor limiting the accuracy of 

the USHCN interpolations is station density, while the higher density of COOP makes 

the selection of interpolation methods more important. 
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4.1.4. 6-, 9- and 12-month SPI 

 The descriptions below refer to Figures 4.13 to 4.16 that show the variations of 

6-, 9- and 12-month SPI over 9 climatic regions for two datasets. Only January, July and 

October months are used for comparison. 

NorthEast 

Kriging had the lowest error for 6-, 9- and 12-month SPI for all months (MAE: 

C=0.39, U=0.25) followed by IDW 2.5 (MAE: C=0.41, U=0.26) and IDW 2 (MAE: 

C=0.43, U=0.26) and this can be seen for all combinations in Figures 4.13 and 4.14. The 

errors vary from a maximum of (MAE: C=0.41, U=0.28) to a minimum of (MAE: 

C=0.37, U=0.22) among the month-index combinations considered. 

 The difference between extreme errors (maximum and minimum) are:  

interpolation methods (MAE: C=0.047, U=0.028) and density of stations (MAE: 0.17). 

USHCN performs better than COOP for all cases. The error values for multiscalar SPI 

for USHCN are lower than corresponding values for 1-month SPI and SPEI, but this is 

not true for COOP. The errors for most of the combinations have similar magnitudes. 

SouthEast 

Kriging had the lowest error for 6-, 9- and 12-month SPI for all months (MAE: 

C=0.42, U=0.37) followed by IDW 2.5 (MAE: C=0.44, U=0.38) and IDW 2 (MAE: 

C=0.47, U=0.39) and this can be seen for all combinations in Figures 4.13 and 4.14. The 

errors vary from a maximum of (MAE: C=0.46, U=0.41) to minimum values of (MAE: 

C=0.40, U=0.28) among the time scales considered.  

 The difference between extreme errors (maximum and minimum) are:  
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interpolation method (MAE: C=0.052, U=0.027) and density of stations (MAE: 0.12). 

USHCN performs better than COOP for all cases. The error values for multiscalar SPI 

for USHCN are lower than corresponding values for 1-month SPI and SPEI, but this is 

not true for COOP. 

Central 

Kriging had the lowest error for 6-, 9- and 12-month SPI for all months (MAE: 

C=0.38, U=0.27) followed by IDW 2.5 (MAE: C=0.40, U=0.28) and IDW 2 (MAE: 

C=0.45, U=0.28) and this can be seen for all combinations in Figures 4.13 and 4.14. The 

errors vary from a maximum of (MAE: C=0.39, U=0.30) to a minimum of (MAE: 

C=0.35, U=0.24) among the month-index combinations considered. 

 The difference between extreme errors (maximum and minimum) are:  

interpolation method (MAE: C=0.08, U=0.02) and density of stations (MAE: 0.14). 

USHCN performs better than COOP for all cases. The error values for multiscalar SPI 

for USHCN are lower than corresponding values for 1-month SPI and SPEI. This is not 

the case for COOP, whose values for all the combinations are similar. 

EastNorthCentral 

Kriging had the lowest error for 6-, 9- and 12-month SPI for all months (MAE: 

C=0.40, U=0.21) followed by IDW 2.5 (MAE: C=0.42, U=0.25) and IDW 2 (MAE: 

C=0.47, U=0.29) and this can be seen for all combinations in Figures 4.13 and 4.14. The 

seasonal errors varied from a maximum of (MAE: C=0.41, U=0.26) to a minimum of 

(MAE: C=0.35, U=0.19) among the month-index combinations considered.  

 The difference between extreme errors (maximum and minimum) are:  
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interpolation method (MAE: C=0.08, U=0.091) and density of stations (MAE: 0.22). 

USHCN performs better than COOP for all cases. The error values for multiscalar SPI 

for USHCN are lower than corresponding values for 1-month SPI and SPEI, but the 

same does not hold true for COOP. 

South 

Kriging had the lowest error for 6-, 9- and 12-month SPI for all months (MAE: 

C=0.38, U=0.31) followed by IDW 2.5 (MAE: C=0.41, U=0.32) and IDW 2 (MAE: 

C=0.46, U=0.34) and this can be seen for all combinations in Figures 4.13 and 4.14. The 

errors vary from a maximum of (MAE: C=0.41, U=0.32) to a minimum of (MAE: 

C=0.36, U=0.28) among the month-index combinations considered.  

 The difference between extreme errors (maximum and minimum) are:  

interpolation method (MAE: C=0.09, U=0.048) and density of stations (MAE: 0.10). 

The USHCN stations perform far better than COOP stations for all cases. The error 

values for multiscalar SPI for USHCN are lower than corresponding values for 1-month 

SPI and SPEI, but the same case does not hold true for COOP. 

SouthWest 

Kriging had the lowest error for 6-, 9- and 12-month SPI for all months (MAE: 

C=0.46, U=0.32) followed by IDW 2.5 (MAE: C=0.48, U=0.34) and IDW 2 (MAE: 

C=0.50, U=0.36) and this can be seen for all combinations in Figures 4.13 and 4.14. The 

errors vary from a maximum of (MAE: C=0.49, U=0.35) to a minimum of (MAE: 

C=0.44, U = 0.28) among the month-index combinations considered. 

 The difference between extreme errors (maximum and minimum) are:  
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interpolation method (MAE: C=0.04, U=0.056) and density of stations (MAE: 0.18). 

USHCN performs better than COOP for all cases. The error values for multiscalar SPI 

for USHCN are lower than corresponding values for 1-month SPI and SPEI. 

WestNorthCentral 

Kriging had the lowest error for 6-, 9- and 12-month SPI for all months (MAE: 

C=0.42, U=0.25) followed by IDW 2.5 (MAE: C=0.44, U=0.27) and IDW 2 (MAE: 

C=0.47, U=0.28) and this can be seen for most combinations in Figures 4.13 and 4.14. 

The errors vary from a maximum of (MAE: C=0.44, U=0.29) to a minimum of (MAE: 

C=0.41, U=0.22) among the month-index combinations considered. 

 The difference between extreme errors (maximum and minimum) are:  

interpolation method (MAE: C=0.06, U=0.033) and density of stations (MAE: 0.21). 

USHCN performs better than COOP stations for all cases. The error values for 

multiscalar SPI for USHCN are lower than for 1-month SPI and SPEI. This does not 

hold true for COOP. 

West 

Kriging had the lowest error for 6-, 9- and 12-month SPI for all months (MAE: 

C=0.31, U=0.39) followed by IDW 2.5 (MAE: C=0.33, U=0.40) and IDW 2 (MAE: 

C=0.35, U=0.42) and this can be seen for all combinations in Figures 4.13 and 4.14. The 

errors vary from a maximum of (MAE: C=0.41, U=0.41) to a minimum of (MAE: 

C=0.28, U=0.35) among the month-index combinations considered. 

 The difference between extreme errors (maximum and minimum) are:  
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interpolation method (MAE: C=0.05, U=0.037) and density of stations (MAE: 0.11). 

The overall errors for COOP are lower than USHCN in this case. The seasonal variation 

in interpolation errors for USHCN is quite low. 

NorthWest 

Kriging had the lowest error for 6-, 9- and 12-month SPI for all months (MAE: 

C=0.37, U=0.32) followed by IDW 2.5 (MAE: C=0.39, U=0.34) and IDW 2 (MAE: 

C=0.41, U=0.34) and this can be seen for most combinations in Figures 4.13 and 4.14. 

The errors vary from a maximum of (MAE: C=0.39, U=0.41) to a minimum of (MAE: 

C=0.35, U=0.28) among the month-index combinations considered. 

 The difference between extreme errors (maximum and minimum) are:  

interpolation method (MAE: C=0.05, U=0.17) and density of stations (MAE: 0.09). 

USHCN performs better than COOP for all cases. The network is still the most critical 

factor that affects interpolation accuracy. 
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Figure 4.13 Monthly 6-, 9- and 12-month SPI for 9 climatic regions: COOP network 
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Figure 4.14 Monthly 6-, 9- and 12-month SPI for 9 climatic regions: USHCN network 
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Figure 4.15 6-, 9- and 12-month SPI for January (J), July (Jy) and October (O) averaged across 

U.S.: COOP network 

 

 

 

 

 
Figure 4.16 6-, 9- and 12-month SPI for January (J), July (Jy) and October (O) averaged across 

U.S.: USHCN network 
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Figures 4.13 to 4.16 show the mean absolute errors for multiscalar for January, 

July and October across 9 climatic regions and aggregated over the entire U.S. for both 

COOP and USHCN datasets. The error values are lower for USHCN than COOP. This is 

despite the fact that USHCN has a lower density of stations. For both 1-month SPI and 

1-month SPEI, COOP had slightly lower errors than USHCN for most instances. The 

effect of interpolation methods on the overall accuracy is minimal.  

 The variation of values amongst different month-index combinations is lower for 

COOP as compared to USHCN dataset. Relatively higher errors for multiscalar SPI with 

USHCN data were observed in Southeast and West regions. The western region is an 

outlier for both USHCN and COOP datasets with it showing slightly lower errors than 

other climatic regions for COOP and vice-versa for USHCN.  

 

 

 

Table 4.13 Summary of paired t-tests for multiscalar SPI: 9 climatic regions * 3 months = 27 

combinations, Kriging versus IDW 2.0 

Result 

Number of occurrences 

COOP USHCN 

1 Kriging performs better than IDW 2.0 at 90% 

confidence level 75 80 

2 IDW 2.0 performs better than Kriging at 90% 

confidence level 0 0 

3 There is no statistically significant difference 

between the two methods at 90% confidence level 6 1 

 

 

 

 

 

 



  

  

93 

 

 

Table 4.14 Summary of paired t-tests for multiscalar SPI: 9 climatic regions * 3 months = 27 

combinations, Kriging versus IDW 2.5 

Result 

Number of occurrences 

 

COOP USHCN 

1 Kriging performs better than IDW 2.5 at 90% 

confidence level 61 72 

2 IDW 2.5 performs better than Kriging at 90% 

confidence level 0 0 

3 There is no statistically significant difference 

between the two methods at 90% confidence level 20 9 

 

 

 

 
Table 4.15 Multiscalar SPI, Mean absolute errors, COOP 

  Kriging  

IDW 

2.0  

IDW 

2.5 

Mean 0.40 0.45 0.42 

Median 0.32 0.37 0.34 

 

 

 

 
Table 4.16 Multiscalar SPI, Mean absolute errors, USHCN 

  Kriging  

IDW 

2.0  

IDW 

2.5 

Mean 0.29 0.32 0.31 

Median 0.22 0.25 0.24 

 

  

 

 

Tables 4.13 and 4.14 show the results of paired t-tests for comparing 

interpolation methods for multiscalar SPI. Kriging clearly performs better than both 

IDW 2.5 and IDW 2.0, although the difference between average errors in the methods is 

not very large as seen in Tables 4.15 and 4.16. 
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4.1.5. 6-, 9- and 12-month SPEI  

 The descriptions below refer to Figures 4.17 to 4.20 that show the variation of 

mean absolute errors for 6-, 9- and 12-month SPEI for January, July and October across 

the 9 climatic regions. These errors are calculated for USHCN and COOP datasets. 

NorthEast 

Kriging had the lowest error for 6-, 9- and 12-month SPEI for all months (MAE: 

C=0.40, U=0.44) followed by IDW 2.5 (MAE: C=0.42, U=0.46) and IDW 2 (MAE: 

C=0.44, U=0.48) and this can be seen for most combinations in Figures 4.17 and 4.18. 

The errors vary from a maximum of (MAE: C=0.42, U=0.47) to a minimum of (MAE: 

C=0.38, U=0.44) among the month-index combinations considered. 

 The difference between extreme errors (maximum and minimum) are:  

interpolation method (MAE: C=0.052, U=0.051) and density of stations (MAE: 0.08). 

The difference between the two datasets is negligible. The errors are higher (for both 

datasets) than corresponding values for 1-month SPEI. The variation of errors amongst 

different month-index combinations is very low. 

SouthEast 

Kriging had the lowest error for 6-, 9- and 12-month SPEI for all months (MAE: 

C=0.41, U=0.44) followed by IDW 2.5 (MAE: C=0.43, U=0.46) and IDW 2 (MAE: 

C=0.47, U=0.50) and this can be seen for all combinations in Figures 4.17 and 4.18. The 

errors vary from a maximum of (MAE: C=0.44, U=0.50) to a minimum of (MAE: 

C=0.38, U=0.41) among the month-index combinations considered. 

 The difference between extreme errors (maximum and minimum) are:  
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interpolation method (MAE: C=0.06, U=0.064) and density of stations (MAE: 0.055). 

The overall difference between the two datasets is also lower as compared to multiscalar 

SPI and error values for both datasets are similar. The errors are slightly higher (for both 

datasets) than corresponding values for 1-month SPEI. For USHCN, interpolation 

accuracy of the multiscalar SPEI is lower than it was for multiscalar SPI. 

Central 

Kriging had the lowest error for 6-, 9- and 12-month SPEI for all months (MAE: 

C=0.38, U=0.42) followed by IDW 2.5 (MAE: C=0.40, U=0.44) and IDW 2 (MAE: 

C=0.45, U=0.49) and this can be seen for all combinations in Figures 4.17 and 4.18. The 

errors vary from a maximum of (MAE: C=0.40, U=0.43) to a minimum of (MAE: 

C=0.36, U=0.38).  

 The difference between extreme errors (maximum and minimum) are:  

interpolation method (MAE: C=0.08, U=0.083) and density of stations (MAE: 0.05). 

The errors are highly similar across all month-index combinations.  

EastNorthCentral 

Kriging had the lowest error for 6-, 9- and 12-month SPEI for all months (MAE: 

C=0.40, U=0.45) followed by IDW 2.5 (MAE: C=0.43, U=0.50) and IDW 2 (MAE: 

C=0.48, U=0.55) and this can be seen for all combinations in Figures 4.17 and 4.18. The 

errors vary from a maximum of (MAE: C=0.41, U=0.48) to a minimum of (MAE: 

C=0.36, U=0.41) among the month-index combinations considered. 
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 The difference between extreme errors (maximum and minimum) are: 

interpolation method (MAE: C=0.05, U=0.108) and density of stations (MAE: 0.09). 

Again the variation of errors amongst the month-index combinations is minimal. 

South  

Kriging had the lowest error for 6-, 9- and 12-month SPEI for all months (MAE: 

C=0.37, U=0.43) followed by IDW 2.5 (MAE: C=0.40, U=0.46) and IDW 2 (MAE: 

C=0.46, U=0.50) and this can be seen for all combinations in Figures 4.17 and 4.18. The 

errors vary from a maximum of (MAE: C=0.39, U=0.48) to a minimum of (MAE: 

C=0.34, U=0.40) among the month-index combinations considered. 

 The difference between extreme errors (maximum and minimum) are:  

interpolation method (MAE: C=0.05, U=0.075) and density of stations (MAE: 0.08). 

There is no significant difference in errors between the month-index combinations. 

SouthWest 

Kriging had the lowest error for 6-, 9- and 12-month SPEI for all months (MAE: 

C=0.43, U=0.50) followed by IDW 2.5 (MAE: C=0.44, U=0.51) and IDW 2 (MAE: 

C=0.47, U=0.53) and this can be seen for all combinations in Figures 4.17 and 4.18. The 

errors vary from a maximum of (MAE: C=0.45, U=0.53) to a minimum of (MAE: 

C=0.39, U= 0.47) among the month-index combinations considered.  

 The difference between extreme errors (maximum and minimum) are:  

interpolation method (MAE: C=0.05, U=0.056) and density of stations (MAE: 0.11). 

The difference between USHCN and COOP is lower than it was for multiscalar SPI .The 
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errors are slightly similar to 1-month SPEI for COOP and similar to USHCN. The 

performance is poor when compared to multiscalar SPI for USHCN.  

WestNorthCentral 

Kriging had the lowest error for 6-, 9- and 12-month SPEI for all months (MAE: 

C=0.39, U=0.52) followed by IDW 2.5 (MAE: C=0.41, U=0.54) and IDW 2 (MAE: 

C=0.45, U=0.56) and this can be seen for all combinations in Figures 4.17 and 4.18. The 

errors vary from a maximum of (MAE: C=0.40, U=0.55) to a minimum of (MAE: 

C=0.38, U=0.48) among the month-index combinations considered.  

 The difference between extreme errors (maximum and minimum) are:  

interpolation method (MAE: C=0.06, U=0.033) and density of stations (MAE: 0.16). 

The seasonal variation of errors is minimal again and the errors are lower than 

corresponding case for USHCN. 

West 

Kriging had the lowest error for 6-, 9- and 12-month SPEI for all months (MAE: 

C=0.35, U=0.51) followed by IDW 2.5 (MAE: C=0.37, U=0.52) and IDW 2 (MAE: 

C=0.39, U=0.54) and this can be seen for all combinations in Figures 4.17 and 4.18. The 

errors vary from a maximum of (MAE: C=0.44, U=0.54) to a minimum of (MAE: 

C=0.31, U=0.45) among the month-index combinations considered..  

 The difference between extreme errors (maximum and minimum) are:  

interpolation method (MAE: C=0.056, U=0.037) and density of stations (MAE: 0.20). 

The effect of station density on performance is minimal and both datasets perform 
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similarly. The errors are higher (for both datasets) than corresponding values for 1-

month SPEI. This region gives the lowest errors amongst the regions considered. 

NorthWest 

Kriging had the lowest error for 6-, 9- and 12-month SPEI for all months (MAE: 

C=0.36, U=0.44) followed by IDW 2.5 (MAE: C=0.38, U=0.45) and IDW 2 (MAE: 

C=0.40, U=0.47) and this can be seen for all combinations in Figures 4.17 and 4.18. The 

errors vary from a maximum of (MAE: C=0.38, U=0.48) to a minimum of (MAE: 

C=0.35, U=0.41) among the month-index combinations considered. 

 The difference between extreme errors (maximum and minimum) are: 

interpolation method (MAE: C=0.049, U=0.017) and density of stations (MAE: 0.10). 

COOP performs better than USHCN. The errors are slightly higher (for both datasets) 

than corresponding values for 1-month SPEI. The performance is not as good as 

multiscalar SPI for USHCN. 
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Figure 4.17 Monthly 6-, 9- and 12-month SPEI for 9 climatic regions: COOP network 
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Figure 4.18 Monthly 6-, 9- and 12-month SPEI for 9 climatic regions: USHCN network 
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Figure 4.19 6-, 9- and 12-month SPEI for January (J), July (Jy) and October (O) averaged across 

U.S.: COOP network  

 

 

 
 

 
Figure 4.20 6-, 9- and 12-month SPEI for January (J), July (Jy) and October (O) averaged across 

U.S.: USHCN network 
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 For COOP, the mean absolute errors for multiscalar SPEI are similar to those for 

multiscalar SPI. The seasonal variation (i.e. month-index combinations) in errors for 

both datasets is low. More months need to be analyzed to understand the effect of 

seasonal variations on multiscalar SPEI as well as SPI. The difference between COOP 

and USHCN is fairly uniform for all regions for multiscalar SPEI as it was for 

multiscalar SPI and this is confirmed in Figures 4.19 and 4.20. The multiscalar SPEI 

uses both precipitation and temperature values. Temperature, which improved the spatial 

performance of 1-month SPEI over SPI, seems to have a similar effect on the longer 

scales and hence the accuracy of the interpolated multiscalar SPEI is slightly better than 

multiscalar SPI.  

 The variation of errors across climatic regions is quite low for multiscalar SPEI 

in spite of the differing station densities. This is similar to the performance of 1-month 

SPEI which showed consistent spatial performance across datasets, climatic regions and 

seasons. For COOP the West and South climatic regions have lower errors than other 

regions.  
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Table 4.17 Summary of paired t-tests for multiscalar SPEI, 9 climatic regions * 3 months = 27 

combinations, Kriging versus IDW 2.0 

Result 

Number of occurrences 

 

COOP USHCN 

1 Kriging performs better than IDW 2.0 at 90% 

confidence level 72 78 

2 IDW 2.0 performs better than Kriging at 90% 

confidence level 0 0 

3 There is no statistically significant difference 

between the two methods at 90% confidence level 9 3 

 

 

 

 
Table 4.18 Summary of paired t-tests for multiscalar SPEI, 9 climatic regions * 3 months = 27 

combinations, Kriging versus IDW 2.5 

Result 

Number of occurrences 

 

COOP USHCN 

1 Kriging performs better than IDW 2.5 at 90% 

confidence level 53 65 

2 IDW 2.5 performs better than Kriging at 90% 

confidence level 5 0 

3 There is no statistically significant difference 

between the two methods at 90% confidence level 23 16 
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Table 4.19 Multiscalar SPEI, Mean absolute errors, COOP 

  Kriging  

IDW 

2.0  

IDW 

2.5 

Mean 0.39 0.45 0.42 

Median 0.33 0.39 0.36 

 

 

 

 
Table 4.20 Multiscalar SPEI, Mean absolute errors, USHCN 

  Kriging  

IDW 

2.0  

IDW 

2.5 

Mean 0.45 0.51 0.48 

Median 0.36 0.42 0.39 

 

 

 

Tables 4.17 and 4.18 show the results of comparison of interpolation methods for 

all instances made using paired t-tests. It can clearly be seen that kriging performs 

significantly better than IDW 2.5 and IDW 2.0 in most cases. However Tables 4.19 and 

4.20 reiterate that there are differences in mean absolute errors between the three 

interpolation methods. 
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4.2. Comparison of Drought Indices 

 

 The normalized errors were used to enable three comparisons between 

interpolation errors of drought indices using paired t-tests over climatic regions for both 

USHCN and COOP datasets. 

4.2.1 Comparison of 1-month SPI and 1-month SPEI 

The difference of absolute errors between interpolation of 1-month SPI and 1-

month SPEI for every instance is compared using a paired t-test. This is done over 9 

climatic regions and 3 months (January, July and October) and the results are 

summarized here. This approach helps to compare the relative performance of the 

indices under different conditions.   

 

 

 

Table 4.21 Paired t-tests, 1-month SPI versus 1-month SPEI, 9 climatic regions and 3 months 

Result 

Number of occurrences 

COOP USHCN 

1 Interpolation of 1-month SPI performs better than 

interpolation of 1-month SPEI 1 at 90% confidence level 6 4 

2 Interpolation of 1-month SPEI performs better than 

interpolation of 1-month SPI at 90% confidence level 4 6 

3 There is no statistically significant difference between the 

interpolation of two indices at 90% confidence level 17 17 
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Figure 4.21 Difference of normalized interpolation errors for 1-month SPI and 1-month SPEI for 

9 climatic regions: COOP 

 

 

 

 

 

Figure 4.22 Difference of normalized errors for 1-month SPI and 1-month SPEI for 9 climatic 

regions: USHCN 

 

 

 

 Table 4.21 suggests that there is not a significant difference in the performance 

of both methods based on a comparison of normalized errors. There are some variations 

over climatic regions. Interpolation of SPEI performs better than interpolation of SPI in 

regions 4 to 7 (central U.S.), however the magnitude of these differences is low. In 

Section 4.1 it was seen that interpolation of 1-month SPEI performed slightly better than 

interpolation of 1-month SPI for many cases. The difference between the errors of the 

two drought indices is very low (less than 0.1 in almost all of the cases). 
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4.2.2 Comparison of 9-month SPI and PDSI 

 The difference between absolute errors (normalized values) of interpolation of 9-

month SPI and PDSI for every instance is compared using paired t-tests. Table 4.22 

shows that the normalized errors for interpolation of PDSI are lower than those for 

interpolation of 9-month SPI for almost all cases when COOP is considered. However, 

the opposite is true for USHCN. The higher station density of COOP appears to be more 

suitable for PDSI, whereas the longer time series of USHCN gives more accurate results 

for calculating multiscalar SPI as seen in Figures 4.23 and 4.24. 

 

 

 

Table 4.22 Paired t-tests, 9-month SPI versus PDSI, 9 climatic regions and 3 months 

Result 

Number of occurrences 

COOP USHCN 

1  Interpolation of 9-month SPI performs better than 

interpolation of PDSI at 90% confidence level 0 10 

2 Interpolation of PDSI performs better than interpolation 

of 9-month SPI at 90% confidence level 25 0 

3 There is no statistically significant difference between 

the interpolation of  two indices at 90% confidence level 2 17 

 

 

 

 

Figure 4.23 Difference of normalized errors over 9 climatic regions, 9-month SPI - PDSI, 

COOP network 
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Figure 4.24 Difference of normalized errors over 9 climatic regions, 9-month SPI - PDSI, 

USHCN network 

 

 

 

4.2.3. Comparison of 9-month SPEI and PDSI 

 The difference between absolute errors (normalized values) between 9-month 

SPEI and PDSI for every instance is compared using a paired t-test. The results in this 

case are similar to the comparison of 9-month SPI and PDSI. Table 4.23 shows that 

COOP is more accurate for interpolation of PDSI. For USHCN there is no significant 

difference in the performance with the PDSI and SPEI. PDSI and SPEI both consider 

precipitation and temperature data in their calculations. In the evaluation of performance 

of SPEI (Section 4.1.2) it was observed that interpolation of multiscalar SPEI performed 

worse than 1-month SPEI and multiscalar SPI.  
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Table 4.23 Paired t-tests, 9-month SPEI versus PDSI: 9 climatic regions and 3 months 

Result 

Number of occurrences 
 

COOP USHCN 

1 Interpolation of 9-month SPEI performs better than 
interpolation of PDSI at 90% confidence level 0 3 

2 Interpolation of PDSI performs better than interpolation 
of 9-month SPEI at 90% confidence level 26 3 

3 There is no statistically significant difference between 
the two indices at 90% confidence level 1 21 

 

 

 

 

 

Figure 4.25 Difference of normalized errors for 9 climatic regions, 9-month SPEI - PDSI, 

COOP network 

 

 

 

 

 

 

Figure 4.26 Difference of normalized errors for 9 climatic regions, 9-month SPEI - PDSI, 

USHCN network 
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4.3. Comparison of Months (Seasonality) 

4.3.1. January and July 

 

Paired t-tests were used to compare the relative performance of the same drought 

index in January and July for a number of instances. Table 4.24 shows the results of 

Wilcoxon tests and Figures 4.27 and 4.28 shows the variation of relative performance of 

the 5 drought indices over the 9 climatic regions. 

 

 

 
Table 4.24 Paired t-test for January versus July: 3 drought indices and 9 climatic regions 

Result 

Number of occurrences 

 

COOP USHCN 

1 Interpolation in January performs better than July at 

90% confidence level 21 19 

2 Interpolation in July performs better than January at 

90% confidence level 0 0 

3 There is no statistically significant difference 

between the two months at 90% confidence level 6 8 

 

 

 

 

 
Figure 4.27 Difference of mean absolute errors for 3 indices, January - July over 9 climatic 

regions, COOP network 
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Figure 4.28 Difference of mean absolute errors for 3 indices, January - July over 9 climatic 

regions, USHCN network 

 

  

 

 

There is significant statistical evidence (Table 4.24) that the performance of 

drought indices across climatic regions is better in January (winter) than July. This 

difference is accentuated by regional climatic patterns. 

 In Section 4.1 it was observed that precipitation patterns (and hence seasonality) 

were the most significant factor affecting spatial accuracy of 1-month SPI and SPEI. 

This is clearly reiterated in Figures 4.27 and 4.28 that show the difference of errors for 

January (winter) and July (summer) for the 3 drought indices over 9 climatic regions. 

The most significant difference is clearly seen for 1-month SPI and 1-month SPEI for all 

climatic regions except in the Northwest and West. The difference of seasonal errors is 

not consistent for PDSI, it varies significantly by climatic region as well as dataset. As 

observed in Section 4.1.3 PDSI had a lower overall variation which is attributed to the 

fact that it considers a longer-term moisture signal. It is difficult to make broader 
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conclusions about the performance of PDSI from this figure and conclusions for 

individual cases would be more useful. 

 

4.3.2. July and October 

 

 Paired t-tests were used to compare the relative performance of three drought 

indices in July and October. Table 4.25 shows the results of paired t-tests and Figures 

4.29 and 4.30 shows the variation in relative performance of the 3 drought indices over 9 

climatic regions. 

 

 

 

Table 4.25 Paired t-test of July versus October: 3 drought indices and 9 climatic regions 

Result 

Number of occurrences 

 

COOP USHCN 

1 Interpolation in July performs better than October at 

90% confidence level 2 3 

2 Interpolation in October performs better than July at 

90% confidence level 22 19 

3 There is no statistically significant difference 

between the two months at 90% confidence level 3 5 

 

 

 

 

 
Figure 4.29 Differences of errors for the 3 indices in July versus October over 9 climatic 

regions, COOP network 
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Figure 4.30 Differences of errors for the 3 drought indices in July versus October over 9 

climatic regions, USHCN network 

 

  

 

There is significant statistical evidence (Table 4.25) to show that the errors across 

indices and climatic regions are higher for July when compared to October. As in the 

previous case, the largest differences are observed for 1-month SPI followed by 1-month 

SPEI. PDSI shows relatively small differences. Multiscalar SPI and SPEI have larger 

differences for COOP than for USHCN. 

 The above statistical tests when combined with observations in the Sections 4.1 

and the figures in Section 4.4, suggest that the accuracy of drought index interpolations 

are lower during the summer months.  

4.4. Examination of Spatial Variation in Interpolation Error 

The comparisons of interpolation accuracy across climatic regions so far 

involved averaging the cross-validation errors for all stations within each of the 9 

climatic regions. It is important to examine not just the average error, but also the spatial 

distribution of error within each climatic region. This is important because the density of 

stations varies substantially within the climatic regions. The climatic regions used for 
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comparison are very large and localized clusters of higher or lower errors for certain 

months and drought indices are more helpful to understand drought maps. 

The spatial variation of mean absolute errors is examined by interpolating the 

errors to a grid over the U.S. for January and July (for 1-month SPI, 1-month SPEI and 

PDSI) using IDW 2.5. The spatial distribution of errors is then explained by referencing 

the results in Section 4.1. Only two months are considered because they are observed to 

represent the extreme cases (high and low errors based on seasonality) as determined in 

Sections 4.1 and 4.2. The legend categories are the same for the SPI and SPEI, and have 

been modified for PDSI to accommodate its higher values. 

4.4.1 1-month SPI, January 

Figures 4.31 and 4.32 show the variation of mean absolute errors over the 

continental U.S. for 1-month SPI. Figure 4.33 shows that the mean absolute error varies 

from 0.26 in the Central region to 0.43 in the West North Central region (COOP) and 

corresponding values for USHCN are 0.31 to 0.49. The errors for COOP are lower than 

USHCN values for each region. 

 The Central region has the highest density of COOP stations amongst all climatic 

regions (6.45 stations per 10,000 km
2
) as well as the highest density of USHCN stations 

(2.07 stations per 10,000 km
2
). In comparison the station density for West North Central 

region is 4.51 per 10,000 km
2
 for COOP and 1.38 per 10,000 km

2
 for USHCN. The 

mountainous terrain and lower station density result in higher interpolation errors in the 

West North Central region.  
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 The West climatic region has the lowest station density amongst all regions (3.27 

stations per 10,000 km
2
 for COOP and 0.87 stations per 10,000 km

2 
for USHCN), but it 

also has very low interpolation error (COOP = 0.27 and USHCN = 0.37). January is the 

month with highest precipitation in the West climatic region. This is an example of how, 

although higher station density can help improve interpolation accuracy, the 

precipitation pattern is the most significant factor that controls the interpolation accuracy 

for 1-month SPI. 

 The two figures show that the majority of the U.S. (except for the mountainous 

western U.S.) has errors that range from 0.2 to 0.4. Very few locations have errors less 

than 0.2 or greater than 0.8. Florida is one of the locations where the more dense COOP 

network significantly improves the interpolation accuracy.  
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Figure 4.31 Mean absolute error for 1-month SPI, January, COOP network 

 

 

 

 

 
Figure 4.32 Mean absolute error for 1-month SPI, January, USHCN network 
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Figure 4.33 Mean absolute errors for 1-month SPI, January, 9 climatic regions 

 

 

 

4.4.2 1-month SPI, July 

Figures 4.34 and 4.35 show the variation of mean absolute errors in July for 1-

month SPI. The evaluation of errors for 1-month SPI in Section 4.1.1 demonstrated that 

precipitation climatology associated with seasonality has the greatest influence on 

interpolation accuracy. Therefore, in almost all regions, the accuracy in July is lower 

than other months. This can be clearly seen by comparing Figure 4.34 and 4.35 to 4.31 

and 4.32. The errors across most of the U.S. are higher in July than in January. Figure 

3.8 shows that the highest error is seen in the Southeast, Southwest and Westnorthcentral 

regions. 

 The lowest interpolation errors are found in the West and Northwest, where July 

precipitation is low. Errors across most of U.S. vary from 0.4 to 0.6, with lower errors 
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for COOP in the Central Great Plains. Higher errors occur in the mountainous western 

U.S., as well as in Florida, due to the prevalence of convective precipitation.  

 

 

 

 
Figure 4.34 Mean absolute error for 1-month SPI, July, COOP network 

 

 

 

 

 
Figure 4.35 Mean absolute error for 1-month SPI, July, USHCN network 
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Figure 4.36 Mean absolute error for 1-month SPI, July, 9 climatic regions 

 

   

 

4.4.3 1-month SPEI, January 

 Figures 4.37 and 4.38 show the variation of 1-month SPEI for the month of 

January across USA. In Section 4.1 it was demonstrated that 1-month SPEI interpolation 

errors were slightly lower than 1-month SPI. However as shown in Section 4.2, these 

differences are not statistically significant. The differences between 1-month SPI and 1-

month SPEI for January are minimal. The pattern of mean absolute errors for 1-month 

SPEI for both COOP and USHCN is quite similar to that of the 1-month SPI. The mean 

absolute errors varied from 0.2 to 0.4. COOP is more accurate in mountainous regions 

for 1-month SPEI, as compared to 1-month SPI, especially in the West North Central 

region. Figure 4.39 shows that the highest errors occur in Southwest and 

Westnorthcentral regions. The difference in performance of two datasets can also be 

seen for all regions.  
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Figure 4.37 Mean absolute error for 1-month SPEI, January, COOP network 

 

 

 

 

 
Figure 4.38 Mean absolute error for 1-month SPEI, January, USHCN network 
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Figure 4.39 Mean absolute errors for 1-month SPEI, January, 9 climatic regions 

 

 

 

4.4.4 1-month SPEI, July 

 The accuracy of 1-month SPEI is greater than the accuracy of 1-month SPI in 

July. This is because precipitation during the summer is primarily due to convection and 

therefore it is highly spatially heterogeneous. This effect is seen for both COOP and 

USHCN datasets. Although COOP performs better than USHCN for 1-month SPEI, the 

difference between the datasets is not statistically significant as seen in Section 4.1. This 

suggests that the use of temperature in the SPEI produces a drought index that is more 

spatially consistent. Figure 4.40 and 4.41 show the variation of errors for 1 month SPEI 

and highest errors can be seen over Southeast as well as Southwest USA. The COOP 

datasets more localized variation as compared to USHCN due to the higher density of 

stations. Figure 4.42 shows higher errors in Southeast, Northeast and Southwest USA. 

The relative errors between USHCN and COOP are quite similar.  
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Figure 4.40 Mean absolute error for 1-month SPEI, July, COOP network 

 

 

 
  

 
Figure 4.41 Mean absolute error for 1-month SPEI, July, USHCN network 
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Figure 4.42 Mean absolute errors for 1-month SPEI, July over 9 climatic regions 

 

 

 

4.4.5. PDSI, January 

The results show that interpolation errors for COOP were smaller than the errors 

for USHCN (Figure 4.45). The errors for COOP vary from 0.8 in the West to 1.04 in the 

Northeast. The corresponding values for USHCN vary from 0.97 in the West to 1.18 in 

the Southeast (1.16 for Northeast). The use of the higher density COOP network results 

in improved interpolation accuracy. The mean absolute errors for most of the country are 

less than 1.2. Although the differences of overall interpolation errors for ordinary kriging 

between USHCN and COOP are not very large, the spatial patterns are significantly 

different. The lowest errors for USHCN occur in the Central Great Plains for both 

datasets. The errors are highest in Southeast. Figure 4.44 shows the variation for 

USHCN datasets and clearly large areas with higher errors are seen for this case, the best 

performance can be observed over the central United States. The COOP errors although 
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slightly lower than USHCN for all regions as seen in Figure 4.43 show highly localized 

patterns of errors across the U.S. This is unlike the maps observed for SPI and SPEI.  

 

 

 

 
Figure 4.43 Mean absolute error for PDSI, January, COOP network 

 

 

 

 

 
Figure 4.44 Mean absolute error for PDSI, January, USHCN network 
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Figure 4.45 PDSI, January, mean absolute errors over 9 climatic regions 

 

 

 

4.4.6. PDSI, July 

Figures 4.46 and 4.48 show the variations in PDSI interpolation error in July. 

The seasonal variation of PDSI, as mentioned previously, is lower that for the SPI and so 

the July error map is similar to the January error map. The errors for COOP vary from 

0.86 in the EastNorthCentral (0.88 for the Central region) to 1.05 in the Southwest. The 

corresponding values for USHCN are 1.02 for the Central region and 1.25 for the 

Southwest. The variation of errors across climatic regions is consistent across both the 

datasets for both January and July. This was also observed in Section 4.1. The higher 

station density of the COOP network causes many local patterns that are not produced 

by USHCN. Figure 4.47 for USHCN show the higher amount of errors for PDSI in the 

month of July as compared to January. Although the errors for COOP are lower for all 

cases when compared to USHCN the spatial patterns for COOP are very localized. This 
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can be seen from Figure 4.46 where it can be observed that for some small areas the 

errors in COOP are significantly lower than USHCN. 

 

 

 

 
Figure 4.46 Mean absolute error for PDSI, July, COOP network 

 

 

 

 

 
Figure 4.47 Mean absolute error for PDSI, July, USHCN network 
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Figure 4.48 PDSI, July, mean absolute errors over 9 climatic regions 

  

 

 

4.5 Limitations of This Study 

There are a number of limitations in the methodological approach used in this 

thesis and they include: 

1. Only three months are compared statistically to understand influence of 

seasonality in Section 4.1. To clearly delineate the influence of seasonality by months 

more individual statistical comparisons are required. 

 2. The comparison of drought indices was only undertaken for specific cases that 

were thought to be equivalent. For example, the 9-month SPI was compared to the PDSI 

using normalized errors. More comparisons are necessary to understand the influence of 

inherent nature of moisture indices. For example, additional comparisons could examine 

the relationship between 6- and 12-month SPI/SPEI and PDSI. 

3. The influence of climatic regions on interpolation accuracy were assessed 

using only two months. This was done for practical reasons, however this may result in 
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the analysis overlooking how seasonal variations in precipitation patterns influence 

interpolation accuracy. 

4. Multiscalar indices (e.g., 6-, 9- and 12-month SPI and SPEI) were examined 

only for January, July and October. Seasonality was found to be the most significant 

factor influencing interpolation accuracy for 1-month SPI and SPEI and therefore we 

expect that if all 12 months had been examined it would allow us to draw a similar 

conclusion for multiscalar SPI/SPEI. 

5. The gamma distribution was used for calculating the SPI and SPEI at all 

locations so that they are comparable. However, the most suitable function may vary 

from location to location. 

6. There are many other ways of estimating the PDF for calculating the SPI and 

SPEI. Some approaches involve cluster analysis; which will produce spatially smooth 

statistical distributions. The results calculated here only apply to one method of 

calculating SPI and may not generalize to other SPI techniques. 

7. The results are based on 8 years of drought index data. A larger sample would 

have been more robust. 

8. The results may be sensitive to different ways of handling missing data. 

9. The physical causes for temporal and geographical differences in interpolation 

accuracy were inferred rather than rigorously tested. 
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5. CONCLUSIONS 

5.1. Discussion of Results 

The objective of this thesis was to understand the spatial performance of 

interpolation of meteorological drought indices. Drought index values are influenced by 

a number of factors and the accuracy of spatial interpolation significantly varies as a 

function of these factors. In general, seasonality is the most significant factor affecting 

spatial accuracy followed by climatic region. Station density has relatively less 

influence, but it is important for resolving local patterns. The interpolation method (IDW 

or kriging) has the least influence on spatial accuracy (except for some specific cases). 

However, if additional interpolation methods had been tested, obviously some are not 

suited for interpolating drought indices and therefore would have had a large effect on 

accuracy. A one-size-fits-all approach may not give the best spatial accuracy when 

generating grids from station-based drought indices. The use of cross validation is 

recommended for examining the influence of different interpolation options. This helps 

to quantify and understand the performance before using particular datasets and 

interpolation methods. Modern software and computational systems makes this process 

faster and provides valuable information regarding spatial accuracy.  

5.1.1 Objective 1: Which Interpolation Method Is Most Accurate? 

  Ordinary kriging with optimal functional fitting performed better than IDW 

methods. The IDW method with power parameter 2.5 also consistently gave better 

performance than IDW with power parameter 2.0. This is clearly seen in almost all the 

combinations evaluated. However the magnitude of improvement given by ordinary 
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kriging varies from case to case. Differences in interpolation accuracy based on the 

interpolation method may be small when compared to the influence of seasonality and 

climatic region. The interpolation method makes a big difference for COOP PDSI, while 

it is marginal for USHCN PDSI. As the interpolation method is not the most significant 

influence driving accuracy, IDW 2.5 is a reasonable choice in most situations. However, 

for best accuracy the process of performing optimal kriging in R can be implemented 

easily using the Automap Library.   

5.1.2 Objective 2: Which Drought Index Is Interpolated Most Accurately? 

  A number of paired drought indices were compared for different instances by 

their normalized errors. The 1-month SPEI gives slightly lower interpolation errors than 

corresponding values of 1-month SPI. This is attributed to the temperature input in its 

calculation. As PDSI measures long-term drought conditions, it was compared to 9-

month SPI and 9-month SPEI. PDSI interpolation performs better than 9-month SPI and 

SPEI for COOP, but this does not hold true for USHCN. Multiscalar SPI is accurate 

when calculated using USHCN and it had the lowest interpolation errors amongst all the 

indices considered. Interpolation accuracy for multiscalar SPI with COOP dataset or 

multiscalar SPEI, when compared to their 1-month counterparts is lower. Drought 

indices that use temperature as an input are less spatially variable (more regionally 

consistent) than indices that are solely based on precipitation. The use of temperature 

reduces the influence of precipitation climatology on spatial inhomogeneity. It is 

important to realize this inherent variability when making conclusions about the 

moisture conditions of a location that does not have a local climatic data source. 
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 5.1.3 Objective 3: How does Seasonality Influence Interpolation Accuracy? 

  Seasonality is the most significant factor that affects the accuracy of drought 

index interpolation. The highest errors were consistently observed for 1-month SPI and 

1-month SPEI in months with high precipitation (generally summer) and with significant 

contributions from convective precipitation. The influence of seasonality is lower for 

PDSI because it measures long-term moisture conditions and therefore acts as a temporal 

smoother. Since only three months were compared for multiscalar SPI and SPEI, it is 

difficult to examine seasonal variations in interpolation error for these indices. Although 

it can be clearly concluded that there was very little seasonal variation in performance 

for the combinations of multiscalar SPI and SPEI that were considered in this thesis. 

Even with the use of the best interpolation method (optimal kriging) and highest station 

density, relatively large interpolation errors were found during the summer months (e.g. 

Southeast climatic region). Seasonal variation was lower in the western U.S. (because it 

has a different precipitation regime that features a winter precipitation maximum), but it 

still was the most significant factor that influenced interpolation accuracy. It is 

concluded that seasonal variation in precipitation is the most important factor affecting 

spatial interpolation accuracy. This means that the depiction of moisture conditions 

during the summer is less accurate than the depiction of moisture conditions during the 

winter. 
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5.1.4 Objective 4:  How does Interpolation Accuracy Vary Over the United States? 

  Mean absolute errors from the cross validation were interpolated to a regular grid 

to show the spatial variations in interpolation error across the U.S. Although the overall 

mean absolute errors for kriging interpolation of PDSI using both COOP and USHCN 

datasets were similar, the spatial pattern of errors were different. Due to higher density 

of COOP stations, the errors vary considerably from location to location and this is not 

seen for USHCN. USHCN has a much smoother and more homogeneous error field 

because the station spacing and station density are more homogeneous than COOP. 

Although similar differences between COOP and USHCN are also observed for 1-month 

SPI and 1-month SPEI the differences are not as marked as the PDSI. Errors across the 

country are consistently higher in July than January. The highest errors are observed in 

the Western and West North Central climatic regions because these areas have 

significant topographical variation. Higher errors in summer can also be seen in Florida 

and Southeast. The lowest errors are seen through much of the Great Plains, midwest, 

and northeast, as well as some parts of the western U.S. Mapping the interpolation errors 

allows for a visual assessment of errors and some of the patterns that were observed 

were not apparent in the analysis of climatic regions.  

5.1.5 Objective 5: How does Station Density Affect Interpolation Accuracy? 

  For almost all cases involving 1-month SPI and 1-month SPEI, COOP had less 

error than USHCN. One exception is that multiscalar SPI had significantly better spatial 

accuracy for USHCN than for COOP. This is attributed to the lack of sufficient length of 

record for COOP data especially for longer SPI time scales (i.e., 9-month and 12-
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month). In a few regions such as Western or EastNorthCentral region where the 

difference of station density between USHCN and COOP is significant, the 

improvement can be clearly seen. The influence of station density on spatial accuracy is 

definitely higher than interpolation methods, but lower than climatic region or 

seasonality. Except for cases like multiscalar SPI, the use of COOP stations will help 

characterize local patterns in moisture conditions that are not seen with USHCN because 

COOP has a higher station density. It is important to assess other sources of errors that 

can possibly come from using stations with a shorter record. 

5.2 Implications 

Drought indices are commonly converted to spatial grids for drought monitoring 

and it is important to examine the different factors that affect the spatial accuracy of 

these representations. Cross validation can be used to examine how a variety of factors 

influence the accuracy of depictions of moisture conditions. Cross validation is relatively 

easy to implement and provides an objective measure of accuracy. It is useful for 

determining the best approach for generating depictions of drought conditions. A custom 

solution to determining interpolation technique which is a function of drought index, 

region, season and dataset (based on quality) should be used. In some conditions (e.g. 

summer in the southeastern U.S.) a higher density of stations will not necessarily 

improve the interpolation accuracy for drought indices. However, having a higher spatial 

density of stations is helpful for detecting local patterns, especially for self-calibrated 

PDSI. 
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It is important to understand the relative component of different errors (function 

fitting, observational and spatial interpolation) before making conclusions regarding 

drought conditions. It is possible that even drought indices that have high interpolation 

accuracy may mischaracterize drought conditions due to other error sources (e.g., 

consistently underestimating or overestimating values in a region). 

5.3 Future Research 

An approach to drought monitoring in which interpolation is performed from 

historical data of precipitation/temperature and drought information is calculated for all 

the points in the grid based on historical interpolated grid values can help make better 

use of additional variables (elevation, topography) for constituent variables 

(precipitation, temperature) to improve spatial accuracy.  

One way to improve the accuracy of depictions of drought conditions is to 

determine the correct trade-off between length of record and density of stations for 

drought index under consideration. Therefore, future research should investigate 

methods for incorporating meteorological data from multiple sources (e.g. using data 

from volunteer weather stations with good quality and using interpolated historical data 

to enable calculation of drought index at that location). Such data can be incorporated 

into a modified kriging method to help in identifying the local variations that are 

observed when comparing the performance of one example across U.S. 

A simple easy to use GUI based software package that takes in input data, 

calculates drought indices, generates cross validation errors and assesses influence of 

different factors statistically as done in this thesis can help many researchers to simplify 
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the process of optimizing spatial accuracy. This can be implemented using most of the 

existing libraries presently available in R (spatial interpolation, cross validation), SPEI 

for drought indices and writing a wrapper for PDSI. The potential to serve this software 

system in a browser (using R-server) can help multiple people with drought index data to 

use it to optimize it for their own use as well as share best fits with others. 

 



 

136 

 

REFERENCES 

 

Adams, D. K., & Comrie, A. C. (1997). The North American monsoon. Bulletin of the 

American Meteorological Society, 78(10), 2197-2213. 

Akhtari, R., Morid, S., Mahdian, M. H., & Smakhtin, V. (2008). Assessment of areal 

interpolation methods for spatial analysis of SPI and EDI drought indices. International 

Journal of Climatology, 29(1), 135-145. 

Ali, M. G., Younes, K., Esmaeil, A., & Fatemeh, T. (2011). Assessment of Geostatistical 

Methods for spatial analysis of SPI and EDI drought indices. World Applied Sciences 

Journal, 15(4), 474-482. 

Ashley, W. S., Mote, T. L., Dixon, P. G., Trotter, S. L., Powell, E. J., Durkee, J. D., & 

Grundstein, A. J. (2003). Distribution of mesoscale convective complex rainfall in the 

United States. Monthly weather review, 131(12), 3003-3017. 

Begueria, S., & Vicente-Serrano, S. M. (2011). Package 'SPEI' - Calculation of the 

Standardized precipitation and evapotranspiration Index, SPEI manual R,  from 

http://cran.r-project.org/web/packages/SPEI/SPEI.pdf 

Bordi, I., & Sutera, A. (2001). Fifty years of precipitation: Some spatially remote 

teleconnnections. Water Resources Management, 15(4), 247-280. 

Brewer, M., & Symonds, J. (2009). Advances in drought data and services distribution 

through the US drought portal. AGU Spring Meeting Abstracts, 1, 5. 

Bryant, EA. (1991). Natural Hazards. Cambridge University Press, Cambridge. 

Carbone, G. J., Rhee J., Mizzell H. P., and  Boyles R. (2008). A regional-scale drought 

monitoring tool for the Carolinas. Bulletin of the American Meteorological Society, 89, 

20-28. 

Chen, D., Ou, T., Gong, L., Xu, C. Y., Li, W., Ho, C. H., & Qian, W. (2010). Spatial 

interpolation of daily precipitation in China: 1951–2005. Advances in Atmospheric 

Sciences, 27(6), 1221-1232. 

Cry, G. W. (1967). Effects of tropical cyclone rainfall on the distribution of precipitation 

over the eastern and southern United States. US Department of Commerce, 

Environmental Science Services Administration. 

http://cran.r-project.org/web/packages/SPEI/SPEI.pdf


   

137 

 

 

Daly, C., Halbleib, M., Smith, J. I., Gibson, W. P., Doggett, M. K., Taylor, G. H., & 

Pasteris, P. P. (2008). Physiographically sensitive mapping of climatological temperature 

and precipitation across the conterminous United States. International Journal of 

Climatology, 28(15), 2031-2064. 

DeLuca, D. P., Bosart, L. F., Keyser, D., & Vallee, D. R. (2004). The distribution of 

precipitation over the northeast accompanying landfalling and transitioning tropical 

cyclones. National Oceanic and Atmospheric administration (NOAA), Washington D. 

C., USA. 

DeMenocal, P. B. (2001). Cultural responses to climate change during the late 

Holocene. Science, 292(5517), 667-673. 

Dirks, K. N., Hay, J. E., Stow, C. D., & Harris, D. (1998). High-resolution studies of 

rainfall on Norfolk Island: Part II: Interpolation of rainfall data. Journal of 

Hydrology, 208(3), 187-193. 

Edwards, D. C., & McKee, T.B. (1996). Characteristics of 20th century drought in the 

United States at multiple time scales. Climatology Report. 97, 2. 

FEMA (1995). National mitigation strategy: Partnerships for building safer 

communities. Federal Emergency Management Agency, Washington, D.C . 

Goovaerts, P. (2000). Geostatistical approaches for incorporating elevation into the 

spatial interpolation of rainfall. Journal of hydrology, 228(1), 113-129. 

Greenleaf . (2002). PDSI user’s manual. From 

http://greenleaf.unl.edu/downloads/PDSI_Manual.pdf, accessed 2011, National drought 

mitigation center, Lincoln, NE. 

Guirguis, K. J., & Avissar, R. (2008). A precipitation climatology and dataset 

intercomparison for the western United States. Journal of Hydrometeorology, 9(5), 825-

841. 

Guttman, N. B. (1999). Accepting the Standardized precipitation index: A calculation 

algorithm.  Journal of the American Water Resources Association, 35(2), 311-322. 

Guttman, N. B., Wallis J. R., & Hosking, J. M. (1992). Spatial comparability of the 

Palmer drought severity index. Water Resources Bulletin., 28, 1111–1119. 

Hastings, C. Jr. (1955). Approximation for digital computers. Princeton University 

Press: Princeton, NJ. 



   

138 

 

 

Hayes, M. (2002). Drought indices. From 

http://www.civil.utah.edu/~cv5450/swsi/indices.htm 

Heim Jr., R. R. (2002). A review of twentieth-century drought indices used in the United 

States. Bulletin of the American Meteorological Society, 83(8), 1149-1165. 

Hiemstra, P. H., Pebesma, E. J., Twenhöfel, C. J., & Heuvelink, G. (2009). Real-time 

automatic interpolation of ambient gamma dose rates from the Dutch radioactivity 

monitoring network. Computers & Geosciences, 35(8), 1711-1721. 

Huang, J., Van Den Dool, H. M., & Georgakakos, K. P. (1996). Analysis of model-

calculated soil moisture over the United States (1931-1993) and applications to long-

range temperature forecasts. Journal of Climate, 9(6), 1350-1362. 

Isaaks, E. H., & Srivastava, R. M. (1989). Applied Geostatistics. Oxford University 

Press. New York. 

Karl, T. R. (1983). Some spatial characteristics of drought duration in the United 

States. Journal of Climate and Applied Meteorology, 22(8), 1356-1366. 

Kari, T., Quinlan, F., & Ezell, D. S. (1987). Drought termination and amelioration: Its 

climatological probability. Journal of climate and applied meteorology, 26(9), 1198-

1209. 

Karl, T. R., Williams Jr, C. N., Young, P. J., & Wendland, W. M. (1986). A model to 

estimate the time of observation bias associated with monthly mean maximum, 

minimum and mean temperatures for the United States. Journal of Climate and Applied 

Meteorology, 25(2), 145-160. 

Keetch, J. J., & Byram, G. M. (1968). A drought index for forest fire control. US 

Department of Agriculture, Forest Service, Southeastern Forest Experiment Station, 

Asheville, N.C. 

Krige, D. G., 1951: A statistical approach to some mine valuations problems at the 

Witwatersrand. Journal of the Chemical, Metallurgical and Mining Society of South 

Africa ,52, 119-139. 

Kuilenburg, J., Gruijter, J. D., Marsman, B. A., & Bouma, J. (1982). Accuracy of spatial 

interpolation between point data on soil moisture supply capacity, compared with 

estimates from mapping units. Geoderma, 27(4), 311-325. 

http://www.civil.utah.edu/~cv5450/swsi/indices.htm


   

139 

 

 

Larson, J., Zhou, Y., & Higgins, R. W. (2005). Characteristics of landfalling tropical 

cyclones in the United States and Mexico: Climatology and interannual 

variability. Journal of Climate, 18(8), 1247-1262. 

Li, J., & Heap, A. D. (2011). A review of comparative studies of spatial interpolation 

methods in environmental sciences: Performance and impact factors. Ecological 

Informatics, 6(3), 228-241. 

Lott, N., Ross, T., Houston T., & Smith., M. (2010). Billion dollar U.S. weather 

disasters, 1980-2010.Factsheet. NOAA national climatic data center, Asheville,NC, 3. 

Lydolph, P.E. (1985). The Climate of the Earth. Rowman and Allanheld, Totowa, New 

Jersey. 

Maddox, R. A.(1980). Mesoscale convective complexes. Bulletin of the American 

Meteorological Society, 61, 1374-1387. 

McKee, T. B., Doesken N. J., & Kleist, J. (1993). The relationship of drought frequency 

and duration to time scales.8th Conference on Applied Climatology. American 

Meteorological Society, Anaheim, CA 

McKee, T. B., Doesken N. J., & Kleist, J. (1995). Drought monitoring with multiple 

time scales. 9th Conference on Applied Climatology. American Meteorological Society, 

Dallas, Texas. 

Menne, M. J., Williams, C. N., & Vose, R. S. (2009). The US historical climatology 

network monthly temperature data, version 2. Bulletin of American Meteorological 

society, 90(7), 993-1007. 

Mock, C. J. (1996). Climatic controls and spatial variations of precipitation in the 

western United States. Journal of Climate, 9(5), 1111-1125. 

Murray, J. C., & Colle, B. A. (2011). The spatial and temporal variability of convective 

storms over the northeast United States during the warm season. Monthly Weather 

Review, 139(3), 992-1012. 

NCDC. (2011). Land based stations data. National Climatic Data Center, Asheville, N.C, 

from http://www.ncdc.noaa.gov/ 

National weather service instructions. (2010). Requirements and standards for NWS 

Climate observations. Department of Commerce, National Oceanic and Atmospheric 

administration, National weather service, from http://www.nws.noaa.gov/directives/. 

http://www.ncdc.noaa.gov/
http://www.nws.noaa.gov/directives/


   

140 

 

 

NCDC. (2007). Time bias corrected statewide-regional-national temperature, 

precipitation. National Climatic Data Center, Asheville, N.C, from 

http://www.ncdc.noaa.gov/. 

Palmer, W. C. (1965). Meteorological drought. US Department of Commerce, Weather 

Bureau, 45, 58. 

Piazza D. A., Conti F. L., Noto L. V., Viola F., & Loggia, G. L. (2011). Comparative 

analysis of different techniques for spatial interpolation of rainfall data to create a 140 

serially complete monthly time series of precipitation for Sicily, Italy. International 

Journal of Applied Earth Observation and Geoinformation, 13, 396-408. 

Quiring, S. M. (2009). Monitoring drought: An evaluation of meteorological drought 

indices. Geography Compass, 3, 64-88. 

Rohli R.V, & Vega, A. (2011). Climate settings of North America. Climatology. 

Ross, T., & Lott, N. (2003). Climatology of 1980-2003 extreme weather and climate 

events. NOAA, National Environmental Satellite Data and Information Service, NCDC, 

Asheville, N.C. 

Rossiter, D. G. (2011). Introduction to applied Geostatistics and open source statistical 

computing. ITC e-learning module, from http://www.itc.nl/~rossiter/teach/lecnotes.html 

Sheppard, P. R., Comrie, A. C., Packin, G. D., Angersbach, K., & Hughes, M. K. (2002). 

The climate of the US Southwest. Climate Research, 21(3), 219-238. 

Soulé, P. T. (1998). Some spatial aspects of southeastern United States Climatology. 

Journal of Geography, 97, 142-150. 

Thom, H. C. (1951). A frequency distribution for precipitation. Bulletin of The American 

Meteorological Society, 32(10), 397. 

Thom H. C.(1966). Some methods of climatological analysis. WMO Technical Note 

Number 81. Secretariat of the World Meteorological Organization: Geneva, 

Switzerland. 

Thornthwaite C.W.(1948). An approach toward a rational classification for climate. 

Geographical Review, 38(1), 55-94. 

Tollerud, E.I., & Collander, R.S. (1993). Mesoscale convective systems and extreme 

rainfall in the central United States. Extreme hydrological events:Precipitation, floods 

and droughts (proceedings of the Yokohoma symposium), 213. 

http://www.ncdc.noaa.gov/
http://www.itc.nl/~rossiter/teach/lecnotes.html


   

141 

 

 

Trewartha, G. T.(1981). The Earth’s problem climates. 2nd ed. University of Wisconsin 

Press, 371. 

USHCN. (2011). Long-term daily and monthly Climate records from stations across the 

contiguous United States. National Climatic Data Center, Asheville, N.C., from 

http://cdiac.ornl.gov/epubs/ndp/ushcn/ushcn.html 

Vicente-Serrano, S.M., (2006). Differences in spatial patterns of drought on different 

time scales: An analysis of the Iberian peninsula. Water Resources Management, 20, 37-

60. 

Vicente-Serrano, S. M., Beguería, S., & López-Moreno, J. I. (2010). A multiscalar 

drought index sensitive to global warming: the standardized precipitation 

evapotranspiration index. Journal of Climate, 23(7), 1696-1718. 

Vicente Serrano, S. M., Sánchez, S., & Cuadrat, J. M. (2003). Comparative analysis of 

interpolation methods in the middle Ebro Valley (Spain): Application to annual 

precipitation and temperature. Climate Research, 24, 161 –180.  

Villarini, G., Smith, J. A., Baeck, M. L., Vitolo, R., Stephenson, D. B., & Krajewski, W. 

F. (2011). On the frequency of heavy rainfall for the midwest of the United 

States. Journal of Hydrology, 400(1), 103-120. 

Webb, R. W., Rosenzweig C. E., & Levine, E. R. (2000). Global soil texture and derived 

water-holding capacities, Oak Ridge National Lab, Oak ridge, TN, from 

http://webmap.ornl.gov/wcsdown/dataset.jsp?ds_id=548&startPos=0&maxRecords=20

&orderBy=category_name&bAscend=true 

Wei, Y., Santhana-Vannan, S. K., & Cook, R. B. (2009). Discover, visualize, and deliver 

geospatial data through OGC standards-based WebGIS system. Geoinformatics, 2009 

17th International Conference , IEEE. 

Wells, N., Goddard, S., & Hayes, M. J. (2004). A self-calibrating Palmer drought 

severity index. Journal of Climate, 17(12), 2335-2351. 

Wu, H., Hayes, M. J., Wilhite, D. A., & Svoboda, M. D. (2005). The effect of the length 

of record on the standardized precipitation index calculation. International Journal of 

Climatology, 25(4), 505-520. 

Wu, H., Svoboda, M. D., Hayes, M. J., Wilhite, D. A., & Wen, F. (2007). Appropriate 

application of the standardized precipitation index in arid locations and dry 

seasons. International Journal of Climatology, 27(1), 65-79. 

http://webmap.ornl.gov/wcsdown/dataset.jsp?ds_id=548&startPos=0&maxRecords=20&orderBy=category_name&bAscend=true
http://webmap.ornl.gov/wcsdown/dataset.jsp?ds_id=548&startPos=0&maxRecords=20&orderBy=category_name&bAscend=true


   

142 

 

 

Xie, P., & Arkin, P. A. (1997). Global precipitation: A 17-year monthly analysis based 

on gauge observations, satellite estimates, and numerical model outputs. Bulletin of the 

American Meteorological Society, 78(11), 2539-2558. 

Zhang, X., & Srinivasan, R. (2009). GIS‐Based Spatial Precipitation Estimation: A 

Comparison of Geostatistical Approaches.  Journal of the American Water Resources 

Association, 45(4), 894-906. 

 


