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ABSTRACT

Natural disasters and extreme events are often characterized by their violence

and unpredictability, resulting in consequences that in severe cases result in dev-

astating physical and ecological damage as well as countless fatalities. In August

2005, Hurricane Katrina hit the Southern coast of the United States wielding seri-

ous weather and storm surges. The brunt of Katrina’s force was felt in Louisiana,

where the hurricane has been estimated to total more than $108 billion in damage

and over 1,800 casualties. Hurricane Rita followed Katrina in September 2005 and

further contributed $12 billion in damage and 7 fatalities to the coastal communities

of Louisiana and Texas. Prior to making landfall, residents of New Orleans received

a voluntary, and then a mandatory, evacuation order in an attempt to encourage

people to move themselves out of Hurricane Katrina’s predicted destructive path.

Consistent with current practice in nearly all states, this evacuation order did not

include or convey any information to individuals regarding route selection, shelter

availability and assignment, or evacuation timing. This practice leaves the general

population free to determine their own routes, destinations and evacuation times

independently. Such freedom often results in inefficient and chaotic utilization of

the roadways within an evacuation region, quickly creating bottlenecks along evac-

uation routes that can slow individual egress and lead to significant and potentially

dangerous exposure of the evacuees to the impending storm.

One way to assist the over-burdened and over-exposed population during ex-

treme event evacuation is to provide an evacuation strategy that gives specific infor-

mation on individual route selection, evacuation timing and shelter destination as-

signment derived from effective, strategic pre-planning. For this purpose, we present

a mixed integer linear program to devise effective and controlled evacuation networks
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to be utilized during extreme event egress. To solve our proposed model, we develop

a solution methodology based on Benders Decomposition and test its performance

through an experimental design using the Central Texas region as our case study area.

We show that our solution methods are efficient for large-scale instances of realistic

size and that our methods surpass the size and computational limitations currently

imposed by more traditional approaches such as branch-and-cut. To further test our

model under conditions of uncertain individual choice/behavior, we create an agent-

based simulation capable of modeling varying levels of evacuee compliance to the

suggested optimal routes and varying degrees of communication between evacuees

and between evacuees and the evacuation authority.

By providing evacuees with information on when to evacuate, where to evacuate

and how to get to their prescribed destination, we are able to observe significant

cost and time increases for our case study evacuation scenarios while reducing the

potential exposure of evacuees to the hurricane through more efficient network usage.

We provide discussion on scenario performance and show the trade-offs and benefits of

alternative batch-time evacuation strategies using global and individual effectiveness

measures. Through these experiments and the developed methodology, we are able

to further motivate the need for a more coordinated and informative approach to

extreme event evacuation.
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CHAPTER I

INTRODUCTION

Evacuation from impending extreme events is a complex and integrated operation

that necessitates planning and cooperation from government at the local, state and

federal levels as well as cooperation between government and non-government orga-

nizations to ensure the safety of an exposed population. An effective and well-planed

evacuation can reduce damages and fatalities in an extreme event. However, devas-

tating damages and severe fatalities were still incurred in natural disasters in recent

years due to the inefficient evacuation process.

On August 29th of 2005, Hurricane Katrina, the deadliest and costliest hurricane

in the United States, hit the southern coast of the United States with devastating

effects. More than 1,800 people lost their lives and more than $108 billion in dam-

ages was incurred (Knabb et al., 2005). In September 2005, Hurricane Rita made

landfall between Sabine Pass, Texas, and Johnson Bayou, Louisiana, as a category

3 hurricane, and caused unprecedented damages to numerous Louisiana and Texas

communities. More than $12 billion in damages was incurred and seven people died

(Knabb et al., 2006). In September 2008, Hurricane Ike, the second-costliest hurri-

cane in the United States and the costliest hurricane in Texas history, made landfall

near Galveston, Texas. It caused extensive damage along Louisiana and southeast-

ern Texas coasts, and more than $29 billion in damages was incurred (Berg, 2009).

Table 1 presents the 30 costliest mainland United States tropical cyclones from 1900

to 2010, and Table 2 states the 30 deadliest years from 1851-2010 and the costliest

years from 1900 to 2010 due to tropical cyclones (Blake et al., 2011) (all dollar val-

ues for damage cost mentioned in this chapter are not adjusted for inflation). These

well-publicized events brought to light many challenges faced during the expedited
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evacuation of a largely-populated region. Miscommunications between public and

private transportation contractors, uncertainties related to the storm’s strength and

point of impact and an under-prepared infrastructure all contributed to the storms’

effects. Most alarming, however, was the inefficient and chaotic utilization of the

region’s roadways, which quickly created bottlenecks in traffic that led to significant,

serious and dangerous impediments to the population’s evacuation. On Septem-

ber 22 of 2005, two days before Hurricane Rita making landfall at Texas coast, 2.5

million people tried to leave Houston and caused 100-mile-long traffic congestions

(Blumenthal, 2005).

Though there are many research articles and models that focus on natural dis-

aster evacuation, decidedly few are integrated into evacuation practice and the de-

termination of evacuation policy. It remains the tradition of local and state law

enforcement to issue a mandatory evacuation order, which is not accompanied by

any additional information and leaves the general population (referred to as self-

evacuees) the freedom to determine their actual evacuation time, route of egress and

final destination. In the Safety and Preparedness Fact Sheet, the information pro-

vided by National Oceanic and Atmospheric Administration, people are encouraged

to learn locations of official shelters and determine safe evacuation routes by them-

selves before the hurricane season (NOAA, 2012). On August 27 of 2005, two days

before Hurricane Katrina making landfall, a voluntary evacuation was ordered by

Ray Nagin, New Orleans Mayor, at 5:00 pm. Then a mandatory evacuation, the

first such order in the city’s history, was ordered in the next day at 9:30am (Hauser

and Lueck, 2005). People in New Orleans received the evacuation order but without

additional information about which specific routes to use and which specific shelters

to go. In ascribing such freedom to the self-evacuee, evacuation planners have for-

feited their ability to foresee the possible strains and hindrances resulting from an

2



Table 1 The Costliest 30 Tropical Cyclones in Mainland United States During

1900-2010

Rank Tropical Cyclone Year Category Damage (U.S.)

1 KATRINA (SE FL, LA, MS) 2005 3 $108,000,000,000

2 IKE (TX, LA) 2008 2 $29,520,000,000

3 ANDREW (SE FL/LA) 1992 5 $26,500,000,000

4 WILMA (S FL) 2005 3 $21,007,000,000

5 IVAN (AL/NW FL) 2004 3 $18,820,000,000

6 CHARLEY (SW FL) 2004 4 $15,113,000,000

7 RITA (SW LA, N TX) 2005 3 $12,037,000,000

8 FRANCES (FL) 2004 2 $9,507,000,000

9 ALLISON (N TX) 2001 TSa $9,000,000,000

10 JEANNE (FL) 2004 3 $7,660,000,000

11 HUGO (SC) 1989 4 $7,000,000,000

12 FLOYD (Mid-Atlantic & NE U.S.) 1999 2 $6,900,000,000

13 ISABEL (Mid-Atlantic) 2003 2 $5,370,000,000

14 OPAL (NW FL/AL) 1995 3 $5,142,000,000

15 GUSTAV (LA) 2008 2 $4,618,000,000

16 FRAN (NC) 1996 3 $4,160,000,000

17 GEORGES (FL Keys, MS, AL) 1998 2 $2,765,000,000

18 DENNIS (NW FL) 2005 3 $2,545,000,000

19 FREDERIC (AL/MS) 1979 3 $2,300,000,000

20 AGNES (FL/NE U.S.) 1972 1 $2,100,000,000

21 ALICIA (N TX) 1983 3 $2,000,000,000

22 BOB (NC, NE U.S) 1991 2 $1,500,000,000

22 JUAN (LA) 1985 1 $1,500,000,000

24 CAMILLE (MS/SE LA/VA) 1969 5 $1,420,700,000

25 BETSY (SE FL/SE LA) 1965 3 $1,420,500,000

26 ELENA (MS/AL/NW FL) 1985 3 $1,250,000,000

27 DOLLY (S TX) 2008 1 $1,050,000,000

28 CELIA (S TX) 1970 3 $930,000,000

29 LILI (SC LA) 2002 1 $925,000,000

30 GLORIA (Eastern U.S.) 1985 3 $900,000,000

Note. a : ”TS” represents Tropical Storm.
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Table 2 The Deadliest 30 Years During 1851-2010 and the Costliest 30 Years During

1900-2010

Ranked On Deaths Ranked On Unadjusted Damage

Rank Year Deaths Rank Year ($ Millions)

1 1900 8,000 1 2005 143,979

2 1893 3,000 2 2004 51,135

3 1928 2,500 3 2008 35,908

4 2005 1,225 4 1992 26,500

5 1881 700 5 2001 9,310

6 1915 550 6 1989 7,670

7 1957 426 7 1999 7,572

8 1935 414 8 1995 5,921

9 1926 408 9 2003 5,600

10 1909 406 10 1996 4,816

11 1906 298 11 1998 4,285

12 1919 287 12 1985 4,000

13 1969 256 13 1979 3,045

14 1938 256 14 1972 2,100

15 1955 218 15 1983 2,000

16 1954 193 16 2002 1,551

17 1972 122 17 1991 1,500

18 1916 107 18 1965 1,445

19 1965 75 19 1969 1,421

20 1960 65 20 1955 985

21 1944 64 21 1994 973

22 1933 63 22 1970 931

23 1999 62 23 1954 756

24 2004 60 24 1964 515

25 1989 56 25 2006 500

26 1966 54 26 1975 490

27 1947 53 27 1961 414

28 1940 51 28 1960 396

29 1964 49 29 1938 306

30 1961 46 30 1980 300
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over-capacitated and undirected road network. The result is an immobile population

faced with an impending storm and no means of escape to safety.

One way to alleviate the over-burdened and over-exposed population is to pro-

vide an evacuation strategy that is more directed while maintaining enough simplicity

to be attractive to self-evacuees. Instead of allowing the population to self-direct,

the offering of predetermined evacuation routes and sheltering locations would en-

able policy makers to evaluate the impact of a large scale evacuation on the region

and assess its ability to support such movement. An organized evacuation plan with

the designated evacuation routes and shelters can also reduce the clearance time to

evacuate all population of the affected areas by alleviate traffic congestions, which

are caused by undirected self-evacuees. It may also reduce the costs incurred in evac-

uation process and alleviate individuals’ suffering by shorten their traveling times.

Thus, preparing a pre-event evacuation plan with the pre-determined evacuation

routes and sheltering locations can make evacuation process effective and reduce

damages and fatalities. For this purpose, we provide a pre-event strategic evacua-

tion approach with the pre-determined evacuation routes and sheltering locations in

this dissertation, while considering the roads capacities to avoid traffic congestions

as well as the clearance time to send all evacuees to shelters before disasters happen.

Due to the inherent characteristics of evacuation problem, another challenge,

which may make the evacuation process inefficient, is that evacuees may not follow

the pre-determined evacuation plan and select their own routes and shelters. In this

dissertation, we consider this uncertainty in our multi-agent simulation model, and

we test the effectiveness of our pre-determined evacuation plan under this uncertainty.
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I.1. Scope of the Dissertation

In this dissertation, we study a regional evacuation network design problem to pro-

vide an effective pre-event strategic planning tool. For this purpose, we develop a

deterministic optimization model to identify an effective underlying evacuation net-

work, and we design a solution approach for solving large-scale evacuation instances.

We also create an agent-based simulation model to test the robustness and applica-

bility of the results of the optimization model under behavioral uncertainty.

I.1.1. Strategic Evacuation Network Design Model

We propose a mixed integer linear program (MIP) called the Strategic Evacuation

Network Design (SEND) to devise effective and controlled evacuation networks for

sending evacuees from their origins to shelters before extreme events such as hur-

ricanes. The SEND model expands upon the more traditional capacitated multi-

commodity network design model as described in section III.1 and provides an evac-

uation network that directs evacuation zones through the road network to shelter

locations while satisfying road network capacity, shelter capacity and evacuation

time constraints with an overall objective of cost minimization. Also, we consider

the case in which roads and shelters have extra capacities through extra construc-

tions which incur extra costs. It is important to recognize that, in parallel with our

objectives in evacuation network design, road capacity is considered at a high level

rather than with fine granularity as in a dynamic traffic assignment study. In con-

junction with this, we consider a constant (average) traffic speed in modeling and,

thus, the traverse time of each road is constant.

Another motivation of our research comes from the methodology itself. Op-

timization models for regional evacuation problems usually involve large-scale op-
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timization which is difficult to solve. Thus, some of these models were solved by

heuristics (Kim et al., 2008; Lu et al., 2005), and some of them were only tested on

small networks (Kaufman et al., 1998) (only 4 nodes, 8 physical links, and 4 desti-

nations). However, we develop an effective solution methodology based on Benders

decomposition (BD), which can solve large-scale instances (i.e. 47 source nodes, 22

destinations, 512 arcs, 128 nodes, and 1 million variables and 3 million constraints)

to optimality in a reasonable time. This solution methodology shows an outstanding

performance comparing with the branch-and-cut algorithm. Our approach incorpo-

rates several performance enhancements such as surrogate constraints, strengthened

Benders cut generation and use of multi-cuts while employing efficient heuristics

within the exact BD framework.

We design and implement an experimental design to test our BD technique

using a Texas-based evacuation scenario. We show that the SEND model and BD

approach can be efficiently and effectively applied to a large-scale evacuation scenario

and discuss computational performance as compared to traditional branch-and-cut

solution methods.

I.1.2. Multi-agent Simulation Model

As a centralized optimization model, the SEND model is useful under known con-

ditions and perfect information, however, it is not able to account for uncertainty

during the evacuation (e.g., individuals who choose their favorable routes but not

follow optimal routes or who choose an alternative shelter location). In these cases,

evacuees may elongate their travel time or travel distances by selecting routes that

look favorable to themselves instead of routes that are a part of the optimal evacua-

tion strategy, causing traffic jams and deteriorating system performance during the

evacuation. It is also possible that evacuees may fail to follow directions received
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as a part of the SEND optimal solution due to difficulties in communication and

coordination arising from the chaos and confusion of the emergency situation.

To consider these situations which cannot be handled by a centralized optimiza-

tion model, we construct a multi-agent simulation (MAS) model and tie our insights

and analysis from the MAS to the SEND optimal solution. In the decentralized MAS

model, unlike the discrete and centralized SEND problem, every evacuee can make

decisions and change decisions during the evacuation. In this way, the MAS model

simulates a real-world emergency evacuation situation where evacuees have the free-

dom to choose their own routes and their own destinations. As part of the MAS

model, we examine how varying degrees of compliance and adherence to the optimal

SEND strategy impacts system performance through an evacuation. We also prove

the effectiveness of the pre-event strategic evacuation plan proposed by the SEND

model.

An additional benefit of using the MAS is its added fidelity over the SEND

problem. In the latter, each edge is considered to have a finite capacity and the

evacuation is managed at a macroscopic level (as opposed to the finer granularity

achieved through dynamic traffic assignment studies). The finite capacity assump-

tion is accompanied with the assumption of constant travel speeds and constant

travel times for each edge of the network. Unfortunately, none of these assumptions

accurately reflect the dynamically changing evacuation environment where speeds

and travel times are not constant. The MAS model enables us to better control

these variables and account for their impact in assessing evacuation solutions. In the

MAS model, we model traffic speed on an edge as a function of the edge’s traffic

density with edge traffic density being updated dynamically. Moreover, the MAS en-

ables us to model the situation in which evacuees leave in groups at a time sequence.

A value is assigned to the range of leaving times for each group. An evacuee may
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leave at any time in the range of leaving times for his group.

Throughout the evacuation process, it is important to capture and model the

interconnectedness of individual evacuees. Various forms of media such as radio

and cellular telephones enable evacuees to receive, interpret and act upon near real-

time information from other evacuees’ observations or from local, state and national

governmental agencies. Depending on the method of information sharing and the

type of information shared, evacuee behavior may be altered significantly. As an

example, individuals may choose an alternative route to avoid a roadway with a

major traffic jam based on information they receive from a family member or friend

who is currently driving in slow traffic. Evacuees may also choose a different shelter

location based on information on shelter status received from the state government

through local radio. We use the MAS as a mechanism to study the effects resulting

from these shared information modes.

I.2. Contributions

In this dissertation, we provide an effective pre-event strategic planning approach to

make evacuation process efficient and successful. Our contributions are summarized

as follows:

• By the very nature of the emergency planning, evacuation time is considered

as necessitated. However, the approach to incorporating evacuation time to

models is a concern in the current studies on evacuation problems. In our

study, we track each evacuation route and add a time constraint on it to make

sure every evacuee can arrive at a designated shelter within a designated time.

• Though there are many research articles focusing on regional evacuation prob-

lems, most of them employed simulation approaches, but not optimization
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approaches, as introduced in Chapter II. We develop a mixed integer program

to determine the optimal evacuation network based on time and capacity con-

straints (i.e. capacities of roads and shelters). Our model selects shelters from

all potential candidates, chooses evacuation routes, decides flow assignments

and minimizes costs.

• Optimization models for regional evacuation problems usually involve large-

scale optimization which is difficult to solve. Unlike the articles solving models

by heuristics (Kim et al., 2008; Lu et al., 2005) or solving models on small-scale

instances (Kaufman et al., 1998), we develop a solution methodology based on

the BD approach, which takes advantage of specific characteristics of the SEND

problem. This solution methodology can solve large-scale evacuation instances

to optimality within a reasonable solution time.

• Unlike many articles testing models on artificial data (e.g. Andreas and Smith,

2009), we design and implement an experiment to test our BD technique using

a Texas-based evacuation scenario with real population data and real spatial

data. Through this experiment, we show that the SEND model and the BD

approach can be efficiently and effectively applied to a large scale evacuation

scenario. We also discuss its computational performance as compared to the

traditional branch-and-cut solution method which is implemented by CPLEX

12.2.

• For regional evacuation problems, some articles employed simulation approaches

at a microscopic level, and some other articles employed optimization ap-

proaches at a macroscopic level. However, few are integrated into both of these

two levels. In this dissertation, besides developing the SEND model to provide

an optimal evacuation plan at a macroscopic level, we construct a MAS model
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at a microscopic level to simulate the evacuation process under uncertainty,

which cannot be handled by a centralized optimization model. We examine

how varying degrees of compliance and adherence to the optimal SEND strat-

egy impacts system performance through an evacuation, and prove the effec-

tiveness and robustness of the pre-event strategic evacuation plan proposed by

the SEND model. Additionally, time component is added to the MAS model

by considering the traffic speed on a road as a non-linear dynamical function

of real-time traffic density on this road.

• The MAS model is not only effective to test the pre-event strategic evacuation

plan proposed by our SEND model, but also able to test other evacuation

strategies on other evacuation networks. It is a tool to evaluate evacuation

strategies for decision makers.

I.3. Organization of the Dissertation

The remainder of this dissertation is organized as follows. Chapter II provides a com-

prehensive review for evacuation problems and discusses relevant literature to better

frame the contribution of this study. In Chapter III, we describe the SEND prob-

lem and present its assumptions and formulation. We develop a solution approach

based on BD by taking advantage of specific characteristics of the SEND problem.

We design and implement an experimental design to test our BD technique using a

Texas-based evacuation scenario, and we show the efficiency and effectiveness of the

SEND model and the BD approach. In Chapter IV, we conduct the MAS model to

consider unexpected cases which cannot be handled by the SEND model and con-

sider traffic speed as a variant of real-time traffic density. We design and implement

experiments to study the effects of several factors on system performance through
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an evacuation. Also, we prove the effectiveness of the pre-event strategic evacuation

plan proposed by the SEND model. In Chapter V we summarize concluding remarks,

potential impacts of this research and possible future research.
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CHAPTER II

LITERATURE REVIEW

In recent years, extensive effort has been invested in studying evacuation problems,

which are complex integrated problems. In this chapter, we present a comprehensive

review of evacuation problems, and then we introduce the works relevant to our

study.

II.1. Overview of Emergency Evacuation Problems

Studies on evacuation problems involve various fields such as human behaviors, traf-

fic control strategies, network design, decision making and so on. Based on different

study scopes and study objects, models are conducted in two levels. One is the

macroscopic evacuation model, which considers the total evacuation time but not

the individual behavior (Andreas and Smith, 2009; Chen and Xiao, 2008; Chien and

Korikanthimath, 2007; Elmitiny et al., 2007; Kaufman et al., 1998; Kim et al., 2008;

Liu et al., 2007; Lu et al., 2005; Mamada et al., 2004; Noh et al., 2009), and the

other one is the microscopic evacuation model, which models the individual behavior

and the interaction between each evacuee that may influence evacuees’ movement

(Chen, 2008; Chen et al., 2006; Lamel et al., 2010; Olsson and Regan, 2001). Ac-

cording to different physical evacuation areas, two distinct evacuation problems are

studied: building evacuation, e.g., large retailer stores, stadiums, ships, aircraft, etc.

(Andreas and Smith, 2009; Hamacher and Tjandra, 2001; Mamada et al., 2004; Ols-

son and Regan, 2001) and regional evacuation, e.g., nuclear power plants failures,

wildfire, floods, hurricanes, etc. (Chen, 2008; Chen et al., 2006; Chen and Xiao,

2008; Chien and Korikanthimath, 2007; Elmitiny et al., 2007; Kaufman et al., 1998;

Kim et al., 2008; Lamel et al., 2010; Liu et al., 2007; Lu et al., 2005; Noh et al.,
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2009; Wei et al., 2008). Building evacuation mainly considers pedestrian evacuation;

however, regional evacuation usually focuses on traffic-based evacuation. Moreover,

different methodologies are applied to evacuation problems. Some articles simulate

evacuation to observe either global (Chien and Korikanthimath, 2007; Elmitiny et al.,

2007; Liu et al., 2007; Noh et al., 2009) or individual behavior (Chen, 2008; Chen

et al., 2006; Lamel et al., 2010; Olsson and Regan, 2001), and some studies optimize

the mathematical model to obtain optimal results (Andreas and Smith, 2009; Chen

and Xiao, 2008; Kaufman et al., 1998; Kim et al., 2008; Lu et al., 2005; Mamada

et al., 2004). Furthermore, some studies compare the different impacts of simulta-

neous and staged evacuation (Chen, 2008; Chien and Korikanthimath, 2007). Some

articles address the improvement of traffic conditions to reduce evacuation time. For

example, Kim et al. (2008) propose the concept of contraflow to increase capacity

of routes along the direction of evacuation, and Chen et al. (2007) focus on traffic

light timing for traffic flow in urban area. Besides the above studies, some new fields

are also explored. Chiu and Mirchandani (2008) propose a behavior-robust feedback

information routing (FIR) strategy to further improve system performance.

In Table 3, we illustrate the basic categories of evacuation problems as intro-

duced above. From Table 3, we see that extensive effort has been invested in studies

that employ simulation models. Some of the studies that employ optimization mod-

els focus on building evacuation. Because regional evacuation optimization problems

usually involve large-scale optimization, which is difficult to solve, some studies em-

ploy heuristics (Kim et al., 2008; Lu et al., 2005). Kaufman et al. (1998) developed an

optimization model for the regional evacuation problem and solved it to optimality;

however, their model was only tested on small networks (i.e. only 4 nodes, 8 physical

links and 4 destinations). Chen and Xiao (2008) studied on how to control traffic

flow to maximize traffic system utilization and tested their approach on several roads
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Table 3 Overview for Evacuation Problems

Scope Evacuation Region Methodologies

Macro Micro Building Regional Simulation Optimization

MAS Non
MAS Exact Heuristic

Olsson and
Regan
(2001)

x x x

Andreas and
Smith (2009) x x x

Mamada
et al. (2004) x x x

Chien and
Korikanthi-

math
(2007)

x x x

Elmitiny
et al. (2007) x x x

Liu et al.
(2007) x x x

Noh et al.
(2009) x x x

Chen (2008) x x x
Chen et al.

(2006) x x x

Lamel et al.
(2010) x x x

Kim et al.
(2008) x x x

Lu et al.
(2005) x x x

Kaufman
et al. (1998) x x x

Chen and
Xiao (2008) x x x

SEND x x x
MAS x x x

SEND-MAS x x x x x
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intersections, but not the evacuation network design for the entire regional evacua-

tion. Our research contributes by solving a large-scale regional evacuation network

design optimization problem.

II.1.1. Building Evacuation

Hamacher and Tjandra (2001) summarized models and algorithms applied to build-

ing evacuation problems. They concluded that the travel time was regarded as the

main parameter in all the reviewed papers, with the partial travel time between

different nodes being the input and the overall evacuation time being the output.

In their research, the authors introduced macroscopic evacuation models that took

into account the total evacuation time but no individual behavior. The authors also

summarized microscopic evacuation models that simulate the individual behavior

and the interaction between each evacuee that may influence evacuees’ movement.

Macroscopic evacuation models they introduced are mainly based on discrete time

dynamic network flow models, which include minimum cost dynamic flow, maximum

dynamic flow, universal maximum flow, quickest path and quickest flow. The dy-

namic network model was described with density dependent travel time, which does

not necessarily have to be a constant. Except the continuous time dynamic flow

models, multi-criteria optimization problems are also discussed in their paper. Fur-

thermore, Olsson and Regan (2001) compared the calculated theoretical evacuation

times and the actual recorded evacuation times, and analyzed human behavior in

the evacuation process. Their work emphasized the importance to consider human

behavior in evacuation model, and this is also captured by our study. Our MAS

model considers the case in which evacuees have the freedom to choose their own

favorable routes and shelters.
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II.1.2. Regional Evacuation

Besides building evacuation problems, many articles focus on regional evacuation

problems, including the evacuation from natural disaster (e.g. wildfire, floods, hur-

ricanes, etc.) (Chen et al., 2006; Lamel et al., 2010; Chen, 2008; LIU et al., 2007;

Wolshon and McArdle, 2011; Dow and Cutter, 2002; Simonovic and Ahmad, 2005;

Noh et al., 2009) and human-caused disaster (e.g. nuclear power plants failures,

terrorism, war etc.) (Wei et al., 2008). Unlike building evacuation that is mainly

related with pedestrian evacuation, regional evacuation is usually represented by

traffic-based evacuation, and it, as inherent in its name, requires the evacuee to

travel long distances, from citywide to statewide. There are other differences be-

tween building evacuation problems and regional evacuation problems, due to their

inherent characters. In building evacuation problem, people are evacuated to exits,

and the number of exits for one building is relatively small. However, in regional

evacuation problem, people are evacuated to shelters, and the number of shelters

for one region is usually larger than the number of exits for one building. Also, the

number of available routes in regional evacuation problems is usually larger than that

in building evacuation problems. As a consequence, the size of network in regional

evacuation problems is usually larger than that in building evacuation problems, and

this can cause the model difficult to solve.

Traffic congestion is a severe problem in evacuation problem, and looking for

approaches to alleviate this problem is a challenge in a lot of studies. During a

regional evacuation process, many people try to evacuate in a short time frame, so

that there are much less freeways available than what’s adequate for a smooth evac-

uation. For example, there are over 2.5 million people as south as Florida and as

north as Virginia getting evacuated when Hurricane Floyd approached (Dow and
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Cutter, 2002). Also, the evacuation occurred in lieu of Hurricane Katrina in 2005

forced an evacuation involving half an million vehicles and one million people out

of New Orleans area. Road capacity of freeway will be too limited compared with

what’s needed in this case. Apivatanagul et al. (2012) proposed a bi-level optimiza-

tion model to alleviate traffic congestion. In their model, unlike most of the other

models, not all population, who may be affected by disaster, is evacuated to shelters,

but their model decided who would stay and who would leave with the purpose to

alleviate traffic congestion. The decision of choosing evacuees to leave was made to

minimize both of risk and travel time. After the evacuees who would leave were

selected, evacuation routes were assigned to these evacuees. Their model alleviated

traffic congestion during evacuation, but this alleviation only works without the con-

sideration of human behavior, which may affect the performance of their evacuation

plan significant. The evacuees who were not selected to leave may resist to leave,

and this may cause traffic congestion and elongate travel time. Human behavior

is a very important factor which should be considered in evacuation problem. In

our study, we consider human behavior in the MAS model and use it to test the

performance of the evacuation plan which is proposed by the SEND model. The

results of the tests prove the effectiveness of our evacuation plan. To alleviate traffic

congestion, Wolshon and McArdle (2011) proposed that, as an alternative choice,

evacuating through secondary and low volume roadways should be integrated with

the optimum usage of the main freeways. This study provided an approach to help

alleviating traffic congestion in evacuation, but a pre-event evacuation plan with

designated routes and designated shelters is still need to guide evacuees and avoid

traffic congestion. In our study, SEND model provides an effective evacuation plan

which provides guidelines to evacuees.
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II.1.3. Simultaneous and Staged Evacuation

Chen (2008) studied the hurricane evacuation of Galveston Island by using agent-

based micro-simulation techniques. He compared the time required to evacuate to

safe areas of two strategies: simultaneous evacuation and staged evacuation. The

most efficient staged evacuation strategy can reduce the evacuation time significantly

compared with simultaneous evacuation. In another study, Chien and Korikanthi-

math (2007) constructed a mathematical model to estimate the evacuation time and

delay, and to investigate the relationship between these two quantities. Their ar-

ticle also compared the different influences of simultaneous evacuation and staged

evacuation on the evacuation time, and proposed a numerical method to determine

the optimal number of evacuation stages. The numerical example shows that the

staged evacuation strategy can reduce the evacuation time and delay significantly.

The researchers also did the sensitivity analysis of parameters (e.g. demand den-

sity, access flow rate and evacuation route length) to the evacuation time and delay.

Chien and Korikanthimath (2007) studied a regional evacuation problem by employ-

ing a simulation model, and compared the different impacts of simultaneous and

staged evacuation. In our study, we consider both of two strategies: simultaneous

evacuation and staged evacuation. In SEND model, we consider the case for simul-

taneous evacuation, and in MAS model we consider the case for staged evacuation.

We also test the effect of different number of evacuation stages to total evacuation

time, transportation cost, individual evacuation time, and traffic conditions.

II.1.4. Evacuation Decision Making

Evacuation decision making is a complicated process and can therefore be composed

of several phases. Those phases, integrally, form an evacuation decision tree. LIU
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et al. (2007) studied a new aspect in evacuation decision making problem, i.e. grey

situation decision. Grey situation decision has been utilized in many other fields,

such as site selection of waste sanitary landfill and bidding for equipment purchase.

The research also constructed a grey decision model in a framework for multiple

periods of a flood disaster. This model evaluated the optimal decision (evacuate or

not evacuate) to minimize the total expected cost and the extent of fatalities by

considering the potential flood damage, rate of fatalities and evacuation effect index.

The model and solution strategy were tested by the data of the river floods in the

Netherlands in 1995. Evacuation decision making is also considered in our MAS

model, evacuees make their evacuation decisions based on their guidelines, the real

time traffic conditions, the information they received, and their personal preference.

II.1.5. Feedback Information Routing Strategy

Current strategies on evacuation traffic management paid most of their attention to

increasing network along the evacuation route such as contraflow lanes. However,

there are some other routing strategies which are not totally exploited. Chiu and

Mirchandani (2008) presented the optimal routing strategies to evacuees who would

choose their evacuation routes following a certain rule, and addressed the approach

to evaluating the effectiveness of these routing strategies. The article proposed a

behavior-robust feedback information routing (FIR) strategy to further improve sys-

tem performance. The FIR strategy is developed on closed-loop control so that it

can respond to the current state of the evacuees and update the guidelines accord-

ingly. It has shown to be very effective and efficient in real-time evacuation traffic

management application. In current phase, the guidelines for evacuees are constant

but not updated dynamically, and the FIR strategy could be a considered as a future

study in our research.
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II.1.6. Human Behavior in Evacuation Process

Besides the articles which focus on the development of theoretical and mathematical

models, especially the network flow models, there are some other articles investigat-

ing another important aspect in evacuation problem, e.g., human behavior. These

articles fill the gap between the traditional theoretical evacuation models and the

observed behavior. For example, when disaster happens, it is observed that house-

hold members seek each other, and then evacuate as a single unit. Obviously, these

actions may lead a longer evacuation time than the one that planners have expected.

Murray and Mahmassani (2002) addressed this observation in evacuation problems,

and modeled this phenomenon in a two-phase model by using two integer programs.

The first model is to select a meeting place for all family members. Its objective

function is to minimize the maximum distance from the meeting place to each family

member’s location. The resulting meeting place is used for the second model as a

known condition. The second model is to decide which driver is going to pick up

which family members and also decide the sequence of pick up. Actually, the second

model is a variant of vehicle routing problem, which has already been explored exten-

sively. Simonovic and Ahmad (2005) constructed a simulation model to determine

human behavior before and during the flood evacuation. It simulated the accep-

tance of evacuation orders by evacuees, the number of families to evacuate and the

clearance time to evacuate all people to safe areas. This article assessed the effective-

ness of different emergency management procedures, with each of which containing

the warning method, warning consistency, timing of evacuation order, coherence of

community, upstream flooding conditions and different weights for different warning

distributions. The experiments were implemented based on the flood evacuation in

Red River Basin, Canada. Another aspect of human behavior in evacuation process
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which has received growing interest over the last several decades is competitive egress

behavior. Kirchner et al. (2003) addressed the effect of competitive behavior in emer-

gency evacuation problem. In their model, they introduced a friction parameter µ

to distinguish between competitive and cooperative movement. They claimed that

competition may increase walking speed of pedestrian in evacuation process. If the

door width is larger than the critical door width, competition will decrease the egress

time, otherwise it will increase egress time. The authors also used a very interesting

experiment to show that the motivation level is very important for the egress time

in a narrow aircraft, and then they reproduced this experiment by simulating the

evacuation from a room. They also compare the simulation results and the experi-

mental results. These results can provide us some hints for planning evacuation in

case of hurricane. It means that moderate competition can increase the speed of

evacuees, and the level of competition can actually be controlled by the government.

Baker (1991) analyzed the factors affecting the willingness of residents to evacuate,

including the risk level of the area, action by public authorities, housing, and so on.

Because human behavior is so important in evacuation problems, we consider this

factor in our MAS model by giving evacuees freedom to choose their own evacuation

routes and shelters. We analyze the effect of evacuees’ choices on total evacuation

time, individual traveling time, transportation cost, and traffic conditions.

II.2. Traffic Simulation and Dynamic Network

Chen et al. (2006) model and analyze the procedure for hurricane evacuation in the

Florida Keys. They built an agent-based micro-simulation model to find the min-

imum clearance time to evacuate all people in that area. Their paper constructed

the decentralized model as agent-based and adopted a real-world instance (i.e. pop-
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ulation in Florida Keys in 2000 U.S. Census) to implement the experiments. In our

study, we also develop an agent-based simulation model in microscopic level to study

effects on total evacuation time, individual traveling time, transportation cost, and

traffic conditions. In our MAS model, evacuees are given guidelines but they have

freedom to choose their own routes and shelters. Lamel et al. (2010) adapted an

existing multi-agent transportation simulation framework to large-scale pedestrian

evacuation simulation. A simple queueing model, which considers bottleneck capac-

ities and space constraints, was simulated, and captured the most important aspects

of evacuation, such as congestion effects of bottlenecks and clearance time to evacu-

ate to safe areas. This model also has a time-dependent component to reflect changes

in the network. The simulation was demonstrated through a case study for Padang,

Indonesia. Elmitiny et al. (2007) used the VISSIM traffic simulation model to eval-

uate a current plan and alternative plans during an emergency situation in a transit

facility such as a bus depot. The benefit of traffic rerouting was also investigated.

Liu et al. (2007) presented a model reference adaptive control (MRAC) framework

for real time traffic management under an emergency evacuation. It controlled traf-

fic flow dynamically to maximize the utilization of the transportation system and

minimize fatalities due to traffic accidents and jams. The proposed framework was

based on both dynamic network modeling techniques and adaptive control theory.

This article also used simulation studies to show that the proposed framework based

on MRAC can improve the evacuation performance significantly (measured as the

clearance time and the number of victim vehicles). Noh et al. (2009) also used a dy-

namic transportation simulation model for the evacuation problem, and their model

was applied to a case study for flood evacuation in Phoenix, Arizona. Chen and Xiao

(2008) proposed an approach for real-time traffic management under emergency evac-

uation. This approach is different from the predetermined evacuation plans, and it
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controlled traffic flow dynamically by considering the traffic network as a dynamic

system. This approach was used to obtain the minimum evacuation time, and au-

thors showed the effectiveness of the approach in a numerical example. Mamada

et al. (2004) developed dynamic network flow models for the building evacuation

problem. They introduced the single-sink, two-sink, and k-sink case models, and

showed that, if the number of sinks is bounded by some constant, solution time is

polynomial. In our MAS model, we also simulate a dynamic transportation system,

and we consider traffic speed is a variant as the traffic density on the road. Traffic

speed and traverse time of a road is changed dynamically with traffic density.

Some articles addressed the improvement of traffic conditions in order to reduce

the evacuation time. Some proposed the concept of contraflow to increase the capac-

ity of routes along the direction of evacuation (e.g. Kim et al., 2008), especially for

traffic flow on freeways, and some focus on traffic light timing for traffic flow in urban

area. Chen et al. (2007) constructed a simulation model to investigate the influence

of traffic light timing on evacuation in urban area, and to study the trade-off between

evacuation time and average delay when assessing proposed timing plans.

II.3. Applications of Network Design Problems in Evacuation Problems

Some articles modeled evacuation problems based on networks and solved these prob-

lems as network design problems. Andreas and Smith (2009) studied a building

evacuation problem based on a staged capacitated tree network, and minimized the

expected evacuation penalty over all scenarios. Mamada et al. (2004) also studied a

building evacuation network design problem on a tree network. Moreover, Chalmet

et al. (1982) constructed three network models for building evacuation problems.

The first model is a dynamic model, and the time period is discrete. The other two
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models are graphical and intermediate models. Besides the studies which used net-

work design problems to study pedestrian evacuation, Kaufman et al. (1998) studied

the problem with vehicular traffic. They developed a mixed integer linear program

to provide route guidelines to traffic so that travel time can be minimized. However,

they only tested their model in a small network (only 4 nodes, 8 physical links, and 4

destinations) and solved it by a basic branch-and-bound algorithm. Due to the high

computational cost of traditional time-expanded networks using linear programming

approach, Lu et al. (2005) presented a heuristic algorithm, Capacity Constrained

Route Planner (CCRP), to produce sub-optimal solution for the evacuation planning

problem. In our study, we propose a regional evacuation network design problem and

develop a mixed integer linear program to devise effective and controlled evacuation

networks for sending evacuees from their origins to shelters before extreme events.

We develop an efficient solution methodology to solve large-scale instances to a small

optimality gap within a reasonable time.

II.4. Applications of GIS in Evacuation Problems

The evacuation problem always involves the spatial components, so the combina-

tion of a geographical information system (GIS) and optimization methodology is

desirable. Saadatseresht et al. (2008) proposed a three-step method for evacuation

planning. In the first step, safe areas are selected, based on some specific conditions

by referencing the maps, satellite images and so on. The second step selects the can-

didate safe areas, and finds the optimal path between each building block and each

candidate safe area using GIS software tools. The third step chooses the optimal

safe area for each building block from its candidate safe areas which are selected in

the second step. The authors used a two-objective function. Finally, a case study
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was conducted in a GIS environment, and the results were tested. They used GIS

to preprocess before solving the problem (i.e. in the second step), and also obtained

results in a GIS environment for visualization to further understand and test their

evacuation plan (i.e. in third step). Cova and Church (1997) proposed an approach

to identify the communities, which have difficulties in evacuating transportation.

They developed an integer programming model and solved this model by a heuristic

approach in a GIS context. They conducted a case study on communities in Santa

Barbara, California. In our study, we use GIS data to generate our network for com-

putational studies to test the effectiveness and efficiency of the SEND model and

our solution methodology. The MAS model is also developed based on this network.

Moreover, we use ArcGIS to preprocess our spatial data and visualize the evacuation

plan proposed by SEND model.

Based on this literature review, extensive effort has been involved in employing

simulation approaches to study the evacuation problem. However, the large-scale

regional evacuation network design problems, which are studied by optimization ap-

proaches, need to be explored more extensively. Our SEND model makes a contribu-

tion in this field. We also consider human behavior and dynamic traffic speed-density

model in our MAS model. Also, we use ArcGIS to get a better understanding of

our networks and results. Moreover, unlike the other studies, which only employ

simulation models or optimization models, we integrate these two parts together to

get an overall outcome.
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CHAPTER III

STRATEGIC EVACUATION NETWORK DESIGN PROBLEM

We pose and analyze a regional evacuation network design problem in order to pro-

vide a pre-event strategic planning approach. We propose a mixed integer linear

program to devise effective and controlled evacuation networks for sending evacuees

from their origins to shelters before extreme events such as hurricanes. In this chap-

ter, Section III.1 describes the problem definition and assumptions of SEND problem.

Section III.2 provides notations and the formulation of SEND model. Section III.3

describes a solution approach based on BD. Experimental design and computational

results are provided in Section III.4. Section III.5 gives a summary for this chapter.

III.1. Problem Definition

In this study, we consider a regional emergency evacuation of a large geographical

area, for example, a metropolitan area. On an underlying road network, we define the

area to be evacuated (the risk area under threat) in a discretized fashion where the

associate set of nodes represents source nodes whose populations are the required

outflow. Another set of nodes in this network represents potential shelters which

are essentially regions including a set of potential shelters, i.e., a shelter region.

A final set of nodes represents potential transfer points (e.g., towns, truck-stops,

highway intersections, etc.) which are visited (passed through) by evacuees on their

routes from sources to shelters. The problem is illustrated in Figure 1. Origin

and destinations nodes are also potential transfer nodes since evacuees could travel

through one or several risk and safe areas on their route to destinations. We further

assume the following as design characteristics:
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Figure 1 Network Illustration for SEND Problem

Evacuation Zone Transfer Zone Potential Shelters

• The population from one origin can go to several destination nodes, and one

destination node can accept flows from several origin nodes. However, between

a pair of origin-destination nodes, the population can use at most one path

(i.e., the evacuees with the same origin and destination travel along the same

route).

• In addition to transportation costs associated with flow, we assume that (undi-

rected) edges, potential shelters and transfer nodes in the underlying network

have associated fixed costs. In particular, shelter costs include expenditures to

prepare accommodation, safety/security, medical and food supplies; transfer

node and edge costs are mainly associated with general maintenance, infras-

tructure development, readiness to serve evacuees as well as safety/security

during an evacuation.
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• Furthermore, because each shelter has a space limitation and it should be

staffed and provide a certain set of basic supplies such as food, medicine, and

other basic necessities of life, and a safe and secure environment for evacuees,

we consider an original capacity for each shelter in terms of the number of

evacuees it can handle. However, besides the original capacity, each shelter

can obtain extra capacity by constructing more facilities and providing more

necessaries. As a consequence, the extra capacities of shelters incur extra fixed

costs. There is an upper bound for extra capacity that each shelter can obtain.

• Also, we assume that each edge (road segment) in the network has a finite

original capacity on the total flow that it can handle in an evacuation event. In

each road segment, extra capacity can be obtained by adding new lanes (e.g.

employing highway roadside, re-designing a wide four-lane road segment to a

five-lane road segment, or paving temporary road segments). Adding new lanes

incur extra fixed costs of each edge. It is important to recognize that, in parallel

with our objectives in evacuation network design, this capacity is considered at

a high level rather than with fine granularity as in a dynamic traffic assignment

study. In conjunction with this, we consider a constant (average) traffic speed

in the SEND model and, thus, the traverse time of each edge is constant.

• Moreover, to restrict each individual’s evacuation time, each road segment (arc)

has a specific traversal time, and the sum of the traversal times of the arcs on a

path is the traversal time of the path. Traversal time of each evacuation path

should be less than or equal to the established evacuation time to guarantee

the safety of evacuees and to avoid excessive on-the-road travel times.

• We assume that each edge (undirected) are associated with two arcs (directed),

which share the capacity of the corresponding edge. Using one arc on an edge
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will include the fixed cost of the corresponding edge to the total costs. Also,

using both arcs on an edge will only include the fixed cost of the corresponding

edge to the total costs once.

Although such a problem is similar to the capacitated multi-commodity network

design problem (CMCND) in optimization literature, it has striking differences and

associated challenges as we explore in this study. In the CMCND, given a set of

commodities defined by unique origin-destination node pairs and flow demands, arcs

are selected (from an underlying network) to construct a network on which the

commodities are routed without violating arc capacity constraints while minimizing

the sum of (variable) flow and (fixed) arc selection costs. CMCND are often applied

to telecommunications and transportation networks (Gendron et al., 1998). We use

CMCND as a solid foundation to build a more comprehensive model in support of

extreme event evacuation, where the commodities in CMCND (loosely) represent a

self-evacuee or group of evacuees.

There are mainly four distinct differences between the SEND and the CMCND

problems. First, in the CMCND problem, the destination location for each com-

modity (an origin-destination pair) are known a-priori, but this is not the case in

the SEND problem. In the SEND problem, destination (shelter) locations are cho-

sen by the model from a candidate set, and the model opens enough shelters and

implicitly determines origin-destination pairs to ensure evacuees sheltering under ca-

pacity constraints while minimizing the total costs. Second, in the SEND problem,

the selection of transfer nodes, in addition to arcs, is also a part of network design

and has an associated fixed cost implication. Third, in the SEND problem, each

individual should reach a destination safely within the established evacuation time.

The flows considered in the CMCND problem are usually goods, so longer routes

30



for a small part of goods may be allowed. That means for getting a better benefit

for the whole group, a small part of this group can make sacrifices. However, in

the SEND problem, the flow is an evacuee, and a longer evacuation route means a

more dangerous situation. That means no sacrifice is allowed in the SEND problem.

Thus, the SEND problem has to monitor the evacuation time for each individual

but not only the average or total evacuation time. Fourth, in the SEND problem,

shelters’ capacities and edges’ capacities can be increased within specified ranges,

and obtaining the extra capacities can incur extra fixed costs.

III.2. Formulation

We first define the notation employed in our formulation.

Sets

O Set of origin nodes, o ∈ O

D Set of potential destination nodes, d ∈ D

I Set of all nodes (equivalently, set of potential transfer nodes), i, j ∈ I

A Set of directed arcs (i, j) ∈ A

E Set of undirected edges {i, j} ∈ E

Pi Set of nodes precede node i, j ∈ Pi and (j, i) ∈ A

Si Set of nodes succeed node i, j ∈ Si and (i, j) ∈ A

Parameters

so Population in region o ∈ O

qDd Capacity of destination node d ∈ D

qEij Capacity of undirected edge {i, j} ∈ E

fD
d Fixed cost for opening a shelter at node d ∈ D with original capacity

λ Upper bound of the increase of each shelter capacity
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ξ Magnitude of shelter fixed cost increase per unit extra shelter capacity

(e.g. if ξ = 2, the capacity of a shelter increases 1 time, and then the

fixed cost of this shelter increases 2 times)

fI
i Fixed cost for using transfer node i ∈ I

fE
ij Fixed cost for using undirected edge {i, j} ∈ E

gEij Fixed cost for adding a new lane at undirected edge {i, j} ∈ E

bEij Original number of lanes at undirected edge {i, j} ∈ E

cAij Variable cost for one unit flow on arc (i, j) ∈ A

T Safe evacuation time

tij Travel time estimate for arc (i, j) ∈ A

Decision Variables

rDd 1 if a shelter is opened at node d with original capacity, 0 not open

eDd Magnitude of the increase of shelter d capacity (e.g. the capacity of

shelter d increases 2.5 times)

rEij 1 if edge {i, j} is used with original capacity, 0 not used

eEij Number of new lanes added at edge {i, j}

rIi 1 if node i is used as a transfer node, 0 otherwise

zodij 1 if flow from source node o to destination node d traverses arc (i, j),

0 otherwise

xodij Amount of flow from source node o to destination node d on arc (i, j)

mod Fraction of population of source node o going into destination node d

Then, the problem of interest can be formulated as follows:

(SEND) Min
∑

o∈O

∑

d∈D

∑

(i,j)∈A

cAij xodij +
∑

{i,j}∈E

fE
ij r

E
ij +

∑

{i,j}∈E

gEij e
E
ij +

∑

i∈I

fI
i rIi
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+
∑

d∈D

fD
d (rDd + ξ × eDd ) (3.1)

subject to

∑

i∈Pj

zodij ≤ 1 ∀ o ∈ O, ∀ d ∈ D, ∀ j ∈ I

(3.2)

∑

j∈Si

zodij ≤ 1 ∀ o ∈ O, ∀ d ∈ D, ∀ i ∈ I (3.3)

∑

d∈D

mod = 1 ∀ o ∈ O (3.4)

zodij ≤ xodij ∀ o ∈ O, ∀ d ∈ D, ∀ (i, j) ∈ A

(3.5)

xodij ≤ sozodij ∀ o ∈ O, ∀ d ∈ D, ∀ (i, j) ∈ A

(3.6)

zodij ≤



















rIi , if i 6∈ O

rIj , if j 6∈ D
∀ o ∈ O, ∀ d ∈ D, ∀ (i, j) ∈ A

(3.7)

∑

o∈O

∑

i∈Pd

xodid −
∑

o∈O

∑

i∈Sd

xoddi ≤ qDd (rDd + eDd ) ∀ d ∈ D (3.8)

∑

o∈O

∑

d∈D

(xodij + xodji) ≤ qEij (r
E
ij +

eEij
bEij

) ∀ {i, j} ∈ E (3.9)
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∑

j∈Si

xodij −
∑

j∈Pi

xodji =



































mod so, if i = o

−mod so, if i = d

0, otherwise

∀ i ∈ I, ∀ o ∈ O, ∀ d ∈ D

(3.10)

∑

(i,j)∈A

zodij tij ≤ T ∀ o ∈ O, ∀ d ∈ D (3.11)

rDd , r
I
i , zodij ∈ {0, 1}, xodij ≥ 0, 0 ≤ eDd ≤ λ ∀ o ∈ O, ∀ d ∈ D, ∀ i ∈ I,

∀ (i, j) ∈ A (3.12)

0 ≤ mod ≤ 1, rEij ∈ {0, 1}, eEij ≥ 0 ∀ o ∈ O, ∀ d ∈ D, ∀ {i, j} ∈ E .

(3.13)

The objective function (3.1) minimizes the total evacuation network design cost.

Specifically, the first term is the total transportation cost for all flows through arcs.

The second term is the fixed cost for using edges with original capacities, and the

third term is the fixed cost incurred by adding extra lanes. The fourth term represents

the total fixed costs associated with utilized transfer nodes. The fifth term is the

fixed cost for open shelters with original capacities, and the last term is the fixed

cost incurred by increasing shelter capacities. Constraints (3.2) and (3.3) ensure that

there is only one path between an origin node and its (to-be-determined) destination

node. Constraints (3.4) represent that the population in each origin is evacuated

to some shelter (destination). Note that the variable mod effectively implies the

origin-destination node pairs for evacuation. Constraints (3.5) and (3.6) assign the

correct values of binary variables based on existence of flows on arcs. Constraints

(3.7) require that the flow can pass through a transfer node i only if the node is

identified as a transfer node. Constraints (3.8) ensure that, for each destination
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node, the total inflow is less than or equal to its capacity and this occurs only when

the node is decided to be a shelter. If a shelter’s original capacity is not enough,

this shelter obtains extra capacity; however, the extra capacity that each shelter

can obtain is limited. Constraints (3.9) force that the total flow passing through an

edge (i, j) does not exceed its capacity and the flow can pass through an edge only

if the edge is included in the design. If an edge’s original capacity is not enough,

new lanes can be added at this edge; however, the number of new lanes are limited.

Constraints (3.10) are the flow conservation constraints. Constraints (3.11) require

that the evacuation time for each evacuation path (specific for an origin-destination

pair) does not exceed the allowed evacuation time. Constraints (3.12) and (3.13)

force integrality and feasibility ranges for the decision variables.

III.3. Solution Methodologies

Due to the tremendous number of variables and constraints, SEND is extremely hard

to solve, especially for large-scale instances. To tackle this difficulty, we develop our

solution methodology based on BD. The reason for choosing BD approach is that BD

can solve a complicated mixed integer program by decomposing the entire formula-

tion to two relative simple parts: a master problem and a subproblem, and solving

them separately and iteratively (Benders, 1962). From the specific characteristics of

SEND, we find that the subproblem of SEND has the integrality property. By taking

this advantage, BD can be an effective approach for solving SEND.

In BD framework, typically, the master problem is a mixed integer program

with one continuous variable that is used to integrate the master problem and the

subproblem. The subproblem usually only contains continuous variables and uses

the solution of the master problem as parameters. As we have introduced, BD works
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iteratively. At the first iteration, traditionally, master problem is solved without

Benders cuts, and the solutions for integer variables are passed to subproblem as co-

efficients for continuous variables. Then subproblem is solved and generates Benders

cuts, which are added and accumulated to master problem as constraints to integrate

master problem and subproblem. If the original problem is a minimization problem,

since the master problem only contains a part of constraints of original problem,

master problem provides a lower bound to the optimal solution of the original prob-

lem. On the other hand, the subproblem is solved with the fixed values of integer

variables which are passed from the master problem, so the solutions of the fixed

integer variables and the corresponding solutions of continuous variables compose an

upper bound for the optimal solution of the original problem. Along the iterations,

the Benders cuts are accumulated in the master problem. Thus, the optimal solution

of the master problem is non-decreased, and the lower bound for the optimal solution

of the original problem is improved. With the procedure repeats iteratively, both of

the lower bound and the upper bound of the optimal solution of the original problem

are updated. Typically, BD approach stops until stop criteria are satisfied (e.g. the

gap between the lower bound and the upper bound of the optimal solution of the

original problem is within a specific tolerance, or the number of iterations is larger

than an established value) (Benders, 1962).

BD is employed to solve the complicated mixed linear problems which can

be partitioned to two relative easy problems. This property let BD be a popular

approach for solving network design problems (Gzara and Erkut, 2011; Üster and

Lin, 2011; Kewcharoenwong and Üster, 2012; Marin and Jaramillo, 2009; Üster and

Kewcharoenwong, 2011; Üster and Agrahari, 2011; Easwaran and Üster, 2010, 2009).

Recently, BD approach is also used to solve evacuation problems which are modeled

in complicated mixed integer linear programs. Andreas and Smith (2009) posed and
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analyzed a building evacuation problem with a mixed integer linear program, and

they developed a solution strategy based on BD to solve their model.

In our study, we propose a mixed integer linear program to devise effective and

controlled evacuation networks for sending evacuees from their origins to shelters, and

we develop a solution methodology to solve SEND model based on BD approach.

For SEND, the master problem prescribes facility utilization, and the subproblem

contains flow variables and fraction variables to decide the flow assignments.

The formulation for subproblem (SP) is developed in § III.3.1. In § III.3.2, we

reformulate SEND to develop the master problem (MP). In § III.3.3, we present the

formulation for MP. In § III.3.4, we employ techniques to accelerate BD. At the end

of this section, § III.3.5, we present the framework for the overall algorithm. The

organization of this section is illustrated in Figure 2.

Figure 2 Organization of Section III.3
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III.3.1. Benders Subproblem and Dual Subproblem

Before we introduce the Benders reformulation for the SEND problem, we first

present the SP and its dual (DSP). For given values of design variables zodij , r
E
ij ,

rDd , r
I
i , e

D
d , and eEij (obtained as a master problem solution and represented as ẑodij ,

r̂Eij , r̂
D
d , r̂

I
i , ê

D
d , and êEij respectively), the SP is extracted from the overall SEND

formulation, (3.1)-(3.13), as follows:

(SP) Min
∑

o∈O

∑

d∈D

∑

(i,j)∈A

cAij xodij (3.14)

subject to

∑

d∈D

mod = 1 ∀ o ∈ O (3.15)

xodij ≥ ẑodij ∀ o ∈ O, ∀ d ∈ D, ∀ (i, j) ∈ A

(3.16)

xodij ≤ soẑodij ∀ o ∈ O, ∀ d ∈ D, ∀ (i, j) ∈ A

(3.17)

∑

o∈O

∑

i∈Pd

xodid −
∑

o∈O

∑

i∈Sd

xoddi ≤ qDd (r̂Dd + êDd ) ∀ d ∈ D (3.18)

∑

o∈O

∑

d∈D

(xodij + xodji) ≤ qEij (r̂
E
ij +

êEij
bEij

) ∀ {i, j} ∈ E (3.19)

∑

j∈Si

xodij −
∑

j∈Pi

xodji =































mod so, if i = o

−mod so, if i = d

0, otherwise

∀ i ∈ I, ∀ o ∈ O, ∀ d ∈ D

(3.20)
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xodij ≥ 0, 1 ≥ mod ≥ 0 ∀ o ∈ O, ∀ d ∈ D, ∀ (i, j) ∈ A.

(3.21)

The solution of SP essentially prescribes origin-destination pairs and flow require-

ments for each pair (mod) and the routing of flow for the origin-destination pairs

(xodij) over the network dictated by the master problem solution.

To obtain the DSP, we define the dual variables ρo, µodij , ωodij, αd, and θij for

constraints (3.15), (3.16), (3.17), (3.18), and (3.19), respectively. Additionally, the

dual variables for constraint set (3.20) are defined as δod, σod, and λiod for varying

right-hand sides in the order given. Then, the DSP is formulated as follows (note

that hereafter, if not specified, o ∈ O, d ∈ D, and i, j ∈ I).

(DSP) Max
∑

o∈O

ρo +
∑

o∈O

∑

d∈D

∑

(i,j)∈A

ẑodij µodij −
∑

o∈O

∑

d∈D

∑

(i,j)∈A

so ẑodij ωodij

−
∑

d∈D

qDd (r̂Dd + êDd )αd −
∑

{i,j}∈E

qEij (r̂
E
ij +

êEij
bEij

) θij (3.22)

subject to

µodij − ωodij − θij + λiod − λjod ≤ cAij i 6= o, d, j ∈ Si, j 6= o, d, j > i (3.23)

µodij − ωodij + λiod − λjod ≤ cAij i 6= o, d, j ∈ Si, j 6= o, d, j = i (3.24)

µodij − ωodij − θji + λiod − λjod ≤ cAij i 6= o, d, j ∈ Si, j 6= o, d, j < i (3.25)

µodoj − ωodoj − θoj + δod − λjod ≤ cAoj i = o, j ∈ So, j 6= o, d, j > o (3.26)

µodoj − ωodoj − θjo + δod − λjod ≤ cAoj i = o, j ∈ So, j 6= o, d, j < o (3.27)

µodio − ωodio − θio − δod + λiod ≤ cAio j = o, i ∈ Po, i 6= o, d, o > i (3.28)
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µodio − ωodio − θoi − δod + λiod ≤ cAio j = o, i ∈ Po, i 6= o, d, o < i (3.29)

µoddj − ωoddj + αd − θdj + σod − λjod ≤ cAdj i = d, j ∈ Sd, j 6= o, d, j > d (3.30)

µoddj − ωoddj + αd − θjd + σod − λjod ≤ cAdj i = d, j ∈ Sd, j 6= o, d, j < d (3.31)

µodid − ωodid − αd − θid − σod + λiod ≤ cAid j = d, i ∈ Pd, i 6= o, d, d > i (3.32)

µodid − ωodid − αd − θdi − σod + λiod ≤ cAid j = d, i ∈ Pd, i 6= o, d, d < i (3.33)

ρo − so δod + so σod ≤ 0 (3.34)

ρo, µodid, ωodid, αd, θid ≥ 0. (3.35)

Let L and V denote the sets of all extreme points and extreme rays in the

polyhedron given by all DSP constraints. For each extreme point l ∈ L, let µ̂l
odij ,

ω̂l
odij , α̂

l
d, θ̂

l
ij , ρ̂

l
o, δ̂

l
od, σ̂

l
od, λ̂

l
iod andDl represent the associated values for dual variables

and the objective value. If DSP is bounded, let D∗ represent the optimal objective

value, and then D∗ ≥ Dl, ∀ l ∈ L. Thus, the DSP can be reformulated as minD≥0{D :

D ≥ Dl, ∀ l ∈ L}, where

Dl =
∑

o∈O

ρ̂lo +
∑

o∈O

∑

d∈D

∑

(i,j)∈A

zodij µ̂
l
odij −

∑

o∈O

∑

d∈D

∑

(i,j)∈A

sozodijω̂
l
odij

−
∑

d∈D

qDd (r̂
D
d + êDd )α̂

l
d −

∑

{i,j}∈E

qEij(r̂
E
ij +

êEij
bEij

)θ̂lij , ∀ l ∈ L. (3.36)

When DSP is bounded, Benders optimality cuts can be generated as follows:

D ≥
∑

o∈O

ρ̂lo +
∑

o∈O

∑

d∈D

∑

(i,j)∈A

zodijµ̂
l
odij −

∑

o∈O

∑

d∈D

∑

(i,j)∈A

so zodijω̂
l
odij

−
∑

d∈D

qDd (r̂Dd + êDd ) α̂
l
d −

∑

{i,j}∈E

qEij (r̂
E
ij +

êEij
bEij

) θ̂lij , ∀ l ∈ L. (3.37)

For each extreme ray v ∈ V, let µ̂v
odij , ω̂

v
odij , α̂

v
d, θ̂

v
ij , ρ̂

v
o, δ̂

v
od, σ̂

v
od, λ̂

v
iod represent the
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corresponding values for dual variables. When DSP is unbounded, Benders feasibility

cuts can be generated as follows:

∑

o∈O

ρ̂vo +
∑

o∈O

∑

d∈D

∑

(i,j)∈A

zodijµ̂
v
odij −

∑

o∈O

∑

d∈D

∑

(i,j)∈A

sozodijω̂
v
odij

−
∑

d∈D

qDd (r̂Dd + êDd ) α̂
v
d −

∑

{i,j}∈E

qEij (r̂
E
ij +

êEij
bEij

) θ̂vij ≤ 0 ∀ v ∈ V. (3.38)

III.3.2. Benders Reformulation

Using the above reformulated representation of DSP, we can reformulate SEND as

follows:

(RSEND) Min
∑

{i,j}∈E

fE
ij r

E
ij+

∑

{i,j}∈E

gEij e
E
ij+

∑

i∈I

fI
i rIi +

∑

d∈D

fD
d (rDd +ξ×eDd )+D

(3.39)

subject to (3.2), (3.3), (3.7), (3.11), (3.12), (3.13), (3.37), (3.38).

However, it is not practical to solve this formulation because of the large |L|

and |V| values. Since not all Benders cuts are binding at optimality, we can relax

RSEND by considering only a subset of Benders cuts in each iteration. This relaxed

problem is the master problem (MP), which is presented in next subsection. Because

SEND is a minimization problem, the optimal objective value of the MP is always a

lower bound for SEND.
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III.3.3. Benders Master Problem

Based on the discussion in § III.3.2, letting U and W be subsets of L and V, respec-

tively, master problem (MP) can be formulated as follows.

(MP) Min
∑

{i,j}∈E

fE
ij r

E
ij +

∑

{i,j}∈E

gEij e
E
ij +

∑

i∈I

fI
i rIi +

∑

d∈D

fD
d (rDd + ξ × eDd ) +D

(3.40)

subject to (3.2), (3.3), (3.7), (3.11)

D ≥
∑

o∈O

ρ̂uo +
∑

o∈O

∑

d∈D

∑

(i,j)∈A

zodij µ̂
u
odij −

∑

o∈O

∑

d∈D

∑

(i,j)∈A

so zodij ω̂
u
odij

−
∑

d∈D

qDd (rDd + eDd ) α̂
u
d −

∑

{i,j}∈E

qEij (r
E
ij +

eEij
bEij

) θ̂uij , ∀ u ∈ U

(3.41)

∑

o∈O

ρ̂wo +
∑

o∈O

∑

d∈D

∑

(i,j)∈A

zodij µ̂
w
odij −

∑

o∈O

∑

d∈D

∑

(i,j)∈A

sozodij ω̂
w
odij

−
∑

d∈D

qDd (rDd + eDd ) α̂
w
d −

∑

{i,j}∈E

qEij (r
E
ij +

eEij
bEij

) θ̂wij ≤ 0, ∀w ∈ W

(3.42)

rDd , r
I
i , zodij ∈ {0, 1}, 0 ≤ eDd ≤ λ ∀ o ∈ O, ∀ d ∈ D, ∀ i ∈ I, ∀ (i, j) ∈ A (3.43)

rEij ∈ {0, 1}, eEij ≥ 0 ∀ {i, j} ∈ E . (3.44)

In MP, we consider the fixed costs for using edges, the fixed costs for using

transfer nodes, and the fixed costs for opening shelters. In MP, the model prescribes

the binary variables associated with edges, transhipment nodes, shelters, and route

assignments (zodij). MP decides the underlying network for SEND, and then SP
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prescribes flow assignments based on the underlying network chosen by MP. However,

the underlying network chosen by MP may have the connectivity and capacity issues,

since these constraints are not in MP and the MP’s objective is to minimize network

construction costs. Both connectivity and capacity issues may make SP infeasible and

cause BD to be inefficient, which is the motivation for us to develop the enhancements

for BD in the next subsection.

III.3.4. Algorithmic Enhancements

To this end, we finish developing the basic BD approach. However, if SP is infeasible

and DSP is unbounded, DSP generates a feasibility cut that does not improve the

lower bound efficiently. Also, the upper bound cannot be updated in the correspond-

ing iteration, because the newly generated objective value for DSP is infinity. On

the other hand, if DSP is bounded, it generates an optimality cut based on an ex-

treme point. Optimality cuts improve lower bounds effectively and also may update

upper bounds. Obviously, if more optimality cuts are generated, BD can converge

quickly; otherwise, BD may converge slowly. Thus, our consideration in accelerating

the solution methodology is trying to generate more optimality cuts. Following this

idea, if DSP is unbounded, besides adding the feasibility cut to MP, we also generate

multiple optimality cuts for MP. Whether SP is feasible or not depends on the values

of variables generated in MP, because these values are passed from MP to SP and

are used as parameters in SP. Thus, we focus our consideration on how to get MP

solutions that form a feasible SP. The most intuitive idea is that, if the MP solution

is a part of a feasible solution for SEND, these values can always make SP feasible. If

SP is feasible, it can generate an objective value that can form a valid upper bound

of SEND. Thus, it is always safe to use the values in any feasible solution of SEND

as the corresponding parameters in SP.
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Thus, to make the BD approach more efficient, we add the following techniques.

First, in the first iteration, we develop a feasible solution (in § III.3.4.2) for SEND

and solve DSP using this feasible solution. Then we get an optimality cut and add it

to the initial MP (Torres-Soto and Üster, 2011; Easwaran and Üster, 2009). Second,

we solve MP with surrogate constraints (in § III.3.4.1). Third, in each iteration, if

DSP is infeasible, we generate multiple feasible solutions for SEND (in § III.3.4.2),

so we can generate multiple optimality cuts in each iteration (Easwaran and Üster,

2010; Kewcharoenwong and Üster, 2012). If the number of optimality cuts is larger,

it can improve the lower bound more effectively. However, it makes MP harder to

solve. Thus, it is a trade off in the number of cuts. Also, these feasible solutions

are not generated independently and randomly; however, we use information from

the solution of MP in the last iteration to generate the feasible solutions which are

used in DSP in the current iteration. Fourth, when we generate the optimality cuts,

strengthen them and add them to MP (in § III.3.4.3). Because the dual subproblem

is highly degenerate and generates multiple optimal solutions, we choose the optimal

solution which can generate strengthened cuts that can speed up the convergence rate

(Magnanti and Wong, 1981; Roy, 1986; Wentges, 1996). Fifth, we solve MP with

early termination criterion in the first several iterations. We give MP a loose gap in

the first iteration, and then we decrease this gap gradually in successive iterations.

This can save run time for solving MPs and avoid trailing off (Easwaran and Üster,

2010).

Because multiple feasible solutions may be the same in consecutive iterations,

this may cause the optimality cuts, which added to MPs to be same in consecutive

iterations. This situation may generate the same solutions on successive iterations

and may cause the endless loop. Thus, when DSP is unbounded, we add the multiple

optimality cuts and a feasibility cut to MP. Moreover, adding feasibility cuts can
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make the cut pool diverse so that the algorithm is more effective.

III.3.4.1. Surrogate Constraints

Although the surrogate constraints are redundant in the overall SEND model, when

added to MP in the BD framework, they help to improve the solution time of MP

and/or the quality of lower bounds by providing a higher MP optimal objective value.

Our first set of surrogate constraints to be added to MP concern the total capac-

ity requirements and ensure that the total capacity available at the open shelters is

at least equal to the total population evacuated (3.45). Similarly, the total aggregate

capacity on the outgoing arcs from origin nodes (3.46) and on the incoming arcs to

shelters (3.47) are at least equal to the total evacuee flow.

∑

d∈D

qDd (r
D
d + eDd ) ≥

∑

o∈O

so. (3.45)

∑

o∈O

∑

i∈So

qEoi(r
E
oi +

eEoi
bEoi

) ≥
∑

o∈O

so (3.46)

∑

i∈Pd

∑

d∈D

qEid(r
E
id +

eEid
bEid

) ≥
∑

o∈O

so (3.47)

We additionally consider other redundant constraints for addition to MP which,

based on our computational tests, contribute to improving lower bounds without a

noteworthy computational burden to solving MP. These include

∑

d∈D

∑

j∈So

zodoj ≥ 1, ∀ o ∈ O (3.48)

∑

o∈O

∑

i∈Pd

zodid ≥ rDd , ∀ d ∈ D (3.49)

zodid ≤ rDd , ∀ o ∈ O, d ∈ D, ∀ i ∈ Pd (3.50)
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zodij ≤















rEij , if j ≥ i+ 1

rEji, if j < i

∀ o ∈ O, ∀ d ∈ D, ∀ (i, j) ∈ A (3.51)

rEij q
E
ij ≥ eEij ∀ {i, j} ∈ E (3.52)

rDd qDd ≥ eDd ∀ d ∈ D (3.53)

Constraints (3.48) require that there is at least one outgoing arc from an origin node

and, similarly Constraints (3.49) require that there must be nonzero inflow to a shel-

ter (ensuring at least one incoming arc), if this shelter is opened. Constraints (3.50)

ensure that the shelter at node d must be opened if it has nonzero inflow. Constraints

(3.51) guarantee that, if a directed arc (i, j) is used, then the corresponding edge

{i, j} is in solution. Constraints (3.52) and (3.53) ensure that only the used shelters

and edges can obtain extra capacities.

III.3.4.2. Generating Feasible Solutions

To improve the efficiency of the Benders decomposition (BD) approach, we heuris-

tically generate and embed feasible solutions of SEND in various stages of the algo-

rithm. First, before the first iteration, we find a feasible solution of SEND and solve

a DSP with this feasible solution as its parameters. Then, we generate an optimality

cut using the optimal solution of the DSP and add this cut to the initial MP (Went-

ges, 1996; Easwaran and Üster, 2009). Second, in each iteration, if DSP is infeasible,

we determine multiple feasible solutions of SEND so that we can generate multiple

Benders optimality cuts in each iteration in addition to the feasibility cut that needs

to be added to MP at that iteration.

Also, the multiple feasible solutions of SEND are not generated independently
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and randomly; however, we use information from the solution of MP in the last

iteration to generate these multiple feasible solutions which are used as variable

coefficients in DSP in the current iteration. The procedure for generating the feasible

solutions of SEND should be very effective and cannot become a burden for the whole

solution methodology.

In this section, we introduce the details about how to generate these feasible

solutions of SEND. First, we devise a formulation to prescribe a feasible solution

(FP) in which we assume the presence of all edges and determine flows by optimizing

the transportation cost and fixed costs of shelters under capacity constraints and flow

conservation constraints. mcAij is the modified variable costs for each arc. To generate

multiple feasible solutions of SEND and make them diverse, in each time when we

solve FP, we use a new set of mcAij in FP by modifying the original arc variable costs

cAij based on the information from the solution of MP in last iteration.

(FP) Min
∑

o∈O

∑

d∈D

∑

(i,j)∈A

mcAij xodij +
∑

d∈D

fD
d (rDd + ξ × eDd ) (3.54)

subject to

∑

d∈D

mod = 1 ∀ o ∈ O (3.55)

∑

o∈O

∑

i∈Pd

xodid −
∑

o∈O

∑

i∈Sd

xoddi ≤ qDd (rDd + eDd ) ∀ d ∈ D (3.56)

∑

j∈Si

xodij −
∑

j∈Pi

xodji =



































mod so, if i = o

−mod so, if i = d

0, otherwise

∀ i ∈ I, o ∈ O, d ∈ D (3.57)
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∑

(i,j)∈A

xodij tij ≤ so mod T ∀ o ∈ O, ∀ d ∈ D. (3.58)

The problem FP is a type of network flow problem and is relatively easy to

solve. There is no edge capacity constraint in FP, so flows are not split for a pair

of origin-destination. Constraints (3.58) ensure that the time constraints in SEND

can be satisfied in FP. Based on the xodij values obtained from FP, we generate the

values of the other variables. More specifically, the nonzero values of xodij imply a

set of zodij , r
E
ij, and rIi variables whose values are all one (corresponding solution

vectors are represented as ẑodij , r̂
E
ij , and r̂Ii , respectively). If the value of xodij for

edge ij is greater than the capacity of this edge, extra capacities should be added,

and the values of êEij can be determined. Thus, a feasible solution of SEND can be

obtained from the optimal solution of FP.

The framework of the heuristic algorithm is presented in Algorithm 1. Note that

for the first iteration in BD, FP uses the original variable costs (cAij) rather than the

modified variable costs (mcAij), i.e., ω = 0.
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Algorithm 1 Generate Feasible Solutions

1: initialize multiplier vector W and MP solution ẑodij , r̂
E
ij, r̂

D
d ,

and r̂Ii
2: for each ω in the multiplier vector W do

3: for each edge {i, j} ∈ E do

4: mcAij = cAij + (1− r̂Eij) (f
E
ij/q

E
ij) ω

5: mcAji = cAji + (1− r̂Eij) (f
E
ij/q

E
ij) ω

6: end for

7: for each shelter d ∈ D do

8: mcAid = cAid + (1− r̂Dd ) (f
E
id/q

E
id) ω

9: end for

10: for each transfer node i ∈ I do

11: mcAij = cAij + (1− r̂Ii ) (f
I
i /q

E
ij) ω

12: mcAji = cAji + (1− r̂Ii ) (f
I
j /q

E
ij) ω

13: end for

14: if current iteration is the first iteration in BD then

15: Solve FP using the original variable costs cAij
16: else

17: Solve FP using the modified variable costs mcAij
18: end if

19: Update ẑodij , r̂
E
ij, r̂

D
d , r̂

I
i , ê

E
ij , and êDd

20: Pass ẑodij , r̂
E
ij , r̂

D
d , r̂

I
i , ê

E
ij , and êDd to DsP as coefficients

variables and solve DsP

21: end for

The detailed approach to generate the modified variable costs mcAij is outlined

in lines 3-13 of Algorithm 1. The idea for modifying the variable costs is to use the

information from the solution of MP as follows. If an edge is not selected in MP

solution, this edge can be considered as the one with a less priority by increasing the

variable costs of corresponding arcs, since SEND is a cost minimization problem. We

use similar approaches to use the information related to shelters and transhipment

nodes from the solution of MP. The parameter ω is a coefficient chosen to represent

variations in instance parameters, especially the relative magnitudes of arc capacity

and cost parameters. We test the value of ω on a series of numbers from 0.5 to
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100, and select a few numbers to compose the multiplier vector W based on their

performance of improving the upper bound of the objective value of SEND in BD

framework.

III.3.4.3. Strengthening Benders Cuts

We observe that, in our numerical studies, the Benders optimality cuts obtained as

outlined above are rarely effective in facilitating generation of good lower bounds.

Main reason for this can be attributed to the fact that the Benders subproblem

is essentially a network flow problem with multiple optimal solutions. In such a

situation, it is possible that one can generate multiple alternative Benders optimality

cuts, each of which corresponding to a different optimal dual subproblem solution.

Then, it is clear that we are interested in choosing, among these optimal solutions, the

one that provides a strong Benders optimality cut. For this purpose, Magnanti and

Wong (1981) define the strongness of a cut is as follows: in an optimization problem

Miny∈Y , z∈R{z : f(u)+y g(u) ≤ z, ∀ u ∈ U}, if f(u1)+y g(u1) ≥ f(u2)+y g(u2)∀ y ∈ Y

with a strict inequality for at least one y ∈ Y , then the cut f(u1) + y g(u1) ≤ z is

stronger than the cut f(u2) + y g(u2) ≤ z.

Thus, we develop an approach for our formulation to generate the strengthened

Benders cuts by solving the DSP in a two phase approach (Roy, 1986; Wentges, 1996;

Easwaran and Üster, 2009; Üster and Agrahari, 2011). In this approach, given the

values of variables ẑodij , r̂
E
ij , r̂

D
d , r̂

I
i , ê

E
ij , and êDd from MP, we first solve the DSP and

record the values of dual variables associated with the non-zero coefficients in the

DSP objective function. Those dual variable values dictate the value of the DSP

optimal objective value and must be kept as they are. However, the dual variables

that are associated with the zero coefficients can take any value (with some exceptions

as given below) without affecting optimality since they are nullified regardless. Thus,
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to obtain strengthened bounds, we solve the following optimization problem 2PDsP

as a second phase problem:

(2PDSP) Max
∑

o∈O

∑

d∈D

∑

(i,j)∈A

ẑodij µodij −
∑

o∈O

∑

d∈D

∑

(i,j)∈A

so ωodij

−
∑

d∈D

qDd (1 + λ)αd −
∑

{i,j}∈E

qEij (1 +
1

bEij
) θij (3.59)

subject to (3.23)− (3.34).

The 2PDsP model is obtained from DSP as follows. We exclude the first term (
∑

o ρo)

since it is not factored by any dual solution and thus constant after the first phase

is solved. We leave the second term as it is since the µodij variables corresponding

to ẑodij with zero value cannot be changed as this leads to unboundedness in 2PDsP

(or, equivalently, infeasibility of SP due to constraint (3.16) which forces all xodij

to be at least one, if all zodij is set to non-zero values). In the last three terms, we

fix the values of ωodij , αd, and θij associated with non-zero coefficients as obtained

in the first phase and treat the others as decision variables. The constraint set is

modified accordingly via fixing the above mentioned variable values from the first

phase. A combined set of solutions obtained in the first and the second phases is

used to generate a Benders optimality cut of the form (3.41).

III.3.5. Overall Algorithm

To this end, we already introduced each piece of the approach in details, and then we

present the integrated framework in Algorithm 2 as follows, where UB is the upper

bound for the objective value of SEND in BD framework and LB is the lower bound

for the objective value of SEND in BD framework.
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Algorithm 2 Benders Decomposition Algorithm
1: initialize LB = −∞, UB = ∞. Initialize ǫ and

CoefficientArrary

2: Develop a feasible solution for SEND to obtain ẑodij , r̂
E
ij, r̂

D
d ,

êEij , ê
D
d , and r̂Ii

3: while gap > ǫ do

4: Substituting ẑodij , r̂
E
ij , r̂

D
d , ê

E
ij , ê

D
d , and r̂Ii to DSP and solve

DSP

5: if DSP is unbounded then

6: Generate a feasibility cut

7: for each ω in the multiplier vector W do

8: Generate a feasible solution (refer to Algorithm 1)

9: Substituting ẑodij , r̂
E
ij, r̂

D
d , ê

E
ij , ê

D
d , and r̂Ii to DSP and

solve DSP

10: Solve 2PDSP to generate a strengthened optimality

cut

11: Update UB

12: end for

13: Add the feasibility cut and the multiple strengthened op-

timality cuts to MP

14: end if

15: Solve MP with early termination criteria to obtain ẑodij ,

r̂Eij, r̂
D
d , ê

E
ij , ê

D
d , and r̂Ii , and the LB

16: gap = (UB-LB)/UB

17: end while

18: return UB and the corresponding solution

III.3.6. Other BD Enhancements Tested on the SEND Problem

Benders Decomposition is well known to study mixed integer programming, and

there are a lot of variations proposed in recent years. Before we develop our own

solution methodology, we did a comprehensive review in this field. In our problem,

for most of iterations, the dual subproblems are unbounded, so Benders cuts are

generated from extreme rays, called feasibility cuts. However, these feasibility cuts

cannot improve lower bound efficiently. To tackle this difficulty, we focus on two
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variations: accelerating Benders decomposition by local branching, and improving

Benders decomposition using maximum feasible subsystem. We review these studies

and employ them in our problem. However, they do not show good performances in

computational studies. Thus, they are not included in our solution approach.

III.3.6.1. Accelerate Benders Decomposition by Local Branching

In 2009, Rei et al. (2009) proposed a new variation to accelerate Benders decompo-

sition by local branching. The main idea of local branching is to divide the feasible

region of the original problem to several small pieces and find the optimal solution

in each piece. There are two purposes for using local branching in Benders decom-

position: first, find a better upper bounds by using local search; second, generate

optimality cuts to obtain the better lower bounds by adding multiple cuts. The

scheme for applying local branching in Bender decomposition frame is presented in

Algorithm 3. The mechanism of local branching is similar to the one for branch-

and-bound algorithm. (xt, yt) is considered as the current feasible solution, and xt

is the solution for integer variables, yt is the solution for continuous variables. The

distance between xt and x is measured by Hamming distance function and repre-

sented as ∆(x, xt). If x is the solution for binary variables, the distance function

is very simple; however, if x is the solution for general variables, the case becomes

much more complicated (Fischetti and Lodi, 2003). Based on this distance function,

set S can be divided to two subsets S1 and S2. For all x in subset S1, ∆(x, xt) ≤ k;

for all x in subset S2, ∆(x, xt) ≥ k + 1. Thus, the original problem is divided to

two subproblems Pt and P t. Problem Pt is the original problem plus the additional

constraint ∆(x, xt) ≤ k, and Problem P t is the original problem plus the additional

constraint ∆(x, xt) ≥ k+1. Based on this setting, the detail steps for local branching

algorithm is presented in Algorithm 4.
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Algorithm 3 Apply Local Branching in BD
1: Initialize i = 0

2: Start with a solution (xi, yi)

3: while Gap between upper bound and lower bound > ε do

4: i++

5: Local branching and generating multiple feasible solutions

(find the minimum objective value as upper bound)

6: Add the multiple optimality cuts to MP to improve the

lower bound

7: Solve MP to get a new solution (xi)

8: end while

Algorithm 4 Local Branching Algorithm

1: Initialize k, and (xt, yt) is the current solution

2: Generate the two subproblems Pt and P t

3: while Finish exploring the feasible region do

4: Solve subproblem Pt

5: if Pt is feasible then

6: Check the value of the objective function Obj

7: if the current Obj < the last Obj then

8: Divide the feasible region of P t as before using the

distance function ∆(X,Xt+1), creating the new sub-

problems

9: Change the subproblem Pt to P t

10: else

11: Go to step 4

12: end if

13: else

14: Increase the size of k, k = k + 1

15: Go to step 4

16: end if

17: end while

This variation of Benders decomposition can be applied to our problem. In our

case, we have four groups of binary variables rd, ri, rij, and zodij . Since the binary

variables zodij are four dimensional variables, the local branching for this group can

be very time consuming. Also, the solutions for variables rd have little impact for
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the other variables, since there may be a lot of choice for routes even the shelters’

locations are fixed. Furthermore, the solutions for ri are very related to the solutions

for rij . Thus, we decide to do local branching on binary variables rij. When the

original problem is complicated, it is hard to solve problem Pt. To save the solution

time, we solve the subproblem Pt using Benders decomposition. However, with the

size of the neighborhood defined by the distance function increase, it is still very

difficult to solve the subproblem Pt. For circumvent this difficulty, we employ the

mechanism that master problem is not solved to optimality in first several iterations.

We test this algorithm in our computational study. However, the test results show

that this algorithm does not work for our problem, since our problem is involved

with high dimensional variables. The test results are showed in Table 4.

We use the data in Class 3 to test the Benders decomposition with the local

branch (BDLB), and use the Case I parameters. The data and the parameters are

introduced in Chapter IV. The results are listed in the Table 4. The column “Solution

Time” is the solution time under the designated stop criterion. The column “Gap”

is the gap at which tests stop. The stop criterion is set as: optimality gap < 3% or

number of iterations ≥ 5. For all networks, BDLB can not solve the problem to less

than 3% gap within 5 iterations. We also test the same instances for BD without

local branch (i.e. the traditional BD). There is no feasible solution in 5 iterations,

so there is no upper bound and no gap between upper bound and lower bound.

Although, BDLB performs better than the traditional BD, BDLB still cannot solve

our problem to a small gap within a reasonable time.
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Table 4 Tests for BD with Local Branch in Class 3

BDLB

Solution Time Gap (%) Solved

Network 1 8742 10.5 N

Network 2 8673 9.8 N

Network 3 8847 10.9 N

III.3.6.2. Improving Benders Decomposition Using Maximum Feasible

Subsystem (MFS)

In 2010, Saharidis and Ierapetritou (2010) presented an approach to improve Benders

decomposition using MFS cut generation strategy. As introduced at the beginning

of this chapter, if a dual subproblem is bounded, an optimal solution (an extreme

point for the solution space) is found, and an optimality cut is generated. Otherwise,

an extreme ray is found, and a feasibility cut is generated. Unlike the optimality

cuts, feasibility cuts have few contribution in improving the lower bound in Benders

decomposition. Thus, if the number of feasibility cuts is large, the convergent rate

for Benders decomposition is slow (Saharidis and Ierapetritou, 2010). To tackle this

obstacle, every time when a feasibility cut is generated, an additional optimality cut

is produced. This additional optimality cut is produced by the modified subprob-

lem. For obtaining a feasible solution, a minimum number of constraints are relaxed

from the original subproblem, and then the modified subproblem is produced. This

additional optimality cut is an extreme point in the solution space of the modified

subproblem. However, an arbitrary choice for the extreme point may not have the
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most contribution to improve the lower bound. Thus, Saharidis and Ierapetritou

(2010) suggest to find the MFS cuts. The strategy for generating the MFS cuts can

be achieved in two steps: first, find the maximum feasible subsystem of the original

subproblem; second, relax all infeasible constraints to find a feasible solution. In

general, a mixed integer model can be represented as follows.

(Initial Problem) Min cTx+ dTy

subject to

Ax+By ≤ b

Fy ≤ p

x ∈ Rn
+, y ∈ Zq

+

By fixing the values for integer variables y, the subproblem has the following form:

(Sub Problem) Min cTx+ dTy

subject to

Ax ≤ b−By

x ∈ Rn
+

When the subproblem is infeasible, to determine its maximum feasible set, the fol-

lowing problem is solve, where M is a big positive number.

(Extended Sub Problem) Min w1 + w2 + · · ·+ wm

subject to

Ax−MIw ≤ b− By
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x ∈ Rn
+, w = {0, 1}

If w = 0, that means the corresponding constraint should be included in the maxi-

mum feasible subsystem; otherwise, the corresponding constraint should be removed

from the subproblem to make it feasible. Based on this idea, the primal Max FS

problem (PMFSP) is generated. Assuming w1 = 1, w2 = w3 = · · · = wn = 0, the

PMFSP is formulated as follows.

(PMFSP) Min cTx+ dTy

subject to

Ax1 ≤ b−By1 +M

Ax2 ≤ b−By2

· · ·

Axm ≤ b− Bym

x ∈ Rn
+

In the generated MFS cut, due to the complimentary slackness theorem, the

dual variables that corresponding to the relaxed constraints are zero. The MFS cuts

are added to the master problem to improve the lower bound.

We applied this variation of Bender decomposition to our problem. However,

ESP is a mixed integer problem, and it is hard to solve especially for the large scale

problem. After we formulate the ESP, we see that it is almost the same size as our

original problem, and it is really difficult to solve for the large scale instances. We

test this algorithm in our computational study using the data in Class 3. However,

the ESP problem cannot be solved within 10 minutes, since this problem is solved
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repeatedly in each iteration. The long solution time for ESP can be a huge burden for

the whole solution methodology. Thus, this algorithm is removed from the candidates

pool for our solution methodologies.

III.4. Computational Study

In this section, we conduct two experiments. In the first experiment, we test the

performance of our emergency evacuation model and the proposed solution algorithm,

and we conduct this experiment based on an evacuation scenario in coastal Texas.

We benchmark the performance of our solution methodology against a traditional

branch and cut (B&C) solution strategy.

Second, we conduct an experiment to evaluate the effect of three parameters: T

(the established safe evacuation time), λ (how many times the shelter capacity can

increase at most), and ξ (fixed cost for generating extra capacity of shelter).

We use C++ to implement the proposed solution algorithm, and we use CPLEX

12.2 (64 bits) with default settings to solve the MP and the DSP in the BD frame-

work. Also, we use the same version of CPLEX with identical settings to solve the

original problem with B&C approach. All machines used have 2.4 GHZ Intel Core

4 CPU processors with 8 GB RAM. All spatial analysis is conducted using ArcGIS

10 on identical machines. The remainder of this section is organized as follows. In

§ III.4.1, the generation of the underlying networks are presented. In § III.4.2.1,

we conduct an experiment to prove the effectiveness and the efficiency of the SEND

model and the BD approach, and we benchmark the performance of the accelerated

BD approach against the traditional B&C solution strategy. In § III.4.2.2, we con-

duct an experiment to study the effects of parameters T , λ and ξ on the optimal

solution.
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III.4.1. Network Generation

For having a basis of our evacuation scenario, we obtain the spatial data (i.e. traf-

fic networks and county-divisions) and the population data for Texas from the U.S.

Census Bureau. The spatial data comes in the format of TIGER files from the 2009

U.S. Census Bureau and all population data is from the 2000 Economic Census. To

develop a scaled evacuation scenario capable of testing the accelerated BD approach

against the B&C (CPLEX 12.2), we define our underlying network by choosing a

part of the primary and the secondary roads from the real traffic network of Texas.

We choose our potential sheltering areas from the 2009 Texas State shelter hubs

which is released by the Texas Department of Public Safety (DPS). We define a

potential sheltering area as an area which may include one potential shelter or a

few potential shelters. Figure 3 illustrates all 17 Texas Shelter Hubs, and we choose

the central portion of this map (the portion below the bold-black line) as the study

area to develop our scenario. In this study area, 9 counties are considered as po-

tential sheltering areas: Brazos, Walker, Dallas, Tarrant, McLennan, Travis, Bexar,

Nacogdoches and Smith. We consider 5 coastal Texas counties as the affected areas

where the residents need to be evacuated to shelters, and these 5 counties are the

evacuation zones designated by Texas DPS for 2009 hurricane evacuation. They are

Matagorda, Brazoria, Galveston, Chambers, and Harris. Each affected area may

include one origin or several origins. Population for each affected area is consid-

ered as the number of evacuees in this area and is provided in Table 5. Population

for each potential sheltering area is used to evaluate the capacity of this area to

accommodating evacuees and is presented in Table 6.

Figure 4 illustrates the condensed network used in our scenario. We select a part

of the primary and the secondary roads in our study area, which is the portion below
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Figure 3 Texas State Hurricane Shelter Hubs in 2009

Table 5 Population of the Affected Areas in 2000 U.S. Census

Index County Population

1 Matagorda 37,265

2 Brazoria 301,044

3 Galveston 288,239

4 Chambers 26,031

5 Harris 3,984,349
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Table 6 Population of the Potential Sheltering Areas in 2000 U.S. Census

Index County Population

1 Brazos 152,415

2 Walker 61,758

3 Dallas 2,218,899

4 Tarrant 1,446,219

5 McLennan 213,517

6 Travis 812,280

7 Bexar 1,392,931

8 Nacogdoches 59,203

9 Smith 174,706
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the bold-black line in Figure 3, to construct our underlying network. The roads in our

underlying network are highlighted in red in Figure 4. All junctions in this network

are considered as transhipment nodes in the SEND problem. Figure 4 also illustrates

the potential sheltering areas (9 counties) and the affected areas (5 counties). The

numbers in the parenthesis after each potential sheltering area presented in the legend

bar are the indices of potential shelters in this potential sheltering area for one class

of our experiment as introduced next.

The 5 affected areas and the 9 potential sheltering areas are used as a basis

to generate an extended experiment to test the SEND model and the accelerated

BD approach. We split the 5 affected areas and the 9 potential sheltering areas by

zip-code to create a maximum of 47 origins and 22 shelters, respectively. As shown

in Table 7, we derive 4 classes networks, which have different numbers of origins,

shelters, nodes and arcs, to test the SEND model and the accelerated BD approach.

In Figure 4, the numbers in the parenthesis after each potential sheltering area in

the legend bar is the indices of potential shelters in this potential sheltering area

in Class 1, which has 14 potential shelters. For each class, we modify the network

presented in Figure 4 to generate two new networks, so we have three networks for

each class. In our experiment, all data is real data or generated based on real data,

except the parameters of road capacities and the fixed costs of edges and transfer

nodes. To test the robustness of the SEND model and the accelerated BD approach,

we set road capacities at two levels (a low level and a high level) and set fixed costs

of edges and transfer nodes at two levels (a low level and a high level). Thus, we

have 4 cases for parameters of road capacities and fixed costs as presented in Table 8,

and these 4 cases are labeled as I, II, III, and IV.

In our computational study, we make several assumptions to ensure consistency.

For each origin, we assume that the entire population within that area leave from
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Figure 4 Study Network in Central Texas Area
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Table 7 Four Classes Networks

Origins Shelters Nodes Arcs Variables Constraints

Intg. Cont. Total

Class 1 12 14 94 346 58,409 58,296 116,705 338,832

Class 2 18 18 99 400 129,917 129,924 259,841 745,429

Class 3 24 22 108 462 244,297 244,464 488,761 1,392,446

Class 4 47 22 128 512 529,814 530,442 1,060,256 3,046,895

Table 8 Four Cases for Parameters of Road Capacity and Fixed Costs

Roads Capacity

High Low

Fixed Costs
Low I II

High IV III
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the centroid of that area, and the travel distance within that area can be ignored.

We make these assumptions reasonable by letting each origin represent a small area.

Additionally, each origin is composed of a few zip-code areas such that the variation

of populations among origins is small. The population of each origin is the sum of the

populations of zip-code areas which compose the origin. Using the same approach,

we identify each potential shelter by combining a few zip-code areas. Similarly, the

population of each potential shelter is the sum of the populations of zip-code areas

which compose the potential shelter. We assume that the original capacity of a shel-

ter has a linear relationship with its population. Moreover, we realize that the total

capacity of potential shelters should be larger than the total population of origins;

otherwise, the problem is infeasible. Thus, we set the total original capacity of po-

tential shelters as 1.5 times of the total population of the origins. Each road segment

(i.e. an edge) has a capacity, and we define this capacity as 2000∗υ cars/hour, where

υ is a coefficient.

III.4.2. Computational Experiments

III.4.2.1. Experiment for Testing Efficiency of BD Approach

As introduced above, for each class in Table 7, we generate 3 networks. Also, for each

network, we have 4 cases for parameters of road capacities and fixed costs of edges

and transfer nodes. For each case, we generate 5 random instances by a uniform

distribution. Thus, there are totally 240 instances (i.e. there are 4 class types, 3

generated networks, 4 cases for parameters and 5 random instances) tested in our

experiment. We use a uniform distribution to randomly generate fixed costs for edges

and transhipment nodes, as shown in Table 9. We assume that the capacity for each

lane in the whole evacuation process is 2000 times a coefficient υ, where υ is 36 for
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low level capacity and 48 for high level capacity. The capacity of an edge is the

product of the capacity of each lane and the number of lanes on this edge. Also, we

assume that the original capacity of a shelter is proportional to its population (i.e.

a larger town can accommodate more evacuees) and assume that the total capacity

of shelters is greater than the total evacuation population. Moreover, we assume

that the fixed cost for opening a shelter with original capacity is proportional to its

original capacity. Thus, we create parameters of shelter capacities and shelter fixed

costs as shown in Table 9. The parameter λ means that how many times the shelter

capacity can increase at most (i.e. if λ is 5, a shelter can increase its capacity by 5

times). The parameter ξ is the fixed cost for generating extra capacity of shelters

(e.g. if ξ is 2, the fixed cost of a shelter increases 2 times while its capacity increases

1 time).

Table 9 Parameters in Experimental Design

Ea Capacity
Lb 2000*number of lanes*36

Hc 2000*number of lanes*48

Fixed Cost Lb Primary: Uniform[150, 250]; Secondary: Uniform[100, 200]

for Edges Hc Primary: Uniform[200, 300]; Secondary: Uniform[150, 250]

Fixed Cost Lb Primary: Uniform[200, 300]; Secondary: Uniform[150, 250]

for Nodes Hc Primary: Uniform[250, 350]; Secondary: Uniform[200, 300]

Sd Capacity Its Population*1.5*Total Origin Population/Total Shelter Population

Sd Fixed Cost Its Capacity*450000/Total Shelter Capacity

Evacuation Time 16 Hours

λ 5

ξ 2

Note. a: ”E” represents Edge; b: ”L” represents Low; c: ”H” represents High; d: ”S” represents
Shelter.

Table 10 present comparisons of the time required to obtain the solution by
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BD and B&C approaches for instances in Class 1, 2, 3, and 4, respectively. The

optimality gap for cases I and II is set as 3% in Class 1,2,3, and 3.6% in Class 4.

The optimality gap for cases III and IV is 3.6% in Class 1,2,3, and 4.5% in Class 4.

Table 11 reports the average number of iterations required by BD.

Table 10 Average Solution Times for BD and B&C approaches

Class 1 Class 2 Class 3 Class 4

BD B&C BD B&C BD B&C BD B&C

Case I 12.5 364.0 40.4 1693.3 276.4 4791.0* 608.7 > 7200

Case II 4.1 383.1 25.5 1216.7 143.7 2955.9 540.6 > 7200

Case III 8.4 420.9 39.5 1780.3 216.4 3911.0* 459.1 > 7200

Case IV 4.0 423.3 27.3 1792.2 149.9 3264.4* 377.1 > 7200

Note. *: not all instances can be solved within 2 hours, and the average solution time is
calculated from the solvable instances.

Table 11 Average Number of Iterations

Class 1 Class 2 Class 3 Class 4

Case I 2.4 2.8 3.6 2.8

Case II 1.0 1.8 2.3 2.5

Case III 1.7 2.7 3.1 2.2

Case IV 1.0 1.9 2.3 1.9

The results reported in Table 10 indicate that the accelerated BD approach per-
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forms much better than the traditional B&C strategy in solving the SEND model.

By using the accelerated BD approach, the average solution time decreases dramat-

ically for instances in Class 1 and Class 2. For instances in Class 3, by using the

traditional B&C strategy, there are 4 out of 15 instances cannot be solved in 2 hours

for case I; and there are 6 and 2 instances cannot be solved in 2 hours for case III

and IV, respectively. For those instances which cannot be solved by B&C in Class 3,

there is even no feasible solution founded in 2 hours. Furthermore, for all instances

in Class 4, B&C is unable to find a feasible solution within 2 hours while BD can ob-

tain optimal solutions around 10 minutes. Thus, we can conclude that our proposed

solution methodology can solve the SEND model in large-scale instances efficiently,

and the computational performance of our proposed solution methodology is much

better than the traditional B&C strategy in solving the SEND problem.

III.4.2.2. Experiment for Parameters Sensitivity Analysis

In experiment II, we analyze the effect of three parameters: T , λ, and ξ. Through this

experiment, we look for the difference of locations of open shelters and the difference

of the usages of extra shelter capacities. We use p to represent the usages of extra

shelter capacities (i.e. if p = 0.2, the shelter capacity increases by 20 percent), and

p is less than or equal to λ. For this purpose, we test T in 6 levels (in hours): 24,

22, 20, 18, 16 and 14. λ is tested in 2 levels: 0.5 and 5, and ξ is tested in 2 levels:

1.2 and 2. We test these 3 parameters on one instance in Class 1 with parameters of

case I, and we run 24 tests (i.e. there are 6 values for T , 2 values for λ, and 2 values

for ξ).

To see the effect of the established safe evacuation time T on the optimal solu-

tion, we fix the value of λ and ξ and look at the optimal solutions under different

T . From these solutions, we find that when the established safe evacuation time
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decreases, the nearby shelters are used rather than the far shelters. This can be un-

derstood intuitively, since arriving far shelters may need longer traveling time which

may be larger than the established safe evacuation time. As shown in Table 12 and

Figure 5, λ = 5 and ξ = 2, when the established safe evacuation time is 24 hours,

almost every potential shelter is open, except the three farthest shelters, and no open

shelter requires extra capacity. The shelters in red are the open shelters, and the

shelters in purple-colors are the shelters with extra capacity. The depth of purple

indicates the different usages of extra shelter capacities. Because the fixed cost for

using one unit of extra shelter capacity is larger than the fixed cost for using one

unit of original shelter capacity, the SEND model always tries to open new shelters

without giving open shelters extra capacities to satisfy the flow requirements. When

the established safe evacuation time is 24 hours, the time constraints are loose, so

evacuees have enough time to travel to far shelters instead of congesting at the closed

shelters to incur more fixed cost for requiring extra shelter capacities. When the es-

tablished safe evacuation time decreases to 18 hours, there is no difference from the

case of 24 hours. It means that the time constraints are not bounded when the

safe evacuation time is 24 hours. When the established safe evacuation time is 16

hours, less far shelters are open, and the nearby shelters require extra capacities to

satisfy the flow demand. In this case, because the established safe evacuation time

is not long enough to travel to far shelters and few shelters are open, some of open

shelters have to have extra capacities to satisfy the total flow demand. When the

established safe evacuation time is 14 hours, comparing to the case of 16 hours, less

number of far shelters are open, and nearby shelters requires more extra capacities

to satisfy the total flow demand. Thus, if the established safe evacuation time T

decreases, the SEND model will open more nearby shelters rather than far shelters,

and it will force the nearby shelters to use the extra capacities to satisfy the total
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flow demand. Moreover, we find that when the established safe evacuation time de-

creases, the roads connecting to the nearby shelters need more extra capacities. As

shown in Figure 5, each highlighted red line is a road which has a new lane added,

and each highlighted green line is a road which has two new lanes added. When the

established safe evacuation time is 24 hours and 18 hours, there are roads with one

added lane but no road having two added lanes. When the established safe evacua-

tion time decreases to 16 hours and 14 hours, three roads connecting to the nearby

shelters require more capacities, and each of them have two new lanes added. The

flows on roads are related to the inflows of the shelters which are connected to the

roads. For the three nearby shelters, the capacity of each one increases by 5 times,

so the roads connecting to these shelters need more extra capacities to satisfy flow

demand. This is the reason why the roads connecting to these shelters have two new

lanes added.

Table 12 Open Shelter Locations with λ = 5 and ξ = 2

Shelter Index 1 2 3 4 5 6 7 8 9 10 11 12 13 14

T = 24
Open Shelter 1 1 0 1 1 0 0 1 1 1 1 1 1 1

Extra Capacity 0 0 0 0 0 0 0 0 0 0 0 0 0 0

T = 18
Open Shelter 1 1 0 1 1 0 0 1 1 1 1 1 1 1

Extra Capacity 0 0 0 0 0 0 0 0 0 0 0 0 0 0

T = 16
Open Shelter 1 1 0 0 0 0 0 1 1 1 1 1 1 1

Extra Capacity 5 5 0 0 0 0 0 0 0.2 0 0 0 5 0

T = 14
Open Shelter 1 1 0 0 0 0 0 1 1 1 0 1 1 0

Extra Capacity 5 5 0 0 0 0 0 0 2.5 0 0 0 5 0

To test the effect of λ, we fix the value of T and ξ and analyze the results under

different λ. When λ is smaller, more open shelters may have extra capacities. This
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Figure 5 Open Shelter Locations with λ = 5 and ξ = 2
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can be understand intuitively. If λ is smaller, since the maximum total capacity

(original capacity plus the extra capacity) that a shelter can obtain is smaller, more

shelters needs to have extra capacities to satisfy the total demands. As shown in

Table 13 and Figure 6 (T = 16 and ξ = 2), when λ is 5, less open shelters have extra

capacities than when λ is 0.5. Moreover, from Figure 6 (T = 16 and ξ = 2), we see

that when λ is smaller, the roads use less extra capacities. When λ is 0.5, there are

roads with one added lane but no road having two added lanes. When λ is 5, there

are three roads with two added lanes. As introduced above, the flows on roads are

related to the inflows of the shelters which are connected to the roads. Since when λ

is 5, nearby shelters use more extra capacities, the roads connecting to these shelters

also use more extra capacities.

Table 13 Open Shelter Locations with T = 16 and ξ = 2

Shelter Index 1 2 3 4 5 6 7 8 9 10 11 12 13 14

λ = 0.5
OSa 1 1 0 0 0 0 0 1 1 1 1 1 1 1

ECb 0.5 0.5 0 0 0 0 0 0.5 0.5 0.5 0.5 0.5 0.5 0.5

λ = 5
OSa 1 1 0 0 0 0 0 1 1 1 1 1 1 1

ECb 5 5 0 0 0 0 0 0 0.2 0 0 0 5 0

Note. a: ”OS” represents Open Shelter; b: ”EC” represents Extra Capacity

To analyze the effect of ξ, we fix the value of T and λ and check the optimal

solutions under different ξ. When ξ is smaller, the closer shelters may be used rather

than the farther shelters, since using the farther shelters cause more transportation

costs and more fixed costs for edges and transfer nodes. However, only using closer

shelters may cause more fixed costs due to using extra shelter capacities, since the

original capacities of closer shelters may not satisfy the total demand. Thus, there

is a trade off between using farther shelters and closer shelters. It depends on the
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Figure 6 Open Shelter Locations with T = 16 and ξ = 2
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value of ξ. If the fixed costs for using extra shelter capacities is not larger than the

extra costs due to traveling to the farther shelters, the model may use less shelters,

which are closer to origins, and make these closer shelters have extra capacities;

otherwise, the farther shelters are opened. Table 14 and Figure 7 show the open

shelter locations with λ = 5 and ξ = 1.2. Comparing the Figure 5 and Figure 7,

less shelters are open in Figure 7, and these open shelters are closer to origins. Also,

more open shelters have extra capacities. Moreover, we find that the usages of road

capacities are same for four cases. Because for the nearby shelters which have extra

capacities, the usage of shelter extra capacities are same, the roads connecting to

these shelters use same extra capacities for four maps.

Table 14 Open Shelter Locations with λ = 5 and ξ = 1.2

Shelter Index 1 2 3 4 5 6 7 8 9 10 11 12 13 14

T = 24
Open Shelter 1 1 0 0 0 0 0 1 1 1 1 1 1 1

Extra Capacity 5 5 0 0 0 0 0 0 0.2 0 0 0 5 0

T = 18
Open Shelter 1 1 0 0 0 0 0 1 1 1 1 1 1 1

Extra Capacity 5 5 0 0 0 0 0 0 0.2 0 0 0 5 0

T = 16
Open Shelter 1 1 0 0 0 0 0 1 1 1 1 1 1 1

Extra Capacity 5 5 0 0 0 0 0 0 0.2 0 0 0 5 0

T = 14
Open Shelter 1 1 0 0 0 0 0 1 1 1 0 1 1 0

Extra Capacity 5 5 0 0 0 0 0 0 2.5 0 0 0 5 0

III.5. Summary

In this chapter, we pose and analyze a regional evacuation network design problem

in order to provide a pre-event strategic planning tool for this purpose. We pro-

pose a mixed integer linear program to devise effective and controlled evacuation
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Figure 7 Open Shelter Locations with λ = 5 and ξ = 1.2
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networks for sending evacuees from their origins to shelters before extreme events

such as hurricanes happen. The SEND model determines the optimal evacuation

routes based on time and capacity constraints. Also, it selects shelters from a set

of potential shelter candidates and decides flow assignments on the optimal routes

while minimizing the total evacuation cost.

To solve this model for large scale instances, we develop an efficient solution

methodology based on BD approach, which takes advantage of specific characteristics

of the SEND problem. We utilize a few techniques to accelerate BD approach: adding

surrogate constraints to MsP to improve the lower bound of the objective value of

SEND in BD framework, solving MsP with a loose optimality gap in the first several

iterations, adding multiple optimality cuts in each iteration by generating multiple

feasible solutions of SEND heuristically, and strengthening Benders optimality cuts.

We design and implement an experimental design to test our BD technique us-

ing a Texas-based evacuation scenario. The SEND model and BD approach can be

efficiently and effectively applied to a large scale evacuation scenario, and we bench-

mark the computational performance of our BD technique against the traditional

branch-and-cut solution methods, which are implemented by CPLEX 12.2. We also

design and implement an experiment to study the effects of parameters T , λ, and ξ

on the optimal solution of SEND.
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CHAPTER IV

MULTI-AGENT SIMULATION PROBLEM

In the SEND problem, we construct an optimization MIP model to analyze a regional

evacuation network design problem in order to provide a pre-event strategic plan-

ning tool. The optimization MIP model determines the optimal evacuation network

based on time and capacity constraints. It selects shelters from all potential candi-

dates, chooses evacuation routes and decides flow assignments while minimizing the

total costs. However, a centralized optimization model cannot handle unexpected

situations, such as people not following the designated evacuation routes and/or not

going to the designated shelters. In this case, evacuees may choose the routes or

destinations that look favorable to themselves but not the routes or destinations rec-

ommended by the optimal evacuation plan. This may cause traffic jams in some road

segments and make evacuees suffer a longer evacuation time. Furthermore, due to

the difficulties in communication and coordination, especially for a large population

in a chaotic emergency situation, evacuees may fail to follow the evacuation instruc-

tions because of misunderstandings and confusion. These situations may cause the

optimal evacuation plan to not be achieved smoothly and successfully.

To handle these unexpected situations and to check the robustness of our opti-

mization model, we conduct a multi-agent simulation (MAS) model. In the decen-

tralized MAS model, every evacuee can make decisions and change those decisions

during evacuation. The MAS model simulates the situation in which evacuees have

the freedom to choose their own routes and their own destinations after they have

been told the designated routes as guidelines. In the MAS problem, we study the

effect of probabilities for people following the designated routes and the designated

shelters on the total evacuation time, the traffic jam situation and the traveling time
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for individuals.

In our optimization model, there is no time component considered. We consider

each edge as having a finite capacity on the total flow that it can handle in an

evacuation event. This capacity is considered at a macroscopic level rather than

with fine granularity as in a dynamic traffic assignment study. As a consequence,

we consider a constant traffic speed and a constant traverse time for each edge.

However, it is more complicated in real-world situations. Traffic speed and traverse

time are normally not constant, but are related to traffic density on the road. To

consider traffic speed as a variant with traffic density, we include traffic speed as a

function of traffic density to the MAS model, so traffic speed and traverse time are

changed dynamically with traffic density. Moreover, the MAS enables us to model

the situation in which evacuees leave in groups at a time sequence. A value is assigned

to the range of leaving times for each group. An evacuee may leave at any time in

the range of leaving times for his group.

Furthermore, information sharing is an important difference between a central-

ized system and a decentralized system. In a centralized system, information sharing

is assumed as perfect for the whole system; however, in a decentralized system, this

is not the case. In evacuation problems, the information, which can influence the

performance of the system, may or may not be shared perfectly. For example, evac-

uees may not know real-time traffic conditions and the status of shelters. In the MAS

problem, the interactions between evacuees are considered as a type of approach to

sharing information. We consider two types of information shared in the system.

• Information shared among evacuees-If there is slow traffic on a road segment,

people who are driving on this road may call their connections (e.g. their

friends, their relatives and their colleagues) to inform them the slow traffic.
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Then people who receive this message may make a detour.

• Information sent from a radio station to all evacuees-we consider a radio sta-

tion broadcast as another approach to sharing information. The radio sta-

tion broadcasts the real-time traffic conditions and the status of shelters to all

drivers (i.e. shelters are full or not). Evacuees may change their routes based

on this received information.

We study the effect of the shared information on the evacuation performance.

IV.1. Literature Review

In recent decades, studies on the agent-based system have aroused more attentions.

Agent-based system considers each agent as a subject, and each agent only considers

itself and its environment to make its own decisions. The traditional and also the

most common system, centralized system, has a few critical drawbacks: first, it is

hard to make changes in the centralized system; second, in real-world cases, the

quality of information may be not as good as we expected, also it may be very

expensive to get good quality information, so each agent in the system may only

access limited information; third, once errors happen in the centralized system, it

may cause a fatal harm to the whole system. However, agent-based system lets

each agent to make its own decisions and lets agents to communicate and negotiate

with each other. Thus, the agent-based system has more flexibility, less complexity,

and better error tolerance, comparing with the centralized system (Krothapalli and

Deshmukh, 1999). Now, agent-based system is considered as a good alternative to

the centralized system in many fields.

Recently, multi-agent systems are applied to evacuation problems to consider

human behavior in a microscopic level. Chen et al. (2006) studied the evacuation
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problem of the Florida Keys by developing an agent-based simulation model. The

objective of their model was to figure out the minimum clearance time to evacuate

all population in that area. Chen (2008) employed a multi-agent system to simulate

a regional evacuation problem and compared the performance of simultaneous and

staged evacuation strategies. Their study claimed that the most efficient staged

evacuation strategy can shorten the total evacuation time. In our MAS problem,

we develop a multi-agent system to study a regional evacuation problem. We also

investigate the effectiveness of staged evacuation strategies, and we study the effects

of the number of stages on the evacuation performance.

In the recent years, several practical agent-based modeling toolkits has been

developed to let individuals to develop agent-based applications. Nikolai and Madey

(2009) made a comprehensive survey for all agent-based toolkits based on 5 char-

acteristics. They listed the programming languages which are required to develop

models in these toolkits, and they introduced the operating system which are needed

to run these toolkit. Also, they introduced the type of license to manage these plat-

forms. Moreover, the primary domain and technical support level of these toolkit

are presented in their survey. Some studies also made surveys on the agent-based

modeling toolkits (Railsback et al., 2006; Tobias and Hofmann, 2004; Castle and

Crooks, 2006; Serenko and Detlor, 2002).

By reviewing these surveys, we select 4 open-source agent-based modeling toolk-

its as candidates for consideration. Table 15 lists the comparison for these 4 agent-

based modeling toolkits: SeSAM, NetLogo, MASON, and Repast. Among these 4

toolkits, SeSAM is the easiest one to learn and use; however, the size of a model

developed in SeSAM is limited. Thus, SeSAM is removed from our candidate pool.

MASON is good to build large-scale agent-based models, but it requires the signifi-

cant JAVA knowledge. Compared to MASON, NetLogo and Repast are easier to get
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Table 15 Comparison for Open Source MAS Softwares

Primary Domain Programming Language Model Size

SeSAM General purpose Visual Programming Ten thousands of agents

NetLogo Social and natural sciences NetLogo No limit

MASON General purpose Java Millions of agents

Repast Social sciences Java, Python, C++ No limit

started. Since Repast has a rich set of developed tools, we select Repast to build our

MAS model. Although there is no limitation on the size of a model in NetLogo and

Repast theoretically, they may hit some limits that are inherent in the underlying

JAVA Virtual Machine and/or operating system.

IV.2. Problem Definition

In MAS, we study a regional evacuation problem in an agent-based system. In this

system, each evacuee has the ability to make decisions and change decisions based

on personal preference or through the exchange of information between agents. In

other words, MAS enables individual evacuees to select their evacuation route and

their shelter destination. We now discuss some of the parameters and characteristics

of our MAS in detail.

• Evacuation Performance - four major evacuation performance indicators are

observed: total evacuation time, individual travel time, system-wide traffic

conditions and total transportation cost.

– Total evacuation time is defined as the difference in time between the first

evacuee leaving an origin to the last evacuee arriving at a shelter.
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– Individual travel time is defined for each evacuee as the difference in time

between that evacuee leaving an origin and arriving at a shelter.

– Traffic conditions is the defined as the number of roads with traffic jam.

– Transportation cost associated with flow is defined as same as in the SEND

model in Chapter III, and it is
∑

o∈O

∑

d∈D

∑

(i,j)∈A cAij xodij . Transporta-

tion cost is the only cost considered in MAS model, because in MAS

problem all facilities are assumed to be available or opened already.

• Evacuee Decision-Making - evacuees use the designated routes and the desig-

nated shelters recommended by the SEND optimization as a guideline. At any

network intersection, the agent may change their route or shelter destination

based on personal compliance rates as well as on real-time traffic conditions

and the status of shelters (i.e., full or not full). Personal compliance rates are

assigned at prior to running MAS and remain constant for each agent through

each simulation.

• Evacuee Travel Time - Each agent evacuates on a path from his origin to a

shelter with available spaces. The traverse time of this evacuation path is the

sum of the traverse time of the arcs on this path. As a curved line segment,

each arc is divided to a finite number of straight line segments, which are the

GIS data in the shape file of the traffic network. The traverse time of each

arc is the sum of the traverse time of straight line segments on this arc. An

evacuee’s traverse time of a straight line segment is the ratio of the length of

this straight line segment to the travel speed on this straight line segment.

• Evacuee Travel Speed - As introduced above, each arc is divided to a finite num-

ber of straight line segments. We assume that an evacuee’s travel speed does
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not change while driving on one straight line segment. When an evacuee arrives

at an end node of a straight line segment, his travel speed is changed based

on the current traffic density on this arc. The relationship between the traffic

speed and the traffic density on the road is introduced in subsection IV.3.4 in

details. Because the length of straight line segments are small (e.g. most of

them are less than 100 meters), evacuees’ travel speed can be considered as

near real-time changed travel speed.

• Evacuee Departure - Evacuees are organized into groups which are assigned

separate departure times for leaving an origin. The size of these groups and the

proximity of their departure times have significant impact on overall evacuation

performance. Establishing smaller group sizes will lead to staggered evacuation

times, resulting in smaller sets of edge users and helping to decrease edge traffic

density. Longer lead times between consecutive groups helps to decrease the

amount of network users while also helping to decrease edge traffic density.

Smaller groups and longer lead times, however, result in individuals evacuating

closer to time-zero (i.e., landfall) of an extreme event and thereby increasing

the populations evacuation risk.

• Evacuee Communication - evacuees can send real-time traffic condition infor-

mation to one another as one method of agent communication. This is akin

to an evacuee driving on a slow road calling his/her friends and family and

encouraging them to choose an alternate route. Additionally, all agents are

capable of receiving real-time system information in similar fashion to a radio

announcing traffic jam or changes to shelter status via an FM or AM broadcast.

All shared information has the potential to influence evacuee decision-making

during the evacuation.
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We develop the MAS model as a way to study the effects of individual decision-

making and information sharing on traffic conditions, total evacuation time, individ-

ual travel time and overall transportation cost. The effects of individual compliance

assumptions, information sharing, and a-priori decisions on the number of evacuation

groups and the timing of their departure all influence evacuation success and perfor-

mance. MAS enables us to strategically study the interactions and interdependencies

of these assumptions and decisions within a realistic evacuation environment. In this

way, we are also able to evaluate the effectiveness and robustness of the original

SEND optimal route and shelter allocations of our optimal evacuation plan.

IV.3. Model

For constructing MAS model, there are three types of input data for the model. The

first data set is the optimal solution from our optimization model. Evacuees use

the optimal routes and shelter locations as guidelines. The second type of data is

obtained from GIS. It is geographic information: counties from which people should

evacuate, the populations in these counties, shelters locations, transfer nodes, and

available roads. MAS problem uses the same network as SEND problem. However,

in MAS problem, all potential shelter locations are opened, and all transfer nodes

and edges are available. The third data set is the capacity of each road, the capacity

of each shelter, and the transportation cost for routing one unit flow through each

arc.

IV.3.1. Parameters and Sets

First, we introduce the notations employed in MAS model as follows.

Sets
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SPS i Set of shortest paths from transfer node i to all shelters

T PS i,e Set of total paths, composed by SPS i and OPe

APSe,i,t Set of available paths for evacuee e at transfer

node i and time t

FSS t Set of full occupied shelters at time t

RPSe,i,t Set of available paths without slow traffic or traffic jam for evacuee

e at transfer node i and time t

ST Rt Set of road segments with slow traffic at time t

T JRt Set of road segments with traffic jam at time t

ST Pe,i,t Set of available paths with slow traffic for evacuee e at transfer

node i and time t

T JPe,i,t Set of available paths with traffic jam for evacuee e at transfer

node i and time t

Parameters

OPe Optimal path of evacuee e

vo Traffic speed when traffic density is equal to road capacity

kj Jam density when traffic speed is equal to zero

P Probability to follow the optimal paths and the optimal shelter locations

G Number of groups in which people start to evacuate

RTg Range of leaving time for group g, g = 1, · · · , G

IS1 Binary value for the 1st type of information sharing: 1 means that

information is shared among evacuees; otherwise, it is 0
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IS2 Binary value for the 2nd type of information sharing: 1 means that

information is sent from the radio station to all evacuees; otherwise, it is 0

Variables

vt Traffic speed at time t

kt Traffic density at time t

IV.3.2. Structures

We construct MAS model by employing Repast JAVA. The inherent structure of

models built by Repast includes three components: contexts, projections, and agents.

Repast manual states that context, as a main function in Repast, performs as a

data structure to organize agents from both a modeling perspective and a software

perspective, and also context may include a few sub-contexts. Repast manual also

claims that projections are interaction networks or relationships between agents, and

projections are associated with contexts. Agents are the “intelligent” units which can

make decisions under certain conditions by only considering its own situation and its

environment. For example, if the main context is a country, and each sub-context

is for each city in this country. The agents can be the residences in each city, and

the projection for each sub-context can be the road network connecting each agent’s

house in this city.

In MAS model, there are three contexts: main context, person context (main’s

sub-context), and junction Context (main context’s sub-context, person context’s

sib-context). For main context, there is no projection. In person context, there is

one projection, which is a geography projection. The geography projection is for

GIS environment, and it includes coordinates, shapes, lengths, etc.. In MAS, the

geography projection includes the length of roads, the coordinates of nodes which

compose and sketch the roads, the coordinates of origins, the coordinates of shelters,
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and the coordinates of transfer nodes. Person context contains four types of agents:

vehicles, roads, a radio station, and destinations. In junction context, there are

two projections, which are a geography projection and a network projection. The

network projection is the network relationship between two objects. In MAS model,

it maps edges to their vertices. The MAS model structure inspired by the structure

of agent-based crime simulation model by Malleson (2008).

IV.3.3. Agents and Interactions

In MAS model, each vehicle is considered as one agent. Drivers can decide to follow

the optimal evacuation routes or choose their own routes, and also they can adjust

their paths, according to the real time traffic conditions, the status of shelters, and

their personal preferences. When a driver arrives at a transfer node, he has a chance

to make a decision: which route will be chosen to follow. At transfer node i, each

driver receives a route list, which contains k shortest paths from the current location

to each shelter. Since the number of shelters is |D|, so the number of shortest paths

in the route list is k × |D|. This set of shortest paths in the route list is defined as

the set SPS i. The set SPS i and the optimal path OPe for evacuee e, which is used

as a guideline, compose the total paths set T PSe,i for evacuee e at transfer node i.

The procedure for a driver making his decisions is presented in Algorithm 5. First,

the evacuee e check whether he is sill driving on OPe. If he is, he still has the chance

to follow OPe, and the available paths set for evacuee e at transfer node i at time

t is APSe,i,t = T PSe,i. Otherwise, it is not a choice for him to follow OPe, and

APSe,i,t = T PSe,i \ OPe. Second, the driver checks whether he receives messages

about the status of shelters (i.e. a shelter is full or not). The set of full occupied

shelters at time t is FSS t. If he does, he checks whether the paths in APSe,i,t use the

shelters in FSS t as destinations. If a path in APSe,i,t reaches a shelter in FSS t, this
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path is deleted from APSe,i,t. That means this path is no longer a candidate of his

route. A value is assigned to the probability of the selection of each path in APSe,i,t.

The set of paths which has no slow traffic or traffic jam is defined as RPSe,i,t, and

it is initialized as RPSe,i,t = APSe,i,t. Third, the driver checks whether he receives

messages about real time traffic conditions about slow traffic or traffic jam. The set

of road segments with slow traffic at time t is ST Rt, and the set of road segments

with traffic jam at time t is T JRt. If a path in APSe,i,t contains a road segment in

ST Rt or T JRt, this path is added to the set of paths with slow traffic ST Pe,i,t for

evacuee e at transfer node i at time t or the set of paths with traffic jam T JPe,i,t for

evacuee e at transfer node i at time t respectively. This path has a less priority to

be selected, and it is deleted from RPSe,i,t. The probability for choosing this path

decreases. Fourth, based on the updated probability associated with each path in

APSe,i,t, the driver chooses his route from APSe,i,t. Now set APSe,i,t is composed

by RPSe,i,t, ST Pe,i,t, and T JPe,i,t. After a driver makes his decision, he drives

along with the chosen path until he arrives at a next transfer node. Then, he has

a chance to make another decision based on the real traffic conditions, the status

of shelters, and his preference. This procedure repeats until the driver arrives at

a shelter which has available spaces. The flow chart for evacuees are presented in

Figure 8.
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Algorithm 5 Procedure for Evacuees Choosing Their Routes
1: Initialize T PS i,e= SPSi+OPe, APSe,i,t, T JPe,i,t, ST Pe,i,t,

RPSe,i,t = ∅

2: while Arrive at a transfer node & not arrive at a non-full

shelter do

3: if Drive on OP then

4: APSe,i,t = T PS i,e

5: else

6: APSe,i,t = T PS i,e\OPe

7: end if

8: if Receive messages about the status of shelters then

9: for (Shelter s : FSSt) do

10: for (Path p : APSe,i,t) do

11: if the destination of p is s then

12: APSe,i,t = APSe,i,t\p

13: end if

14: end for

15: end for

16: end if

17: A value is assigned to the probability of the selection of each

path in APSe,i,t, and RPSe,i,t = APSe,i,t

18: if Receive messages about traffic jam then

19: for (Road Segment r : T JRt) do

20: for (Path p : APSe,i,t) do

21: if p contains r then

22: Decrease the probability for choosing p

23: Add p to T JPe,i,t, and delete p from RPSe,i,t

24: end if

25: end for

26: end for

27: end if

28: GO to Algorithm 6

29: end while
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Algorithm 6 Continue for Procedure for Evacuees Choosing

Their Routes
1: if Receive messages about slow traffic then

2: for (Road Segment r : ST Rt) do

3: for (Path p : APSe,i,t) do

4: if p contains r then

5: Decrease the probability for choosing p

6: Add p to ST Pe,i,t, delete p from RPSe,i,t

7: end if

8: end for

9: end for

10: end if

11: Choose one path from APSe,i,t according probabilities

Figure 8 Flow Chart for Evacuees

Other agents in MAS model are roads, a radio station, and destinations. Each

road is considered as an agent, which has capacities and real time traffic flow. The

radio station is considered as an agent, and it send message to all drivers about real

time traffic conditions and the status of shelters. Each destination is also considered
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as an agent, and it has capacity and status which indicate whether the shelter is full

or not.

Interactions among agents are an essential part of MAS model. It is a significant

difference from MAS model to an optimization model. The interactions may influence

the performance of whole MAS system, so they are an interesting part we study on

MAS problem. There are four types of interactions among agents. The first set is

interactions among evacuees. Since there are social relationships between evacuees.

An evacuee is connected with M other evacuees, and they may be friends, relatives,

colleagues and so on. If an evacuee is driving in a slow traffic, he is willing to send

message to his connections. The persons who receive the message will decrease the

probability for choosing this road. The second interaction set is the interactions

between roads and the radio station. If there is traffic jam on a road segment, this

road segment sends a message to the radio station to let the radio station know its

traffic condition. However, the road segment only sends its traffic condition to the

radio station when there is traffic jam on this road. The third interaction set is the

interactions between shelters and the radio station. If a shelter is full occupied, it

sends its full occupied status to the radio station. A shelter only send message to the

radio station when its status changes to full occupied. The fourth interaction set is

the interactions between the radio station and all evacuees. After the radio station

receiving messages from roads or shelters, it forwards these messages to evacuees (i.e.

it broadcasts the congestion on roads and the status of shelters). Thus, evacuees can

avoid the congested roads and change their routes to the shelters which still have

available spaces.
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IV.3.4. Traffic Speed-Density Model

To consider traffic speed on each road segment as a variant with traffic density, we

include traffic speed as a function of traffic density to MAS model. We use the classic

Speed-Density Model: Greenberg Model. Greenberg (1959) proposed a model for real

time traffic flow. By assuming the traffic flow as a continuous fluid, he used fluid

dynamic principles to conduct the relationships among traffic speed, traffic density,

and the traffic flow. The model is as follows:

(Greenberg) kt = kj e
(−vt/vo) (4.1)

where vo is the traffic speed at qEij . q
E
ij is the road capacity. vt is the traffic speed at

time t. kj is the jam density when traffic speed is zero. kt is the traffic density at

time t. Then, traffic speed can be a function of traffic density as follows:

(Greenberg) vt = −vo ln(kt/kj) (4.2)

From the above equation, we can easily get the derivations as follows. If the

traffic density kt decreases, the traffic speed vt can increase. If the traffic density

kt is less than the jam density kj, the traffic speed is greater than zero; otherwise,

the traffic speed is zero. However, in our simulation, we give the jam speed a real

small value but not zero to make sure the vehicles in system can move. In the case

of kt < kj , if kt ≤ e−1kj, vt is greater or equal to vo; otherwise, vt is less than vo. If

kt = qEij , vt = vo based on the definition of vo, and if kt/kj = e−1, vt = vo. Thus,

kj =
qEij
e−1 .
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IV.4. Computational Study

In this section, we conduct five experiments to study the effects of five factors on

the performance of evacuation process. We evaluate the performance of evacuation

process in four perspectives: total evacuation time, individual traveling time, traffic

conditions, and transportation cost.

In the first experiment, we test the effect of the probability, at which evacuees

follow the optimal evacuation route, on the performance of evacuation process. We

benchmark the performance of the evacuation in which evacuees may not follow the

optimal evacuation route exactly (i.e. evacuees may have 70% probabilities to follow

the optimal evacuation routes, or 30% probabilities, or even 0% probabilities) against

the case in which evacuees follow the optimal evacuation route exactly. Through this

experiment, we analyze the effect of probability of evacuees following the optimal

evacuation routes, and we prove the robustness and the effectiveness of the strategic

evacuation plan proposed by SEND model.

Second, we conduct an experiment to test the influence of evacuees leaving in

groups with different leaving time on the performance of evacuation process. Evac-

uees leave in groups in time sequence and each group has its own leaving time. We

assume that these leaving times are not overlapped. Since the total population is

constant, more leaving groups means less population in each group. Also, a wide

range of leaving time causes a rare population density evacuating at one time unit.

However, a big number of groups or/and a wide range of leaving time may cause the

groups, which are scheduled at the rear part of the sequence, leave at a late time,

and result the evacuees, which leave in the late groups, in a risky situation. In this

experiment, we analyze and evaluate the influence of this interesting part on the

performance of evacuation process.
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Third, we design an experiment to study the effect of information sharing in

the decentralized MAS problem. We study two types of information shared in MAS

model. The first type of the shared information is the messages, which are sent from

evacuees to their connections (e.g. their friends, relatives, colleagues etc.), about

real time traffic conditions (i.e. which road segments have slow traffic). The second

type of shared information is the broadcast, which is sent from a radio station to

all evacuees, about real time traffic conditions (i.e. which road segments have traffic

jam) and the status of shelters (i.e. shelters are full occupied or not). Slow traffic

is defined as the traffic flow with a speed less than vo, which value is defined as 40

mph; traffic jam is defined as the traffic flow with a density equal or greater than

kj. From the derivations in subsection IV.3.4, kj =
qEij
e−1 , where qEij is defined as

2000*1.5=3000 cars/per lane/per hour to keep consistent with the type I parameters

in SEND model. We define the traffic speed in traffic jam as vj (i.e. the value for

v when k = kj), which value is 5 mph but not 0 mph, to insure that the evacuees

do not stop before they arrive at shelters, which have available spaces. The traffic

speed and traffic density parameters, which are used in all five experiments in this

chapter, are reported in Table 16. Through this experiment, we analyze and evaluate

the effect of information sharing on the performance of evacuation process.

Table 16 Parameters for Traffic Speed and Traffic Density

vo vj qEij kj

40 mph 5 mph 3000 cars/per lane/per hour qEij/e
−1

Fourth, we test the performance of the evacuation network which has extra

edges’ capacities added to some specific road segments. The locations where extra
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edges’ capacities are added are a part of the optimal solution of SEND model. We

benchmark the performance of the evacuation in which the network has extra edge-

capacities against the case in which the network has no extra edge-capacities. By

comparing these two cases, we analyze the effect of road capacities on the perfor-

mance of evacuation process, and we prove the effectiveness of the construction of

extra edge-capacities which is proposed by SEND model.

Last, we conduct an experiment to test the performance of the evacuation routes

proposed by SEND model. We benchmark the performance of evacuation in which

evacuees follow their own favorable routes (i.e. the shortest paths from their origins

to the shelters which are recommended by SEND model) against the case in which

evacuees follow the designated routes proposed by SEND model. In this experiment,

we prove the effectiveness of the evacuation routes, which are proposed by SEND

model, by analyzing its effect on the performance of evacuation process.

We develop all experiments based on the same traffic network, which is used

in the SEND problem in Chapter III. The network size for all experiments in this

section is Class 3, which is introduced in Table 7 in § III.4.1. We choose one instance

of SEND problem in Class 3 with type I parameters as a benchmark instance(BISP)

for MAS problem. The optimal routes and the optimal shelters (OROS), which are

a part of the optimal solution of BISP, are used as the designated routes and the

designated shelters to guide evacuees. To consider computer memory issue, we down-

scale the population in evacuating areas by 500 to run all instances in simulation.

That means we consider 500 vehicles as one agent in MAS model, comparing 1 vehicle

considered as a unit in SEND model (i.e. assuming each vehicle has 4 passengers).

However, to compare and contrast the solutions of SEND model and MAS model,

we simulate the case, in which evacuees follow OROS exactly, on the same scale

level (i.e down-scale population by 500). We use JAVA to code our MAS model
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in Repast Simphony environment. All machines used have 2.4 GHZ Intel Core 4

CPU processors with 8 GB RAM. All spatial analysis is conducted using ArcGIS 10

on the same machines. The remainder of this article is organized as follows. From

subsection IV.4.1 to subsection IV.4.5, experiment I to experiment V are presented

respectively, and their solutions are also analyzed respectively.

IV.4.1. Experiment for Effects of Varying Degrees of Compliance to the

Optimal SEND Strategy on System Performance

As one of the significant difference from the decentralized MAS model to the central-

ized optimization model, agents’ ability of having intelligence and freedom cause that

the system can explore at different perspectives. In SEND problem, evacuees have no

freedom to choose evacuation routes and shelters. Every decision in the system is de-

cided by SEND model whose objective is to minimize the total costs while satisfying

capacity constraints and time constraints, and each evacuee is assumed to follow the

decision of SEND model exactly. However, in MAS system, evacuees may not follow

the designated routes and the designated shelters proposed by SEND model, and

they can make their own decisions to choose their favorable routes based on the real

time traffic conditions, the status of shelters, and their personal preferences. How-

ever, the freedom of evacuees may cause traffic jam in some road segments, induce

a longer total evacuation time, make individuals suffer a longer traveling time, and

even cause a higher transportation cost in the whole system. Thus, it is important

to check how the probabilities (P ), at which evacuees decide to follow the optimal

evacuation routes and shelters, influence the performance of evacuation process. The

objective of experiment I is to study the influence of P in different levels on the per-

formance of evacuation process. Moreover, experiment I shows the robustness and

the effectiveness of the evacuation plan which is proposed by SEND model.
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To study the influence of P on total evacuation time, individual traveling time,

traffic conditions, and transportation cost. We test P in four levels: 0%, 30%,

70%, and 100%. 0% presents the case in which evacuees do not have any guidelines

with designated routes and designated shelters. 100% presents the case in which

evacuees follow the designated routes and designated shelters exactly. 30% means

that evacuees have 30% probability to follow the designated routes and designated

shelters, if the optimal route OPe is in the set RPSe,i,t. Also, for each level of

probability, we design two cases: even choices and uneven choices. The even choices

are defined as a case in which each route in RPSe,i,t, besides OPe if OPe ∈ RPS , has

a same probability RP to be chosen. The probability for selecting a path in ST Pe,i,t

and T JPe,i,t is a half of RP . Uneven choices are defined as a case in which only the

shortest path in RPSe,i,t, besides OPe if OPe ∈ RPSe,i,t, has a major probability

to be chosen, but the other paths in RPSe,i,t have minor probabilities to be chosen.

The minor probability for choosing one path in RPSe,i,t is 2%, and the probability

for choosing a path in ST Pe,i,t and T JPe,i,t is 1%. Since there are four levels for

P and two cases for each level, there are 8 − 1 = 7 cases (i.e. when P = 100%,

even choices and uneven choices are a same case). For each case, we test 10 random

instances, so there are totally 70 instances.

For evaluating the effect of P on the performance of evacuation process, we

fix other factors which may also influence the performance of evacuation process.

Figure 9 shows 4 evacuation zip-zones, from coast to inland, which is recommended

by Texas DPS in 2009 for hurricane evacuation. These zip-zones are shown in hatched

yellow, yellow, green and orange respectively. According to the locations of origins

and the population of origins, we divide 24 origins in our problem to 4 groups,

illustrated in Figure 10, to simulate the evacuation zip-zones recommended by Texas

DPS. The 4 groups of origins, from coast to inland, are colored in red, yellow, green,
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and orange respectively. Evacuees leave in groups as the division of their origins. We

use 2 hours as the range of leaving time for each group (i.e. RT1 = RT2 = RT3 =

RT4 = 2). Tier 1 is assumed to start leaving at time 0, so tier 2, 3, and 4 start to

leave at 2 hours later, 4 hours later, and 6 hours later respectively. We assume that

all evacuees in the previous tier leave before the start leaving time of the next tier.

Moveover, there are messages, which is sent from evacuees to their connections, about

which road segments have slow traffic (i.e. IS1 = 1), and there is broadcast, which

is sent from the radio station to all evacuees, about which road segments have traffic

jam and which shelters are full occupied (i.e. IS2 = 1). Moreover, people evacuate

in the traffic network, where extra edge-capacities are added as recommended by the

optimal solution of BISP.

In Table 17, the data in the first column is the probabilities at which evacuees fol-

low OROS; the number in the second column is the average total evacuation time in

hours; the third column shows time increase comparing the current probability level

and the 100% probability level; the fourth column presents the average transporta-

tion costs in the whole evacuation process; the last column states the cost increase

comparing the current probability level and the 100% probability level. The average

total evacuation time increases as P decreases, and the average transportation costs

increases as P decreases. It means that when evacuees have more willingness to

follow OROS, the total evacuation time can be less and the transportation cost can

be saved. For the case in which evacuees have no OROS as guidelines (i.e. P = 0),

the total evacuation time and the transportation cost are the largest ones among all

cases. That means OROS is an effective guideline, for the cases with even choices, to

save the total evacuation time and save the transportation cost. Table 18 presents

the similar results for the cases with uneven choices. Among these cases, when evac-

uees do not have OROS as guidelines, it causes the longest total evacuation time and
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Figure 9 Hurricane Evacuation Zip-Zones in 2009 from Texas DPS
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Figure 10 4-Group Division of Origins
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the most transportation cost. Also, when evacuees have more willingness to follow

OROS, both of total evacuation time and transportation cost can be saved. Thus,

OROS is effective, for both of the cases with even choices and uneven choices, to

save total evacuation time and transportation cost. Moreover, OROS is generated

by considering the road-capacity constraints, it avoids the situation of traffic jam. If

evacuees do not follow OROS, it has more opportunities to cause traffic jam. This

can be proved by the results in Table 19. It shows that, in both of the cases with even

choices and uneven choices, the number of road segments with traffic jam increases

with the decrease of P . Also, without using OROS as guidelines, evacuees may have

to change their target shelters on their way because their target shelters are already

full, and this may cause the whole trip to be longer. Thus, SEND model provides an

effective pre-event evacuation plan which can save total evacuation time, save trans-

portation cost, and improve traffic situation, not only when evacuees follow this plan

exactly but also when evacuees use this plan as guidelines to help their decisions on

routes and shelters.

Table 17 Comparison of Evacuation Time and Cost for Even Choices at Different P

Level

P
Average Total

Evacuation Time

Time

Increase

Transportation

Cost

Cost

Increase

0% 20.41 93% 468534 73%

30% 20.02 89% 446114 64%

70% 18.71 43% 385590 42%

Benchmark 100% 10.58 0% 271577 0%

Table 20 compares the total evacuation time and the transportation cost between

the cases with even choices and the cases with uneven choices. At each P level, the

cases with uneven choices can save total evacuation time the the transportation
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Table 18 Comparison of Evacuation Time and Cost for Uneven Choices at Different

P Level

P
Average Total

Evacuation Time

Time

Increase

Transportation

Cost

Cost

Increase

0% 13.99 32% 337708 24%

30% 13.82 31% 329328 21%

70% 13.36 21% 318862 15%

Benchmark 100% 10.58 0% 271577 0%

Table 19 Comparison of the Number of Roads with Traffic Jam at Different P Level

P Even Uneven

0% 0.4 3.0

30% 0.2 1.9

70% 0.1 0.8

100% 0 0

cost, comparing to the cases with even choices. Because in the cases with uneven

choices, the shortest path has a major probability to be chosen, evacuees have more

opportunities to follow a shorter path comparing to the cases with even choices.

In summary, Figure 11 and Figure 12 illustrate the relationship between total

evacuation time and P , the relationship between transportation cost and P , for both

the cases with even choices and uneven choices. Also, the relationship between the

cases with even choices and uneven choices are presented in these two figures.

Besides studying the influence of P on the performance of evacuation process at

a macro level (i.e. the influence on the total evacuation time), we also study the in-

fluence at a micro level (i.e. the influence on the individual traveling time). Table 21

presents the statistic for individuals’ traveling time. The data in the first column is

the probability at which evacuees follow OROS; the second column presents the per-
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Table 20 Comparison of Evacuation Time and Cost between the Even Choices and

the Uneven Choices

Average Total

Evacuation Time

Transportation

Cost

P Even Uneven Decrease Even Uneven Decrease

0% 20.41 13.99 31% 468534 337708 28%

30% 20.02 13.82 31% 446114 329328 26%

70% 18.71 13.36 29% 385590 318862 17%

100% 10.58 10.58 0% 271577 271577 0%

Figure 11 Comparison of Total Evacuation Time at Different P Level

Figure 12 Comparison of Transportation Cost at Different P Level
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centage of evacuees whose traveling time is less than 300 minutes (5 hrs); the third

column states the 90% percentile for all individuals’ traveling time. The percentage

of evacuees, whose traveling time is less than 5 hrs, increases with the increase of P ,

and the 90% percentile for all individuals’ traveling time decreases with the increase

of P . These trends, which are illustrated in Figure 13 and Figure 14, means that if

evacuees have more willingness to follow OROS, more evacuees can arrive at shelters

within 5 hrs, and most of individuals suffer a shorter travel. If evacuees do not use

OROS as guidelines, their individual traveling times are longer than the cases in

which they use OROS as guidelines. Thus, OROS is an effective guideline to save

individuals’ traveling times. In conclusion, SEND model can provide a pre-event

evacuation plan which can not only improve the performance of evacuation process

in macro level by saving total evacuation time, saving transportation cost, and im-

proving traffic situations, but also contribute in micro level by alleviating individuals’

suffering.

Table 21 Individuals’ Traveling Time in Experiment I

P Percentage of Evacuees (T. T. < 300 mins) 90% Percentile for T. T. (mins)

0% 97% 267

30% 97% 259

70% 98% 247

100% 100% 175

IV.4.2. Experiment for Effects of Varying Groups and Varying Leaving

Times on System Performance

Since time component is included in MAS model, we consider evacuees leave in groups

in a time sequence, and a range of leaving time is associated with each group. We

assume that these leaving times are not overlapped (i.e. all evacuees in the previous
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Figure 13 Percentage of Evacuees with Traveling Time < 300 mins in Experiment I

Figure 14 90% Percentile for Individuals’ Traveling Time in Experiment I
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tier leave before the start leaving time of the next tier). Because total population to

evacuate is constant, more groups means less population in each group, and a wide

range of leaving time for each group means a rare population density evacuating at

one time unit. These may cause light traffic density and fast traffic flow on roads.

However, more groups or wider ranges of leaving times can cause the groups, which

are scheduled at the rear part of the sequence, leaving at a late time. This may cause

a longer total evacuation time and may make the evacuees who leaves at a late time

in a dangerous situation. Thus, there is a trade-off between traffic density and the

gap of leaving time between two consecutive groups.

To study the influence of the number of groups (G) and the range of leaving

time for each group (RTg) on the performance of evacuation process, we conduct

experiments on 3 levels for G: 2, 3, and 4. For G = 2, we test RT1 = RT2 on 3 levels:

2 hrs, 3 hrs, and 4 hrs. For G = 3, we test RTg on 1 level, RT1 = 2hrs, RT2 = 4hrs,

RT3 = 2hrs (e.g. evacuees in tier 1 leaves from 8am to 10am; evacuees in tier 2

leaves from 10am to 2pm; evacuees in tier 3 leaves from 2pm to 4pm). For G = 4,

we test RTg on 1 level, RT1 = RT2 = RT3 = RT4 = 2hrs, which are the values

used in Experiment I in subsection IV.4.1. Based on the 4-group division which

are generated to simulate the evacuation zip-zones recommended by Texas DPS, we

generate the divisions for 2 groups and 3 groups. We combine the tier 1 and 2 in

the 4-group division to compose the tier 1 in the 2-group case, and the tier 2 in the

2-group division is composed by the tier 3 and 4 in the 4-group case. For the 3-group

division, its tier 1 and 3 are the tier 1 and 4, respectively, in the 4-group case, but its

tier 2 is composed by the tier 2 and 3 in the 4-group case. The groups are generated

by considering the evacuation zip-zones recommended by Texas DPS, considering the

locations of origins, and considering the population of origins. In summary, origins

are divided to 2 groups (illustrated in Figure 15), 3 groups (illustrated in Figure 16),
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and 4 groups (illustrated in Figure 10), so that their population can evacuate in

groups. Because there are 3 levels for G, 1 level for RTg when G = 3or4, and 3 levels

for RTg when G = 2, there are 5 cases with different G and RTg. For each case, we

test 10 random instances, so there are 50 instances tested in this experiment.

For evaluating the effect of G and RTg on the performance of evacuation process,

we fix other factors which may also influence the performance of evacuation process.

We set P = 30% (i.e. evacuees have 30% probability to follow OROS), and set IS1 =

IS2 = 1 (i.e. there is information shared between evacuees and their connections,

and there is information sent from the radio station to all evacuees). Moreover,

people evacuate in the traffic network, where extra edge-capacities are added as

recommended by the optimal solution of BISP.

Table 22 presents the average total evacuation time, the average transportation

cost, and the average number of roads with traffic jam, when evacuees leave in

different groups and with different ranges of leaving time. The data in the first

column and the second column is the values of G and RTg. The third column

presents the average total evacuation time, and the fourth column states the average

transportation cost. The last column claims the average number of roads with traffic

jam. Comparing the first three rows, evacuees leaves in 2 groups, but the range of

leaving time for each group is different. When the range of leaving time increases, the

total evacuation time increases, because a wide range of leaving time means that the

evacuees in tier 2 leave at a late time. Recalling the definition of the total evacuation

time, which is the time from the first evacuee starting to leave from an origin to the

last evacuee arriving at a shelter which has available spaces, if a part of evacuees

leaves at a late time, the total evacuation time may increase. Also, comparing row

1, row 4, and row 5, more groups and/or wider ranges of leaving time cause the

total evacuation time to increase. This shows our expectation before experiments,
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Figure 15 2-Group Division of Origins
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Figure 16 3-Group Division of Origins
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and it illustrates a disadvantageous effect of more groups and/or wider ranges of

leaving time on the total evacuation time. However, more groups and/or wider

ranges of leaving time can reduce the number of roads with traffic jam efficiently,

according to the results presented in the last column of Table 22. This also proves

our expectation of this experiment: more groups and/or wider ranges of leaving time

can cause lighter traffic density and improve traffic situation. Furthermore, when

the number of groups or/and the range of leaving time increase, the transportation

cost decrease in generally but not strictly. Because the transportation cost is related

to the lengths of evacuation routes but not time component, less roads with traffic

jam may cause evacuees have less probabilities to detour and to avoid longer trips.

However, the number of roads with traffic jam is not the only factor to influence

the transportation cost, which are also affected by evacuees’ choices on their routes.

Especially when the number of roads with traffic jam is small, fewer evacuees have

to detour, and the influence on the transportation cost is not significant. Thus, the

transportation cost does not decrease strictly with the increase of G and/or RTg.

Table 22 Comparison of Evacuation Time and Cost with Different Groups and Dif-

ferent Leaving Time

G RTg Time (Hrs) Cost No. of Roads with Traffic Jam

2 [2, 2] 11.40 342577 11.7

2 [3, 3] 12.33 340507 9.9

2 [4, 4] 13.43 332848 6.1

3 [2, 4, 2] 13.17 327416 5.6

4 [2, 2, 2, 2] 13.82 329328 1.9

More groups or/and wider ranges of leaving time do not improve the total evac-

uation time, but they have an advantageous effect on individuals’ traveling time.

Table 23 presents the statistic of individuals’ traveling time for evacuees leaving in dif-

111



ferent groups with different leaving time. The data in the first and the second column

is the values of G and RTg; the second column presents the percentage of evacuees

whose traveling time is less than 300 minutes (5 hrs); the third column states the 90%

percentile for all individuals’ traveling time. The percentage of evacuees, whose trav-

eling time is less than 5 hrs, increases with the increase of G or/and RTg, and the 90%

percentile for all individuals’ traveling time decreases with the increase of G or/and

RTg. These trends, which are illustrated in Figure 17 and Figure 18, means that if

evacuees leaves in more groups or/and leaves with a wider time range, more evacuees

can arrive at shelters within 5 hrs, and most of individuals suffer a shorter traveling

time. In Figure 17 and Figure 18, case I is the case where G = 2, RT1 = RT2 = 2;

case II is the case where G = 2, RT1 = RT2 = 3; case III is the case where

G = 2, RT1 = RT2 = 4; case IV is the case where G = 3, RT1 = 2, RT2 = 4, RT3 = 2;

case V is the case where G = 4, RT1 = RT2 = RT3 = RT4 = 2. Thus, more groups

or/and wider ranges of leaving time can improve the performance of evacuation pro-

cess in a micro level by alleviating individuals’ suffering.

Table 23 Individuals’ Traveling Time in Experiment II

G RTg Percentage of Evacuees (T. T. < 300 mins) 90% Percentile for T. T. (mins)

2 [2, 2] 91% 295

2 [3, 3] 96% 274

2 [4, 4] 96% 272

3 [2, 4, 2] 95% 274

4 [2, 2, 2, 2] 97% 259
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Figure 17 Percentage of Evacuees with Traveling Time < 300 mins in Experiment II

Figure 18 90% Percentile for Traveling Time in Experiment II
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IV.4.3. Experiment for Effects of Varying Shared Information on System

Performance

Information sharing is a significant difference between the centralized system and

the decentralized system. In the centralized system, it is assumed that information

is shared perfectly in the whole system; but in decentralized system, not every agent

can receive the real time information. In MAS model, as the factors which may

influence the performance of evacuation process, the real time traffic conditions and

the status of shelters may not be known by each evacuee in time. To study the

importance for sharing these information to evacuees in time, we test two types of

information sharing (IS1 and IS2): evacuees send messages about slow traffic to

their connections; a radio station broadcasts on traffic jam and status of shelters to

all evacuees. Slow traffic is defined as the traffic flow with the speed less than vo;

traffic jam is defined as the traffic flow with the density bigger than or equal to kj.

To test the influence of IS1, we set IS1 in 2 levels: 0 (i.e. evacuees do not send

messages to their connections) and 1 (i.e. evacuees send message to their connec-

tions). We also set IS2 in 2 levels: 0 (i.e. the radio station do not broadcasts),

and 1 (i.e. the radio station broadcasts to all evacuees). Thus, there are 4 cases

by combining the different levels of IS1 and IS2. For each case, we test 10 random

instances, so there are 40 random instances tested in this experiment. For evalu-

ating the effect of IS1 and IS2 on the performance of evacuation process, we fix

other factors which may also influence the performance of evacuation process. We

set P = 30% (i.e. evacuees have 30% probabilities to follow OROS), and set G = 4,

and RT1 = RT2 = RT3 = RT4 = 2 (i.e. evacuees leave in 4 groups, and the range of

leaving time for each group is 2 hours).

We first test instances in the traffic network with extra capacities of edges,
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which are recommended by the optimal solution of BISP. However, as presented in

Table 24, when the type of information sharing changes, the total evacuation time,

the transportation cost, and the number of roads with traffic jam do not change

obviously. When the network has extra capacities of edges, the traffic situation is

improved. Because the information of real time traffic condition is only sent when

the road segments has slow traffic or traffic jam, the frequency for sending these

messages is low, and the influence of the different types of information sharing is not

obvious.

Table 24 Comparison for Different Type of Information Sharing In Network with

Extra Edge Cap.

[IS1, IS2] Time (Hrs) Cost No. of Roads with Traffic Jam

[0, 0] 14.01 329575 2.1

[1, 0] 13.98 330094 2.0

[0, 1] 13.91 330322 2.1

[1, 1] 13.82 329328 1.9

To observe the influence of information sharing on the performance of evacua-

tion process, we test instances in the network without extra edge-capacities added.

Table 25 presents the average total evacuation time, the average transportation cost

and the average number of roads with traffic jam for the cases with different type

of information sharing. The data in the first column is the types of information

sharing; the second column presents the average total evacuation time; the third

column states the average transportation cost; and the last column claims the aver-

age number of roads with traffic jam. Comparing row 1 with row 2 and row 1 with

row 3, both of the average total evacuation time and the average transportation cost

decrease. This means that by sharing both of these two types of information, the

total evacuation time and the transportation cost can be saved. Also, comparing
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the difference from row 1 to row 2 and the difference from row 1 to row 3, there

are bigger saves on the average total evacuation time and the average transportation

cost by sharing the second type of information. Thus, the broadcast sent from the

radio station to all evacuees has more significant influence on the total evacuation

time and the transportation cost, because it is sent to all evacuees and it contains

two types of information: traffic jam and status of shelters. Moreover, we find an

interesting effect of sharing the second type of information on the number of roads

with traffic jam. When the radio station send messages to evacuees, the number of

roads with traffic jam increases, because evacuees try to avoid the roads, which are

labeled as “roads with traffic jam” by the radio station, but congest on other roads.

Thus, the number of roads with traffic jam increases when people hear the broadcast

from the radio station.

Table 25 Comparison for Different Type of Information Sharing In Network Without

Extra Edge Cap.

[IS1, IS2] Time (Hrs) Cost No. of Roads with Traffic Jam

[0, 0] 18.08 332260 26.8

[1, 0] 17.73 331963 24.8

[0, 1] 15.93 340470 45.7

[1, 1] 15.69 337744 45.2

Table 26 presents the statistic of individuals’ traveling time for the cases with

different types of information sharing. The data in the first and the second column is

the values of IS1 and IS2; the third column presents the percentage of evacuees whose

traveling time is less than 300 minutes (5 hrs); the fourth column states the 90%

percentile for all individuals’ traveling time. By sharing both of these two types of

information, individuals’ traveling time decreases. The broadcast sent from the radio

station to all evacuees has more significant effect on individuals’ traveling time. These
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trends are illustrated in Figure 19 and Figure 20. Thus, sharing information improve

the performance of evacuation process in a micro level by alleviating individuals’

suffering, and sharing the second type of information have more significant effect.

Table 26 Individuals’ Traveling Time in Experiment III

[IS1, IS2] Percentage of Evacuees (T. T. < 300 mins) 90% Percentile for T. T. (mins)

[0, 0] 59% 487

[1, 0] 63% 438

[0, 1] 78% 373

[1, 1] 84% 373

Figure 19 Percentage of Evacuees with Traveling Time < 300 mins in Experiment

III

IV.4.4. Experiment for Effects of Road Capacities on System Perfor-

mance

In SENDmodel, extra edge-capacities are allowed to add to increase roads’ capacities.

To prove the effectiveness of this decision, we test two cases in this experiment. Case

1 is the case in which evacuation is conducted in the traffic network without extra
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Figure 20 90% Percentile for Traveling Time in Experiment III

edge-capacities; case 2 is the one in which evacuation is conducted in the traffic

network with extra edge-capacities which are proposed by the optimal solution of

BISP. We test 10 instances for each case, so there are 20 instances are tested in

this experiment. We fix other factors as follows: P = 30% (i.e. evacuees have

30% probability to follow OROS), G = 4, RT1 = RT2 = RT3 = RT4 = 2 (i.e.

evacuees leave in 4 groups, and the range of leaving time for each group is 2 hours),

and IS1 = IS2 = 1 (i.e. there is information shared between evacuees and their

connections, and there is information sent from the radio station to all evacuees).

Table 27 presents the performance of evacuation network with extra edge-capacities

and the performance of evacuation network without extra edge-capacities. The

first column indicates whether there are extra edge-capacities in the evacuation

network. The second column states the average total evacuation time; the third

column presents the average transportation cost; and the fourth column claims the

average number of roads with traffic jam. When evacuation network has extra edge-

capacities, the total evacuation time and the transportation cost can be saved. Also,

by adding extra capacities to 27 road segments (i.e. edges), the average number
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of roads with traffic jam decreases from 45.2 to 1.9. Thus, the construction of ex-

tra edge-capacities, which is proposed by SEND model, is an effective strategy to

improve traffic condition, save total evacuation time, and save transportation cost.

Table 27 Comparison of Networks with and Without Extra Edge-capacities

Extra Edge Cap. Time (Hrs) Cost No. of Roads with Traffic Jam

No 15.69 337744 45.2

Yes 13.82 329328 1.9

IV.4.5. Experiment for Effects of Routes Selection on System Perfor-

mance

In this experiment, we benchmark the performance of the case in which evacuees

follow their own favorable routes (i.e. the shortest paths from their origins to the

shelters recommended by BISP) against the case in which evacuees follow OROS in

BISP. We first compare the difference of lengths from shortest paths to ORs. Table 28

presents the statistic for increase of lengths from shortest paths to ORs. Table 29

presents the statistic of individuals’ traveling time for evacuees leaving in shortest

paths or leaving in ORs. The data in the first column is the types of paths (i.e.

the shortest paths or the optimal paths); the second column presents the percentage

of evacuees whose traveling time is less than 300 minutes (5 hrs); the third column

shows the 90% percentile for all individuals’ traveling time. For the case in which

evacuees use shortest paths, the percentage of evacuees, whose traveling time is less

than 5 hrs, is smaller than the case in which evacuees use ORes. Also, for the case

in which evacuees use shortest paths, the 90% percentile for all individuals’ traveling

time is bigger than the case in which evacuees use ORes. Thus, the evacuation routes,

which is proposed by SEND model, is effective to alleviate individuals’ suffering.
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Table 28 Increase of Lengths From Shortest Paths to Opt. Paths)

Max Min Average STDEV Median

21% 0% 4% 0.05 2%

Table 29 Individuals’ Traveling Time in Experiment V

Type of Paths Percentage of Evacuees (T. T. < 300 mins) 90% Percentile for T. T. (mins)

Opt 89% 242

Shortest 87% 247

IV.5. Summary

Due to the difficulties in communication and coordination, especially for a large pop-

ulation, in a chaotic emergency situation, evacuees may fail to follow the evacuation

instructions because of misunderstandings and confusion, or evacuees may just want

to make their own choices on evacuation routes and shelters. To consider these sit-

uations which cannot be handled by a centralized optimization model, we construct

MAS model to study the case in which evacuees can make their own decisions and

change decisions along their evacuation, even they have been told the designated

routes and shelters as guidelines. Also, we include time component to MAS model.

Rather than a constant value, traffic speed is considered as a nonlinear dynamical

function of traffic density in MAS model. Thus, traffic speed and traverse time are

changed dynamically with real time traffic density. Moreover, in MAS model, evac-

uees leave in groups at time sequence, and a range of leaving time is assigned to each

group. Furthermore, unlike the perfectly information sharing in centralized system,

two types of information sharing are considered in MAS model: evacuees send mes-

sages about slow traffic to their connections, and a radio station broadcasts on traffic
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jam and status of shelters to all evacuees.

After constructing MAS model, we conduct five experiments to study the effects

of five factors on the performance of evacuation process by evaluating the total

evacuation time, the transportation cost, the traffic conditions, and the individuals’

traveling time. These five factors are the probabilities at which evacuees follow the

designated routes and shelters, the number of groups and the range of leaving time

for each group, the type of information sharing, the edge-capacities in traffic network,

and the evacuation routes. Through these experiments, we prove that the evacuation

plan proposed by SEND model is effective to shorten the total evacuation time, save

the transportation cost, improve the traffic conditions, and alleviate individuals’

suffering.
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CHAPTER V

CONCLUSIONS AND FUTURE DIRECTIONS

This dissertation concentrates on analyzing a regional evacuation network design

problem in order to provide a pre-event strategic planning tool. For this purpose,

We propose two models: a strategic evacuation network design model and a multi-

agent simulation model.

In this chapter, conclusions of this dissertation are summarized in Section V.1,

and future research directions are presented in Section V.2.

V.1. Conclusions

We propose a MIP model called SEND to devise effective and controlled evacuation

networks for sending evacuees from their origins to shelters before extreme events

such as hurricanes. The SEND model determines an optimal set of evacuation routes

based on time and capacity constraints. Additionally, the model selects shelters from

a set of potential shelter candidates and decides flow assignments on the optimal

routes while minimizing the total evacuation cost.

To solve this model for large scale instances, we develop an efficient solution

methodology based on the BD approach, which takes advantage of specific char-

acteristics of the SEND problem. We utilize a few technics to accelerate the BD

approach. First, we add surrogate constraints to MsP to improve the lower bound

of the objective value of SEND in the BD framework. Second, we solve MsP with

a loose optimality gap in the first iteration, and then we decrease this loose gap

gradually in the consecutive iterations. Third, we include multiple optimality cuts

to MsP, instead of one, in each iteration by generating multiple feasible solutions

of SEND heuristically. Last, we strengthen Benders optimality cuts to improve the

122



lower bound of the objective value of SEND in the BD framework.

We design and implement an experiment to test our BD technique using a Texas-

based evacuation scenario. The SEND model and the BD approach can be efficiently

and effectively applied to a large-scale evacuation scenario, and we benchmark the

computational performance of our BD technique against the traditional branch-and-

cut solution method, which is implemented by CPLEX 12.2. We also design and

implement an experiment to study the effects of parameters T , λ, and ξ on the

optimal solution of the SEND model.

Although the SEND model is useful under known conditions and perfect in-

formation, it is not able to account for uncertainties during evacuation processes.

Considering the uncertainty that evacuees do not follow the optimal SEND strategy,

we develop the MAS model in which every evacuee can make decisions and change

decisions during the evacuation. In this way, the MAS model simulates a real-world

emergency evacuation situation where evacuees have the freedom to choose their own

routes and their own destinations. Additionally, by adding the time component at a

fine granularity to the MAS model, we model traffic speed on an edge as a function

of the traffic density of the edge while traffic density is being updated dynamically.

Moreover, in the MAS model, we test staged evacuation strategies, in which evacuees

leave in groups at a time sequentially. A value is assigned to the range of leaving

times for each group. Furthermore, we consider two types of information shared in

the system: one is shared between agents and their connections, and the other is

sent from a radio station to all agents.

While developing the MAS model, we design and implement five experiments

to investigate the effects of five factors on evacuation performance. We evaluate

evacuation performance in four perspectives: total evacuation time, individual travel

time, system-wide traffic conditions and total transportation cost. First, we examine
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how varying degrees of compliance to the optimal SEND strategy impacts evacua-

tion performance. In this experiment, we also prove the effectiveness of the optimal

evacuation routes and shelters, which are recommended by the SEND model. Sec-

ond, we investigate the effectiveness of staged evacuation strategies and we study

the effects of the number of stages and the leaving times on the evacuation perfor-

mance. Third, we investigate how varying types of shared information impacts the

evacuation performance. Fourth, we benchmark the performance of the evacuation

conducted on the evacuation network with extra edge capacities, recommended by

the SEND model, against the evacuation conducted on the evacuation network with-

out extra edge capacities. Through this experiment, we prove the effectiveness of the

evacuation network design proposed by the SEND model. Last, we benchmark the

performance of the evacuation in which evacuees follow their own favorable routes

(i.e. the shortest paths from their origins to the specific shelters, and their destina-

tion shelters are recommended by the SEND model) against the evacuation in which

evacuees follow the optimal evacuation routes (i.e. both of the routes and the shelters

are recommended by the SEND model). Through this experiment, we prove that the

evacuation routes, which are proposed by the SEND model, are effective to shorten

individuals’ traveling time.

V.2. Future Directions

A few extensions of this study may be possible.

• Time component in SEND model: In Chapter III, the SEND model is not

developed at a fine granularity level for the time component, and this can be

explored as a future study. However, by introducing the time component at a

fine granularity level, the size of the MIP model will increase dramatically and
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make the MIP model extremely hard to solve to optimality. Thus, an effective

solution methodology should be developed for the new model.

• Uncertainties in evacuation: In Chapter IV, we consider an uncertainty in the

evacuation process: evacuees may not follow the designated routes and shelters

and they may choose their own routes and shelters. Besides this, other uncer-

tainties in the evacuation process can be considered in future studies, e.g. traffic

accidents on roads, damages of some roads and hurricanes that make landfall

while the evacuation is in progress. Considering these uncertainties, a model

can simulate a more comprehensive situation and handle a more complicated

case.

• Consider individuals’ characters: In Chapter IV, all evacuees are assigned an

equivalent degree of compliance to the optimal SEND strategy. However, based

on their personal characters, evacuees may have varying degrees of compliance

to the optimal SEND strategy. Baker (1991) stated that evacuees with different

ages may have different preferences for reactions in evacuation (e.g. whether

evacuees decide to leave or stay). Thus, instead of considering a uniform degree

of compliance to the optimal SEND strategy, it is more proper to consider it

based on individuals’ characters.
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Easwaran, G., H. Üster. 2009. Tabu search and benders decomposition approaches

for a capacitated closed-loop supply chain network design problem. Transportation

Science 43 301–320.
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