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ABSTRACT

In this dissertation, advanced numerical methods for highly forward peaked scat-

tering deterministic calculations are devised, implemented, and assessed. Since elec-

trons interact with the surrounding environment through Coulomb interactions, the

scattering kernel is highly forward-peaked. This bears the consequence that, with

standard preconditioning, the standard Legendre expansion of the scattering kernel

requires too many terms for the discretized equation to be solved efficiently using

a deterministic method. The Diffusion Synthetic Acceleration (DSA), usually used

to speed up the calculation when the scattering is weakly anisotropic, is inefficient

for electron transport. This led Morel and Manteuffel to develop an one-dimensional

angular multigrid (ANMG) which has proved to be very effective when the scattering

is highly anisotropic. Later, Pautz et al. generalized this scheme to multidimensional

geometries, but this method had to be stabilized by a diffusive filter that degrades

the overall convergence of the iterative scheme. In this dissertation, we recast the

multidimensional angular multigrid method without the filter as a preconditioner for

a Krylov solver. This new method is stable independently of the anisotropy of the

scattering and is increasingly more effective and efficient as the anisotropy increases

compared to DSA preconditioning wrapped inside a Krylov solver. At the coarsest

level of ANMG, a DSA step is needed. In this research, we use the Modified In-

terior Penalty (MIP) DSA. This DSA was shown to be always stable on triangular

cells with isotropic scattering. Because this DSA discretization leads to symmetric

definite-positive matrices, it is usually solved using a conjugate gradient precondi-

tioned (CG) by SSOR but here, we show that algebraic multigrid methods are vastly

superior than more common CG preconditioners such as SSOR.
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Another important part of this dissertation is dedicated to transport equation

and diffusion solves on arbitrary polygonal meshes. The advantages of polygonal cells

are that the number of unknowns needed to mesh a domain can be decreased and

that adaptive mesh refinement implementation is simplified: rather than handling

hanging nodes, the adapted computational mesh includes different types of polygons.

Numerical examples are presented for arbitrary quadrilateral and polygonal grids.
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NOMENCLATURE

AGMG AGgregation-based algebraic MultiGrid

AMG Algebraic MultiGrid method

AMR Adaptive Mesh Refinement method

ANMG ANgular MultiGrid method

ANMG-DSA ANMG using DSA at the coarsest level

ANMG-P1 ANMG using P1SA at the coarsest level

B Boltzmann

BFP Boltzmann-Fokker-Planck

BLD BiLinear Discontinuous finite elements

c Scattering ratio

CG Conjugate Gradient method

D Direction-to-moment matrix

DSA Diffusion Synthetic Acceleration

FP Fokker-Planck

GLC Gauss-Legendre-Chebyshev

GMRES Generalized Minimal RESidual method

L Streaming matrix

M Moment-to-direction matrix
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MIP Modified Interior Penalty

MIS Maximally Independent Sets

ML MultiLevel package of Trilinos

MM Morel and Manteuffel angular multigrid method

P1SA P1 Synthetic Acceleration

Pl Legendre polynomial of degree l

Pm
l Associated Legendre polynomial of degree l and order m

PAM Pautz, Adams, and Morel angular multigrid method

PAMNF PAM with No Filtering

PWLD PieceWise Linear Discontinuous finite elements

R̃ Mean square stopping power

S Restricted stopping power

S̃ Stopping power

SI Source Iteration

Sn Discrete ordinates method of order n

SGS Symmetric Gauss-Seidel

SPD Symmetric Positive-Definite

SSOR Symmetric Successive OverRelaxation method

T Half of the restricted momentum transfer

T̃ Half of the momentum transfer

Y m
l Spherical harmonic of degree l and order m
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Ω (µ, ϕ) Unit vector in the flight direction

µ Cosine of the directional azimuthal angle

µ0 Scalar product of Ω and Ω′

ψ Angular flux

Σ Scattering cross sections matrix

Σa(r, E) Absorption macroscopic cross section

Σs(r, E) Scattering macroscopic cross section

Σs(r,Ω
′ ·Ω, E ′ → E) Differential scattering macroscopic cross section

Σt(r, E) Total macroscopic cross section

θ Directional polar angle

ϕ Directional azimuthal angle
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CHAPTER I

INTRODUCTION

A Purpose

The transport of photons and electrons has many applications: satellite electron-

ics shielding, flash x-ray machine design, radiotherapy, and a wide variety of other

applications. Radiotherapy uses photons and charged particles to damage the DNA

of cancerous cells. When using photons, free electrons are generated and ionize the

environment to create free radicals that damage the cells. The absorbed dose, de-

fined as the energy deposited per unit of mass, is used to gauge whether a cell will

die from the amount of radiation received or not. Several methods can be applied

to compute the dose distribution in the body: semi-analytic, deterministic, and

Monte-Carlo methods. Monte-Carlo methods yield very accurate results, however

they are slow to converge and remain too slow for effective clinical use [100, 118].

Semi-analytic methods, such as pencil-beam convolution [22, 55] and convolution-

superposition [65], employ pre-calculated Monte-Carlo dose kernels, which are then

locally scaled to approximate photon and electron transport in the presence of hetero-

geneities. These methods have issues in the presence of large density gradients such

as those found at interfaces between different materials: air, bone, lung and soft tis-

sue [57, 92, 100]. Deterministic methods like the discrete ordinates (Sn) method has

been shown to be quite accurate for electron and coupled electron-photon transport

[64, 69, 113]. However, devising efficient solution algorithms for Sn multidimensional

photon-electron transport is an ongoing active field of research.

A particular difficulty of using the discrete ordinates method arises from the
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transport of electrons. Charged particles undergo interactions with the background

medium and these interactions result in extremely small changes in particle direction

and energy. These interactions are well characterized by the Fokker-Planck limit of

the Boltzmann equation [37, 72]. In this limit, the directional and energy changes

are decoupled; the former is modeled by the continuous scattering operator and the

latter is modeled by the continuous-slowing-down operator. The mean free path and

the directional change per scattering interaction approach zero while the momentum

transfer (also called the transport-corrected scattering cross section) remains fixed.

When the scattering is highly forward-peaked, solving the Sn transport equation

can be challenging due to the slow convergence of standard iterative algorithms, such

as Source Iteration (SI). To speed up iterative convergence, acceleration schemes such

as Diffusion Synthetic Acceleration (DSA) and P1 Synthetic Acceleration (P1SA) are

generally used for neutron transport [19]. These methods use a diffusion equation

or the P1 equations, and therefore, only the zeroth or the zeroth plus the first flux

moment can be accelerated. When the zeroth flux moment alone is accelerated, these

schemes are stable [20] (in this discussion, we ignore the possible issues due to the

spatial discretization) but they are very inefficient for highly anisotropic scattering. If

both the zeroth and the first flux moments are accelerated, the spectral radius of the

continuous scheme (i.e., without spatial discretization) with anisotropic scattering is

given in multidimensional calculations by [20]:

ρani = max

(
ρiso,

µ̄0c

1− µ̄0c

)
(1.1)

where ρiso(< 1) is the spectral radius when the scattering is isotropic, µ̄0 (∈ [0, 1])

is the average scattering cosine, and c (∈ [0, 1]) is the scattering ratio. We see that

when µ0c > 0.5, this SI+DSA scheme is unstable. Several modifications have been

2



proposed [20, 101] to stabilize this acceleration scheme: using DSA after several SI

iterations or accelerating the zeroth moment at every even SI+DSA iteration and the

zeroth and the first moments at every odd SI+DSA iteration. In one-dimensional

geometry, using DSA to accelerate both the zeroth and the first flux moment leads to

a scheme which is always stable. However, for electron transport and more generally

for highly anisotropic kernels, more computationally efficient techniques are required.

The angular multigrid method developed in [71] has proven to be very effective

to solve the Sn equations with highly forward-peaked scattering for one-dimensional

slab geometry. Unfortunately, the extension of this method to multidimensional ge-

ometries, like P1SA, is unstable [84]. Pautz et al. added a diffusive filter to the

angular multigrid corrections to stabilize the method which, then, converges faster

than DSA alone. However, the spectral radius can become arbitrary close to one for a

highly anisotropic and high scattering ratio medium. Even though SI has, for a long

time, been the traditional solution technique for Sn, and in [71, 84], it is the tech-

nique employed, SI is not the only iterative approach to solve the Sn equations. It

can also be tackled using non stationary Krylov solvers such as Generalized Minimal

Residual method (GMRES). A code solving the Sn equations using SI (precondi-

tioned with DSA) can easily be modified to use a preconditioned Krylov solver. In

[44], the authors summarize the advantageous features of GMRES as follows: “using

DSA as preconditioner for GMRES(m) removes the consistency requirement that

plagues DSA-accelerated source iteration in multidimensional problems.” Driven by

this statement, we will use the multidimensional angular multigrid method as a pre-

conditioner for GMRES in solving highly forward-peaked scattering problems. Our

hope is that GMRES will be able to stabilize the proposed scheme without the use of

a filter and that the new scheme will have convergence properties similar to those of

the one-dimensional scheme. At the coarsest level of the angular multigrid technique,

3



a DSA scheme or a P1SA scheme has to be used. Here, we will use an adaptation

of the Modified Interior Penalty DSA (MIP) [105]. This DSA was developed for

discontinuous finite elements on triangular cells and it is symmetric and positive-

definite (SPD). We will adapt MIP to Bilinear Discontinuous Finite elements (BLD)

on rectangular cells and to PieceWise Linear Discontinuous Finite elements (PWLD)

[25, 95] on arbitrary polygonal cells. Using MIP requires us to solve a SPD system of

linear equations. This has usually been done using conjugate gradient preconditioned

by Symmetric Successive OverRelaxation (SSOR), but in this research we will test

the effectiveness of algebraic multigrid methods (AMG) to precondition the Krylov

solver [38, 103]. Algebraic multigrid methods allow the use of multigrid techniques

when there is no grid or when the mesh is unstructured. Instead of using a succession

of grids based on the geometry of the problems, the grids are based on properties

of the matrix which allows the use of AMG as a black-box solver or preconditioner.

MIP will be adapted to polygonal cells due to the advantages of polygonal cells.

Polygonal cells can potentially reduce the number of unknowns, while maintaining

symmetry within the mesh. We show this potential reduction for a hexagonal cell

versus the same space divided using triangles:

Figure I.1: Hexagonal cell versus triangle cells

We see in Figure I.1 that if there is one unknown per vertex, the hexagonal cell

will have 6 unknowns compared to the 12 unknowns of triangle cells. Polygonal cells

can also be used for adaptive mesh refinement (AMR) without having to deal with

hanging nodes [23, 94, 117]. The left cell on the Figure I.2 is a degenerate pentagon

4



whereas the two cells on the right are quadrilaterals:

Figure I.2: AMR mesh

B Linear Boltzmann equation

Charged particles transport can be described by the linear Boltzmann equation

[3, 68, 69]:

Ω ·∇ψ(r,Ω, E) + Σt(r, E)ψ(r,Ω, E) =

∫ ∞
0

dE ′
∫

4π

dΩ′

Σs(r,Ω
′ ·Ω, E ′ → E)ψ(r,Ω′, E ′) +Q(r,Ω, E)

(1.2)

where:

• Ω = (µ, ϕ) is a unit vector in the flight direction

• µ = cos(θ), where θ is the directional polar angle

• ϕ is the directional azimuthal angle

• µ0 = Ω′ ·Ω

• ψ(r,Ω, E) = vf(r,Ω, E) is the angular flux

• Σt(r, E) is the total macroscopic cross section given by:

Σt(r, E) = Σa(r, E) + Σs(r, E) (1.3)

5



• Σa(r, E) is the absorption macroscopic cross section

• Σs(r, E) is the scattering macroscopic cross section

• Σs(r,Ω
′ ·Ω, E ′ → E) is the differential scattering macroscopic cross scattering

• Q(r,Ω, E) is the volumetric source

In the remainder of this work, macroscopic cross sections will simply be called cross

sections when no confusion is possible. Standard boundary conditions can be applied

to equation (1.2). The most common is the incoming flux boundary condition:

ψ(r,Ω, E) = g(r,Ω, E) for Ω · n < 0 and r ∈ ∂D, (1.4)

where ∂D is the boundary of the domain D. If g = 0, equation (1.4) yields the

vacuum boundary conditions.

Equation (1.2) depends on space (r), angle (Ω), and energy (E). In practice,

the energy variable is treated through a multigroup formalism, with outer iterations

between all energy groups to include down/up scattering events (including transfers

between particle types). The multigroup equations are solved one group at a time.

This within-group problem, which is equivalent to a monoenergetic problem, retains

the challenging features of the electron-photon problem we want to address. As

such, the methods developed here will be presented for the monoenergetic transport

equation. However, the techniques described here apply straightforwardly to the

multigroup equations. The monoenergetic equation (1.2) is given by:

Ω ·∇ψ(r,Ω) + Σt(r)ψ(r,Ω) =

∫
4π

dΩ′ Σs(r,Ω
′ ·Ω)ψ(r,Ω′) +Q(r,Ω). (1.5)
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Using:

Σs(r,Ω ·Ω′) =
∞∑
l=0

2l + 1

4π
Σs,l(r)Pl(Ω ·Ω′) (1.6)

Σs,l(r) = 2π

∫ 1

−1

dµ0 Pl(µ0)Σs(r, µ0), (1.7)

the scattering term can be represented by a Legendre polynomials Pl expansion:

∫
4π

Σs(r,Ω
′ ·Ω)ψ(r,Ω′)dΩ′ =

∫
4π

∞∑
l=0

2l + 1

4π
Σs,lPl(Ω

′ ·Ω)ψ(r,Ω′)dΩ′. (1.8)

Using the addition theorem for spherical harmonics, Y m
l the spherical harmonics of

degree l and order m, and Pm
l the associated Legendre polynomials:

Pl(Ω ·Ω′) =
4π

2l + 1

l∑
m=−l

Y m
l (Ω)Y m,∗

l (Ω′) (1.9)

Y m
l (Ω) = (−1)m

√
2l + 1

4π

(l −m)!

(l +m)!
Pm
l (µ)eimϕ, (1.10)

equation (1.8) becomes:

∫
4π

Σs(r,Ω
′ ·Ω)ψ(r,Ω′)dΩ′ =

∫
4π

(
∞∑
l=0

2l + 1

4π

4π

2l + 1
Σs,l(r)

l∑
m=−l

Y m
l (Ω)Y m,∗

l (Ω′)ψ(r,Ω′)

)
dΩ′

=
∞∑
l=0

Σs,l(r)
l∑

m=l

φl,m(r)Y m
l (Ω),

(1.11)
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where we have introduced:

ψ(r,Ω) =
∞∑
l=0

l∑
m=−l

φl,m(r)Y m
l (Ω), (1.12)

φl,m(r) =

∫
4π

dΩ Y m,∗
l (Ω)ψ(r,Ω). (1.13)

In practice, the scattering expansion is truncated (
∑∞

l=0 →
∑L

l=0).

For the derivation of the Boltzmann-Fokker-Planck equation, we will need the fol-

lowing property of the spherical harmonics:

[
∂

∂µ
(1− µ2)

∂

∂µ
+

(
1

1− µ2

)
∂2

∂ϕ
+ l(l + 1)

]
Y m
l (Ω) = 0. (1.14)

Equation (1.5) still needs to be discretized in space and angle. A standard method

to discretize the space variable is to use discontinuous Galerkin finite elements

[18, 107, 112]. The angular discretization that we will use in this work is the

Sn or discrete ordinate method [12, 31, 33, 40]. With this discretization, equa-

tion (1.5) is replaced by a system of linear equations which use discrete angular

fluxes (ψ(r,Ω)→ ψ(r,Ωd) = ψd(r)) and the integral in equation (1.13) is replaced

by a quadrature:

φl,m(r) =
∑
d

wdY
m,∗
l (Ωd)ψd(r), (1.15)

where wd are the weights associated to the quadrature. Therefore, the Sn discretiza-

tion of equation (1.5) is given by:

Ωd ·∇ψd(r) + Σt(r)ψd(r) =
L∑
l=0

Σs,l(r)
l∑

m=−l

φl,mY
m
l (Ωd) +Qd(r). (1.16)
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Equation (1.16) can be written in a more compact way using operators:

LΨ = MΣDΨ +Q, (1.17)

where:

• L is the streaming operator Ωd ·∇ + Σt(r)

• M is the moment-to-direction operator Ψ = MΦ

• D is the direction-to-moment operator Φ = DΨ

• Σ is the scattering cross-section operator

• Ψ is the vector of angular fluxes ψd

• Φ is the vector of angular flux moments φl,m.

C Organization of the Dissertation

In Chapter II, we introduce the Boltzmann-Fokker-Planck (BFP) equation used to

describe the transport of charged particles. To obtain the BFP equation, the Fokker-

Planck operator is added in the Boltzmann equation in order to simplify the treat-

ment of the highly forward-peaked scattering kernel. We show that the Fokker-Planck

equation is an asymptotic limit of the Boltzmann equation when the mean free path

goes to zero and µ̄0 goes to one. The Fokker-Planck equation is not valid for any

forward-peaked scattering kernel and therefore, the BFP approximation has some

limitations. In particular, the Henyey-Greenstein kernel and the Rutherford cross

section do not satisfy the Fokker-Planck limit. With these limitations in mind, we

introduce the Fokker-Planck cross sections that reduce the Fokker-Planck equation

and the BFP equation to a Boltzmann equation. Fokker-Planck cross sections can-

not be used with any angular Sn quadrature but specific quadratures, known as
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Galerkin quadratures, must be adopted. The importance and the properties of these

quadratures are explained in details at the end of Chapter II.

In Chapter III, we review in details the iterative solvers and the spatial discretiza-

tions used to solve the Sn transport equations. We explain how Source Iteration,

Krylov solvers, and Diffusion Synthetic Acceleration can be used to solve the trans-

port equation. We introduce two spatial discretizations for 2D geometries: BiLinear

Discontinuous finite elements (BLD) and PieceWise Linear Discontinuous finite el-

ements (PWLD). The BLD finite elements are used on rectangular cells while the

PWLD finite elements can be used on any polygonal cells. The purpose of this

Chapter is to facilitate expansion in the next chapters.

In Chapter IV, we introduce the angular multigrid methods for transport with

highly forward-peaked scattering. We recall prior work on this topic and discuss

the issues previously encountered for multidimensional geometries. The original an-

gular multigrid method for one-dimensional geometry showed rapid convergence of

source iterations for problems with highly forward-peaked scattering, whereas the

standard SI+DSA approach is ineffective. Unfortunately, the generalization to mul-

tidimensional geometries required a filter to stabilized the method which resulted

in a significantly less efficient scheme than in one-dimensional geometry. When the

scattering becomes very anisotropic, this generalized method becomes ineffective. In

this Chapter, we show that if the angular multigrid method is recast as a precondi-

tioner for a Krylov solver, the method does not need diffusion filtering for stability

and is always effective and efficient.

In Chapter V, we adapt the Modified Interior Penalty (MIP) DSA method devel-

oped for triangular cells to quadrilateral and polygonal cells. This DSA discretization

is used as the coarsest level of the angular multigrid method developed in Chapter

IV. Since MIP is symmetric and positive-definite, the most common method to
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solve it, is conjugate gradient (CG) preconditioned by SSOR. In Chapter V, we in-

vestigate algebraic multigrid methods as CG preconditioners to solve MIP. We show

that algebraic multigrid preconditioners are vastly superior to more common CG

preconditioners if the matrix associated with MIP is stored.

In Chapter VI, the implementation of the code developed for this research is

detailed.

In Chapter VII, we finish with some concluding remarks and suggestions for

future developments.
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CHAPTER II

CHARGED PARTICLE TRANSPORT

A Introduction

For charged particle transport, the scattering kernel is very pronounced for both

an almost zero energy transfer and an almost zero direction change. However, because

the scattering mean free path (average distance between two collisions) is very small,

particles can undergo a large number of collisions. Therefore, significant changes of

energy and direction are common in most applications.

In theory, the linear Boltzmann equation could be used for charged particle trans-

port but the scattering cross sections are so forward peaked that a Legendre expan-

sion of the cross section would require too many terms. Moreover, using a determin-

istic method to solve the Boltzmann equation often requires cells of the same scale

as the very small mean free path [87]. To avoid these difficulties, a Fokker-Planck

operator can be used to represent the highly forward peaked scattering. Since this

operator cannot represent the large angle scattering collisions, we employ a Legen-

dre expansion for this purpose. The addition of the Fokker-Planck operator to the

Boltzmann equation yields the Boltzmann-Fokker-Planck equation [89].

B Boltzmann-Fokker-Planck equation

In this section, we start by deriving the Boltzmann-Fokker-Planck equation.

Then, we show that the Fokker-Planck equation is an asymptotic limit of the Boltz-

mann equation when both the energy transfer and the direction changes during a

collision go to zero. We conclude this section with an analysis of the validity of the

Fokker-Planck and Boltzmann-Fokker-Planck equations.
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1 Derivation of the Boltzmann-Fokker-Planck equation

Following [89], the BFP equation is derived starting from the Boltzmann equation:

Ω ·∇ψ(r,Ω, E) + (Σs(r, E) + Σa(r, E))ψ(r,Ω, E) =

∞∑
l=0

l∑
m=−l

∫ ∞
0

Σs,l (r, E
′ → E)φl,m(r, E ′)Y m

l (Ω) dE ′ +Q(r,Ω, E).
(2.1)

When the microscopic scattering cross section (σs(r, µc, E
′)) is known (µc is the

scattering angle cosine in the center of mass system, whereas we will use µL for

the scattering angle cosine in the laboratory system), the Legendre expansion of the

macroscopic scattering cross section is given by:

Σs,l(E
′ → E) = N

4π

βE ′
σs

(
µc

(
E ′ − E
E ′

)
, E ′
)
Pl

(
µL

(
E ′

E

))
, (2.2)

where E ≤ E ′ ≤ E
α

, β = 1 − α, α =
(
A−1
A+1

)2
, A is the particle mass ratio, and N is

the atom density.

First, the differential scattering cross section is split into two parts:

Σs

(
µc

(
E ′ − E
E

)
, E ′
)

=Σs,reg

(
µc

(
E ′ − E
E

)
, E ′
)

+ Σs,sing

(
µc

(
E ′ − E
E

)
, E ′
)
,

(2.3)

where:

• Σs,reg is the “regular” cross section that does not vary rapidly as µc goes to one.

By definition, a Legendre polynomial expansion of this cross section converges

quickly (i.e., with a few terms).

• Σs,sing is the “singular” cross section which is highly forward peaked and is not
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negligible only when µc ≈ 1.

Then, the scattering term in equation (2.1)

q (Ω, E) =
∞∑
l=0

l∑
m=−l

∫ ∞
0

Σs,l(E
′ → E)φl,m(E ′)Y m

l (Ω)dE ′ (2.4)

is split

q = qreg + qsing, (2.5)

with  qreg(Ω, E)

qsing(Ω, E)

 =
∞∑
l=0

l∑
m=−l

Y m
l (Ω)

 ql,m,reg(E)

ql,m,sing(E)

 (2.6)

and  ql,m,reg(E)

ql,m,sing(E)

 =

∫ E/α

E

dE ′φl,m(E ′)

Σs,l,reg(E
′ → E)

Σs,l,sing(E
′ → E)

 , (2.7)

where Σs,l,reg and Σs,l,sing are the Legendre expansion coefficients corresponding to

σs,reg and σs,sing through equation (2.2). Using µc instead of E ′ as integration variable

in equation (2.7), we obtain:

ql,m,sing(E) = 2πN

∫ 1

−1

E ′

E
σs,sing(µc, E

′)Pl (µL(µc))φl,m(E ′)dµc (2.8)

with

µL =
1 + Aµc

(1 + A2 + 2Aµc)1/2
. (2.9)

Assuming that φl,m(E ′) is a smooth function (σs,sing(µc, E
′) is almost singular in µc
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but smooth in E ′), we can perform the following Taylor expansions:

E ′σs,sing(µc, E
′)φl,m(E ′) =Eσs,sing(µc, E)φl,m(E)

+ (E ′ − E)
∂

∂E
(Eσs,sing(µc, E)φl,m(E)) + . . .

(2.10)

Pl(µL) = Pl(1)− (1− µL)P ′l (1) + . . . (2.11)

with:

Pl(1) = 1 (2.12)

P ′l (1) =
l(l + 1)

2
. (2.13)

Using:

µc = 1− 2

β

E ′ − E
E ′

(2.14)

µL =
1

2

[
(A+ 1)

√
E

E ′
− (A− 1)

√
E ′

E

]
(2.15)

and assuming µc ≈ 1 or A� 1, we get:

E ′ − E
E ′

=
2A

(A+ 1)2
(1− µc) (2.16)

1− µL ≈
(

A

A+ 1

)2

(1− µc). (2.17)

To first order in (1− µc), we get:

ql,m,sing(E) = Σs,sing(E)φl,m(E) +
∂

∂E
S(E)φl,m(E)− l(l + 1)T (E)φl,m(E) (2.18)
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where:

Σs,sing(E) = 2πN

∫ 1

−1

σs,sing(E, µc) dµc (2.19)

T (E) = Nπ

∫ 1

−1

(1− µL)σs,sing(E, µc) dµc (2.20)

S(E) =
4E

A
T (E). (2.21)

T is half of the restricted momentum transfer and S is the restricted stopping power.

Using equations (1.12) and (1.14), we obtain:

qsing = Σs,singψ +
∂

∂E
Sψ + T

(
∂

∂µ
(1− µ2)

∂

∂µ
+

1

1− µ2

∂2

∂ϕ2

)
ψ. (2.22)

Finally, we get the BFP equation:

Ω ·∇ψ + (Σs,reg + Σa)ψ =
∞∑
l=0

l∑
m=−l

Y m
l (Ω)

∫ E/α

E

Σs,l,reg(E
′ → E)×

φl,m(E ′)dE ′ +
∂

∂E
Sψ + T

[
∂

∂µ
(1− µ2)

∂

∂µ
+

1

(1− µ2)

∂2

∂ϕ2

]
ψ +Q.

(2.23)

We see that only the regular portion of the scattering, Σs,reg, appears in the BFP

equation, and that Σs,sing is hidden in the restricted stopping power, S, and the

restricted momentum transfer, T .

2 The Fokker-Planck equation as a limit of Boltzmann equation

In [87], Pomraning showed that the Fokker-Planck equation is an asymptotic

limit of the Boltzmann equation when the mean free path goes to zero and µ̄0 goes

to one. Since his development will help us to understand the limitations of the

Boltzmann-Fokker-Planck, we will briefly recall it here.

First, we assume that the unit of distance is chosen such that the characteristic
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size of the domain is O(1) and that the scattering mean free path is small (i.e.,

Σs � 1). Next, we scale Σs as:

Σs(E) =
Σ̂s(E)

∆
, (2.24)

where Σ̂s = O(1) and ∆ � 1, ∆ represents the scattering mean free path. We

introduce the fast varying variables:

x =
1− µ0

δ
, δ � 1 (2.25)

y =
E ′ − E

ε
, ε� 1. (2.26)

δ and ε measure how peaked is the scattering kernel. δ represents the deviation of

the cosine of a characteristic scattering angle from one. ε represents a characteristic

value of the fraction of energy change during a single scattering collision. Next, the

scattering kernel is scaled as:

Σs(µ0, E
′, E) =

1

∆
Σ̂s

(
1− µ0

δ
, E ′,

E ′ − E
ε

)
=

1

∆
Σ̂s(x,E

′, y),

(2.27)

where Σ̂s(x,E
′, y) is O(1) and ∂Σ̂s(x,E′,y)

∂x
, and ∂Σ̂s(x,E′,y)

∂y
are O(1) when (ε, δ) → 0.

This scaling implies that the cross section is large and very peaked about µ0 = 1 and

E = E ′. The scaled transport equation is given by:

Ω ·∇ψ +

(
Σa +

Σ̂s

∆

)
ψ =

2π

∆

∞∑
l=0

l∑
m=−l

Y m
l (Ω)∫ ∞

0

dE ′ φl,m(E ′)

∫ 1

−1

dµ0 Pl(µ0)Σ̂s

(
1− µ0

δ
, E ′,

E ′ − E
ε

)
+Q.

(2.28)
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We are interested in the asymptotic limit when the three parameters ε, δ, and ∆

approach zero. Let us consider the following term:

K =
2π

∆

∫ ∞
0

dE ′
∫ 1

−1

dµ0 Pn(µ0)Σ̂s

(
1− µ0

δ
, E ′,

E ′ − E
ε

)
φl,m(E ′). (2.29)

Now, we change the integration variables from (µ0, E
′) to (x, y) according to equa-

tions (2.25) and (2.26):

K =
2πεδ

∆

∫ ∞
−E/ε

dy

∫ 2/δ

0

dx Pl(1− δx)Σ̂s(x,E + εy, y)φl,m(E + εy). (2.30)

Next, we perform a Taylor expansion of the integrand about ε = δ = 0. We only

keep the linear terms in δ and the quadratic terms in ε (we will see later that we

only need to compute the linear terms in δ because we assume that the medium is

isotropic):

K =
2πεδ

∆

∫ ∞
−E/ε

dy

∫ 2/δ

0

dx
[
Pl(1)− δxP ′l (1) +O(δ2)

]
[
1 + εy

∂

∂E
+
ε2y2

2

∂2

∂E2
+O(ε3)

]
Σ̂s(x,E, y)φl,m(E).

(2.31)

Now, −E/ε is replaced by −∞ as the lower limit of the integral on y. We assume that

the error is at mostO(ε3). This is correct if the scattering kernel falls off exponentially

in energy from its maximum at y = 0 but if the kernel falls off too slowly, this

substitution may increase the error aboveO(ε3) and the current development becomes

unsatisfactory. When the kernel falls off exponentially in energy, the replacement of

the integration limit introduce an exponentially small error. We also neglect the

cross terms in angle and energy in equation (2.31). It is not necessary to neglect

them but the standard Fokker-Planck operator does not have these terms.
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Using equations (2.12) and (2.13), equation (2.31) becomes:

K =
2πεδ

∆

∫ ∞
−∞

dy

∫ 2/δ

0

dx
(
1 +O(δ2 + εδ + ε3)

)
Σ̂s(x,E, y)φl,m(E)

− l(l + 1)πεδ2

∆

∫ ∞
−∞

dy

∫ 2/δ

0

dx xΣ̂s(x,E, y)φl,m(E)

+
2πε2δ

∆

∂

∂E

∫ ∞
−∞

dy

∫ 2/δ

0

dx yΣ̂s(x,E, y)φl,m(E)

+
πε3δ

∆

∂2

∂E2

∫ ∞
−∞

dy

∫ 2/δ

0

dx y2Σ̂s(x,E, y)φl,m(E).

(2.32)

We now go back to the (µ0, E
′) variables using the following relationships:

x =
1− µ0

δ
(2.33)

y =
E − E ′

ε
. (2.34)

Equations (2.25) and (2.33) are identical, but equations (2.26) and (2.34) are different

(E and E ′ are interchanged). Therefore, we get:

K =
2π

∆

∫ ∞
−∞

dE ′
∫ 1

−1

dµ0

((
1 +O(δ2 + εδ + ε3)

)
Σ̂s

(
1− µ0

δ
, E,

E − E ′

ε

)
φl,m(E)

)

− l(l + 1)π

∆

∫ ∞
−∞

dE ′
∫ 1

−1

dµ0

(
(1− µ0)Σ̂s

(
1− µ0

δ
, E,

E − E ′

ε

)
φl,m(E)

)

+
2π

∆

∂

∂E

∫ ∞
−∞

dE ′
∫ 1

−1

dµ0

(
(E − E ′) Σ̂s

(
1− µ0

δ
, E,

E − E ′

ε

)
φl,m(E)

)

+
π

∆

∂2

∂E2

∫ ∞
−∞

dE ′
∫ 1

−1

dµ0

(
(E − E ′)2Σ̂s

(
1− µ0

δ
, E,

E − E ′

ε

)
φl,m(E)

)
.

(2.35)

Finally, using:

1

∆
Σ̂s

(
1− µ0

δ
, E,

E − E ′

ε

)
= Σs(µ0, E, E

′) (2.36)
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and replacing the lower limit of integration on the E ′ integral by 0, since the proba-

bility of scattering to a negative energy is zero, we obtain:

K = Σsφl,m − l(l + 1)T̃ φl,m +
∂

∂E
S̃φl,m +

1

2

∂2

∂E2
R̃φl,m +O

(
δ2 + εδ + ε3

∆

)
(2.37)

where:

T̃ (E) = π

∫ ∞
0

dE ′
∫ 1

−1

dµ0 (1− µ0)Σs(µ0, E, E
′) = O

(
δ

∆

)
(2.38)

S̃(E) = 2π

∫ ∞
0

dE ′
∫ 1

−1

dµ0 (E − E ′)Σs(µ0, E, E
′) = O

( ε
∆

)
(2.39)

R̃(E) = 2π

∫ ∞
0

dE ′
∫ 1

−1

dµ0(E − E ′)2Σs(µ0, E, E
′) = O

(
ε2

∆

)
. (2.40)

The function α̃ = 2T̃ is known as the momentum transfer while S̃ and R̃ are the

stopping power and the mean square stopping power, respectively. Note that the

difference with the restricted parameters defined earlier is that Σs is used instead of

Σs,sing. Using equation (2.30), substituting equation (2.37) into the scaled transport

equation (2.28), and using equation (2.24) for Σ̂s(E), we get:

Ω ·∇ψ + (Σa + Σs)ψ =
∞∑
l=0

l∑
m=−l

Y m
l

(
Σsφl,m − l(l + 1)T̃ φl,m+

∂

∂E
S̃φl,m +

1

2

∂2

∂E2
R̃φl,m

)
+Q+O

(
δ2 + εδ + ε3

∆

)
.

(2.41)

Using equation (1.14), the l(l + 1) factor can be eliminated; then we can sum over
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the spherical harmonics according to equation (1.12) to obtain our final result:

Ω ·∇ψ(r,Ω, E) + Σa(r, E)ψ(r,Ω, E) = T̃ (r, E)

(
∂

∂µ
(1− µ2)

∂

∂µ
+(

1

1− µ2

)
∂2

∂ϕ2

)
ψ(r,Ω, E) +

∂

∂E
S̃(r, E)ψ(r,Ω, E)+

∂2

∂E2
R̃(r, E)ψ(r,Ω, E) +Q(r,Ω, E) +O

(
δ2 + εδ + ε3

∆

)
.

(2.42)

We note that Σs(r, E)ψ(r,Ω, E) has canceled out in this equation.

Equation (2.42) is the Fokker-Planck equation for linear particle transport in an

isotropic medium. As mentioned previously, the fact that the scattering kernel is

peaked in energy (E ′ ≈ E) and angle (µ0 ≈ 1) is a necessary but not sufficient condi-

tion for equation (2.42) to be an asymptotic limit of equation (1.2). The additional

sufficient condition is that the fall off is either exponential or strongly algebraic.

Assuming that equation (2.42) is a valid asymptotic limit, it is clear from equa-

tions (2.38) to (2.40) that ε, δ and ∆ must tend to zero in a correlated way. Looking

at equation (2.38), we see that we need O(δ) = O(∆) to have a finite and nonzero

angular term in equation (2.42). Similarly, by looking at equation (2.39), we must

have O(ε) = O(∆) for equation (2.42) to have a finite and nonzero energy term.

Therefore, when the scattering becomes more peaked (ε → 0 and δ → 0), the mag-

nitude of the cross section must increase so that the momentum transfer stay finite

and nonzero.

Since R̃ is O
(
ε2

∆

)
, we do not need R̃ to retain the leading order behavior in

energy transfer. In many applications, the BFP equation used does not have the R̃

term. The reason for retaining R̃, even though it is a higher order term, is that it

describes totally different physics than the stopping power (S̃) term: the stopping

power term is convective whereas the R̃ term is diffusive. In certain applications,
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even a small diffusion of the particles in the energy variable can have an important

effect and thus, it is important to keep the R̃ term [87]. For instance, R̃ is necessary

to obtain thermal equilibrium. The reason that no convective term in angle appears

in equation (2.42) (the T̃ term is diffusive) is that we have assumed an isotropic

medium; that is there is the same probability for a particle to be scattered to the

left or the right, and thus, the mean scattering angle is zero.

3 Limits of the Boltzmann-Fokker-Planck approximation

a Introduction

In this section, we recall the work of Larsen in [62]. We will show the limita-

tion of the Fokker-Planck operator and, therefore, of the Boltzmann-Fokker-Planck

equation on two well-known scattering kernels: the Henyey-Greenstein scattering

kernel and the Rutherford scattering kernel [62]. The Henyey-Greenstein scattering

kernel mimics the angular dependence of light scattering by small particles, whereas

the screened Rutherford scattering kernel represents the scattering of electrons by a

screened atomic nucleus.

First, we need to define several operators [62]:

LBψ(Ω) =

∫
4π

(
∞∑
l=0

2l + 1

4π
flPl(Ω ·Ω′)

)
ψ(Ω′)dΩ′ − ψ(Ω) (2.43)

LFPψ(Ω) =

(
∂

∂µ
(1− µ2)

∂

∂µ
+

1

1− µ2

∂2

∂ϕ2

)
ψ(Ω) (2.44)

L1ψ(Ω) =
1

4π

∫
4π

ψ(Ω′)− ψ(Ω)

1−Ω′ ·Ω
dΩ′ (2.45)

L3/2ψ(Ω) =
1

4π
√

2

∫
4π

ψ(Ω′)− ψ(Ω)

(1−Ω′ ·Ω)3/2
dΩ′, (2.46)

where fl are the Legendre expansion coefficient of f(Ω·Ω′)dΩ which is the probability

that a particle, entering a scattering event with a direction Ω′, will emerge from the
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event with a direction in dΩ about Ω. If ψ(Ω) is sufficiently smooth, equations (2.43)

to (2.46) become:

LBψ(Ω) =
∞∑
l=0

l∑
m=−l

(−(1− fl))Y m
l (Ω)

∫
4π

Y m,∗
l (Ω′)ψ(Ω′)dΩ′ (2.47)

LFPψ(Ω) =
∞∑
l=0

l∑
m=−l

(−l(l + 1))Y m
l (Ω)

∫
4π

Y m,∗
l (Ω′)ψ(Ω′)dΩ′ (2.48)

L1ψ(Ω) =
∞∑
l=0

l∑
m=−l

(
−

l∑
k=1

1

k

)
Y m
l (Ω)

∫
4π

Y m,∗
l (Ω′)ψ(Ω′)dΩ′ (2.49)

L3/2ψ(Ω) =
∞∑
l=0

l∑
m=−l

(−l)Y m
l (Ω)

∫
4π

Y m,∗
l (Ω′)ψ(Ω′)dΩ′. (2.50)

Therefore, the spherical harmonics are eigenfunctions of equations (2.47) to (2.50):

LBY m
l (Ω) = −(1− fl)Y m

l (Ω) (2.51)

LFPY m
l (Ω) = −l(l + 1)Y m

l (Ω) (2.52)

L1Y
m
l (Ω) =

(
−

l∑
k=1

1

k

)
Y m
l (Ω) (2.53)

L3/2Y
m
l (Ω) = −lY m

l (Ω). (2.54)

b Henyey-Greenstein scattering kernel

The Henyey-Greenstein [49] differential scattering kernel is defined by [62]:

f(µ0) =
1− µ̄2

0

4π(1− 2µ̄0µ+ µ̄2
0)3/2

. (2.55)

This kernel was proposed in [49], and is widely used mainly because of its great

simplicity. The exact Henyey-Greenstein kernel does not arise from a deeper theory

of any known physical process [62]. The Legendre polynomial expansion of the
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kernel, f(µ0) =
∑∞

l=0
2l+1

2
flPl(µ0), is very simple since the expansion coefficients, fl,

are given by:

fl = µ̄l0, l ≥ 0. (2.56)

We look at:

ΣsLB = Σs

(∫
4π

f(Ω ·Ω′)ψ(r,Ω′, E)dΩ′ − ψ(r,Ω, E)

)
(2.57)

with the scaled Henyey-Greenstein kernel:

Σs =
Σ̂s

ε
(2.58)

µ̄0 = 1− ε, (2.59)

where Σ̂s is fixed and ε ≈ 0. When the scattering mean free path tends to zero,

the mean scattering cosine tends to one. In the absence of absorption, the transport

cross section is independent of ε:

Σtr = Σs(1− µ̄0) =
Σ̂s

ε
· ε = Σ̂s. (2.60)

When ε tends to zero, the eigenvalues of ΣsLs become:

−Σs(1− fl) = −Σ̂s

ε

(
1− (1− ε)l

)
= −Σ̂s

ε

(
lε− l(l − 1)

2
ε2 +O(ε3)

)
= Σ̂s(1 + ε)(−l)− Σ̂sε

2
(−l(l + 1)) +O(ε2).

(2.61)
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Using equations (2.51), (2.52), (2.54) and (2.61), we get:

ΣsLB = Σ̂s(1 + ε)L3/2 −
Σ̂sε

2
LFP +O(ε2). (2.62)

The leading-order approximation, O(1), to ΣsLB is:

ΣsLB = Σs(1− µ̄0)L3/2 +O(ε). (2.63)

The first-order approximation, O(ε), to LB is given by:

ΣsLB = Σs(1− µ̄0)(2− µ̄0)L3/2 −
Σs

2
(1− µ̄0)2LFP +O(ε2). (2.64)

We see that the Fokker-Planck operator is not an asymptotic limit of the Henyey-

Greenstein kernel because LFP appears only in the first order approximation. The

zeroth-order approximation contains only L3/2.

c Screened Rutherford scattering kernel

The screened Rutherford differential scattering kernel, which is widely used to

model the Coulomb scattering of non-relativistic electrons, is defined by:

f(µ0) =
η(1 + η)

π(1 + 2η − µ0)2
, (2.65)

where η > 0 is the screening parameter. We consider η ≈ 0, for which f(µ0) is the

most forward-peaked. The first two Legendre expansion coefficient of f(µ0) are given
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by:

f0 = 1 (2.66)

f1 = µ̄0 = 1− 2η

(
(1 + η) ln

(
1 +

1

η

)
− 1

)
. (2.67)

Using equation (2.65), fk = 2π
∫ 1

−1
Pk(µ)f(µ) dµ, and:

µPk(µ) =
(k + 1)Pk+1(µ) + kPk−1(µ)

2k + 1
, (2.68)

we obtain the following recurrence formula:

kfk+1 − (1 + 2η)(2k + 1)fk + (k + 1)fk−1 = 0, (2.69)

or equivalently:

fk+1 − fk
k + 1

− fk − fk−1

k
= 2η

2k + 1

k(k + 1)
fk. (2.70)

Summing equation (2.70) from k = 1 to m − 1, using equation (2.67), and then

multiplying by m yields:

fm − fm−1 − (µ̄0 − 1)m = 2ηm
m−1∑
k=1

2k + 1

k(k + 1)
fk. (2.71)

Summing equation (2.71) from m = 1 to l yields:

fl − 1− (µ̄0 − 1)
l(l + 1)

2
= 2η

l∑
m=1

m

m−1∑
k=1

2k + 1

k(k + 1)
fk

= 2η
l−1∑
k=1

(
l∑

m=k+1

m

)
2k + 1

k(k + 1)
fk

= 2η
l−1∑
k=1

(
l(l + 1)

2
− k(k + 1)

2

)
2k + 1

k(k + 1)
fk,

(2.72)
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where we have used:
l∑

m=1

m =
l(l + 1)

2
. (2.73)

Finally, we find the fl coefficient:

fl = 1− (1− µ̄0)
l(l + 1)

2
+ η

l−1∑
k=1

(
l(l + 1)

k(k + 1)
− 1

)
(2k + 1)fk. (2.74)

If the summation term is assumed to be zero for l = 0 and l = 1; equation (2.69) and

equation (2.74) are equivalent for all l ≥ 0 and η > 0. Next, we assume the following

expansion of fl for η � 1:

fl = fl,0 + ηfl,1 +O(η2). (2.75)

Introducing this expansion into equation (2.74) and equating the coefficients of η0

and η1 (note that µ̄0 is not expanded for η � 1), we find:

fl,0 = 1− (1− µ̄0)
l(l + 1)

2
(2.76)

fl,1 =
l−1∑
k=1

(
l(l + 1)

k(k + 1)
− 1

)
(2k + 1)

(
1− (1− µ̄0)

k(k + 1)

2

)
(2.77)

From equation (2.67), we know that:

1− µ̄0 = O

(
η ln

(
1

η

))
. (2.78)
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Therefore, we get:

fl =1 +

(
1− µ̄0

2

)
(−l(l + 1)) + η

(
l−1∑
k=1

(
l(l + 1)

k(k + 1)
− 1

)
(2k + 1)

)

+O

(
η2 ln

(
1

η

))
.

(2.79)

Now using equation (2.73), we get:

l−1∑
k=1

(
l(l + 1)

k(k + 1)
− 1

)
(2k + 1) = 2l(l + 1)

((
l∑

k=1

1

k

)
− 1

)
(2.80)

for l ≥ 0.

Thus, equation (2.79) becomes:

fl =1 +

(
1− µ̄0

2

)(
− l(l + 1) + 2η (−l(l + 1))

)(
1−

l∑
k=1

1

k

)

+O

(
η2 ln

(
1

η

))
.

(2.81)

Next, we define Σs as:

Σs =
Σ̂s

1− µ̄0

. (2.82)

Then for η � 1, the eigenvalues of ΣsLB are:

−Σs(1− fl) =
Σ̂s

2
(−l(l + 1)) +

2ηΣ̂s

1− µ̄0

(−l(l + 1))

(
1−

l∑
k=1

1

k

)
+O(η). (2.83)

Using equation (2.53), we finally get:

ΣsLB =
σ

2
LFP +

2ησ

1− µ̄0

LFP (I + L1) +O(η)

=
Σs(1− µ̄0)

2
LFP + 2ηΣsLFP (I + L1) +O(η).

(2.84)
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The first term in this expansion is the standard Fokker-Planck operator which is

O(1). The second term in equation (2.84) is O(1/ ln(1/η)). Therefore, 1/ ln(1/η)

must be very small for the Fokker-Planck description to be valid. Because of this

logarithmic behavior, realistic values of η are typically not small enough [88].

In conclusion, we see that the Fokker-Planck operator appears in the asymp-

totic approximations of LB for both Henyey-Greenstein and screened Rutherford

scattering. However, for the Henyey-Greenstein scattering, LFP is dominated by a

pseudodifferential operator L3/2, and for the screened Rutherford scattering, LFP

weakly dominates another pseudodifferential operator LFPL1. In neither case, the

first-order approximations of LB can be written only with LFP [62].

C Fokker-Planck cross section

In this section, we derive the Fokker-Planck scattering cross section such that the

Fokker-Planck operator can be approximated by the Boltzmann operator. First, we

recall the BFP equation equation (2.23):

Ω ·∇ψ + (Σs,reg + Σa)ψ =
∞∑
l=0

l∑
m=−l

Y m
l (Ω)

∫ E/α

E

(
Σs,l,reg(E

′ → E)

φl,m(E ′)

)
dE ′ +

∂(Sψ)

∂E
+
α

2

(
∂

∂µ
(1− µ2)

∂

∂µ
+

1

(1− µ2)

∂2

∂ϕ2

)
ψ +Q,

(2.85)

where we used α = 2T . Let us define:

LαFPψ =
α

2

∂

∂µ
(1− µ2)

∂

∂µ
ψ (2.86)

LeFPψ =
∂

∂E
Sψ +

1

2

∂2

∂E2
Rψ. (2.87)

We note that LαFP causes particles to redistribute in direction without energy change,

while LeFP causes particles to redistribute particles in energy without directional
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change. Therefore, LαFP can be approximated using the following cross section:

Σs(µ0, E
′ → E) = Σα

s (µ0, E)δ(E ′ − E), (2.88)

where Σα
s (µ0, E) = α(E)

1−µs
1

2π
δ(µ0 − µs) and µs is a parameter; while LeFP should be

approximated by a cross section of the form:

Σs(µ0, E
′ → E) = Σe

s(E
′ → E)

1

2π
δ(µ0 − 1). (2.89)

1 Legendre polynomial expansion of Σα
s

Next, we express the Legendre polynomial expansion of Σα
s (µ0) (E was dropped

for brevity) as it has been done in [59, 69, 72]. We will focus on LαFP since this

research we solve the energy-integrated Boltzmann equation and, therefore, the LeFP

operator does not appear in the equation that we solve. Because Σα
s does not change

particle energy, it corresponds to a within-group cross section. We define:

LαB = Σα
sLB (2.90)

LαFP =
α

2
LFP , (2.91)

and thus:

LαBY m
l (Ω) = (Σα

s,l − Σα
s,0)Y m

l (Ω) (2.92)

LαFPY m
l (Ω) = −α

2
l(l + 1)Y m

l (Ω). (2.93)

Using equations (1.12), (2.92) and (2.93), we can define Σα
s such that:

LαBψ = LαFPψ, (2.94)
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by setting:

Σα
s,l − Σα

s,0 = −α
2
l(l + 1), (2.95)

with l = 1, . . . , L. Choosing Σα
s,L = 0 to minimize Σα

s,0 and equation (2.95) becomes:

Σα
s,l =

α

2
(L(L+ 1)− l(l + 1)) , l = 0, . . . , L. (2.96)

Using appropriate quadrature sets and expansion orders, the Sn representation of

LαFP is equivalent to the one obtained by interpolating the discrete angular flux

values with a polynomial.

Next, we look at the behavior of Σα
s when the degree of the expansion is increased.

First, we should note that the momentum transfer of Σα
s is exact for any expansion

order:

2π

∫ 1

−1

Σα
s (µ0)(1− µ0)dµ0 = Σs,0 − Σs,1

=
α

2
L(L+ 1)− α

2
(L(L+ 1)− 2)

= α.

(2.97)

With equation (2.96), the average cosine of the scattering angle becomes:

µ̄0 =
Σα
s,1

Σα
s,0

=
L(L+ 1)− 2

L(L+ 1)
.

(2.98)

It is easily seen that when L increases, µ̄0 goes to one and Σα
s becomes increasingly

forward-peaked. The total magnitude of Σα
s (µ0) becomes unlimited when L goes to

∞:

Σα
s,0 =

α

2
L(L+ 1). (2.99)
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This shows that LαFP corresponds to a continuous-deflection interaction. The parti-

cles are continuously deflected with the mean deflection per unit pathlength given

by the momentum transfer.

LαB converges to LαFP when µs tends to one but it does not converge uniformly. For

any fixed value of µs, the high-order eigenvalues of LαFP are grossly underestimated

by LαB. Fortunately, this error in the high-order eigenvalues is usually unimportant

[72].

D Galerkin quadratures

Until now, we have not described which angular quadrature should be used to

correctly treat high orders of anisotropy. We have only stated that we need an

appropriate quadrature but we did not explain what we required. In this section, we

introduce the Galerkin quadrature. Morel first introduced them in [68]; here, we will

introduce them following the presentation made in [85].

First, we start by recalling the definition of ψ and φl,m:

φl,m(r) =

∫
4π

dΩ′ψ(r,Ω′)Y m,∗
l

= (DΨ)l,m

(2.100)

where D is the direction-to-moment operator. We also have:

Ψ(r,Ω) =
∞∑
l=0

l∑
m=−l

Y m
l (Ω)φl,m(r)

= MΦ(r)

(2.101)

where M is the moment-to-direction operator. By combining equations (2.100)

and (2.101), we obtain:

(I −MD)Ψ = 0 (2.102)
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since for analytic transport M = D−1. I is the identity operator.

Now, we define [85]:

ε = 1− 〈µ̄0〉 (2.103)

γ =
〈

(1− µ0)2
〉

(2.104)

A(r) =
1− µ̄0(r)

ε
(2.105)

Σa = Σ̂a (2.106)

Σs,l =
Σ̂s,l(r)

ε
(2.107)

Σs,l(r) = Σs,0(r)

(
1− l(l + 1)

2
A(r)ε+O(γ)

)
(2.108)

where 〈X〉 is a typical value of X. Using equations (2.103) to (2.108) in equa-

tion (1.16), we get:

Ωk ·∇ψk(r) + (Σa(r) + Σs,0(r))ψk(r) =

N−1∑
l=0

l∑
m=−l

Y m
l (Ωk)φl,m(r)

Σ̂s,0(r)

ε

(
1− l(l + 1)

2
A(r)ε+O(γ)

)
+Q(r,Ωk)

(2.109)

where:

ψk(r) = ψ(r,Ωk) (2.110)

φl,m(r) =
K∑
k=1

wkY
m,∗
l (Ωk)ψk(r). (2.111)

wk and Ωk are the quadrature weights and directions of a quadrature set of order N .

For triangular quadrature sets, K = N in 1D, K = N(N+2)
2

in 2D and K = N(N +2)
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in 3D. Equation (2.109) yields:

Ωk ·∇ψk(r) + Σ̂a(r)ψk(r) +
Σ̂s,0(r)

ε

(
ψk(r)−

N−1∑
l=0

m∑
m=−l

Y m
l (Ωk)φl,m

)

= −

(
Σtr(r)− Σ̂a(r)

)
2

N−1∑
l=0

l∑
m=−l

l(l + 1)Y m
l (Ωk)φ

m
l (r)

+Q(r,Ωk) +O
(γ
ε

)
.

(2.112)

We insert the asymptotic ansatz:

ψ = ψ(0) + εψ(1) + ε2ψ(2) + . . . (2.113)

φl,m = φ
(0)
l,m + εφ

(1)
l,m + ε2φ

(2)
l,m + . . . (2.114)

into equation (2.109). The terms of O(1) give:

φ
(0)
l,m(r) =

K∑
k=1

wkY
m,∗
l (Ωk)ψ

(0)
k (r)

= (DNΨ(0))l,m.

(2.115)

Now we insert the ansatz into equation (2.112) and we look at the terms of O(ε−1):

ψ
(0)
d (r) =

N−1∑
l=0

l∑
m=−l

Y m
l (Ωk)φ

(0)
l,m(r)

= (MNΦ(0))d

(2.116)

there is no O(γ) term, since γ → 0 when ε→ 0, i.e., that there are no O(1) compo-
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nents in γ. Equations (2.115) and (2.116) may be combined to give:

(I −MNDN)Ψ(0) = 0 (2.117)

(I −DNMN)Φ(0) = 0. (2.118)

Therefore, Ψ(0) must be in the kernel of I −MNDN and Φ(0) must be in the kernel

of I −DNMN . Using equation (2.111), equation (2.118) becomes successively:

(I −DNMN)DNΨ(0) = 0 (2.119)

(DN −DNMNDN) Ψ(0) = 0 (2.120)

DN(I −MNDN)Ψ(0) = 0, (2.121)

which is always satisfied if equation (2.117) is satisfied. Therefore, if equation (2.117)

is satisfied, equations (2.115) and (2.116) are automatically satisfied.

A sufficient condition to satisfy equation (2.117) is that MNDN = I. This is of

course true if DN = M−1
N like in analytic transport. Obviously for MN and DN

to be the inverse of each other, the matrices have to be square. Thus, the number

of moments in the scattering expansion must be equal to number of discrete angles.

In one-dimension, DN = M−1
N is satisfied if the quadrature set integrates exactly

any polynomials of degree 2N − 1, like the Gauss-Legendre quadrature does. In

multidimensional problems, the standard quadrature sets use more discrete angles

than there are scattering moments. Therefore, MN and DN are rectangular matrices

and they cannot be inverse of each other. In this case, equation (2.117) can only

be satisfied if Ψ(0) is in the kernel of (I −MNDN). This can be achieved only if

Ψ(0) satisfies nonphysical constraints [85]. If equation (2.117) is not satisfied, the
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asymptotic ansatz is not valid and there is no O(1) solution to equations (2.109)

and (2.111).

If we assume that MNDN = I, then the O(ε) terms in equation (2.111) give:

φ
(1)
l,m(r) =

K∑
k=1

wkY
m,∗
l (Ωk)ψ

(1)
k (r)

= (DNΨ(1))l,m.

(2.122)

In equation (2.112), the O(1) terms give:

Ωk ·∇ψ
(0)
k (r) + Σ̂a(r)ψ

(0)
k (r) + Σ̂s,0(r)

(
ψ

(1)
k (r)−

N−1∑
n=0

l∑
m=−l

Y m
l (Ωk)φ

(1)
l,m(r)

)

= −Σtr(r)− Σ̂a(r)

2

N−1∑
l=0

l∑
m=−l

l(l + 1)Y m
l (Ωk)φ

(0)
l,m(r) +Q(r,Ωk) +O

(γ
ε

)
.

(2.123)

Now, we want the scattering term on the left side of equation (2.123) to disappear

in order to keep only ψ
(0)
k and φ

(0)
l,m. This is possible only if:

ψ
(1),∗
d (r) = ψ

(1)
d (r), (2.124)

where:

ψ
(1),∗
d =

N−1∑
l=0

l∑
m=−l

Y m
l (Ωk)φ

(1)
l,m(r)

= (MNΦ(1))d

= (MNDNΨ(1))d,

(2.125)

which is satisfied because of our previous assumption that MNDN = I. Equa-
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tion (2.123) yields:

Ωk ·∇ψ
(0)
k (r) + Σ̂a(r)ψ

(0)
k (r) =

Σtr(r)− Σ̂a(r)

2

((
∂

∂µ
(1− µ2)

∂

∂µ
+(

1

1− µ2

)
∂2

∂ϕ2

)
ψ̃(0)(r,Ω)

)
Ω=Ωk

+Q(r,Ωk) +O
(γ
ε

)
,

(2.126)

where k = 1, . . . , K and ψ̃(0)(r,Ω) is an interpolant through the points Pk =

{Ωk, ψ
(0)
k (r,Ω)}. “In one-dimensional geometry, ψ̃(0)(r,Ω) is the (N−1)−order poly-

nomial interpolant through the points Pk. In multidimensional geometries, ψ̃(0)(r,Ω)

is the spherical harmonic interpolant through the points Pk” [85]. A quadrature

which satisfies the relation DN = M−1
N is called a “Galerkin” quadrature because

Morel derived it by using a Galerkin weighting method [68].

In [68], Morel made the following suggestions to find the correct limit using the

SN :

One-dimensional geometry: The Gauss-Legendre quadrature set is the only quadra-

ture set which is a Galerkin quadrature.

Multidimensional geometry: The standard quadrature sets have fewer moments

than discrete angles. Therefore to satisfy D = M−1, spherical harmonics of

higher order need to be added to increase the number of moments to equal the

number of angular flux. Morel in [68] and Reed in [90] proposed an heuristic

algorithm to choose the spherical harmonics for multidimensional geometries.

If we use the real spherical harmonics defined by:

Y c
l,m =


Y 0
l if m = 0

1√
2

(
Y m
l + (−1)mY −ml

)
if m > 0

(2.127)
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Y s
l,m =

1

i
√

2
(Y −ml − (−1)mY m

l ) if m < 0 (2.128)

and a two-dimensional Cartesian geometry triangular quadrature set, the se-

lection rules to build M are the following:

• Take Y c
l,m if l ∈ [0, N − 1], m ∈ [0, l], and l +m is even.

• Take Y s
l,m if (l ∈ [1, N − 1], m ∈ [1, l], and l + m is even) or if (l = N ,

m ∈ [1, l], and l +m is even).

For three dimensional triangular quadrature sets, the spherical harmonics are:

• Take Y c
l,m if (l ∈ [0, N − 1] and m ∈ [0, l]) or if (l = N , m ∈ [1, N − 1],

and m is odd).

• Take Y s
l,m if (l ∈ [1, N ] and m ∈ [1, l]) or if (l = N + 1, m ∈ [2, N ] and m

is even).

General necessary conditions and explanations of the heuristic rules above have been

analyzed in [91].

Using a standard Sn quadrature may lead to an unphysical solution for charged

particle transport. To further demonstrate the importance of Galerkin quadrature,

we define the scattering ratio matrix C by:

C =
1

Σt

DMΣ, (2.129)

where Σ is the scattering matrix containing the moments of the scattering cross

sections on its diagonal. C is a diagonal matrix whose entries are the scattering

ratios cl =
Σs,l
Σt
≤ 1. The fact that MD = I assures a one-to-one relation between

the angular flux and the flux moments; furthermore, the orthogonality of all spherical

harmonic functions used in the angular flux representation is preserved. However, if a
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standard quadrature is employed, then D = MTW , where W is the diagonal matrix

of weights, and an inexact integration occurs for the set of spherical harmonics than

span M . Thus, C will differ from Σ
Σt

and its eigenvalue could exceed unity. This

is equivalent to numerically adding multiplication into the medium and, depending

on the amount of leakage present in the geometrical configuration, the steady-state

transport equation may not reach a steady state solution [85].

A very important property of the Galerkin quadratures is that they treat delta

function scattering exactly. This is very important for two reasons. Firstly, in

charged-particle transport, some cross sections have the following form:

Σk→g(µ0) = Σk→gδ(µ0 − 1), (2.130)

where Σk→g(µ0) is the differential cross section associated with a transfer from group

k to group g. Thus, it is essential that delta function scattering be treated exactly.

Secondly and more importantly since we work with energy-integrated equation, for

electron scattering, the extended transport correction [63] can be used to reduce

the within-group scattering cross sections by two orders of magnitude or more [67].

Without the extended transport correction, the scattering cross-section moments are

very large and DSA does not accelerate the convergence of the solver. Because the

Galerkin method treats delta function scattering exactly, the extended transport

correction does not modify the solution of the problem [67]. This is very interesting

since it allows significant reduction of the cross-section moments without loss of

accuracy. Showing this property is quite simple given what we have presented thus

far. We know that in the analytic case we have:

∫
4π

δ(µ0 − 1)ψ(Ω′) dΩ′ = ψ(Ω). (2.131)
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When the scattering source is discretized, we have Σ = I. Therefore, it is obvious

that:

DΣMΨ = Ψ. (2.132)

To really understand the Galerkin quadrature, it is interesting to recall the de-

velopment made in [68]. First, we expand the one-dimensional angular flux on an

interpolatory trial space:

Ψ(µ) =
N∑
d=1

ψdBd(µ). (2.133)

Methods for generating the interpolatory basis function can be found in [68]. Next,

we expand the scattering source on the Legendre polynomials:

S(µ) =
∞∑
l=0

2l + 1

2
ξlPl(µ), (2.134)

where:

ξl =

∫ 1

−1

S(µ)Pl(µ)dµ. (2.135)

Now, we use the interpolatory trial space to approximate S(µ):

S̃(µ) =
N∑
d=1

S̃dBd(µ). (2.136)

Since a Galerkin method is used, the residual associated with the trial space approx-

imation must be orthogonal to the weighting space. The residual associated with

equation (2.136) is given by:

Res(µ) = S̃(µ)− S(µ). (2.137)

Since the Legendre polynomials form a basis for the weighting space, we orthogonalize
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against the Legendre polynomials:

∫ 1

−1

Res(µ)Pl(µ)dµ = 0.0, l = 0, . . . , N − 1. (2.138)

Equation (2.138) is satisfied if:

ξ̃l = ξl, l = 0, . . . , N − 1 (2.139)

ξ̃l =

∫ 1

−1

S̃(µ)Pl(µ)dµ. (2.140)

The main idea of the Galerkin quadrature can be seen on equation (2.139): “the

discrete scattering source values are chosen such that the interpolatory representation

for that scattering source has the same Legendre moments through degree N − 1 as

the exact scattering source calculated with the interpolatory representation for the

angular flux” [68]. Because all the elements of the weighting space can be expressed as

a linear combination of Legendre polynomials Pl with l < N and
∫ 1

−1
Pl(x)Pm(x) dx =

0 for l 6= m, only the first N − 1 cross-section moments are needed.

Now, we compare the cross-section expansion for the Galerkin method and the Sn

method. Both the Galerkin method and the standard Sn method use a Legendre ex-

pansion of the cross section. However, whereas the Sn method relies on the accuracy

of the truncated Legendre expansion, the Galerkin scattering source is fully consis-

tent with the exact cross section. It is not important whether or not the truncated

Legendre cross-section expansion accurately represents the scattering cross section.

What is important is that S̃(µ) is an accurate approximation of S(µ). This is a

crucial property for charged particle transport. For example, the delta function ex-

pansion of finite degree is never converged, and this is an issue if a Sn method with

a standard quadrature is used. However, as proved earlier, the scattering source
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computed by the Galerkin method is treated exactly.

If the scattering is isotropic, the Sn method might appear superior to the Galerkin,

since the Galerkin requires the number of flux moments to be equal to the number of

angular flux. Fortunately, if the higher order cross-sections moments are zero, only

the first rows of D and the first columns of M need to be kept.

A Galerkin quadrature set and its companion quadrature sets (standard quadra-

ture sets associated with the Galerkin quadrature set having weights defined by the

first row of the discrete-to-moment matrix) yield different scattering only if the ex-

pansion order of the scattering cross section is high enough. When the scattering

is isotropic, the Galerkin quadrature set is the same as its companion set. Even

when the scattering is highly anisotropic, the results given by the Galerkin set and

its companion set can be very close. This is due to the fact the high order moments

of the scattering cross section are often, but not always, very small. However, the

results can also be quite different.
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CHAPTER III

A BRIEF REVIEW OF SN TRANSPORT: ITERATIVE TECHNIQUES AND

DISCRETIZATION ON ARBITRARY POLYGONS

A Introduction

In this Chapter, we briefly recall the Sn transport equations before presenting our

research in the next chapters. We review the standard iterative techniques employed

to solve the Sn transport equations and we introduce the two spatial discretizations

used in this research: the BiLinear Discontinuous finite elements (BLD) [18, 73]

and the PieceWise Linear Discontinuous finite elements (PWLD) [25, 95]. The BLD

discretization is used on rectangular cells whereas PWLD is used on arbitrary convex

polygonal cells. Both of these discretizations give the correct result in the diffusion

limit.

In the following presentation, we restrict ourselves to one-group equations with

isotropic scattering and source. With these simplifying assumptions, the fundamen-

tals of Sn transport iterative solution techniques and spatial discretization can be

presented effectively, while leaving new research material for subsequent chapters.

These next chapters will build upon the concepts laid out here.

B The Sn Transport Equations

Given an angular quadrature set {Ωd, wd}1≤d≤M , the one-group n transport equa-

tion with isotropic source and scattering is:

(Ωd ·∇ + Σt(r))ψd(r) =
1

4π
Σs(r)φ(r) +

1

4π
S(r), for r ∈ D, 1 ≤ d ≤M, (3.1)
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with ψd(r) = ψ(r,Ωd) the angular flux at position r in direction Ωd, Σt, and Σs the

total and scattering cross section, respectively, and D the spatial domain. The scalar

flux is defined and evaluated as follows:

ψ(r) ≡
∫

4π

ψ(r,Ω) dΩ '
M∑
d=1

wdψd (r) . (3.2)

The system of equations is closed assuming incoming boundary conditions on (with

∂D = ∂Dd ∩ ∂Dr):

ψd(rb) =


ψincd (rb), rb ∈ ∂Dd,− = {∂Dd such that Ωd · nb < 0}

ψd′(rb), rb ∈ ∂Dr,−d = {∂Dr such that Ωd · n < 0}
, (3.3)

where nb = n(rb) is the outward unit normal vector on the boundary. The reflecting

direction of Ωd at a point rb on the boundary is given by:

Ωd′ = Ωd − 2 (Ωd · nb)nb. (3.4)

We assume the angular quadrature set satisfies the following two conditions for any

outward unit normal vector on the reflecting boundary ∂Dr:

• ∀d = 1, . . . ,M , the reflected direction Ωd′ is also in the quadrature set (which

is simple to obtain for rectangular geometries);

• the weights of the incident and reflected directions are equal, i.e., wd = wd′
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For the time being, we assume that no reflective boundaries exist (∂Dr = 0).

Then, equation (3.1) can be written in a compact form using operators:

LΨ = MΣΦ + S = q, (3.5)

Φ = DΨ, (3.6)

where Ψ is the vector of angular fluxes, Φ the vector flux moments (with isotropic

scattering, the only moment required is the scalar flux), q is the total (scatter-

ing+external) source, L is the streaming operator, M is the moment-to-direction

operator, and D is the direction-to-moment operator. L = diag(L1, . . . ,Ld, . . . ,LM)

is a diagonal operator; given the total source q, one can solve independently for the re-

sulting angular fluxed in all directions. Equations (3.5) and (3.6) can be re-arranged

in terms of the scalar flux only:

Φ = DL−1 (MΣΦ + S) . (3.7)

The action of DL−1 is often referred to as a transport sweep because for any direction

Ωd, the action of L−1
d can be obtained by traversing the mesh (i.e.,sweeping) in the

direction of flow, successively inverting LD in each set of downstream cells. Thus,

one need only to solve a small linear system of equations, cell by cell. The order

in which the elements are solved constitutes the graph of the sweep. We have thus

far considered only situations where the graph does not present some dependencies

(cycles). Note that cycles in the sweep graph can also appear due to reflective

boundary conditions. These graph dependencies can either be lagged within the

iterative procedure of the solution vector consisting of the scalar flux is augmented

by the angular flux unknowns that cause the cycles. We will explain these details
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in the paragraph related to iterative techniques, but first we generalize our operator

notations for situations where we need to keep in the solution vector both the flux

moments and some angular fluxes due to dependencies in the graph (non convex

meshed and/or reflective boundaries).

If the graph of the sweep presents dependencies, we practically break the trans-

port sweep on these boundaries and introduce the notion of significant angular fluxes.

In this situation, we define a matrix N that extracts from the entire angular flux

vector all out-going angular fluxes on the boundaries causing a dependency in the

graph of the sweep, i.e., the significant angular flux vector is given by:

ΨSAF = NΨ, (3.8)

N is simply an operator that extracts from the entire angular flux vector, the values

required to break the graph dependencies. We then split the loss and streaming

operator L into two parts:

L = L−L, (3.9)

where L is the lower block triangular matrix (which can be inverted during a trans-

port sweeps) and L is the strictly upper triangular block, causing the dependencies

in the sweep (L only contains integrals along some incoming edges of a cell). Note

that NTN is a diagonal operator that contains one only for angular flux values that

are labeled as “significant”. Then, we have:

LΨ = LNTNΨ = LNTΨSAF , (3.10)
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and can, therefore, recast the transport equation as:

LΨ = LNTΨSAF + MΣΦ + S, (3.11)

Φ = DΨ. (3.12)

C Solution Techniques

1 Unaccelerated Procedures

Equations (3.5) and (3.6) can be solved using the Source Iteration (SI) method (a

stationary iterative technique also known as Richardson iteration). The SI technique

at the `th iteration is given by:

Φ(`+1) = DL−1
(
MΣΦ(`) + S

)
. (3.13)

Alternatively, a subspace Krylov method (usually GMRES) can be employed to solve

the following transport system of equations:

(
I −DL−1MΣ

)
Φ = DL−1S. (3.14)

Both the SI and the GMRES approaches require transport sweeps (the action of L−1

is required in both procedures).

When the scattering ratio c = Σs
Σt

tends to one in optically thick domains, the

number of SI and GMRES iterations can become large. Fourier analyses (for contin-

uous, i.e., undiscretized transport) confirmed that SI rapidly attenuates error modes

associated with high frequencies (transport dominated modes) while leaving almost

unaffected low-frequency error modes (diffusion dominated modes) [19]. To accel-

erate the convergence, a DSA preconditioner is needed. In addition, some level of
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consistency is necessary between the spatial discretization of the transport operator

and than of the diffusion operator. In Chapter V, we will adapt the MIP discon-

tinuous finite element discretization of the diffusion equation for arbitrary polygonal

grids and employ MIP as a DSA preconditioner.

For completeness, we provide the SI and GMRES solution techniques in the case

graph dependencies are present. During one SI iteration, the scalar flux and the

angular significant flux are updated as follows:

 Φ

ΨSAF


(`+1)

=

DL−1MΣ DL−1L
−1
NT

NL−1MΣ NL−1L
−1
NT


 Φ

ΨSAF


(`)

+

D
N

L−1S. (3.15)

Equation (3.15) is simply coded by appending the ΨSAF to the scalar flux unknowns

(after a transport sweep, the operator D is applied to yield the newest scalar flux

whereas the operator N is applied to update the significant angular flux). Note that

when L = 0 (i.e., no dependencies in the sweep), we obtain the standard SI formula:

Φ(l+1) = DL−1
(
MΣΦ(l) + S

)
. (3.16)

From the SI formula of equation (3.15), it follows that the linear system for a

GMRES-based transport solves is simply:

(I − T )x = b, (3.17)
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with:

T =

DL−1MΣ DL−1LNT

NL−1MΣ NL−1LNT

 , (3.18)

x =

 Φ

ΨSAF

 , (3.19)

b =

D
N

L−1S. (3.20)

2 Synthetic Acceleration and Preconditioning

Ignoring graph dependencies for simplicity of the presentation, the transport

equation is:

(L−MΣD) Ψ = S. (3.21)

It is often computationally effective to write the above linear system as:

(
I −L−1MΣD

)
Ψ = L−1S (3.22)

because L is easier to invert than (L−MΣD). Equation (3.22) is equation (3.21)

with sweep preconditioning. Therefore, an iterated scheme (the SI technique) yields

formally:

Ψ(`+1) = L−1
(
MΣDΨ(`) + S

)
. (3.23)

The error equation is:

Ψ−Ψ(`+1) = L−1MΣD
(
Ψ−Ψ(`)

)
= L−1MΣD

(
Ψ−Ψ(`+1) + Ψ(`+1) −Ψ(`)

)
,

(3.24)
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that is, the transport equation satisfied by the angular error ε(`+1) = Ψ−Ψ(`+1) is:

(L−MΣD) ε(`+1) = MΣD
(
Ψ(`+1) −Ψ(`)

)
. (3.25)

This equation is of the same form as equation (3.21) (where the source term is now

the scattering due to the difference in successive flux iterates) and, therefore, is just as

difficult to solve. However, solving it would provide the exact additive term required

to obtain the exact solution:

Ψ = Ψ(`+1) + ε(`+1). (3.26)

Since the diffusion error modes are not efficiently attenuated by the above SI process,

it is natural to seek a low-order error equation. Taking the zeroth and first angular

moment moment of equation (3.25), one obtains a diffusion equation for the scalar

ε:

Aε(`+1) = Σ
(
Φ(`+1) − Φ(`)

)
, (3.27)

where A is the diffusion operator. However, the scalar correction ε(`+1), when added

to the previous iterate of the scalar flux Φ(`+1), will not yield the exact scalar flux

solution because the low-order error equation is not strictly identical to the transport

error equation. However, it is expected that significant speedup can be achieved in

the iterative solution technique that can now be described as follows:

1. Perform a transport sweep and obtain the scalar flux after that sweep:

Φ(`+1/2) = DL−1
(
MΣΦ(`) + S

)
. (3.28)
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2. Solve for the diffusion error equation corrective addition:

Aε(`+1/2) = Σ
(
Φ(`+1/2) − Φ(`)

)
. (3.29)

3. Obtain a new estimate of the scalar flux for the next transport sweep:

Φ(`+1) = Φ(`+1/2) + ε(`+1/2). (3.30)

When the process is recast in a Krylov (GMRES) solver, one obtains the following

preconditioned GMRES solve:

(
I + A−1Σ

) (
I −DL−1MΣ

)
Φ =

(
I + A−1Σ

)
DL−1S. (3.31)

As seen in [115], DSA requires some spatial consistency to converge. Moreover, we

also ignored the effect of anisotropic scattering. The discussion of these aspects is

left for Chapter IV where DSA’s ineffectiveness in such situations is discussed.

D Discontinuous Finite Element Discretization

1 DFEM and sweeps

Using equations (3.5) and (3.6), equation (3.1) can be written:

(Ωd ·∇ + Σt(r))ψd = q(r) (3.32)

q(r) =
1

4π
Σs(r)φ(r) +

1

4π
S(r). (3.33)

q(r) is a volumetric source. For anisotropic scattering, equation (3.32) would also

include higher angular terms. During a sweep, equation (3.32) is inverted.

Next, the domain D is meshed into elements K, ψd is expanded on the basis
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function χi (ψd =
∑

i ψd,iχi), equation (3.32) is multiplied by χj, and equation (3.32)

is integrated over K:

∫
K

(Ωd ·∇ + Σt)

(∑
i

ψd,iχi

)
χj dr =

∫
K

(∑
i

qiχi

)
χj dr. (3.34)

Applying Stokes’ theorem, we obtain:

∮
∂K

Ωd · nb

(∑
i

ψd,iχi

)
χj dr−

∫
K

(∑
i

ψd,iχi

)
Ωd ·∇χj dr+

∫
K

Σt

(∑
i

ψd,iχi

)
χj dr =

∫
K

(∑
i

qiχi

)
χj dr,

(3.35)

where
∮
∂K

is the integral over the boundary ∂K and nb is the exterior normal. Using

upwind, equation (3.35) becomes:

−
∫
K

((∑
i

ψd,iχi

)
Ωd ·∇χj + Σt (ψd,iχi)χj

)
r+

∫
∂K+

Ωd · nb

(∑
i

ψd,iχi

)
χj dr =

∫
K

(∑
i

qiχi

)
χj dr+

∫
∂K−
|Ωd · nb|

(∑
i

ψ↑d,iχi

)
χj dr,

(3.36)

where ∂K− is the inflow of element K (Ωd · nb < 0) and ∂K+ is the outflow face of

element face of element K (Ωd · nb > 0). The angular flux values on an inflow face,

denoted by ψ↑d in equation (3.36), are taken from the upwind neighbor element of

that face. We see that equation (3.36) can be inverted for only cell K as soon as ψ↑d

is known, yielding the concept of transport sweep through the mesh.
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2 BiLinear Discontinous finite elements

In this research, the BLD basis functions are used only on the rectangular cells.

If the cells are arbitrary convex quadrilaterals, the discretization may not exist. The

BLD basis functions defined on the following rectangular cell (see Figure III.1):

Figure III.1: Rectangular cell

are:

χ0(x, y) =
(∆x− x)

∆x

(∆y − y)

∆y
, (3.37)

χ1(x, y) =
x

∆x

(∆y − y)

∆y
, (3.38)

χ2(x, y) =
x

∆x

y

∆y
, (3.39)

χ3(x, y) =
(∆x− x)

∆x

y

∆y
, (3.40)

with x ∈ [0,∆x] and y ∈ [0,∆y]. On a square cell, the basis functions are given in

Figure (III.2):

53



(a) First basis function (b) Second basis func-

tion

(c) Third basis function (d) Fourth basis function

Figure III.2: BLD basis function

Given these basis functions, the matrices of equation (3.36) (1D and 2D mass

matrix, M ij =
∫
K
χiχj dr and the “gradient” matrix, Gij =

∫
K
χi∇χj dr) can be

easily analytically computed on rectangular cells. On “almost” rectangular cells, the

integrals have to be computed analytically. On highly distorted cells, these integrals

become singular.

3 PieceWise Linear Discontinuous finite elements

Next, we introduce the PieceWise Linear Discontinuous finite elements developed

in [25, 95]. The interest of PWLD finite elements is that they can be used on arbitrary

polygons. We will see in Chapter V the advantages of using arbitrary polygons

instead of triangles or quadrilaterals. To obtain the PWLD basis functions on two-

dimensional polygons, we need to introduce the within-cell point c. The coordinates
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of c are weighted averages of the vertex coordinates:

xc =

NV∑
j=1

αjxj, (3.41)

yc =

NV∑
j=1

αjyj, (3.42)

where
∑NV

j=1 αj = 1, αj ≥ 0 ∀j, and NV is the number of vertices of the cell.

The basis function at vertex j is defined by [95]:

χj(x, y) = tj(x, y) + αjtc(x, y), (3.43)

where the tj function is the linear functions such that tj(x, y) is unity at vertex j

and zero at the j − 1, j + 1, and c. The function tc(x, y) is unity at c and zero at

each vertex. In this work, the arbitrary positive weights αj are chosen to be 1
NV

. On

a square cell with αj = 1
4
∀j, the basis functions are given in Figure (III.3):
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(a) First basis function (b) Second basis func-

tion

(c) Third basis function (d) Fourth basis function

Figure III.3: PWLD basis function

On triangular cells, the PWLD basis functions reduces to the standard Linear

Discontinuous (LD) basis functions if αj = 1
3
.

Given the definition of the PWLD finite elements, it may seem complicated to

build the mass matrix, M , or the gradient matrix, G, on an arbitrary polygonal

cells. The construction of such matrices can be greatly simplified using “side” sub-

cells. A “side” sub-cell is a triangular cell made from two adjacent vertices and the

point c. On each “side” sub-cells, the mass matrix, for example, can be build using

LD finite elements. To do so, we first need to rewrite the mass matrix M :

M =

NV∑
k=1

∫
Sk

χiχj dr, (3.44)
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where Sk are the “side” sub-cells (see Figure III.4). We see that M can be built by

looping over all the “side” sub-cells. For a given “side” sub-cell Sk, we have:

∫
Sk

χiχj dr =

∫
Sk

(
titj + αtitc + αtcti + α2t2c

)
dr (3.45)

On Sk, the basis functions ti, tj, and tc, are identical to the LD basis functions.

Therefore, if we note MSk , the mass matrix on the “side” sub-cell formed by the

vertices 0, 1, and c:

Figure III.4: Sub-cell (in blue) in the cell

M can be built using MSk :

M (0, 0) = MSk(0, 0) + αMSk(0, 2) + αMSk(2, 0) + α2MSk(2, 2) (3.46)

M (0, 1) = MSk(0, 1) + αMSk(0, 2) + αMSk(2, 1) + α2MSk(2, 2) (3.47)

M (0, 2) = αMSk(0, 2) + α2MSk(2, 2) (3.48)

M (0, 3) = αMSk(0, 2) + α2MSk(2, 2) (3.49)

M (1, 0) = MSk(1, 0) + αMSk(1, 2) + αMSk(2, 0) + α2MSk(2, 2) (3.50)

M (1, 1) = MSk(1, 1) + αMSk(1, 2) + αMSk(2, 1) + α2MSk(2, 2) (3.51)

M (1, 2) = αMSk(1, 2) + α2MSk(2, 2) (3.52)

M (1, 3) = αMSk(1, 2) + α2MSk(2, 2) (3.53)
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M (2, 0) = αMSk(2, 0) + α2MSk(2, 2) (3.54)

M (2, 1) = αMSk(2, 1) + α2MSk(2, 2) (3.55)

M (2, 2) = α2MSk(2, 2) (3.56)

M (2, 3) = α2MSk(2, 2) (3.57)

M (3, 0) = αMSk(2, 0) + α2MSk(2, 2) (3.58)

M (3, 1) = αMSk(2, 1) + α2MSk(2, 2) (3.59)

M (3, 2) = α2MSk(2, 2) (3.60)

M (3, 3) = α2MSk(2, 2). (3.61)

To finish building M , we need to loop over all of the “side” sub-cells, Sk (k =

1, . . . , Nv), of the cell. The gradient matrix is built similarly.

E Conclusions

In this section, we explained how Source Iteration, Krylov solvers, and Diffusion

Synthetic Acceleration can be used to solve the transport equation. The two spatial

discretizations, BLD and PWLD finite elements, that we will employ in the next

chapters have been presented.
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CHAPTER IV

ANGULAR MULTIGRID PRECONDITIONER FOR SN EQUATIONS WITH

HIGHLY FORWARD-PEAKED SCATTERING KERNEL

A Introduction

The discrete ordinates method has been shown to be quite accurate for electron

and coupled electron-photon transport [64, 69, 113], which is required in the de-

velopment of radiation therapy protocols, satellite electronics shielding, flash x-ray

machine design, and a wide variety of other applications. Charged particles inter-

act through Coulomb interactions with the background medium. Such interactions

predominately result in extremely small changes in particle direction and energy.

These interactions are well characterized by the Fokker-Planck limit of the transport

equation [37, 72]. In this limit, the directional and energy changes are decoupled

with the former modeled by the continuous scattering operator and the latter mod-

eled by the continuous slowing-down operator. In this Chapter, we consider the

discrete-ordinate (Sn) angular discretization of the transport equation with a focus

upon iterative solution methods for problems with highly forward-peaked scattering

characteristic of the Fokker-Planck limit.

When the scattering is highly forward-peaked, solving the Sn transport equa-

tion can be challenging due to the slow convergence of the standard iterative algo-

rithm, Source Iteration (SI). To speed up iterative convergence, acceleration schemes

such as Diffusion Synthetic Acceleration (DSA) are used. With isotropic or weakly

anisotropic scattering, DSA is generally highly effective [19]. This occurs because the

quickly varying error modes are strongly attenuated by the transport sweep, whereas
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the diffusion operator attenuates the slowly varying error modes. However, DSA can

be completely ineffective in the Fokker-Planck limit [71] because the diffusion oper-

ator does not attenuate all the slowly varying error modes.

To address this deficiency, an angular multigrid method for the one-dimensional

Sn equations was developed by Morel and Manteuffel (MM) [71]. This method was

extremely efficient yielding a maximum spectral radius for a model infinite-medium

problem of 0.6 at a cost of approximatively twice that of DSA. This maximum

spectral radius is approached in the Fokker-Planck limit whereas in the same limit,

the spectral radius of DSA approaches one.

Pautz, Adams, and Morel (PAM) [84] generalized the MM method to 2-D, but

it was found to be stable only for weakly forward-peaked scattering. The instability

arose from high-frequency spatial error amplification that occurred in the transfer of

error estimates between angular grids (a sequence of different Sn orders). Stabiliza-

tion was achieved by filtering the error estimates via diffusion operators. However,

this filtering was expensive and significantly degraded the effectiveness of the method

such that the spectral radius approaches one in the Fokker-Planck limit. Nonetheless,

the method was always more efficient than the DSA method for the test problems

considered.

In this Chapter, the PAM method with no filtering (PAMNF) is recast as a pre-

conditioner and used in conjunction with the GMRES Krylov method. In this form,

stability of the iteration scheme is guaranteed. Krylov subspace methods have been

developed to solve large sparse linear systems. Their application to the transport

equation has been extensively studied in the past [45, 79, 83, 116] where the im-

portance of preconditioning was highlighted. In [79], the authors used successfully

the 1D MM angular method as a preconditioner for GMRES and CGS. These pre-

conditioned Krylov methods were significantly faster than MM. In this research, we
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compute the eigenvalues of preconditioned system for a model problem and compare

the spectrum with those of preconditioners based upon transport sweeps and DSA.

It is found that relative to these preconditioners, PAMNF preconditioning moves

the eigenvalues away from zero while leaving them constrained to a reasonably small

portion of the complex plane. These are desirable properties for a preconditioner

because the convergence rate of GMRES is proportional to the size of the eigenvalue

cluster and/or the distance between the clusters [39, 116]. The eigenvalues close

to zero slow down the convergence of GMRES because they can be viewed as single

values that are processed one at the time [39, 116]. We also compare the convergence

rates and efficiency of these preconditioners for various test problems with forward-

peaked scattering. We find that PAMNF preconditioning is significantly more effi-

cient than DSA preconditioning, and becomes increasingly so as the Fokker-Planck

limit is approached. However, unlike the MM method for one-dimensional geome-

tries, the number of iterations required for convergence nonetheless increases as this

limit is approached. In spite of this fact, the PAMNF-preconditioned Krylov method

achieves good efficiency without the costly filtering associated with the original PAM

fixed-point iteration scheme, and appears to be more effective than other existing

algorithms for solving the Sn equations with highly forward-peaked scattering.

One key feature of the angular multigrid method is that transport sweeps can

strongly damp the high frequency error modes (upper half of the flux moments)

with the use of an “optimal” transport correction [71]. This “optimal” transport

correction is a variant of the well-known extended transport correction [63, 67].
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B Iterative schemes for highly forward-peaked scattering

1 Source Iteration and DSA

Equation (1.17) can be solved using the Source Iteration method, which can be

interpreted a Richardson iteration, or a Krylov method. The Source Iteration method

at the kth iteration is given by:

Φ(k+1) = DL−1MΣΦ(k) + DL−1Q. (4.1)

When the scattering ratio c = maxl

(
Σs,l
Σt

)
is close to one, the spectral radius of SI

can become arbitrary close to one and the convergence becomes arbitrary slow. The

SI+DSA scheme is given by a transport sweep:

Φ(k+1/2) = DL−1MΣΦ(k) + DL−1Q, (4.2)

followed by a diffusion synthetic acceleration for the correction:

δΦ(k) = T −1
0 Rn→0

(
Φ(k+1/2) − Φ(k)

)
, (4.3)

yielding the next iterate for the flux moments:

Φ(k+1) = φ(k+1/2) + P 0/1→nδΦ
(k). (4.4)

Finally, using equations (4.2) to (4.4), we obtain:

Φ(k+1) =
(
(I + P 0/1→nT −1

0 Rn→0DL−1MΣ− P 0/1→nT −1
0 Rn→0

)
Φ(k)

+ (I + P 0/1→nT −1
0 Rn→0)DL−1Q.

(4.5)
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where T 0 is the matrix associated with the DSA operator, Rn→0 is the restriction

matrix of Φn (all moments) to Φ0 (only zeroth moment) and P 0/1→n the projection

matrix of Φ0 or Φ1, depending on whether only the zeroth or the zeroth and the first

moment are accelerated, onto Φn. When only the zeroth moment is accelerated, the

scheme is always stable and the spectral radius is max
(
ρiso,

Σs,1
Σt

)
where ρiso is the

spectral radius when the scattering is isotropic. In multidimensional geometry, when

both the zeroth and the first moments are accelerated, the scheme is not always

stable and the spectral radius is given by
(
ρiso,

Σs,1
Σt−Σs,1

)
[20]. For highly forward

peaked scattering, accelerating the zeroth moment is ineffective
(

Σs,1
Σt
→ 1

)
, whereas

accelerating both moments can be unstable
(

Σs,1
Σt−Σs,1

> 1
)

.

C Review of previous angular multigrid work

1 One dimensional geometry: the Morel and Manteuffel (MM) method

As mentioned previously, only the zeroth and the first flux moments can be

accelerated with DSA. To accelerate higher moments, other methods have to be

used. Morel and Manteuffel proposed an angular multigrid method to accelerate the

SI calculation of the one-dimension Sn equations with highly anisotropic scattering

[71]. They used a variation of the extended transport correction [63] to attenuate the

“upper half” of the flux moments (higher angular frequencies) via transport sweeps.

The “lower half” of the flux moments (lower angular frequencies) is accelerated using

a sweep of the Sn/2 equations. These Sn/2 equations are themselves accelerated using

Sn/4 equations. The order of the transport operator is sequentially divided by two

until the S4 level is reached. At this point, the P1 equations are used to accelerate
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the S4 equations. For the general case where n/2i is odd, we need to define:

Half(n) =


n

2
, if

n

2
is even

n

2
+ 1, if

n

2
is odd

(4.6)

Using this definition of “Half” to coarsen the angular grid, the sequence of sweeps

for an S16 base level is (S16 − S8 − S4) and for a S18 base level, the sequence is

(S18 − S10 − S6 − S4). Morel and Manteuffel’s scheme works as follows:

1. Perform a transport sweep for the Sn equations.

2. Perform a transport sweep for the Sn2 equations with a Pn2−1 expansions using

the Sn residual as the inhomogeneous source, where n2 = Half(n).

3. Continue coarsening the angular grid by a factor two (i.e., according to the

definition of “Half”) until a sweep has been performed for the S4 equations.

4. Solve the P1 equations (P1 synthetic acceleration, P1SA) with a P1 expansion

of the S4 residual as the inhomogeneous source.

5. Add the Legendre moments of the P1 solution to the Legendre moments of the

S4 iterate to obtain the accelerated S4 iterate.

6. Continue to add the corrections from each coarse grid to the finer grid above

to obtain the accelerated Sn moments.

Every time a transport sweep is performed, the optimal transport correction needs to

be used [71]. For a Pn−1 expansion of the cross sections, the corrected cross sections

are given by:

Σ∗s,j = Σs,j −
Σs,n/2 + Σs,n−1

2
with j = {t} or {s, l}. (4.7)
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This correction is said to be optimal because for an infinite homogeneous medium,

it minimizes the “high-frequency” angular errors. The smoothing factor is given by:

ρs = max
(
|Σs,n/2|/Σs,0, |Σs,n/2+1|/Σs,0, . . . , |Σs,n−1|/Σs,0

)
. (4.8)

To compare the effectiveness of the angular multigrid method with DSA, Fokker-

Planck scattering cross sections (equation (2.95)) can be used. In one dimensional

geometry, DSA becomes less efficient as Σs,l (0 < l ≤ L) becomes closer to Σs,0.

Therefore, in the limit as L → ∞, DSA no longer accelerates the convergence of SI

for Fokker-Planck scattering (the spectral radius tends to 1.0). However, the spectral

radius of the angular multigrid method has an upper bound of 0.6 when L → ∞.

It can be easily shown by using equation (4.8) and the fact that for Fokker-Planck

scattering cross sections the cross-section moments decrease monotonically:

ρs =
Σ∗s,N/2
Σs,0

=
3N − 6

5N − 6
, (4.9)

which tends to 0.6 when N goes to infinity.

The MM method converges in less iterations than DSA but it is important to

look at the cost of each MM iterations: one sweep in each N directions + one DSA

iteration + one sweep in each (N
2

+ N
4

+ . . .) directions. Since N
2

+ N
4

+ . . . ≤ N , the

cost of one MM iteration is less than: two sweeps in each N directions + one DSA

iteration.

2 Multidimensional geometry: the Pautz-Adams-Morel (PAM) methods

In the multidimensional case, DSA becomes unstable when both the zeroth and

the first flux moments are accelerated and Σs,1
Σt
≥ 0.5, [20]. In [84], the authors

modified the one dimensional angular multigrid method by accelerating only the
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zeroth flux moment with the DSA and by using S2 as lowest transport sweep instead

of S4. Even so, the proposed method (PAMNF, with “NF” for no-filtering) was

unstable and a filter was needed to stabilize the scheme (PAMF). Therefore, the

angular multigrid method was modified as follows [84]:

1. Perform a transport sweep for the Sn equations.

2. Perform a transport sweep for the Sn2 equations with a Pn2 for 2-D problem and

a Pn2+1 for 3-D problem expansion for the Sn residual as the inhomogeneous

source, where n2 = Half(n).

3. Continue coarsening the angular grid by a factor two (i.e., according to the

definition of “Half”) until a sweep has been performed for the S2 equations.

4. Solve the diffusion equation with a P0 expansion for the S2 residual as the

inhomogeneous source.

5. Apply a diffusive filter to the corrections from steps 2 and 3 (without this, the

method is unstable).

6. Add the corrections from steps 4 and 5 to the Legendre moments of the Sn

iterate to obtain the accelerated Sn moments.

The filter stabilizes the method which otherwise would diverge. Without the filtering

process, the low frequency modes are well attenuated but instabilities are introduced

in higher frequency modes. Filtering eliminates the high frequency corrections which

are well attenuated by SI alone but it keeps the low frequency corrections. The filter

is given by:

(
−∇ · βf

3Σf

∇ + Σf

)
fcorr = Σf (Φn2 + Pn4→n2Φn4 + . . .+ P2→n2Φ2) , (4.10)
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where Σf is the filter cross section and βf is the filter tuning parameter. A Fourier

analysis shows that given an input amplitude A, the “diffusively filtered” amplitude

is:

F =
A

1 +
βfλ2

3Σf

. (4.11)

It is clear that the modes with large |λ| (high frequencies) are strongly attenuated

while low-frequency modes are not. However, the filtering process does not prevent

the spectral radius from becoming arbitrary close to one when L becomes large [84].

D Angular multigrid as preconditioner for Krylov Solvers

In this research, we propose to abandon SI as the solver for the Sn equations

with highly-forward peaked scattering and to use a Krylov solver instead. The DSA-

preconditioned system of equations solved with a Krylov method is:

(
(I + P 0/1→nT −1

0 Rn→0)(I −DL−1MΣ)
)
φ =

(I + P 0/1→nT −1
0 Rn→0)DL−1Q. (4.12)

The angular multigrid scheme can also be recast to be used by a Krylov solver.

Here, we have chosen to recast the PAM method without filtering (PAMNF) as a

preconditioner for a Krylov solver. The successive corrections of the angular multi-

grid acceleration form different stages of a preconditioner used in the Krylov solver.

Two variations of the PAMNF preconditioner will be tested:

• the coarsest level is DSA (ANMG-DSA) (with the coarsest Sn level being S2).

• the coarsest level is P1SA (ANMG-P1SA) (with the coarsest Sn level being

S4).
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First, we present the angular multigrid using DSA and then, the angular multigrid

using P1SA. Later, these two versions are compared.

1 ANMG-DSA

Using a method similar to the one we used to write the equation for the precon-

ditioned Krylov solver, we recast the PAMNF for SI as a preconditioner for a Krylov

solver. First, we write the SI sweep equation, the successive corrections and the new

iterate built from the sweep values plus all the successive corrections:

Φ(k+1/2)
n = DnL

−1
n MnΣnΦ(k)

n + DnL
−1
n Q (4.13)

δΦ(k)
n2

= DnL
−1
n2
Mn2Σn2Rn→n2

(
Φ(k+1/2)
n − Φ(k)

n

)
(4.14)

. . . (4.15)

δΦ
(k)
2 = D2L

−1
2 M 2Σ2R4→2δΦ4 (4.16)

δΦ
(k)
0 = T −1

0 R2→0δΦ
(k)
2 (4.17)

Φ(k+1)
n = Φ(k+1/2)

n + P n2→nδΦ
(k)
n2

+ . . .+ P 2→nδΦ
(k)
2 + P 0→nδΦ

(k)
0 . (4.18)

Now, all the corrections δΦ
(k)
0 through δΦk

n2
are substituted into the moment update

equation, equation (4.18), yielding:

Φ(k+1)
n =T nΦ(k)

n + DnL
−1
n Q+ P n2→n

(
T n2Rn→n2

(
Φ(k+1/2)
n − Φ(k)

n

))
+ . . .

+ P 2→nT 2R4→2δΦ
(k)
4 + P 0→nT −1

0 R2→0δΦ
(k)
2

=T nΦ(k)
n + DnL

−1
n Q+ P n2→n

(
T n2Rn→n2

(
T nΦ(k)

n + DnL
−1
n Q

−Φ(k)
n

))
+ . . .+ P 2→nT 2R4→2

(
T 4R8→4

(
. . .
(
T nφ

(k)
n + DnL

−1
n Q

−Φ(k)
n

)))
+ P 0→nT −1

0 R2→0

(
T 2R4→2

(
. . .
(
TNΦ(k)

n + DnL
−1
n Q

−Φ(k)
n

)))
,

(4.19)
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where we defined T n = DnL
−1
n MnΣn (the subscript n denotes the Sn level). Thus,

we obtain:

Φ(k+1)
n = (T n + P n2→nT n2Rn→n2(T n − I) + . . .+ P 2→nT 2R4→2

(T 4R8→4 (. . . (T n − I))) + P 0→nT −1
0 R2→0R2→0

(T 2R4→2 (. . . (T n − I)))) Φ(k)
n + (I + P n2→nT n2Rn→n2 + . . .+

P 2→nT 2R4→2 (T 4R8→4 (. . . (T n2Rn→n2))) +

P 0→nT −1
0 R2→0 (T 2R4→2 (. . . (T n2Rn→n2)))

)
DnL

−1Q.

(4.20)

Finally, the linear system to be solved is given by:

(I − T n)PMG/DSAξn = DnL
−1
n Q, (4.21)

PMG/DSAΦn = ξn, (4.22)

where the multigrid preconditioner PMG/DSA is:

PMG/DSA =
(
I + P n2→nT n2

(
I + P n4→n2T n4

(
. . .
(
I + P 0→2T −1

0 R2→0

)
. . .)Rn2→n4)Rn→n2) . (4.23)

At this point, it is necessary to choose a DSA for implementation. Various DSA

schemes have been reviewed in [19, 20, 21, 110, 111, 115]. We have chosen to employ

the Modified Interior Penalty (MIP) DSA scheme developed by Wang and Ragusa

[105] (see next Chapter). The MIP-DSA scheme is based on a discretization of

the diffusion equation rather than the P1 equations. More specifically, MIP uses a

bilinear discontinuous trial space, which is the same trial space as the one used for

the Sn transport equations. However, the MIP equations are not fully consistent

69



with the bilinear-discontinuous spatial discretization of the transport equation. Full

consistency requires discretization of the P1 equations. The consistency discretized

P1 equations are of a non-symmetric mixed form. The MIP-based DSA algorithm

is always stable for isotropic scattering and the MIP diffusion matrix is symmetric

positive definite (SPD), which makes it much easier to invert than the mixed P1SA

equation. For instance, one can use a conjugate gradient technique, preconditioned

with SSOR to solve the MIP equation.

2 ANMG-P1SA

Using S4 as the lowest Sn order followed by a P1SA acceleration (instead S2

followed by DSA) in equations (4.21) and (4.22) yields the following linear system:

(I − T n)PMG/P1SAξn = DnL
−1
n Q (4.24a)

PMG/P1SAφn = ξn (4.24b)

where the multigrid preconditioner PMG/P1SA is now given by:

PMG/P1SA =
(
I + P n2→nT n2

(
I + P n4→n2T n4

(
. . .
(
I + P 1→4T −1

1 R4→1

)
. . .)Rn2→n4)Rn→n2) , (4.25)

where T 1 is the matrix associated to the P1SA operator. The P1SA discretization

used here is the P1C method, defined in [104, 106]. This P1SA preconditioner is

positive definite (PD), but not symmetric. In principle, the analytic P1 equations

can be put in a second-order diffusion form and discretized using the MIP approach.

However, the first moment of the angular flux will be treated with less accuracy than

the zeroth moment, which is undesirable.
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E Eigenspectrum comparisons

In this section, we compare the eigenvalue spectrum for a given model prob-

lem. This is instructive because the convergence of GMRES is proportional to the

relative radii of the eigenvalue clusters and/or the maximal distance between two

clusters; furthermore, the eigenvalues close to zero are considered as outliers that

are processed one at a time and increase the asymptotic error constant [39]. We

use a S8 Gauss-Legendre-Chebyshev Galerkin triangular quadrature. The domain,

a 5cm−side square uniformly discretized using by 25 cells, is homogeneous. Fokker-

Planck cross sections, with α = 1 and L = 8, are employed. For the spatial discretiza-

tion, BiLinear Discontinuous (BLD) finite elements are used (see next Chapter). Σt

is chosen to be equal to Σs,0. Figs. IV.1-IV.3 show the eigenvalue spectrum for sweep

preconditioning (Fig. IV.1), DSA preconditioning (Fig. IV.2), and angular multi-

grid preconditioning (Fig. IV.3). The eigenvalues were obtained using implicit QR

decomposition [47]. Even though the global matrices are never formed in transport

solution techniques, we constructed them here for the purposes of the eigenspectrum

analysis (specifically, the jth column of any matrix A is obtained by multiplying it

by the canonical basis vector ej).

Figure IV.1: Eigenspectrum of the sweep preconditioned system
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Figure IV.2: Eigenspectrum of the DSA preconditioned system

Figure IV.3: Eigenspectrum of the ANMG (DSA variant) preconditioned system

On these figures, we can note that sweep preconditioning is not effective as many

eigenvalues are located near zero. DSA moves the eigenvalues away from zero. This

explains the faster convergence of GMRES with DSA preconditioning compared to

sweep preconditioning. ANMG moves the eigenvalues even further aways from zero

than DSA and clusters them more compared to DSA. It is obvious from these figures

that ANMG preconditioning should converge much faster than DSA preconditioning.

From Figures IV.2 and IV.3, it may seem that a preconditioned (DSA or unfiltered

ANMG) SI approach would be convergent (the eigenvalues are in ]0, 2[ and, thus, the
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spectral radius of the SI schemes would be less than one). In [86], it was shown that

the unfiltered angular multigrid was unstable if the size of the cell was small enough

(less than 0.1 transport mean-free-path) which was not the case here. Moreover,

because of leakage in this test, convergence is improved. In the next section, we will

further verify that wrapping a Krylov solver around the unfiltered ANMG results in

an efficient scheme.

F Results

In this section, we first compare the number of GMRES iterations needed by

ANMG-DSA and ANMG-P1SA to solve a model problem. Then, both the number

of GMRES iterations and the elapsed time are compared for three methods:

• Sweep preconditioning (S).

• DSA preconditioning (DSA).

• Angular multigrid (DSA variant) preconditioning (ANMG-DSA).

For every test in this section except the first one, BLD finite elements are used and

GMRES is restarted every 30 iterations. For the comparison between ANMG-DSA

and ANMG-P1SA GMRES is restarted every 20 iterations.

1 Comparison between ANMG-DSA and ANMG-P1SA

The test uses a 5cm square domain, uniformly discretized using 50×50 cells. The

homogeneous medium is homogeneous with a uniform isotropic source of intensity

10n/(cm3s) and Fokker-Planck cross sections with α = 1. Σt is chosen to be equal to

Σs,0. The quadrature is the Gauss-Legendre-Chebyshev triangular Galerkin quadra-

ture. The GMRES solver is converged to a relative tolerance,
(

‖residual‖2
‖right hand side‖2

)
, of

10−5. P1SA is solved using BiCGSTAB with a relative tolerance of 10−7. DSA is
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solved with CG preconditioned by an algebraic multigrid technique [35, 38] with a

relative tolerance of 10−7. The number of GMRES iterations needed to solve ANMG-

DSA (multigrid preconditioner with S2 as coarsest transport level and diffusion solve)

and ANMG-P1SA (multigrid preconditioner with S4 as coarsest transport level and

P1SA solve) are compared (see Table IV.1). The comparison is performed for S4, S8

and S16 (for which the values of the anisotropy order L are 4, 8, 16, respectively).

Table IV.1: Comparison of the number of GMRES iterations needed in ANMG-DSA
and ANMG-P1SA

ANMG-DSA ANMG-P1SA

S4 21 19

S8 29 38

S16 54 85

From Table IV.1, it can be seen that ANMG-DSA outperforms ANMG-P1SA

except for S4. When the anisotropy of the problem increases, the advantage of

ANMG-DSA over ANMG-P1SA increases. Furthermore, we note that the P1SA

equations are more difficult to solve (PD but non symmetric system) than the DSA

equations (which are SPD). For these reasons, we recommend using the ANMG-DSA

variant of the angular multigrid technique. Consequently, only the ANMG-DSA

method will be employed in the later tests.

2 Test Case with a Volumetric Source

In this test, we compare ANMG-DSA to Sweep and DSA preconditioning. A

uniform isotropic source of intensity 10 n/(cm3s) was used. S4, S8, S16, and S32

calculations were performed. Fokker-Planck cross sections with α = 1 are used

and Σt = Σs,0 (c = 1). The domain is homogeneous and its size is 5cm × 5cm
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discretized by 50 × 50 cells. The thickness of the domain varies from 50 to 2690

mean free path (the total cross section varies with L for Fokker-Planck cross sections:

Σt,S4 = 10cm−1,Σt,S8 = 36cm−1,Σt,S16 = 136cm−1,Σt,S32 = 528cm−1) but stays

constant at five transport mean free path. The relative tolerance on GMRES, which

is restarted every 30 iterations, is 10−6 whereas the relative convergence on DSA,

solved by AGMG (see next Chapter), is 10−8. The solution for S32 calculation is

given on Figure IV.4

Figure IV.4: Scalar flux for the S32 calculation on a homogeneous medium
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Table IV.2: Comparison of the number of GMRES iterations needed to solve the
volumetric source test problem when c = 1 using sweep preconditioning (S), DSA
preconditioning, and ANMG-DSA preconditioning on a homogeneous medium

S DSA ANMG-DSA ANMG-DSA
DSA

S4 85 42 27 0.64

S8 409 102 50 0.49

S16 1526 266 105 0.39

S32 4540 616 225 0.36

Table IV.3: Elapsed time (s) to solve the volumetric source test problem when c = 1
using sweep preconditioning (S), DSA preconditioning, and ANMG-DSA precondi-
tioning on a homogeneous medium

S DSA ANMG-DSA ANMG-DSA
SA

S4 9.09322 6.51608 5.22796 0.80

S8 184.949 52.65 32.7609 0.62

S16 4275.82 740.193 355.939 0.48

S32 138819 17907.9 7357.63 0.41

In Table IV.2, one can note that ANMG-DSA always requires the least num-

ber of iterations to converge. ANMG is the fastest method (Table IV.3). It took

38 hours to solve the S32 problem with sweep preconditioning but only 2 hours

when ANMG-DSA was used. As the anisotropy order is increased (i.e., increas-

ing values of L as a function of the number of directions in the Fokker-Planck

cross-section representation), the advantage of ANMG-DSA is clear. The ratio(
number of GMRES iterations for ANMG-DSA

number of GMRES iterations for DSA

)
and the ratio of elapsed times between the DSA

and the ANMG-DSA techniques decrease monotonically. We note from these results
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that ANMG-DSA becomes increasingly superior to the standard DSA as the number

of directions becomes larger. The time spent performing the diffusion solve DSA is

negligible (≤ 1% for S16 and S32 calculations) and is the same for DSA and ANMG-

DSA for a given number of CG iterations. We tried to run a problem with a S64 GLC

Galerkin quadrature but unfortunately we could not. The reason is that the func-

tion that allocates the memory for GMRES in Trilinos receives the number of bytes

to be allocated through an unsigned int and, therefore, the maximum size of the

problem per processor is: (number of unknowns+2) × (size of the Krylov space+1)

× 8 ≤ 4294967295. The number of 8 is because double are coded using 8 bytes and

4294967295 is the largest number of representable by an unsigned int. With S64 this

problem requires 5158400496 bytes. This number is about 20% larger than what is

allowed in Trilinos implementation. Moreover, in the function allocating the mem-

ory, the unsigned int is cast on a int before the allocation is done reducing the size

of the largest problem by two. To run the S64 problem, GMRES can be restarted

more often but this leads to a very slow convergence.

3 Test Case with a Volumetric Source with finer mesh cell sizes

The domain is a 6cm−side square discretized by 600× 600 cells. The quadrature

used is a S4 GLC Galerkin quadrature. There is a uniform source of intensity 10

n/(cm3s). Fokker-Planck cross sections are used with α = 1 and Σt = Σs,0 (c =

1). In Table IV.4, we compare the number of GMRES iterations used by Sweep

preconditioning, DSA preconditioning, angular multigrid preconditioning. In Table

IV.5, the time needed to solve this problem is compared.
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Table IV.4: Comparison of the number of GMRES iterations needed to solve a
problem whose infinity medium version is unstable for ANMG-DSA with SI

S DSA ANMG-DSA

101 47 29

Table IV.5: Elapsed time (s) to solve a problem whose infinity medium version is
unstable for ANMG-DSA with SI

S DSA ANMG-DSA

2767.87 1730.73 1314.07

We note that ANMG-DSA requires fewer iterations and less time than DSA

which itself requires fewer iterations and less time than Sweep preconditioning. Using

ANMG-DSA within GMRES is more efficient than DSA within GMRES, contrarily

to what happens when SI is used. According to [86], if the medium is infinite,

the spectral radius of the unfiltered ANMG method with SI, for such a test with

fine mesh cells sizes, is 2.11. Because of leakage, unfiltered ANMG with SI would

probably be convergent for this test but it should be less efficient than SI+DSA.

The fact that ANMG-DSA with GMRES requires fewer iterations than DSA with

GMRES is an indication that ANMG-DSA with GMRES is probably stable even if

there is no leakage.

4 Test Case with a Heterogeneous Medium (Beam problem)

In this test, we apply a boundary source of intensity 10 n/(cm2s) to the entire

left side of the domain y ∈ [0cm, 5cm]. The top, the bottom, and the right boundary

conditions are vacuum. The beam intensity is only non-zero in the most-normal

directions of the quadrature. An S16 Galerkin Gauss-Legendre-Chebyshev quadra-
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ture is used. The domain is discretized using 50 × 50 cells and is composed of two

materials:

Material 1: for x ∈ [0cm, 3cm], Fokker-Planck cross section is used with α = 0.099,

Σt = 13.6cm−1, c = 0.99

Material 2: for x ∈ [3cm, 5cm], Fokker-Planck cross section is used with α = 9.999,

Σt = 1360cm−1, c = 0.99

Like previously, the relative tolerance on GMRES, which is restarted every 30 itera-

tions, is 10−6 and the relative tolerance on DSA is 10−8.

Figure IV.5: Scalar flux for the S32 calculation on a heterogeneous medium

The number of GMRES iterations and the elapsed time are given in Table IV.6

and Table IV.7.
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Table IV.6: GMRES iterations to solve the heterogeneous problem using sweep pre-
conditioning (S), DSA preconditioning, and ANMG-DSA preconditioning on a het-
erogeneous medium

S DSA ANMG-DSA

5001 283 96

Table IV.7: Elapsed time (s) to solve the heterogeneous problem using sweep pre-
conditioning (S), DSA preconditioning, and ANMG-DSA preconditioning on a het-
erogeneous medium

S DSA ANMG-DSA

13642.8 897.072 394.965

We can see that even for a heterogeneous problem the angular multigrid is the

most effective. If we compare Table IV.2 when the S16 quadrature is used with

Table IV.6, we see that the number of iterations needed with DSA and ANMG-DSA

preconditioning are quite similar. Sweep preconditioning, however, requires more

iterations for the heterogeneous case because Material 2 is much thicker. We notice

the same behavior when comparing Table IV.3 and Table IV.7 for CPU times.

G Conclusions

ANMG-DSA preconditioning is much more efficient than DSA preconditioning

when the scattering kernel is highly forward peaked. Unlike MM, the number of

iterations needed to solve a problem with ANMG-DSA does not saturate as the

anisotropy increases. However, whereas the extra work due to the additional sweeps

for MM is at most equivalent to the work done during the sweeps of a standard

iteration, the extra work for ANMG-DSA is at most a sweep on n2

6
+ n different

directions. This number must be compared to the n2

2
+ n directions of a standard
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iteration. Thus, ANMG-DSA becomes cheaper compared to standard iteration as

the anisotropy order increases.
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CHAPTER V

MODIFIED INTERIOR PENALTY ON ARBITRARY POLYGONAL CELLS

A Introduction

In Chapter IV, we noted that at the coarsest level of ANMG a Diffusion Synthetic

Acceleration needs to be solved. Because analytical and closed form solutions are

unavailable for most radiation transport problems of practical interest, one typically

employs iterative techniques to solve the large system of equations that results from

the spatial and angular discretization of the transport equation. Standard iterative

techniques for the first-order form of the discrete-ordinate (Sn) transport equation

include the Source Iteration (SI) technique and Krylov subspace algorithms (usually

GMRes). For highly diffusive materials (i.e., with scattering ratios c = Σs/Σt close

to 1) and optically thick configurations (i.e., not leakage dominated), these iterative

techniques can become quite ineffective, requiring high iteration counts and possibly

leading to false convergence. However, SI and GMRes-based transport solves can be

accelerated (preconditioned) with DSA approaches [19, 60, 61, 109, 105, 115].

It is well established that the spatial discretization of the DSA equations must be

somewhat “consistent” with the one used for the Sn transport equations to yield un-

conditionally stable and efficient DSA schemes ([19, 60, 61, 109, 105, 115]). However,

consistency between the discretized transport equations and the discretized diffusion

may not be computationally practical (especially for unstructured arbitrary meshes,

[19]). For instance, Warsa, Wareing, and Morel [115] derived a fully consistent DSA

scheme for linear discontinuous finite elements on unstructured tetrahedral meshes;

their DSA scheme yielded in a P1 system of equations which was found to be compu-
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tationally more expensive than partially consistent DSA schemes that are based upon

discretizations of a standard diffusion equation. Some partially consistent schemes

have been analyzed for linear discontinuous finite element (DFE) discretizations of

the transport equation on unstructured meshes, for instance, the modified-four-step

(M4S) scheme [60], the Wareing-Larsen-Adams (WLA) scheme [109, 32], and the

Modified Interior Penalty (MIP) scheme [105].

We will come back to DSA later but first, we want to point the usefulness of us-

ing polygonal or polyhedral cells. Such cell types may present some advantages over

traditional cells types (simplices, hexahedra) and have found some applications in

radiation transport [25, 95, 114]. Meshing tools such as MSTK [16] and the Compu-

tational Geometry Algorithms Library [15] may be employed to process polyhedral

meshes. The radiation transport code PDT and the CFD codes Fluent [5, 14] and

OpenFOAM [17] offer polyhedral mesh and solver capabilities.

The following features of polygonal and polyhedral cells are noteworthy:

• Reduced number of unknowns per cell. To illustrate this, we assume one un-

known per vertex in every cell, which is standard for transport discretizations

that perform well in the thick diffusive regime. In the 2D hexagonal exam-

ple of Figure V.1, the number of unknowns would be six (one unknown per

vertex). Using triangular cells, the same hexagon would have to be split into

four triangles at least (thus 12 unknowns) or possibly six triangles to preserve

symmetry (thus 18 unknowns in that case). Similarly, using quadrilateral cells,

the hexagon would be bisected into two quadrilaterals at least (8 unknowns),

but divisions into three or four quadrilaterals are also possible (thus, 12 or 16

unknowns).
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Figure V.1: Discretization using hexagonal cell versus triangle cells

• Transition elements and Adaptive Mesh Refinement. Solvers based on arbitrary

polyhedral cells can easily handle cells with various numbers of edges (2D) and

faces (3D). This can be particularly useful for simulations with Adaptive Mesh

Refinement (AMR) [30, 51, 108], without having to deal with the implemen-

tation of data structures to handle hanging nodes [23, 94, 117]. On Figure

V.2, the left cell is a degenerate pentagon whereas the two cells on the right

are quadrilaterals. A similar illustration can be made for 3D hexahedral AMR

meshes: suppose a cell is connect to four cells through one of its faces, such

a cell can be thought of as a 9-face polyhedron. Thus, a method based on a

piecewise linear discretization can handle locally adapted meshes without any

special treatment or further approximation of the coupling between cells.

Figure V.2: Example of AMR mesh

Several discretization methods haven been developed for arbitrary polygonal meshes

[25, 26, 27, 42, 58, 70, 80, 81, 95, 102, 114]. In this work, we focus on the PWLD

discretization [25, 95]. This discretization can be applied for any polygonal cells and

the integrals generated by this discretization can be easily computed analytically.
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As of today, a lot of the ongoing effort to develop a DSA scheme on polyg-

onal/polyhedral cells focuses on adapting the WLA scheme on polygonal meshes

[32, 114]. The WLA scheme is a two-stage process, where first a diffusion solution

is obtained using a continuous finite element discretization and then a discontinuous

update is performed cell-by-cell in order to provide an appropriate discontinuous

scalar flux correction to the DFE transport solver. In [115], the WLA scheme was

found to be a stable and effective DSA technique, though its efficiency degraded

as the problem became more optically thick and highly diffusive. To the author’s

best knowledge, no work is currently done to adapt the M4S technique to polygo-

nal/polyhedral meshes. This is probably due to the fact that, even though the scheme

is effective in one-dimensional slab and two-dimensional rectangular geometries, it

was found to be divergent as an accelerator for SI in three-dimensional tetrahedral

meshes with linear discontinuous elements. Furthermore, the scheme does not yield

a Symmetric Positive Definite (SPD) matrix. In this paper, we present an extension

of the MIP technique to the PWLD discretization techniques for for arbitrary polyg-

onal/polyhedral meshes. The MIP scheme is based on the standard Interior Penalty

(IP) for the discontinuous discretization of diffusion equations. MIP was first de-

rived in [105], where it was applied to triangular unstructured meshes (with locally

adapted cells). MIP did not suffer the same degradation of efficiency than WLA

when the problem becomes optically thick and highly diffusive and it is therefore an

interesting alternative to WLA. MIP uses the same discontinuous trial spaces as the

transport finite element discretization. Because MIP produces SPD equations, it has

been solved using conjugate gradient (CG) preconditioned by a symmetric successive

over-relaxation method (SSOR) in [105]. Here, the effectiveness of algebraic multi-

grid methods (AMG) to precondition diffusion solver [38, 103] will be tested and

compared with CG+SSOR. Algebraic multigrid methods allow the use of multigrid
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techniques when no grid information is available or when the grid is unstructured.

Instead of using a succession of grids based on the geometry of the problems, the

“grid levels” are based on properties of the matrix.

B Modified Interior Penalty on arbitrary polygonal cells

First, let us recall the derivation of MIP (see [105]). MIP is based on the Interior

Penalty (IP) form of the diffusion equation [53, 105] (weakly imposed boundary

conditions are applied to each grid cell and the test functions are averaged over

cells). The continuous equations are :

−∇D∇φ0 + Σaφ0 = Q0 for r ∈ D, (5.1)

1

4
φ0 −

1

2
D∇φ0 = 0 for r ∈ ∂Dd, (5.2)

−D∂nφ0 = J inc for r ∈ ∂Dr, (5.3)

where φ0 is the scalar flux and D is the diffusion coefficient. Applying the IP tech-

nique, we obtain:

bIP (φ0, φ
∗
0) = lIP (φ∗0), (5.4)

bIP (φ0, φ
∗
0) = (Σaφ0, φ

∗
0)D + (D∇φ0,∇φ∗0)D +

(
κIPe Jφ0K, Jφ∗0K

)
Eih

+ (Jφ0K, {{D∂nφ∗0}})Eih + ({{D∂nφ0}}, Jφ∗0K)Eih +
(
κIPe φ0, φ

∗
0

)
∂Dd

− 1

2
(φ0,D∂n, φ

∗
0)∂Dd −

1

2
(D∂nφ0, φ0)∂Dd ,

(5.5)

and:

lIP (φ∗0) = (Q0, φ
∗
0)D +

(
J inc, φ∗0

)
∂Dr , (5.6)

where φ0 and φ∗0 ∈ W h
D where the finite dimensional polynomial space is W h

D = {φ0 ∈

L2(D);φ0|K ∈ Vp(K),∀K ∈ Th} where Vp(K) is the space of polynomials of degree

up to p on element K, (f, g)D =
∑

K∈Th (f, g)K , (f, g)K =
∫
K
fg dr, (f, g)Eih =
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∑
e∈Eih

(f, g)e, (f, g)e =
∫
e
fg ds, Q0 = Σs,0δφ0, J inc =

∑
Ωm·nb>0wm|Ωm · nb|δψm,

Th is the mesh used to discretize the spatial domain D into nonoverlapping elements

K, Ei
h is the set of interior edges, ∂Dd is the boundary of the domain with Dirichlet

condition, ∂Dr is the boundary of the domain with reflective condition, Σa is the

absorption cross section, D is the diffusion coefficient, nb is the outward normal unit

vector, ∂n = ne ·∇ where ne is the normal unit vector associated with a given edge

e (on the boundary ne = nb), Jφ0K = φ+
0 − φ−0 is the jump of φ0 at the interface

between two elements, {{φ0}} =
φ+0 +φ−0

2
is the mean of φ at the interface between two

elements, φ±0 = lims→0± φ0(r+sne), Q0 represents the volumetric source term due to

the successive error in the scattering term, and J inc is the incoming partial current.

The penalty parameter κIPe is given by:

κIPe =


c (p+)

2

D+

h+
⊥

+
c (p−)

2

D−

h−⊥
on interior edges, i.e., e ∈ Ei

h

c(p)
D

h⊥
on boundary edges, i.e., e ∈ ∂Dd

(5.7)

where c(p) is given by c(p) = 2p(p + 1), p is the polynomial order (p = 1 in this

research) and h⊥ is the length of the cell in the direction orthogonal to the edge e.

On triangular cells, h⊥ equals 2A
Le

where A is the area of the triangle and Le is the

length of the edge e.

This discretization of DSA is SPD. Unfortunately, the authors in [105] found that

IP yields unstable DSA scheme when the cells are large compared to the mean free

path. This phenomenon is due to the fact that in optically thick medium, the ratios

D±

h±
are very small. Therefore, the penalty coefficient is small and the method is

unstable.

This led the authors of [105] to develop another discretization of DSA: the Diffusion

Conforming Form (DCF). This discretization starts from the one-group Sn transport
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equation with isotropic source and scattering:

Ωd ·∇ψd(r) + Σt(r)ψd =
1

4π
Σs(r)φ0(r) +

1

4π
Q(r). (5.8)

The variational form of this equation is:

b(ψ, ψ∗) = l(ψ∗), (5.9)

with:

b(ψ, ψ∗) = a(ψ, ψ∗)−
∑
e∈∂Dr

∑
Ωd·nb<0

4πwm 〈ψd′ , ψ∗d〉e − (Σsφ0, φ
∗
0)D , (5.10)

a(ψ, ψ∗) =
M∑
d=1

4πwd ((Ωd ·∇ + Σt)ψd, ψ
∗
d)D +

M∑
d=1

4πwd
〈
JψmK, ψ∗,+m

〉
Eih

+
∑
e∈∂Dr

∑
Ωd·nb<0

4π 〈ψd, ψ∗d〉e ,
(5.11)

l(ψ∗) = (Q, φ∗)D +
∑
e∈∂Dd

∑
Ωd·nb<0

4πwm
〈
ψincm , ψ∗m

〉
e
, (5.12)

where 〈f, g, 〉e =
∫
e
|Ωd·ne|fg ds, 〈f, g〉Eih =

∑
e∈Eih
〈f, g〉e, and ψ and ψ∗ ∈ W h

D where

the finite dimensional polynomial space is W h
D = {ψ ∈ L2(D);ψ|K ∈ Vp(K),∀K ∈

Th} with Vp(K) is the space of polynomials of degree up to p on element K, (f, g)D =∑
K∈Th (f, g)K .

The operator a consists of the streaming term, the interaction term and the upwind

terms. This is the operator that is inverted during a transport sweep. The operator b

contains a, the scattering term and the reflective boundary conditions. This operator

is inverted upon convergence of SI or the Krylov solver.
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The discretized SI at iteration ` can be written as:

a(ψ(`+1/2), ψ∗) = l(ψ∗) + (Σsφ
(`)
0 , φ∗0)D +

∑
e∈Dr

∑
Ωd·nb<0

4πwd

〈
ψ

(`)
d′ , ψ

∗
d

〉
e
, (5.13)

φ(`) =
M∑
d=1

wdψ
(`)
d . (5.14)

If we note the converged angular and scalar fluxes ψc and φc0, we get:

a(ψc, ψ∗) = l(ψ∗) + (Σsφ
c
0, φ
∗
0)D +

∑
e∈Dr

∑
Ωd·nb<0

4πwd 〈ψcd′ , ψ∗d〉e , (5.15)

φc0 =
M∑
d=1

wdψ
c
d. (5.16)

Subtracting equations (5.13) and (5.14) from equations (5.15) and (5.16) respectively,

we obtain an angular error equation:

a(ε(`+1/2), ψ∗) =
(
ΣsE (`), φ∗0

)
D +

∑
e∈∂Dr

∑
Ωd·nb<0

4πwd

〈
ε

(`)
d′ , ψ

∗
m

〉
e

(5.17)

and:

E (`) =
M∑
d=1

wdε
(`)
d , (5.18)

where the angular error and the scalar error are given by:

ε(`) = ψc − ψ(`), (5.19)

E (`) = φc0 − φ
(`)
0 . (5.20)

It is important to note that the linear form l has disappeared from equation (5.17) and

thus, the external volumetric source and the incident Dirichlet boundary conditions
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have disappeared. We now introduce:

δψ(`) = ψ(`+1/2) − ψ(`) = ε(`) − ε(l+1/2), (5.21)

δφ
(`)
0 = φ

(`+1/2)
0 − φ(`)

0 = E (`) − E (`+1/2). (5.22)

Finally, we get the final form of the transport equation for the error:

b(ε(`+1/2), ψ∗) =
(

Σsδφ
(`)
0 , φ∗0

)
D

+
∑
e∈∂Dr

∑
Ωd·nb<0

4πwd

〈
δψ

(`)
d′ , ψ

∗
d

〉
e
. (5.23)

Note that solving equation (5.23) would give the exact correction needed to obtain

the converged transport solution:

ψc = ψ(`+1/2) + ε(`+1/2), (5.24)

φc0 = φ
(`+1/2)
0 + E (`+1/2), (5.25)

but solving equation (5.23) is as difficult as solving our original transport equation.

Therefore, we will replace the transport operator in equation (5.23) by a diffusion

operator instead. The solution of this diffusion operator will be denoted by a˜symbol:

ψ(`+1) = ψ(`+1/2) + ε̃(`+1/2), (5.26)

φ
(`+1)
0 = φ

(`+1/2)
0 + Ẽ (`+1/2). (5.27)

In the remainder of this section, to simplify the notation and the comparison between

the final result of the development and equations (5.4) to (5.6), we use φ0 instead of

Ẽ (`+1/2). If we assume that the primal and dual angular fluxes are linearly anisotropic
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(diffusion approximation) and we assume Fick’s law to be valid:

J = −D∇φ0, (5.28)

J∗ = D∇φ∗0, (5.29)

we then obtain:

ε̃(`+1/2) =
1

4π
(φ0 − 3D∇φ0 ·Ωd), (5.30)

ψ̃∗d =
1

4π
(φ∗0 + 3DΩφ∗0 ·Ωd). (5.31)

Substituting equations (5.30) and (5.31) in equation (5.23), we obtain a discontinuous

finite elements DSA operator in which the scalar flux φ0 is the only unknown. Using:

M∑
d=1

wd = 4π, (5.32)

M∑
d=1

wdΩd = 0, (5.33)

M∑
d=1

wdΩd ·Ωd =
4π

3
I, (5.34)

we obtain:

M∑
d=1

4πwd

(
Σtε̃

(`+1/2)
d , ψ̃∗d

)
D

= (Σtφ0, φ
∗
0)D − (3ΣtD∇φ0,D∇φ∗0)D , (5.35)

(
ΣsẼ (`+1/2), φ̃∗

)
D

= (Σsφ0, φ
∗
0)D . (5.36)

If we define:

D =
1

3Σt

, (5.37)
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we get:

M∑
d=1

4πwd

(
Σtε̃

(`+1/2)
d , ψ̃∗d

)
D

+
(

ΣsẼ (`+1/2), φ̃∗
)
D

= (Σaφ0, φ
∗
0)D−

(∇φ0,D∇φ∗0)D .

(5.38)

Now, we analyze the streaming term:

M∑
d=1

4πwd

(
Ωd ·∇ε̃

(`+1/2)
d , ψ̃∗d

)
D

= (∇φ0,D∇φ∗0)D − (∇ ·D∇φ0, φ
∗
0)D

= (∇φ0,D∇φ∗0)D − (∇ ·∇φ0, φ
∗
0)D

= (∇φ0,D∇φ∗0)D + (D∇φ0,∇φ∗0)D

+
(
D∇φ+

0 · ne, φ
∗,+
0

)
Eih

−
(
D∇φ−0 · ne, φ

∗,−
0

)
Eih

− (D∇φ0 · ne, φ
∗
0)∂D ,

(5.39)

where integration by part was performed and we used:

M∑
d=1

wdΩd ·Ωd ·Ωd = 0. (5.40)
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Manipulating the interior edge terms give successively :

M∑
d=1

4πwd

〈
Jε̃(`+1/2)
d K, ψ̃∗,+d

〉
Eih

=
∑
e∈Eih

M∑
d=1

4πwd|Ωd · ne|
(
Jε̃(`+1/2)
m K, ψ̃∗,+d

)
e

=
∑
e∈Eih

( ∑
Ωd·ne>0

wd
4π
|Ωd · ne|

(
Jφ0K− 3

JD∇φ0K ·Ωd, φ
∗,+
0 + 3D∇φ∗+0 ·Ωd

)
e
−∑

Ωd·ne<0

wd
4π
|Ωd · ne|

(
Jφ0K− 3JD∇φ0K ·Ωd,

φ∗,−0 + 3D∇φ∗,−0 ·Ωd

)
e

)

=
∑
e∈Eih

∑
Ωd·ne>0

wd
4π
|Ωd · ne| ((Jφ0K− 3JD∇φ0K·

Ωd, φ
∗,+
0 + 3D∇φ∗,+0 ·Ωd

)
e
− (Jφ0K + 3

JD∇φ0K ·Ωd, φ
∗,−
0 − 3D∇φ∗,−0 ·Ωd

)
e

)
=

1

4
(Jφ0K, Jφ∗0K)Eih + (Jφ0K, {{D∇φ∗0 · n}})Eih

− (JD∇φ0 · nK, {{φ∗0}})Eih −
9

16
(JD∇φ0K,

JD∇φ∗0K)Eih −
9

16
(JD∇φ0 · nK,

JD∇φ∗0 · nK)Eih ,

(5.41)

where we employed the following properties of the angular quadrature:

∑
Ωd·n>0

wd|Ωd · n| ≈ π, (5.42)

∑
Ωd·n>0

wd|Ωd · n|Ωd ≈
2π

3
n, (5.43)

∑
Ωd·n>0

wd|Ωd · n|Ωm ·Ωd ≈
π

4
(I + nn) , (5.44)
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where nn is a matrix. Even if these properties cannot be strictly satisfied, numerical

results show that the error is negligible. Finally, we obtain:

bDCF (φ0, φ
∗
0) = lDCF (φ∗0), (5.45)

with:

bDCF (φ0, φ
∗
0) = (Σaφ0, φ

∗
0)D + (D∇φ0,D∇φ0)D +

1

4
(Jφ0K, Jφ∗0K)Eih

+ (Jφ0K, {{D∂nφ∗0}})Eih + ({{D∂nφ0}}, Jφ∗0K)Eih

+
1

4
(φ0, φ

∗
0)∂Dd −

1

2
(φ0,D∂nφ

∗
0)∂Dd

− 1

2
(D∂nφ0, φ0)∂Dd −

9

16
(JD∇φ0K, JD∇φ∗0K)Eih

− 9

16
(JD∂nφ0K, JD∂nφ∗0K)Eih −

9

16
(D∇φ0,D∇φ∗0)∂Dd

− 9

16
(D∂nφ0,D∂nφ

∗
0)∂Dd −

9

4
(D∂nφ0,D∂nφ

∗
0)∂Dr ,

(5.46)

lDCF (φ∗0) = (Q0, φ
∗
0)D +

(
J inc, φ∗0

)
∂Dr − (Y ,D∇φ∗0)∂Dr

+ 2
(
Y inc · n,D∂nφ∗0

)
∂Dr ,

(5.47)

where Y inc = −
∑

Ωd·nb>0 3wdΩd|Ωd · nb|δψ(`)
d .

DCF is symmetric but not positive definite positive. DCF is unstable for cell size in

between one and four mean-free-paths but it is stable and very efficient for optically

thick medium. In this case, ∇φ0 ≈ 0 and ∂nφ0 ≈ 0 and the terms
(
DΩφ±0 ,D∇φ∗,±0

)
and

(
D∂nφ

±
0 ,D∂nφ

±
0

)
are negligible. In this limit, bDCF becomes:

bDCF (φ0, φ
∗
0) = (Σaφ0, φ

∗
0)D + (D∇φ0,D∇φ0)D +

1

4
(Jφ0K, Jφ∗0K)Eih

+ (Jφ0K, {{D∂nφ∗0}})Eih + ({{D∂nφ0}}, Jφ∗0K)Eih +
1

4
(φ0, φ

∗
0)∂Dd

− 1

2
(φ0,D∂nφ

∗
0)∂Dd −

1

2
(D∂nφ0, φ0)∂Dd ,

(5.48)
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which is exactly the same as equation (5.5) if κIPe = 1
4
.

MIP is obtained by replacing the penalty coefficient, κIPe , by κMIP
e = max

(
κIPe , 1

4

)
in equation (5.5). This ensures that MIP will converge in optically thick medium

since the penalty coefficient will never be less than 1
4
.

DSA gives only a correction for the scalar flux but by assuming that the angular

dependence satisfies a diffusion expansion, the angular correction can be computed

using equation (5.30). This correction can be used when some of the boundary

conditions are periodic or reflective.

If PWLD finite elements are used instead of LD finite elements, the weak form

of MIP is not modified. However when the cells are not triangular, there is no

simple way to compute h⊥. To simplify this, we assume that the polygonal cells

are not too far from being regular polygonal cells. In such cases, if the cell has an

even number of edges, the orthogonal length equals two times the apothem, i.e. two

times the segment between the midpoint of a side of the polygon and the center of

this polygon
(

apothem = 2× area
perimeter

)
. If the cell has an odd number of edges, the

orthogonal length is given by the apothem plus the circumradius, i.e. the radius of

the circle circumscribed to the polygon

(
circumradius =

√
2×area

V sin( 2π
V )

)
. Therefore, h⊥

is given in Table V.1 by:

Table V.1: Orthogonal length of the cell for different cells

Number of edges 3 4 > 4 and even > 4 and odd

h⊥ 2× area
Le

area
Le

4× area
perimeter

2× area
perimeter

+
√

2×area

V sin( 2π
V )
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C Algebraic Multigrid

1 Introduction

As mentioned earlier, the most common way to solve a SPD system is to use

conjugate gradient preconditioned with SSOR (PCG-SSOR). In this research, we will

compare the calculation time using PCG-SGS, which is PCG-SSOR with a damping

factor equal to unity, with the time needed by CG preconditioned with an algebraic

multigrid method. This is not a new idea: the first multigrid methods developed were

geometric multigrid used as stand-alone solvers. In many applications, they achieve

the so-called “textbook multigrid efficiency”, i.e. “the solution to the governing

system of equations [is attained] in a computational work that is a small multiple

of the operation counts associated with discretizing the system” [97]. However, in

many other applications, multigrid methods, and particularly algebraic multigrid

methods, cannot achieve such efficiency [78]. In such cases, they are often used

as preconditioner for Krylov subspace methods. AMG methods make very good

preconditioners because they can reduce all the error modes. Of course, in some cases,

some modes may not be accelerated which can significantly degrades the efficiency of

AMG as preconditioner. In [82], the authors used an algebraic multigrid method to

precondition the Krylov solver for the even-parity finite element-spherical harmonics

(FE-PN) method. The AMG preconditioner resulted in a 60% reduction in the

solution time compared to ILU(0) preconditioning and even more reduction compared

to SSOR preconditioning.

We will employ and compare two multigrid approaches: one from the ML pack-

age [46] of the Trilinos library, and the AGMG code [77]. ML is a multigrid pre-

conditioning package that uses a smoothed aggregation algebraic multigrid to build

a preconditioner for a Krylov method. AGMG is an aggregation-based algebraic
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multigrid code (written in Fortran 90).

We describe the multigrid principles, using first a two-grid setting. Consider the

following system:

Afuf = bf , (5.49)

defined on the fine grid Tf . The two-grid algorithm is given by :

1. Perform ν1 pre-smoothing iterations using a smoother (e.g., Jacobi, Gauss-

Seidel or ILU) using an initial guess u0: u = Sν1(u0, bf ).

2. Compute the residual on the fine grid Tf and restrict it to the coarse grid Tc:

rc = R(bf −Afu).

3. Solve with a direct solver the system on the coarse grid: v = A−1
c rc.

4. Interpolate the coarse grid correction to the fine grid and add the correction

to u: u← u+ P v.

5. Perform ν2 post-smoothing iterations: u = Sν2(u, bf ).

When using AMG, the matrix Ac on the coarse grid is given by the Galerkin ap-

proximation:

Ac = RAfP , (5.50)

where P is a prolongation matrix and R is a restriction matrix. Solving the system

Acv = rc on the coarse grid is generally very expensive. Therefore this step is

recursively replaced by γ applications of the two-grid methods until the system can

be efficiently inverted with a direct solver. This yields the multigrid method. When

γ = 1, the multigrid method is said to use a V−cycle. When γ = 2, the cycle used

is called the W−cycle. On Figure V.3, these two cycles are represented:
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Figure V.3: V− and W−cycles

A dot represents a smoothing operation and a square a direct inversion. The grid

transfer operators are symbolized by lines.

For the coarsening step, both geometric and algebraic multigrid methods are

based on the concept of smooth error. The difference between the two methods is that

for geometric multigrid methods, after the smoothing step, the error is geometrically

smooth relative to the coarse grid [96]. For algebraic multigrid methods, there might

not be any grid and thus, only the properties of the matrix can be used. Therefore,

the geometrical smoothness of the error cannot be assumed anymore. In fact, after

the smoothing step, the error may be not smooth at all from the geometrical point

of view. The reason is that the error is considered smooth when the smoother does

not change the solution significantly anymore [103]:

‖Se‖H ≈ ‖e‖H, (5.51)

where S is the smoother, e is the error, and ‖u‖H =
√

(u, u)H is the norm associated

to the scalar product:

(u, v)H = (Au, v)2 . (5.52)

Among the algebraic multigrid methods, there are three main types: the classical

Ruge-Stueben AMG (also known as interpolation method), the plain aggregation

AMG, and the smoothed aggregation AMG. ML uses smoothed aggregation AMG

and AGMG uses plain aggregation AMG. The difference between theses methods is
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the coarsening step. The coarsening step is the most important step because if the

coarsening is too fast, the convergence rates will decrease. However, if the coarsening

is too slow, a lot of memory may be required to solve the problem. For classical Ruge-

Stueben methods, each variable of the coarse grid is also a variable in the fine grid

whereas for the aggregation methods, the variables of the fine grid are aggregates in

variables of the coarse grid. There is no simple identification between the variables

of the fine grid and the coarse grid. However, all the algebraic multigrid methods

use the very important concept of strongly dependent variables [38].

Definition C.1. Given a threshold value of 0 ≤ θ ≤ 1, the variable ui strongly

depends on the variable uj if:

−aij ≥ θmax
k 6=i

(−aik) , (5.53)

aij must be of the same order of magnitude than the largest off-diagonal in equation

i or j. A related definition is:

Definition C.2. If the variable ui strongly depends on the variable uj, then the

variable uj strongly influences the variable ui.

The idea behind the strong dependence is that if the coefficient aij is large, then

a small change in the jth variable will have an important effect on the ith variable.

Thus, it is probably a good idea to use the jth variable to interpolate the ith variable

or to couple these two variables in an aggregate. This can be easily seen using the

concept of smoothed error. For the error to be considered to be smoothed, assuming

that A is a M -matrix, i.e., off-diagonal entries of the matrix are less than or equal

to zero and the real parts of the eigenvalues of the matrix are positive, the following
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relationship needs to be satisfied for most i [38]:

∑
j 6=i

(
|aij|
aii

)(
ei − ej
ei

)2

� 1, (5.54)

where ei is the error associated with the variable i. Since the left side of equa-

tion (5.54) is positive, all the products must be small which means that at least one

of the two terms of each product has to be small. When the ith variable strongly

depends on the jth variable
|aij |
aii
≈ 1, ei − ej must be small or equivalently ei ≈ ej.

This means that the error varies slowly in the direction of strong connection. That

is the reason why the coarsening is done along these directions.

2 Classical AMG (interpolation method)

For classical AMG, the variables of the coarse grid are a subset of the variables

of the fine grid. The variables can be split in two disjoint sets: C that contains all

the coarse variables and F that contains all the other variables. Thus, the error on

the fine grid is given by [96]:

ec,i = (P ef )i =


ec,i if i ∈ C∑
k∈Bi

wikec,k if i ∈ F
(5.55)

where Bi is a subset of C whose variables are called interpolatory variables. Bi should

be a small subset of C to keep Ac sparse. Now, we assume that A is a M -matrix

and we review two typical interpolation methods:

Direct interpolation: First, we define the neighborhood of the ith as the set Ni =
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{j ∈ C ∪ F : j 6= i, aij 6= 0}. After the smoothing step, we can write locally:

ei ≈ −

(∑
j∈Ni aijej

)
aii

. (5.56)

If Bi contains the variables which are strongly dependent on the ith variables,

we have:

1∑
k∈Bi aik

∑
k∈Bi

aikek ≈
1∑

j∈Ni aij

∑
j∈Ni

aijej. (5.57)

Using this relation and equation (5.56), we get the following formula for the

weights of the interpolation:

wik = −αi
aik
aii
, (5.58)

where αi =
∑
j∈Ni

aij∑
l∈Bi

ail
. Therefore, it is important that when the coarse variables

are chosen, that every variable in F has enough strongly coupled variables in

C that are part of Bi. If some of the off-diagonal entries are positive, the same

development can be performed as long as these positive terms are small, i.e.,

variables are not strongly coupled because of these terms. If the positive entries

are large, the algebraically smooth error can oscillate. This can happen, for

elliptic PDE, when high-order finite elements are used or with bilinear elements

on quadrilateral meshes with large aspect ratios. This will negatively affect the

performance of AMG.

More complex interpolations: More complex interpolation schemes can be cre-

ated but they reduce the sparsity of P and R, increasing the size of Ac. More-

over, the weakly-dependent variables will be associated with smaller weights

which means that they will have a small effect. It can therefore be interesting
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to ignore the smallest values in the interpolation matrix and to rescale the

others weights so that the sum of the weights does not change. This can slow

down the convergence of the method but it will not make it diverge [96].

A good rule, when coarsening the grid, is to try to have the set of coarse variables

form a maximally independent set, i.e. a maximal set where the coarse variables are

not strongly coupled to each others, and the variables in F are surrounded by the

variables in C. We call BS
i the set of all strongly connected neighbors of ui:

Bs
i = {vj ∈ Bi| − aij ≥ θmax

k 6=i
(−ai,k)}. (5.59)

The interpolatory nodes Ci are:

Ci = Bs
i ∩ C. (5.60)

Adding variables in Ci increases the quality of the interpolation but it diminishes the

sparsity of the interpolation matrix and increases the size of Ac which increases the

computational cost of the method. Thus, every variable ui in F and every uj ∈ Bs
i

should be in Ci or strongly connected to at least one variable in Ci. This rule will

make sure that the interpolation is of a good enough quality. We also want C to

be a maximal subset of the variables such that the variables in C are not strongly

connected to each others. This ensures that the coarsening is fast enough.

3 Smoothed aggregation: the ML package

The smoothed aggregation method uses the concept of strong connections in a

manner similar to that of classical AMG. Theory for the plain aggregation method

shows that the convergence bound depends of the number of levels [99]. This is a

major flaw of the plain aggregation method which was also observed in practice. To
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counter this, the smoothed aggregation was created. This method converges fast

for a lot of different problems including the ones with anisotropic and discontinuous

coefficients.

When using a smoothed aggregation scheme, the smoothed interpolation oper-

ators, P k, are the transpose of the coarsening operators, Rk = P T
k . Therefore,

when the P k are built, the coarsening is known. First, the graph of the matrix is

constructed: if the element (i, j) or (j, i) of the matrix is non-zero, an edge is built

between the vertex i and the vertex j [46]. Second, the vertices are aggregated. When

using ML on a single processor, two aggregation schemes can be used: the uncoupled

scheme or the maximally independent sets (MIS) scheme. The uncoupled scheme

attempts to build aggregates of size 3d where d is the dimension of the problem. The

algorithm works as follows [98]:

Step 1: As long as there are points not adjacent to an aggregate:

1. Choose a point which is not adjacent to an aggregate. This point is a new

root point.

2. Define a new aggregate as the root point and its neighbors.

Step 2: Add all the points left of the existing aggregates or form new aggregates

with them.

The MIS scheme used in ML applied the MIS algorithm of [52] to the graph produced

by the matrix A2. These two coarsening schemes use a fixed ratio of coarsening

between levels. Once the aggregation is done, a tentative prolongator matrix, P̃ k is

constructed [98]. A example of P̃ k is given by:

P̃ k(i, j) =


1 if ith point is contained in jth aggregate

0 otherwise

(5.61)
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This tentative prolongator could be used as prolongator but smoothing it yields a

more robust scheme. Let Sk be a smoother, for example damped Jacobi, then the

prolongator matrix is given by:

P k = SkP̃ k. (5.62)

As in classical AMG, it can be interesting to ignore small values in the graph

since the smoother will be ineffective for the weakly coupled variables. In ML,

there is a drop tolerance, tol, that is used to ignore entries in the graph if |aij| ≤

tol
√
|aijajj|. The tolerance, whose default value is zero, can be changed. In ML,

when the matrix is SPD, CG is used to determine the Jacobi damping parameter,

which is an approximation of the spectral radius.

By default, the coarsening is stopped when the number of variables is less or

equal than 128.

4 Plain aggregation: the AGMG code

Unlike ML, in AGMG the prolongator is not smoothed which results in a cheaper

set-up and a decrease of required memory [74]. However, the scheme could be less

robust. To counteract this weakness, the aggregation scheme is more complicated.

Coarsening algorithms that control the size of the aggregates tends to produce a few

badly shaped aggregates. Since the convergence of AMG is bounded by the worst

aggregate, even a small number of badly shaped aggregates can have a huge impact

on the convergence. In AGMG, the aggregation algorithm has as input the upper

bound of the two-grid condition number κ̄TG. When the aggregates are constructed,

their quality is checked. Obviously, this increases the cost of the coarsening and

it is important that the coarsening be fast enough. Since the algorithm does not

control the size of the aggregates, it is difficult to control the speed of the coarsening.
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However, controlling the condition number is much more interesting than controlling

the coarsening speed. If the algorithm controls the condition number, it will not

create bad aggregates but instead, it may create a few aggregates with a size below

the target size but this does not affect the efficiency of the method in a noticeable

way [74].

In AGMG, the aggregation is done by a few passes of a pairwise aggregation

algorithm. This allows the computation of the aggregate quality to remain very

simple and to keep the cost per iteration low. The advantage of controlling the

condition number becomes even more important when a K−cycle or Krylov-cycle

is used instead of the more common V− or W−cycles. The difference between

the K−cycle and the V− or W−cycle is that the K−cycle uses recursively a few

iterations of a Krylov solver preconditioned by a coarser grid to solve the coarse

grid problem in the two-grid algorithm [78]. This scheme is nonlinear and when

the system is SPD, it requires the use of flexible CG [24, 36, 48, 76] as the Krylov

solver. The advantage of the K−cycle is increased robustness compared to V− and

W−cycles. Even when the condition number of the two-grid method is large, the

convergence properties of the K−cycle can be independent of the number of levels

[78]. The computational cost of a K−cycle is about the same as the cost of the

W−cycle. If the number of unknowns does not decrease sufficiently from one level

to the next, the K−cycle at one level is replaced by a V−cycle at this same level.

The idea of K−cycle is not new since it was already used in Algebraic MultiLevel

Iteration (AMLI) methods [56, 75].

Next, we explain the coarsening step in AGMG for an M−matrix (SPD). We

want to create nonempty disjoint sets Gk, k = 1, . . . , nc called aggregates with each

one of them associated with a variable on a coarser grid. Some of the unknowns are

not associated with any variables in the coarse grid and they are in the set G0. The
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prolongation matrix is given by:

P ij =


1 if i ∈ Gj

0 otherwise

(5.63)

Thus, P has at most one non-zero entry per row. A row is only composed of zeros

if the variable associated to this row is in G0. A simple method to form the high

quality aggregates of a given size would be to test all the possibility. For an obvious

reason, this cannot be done in practice. Instead, in AGMG several passes of pairwise

aggregation are done. The reason is that when two variables are aggregated, the

quality factor of the aggregate κ(G) is given by:

κ({i, j}) =
−aij +

(
1

aii+si+2aij
+ 1

ajj+sj+2aij

)−1

−aij +
(

1
aii−si + 1

ajj−sj

)−1 , (5.64)

where si = −
∑

j 6=i aij. κ is only given by the off-diagonal entry connecting these two

unknowns, their respective diagonal entries, and the sum of all off-diagonal elements

in the corresponding rows. As |G| increases, it becomes more and more costly to

compute κ(|G|). However, checking that κ(|G|) is below a given threshold κ̄TG is

relatively cheap. It is sufficient to check that:

κ̄TGAG −MG

(
I − 1G

(
1TGMG1G

)−1
1TGMG

)
(5.65)

is nonnegative definite. This can be done in O(|G|3) operation by verifying that

the Cholesky factorization exists, i.e., there is no negative pivot. Therefore, κ(|G|)

does not need to be computed explicitly to be certain that κ(|G|) ≤ κ̄TG. The first

pairwise coarsening step is given by:
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1. Create the set G0, i.e., create the set of variables which will not be aggregated.

2. Choose an unknown and find among its unassigned neighbors the one that gives

the smallest κ({i, j}).

3. Check that κ({i, j}) ≤ κ̄TG. If the condition is not verified, the variable is left

unassociated on the coarse grid.

To increase the size of the aggregates, the temporary coarse grid matrix Ãc is com-

puted and the same process we just described is applied. The set G0 cannot be

changed and the quality factor κ̃({i, j}) needs to be adapted to reflect the quality

of the corresponding aggregate κ(Gi ∪ Gj) in the original matrix. Therefore, the

definition of sj is slightly modified:

s̃i = −
∑
k∈Gi

∑
j∈Gi

akj. (5.66)

This change exists to ensure that κ̃({i, j}) is a lower bound of κ(Gi ∪ Gj). Thus,

if κ̃({i, j}) ≥ κ̄TG, the pair has to be rejected because it is impossible for κ(Gi ∪

Gj) to satisfy the condition. A unique characteristic of this coarsening method is

that you can, in theory, have an arbitrary number of pairwise coarsening passes

without degrading the upper bound of the condition number. In practice, however,

the coarsening is stopped if either a given number of passes has been done or the

coarsening factor has reached a target value. To conclude the explanation of the

coarsening step, we explain how unknowns are picked and how to pick between a

pair {i, j} and another {i, k} if they have the same quality factor. If there is no

priority rules, the coarsening would depend of the ordering of the variables or the

way off-diagonal entries are stored. In AGMG, the rule chosen tries to increase the

regularity of the aggregates because in practice, this increases the coarsening speed
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of the coarser levels. Even if the coarsening step tries to create regular aggregates on

regular grids, the results are still quite good for unstructured grids [74]. The priority

rule consists of using a Cuthill-McKee permutation [41] to renumber the variables

and using the number associated with the variable as a priority number (the lower

number has the priority). The Cuthill-McKee permutation works as follows: the

number one is given to a node with minimal degree; the next numbers are given to

its neighbors ordered by increasing degree; then their neighbors are given a number

by increasing degree. The process is over when all nodes are numbered. There are

still some uncertainties in the numbering if there are several variables with minimal

degree or when several neighbors of a variables have the same degree. However, these

choices do not affect performance [74].

AGMG stops the coarsening when the number of variables is less or equal to 400.

D Results

In this section, we show two Fourier analyses of MIP: one where the Sn order is

varied and one where the aspect ratio is varied. We also compare different meth-

ods to solve MIP: congugate gradient (CG), conjugate gradient preconditioned with

symmetric Gauss-Seidel (PCG-SGS), conjugate gradient preconditioned with ML us-

ing uncoupled aggregation (PCG-MLU), conjugate gradient preconditioned with ML

using MIS aggregation (PCG-MLM), and AGMG. The options used for ML can be

found in the Appendix. Unless otherwise specified, PWLD finite elements are used

in this section.

1 Fourier Analyses

Analysing Source Iteration accelerated with DSA is often performed using Fourier

analysis [61, 115]. When a Fourier analysis is performed, the error is decomposed

into different modes and by inspecting the damping of the different error modes,
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the effectiveness of the DSA scheme can be studied. The largest damping factor is

the spectral radius of the method. The smaller the spectral radius is, the faster the

scheme converges. If the spectral radius is greater than one, the method is unstable.

a Sn order varied

This Fourier analysis was carried on a square cell, using a Gauss-Legendre-

Chebyshev (GLC) quadrature. The medium is homogeneous, the scattering ratio

c = 0.9999 and periodic boundary conditions are used. The x−axis is the mesh size

in mean free path and the y−axis is the spectral radius. On Figure V.4, there are

four curves corresponding to different Sn order: S2, S4, S8, and S16.

Figure V.4: Fourier analysis as a function of the mesh optical thickness, homogeneous
infinite medium case

MIP is stable for every cell size. The spectral radius is always less than 0.5,

except for S2 where it peaks at about 0.7.

b Aspect ratio varied

For this Fourier analysis, we use a S16 GLC quadrature, a homogeneous medium,

c = 0.9999 and periodic boundary conditions. The x−axis is the mesh size in mean

free path in the x direction and the y−axis is the spectral radius. On Figure V.5,
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there are five curves corresponding to five different aspect ratio: Y
X

= 1
16

, Y
X

= 1
4
,

Y
X

= 1, Y
X

= 4, Y
X

= 16, and Y
X

= 100.

Figure V.5: Fourier analysis as a function of the mesh optical thickness, homogeneous
infinite medium case for different aspect ratios

MIP is stable for every aspect ratio and the maximum of the spectral radius peaks

at about 0.5. However, we noted that when both c approaches one and the aspect

ratio is large, MIP can become ill-conditioned. In Chapter IV, MIP was used for

problems with c = 1, without any issues because the cells were square (aspect ratio

is one).

2 Homogeneous medium

Next, we compare different solvers for MIP on a homogeneous medium, 100cm ×

100cm, Σt = 1cm−1 and Σs = 0.999cm−1, with vacuum boundary conditions and a

source of intensity 1cm−3s−1. We use a S8 Gauss-Legendre-Chebyshev quadrature,

a Source Iteration solver with relative tolerance of 10−8 and a relative tolerance for

MIP of 10−10.

Quadrilateral cells: the mesh is composed of 49236 quadrilateral cells that corre-

sponds to 197052 degrees of freedom.
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Polygonal cells: the mesh is composed of 45204 triangles, 823 quadrilaterals, 4978

pentagons, 4155 hexagons, 725 heptagons, and 24 octagons, for a total of 55909

cells and 193991 degrees of freedom. This example will allow us to test MIP

and the different preconditioners on a mesh composed of different types of cell.

The meshes and the solutions of these two problems are given on Figure V.6:

(a) Quadrilateral cells (b) Polygonal cells

Figure V.6: Meshes and scalar fluxes

In Table V.2, the different solvers, used on the quadrilateral cells, are compared:

Table V.2: Comparison of different preconditioners for quadrilateral cells

No-DSA CG PCG-SGS PCG-MLU PCG-MLM AGMG

SI iter 7311 24 24 24 24 24

Prec (s) NA NA 0.171358 1.8255 9.56078 0.332

MIP (s) NA 1095.7 1311.76 192.622 197.632 29.9727

CG iter NA 56649 17332 630 604 578

Total (s) 39176.7 1264.98 1477.95 363.202 367.841 194.568

111



In this Table, SI iter is the number of Source Iteration iterations needed to solve

the problem, Prec is the time in seconds needed to initialize the preconditioner used

by CG, MIP is the total time in seconds spent solving DSA during the calculation,

CG iter is the total number of CG iterations used to solve MIP, and Total is the

time in seconds needed to solve the problem.

Using MIP decreases significantly the number of SI iterations and the calculation

time as expected. Using PCG-SGS decreases by a factor of three of the number of

CG iterations compared to CG but the time needed to solve MIP is greater. This

is because each PCG-SGS iteration is much slower than one unpreconditioned CG

iteration. SGS requires basically two triangular solves. It is unclear why these simple

solves would be so costly in CPU time so as to actually increase the total solver time

while the number of CG iterations has been divided by three. With ML, the number

of CG iterations is reduced by a factor of 50 and the MIP calculation time is reduced

by a factor three compared to CG. AGMG is by far the most efficient solver, the

number of CG iterations is slightly lower than PCG-ML but the MIP calculation is

20 times faster than CG.

The different solvers, used on the polygonal cells, are compared in Table V.3:

Table V.3: Comparison of different preconditioners for polygonal cells using SI

No-DSA CG PCG-SGS PCG-MLU PCG-MLM AGMG

SI iter 7311 23 23 23 23 23

Prec (s) NA NA 0.06388 1.73379 8.0426 0.388

MIP (s) NA 877.861 1263.31 198.63 191.989 31.242

CG iter NA 46262 16712 652 603 555

Total (s) 42666.7 1060.53 1447.53 382.275 384.422 216.946
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We see that using different types of cells in the same mesh does not affect the

performance of MIP or of the preconditioners.

In the next test, the problem is exactly the same as the previous one using

polygonal cells but the SI solver is replaced by GMRES. The comparison is done in

Table V.4:

Table V.4: Comparison of different preconditioners for polygonal cells using GMRES

No-DSA CG PCG-SGS PCG-MLU PCG-MLM AGMG

GMRES iter 266 12 12 12 12 12

Prec (s) NA NA 0.0675611 1.56115 7.89327 0.0331

MIP (s) NA 546.56 770.244 126.723 120.68 22.3754

CG iter NA 28653 10274 407 390 351

Total (s) 1549.17 675.319 898.149 261.121 261.937 162.47

The conclusions are the same as in the SI case. The performance of the precon-

ditioners is not affected by the change of solver.

3 Heterogeneous medium

In this example, we use a heterogeneous medium composed of 184 triangles, 3720

quadrilaterals and 2791 regular hexagons of side 0.05cm for a total of 6695 cells and

32178 degrees of freedom. The domain is 5.28275cm by 4.6cm. Reflective boundary

conditions are used. The quadrature is a S16 Gauss-Legendre-Chebyshev quadrature.

The SI solver has a relative tolerance of 10−8 and the relative tolerance for MIP is

10−10. The domain is composed of three zones (see Figure V.7):
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Figure V.7: Zones of the domain discretized by triangles, rectangles, and hexagons

The properties of the different zones are:

Green zone: Σt = 1.5cm−1, Σs = 1.44cm−1, source= 1cm−3s−1

Red zone: Σt = 1cm−1, Σs = 0.9cm−1, no source

Blue zone: Σt = 1cm−1, Σs = 0.3cm−1, no source

The different solvers are compared in Table V.5:

Table V.5: Comparison of different preconditioners for a heterogeneous medium

No-DSA CG PCG-SGS PCG-MLU PCG-MLM AGMG

SI iter 122 18 18 18 18 18

Prec (s) NA NA 0.016149 0.336215 1.36803 0.065

MIP (s) NA 60.2031 123.05 31.7048 30.8669 2.80108

CG iter NA 12016 6764 423 391 248

Total (s) 413.274 131.297 188.586 101.888 103.734 71.5392
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We can see that the comments made for the homogeneous tests are still valid.

MIP is effective even with heterogeneous medium and AGMG is still the fastest

method. It is interesting to note that, contrary to the homogeneous tests where the

number of CG iterations remained similar for all algebraic multigrid preconditioners,

for this heterogeneous test AGMG requires significantly fewer iterations than PCG-

MLU and PCG-MLM. This difference may be due to the fact that ML was first

designed to be used for continuous finite elements discretization and that we are

using discontinuous finite elements.

The cross sections of the different zones were taken from [105]. In the next test,

they are modified to make the problem more challenging:

Green zone: Σt = 1.5cm−1, Σs = 1.499cm−1, source= 1cm−3s−1

Red zone: Σt = 1cm−1, Σs = 0.999cm−1, no source

Blue zone: Σt = 1cm−1, Σs = 0.3cm−1, no source

The different solvers are compared in Table V.6:

Table V.6: Comparison of different preconditioners for a highly diffusive heteroge-
neous medium

No-DSA CG PCG-SGS PCG-MLU PCG-MLM AGMG

SI iter 278 17 17 17 17 17

Prec (s) NA NA 0.0160661 0.368768 1.41632 0.07

MIP (s) NA 58.422 126.93 33.2225 31.3045 2.924

CG iter NA 12214 6679 415 386 248

Total (s) 910.566 120.889 190.413 99.7524 97.4666 70.6424
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Making the problem more diffusive increases the interest of using DSA but it

does not change the behavior of the preconditioners.

4 AMR mesh

In this example from [105], the domain is 10cm × 10cm. The left and bottom

boundaries are reflective whereas the right and the top boundaries are vacuum. There

are 10720 cells: 10482 quadrilaterals, 236 pentagons, and 2 hexagons for a total of

43120 degrees of freedom. As in the previous example, the domain is composed of

three zones (see Figure V.8):

Figure V.8: Zones of the AMR mesh

where:

Green zone: Σt = 1.5cm−1, Σs = 1.44cm−1, source=1cm−3s−1

Red zone: Σt = 1cm−1, Σs = 0.9cm−1, no source
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Blue zone: Σt = 1cm−1, Σs = 0.3cm−1, no source

The distribution of cells is given on Figure V.9:

Figure V.9: Polygons distribution

where:

Blue cells are quadrilaterals.

Green cells are pentagons.

Red cells are hexagons.

This mesh is typical of a mesh obtained after one level of adaptive mesh refinement

(the cells at the interface of different zones have been refined once). We see that

instead of introducing hanging nodes, we have introduced pentagons and hexagons

in the mesh. A S16 GLC quadrature is employed. The tolerance on SI is 10−8 and
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the tolerance on the CG solvers is 10−10. The different solvers are compared in Table

V.7:

Table V.7: Comparison of preconditioners on an AMR mesh

No-DSA CG PCG-SGS PCG-MLU PCG-MLM AGMG

SI iter 184 19 19 19 19 19

Prec (s) NA NA 0.043463 0.358002 1.19301 0.0111

MIP (s) NA 48.1908 81.0992 25.2699 25.0699 2.56198

CG iter NA 11300 4734 361 361 264

Total (s) 802.985 138.825 172.423 116.018 116.517 94.1963

As expected, the results are similar to our previous test.

5 Rectangular cells

As mentioned previously in this Chapter, AMG can have difficulties when the

aspect ratio of rectangular cells is high. Moreover, when the aspect ratio is high

and the scattering ratio is close to one, MIP becomes ill conditioned. In the next

four examples, the domain is square 100cm×100cm with vacuum boundaries. There

are 10000 cells and we use BLD finite elements for the first three runs and PWLD

finite elements for the last one; there are 40000 degrees of freedom. The relative

tolerance on SI is 10−8 and the relative tolerance on CG is 10−10. We use a S8 GLC

quadrature, Σt = 1cm−1, and Σs = 0.999cm−1. The source is 1n/(cm3s). In the

first test, the domain is discretized by 100 cells along x and 100 cells along y. In

the second test, the domain is discretized by 250 cells along x and 40 cells along

y. Therefore, the aspect ratio is 6.25 for the second test. In the last two tests, the

domain is discretized by 1000 cells along x and 10 cells along y (the aspect ratio is
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100).

We also compared the effect of the size of the coarsest grid on the convergence. In

the following Tables (Table V.8, Table V.9, Table V.10, and Table V.11), we compare

No-DSA, CG, and AGMG defined previously with:

PCG-MLU-D: conjugate gradient preconditioned with ML using uncoupled coars-

ening with a coarsest grid of size less or equal of 128 (default value).

PCG-MLU-M: conjugate gradient preconditioned with ML using uncoupled coars-

ening with a coarsest grid of size less or equal of 400 (same value than AGMG).

PCG-MLM-D: conjugate gradient preconditioned with ML using MIS coarsening

with a coarsest grid of size less or equal of 128 (default value).

PCG-MLM-M: conjugate gradient preconditioned with ML using MIS coarsening

with a coarsest grid of size less or equal of 400 (same value than AGMG).
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As predicted, inverting MIP requires a lot more CG iterations when the aspect ratio

increases. The only exception is for AGMG which requires fewer iterations when

the aspect ratio is 6.25 and 100 than when it is 1.0. As expected, PCG-MLU and

PCG-MLM are much more affected by the aspect ratio than CG and PCG-SGS. The

number of CG iterations for CG and PCG-SGS is multiplied by two when the aspect

ratio is increased from 1.0 to 6.25, whereas it is multiplied by a little more than three

for PCG-MLU and PCG-MLM. When the aspect ratio is 100, PCG-MLU and PCG-

MLM are the slowest methods. This is not totally unexpected since these examples

have been designed to test the limitations of algebraic multigrid preconditioners. It

is interesting to note that changing the size of the coarsest grid for PCG-MLU and

PCG-MLM does not affect the number of CG iterations. Even if AGMG does not

seems to be to affected by the change in the aspect ratio when BLD finite elements

are employed, using PWLD finite elements dramatically increases the number of

CG iterations when the aspect ratio is 100. AGMG is the only method which is

significantly impacted by the change of finite element type; however, it stays by far

the fastest method to solve the MIP equations.

E Conclusions

We have adapted the MIP-DSA to PieceWise Linear Discontinuous finite elements

and proposed a simple way to compute the penalty coefficient which enables the use

of MIP on arbitrary polygonal meshes. The advantage of polygonal cells is the

potential reduction of the numbers of unknowns and the possibility to use adaptive

mesh refinement without having hanging nodes. We have performed two Fourier

analyses of the new MIP-DSA on a rectangular cell and shown that MIP is always

stable when the scattering is isotropic. On different examples, we tested MIP on

highly unstructured meshed composed of different types of cells. We noticed that
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the efficiency of MIP does not seem to be degraded on these meshes. We have also

compared different preconditioners for CG to solve MIP. Algebraic multigrid methods

were found to be the best preconditioner, AGMG being up to 20 times faster than CG

without preconditioning which itself was faster than CG preconditioned by SSOR.
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CHAPTER VI

JANUS

A Introduction

In this Chapter, we detail the implementation of the transport code developed in

this research, Janus. Janus is a two-dimensional one-group Sn transport solver. It

uses arbitrary polygonal meshes and implements an angular multigrid preconditioner

for highly anisotropic scattering. The ASCII output file generated by Janus can be

converted to a silo file [11], using an other C++ code, Apollo. This output file can

be read by VisIt [10]. A python code, Diana, can be used to generate the mesh or

to convert a mesh generated by Triangle [9] into a mesh readable by Janus. Another

python code, Mercury, can be used to generate an input files for Janus. Mercury can

help writing an input file by checking that all the data required by Janus are present

and that they are written in the right order.

Janus is documented using Doxygen [4]. It is built upon Trilinos 10.4 [8] and GSL

(GNU Scientific Library) [7] and uses Autoconf, Automake, and Autotest [1, 2]. Git

[6] is used for revision control.

Janus, Diana, and Mercury can be cloned at git://gitorious.org/transport/janus.git

Apollo can be cloned at git://gitorious.org/transport/plot.git

B Implementation

Janus is composed of the following classes:

PARAMETERS: In this class, the different parameters such as, the type of solver

for transport equation (SI or a Krylov method), the type of solver for MIP, the

convergence tolerance, the boundary conditions, the intensity of the sources,
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the cross sections, etc, are read from an input file and stored. If Fokker-Planck

cross sections are used, they are computed here. The different cross sections for

the angular multigrid are computed by this class and the extended transport

correction is applied.

TRIANGULATION: In this class, the geometry, the material IDs, and the source

IDs are read. Two different input files can be read. When the mesh uses

rectangular cells, the abscissae then the ordinates have to be given in order of

increasing value. After that, the materials IDs and the source IDs are read.

For instance, if the domain, 1cm× 1cm, is decomposed in four identical cells,

the input file looks like:

rectangle

2 2 // (number of x-divisions, number of y-divisions)

0. 0.5 1.0

0. 0.5 1.0

0 0 0 0 // (material IDs)

0 0 0 0 // (source IDs)

The other acceptable type of input file is used for polygonal cells. In that

case, the number of edges of a cell is given first, followed by the coordinates of

each vertex, the material IDs and finally the source IDs. The vertices must be

ordered in an anti-clockwise order but there is no need to order the cell or for

two successive cells to be adjacent in the mesh. For instance, a possible input

file would be:

polygon
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4 // (number of cells)

3 1. 0. 1. 1. 0.5 0.5 0 0

5 0. 0. 0.5 0. 0.5 0.5 0.5 1. 0. 1. 0 0

3 0.5 0. 1. 0. 0.5 0.5 0 0

3 0.5 0.5 1. 1. 0.5 1. 0 0

This class assumes that the domain is rectangular. After reading the geometry,

the EDGE objects are created. Before an edge is created, it must be checked

that the edge does not already exist. To do so, the coordinates of the two

vertices of the candidate edge are compared with the coordinates of the vertices

of a subset of the existing edge. This subset corresponds to the smallest subset

of edges having an abscissa, respectively an ordinate, of one of their vertices

equals to an abscissa, respectively an ordinate, of one of the vertices of the

candidate edge.

EDGE: This class contains the coordinates of the vertices associated with the edge,

the global and local IDs of the edge, the IDs of the cells associated with the

edge, the type of cell (interior or boundary and the type of boundary: vacuum,

isotropic or most normal direction of the quadrature), the two normal vectors

associated with the two cells, the length of the edge, etc.

FINITE ELEMENT: This class is the base class for BLD and PWLD. It contains

all the matrices needed for the DFE discretization of the transport equation

and of the diffusion equation.

BLD: This class derives from FINITE ELEMENT and builds the bilinear finite

elements.
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PWLD: This class derives from FINITE ELEMENT and builds the piecewise linear

finite elements.

QUADRATURE: This class is the base class for both the GLC and LS classes.

QUADRATURE builds the discrete-to-moment and moment-to-discrete matri-

ces and stores the different directions used by the quadrature. The directions

on the first octant are computed in GLC and LS. Then, they are deployed over

the other octants. After that, the spherical harmonics are computed and eval-

uated at the given directions. When a Galerkin quadrature is used, selection

rules are employed and the discrete-to-moment matrix is computed by invert-

ing the moment-to-discrete matrix. Otherwise, the discrete-to-moment matrix

is obtained by transposing the moment-to-discrete matrix and by multiplying

it by the weights of the quadrature.

GLC: This class derives from QUADRATURE and computes the weights and the

directions used by the Gauss-Legendre-Chebyshev triangular quadrature.

LS: This class derives from QUADRATURE and computes the weights and the

directions used by the Level-Symmetric quadrature up to S24.

CELL: This class stores the ID of a cell, a vector of pointers to the edges of a cell,

the intensity of the source in the cell, the material properties (Σs, Σt, and

the diffusion coefficient), the FINITE ELEMENT associated with the cell, etc.

The orthogonal lengths are calculated by this class.

DOF HANDLER: This class builds the mesh by creating all the CELL objects and

the FINITE ELEMENT objects associated with them. It is the DOF HANDLER

object that computes the sweep ordering for all directions. First, the edges on

the boundary with a known incoming flux are put in a list, incoming edges.
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The sweep ordering will continue as long as this list is not empty. The first

edge in the list is popped and the associated cell, which has not been accepted

in the sweep order, is found. Then, we loop over the edges of the cell to de-

termine which ones are associated with an outgoing flux and which ones are

associated with an incoming flux. The cell is accepted if all the edges which are

not “outgoing” are in incoming edges. If the cell is rejected, the edge is pushed

back at the end of the list. If the cell is accepted, the edges of the cell which

are incoming are removed from incoming edges. The others edges are pushed

back at the end of the list except if they are on the boundary of the domain.

TRANSPORT OPERATOR: The calculation is performed in this class. It de-

rives from the Epetra Operator of Trilinos. TRANSPORT OPERATOR han-

dles the angular multigrid by calling itself recursively and restricting and pro-

jecting the flux moments on the different “angular” grids. It is also in this class

that the scattering source is computed and the sweeps are performed.

MIP: This class builds and solves MIP. The first time that Solve() is called, the left

hand-side is built and stored using a compressed row storage format (CRS).

Then, the problem is solved by CG, PCG-SSOR, PCG-MLU, PCG-MLM, or

AGMG. If AGMG is employed, there is an extra step to convert the right hand-

side to a Fortran data type and the result back to an Epetra MultiVector.

TRANSPORT SOLVER: This class builds the PARAMETERS object, the TRI-

ANGULATION object, the QUADRATURE object(s), the DOF HANDLER

object, and the initial TRANSPORT OPERATOR object. SI and the Krylov

solvers are called in Solve(). The final result and the mesh are written in a file

by this class.

128



EXCEPTION: This class handles the exceptions that can be thrown.

C Verifications

The verification of the code was done through unit testing, comparisons of results

with existing codes, and using known solutions of problems. Next, we show two of

the tests that were done to check the code.

1 Infinite medium

When the domain is infinite and the medium is homogeneous. The isotropic

transport equation reduces to:

φ =
Q

Σa

. (6.1)

To approximate the infinite medium, we choose a very large total cross section such

that the mean free path of the particles is very small compared to the size of the

domain. In the following test, the domain is 1000cm × 1000cm, Q = 2n/(cm3s),

Σt = 10cm−1 and Σs = 9cm−1. We use vacuum boundary conditions and a S8 GLC

quadrature. We show two tests: one which uses an uniform mesh of 100 by 100

cells and BLD finite elements and the other which uses an unstructured mesh of

9972 quadrilaterals and PWLD finite elements. Given equation (6.1), the scalar flux

should be equal to two. In Figures VI.1a and VI.1b, the scalar flux less than or equal

to 1.999 is in blue and the scalar flux greater than or equal to 2.001 is in red:

129



(a) Rectangular cells

(b) Quadrilateral cells

Figure VI.1: Scalar flux
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2 Convergence order

In this test, we check the convergence order of PWLD and BLD on a benchmark.

We plot the error on average scalar fluxes as a function of the number of degrees

of freedom. Since for two-dimensional geometries, the number of degrees of freedom

is proportional to the square of the typical element size, the slopes of the graphs

should equal one (PWLD and BLD are both second order methods). The test that

we chose is the IAEA EIR-2 benchmark problem [54]. This benchmark consists of

five regions:

Figure VI.2: Zones of the IAEA EIR-2 benchmark problem

The properties of the different zones are given in Table VI.1:

Table VI.1: Properties of the different zones of the benchmark

Zone White Blue Salmon Yellow Green

Source (n/(cm3s)) 0 0 1 1 0

Σt (cm−1) 0.9 0.65 0.7 0.6 0.48

Σs (cm−1) 0.89 0.5 0.66 0.53 0.2

length (cm) 96 30 30 30 30

height (cm) 86 25 25 25 25
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The colored zones are in the middle of the white zone. In Figures VI.3a and

VI.3b, we show the convergence of the average scalar flux in the different zones for

S8 Gauss-Legendre-Chebyshev quadrature when BLD and PWLD finite elements are

used.

(a) BLD finite elements (b) PWLD finite elements

Figure VI.3: Convergence of BLD and PWLD

We can see that the curves in all the zones have the right slope, i.e., the right

order of convergence.
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CHAPTER VII

CONCLUSIONS AND FUTURE WORK

A Conclusions

In this dissertation, we first recalled the development of the Boltzmann-Fokker-

Planck equation and the limitations of the Fokker-Planck operator. The Boltzmann-

Fokker-Planck equation was introduced for charged particle transport because the

scattering kernel is highly forward-peaked such that a standard Legendre expan-

sion of the scattering kernel is impractical and would require hundreds of terms.

We also recalled a previous work from Pomraning showing that the Fokker-Planck

operator is an asymptotic limit of the Boltzmann operator when the scattering is

forward-peaked and that the energy transfer during a collision tends to zero. In the

Boltzmann-Fokker-Planck equation, the Fokker-Planck operator is used to model

the highly forward-peaked scattering collisions whereas the Boltzmann operator is

used for the wide angle scattering collisions. The Fokker-Planck operator simplifies

the calculation of the transport equation but is valid only if the kernel is peaked

enough. For instance, realistic screened Rutherford cross sections are not peaked

enough. Then, we introduced the Fokker-Planck cross sections which mimic the

Fokker-Planck operator when using the Boltzmann operator. Since Fokker-Planck

cross sections are the most forward-peaked cross section (the extended transport

correction renders the delta scattering equivalent to no scattering at all), we used

them for our tests. Finally, we introduced Galerkin quadratures. Galerkin quadra-

tures are crucial to obtain correct results when the scattering is highly anisotropic.

Galerkin quadratures are equivalent to standard quadratures when the scattering is
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weakly anisotropic but when the scattering is highly anisotropic, using a standard

quadrature can introduce non physical solutions.

Next, we introduced the angular multigrid methods to speed up the calculation

with highly anisotropic scattering. When the scattering is highly anisotropic, the

Diffusion Synthetic Acceleration (DSA) is not effective anymore because it cannot

speed up the convergence of high order flux moments. The initial work on this

topic was carried out by Morel and Manteuffel. They developed a one-dimensional

angular multigrid method to accelerate the convergence of Source Iteration (SI).

This angular multigrid method uses an Sn/2 sweep to correct the Sn sweep. The

Sn/2 correction is itself corrected by a Sn/4 correction, etc. until the S4 correction is

corrected by P1 equations. They showed that when Fokker-Planck cross sections are

used the spectral radius of the new method is bounded by 0.6 whereas the spectral

radius of DSA can become arbitrary close to unity. Pautz, et al., generalized the

angular multigrid method to multidimensional geometries. In this case, the successive

correction used an S2 sweep before a DSA stage at the final level. Unfortunately, the

generalized method was unstable. To stabilize it, the corrections need to be filtered

with a diffusion operator. The effect of this diffusive filter is to remove the high

frequencies of the correction. This method is better than straight SI+DSA but when

the anisotropy increases, the spectral radius can again become arbitrary close to

one. In this research, we recast the angular multigrid method for multidimensional

geometries without filtering as a preconditioner for a Krylov subspace solver. The

new method is always more effective and efficient than DSA and is more effective

as the anisotropy increases but unlike the one dimensional method, the number of

iterations does not saturate with increasing anisotropy.

We also extended the Modified Interior Penalty (MIP) DSA developed for trian-

gular cells to arbitrary polygonal meshes using the PieceWise Linear Discontinuous
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(PWLD) finite elements. Arbitrary polygonal meshes can potentially decrease the

number of unknowns to mesh a domain and they simplifies adaptive mesh refine-

ment by suppressing hanging nodes. MIP being SPD, is solved using CG. Therefore,

we compared different CG preconditioners: Algebraic MultiGrid (AMG) precondi-

tioners and the more common Symmetric Gauss-Seidel (SGS) preconditioner. AMG

were shown to be much more efficient than SGS. Among the different AMG methods

tested the AGMG code was the fastest and about 20 times faster than CG used

without preconditioning.

To end this conclusion, we recall the goals that we defined in the proposal:

• reformulate the angular multigrid method as a preconditioner for Krylov solver

for highly forward-peaked scattering.

• adapt MIP for quadrilateral and polygonal cells.

• test algebraic multigrid to solve efficiently MIP.

All these points have been treated in this dissertation.

B Future work

There are several ways to continue this work:

Extension for medical applications:

Modern radiotherapy uses Intensity Modulated Radiation Therapy (IMRT) as

one of the methods to treat cancer. IMRT uses photons to ionize the water

present in the cells to form free radicals which will damage the DNA of the

cancerous cells causing them to die. IMRT allows to have several beams with

different intensity profiles. To optimize the intensity profile, it is very common

to divide the beams in small beamlets of constant intensity. In real applications,

the number of beamlets is around a few thousands. The optimization of the
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position and the intensity of all these beamlets is a very complex problem and

a lot of objective functions and constraints have been proposed [43, 50, 66,

93]. Due to the large number of variables, the number of dose calculations

is very high and any increase in speed of these calculations can significantly

decrease the time needed for the optimization to finish. To be able to compute

the dose in a human body, the existing code needs to be extended to handle

three dimensional geometries. BiLinear Discontinuous finite elements should

be replaced by TriLinear Discontinuous finite elements. PWLD finite elements

in 3D are described in [25]. The code should also be able to use the multigroup

cross sections generated by CEPXS [3]. CEPXS is a code generating multigroup

Coupled Electron-Photon cross sections (XS). I was developed to [3]:

• generate coupled electron-photon cross sections which can be used by

standard discrete ordinates codes.

• model the same physical interactions as Version 2.1 of the Integrated-

TIGER-Series (ITS) code package.

AMG for DSA on massively parallel computers:

AMG algorithms have been developed for massively parallel computers [28, 29]

and for GPU [34]. While developing an AMG method for massively parallel

computers, two steps of the algorithm must be designed carefully: the coars-

ening step and the smoothing step. In [98], the authors explore different coars-

ening methods including an uncoupled algorithm. This uncoupled coarsening

method coarsens the grid without communication between processors. The

problem is that the coarsening depends on the domain partitioning. For the

partitioning to be independent of the domain partitioning, communications

between the processors are required. Another delicate part of AMG is the
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smoothing step. It is very important that the smoother scales well. Some of

the smoothers used in today’s supercomputers will not scale properly with the

next generation of supercomputers [29]. Given all these conditions, it will be

important to verify that AMG preconditioners are still the most effective on

massively parallel computers.

Convergence study of AGMG for MIP and development of AMG for MIP:

A more theoretical study of AGMG, which is the most effective preconditioner,

is needed. The convergence properties of AGMG have been studied for non-

singular symmetric M-matrices with non-negative row sum. MIP produces SPD

matrices but they are not M-matrices due to presence of positive off-diagonal

entries. Therefore, there is no theoretical background for the convergence MIP

using AGMG which is, in this case, a heuristic method. Studying the conver-

gence of AGMG for MIP could lead in a new AMG algorithm or an adaptation

of AGMG for MIP.

Comparison of different AMG methods:

It would be of great interest to compare more AMG schemes, for instance

using the ones of hypre [13]. In this research, most of the parameters kept

their default values but a more extensive study of the effectiveness of AMG

would require tuning each method. The choice of the DSA is very important

because the choice of the discretization has a huge impact on the properties

of the discretized system. Most of the theory for AMG algorithms has been

developed for M -matrices and thus, it might be interesting to derive a DSA

technique that produces such matrices.
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APPENDIX A

ML OPTIONS

Some of the available coarsening schemes in ML [46]:

Uncoupled: Attempt to construct aggregates of optimal size (3d nodes in d di-

mensions). Each process works independently and aggregates cannot span

processes.

MIS: Uses maximal independent set techniques to define aggregates. Aggregates

can span processes. May provide better quality aggregates than Uncoupled,

but computationally more expensive because it requires matrix-matrix product.

Some of the smoothers:

Jacobi

Symmetric Gauss-Seidel

Some of the coarse solvers:

Jacobi

Symmetric Gauss-Seidel

Amesos-KLU: Use KLU through Amesos. Coarse grid problem is shipped to

processor 0, solved, and solution is broadcast.

Amesos-UMFPACK: Use UMFPACK through Amesos. Coarse grid problem

is shipped to processor 0, solved, and solution is broadcast.

Amesos-MUMPS: Use double precision version of MUMPS through Amesos.
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The MultiLevelPreconditioner class provide default values for five different precon-

ditioner types:

• Classical smoothed aggregation for symmetric and positive definite or nearly

symmetric and definite systems (used here)

• Classical smoothed aggregation-based two-level domain decomposition.

• Three-level algebraic domain decomposition.

• Eddy current formulation of Maxwell’s equation.

• Energy-based minimizing smoothed aggregation suitable for highly convective

nonsymmetric fluid flow problems.

The options used in this work are:

option name: SA

max levels: 10

prec type: V−cycle

aggregation type: uncoupled-MIS

aggregation damping factor: 4/3

eigen-analysis type: cg

eigen-analysis iterations: 10

smoother sweeps: 2

smoother damping factor: 1.0
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smoother pre or post: both

smoother type: symmetric Gauss-Seidel

coarse type: Amesos-KLU

coarse max size: 128
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