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ABSTRACT 

 

Two immersed boundary methods (IBM) for the simulation of conjugate heat 

transfer problems with complex geometries are introduced: a finite element (IFEM) and 

a finite volume (IFVM) immersed boundary methods are discussed. In the IFEM a 

projection approach is presented for the coupled system of time-dependent 

incompressible Navier-Stokes equations (NSEs) and energy equation in conjunction with 

the immersed boundary method for solving fluid flow and heat transfer problems in the 

presence of rigid objects not represented by the underlying mesh. The IBM allows 

solving the flow for geometries with complex objects without the need of generating a 

body-fitted mesh. Dirichlet boundary constraints are satisfied applying a boundary force 

at the immersed body surface. Using projection and interpolation operators from the 

fluid volume mesh to the solid surface mesh (i.e., the “immersed” boundary) and vice 

versa, it is possible to impose the extra constraint to the NSEs as a Lagrange multiplier 

in a fashion very similar to the effect pressure has on the momentum equations to satisfy 

the divergence-free constraint. The IFEM approach presented shows third order accuracy 

in space and second order accuracy in time when the simulation results for the Taylor-

Green decaying vortex are compared to the analytical solution.  

For the IFVM a ghost-cell approach with sharp interface scheme is used to 

enforce the boundary condition at the fluid/solid interface. The interpolation procedure 

at the immersed boundary preserves the overall second order accuracy of the base solver. 

The developed ghost-cell method is applied on a staggered configuration with the Semi-

Implicit Method for Pressure-Linked Equations Revised algorithm. Second order 
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accuracy in space and first order accuracy in time are obtained when the Taylor-Green 

decaying vortex test case is compared to the IFVM analytical solution.  

Computations were performed using the IFEM and IFVM approaches for the 

two-dimensional flow over a backward-facing step, two-dimensional flow past a 

stationary circular cylinder, three-dimensional flow past a sphere and two and three-

dimensional natural convection in an enclosure with/without immersed body. The 

numerical results obtained with the discussed IFEM and IFVM were compared against 

other IBMs available in literature and simulations performed with the commercial 

computational fluid dynamics code STAR-CCM+/V7.04.006. The benchmark test cases 

showed that the numerical results obtained with the implemented immersed boundary 

methods are in good agreement with the predictions from STAR-CCM+ and the 

numerical data from the other IBMs. The immersed boundary method based of finite 

element approach is numerically more accurate than the IBM based on finite volume 

discretization. In contrast, the latter is computationally more efficient than the former. 
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NOMENCLATURE 

 

ALE Arbitrary Lagrangian-Eulerian 

BDF Backward Difference Formula 

BEs Boussinesq Equations 

CAD Computer Aided Design 

CFD Computational Fluid Dynamics 

CFL Courant Friedrichs Lewy 

DNS Direct Numerical Simulation 

dg Degree 

EBI Embedded Boundary Integral 

EE Energy Equation 

FD Fictitious Domain    

FDM Fictitious Domain Method 

FMG Full Multi-Grid 

Gr Grashof Number 

IB Immersed Boundary 

IB-LBM Immersed Boundary-Lattice Boltzmann Method 

IBM Immersed Boundary Method 

IIM Immersed Interface Method 

IFEM Immersed Finite Element Method 

IFVM Immersed Finite Volume Method 

ILU Incomplete Lower-Upper 
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KKT Karush-Kuhn-Tuckler 

LBE Lattice Boltzmann Equation 

LBB Ladyzhenskaya-Babuska-Brezzi 

LBM Lattice Boltzmann Method 

LM Lower-Upper 

MPI Message-Passing Interface 

NSEs Navier-Stokes Equations 

PDDF Particle Density Distribution Function 

Pe Peclet Number 

Pr Prandlt Number 

Ra Rayleigh Number 

Re Reynolds Number  

SIMPLER Semi Implicit-Method for Pressure-Linked Equation Revised 

sm Surface Method 

St Strouhal Number 

TDMA Tri-Diagonal Matrix Algorithm 

UMFPACK Unsymmetric Multifrontal Sparse LU Factorization Package 

vm Volume Method 

 

Greek symbols 

Γi(t) Immersed Interface 

μ Fluid Dynamic Viscosity 
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ρ Fluid Density 

Ω Computational Domain 

Ωf(t) Fluid Region 

Ωs(t) Solid Region 

Mathematical Operators 

B Divergence Operator 

B
T

Gradient Operator 

F Volumetric Force Vector 

f Non-Dimensional Volumetric Force Vector 

L Implicit Viscous Matrix 

M Mass Matrix 

N Implicit Advection Matrix 

P Pressure 

p Non-Dimensional Pressure 

p’ Non-Dimensional Pressure Correction 

U Velocity Vector 

u Non-Dimensional Velocity Vector 

U0 Reference Velocity 

U Reference Velocity 
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1. INTRODUCTION  

 

The numerical solution of the Navier-Stokes equations (NSEs) requires a spatial 

and temporal discretization for Finite Difference, Finite Volume and Finite Element 

methods. The former is performed through a triangulation or mesh of the spatial domain. 

Most of the commercial flow solvers are based on body-fitted mesh tools (i.e., the mesh 

conforms to all computational domain surfaces). This approach allows to have a direct 

imposition of the initial and boundary conditions at the surfaces of immersed bodies. In 

the Computational Fluid Dynamics (CFD) community an increased interest in solution 

algorithms with non-body conforming grids has been shown, in particular for flow 

through geometries that change (e.g., vibration of the spacer grids in a fuel assembly of a 

nuclear reactor core). It is difficult to simulate meshes that accurately resolve this 

possibly moving geometry. One approach to deal with this situation is to use a fixed 

mesh for the overall volume of interest, without trying to resolve the moving geometry, 

and to enforce fluid boundary conditions on these “immersed” boundaries through 

constraints posed in addition to the flow equations. The same approach can also be used 

for cases where the geometry may not be moving but is so complex that it cannot be 

adequately resolved using non-body fitted meshes. 

Methods that follow this approach have been introduced in a number of contexts 

and are typically referred to as Immersed Boundary Method (IBM), Immersed Interface 

Method (IIM), Embedded Mesh, Fictitious Domain Method (FDM), differing in the 

details of the additional constraints implementation and enforcement at the fluid/solid 
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interface. These methodologies share the idea that the spatial discretization of both fluid 

and solid regions belongs to the same underlying mesh, and the mesh points in general 

do not conform to the fluid/solid interface. The fact that the mesh does not have to 

conform to the solid objects present in the computational domain makes the whole 

process of meshing orders of magnitude less costly than the body-fitted approach. In 

general a regular parallelepiped is used with uniform grids (i.e., Cartesian mesh), or an 

adaptive mesh refinement to have a better discretization close to body surface. The 

immersed boundaries (i.e., the obstacles which are usually considered to be “immersed” 

bodies) are discretized with an overlapping mesh from which the only information 

required is the location of the points describing the solid surface. The IBM is particularly 

efficient for immersed moving objects, where it does not require a new mesh at each 

time step, but only the updated position of the points describing the immersed body 

surface. In fact, while the immersed body may move and/or change shape, this elastic 

deformation is typically primarily a translation and updating the immersed body mesh is 

therefore much simpler than it would be to update a mesh that always tracks the shape of 

the fluid-filled part of the domain. 

 

1.1 Overview of Existing IBM Methodologies 

Two possible approaches can be used to determine the boundary force in the 

IBM: feedback forcing, and direct-forcing methods. In feedback forcing methods the 

boundary force is computed as a feedback effect on the position/velocity at the immersed 

body boundary points which must satisfy the no-slip constraint at the next iteration. In 
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contrast, in direct-forcing methods, the boundary force is directly determined by using 

the flow equations, such as the Navier-Stokes momentum equations, or the lattice 

Boltzmann equation. 

When IBMs are implemented, interface schemes are required at the solid surface, 

since in general, the immersed body interface does not match the underlying 

computational mesh. Diffuse or sharp interface schemes can be used. In diffuse interface 

schemes, the forcing points, where the boundary force is evaluated, are located on the 

solid boundary. In the sharp interface scheme the forcing points are distributed on the 

computational nodes close to the fluid/solid interface. Using diffuse interface schemes, it 

is necessary to project the boundary force effect on the computational nodes. The 

projection operation adds a diffuse effect of the boundary force, hence the name diffuse 

interface schemes. In sharp interface schemes, the velocity on the forcing nodes is 

directly determined by interpolation, so that the corresponding boundary point satisfies 

the no-slip condition. 

The feedback forcing IBM was originally introduced by Peskin [1] to simulate 

flow inside a heart with flexible valves. The forcing function was computed using 

Hooke’s law [1, 2]. This technique was later extended to rigid bodies by taking a very 

large value for the spring constant [3, 4]. Goldstein et al. [5] applied the concept of 

feedback control to compute the force on the rigid immersed surface. For this 

methodology the choice of gain (stiffness) remains ad hoc and large gains result in stiff 

equations. More details on the feedback forcing IBM can be found in [6 – 9]. 
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The IBM received more attention in recent years. It has been applied also for 

interaction of moving body and fluid flow [10 – 12]. In the original IBM, the structure is 

considered embedded into the fluid. Additional source terms are imposed to simulate the 

force applied by the structure to the fluid. Depending on how the source terms describing 

the presence of the immersed object are imposed it is possible to have a continuous 

forcing approach, where the source terms are directly applied in the continuous 

equations, or a discrete forcing approach, where the forcing terms are imposed in the 

resulting system of linear equations. 

Lima E Silva et al. [13] proposed a different approach to compute the forcing 

term, based on the evaluation of the various momentum equation terms at the rigid 

boundary (direct-forcing). Second order Lagrange polynomials approximation are used 

to determine the forcing term. Another similar approach that combines the original IBM 

with direct and explicit forcing was introduced by Uhlmann [14] for the simulation of 

particulate flows. The forcing term at the boundary is evaluated based on the no-slip 

constraint for the fluid velocity at the immersed boundary surface given by the rigid-

body prescribed motion and a preliminary velocity obtained explicitly without the 

application of the forcing term. 

Other Cartesian grid methods have been developed. We mention the ghost-cell 

finite difference approach of Tseng and Ferziger [15], Majumdar [16], Ghias et al. [17, 

18], Mittal et al. [19] and the cut-cell finite volume approach [20, 21]. In the ghost-cell 

approach, the ghost cells are interior to the body and have at least one neighbor in the 

fluid region. The required ghost-cell values are extrapolated to impose the boundary 
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condition implicitly. In the cut-cell approach, the cells in the Cartesian grid cut by the 

boundary are identified and reshaped. Polynomial interpolation functions are then used 

to approximate the fluxes and gradients on the faces of these cells while preserving 

second-order accuracy. The extension of cut-cell methods to three dimensions is not 

straightforward because of the complex cut-cell procedure. 

Another approach for treating the immersed boundary is the Embedded 

Boundary Integral (EBI) method [22], where the irregular flow domain is embedded 

inside a larger regular domain for which fast solvers are available. The EBI method uses 

an integral formulation to compute the jumps of the velocity and its derivatives at the 

interface. Then the jumps are used as source terms at the grid points close to the 

interface. This idea is similar to the Immersed Interface Method (for more details see [23 

– 26]). 

The Lattice Boltzmann Method (LBM) has been extensively used to simulate 

complex flows as an alternative to the NSEs (see [27, 28]). The Lattice Boltzmann 

Equation (LBE) is a kinetic equation of particle density distribution functions (PDDF) 

discretized on a Cartesian grid. The moments of PDDFs provide hydrodynamic variables 

such as density, velocity, etc., at mesh points. The use of Cartesian grids motivates the 

coupling of LBM with IBM, which is referred as the Immersed Boundary-Lattice 

Boltzmann Method (IB-LBM). By replacing the NSEs with the LBE for flow field 

calculations, the same IBM discussion applies to both methodologies. For brevity we 

refer to Kang and Hassan [29] for an extensive discussion of IB-LBM and further 

references therein. 
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Boffi et al. [30] presented a finite element implementation of the IBM using 

Dirac function to determine the fluid-structure interaction force. Space-time 

discretization stability issues are addressed by Boffi [31] and Heltai [32]. Zhang et al. 

[33] present the immersed finite element method for the solution of fluid-structure 

interactions with deformable solids, where a Lagrangian mesh for the solid moves on top 

of an Eulerian mesh for the fluid covering the entire domain. A discretized delta function 

is used for the fluid/solid coupling at the interface. 

Glowinski et al. [34, 35] proposed a Distributed Lagrange Multiplier (DLM) 

Fictitious Domain (FD) method which was further extended to obtain finite element 

solutions around moving rigid bodies using meshes which are not body-fitted [36 – 39]. 

The DLM-FD method was improved by avoiding the explicit calculation of the 

Lagrange multipliers by Patankar et al. [40, 41] and introducing body forces to enforce 

the rigidity constraint which they named non-DLM/FD method. The same method is 

used by Yu and Shao [42] and Diaz-Goano et al. [43] with minor differences in the non-

DLM-FD formulation. Later Sharma and Patankar [44], Veeramani et al. [45] and Apte 

et al. [46] used the same non-DLM-FD procedure. Sharma and Patankar [44] 

implemented the method with finite volume and Semi Implicit Method for Pressure 

Linked Equation Revised (SIMPLER) algorithm [47, 48] for pressure-velocity coupling. 

Apte et al. [46] used a standard fractional step finite volume method, while Veeramani et 

al. [45] implemented the non-DLM/FD method in a finite element framework. 

An IBM implemented inside an edge-based finite element solver is presented by 

Löhner et al. [49, 50]. The embedded surfaces are represented by a triangulation, while 
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the immersed bodies are given by a tetrahedral mesh independent of the computational 

mesh. 

Codina et al. [51] present a finite element solution of the flow around immersed 

objects using the fixed mesh Arbitrary Lagrangian-Eulerian (ALE) approach. The solid 

boundary is represented using a level set function defined on a background fixed mesh, 

with the moving boundary treated by an ALE technique in the region close to the 

immersed surface, and least-squares approximations are used for the boundary 

conditions on the immersed body. 

Ilinca and Hétu describe in [52, 53] a 3-D finite element with IBM represented 

using a level set function. The immersed boundary is discretized by the same 

interpolation functions used to solve the flow problem. 

Taira and Colonius [54] use finite volume approach for a new formulation of the 

immersed boundary method with a structure identical to the traditional fractional step 

method for incompressible flow over bodies with prescribed surface motion. The 

boundary force applied at the immersed surface to satisfy no-slip constraint is 

determined using regularization and interpolation operators. The immersed boundary 

force acts as a Lagrange multiplier to satisfy the no-slip condition, in a way similar to the 

effect of pressure on the momentum equations to satisfy the divergence-free constraint. 

This approach completely removes all tuning parameters for the boundary force, 

allowing to formulate the IBM in a general framework for rigid bodies and bodies with 

prescribed surface motion. 
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1.2 Current Approach 

In this work a finite element approach and a finite volume approach coupled with 

the Immersed Boundary Method and direct-forcing are used to solve the time-dependent 

incompressible NSEs and the energy equation for flow around stationary rigid bodies. In 

the Immersed Finite Element Method (IFEM) implementation, the boundary forces are 

treated in a way similar to the discretized pressure. For the incompressible NSEs, the 

pressure can be assumed as a Lagrange multiplier required to guarantee the divergence-

free constraint (see [36 – 38]). Introducing a projection operator for the velocity field, 

the no-slip boundary condition at the fluid/solid interface can be viewed as an additional 

constraint. Then, the force acting on the fluid at the immersed surface can be easily 

determined in a fully implicit way. The discretized incompressible NSEs with IBM still 

present a structure algebraically similar to the traditional fractional step method. 

Although fractional step methods with immersed boundary techniques have been 

previously implemented, the IBM has not been considered as part of the fractional step 

method for the finite element formulation to the authors knowledge. As pointed out in 

[52], the use of finite element methods allows to discretize the immersed boundary 

surface with the same shape functions used to solve the flow problems, and an ad hoc 

projection and interpolation operators are not necessary. 

On the other hand, for the Immersed Finite Volume Method (IFVM) 

implemented, an explicit sharp interface scheme was used, where the velocity on the 

forcing nodes inside the embedded body was directly determined by interpolating the 

velocity in the fluid regions nodes close to the immersed body surface, in such a way to 
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satisfy the no-slip boundary condition at the at the fluid/solid interface. The boundary 

conditions on the immersed body are imposed by using the ghost-cell approach, where 

ghost cells are defined as additional cells inside the immersed body, with at least one 

neighbor in the fluid domain. No ad hoc constants are used for the IFVM procedure, and 

no momentum forcing terms are necessary for the fluid cells. Consequently the method 

results in a “sharp” representation of the immersed boundary. The boundary conditions 

for the immersed body are imposed exactly at the fluid/solid interface without any 

spreading of the boundary forcing term into the fluid. The coupling between pressure 

and velocity was achieved by implementing a Semi-Implicit Method for Pressure-Linked 

Equation Revised (SIMPLER) algorithm on a staggered grid arrangement [47, 48]. A 

fully implicit scheme is used for time discretization, and a second order upwind scheme 

is used for discretizing the flux term (convection fluxes). Central difference 

discretization is used for the viscous term. A Geometric Multigrid Method was used to 

accelerate the convergence rate of the SIMPLER algorithm. Note that in literature are 

available only a few studies using pressure correction methods for solving the NSEs 

coupled with the IBM. Shen et al. [55, 56] used SIMPLEC [48, 57] type methods for 

pressure-velocity coupling. 

In the finite element formulation we follow the approach of Perot [58] and Chang 

et. al. [59] where the fractional step method is written as a block-LU decomposition. The 

force generated at the immersed boundary surface and the no-slip constraint are 

determined in a way similar to the Distributed Lagrange Multiplier (DLM) method of 

Glowinski [36]. 
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In Section 2 is presented the mathematical formulation for the IFEM approach, 

the traditional fractional step method is discussed and the immersed boundary 

formulation coupled with the projection method chosen is introduced. In Section 3 is 

presented the mathematical formulation for the IFVM approach. The spatial and 

temporal accuracy of the presented direct-forcing IBMs for time-dependent 

incompressible NSEs with fractional step method and finite element/volume 

discretization was investigated for the Taylor-Green decaying vortex for which an 

analytical solution is available. For the IFEM the comparison shows a third order 

accuracy in space as expected by using bi-quadratic shape functions for discretizing the 

velocity field, and a second order accuracy in time congruent with the discretization 

scheme used. For the IFVM a second order accuracy in space and a first order accuracy 

in time were determined. 

Computations were performed for two-dimensional and three-dimensional 

benchmark cases considering fluid flow and heat transfer problems. The numerical 

results were compared with both experimental data, an extensive review of numerical 

simulations present in literature, and simulation performed with the commercial code 

STAR-CCM+/V7.04.006. In Section 4 are discussed the analyses performed and the 

comparison of the numerical results are shown. In Section 5 are outlined the main 

differences between the IFEM and IFVM approaches developed. In Section 6 is 

presented the scalability analysis for the parallel version of the IFVM approach. In 

Section 7 are presented the conclusions and future developments for the implemented 

immersed boundary formulations. 
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2. IMMERSED FINITE ELEMENT METHOD PROBLEM ASSESSMENT 

 

In this work are considered incompressible fluid flow problems on a bounded 

computational domain Ω, formed by the fluid region Ωf(t) and the solid region Ωs(t). In 

Figure 1 is shown the reference computational domain. The immersed interface Γi(t) = 

∂Ωf ∩ ∂Ωs at time t represents a boundary for the fluid region. Therefore boundary 

conditions (i.e., forces) on the fluid contained in Ωf(t) must be present to respect the no-

slip constraint. 

 

 

Figure 1. Reference computational domain. 

 

2.1 Time-Dependent Incompressible Navier-Stokes Equations and Boundary Conditions 

The equations describing the fluid flow motion considered are the time-

dependent incompressible NSEs:  

  
0

TU
U U P U U F

t

U

 
 

          
 

 

 ]0, [fin T     (1) 
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where U is the velocity vector, ρ is the fluid density, P is the pressure, μ is the 

dynamic viscosity and F is the volumetric force vector. If we use a reference velocity U0 

and reference length L, the time-dependent incompressible NSEs can be written in non-

dimensional form and eq. (1) reads as: 

  1

Re

0

Tu
u u p u u f

t

u


         



 

 ]0, [fin T     (2) 

where u = U/U0 is the non-dimensional velocity vector, p = P/ρU0
2
 is the non-

dimensional pressure, f = F•L/ρU0
2
 is the non-dimensional volumetric force vector, and 

Re is the Reynolds number defined as: 

Re
UL


           (3) 

The initial conditions are: 

00t
u u


  fin           (4) 

and the boundary conditions associated with the momentum-continuity equations are: 

  ,D Du u x for x          (5) 

    
1

,
Re

T

tu u n pn t x for x             (6) 

where ΓD is the portion of fluid boundary ∂Ωf where Dirichlet conditions are imposed, 

and  t x  is the total stress imposed on the remaining fluid boundary Γt = ∂Ωf\ΓD. Since 

no-slip constraint is assumed at the interface fluid/solid region, Dirichlet boundary 

conditions would be imposed at the fluid/solid interface Γi. We are using the IBM to 

determine the effect of the solid body on the fluid flow, therefore, Γi is not directly 



 

13 

 

represented by the finite element discretization. Section 2.4 discusses the immersed 

boundary formulation used to enforce velocity boundary conditions on the immersed 

surface. 

 

2.2 Finite Element Formulation of the Time-Dependent Incompressible Navier-Stokes 

Equations 

If we write the time-dependent incompressible NSEs system in vector form: 

  1

Re
0

Tu
fu u p u u

t

u

 
                 

     (7) 

the weak form is obtained by forming the dot product from the left of eq. (7) with a 

vector-valued test function  Φ = (v, q), and integrating over the entire domain Ωf. The 

weak form read as: 

     

     

1
, , ,

Re

, , ,

f
f

f

f f f

Tu
v v u u v u u

t

v p q u v f






  

 
        

 

   

    (8) 

where (•,•)Ω represents a volume integral over Ω. Eq. (8) has to hold for all vector-valued 

test function Φ = (v, q). Defining the symmetric tensor     1

2

T
u u u     , and 

integrating by parts the third and fourth terms on the lhs of eq. (8) we have: 

       

       

2 2
, , , ,

Re Re

, , , ,

f f f

f

f f f f

u
v v u u v u n v u

t

v p n v p q u v f

 
  



   

 
      

 

      

   (9) 

The Dirichlet boundary conditions for the velocity are: 
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  ,D Du u x for x          (10) 

Since the test function v belongs to the tangent space of the solution variable

0, Dv for x  , then: 

    
2

, , 0
Re DD

n v u n v p


           (11) 

As expected, strongly imposed boundary conditions do not appear in the weak 

form. For Neumann-type boundary conditions on the rest of the boundary ΓN = ∂Ωf\ ΓD 

we rewrite the boundary terms as: 

         
2 2

, , , ,
Re ReN NN

N

n v u n v p v n pI u v t x 
 



  
         

  
 (12) 

where: 

   
2

Re
t x n pI u

 
   

 
        (13) 

Eq. (13) is formally identical to eq. (6). With the Neumann boundary conditions 

available, the weak form eq. (9) can be written as: 

 

    

       

2
, , ,

Re

, , , ,

f f

f

f f Nf

u
v v u u v u

t

v p q u v f v t x


 



  

 
    

 

     

    (14) 

where ˂•,•>Γ represents an integral over the surface Γ. It is also possible to 

combine Dirichlet and Neumann boundary conditions by enforcing each of them for 

some of the velocity components. The outflow boundary condition is obtained requiring 

the flow to be perpendicular to the boundary (i.e., the tangential velocity to the outflow 
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surface is set to zero). The other velocity components are constrained setting to zero the 

normal component of the normal stress on the outflow surface: 

 

 

1 0

2
0

Re

tu n n u

n n pI u

   

  
     

  

        (15) 

where n is the normal to the outflow surface. The discretization of the weak form for the 

incompressible NSEs with Dirichlet and Neumann boundary conditions reads: 

    

    

       

  

1 2

1

: , . .

2
, , ,

Re

, , , ,

: 0 ,

D

N

D

d

g D

d

g

find u V H u p Q L s t

u
v v u u v u

t

v p q u v f v t x

v V H q Q

 



 



 


  



       

 
     

 

      

      

    (16) 

where for generality we used Ω referring to the fluid region Ωf. These equations 

represent a saddle point problem. A solution only exists if the function spaces in which 

we search for a solution satisfy certain conditions, referred as the Babuska-Brezzi or 

Ladyzhenskaya-Babuska-Brezzi (LBB) conditions [61]. The continuous functions 

chosen satisfy the required conditions. When we discretize the equations by replacing 

the continuous variables and test functions by finite element functions (i.e., polynomials 

of order n) in finite dimensional spaces , ,g h g hV V Q Q  , we have to make sure that 

also , ,g h hV Q  satisfy the LBB conditions. For the time-dependent incompressible NSEs a 

number of possible choices is available which will respect the LBB conditions. A simple 

and accurate choice used for the present work is 1,
d d

h p h pu Q p Q  i.e., to use elements 
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one order higher for the velocity vector than for the pressure. Then the discretized 

problem for the time-dependent incompressible NSEs reads: 

    

       

1

, ,

, . .

2
, , ,

Re

, , , ,

,

N

d d

h p h p

h
h h h h h h

h h h h h h

h g h h g h

find u Q p Q s t

u
v v u u v u

t

v p q u v f v t x

v V q Q





 


  

 

 
    

 

      

  

     (17) 

 

2.3 Fractional Step Method 

The weak form of the Navier-Stokes equations leads to a linear system for the 

nodal values of the velocity vector and pressure. It is necessary to address the 

formulation to be chosen for the transient term, the viscous term and the convective term 

in the momentum equations. For the sake of generality, let’s assume that appropriate 

discretization for these three terms are chosen. Then the system of eq. (17) can be 

written in matrix form as: 

1

1
. .

0 0

nnT

n

fuM N L B
b c

B p





    
        

     

      (18) 

where M, N and L are sparse matrices representing the mass matrix, the implicit 

advection term and the implicit viscous term in the momentum equation, respectively. B
T
 

represent the gradient operator acting on the pressure, B is the divergence operator 

projecting the velocity vector on a divergence-free field. The right hand side of eq. (18) 

consists of the discretized volumetric force and the explicit terms from the momentum 

equations. Inhomogeneous terms from the boundary conditions must also be considered.  
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One possible approach to solve the system of eq. (18) would be to use the Schur 

complement. However, the condition number for the Schur complement is proportional 

to 

2
1

t

 
 
 

, where t  is the time step used for the temporal discretization. This makes the 

system very difficult to solve. The reason why the time-dependent incompressible NSEs 

show this behavior is the character of the pressure term. The velocity and the pressure 

are coupled through the constraint 0u  , for which the pressure is a Lagrange 

multiplier. The fractional step method (or equivalently projection method) is a well-

established approach (see [58, 59, 62, 63, 64, 65]) used to decouple the pressure from the 

velocity field. In the present work, the second order backward difference formula 

(BDF2) is used to discretize the time derivative; the viscous term is treated in a fully 

implicit way. A complete description of the projection method used can be found in [66, 

67] referred to as second-order pressure-correction scheme. 

An overview of the steps involved and the equations solved is presented below. 

The objective is to obtain a sequence of velocities and pressures  ,k ku p  and pseudo 

pressure  k . From the initial conditions, using a first order method we compute 

 0 0 0, ,u p  and  1 1 1 1 0, ,u p p p   . The fractional step method consists of the 

following steps: 

 Step 0: Extrapolation. Define: 

* 1 14 1
2 ,

3 3

k k t k k ku u u p p              (19) 
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 Step 1: Diffusion step. We solve the time-dependent incompressible NSE linear 

system for 1ku  : 

   

  

1 1 * 1 * 1

1 1 1

1 1
3 4

2 2

2

Re

k k k k k

T
k k t k

u u u u u u u
t

u u p f

   

  

     


      

      (20) 

1 1, 0
D N

k k

Du u u n 

 
           (21) 

 Step 2: Projection step. A Poisson equation for the pseudo pressure 1k   is solved 

with the velocity field computed from the diffusion step: 

1 13

2

k ku
t

    


         (22) 

1 10, 0
D N

k k

n  

 
           (23) 

The boundary conditions chosen for 1ku   and 1k  are a special case of the outflow 

boundary conditions addressed in eq. (15). 

 Step 3: Pressure correction. Two formulations can be used: 

  The Standard form. The pressure is updated by: 

1 1k k kp p             (24) 

  and the Rotational form. The pressure is updated by: 

1 1 11

Re

k k k kp p u              (25) 

Following there are a few comments on the projection method used for this work. The 

advection term u u  is replaced by its skew symmetric form  
1

2
u u u u   . This 
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is consistent with the continuous equations (i.e., at convergence 0u  ). This choice 

guarantees unconditional stability of the time-stepping scheme. The second order 

extrapolation *u of 1ku   is used. The projection step is a realization of the Helmholtz 

decomposition: 

    
2

2 1d
L H H     

where: 

  
1

2 : 0, 0
d

H v L v v n


        

and: 

    
2 2

1 1 : 0H q H q 
      

Using this decomposition on 1ku   we obtain: 

1 1 12

3

k k kt
u v    

  
 

        (26) 

where 1kv H  . The divergence of eq. (26) gives eq. (22). 

 

2.4 Immersed Boundary Projection Method 

In the following section is described the immersed boundary approach coupled 

with the fractional step method for the incompressible time-dependent NSEs. The form 

of eq. (18) is known as the Karush-Kuhn-Tuckler (KKT) system used for constrained 

optimization problems [68]. It is worth to note that the pressure does not play a direct 

role in time advancement, acting as a set of Lagrange multipliers to minimize the system 

energy and satisfy the kinematic constraint of divergence-free velocity field. Following 
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this idea, it is possible to think of the algebraic constraint of no-slip boundary conditions 

present at the immersed boundary surface as additional Lagrange multipliers. Therefore, 

we add the no-slip constraint from the IBM into the fractional step method as additional 

Lagrange multipliers in a style similar to the approach used by Glowinski et al. [36] in 

their distributed Lagrange multiplier/fictitious domain method. 

 

2.4.1 The Discretized Time-Dependent Incompressible NSEs with Surface Boundary 

Force 

The IBM introduces a set of Lagrangian points (XK) representing the surface Γi(t) 

of the immersed body at time t within the computational domain which does not need to 

conform to the “immersed” body shape (i.e., non-body fitting mesh). In general the IB 

surface is provided in the form of a CAD file from which we generate a surface mesh 

with a mesh size sufficiently refined to have a correct coupling of the fluid mesh and the 

immersed body mesh. At the Lagrangian points, approximate surface forces fK are 

applied to enforce the no-slip condition along Γi(t). In Figure 2 is shown a reference 

setup of the immersed body surface mesh and the underlying fluid mesh with the 

location of the Lagrangian points where the surface forces are applied. From the figure it 

is possible to note that, in general, the location of the Lagrangian boundary points does 

not coincide with the underlying fluid mesh discretization. Therefore, it is necessary to 

build a projection operator P from the fluid volume mesh to the immersed body surface 

mesh and an interpolation operator P
T
 from the surface mesh to the fluid volume mesh. 



 

21 

 

Writing the time-dependent incompressible NSEs with immersed boundary 

method, it is possible to have a discretized form of the projection operator, which 

consists of interpolating the shape functions used for the fluid volume mesh on the 

immersed boundary surface mesh. This can be easily handled in finite element method 

framework by the deal.II library chosen [69] to perform the numerical simulations. 

 

 

Figure 2. Setup of the Lagrangian points for the IB surface mesh approach. 

 

The incompressible NSEs with a boundary force fK, and the no-slip condition at 

the fluid/solid interface, can be considered as the continuous analog of the IBM: 

  
    

 

      
 

    

1

Re

, ]0, [

0 ]0, [

, , ,

i

i

T

K

t

IB i

t

u
u u p u u f

t

f X s t X x ds in T

u in T

u X s t u x t x X dx u X s t on t










         



  

  

   





  (27) 
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where x in Ω (volume mesh), X(s,t) in Γi(t) (surface mesh) is the position of a point on 

the immersed boundary surface indexed by a position s in the reference configuration at 

time t, and the last term on the rhs of the first in eq. (27) represents the effect of the 

immersed body on the fluid, that is the integral of the surface forces fK applied at the 

fluid/solid interface Γi(t). For the time being, only rigid fixed immersed boundaries are 

considered where X(s,t) = X(s,0) = X(s) and uIB(X(s,t)) = 0. The application of the 

discussed IBM to rigid immersed bodies moving at a predetermined velocity uIB(X(s,t)) ≠ 

0 is straightforward. By forming the dot product from left of eq. (27) with a vector-

valued function Φ = (v, q, φ), the weak form of the system of eq. (27) is obtained: 

         

      
 

  
 

   
 

  
 

 

1
, , , , ,

Re

, , , ]0, [

, , , ,

, ,

i

i

i

i

T

K

t

t

t

IB i
t

u
v v u u v u u v p q u

t

v f v f X s t X x ds in T

u X s t u x t x X dx

u X s t on t



  



  










 



 
            

 

 
   
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where  ,


 and ,

 represent volume and surface integrals, respectively. Eq. (28) 

has to hold  Φ = (v, q, φ). The last term in the first of eq. (28) can be written as: 
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   (29) 

where λ(x,t) are the projection of the Lagrange multipliers due to the force present at the 

immersed body interface from the surface mesh to the fluid volume mesh:  
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and P
T
 represents the interpolation operator (immersed body surface mesh → fluid 

volume mesh). In the same way, the second of eq. (28) can be written as: 
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where u(X(s,t) represents the fluid velocity projected on the immersed body mesh: 

        , , ,u X s t u x t x X dx Pu x t


        (32) 

After integrating by parts the third and fourth terms on the lhs in the first of of 

eq. (28), the discretization of the weak form for the time-dependent incompressible 

NSEs with Dirichlet and Neumann boundary conditions and IBM reads: 
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(33) 

where strongly imposed boundary conditions (i.e., Dirichlet-type) do not appear in the 

weak form, whereas Neumann-type boundary conditions are still present (see Section 

2.2). The solution for the velocity, pressure and Lagrangian multipliers fields is found in 

the function spaces u Vg = {ΦH
1
(Ω)

d 
: ΦΓD = u D }, pQ =L

2
(Ω), λ Λg = {φH

1
(Ω)

d-
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1
}. When we discretize the NSEs with IBM by replacing the continuous variables and 

test functions by finite element functions in finite dimensional spaces Vg,hVg, QhQ, 

Λg,hΛg, we make sure that Vg,h, Qh and Λg,h satisfy the LBB conditions by choosing 

elements one order higher for the velocity vector than for the pressure. The Lagrange 

multipliers elements can have either the same order of the velocity vector or pressure 

field. Discretizing the time-dependent incompressible NSEs with IBM and replacing the 

continuous variables and test functions by finite element functions in finite dimensional 

spaces we obtain: 

      
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   (34) 

 

2.4.2 The Discretized Time-Dependent Incompressible NSEs with Volume Boundary 

Force 

The immersed body can be also discretized with a volume mesh overlapping on 

the fluid volume mesh. In this case, the IBM introduces a set of Lagrangian points (XK) 

representing the immersed object ω(t). The fluid volume mesh does not need to conform 

to the body shape (i.e., non-body fitting mesh). In general the IB is provided in the form 

of a CAD file from which we generate a volume mesh with a mesh size sufficiently 

refined to have a correct coupling of the fluid mesh and the immersed body mesh. At the 
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Lagrangian points, approximate volume forces fK are applied to enforce the no-slip 

condition along the fluid/solid body interface Γi and inside the immersed body volume 

ω(t). In Figure 3 is shown a reference setup of the immersed body volume mesh and the 

underlying fluid mesh with the location of the Lagrangian points where the volume 

forces are applied. Since, in general, the location of the Lagrangian boundary points does 

not coincide with the underlying fluid mesh discretization, it is necessary to build a 

projection operator P from the fluid volume mesh to the immersed body volume mesh 

and an interpolation operator P
T
 from the immersed boundary volume mesh to the fluid 

volume mesh. The approach used is analogous to that used for the IBM surface mesh 

approach, where the discretized form of the projection operator is obtained interpolating 

the shape functions used for the fluid volume mesh on the immersed boundary volume 

mesh. The deal.II library [69] was used to perform the numerical simulations. 

 

 

Figure 3. Setup of the Lagrangian points for the immersed boundary volume mesh. 
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The incompressible NSEs with a IB volume force fK, and the no-slip condition 

enforced on the entire IB volume ω(t), can be considered as the continuous analog of the 

IBM: 
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    
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
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  





   (35) 

where x in Ω (fluid volume mesh), X(s,t) in ω(t) (immersed body volume mesh) is the 

position of a point on the immersed body indexed by a position s in the reference 

configuration at time t, and the last term on the rhs of the first in eq. (35) represents the 

effect of the immersed body on the fluid, that is the integral of the volume forces fK 

applied on the immersed body volume ω(t). For the time being, only rigid fixed 

immersed boundaries are considered where X(s,t) = X(s,0) = X(s) and uIB(X(s,t)) = 0. 

The application of the discussed IBM to rigid immersed bodies moving at a 

predetermined velocity uIB(X(s,t)) ≠ 0 is straightforward. By forming the dot product 

from left of eq. (35) with a vector-valued function Φ = (v, q, φ), the weak form of the 

system of eq. (35) is obtained: 
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 (36) 

Note that the integral in the second of eq. (36) are carried out over the entire 

immersed body volume mesh ω(t) whereas in the immersed body surface mesh approach 

the no-slip condition at the solid boundary was enforced by imposing a constraint on the 

velocity at the fluid/solid interface Γi(t) as shown in eq. (28). Eq.(36) has to hold  Φ = 

(v, q, φ). The last term in the first of eq. (36) can be written as: 
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   (37) 

where  ,x t  are the projection of the Lagrange multipliers due to the force present on 

the immersed body from the immersed body volume mesh to the fluid volume mesh: 

      
 

  , , ,T

K

t

x t f X s t X x ds P X s t


         (38) 

and 
TP represents the interpolation operator (immersed body volume mesh → fluid 

volume mesh). In the same way, the second of eq. (36) can be written as: 
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where u(X(s,t)) represents the fluid velocity projected on the immersed body mesh:  

        , , ,u X s t u x t x X dx Pu x t


        (40) 

After integrating by parts the third and fourth terms on the lhs of eq. (40), the 

discretization of the weak form for the time-dependent incompressible NSEs with 

Dirichlet and Neumann boundary conditions and IBM reads: 
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 (41) 

Note the absence of strongly imposed boundary conditions (i.e., Dirichlet-type) in the 

weak form, whereas Neumann-type boundary conditions are still present.   

The solution for the velocity, pressure and Lagrangian multipliers fields is found 

in the function spaces u Vg = {ΦH
1
(Ω)

d 
: ΦΓD = u D }, pQ =L

2
(Ω), λ Λg = {φ

H
1
(Ω)

d-1
}. When we discretize the NSEs with IBM by replacing the continuous variables 

and test functions by finite element functions in finite dimensional spaces Vg,hVg, Qh

Q, Λg,hΛg, we make sure that Vg,h, Qh and Λg,h satisfy the LBB conditions by choosing 

elements one order higher for the velocity vector than for the pressure. The Lagrange 
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multipliers elements can have either the same order of the velocity vector or pressure 

field. Discretizing the time-dependent incompressible NSEs with IBM and replacing the 

continuous variables and test functions by finite element functions in finite dimensional 

spaces we obtain: 
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2.4.3 The Discretized Time-Dependent Incompressible NSEs with Immersed Boundary 

Projection Method 

In Section 2.3 we described the discretization in time and space chosen for the 

NSEs unsteady term, advection and viscous term, respectively. We also described the 

fractional step method. Applying the same fractional step method for time discretization 

to the system of eq. (34) for the IBM with immersed body surface mesh approach or eq. 

(42) for the IBM with immersed body volume mesh approach, the following linear 

system needs to be solved for each time step: 
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where P is the projection operator from the fluid volume mesh to the immersed body 

surface/volume mesh, h
n
 and λ

n+1
(X) are the no-slip boundary condition and the 

Lagrange multipliers at the immersed body surface/volume mesh, respectively, and P
T
 is 

the interpolation operator from the immersed body surface/volume mesh to the fluid 

volume mesh. The other terms in eq. (43) are identical to those defined in eq. (18). The 

system of eq. (43) is very similar to the system of eq. (18). Algebraically speaking, there 

is no need to make a distinction between p
n+1

 and λ
n+1

, and they could be considered as a 

single vector of Lagrange multipliers (see [54]). For algorithm reasons we kept p
n+1

 and 

λ
n+1

 separate in our implementation. 

In solving the system of eq. (43), we first consider the subsystem: 
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       (44) 

where A = M + N + L. This is equivalent to solve the diffusion step of the projection 

method described in Section 2.3. At this point we have two options for the Lagrange 

multipliers of the IBM. Either solve the system for both u
n+1

 and λ
n+1

 at the same time, 

or find a LU decomposition of eq. (44) and use an approximation of A
-1

. In the first 

approach, after applying the boundary conditions to the matrix A, we solve for: 
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Multiplying the first of eq. (45) by PA
-1

 we obtain: 
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And using the second of eq. (46), we can solve for λ
n+1

 and u
n+1

: 
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We calculate the inverse of A with the Conjugate Gradient iterative method, and 

use as preconditioner for A UMFPACK in two dimensions and ILU in three dimensions. 

For the Schur complement S = PA
-1

P
T
 we used a very simple and efficient 

preconditioner   
1

11 TS P diagA P


  . With this preconditioner, the Conjugate 

Gradient method for the first of eq. (47) converged in 5-7 iterations depending on the 

mesh size. Without preconditioner, the number of iterations required to obtain 

convergence for the Lagrange multipliers is strongly dependent on mesh size (i.e., 

becomes larger than 200 iterations for the finest mesh considered).   

In the second approach we apply a LU decomposition to the system of eq. (44): 
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It is easy to show that the system of eq. (48) is equivalent to eq. (44). Eq. (48) can be 

written as: 
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where 
 

 

*

1n

u x

X 

 
 
 
 

 are equal to: 

 

 

 

 

1 *1

1 10

nT

n n

u x u xI A P

I X X 



 

    
        

     

      (50) 
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In this second approach the diffusion step of the projection method is decomposed in 

three more sub-steps: 

 Step 1: solve for intermediate velocity: 

 * nAu x f           (51) 

The GMRES iterative method is used for solving eq. (51), with ILU decomposition for 

the preconditioner. 

 Step 2: solve for the Lagrange multipliers with an approximate Schur 

complement 1 TS PA P  using   
1

11 TS P diagA P


   as preconditioner: 

   1 1 *T n nPA P X Pu x h           (52) 

The preconditioner calculated in step 1 for the GMRES iterative method is used 

as 
1A
 in the approximate Schur complement. This completely eliminates the need for 

calculating the inverse of the matrix A  as required in the first approach (computationally 

very expensive for three-dimensional problems). 

 Step 3: project the velocity field: 

     1 * 1 1n T nu x u x A P X           (53) 

The second approach is approximately 20% faster than the first one for 2D 

simulations, but the difference is expected to be larger for 3D simulations, where the 

matrix inversion operation becomes very expensive and time consuming. The use of 

preconditioning in calculating the Lagrange multipliers for both approaches reduces the 

computational time of an additional 20%. 
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 The velocity u
n+1

 satisfies the no-slip constraint at the immersed body surface 

and inside the immersed body volume, but it is not a divergence-free field. As discussed 

in the previous section, a projection step on the pseudo-pressure and a correction step on 

the pressure are still necessary to have a divergence-free velocity vector. 

It is worth noting that no discrete delta functions have been used to discretize the 

projection operator from the fluid volume to the immersed body surface/volume meshes; 

the same shape functions were used for the fluid volume mesh and immersed body 

surface/volume mesh. This allowed using adaptive mesh refinement for the fluid volume 

mesh as well as for the immersed body mesh. The Kelly-Error-Estimator criterion was 

used for adaptive mesh refinement of the fluid volume mesh. A uniform discretization 

was used for the immersed body mesh in the analyses performed. The conjugate gradient 

method was chosen to solve the projection step for both approaches discussed above. 

In the case of moving rigid immersed body, the location of the Lagranginan 

points must be updated at each time step, so the projection operator P and the immersed 

body no-slip constraint h
n
 must be recomputed at each time step as well. 

On the other hand, if stationary immersed body are considered, the Lagrangian 

points belonging to the IB surface/volume mesh are stationary and correspond to the 

surface/volume mesh points at every time step (i.e., the immersed body is not moving). 

The surface force at the immersed body interface can be written as: 

        
( )

, , , ,

i

T

K

t

x t f X s t t X x ds P X t  


       (54) 

where X in Γi(t) are not anymore the Lagrangian points, but represent the immersed 

body surface mesh points. 
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In the same way the volume forces for the immersed body can be written as: 

        
( )

, , , ,T

K

t

x t f X s t t X x ds P X t


         (55) 

where X in ω(t) are not anymore the Lagrangian points, but represent the immersed body 

volume mesh points. Following the IBM approach described above, also for stationary 

rigid bodies it is possible to define projection and interpolation operators. The system of 

time-dependent incompressible NSEs with IBM can be discretized in the same way as 

eq. (43) with the only difference that X must be reinterpreted as the immersed body 

surface/volume mesh points. 

 

2.5 NSEs Coupled with the Energy Equation and Boundary Conditions 

For flows where the change of density is relatively small, the assumption of 

incompressible fluid is reasonable as long as the fluid velocity is well below the speed of 

sound in the medium considered. This is to say that the Mach number M = V/a << 1, 

where V is the fluid velocity and a is the speed of sound. 

For conjugate heat transfer problems where small density changes in the fluid 

associated with temperature gradients are large enough to generate a driving force (i.e., 

natural convection problems), the Boussinesq approximation for buoyancy can be used. 

The Boussinesq approximation states that density differences are sufficiently 

small to be neglected in the momentum equations, except for the gravity term. The idea 

behind this assumption is that the effect of density differences can be neglected in the 

inertia term, but the effect of gravity on density differences across the flow is sufficiently 

strong to generate a driving force. 
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Under this assumption, the system of NSEs and the energy equation (EE) can be 

coupled to become the Boussinesq Equations (BEs): 

  0

2

0

( )

0

T

p

U
U U P U U T g F

t

U

T
c U T k T Q

t

  



 
           

 

  

 
     

 

]0, [fin T    (56) 

In the first of eq. (56) we explicitly wrote the external force acting on the fluid 

due to gravity. The second of eq. (56) is the incompressibility constraint, and the third of 

eq. (56) is the energy equation, where T is the fluid temperature, cp is the fluid 

coefficient of specific heat, k is the fluid thermal conductivity, and Q is the volumetric 

heat source. The implicit assumption in the Boussinesq’s equations is that the fluid 

density is slightly affected by the temperature field, and the density change is so small 

that needs to be considered for the gravity force only. The fluid density can be expressed 

as function of the fluid temperature: 

 0 0( ) 1 ( )T T T             (57) 

where T0 is a reference temperature, ρ0 is the fluid density at T0 and β is the coefficient 

of thermal expansion.  If eq. (57) is used into the first of eq. (56): 

    0 0 01 ( )
TU

U U P U U T T g F
t

   
 

             
 

  (58) 

Eq. (58) can be rearranged by adding the time-independent term of the gravity 

force to the pressure term:   

  0 0

T

dyn

U
U U P U U Tg F

t
   

 
           

 
   (59) 
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Where Pdyn is the dynamic pressure: 

   0 0 0 01 1dynP P T g P T                (60) 

In eq. (60) we used the fact that the gravity force results from a gravity potential: 

g = -gradφ. The system of Boussinesq equations read as: 

  0 0

2

0

0

T

dyn

p

U
U U P U U Tg F

t

U

T
c U T k T Q

t

   



 
           

 

  

 
     

 

]0, [fin T   (61) 

By using a reference velocity U0, a reference length L and the reference 

temperature difference ΔT = Tmax -T0, we can write the system of eq. (61) in non-

dimensional form: 

   *0

2 2

0 0 0 0 0 0

2

2

0 0 0 0

0

T

p p

g Tu F
u u p u u g

t U L U L U L

u

L k T Q
u

t c U T L c U T L

 


  


 

 


          



 

 
     

  

   (62) 

where g
*
 is the non-dimensional gravity vector field and p = Pdyn/ρ0U0

2
 is the non-

dimensional pressure field. Beside the Reynolds number Re = ρ0U0L/μ introduced in eq. 

(3), two new non-dimensional numbers are introduced: the Grashof number Gr and the 

Peclet number Pe: 

2 3

0 0 0

2
; Re Pr

pcg TL U L
Gr Pe

k

  

 


            (63) 

where Pr is the Prandlt number Pr = μcp/k. Using the definition of Gr and Re non-

dimensional numbers the first of eq. (62) can be written as: 
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  

  

2 3 2
*0

2 2 2 2 2

0 0 0 0 0 0

*

2

1

Re Re

T

T

g TLu F
u u p u u g

t U L U L U L

Gr
p u u g f

  


   




           



       

 (64) 

where f is the non-dimensional volumetric force vector. By using the definition 

of the Pe non-dimensional number the third of eq. (62) can be written as: 

2

2

0 0 0 0

2 2

0 0

1

p p

p

L k T Q
u

t c U T L c U T L

k
q q

U L c Pe


 

 


 

 

 
      

  

      

     (65) 

where q is the normalized volumetric heat source. The system of Boussinesq 

equations in non-dimensional form reads as: 

   *

2

2

1

Re Re

0

1

Tu Gr
u u p u u g f

t

u

u q
t Pe




 


          



 


    



 ]0, [fin T    (66) 

The initial and boundary conditions for the NSEs are described in Section 2.1. 

The energy equation requires both initial and boundary conditions. The initial condition 

is of the form: 

00t
 


  fin           (67) 

and the boundary conditions can be either of Dirichlet-type or Neumann-type: 

  ,D Dx for x           (68) 

N

n k  


            (69) 
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where θD is the value of the non-dimensional temperature at Dirichlet boundary ΓD, and  

ϕ is the prescribed non-dimensional thermal flux at Neumann boundary ΓN. For adiabatic 

boundaries ϕ = 0. Since the temperature is assumed known at the interface fluid/solid 

region for the simulations performed, Dirichlet boundary conditions would be imposed 

at the immersed boundary interface Γi. We are using the IBM to determine the effect of 

the solid body on the fluid temperature distribution. Γi is not directly represented by the 

finite element discretization. Section 2.4 discusses the immersed boundary formulation 

used to enforce no-slip boundary conditions on the immersed surface. In Section 2.5.2 

we will discuss the immersed boundary formulation used to enforce temperature 

boundary conditions at the solid body surface. 

 

2.5.1 Finite Element Formulation of the Boussinesq Equations 

For sake of brevity in the discussion of the finite element formulation for the 

Boussinesq equations we will illustrate only the differences with respect to the finite 

element formulation for the NSEs presented in Section 2.2. 

Writing the system of Boussinesq equations [eq. (66)] in vector form: 

   *

2

2

1

Re Re

0

1

Tu Gr
u u p u u g ft

u

q
u

t Pe




 

 
           

   
    
         
 

    (70) 

The weak form for the NSEs with the buoyancy term is obtained by forming the 

dot product from the left with a vector-valued test function Φ = (v, q), and integrating 

over the entire domain Ωf. The weak form reads as: 
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     

     

*

2

1
, , , ( , )

Re Re

, , ,

f
f

f

f f f

Tu Gr
v v u u v u u v g

t

v p q u v f
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




  

 
        

 

   

  (71) 

A more interesting question is what to do with the energy equation. By default 

not all discretization of this equation are equally stable unless we either use upwinding, 

stabilization or a combination of both. One way to achieve this is to use discontinuous 

elements and to define a flux at the interface that takes into account upwinding. 

Discontinuous elements have the drawback that the use of numerical fluxes introduces 

an additional numerical diffusion on the entire solution field. Our goal is to keep the 

numerical diffusion to a minimum and apply it where it is necessary to stabilize the 

scheme. A different approach is to add some nonlinear (i.e., “artificial”) viscosity to the 

diffusion term in the third of eq. (70), which becomes: 

1 ( )
(1 )u q

t Pe k

  
 


      


      (72) 

where η(θ) is the additional viscosity that only acts in the vicinity of shocks and other 

discontinuities. The value of the “artificial” viscosity is determined on the residual of the 

energy equation. Due to the relatively low Gr/Re
2
 number chosen for the simulations 

performed, it was found not necessary to turn on the stability model implemented. 

Further details on this model are left out from the discussion for sake of brevity. 

For the discretization in time of the energy equation we used the backward 

differentiation formula of second order (BDF2) to be consistent with the discretization in 

time of the momentum equations. The time derivative becomes: 
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1 1

1

3 1
2

2 2

n n n

nt t
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

 



 



 

        (73) 

The energy equation discretized in time with the artificial viscosity model turned 

off then becomes: 

1 2 1 1 1 13 1
2 (2 ) (2 )

2 2

n n n n n n n nt
t u u t q

Pe
         

            (74) 

where the diffusion term is treated in a fully implicit way and the advection term is 

treated in a fully explicit way using a forward extrapolation (projection) of velocity and 

temperature. This projection maintains the second order accuracy of the BDF2 scheme. 

The weak form of the energy equation is obtained by forming the dot product 

from the left of eq. (74) with a scalar test function τ, and integrating over the entire 

domain Ωf. The weak form of the energy equation reads as: 

 

  

1 1 1

1 1 1

3 1
, , , 2
2 2

, (2 ) (2 ) ,
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t
t q u u n
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    

  


 

  



     
        

    


      

  (75) 

where (•,•)Ω represents a volume integral over Ω, and the heat flux at Neumann 

boundaries is ϕ = 0. Eq. (75) has to hold for all scalar test function τ. The discretization 

of the weak form for the time-dependent incompressible NSEs with buoyancy term and 

Dirichlet/Neumann boundary conditions eq. (71) reads: 
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    (76) 

where for generality we used Ω referring to the fluid region Ωf. The same stability issues 

discussed in Section 2.2 apply to eq. (76). The discretization of the weak form for the 

energy equation eq. (75) reads: 
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
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  (77) 

The continuous functions chosen satisfy the required conditions. When we 

discretize the equations by replacing the continuous variables and test functions by finite 

element functions (i.e., polynomials of order n) in finite dimensional spaces 

, ,, ,g h g h g h gV V Q Q T T   , we have to make sure that also Vg,h, Qh and Th satisfy the 

LBB conditions. For the time-dependent incompressible NSEs a number of possible 

choices is available which will respect the LBB conditions. A simple and accurate 

choice used for the present work is 1 1, ,d d d

h p h p h pu Q p Q Q    i.e., to use elements one 

order higher for the velocity vector and temperature field than for the pressure field. 

Then the discretized system of Boussinesq equations reads as: 



 

42 

 

    

       

 

1 1

*

2

1 1 1

1

, , . .

2
, , , ( , )

Re Re

, , , ,

3 1
, , , 2
2 2

, (2 )

N

d d d

h p h p h p

h
h h h h h h h h

h h h h h h

n n n n

h h h h h h h

n n

h h h

find u Q p Q Q s t

u Gr
v v u u v u v g

t

v p q u v f v t x

t

Pe

t q u u



 

      



 

 


  

  


 



  

 
     

 

       

     
        

    

     1 1

, , ,

(2 ) ,

, ,

N

n n n

h h h h

h g h h g h h g h

t
n

Pe

v V q Q T

   



 




  

   

  (78) 

We use the fractional step method described in Section 2.3 to solve for the NSEs. 

The buoyancy term is calculated explicitly using the temperature from the previous time 

step. Writing the discretized form of the energy equation in a matrix notation we obtain: 

  1n

T T h TM L f            (79) 

where MT and LT are the mass matrix and the thermal diffusive term and fT is the 

source term function of velocity and temperature at the previous time steps and the 

volumetric heat source. The solution of eq. (79) is straightforward. We invert the matrix 

AT = MT+LT with the conjugate gradient algorithm using a simple preconditioner, and 

solve for: 

1 1n

h T TA f             (80) 

 

2.5.2  Immersed Boundary Method for the Boussinesq Equations 

The application of the immersed boundary method to the velocity and pressure 

fields of the Boussinesq equations follows the procedure outlined in Section 2.4. The 
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presence of the buoyancy term in the momentum equations does not alter the immersed 

boundary projection method solution procedure described in detail in Section 2.4.3. 

In this section we focus on the application of the immersed boundary method to 

the energy equation with the surface and volume boundary force approaches. For the 

IBM surface approach the set of Lagrangian points (XK) used to represent the surface 

Γi(t) of the immersed body at time t within the computational domain is the same as that 

used in the NSEs. At the Lagrangian points, approximate heat sources forcing terms qK 

are applied to enforce the temperature Dirichlet boundary condition along Γi(t). The 

approach is exactly the same as for the no-slip boundary constraint in the momentum 

equations applied to the fluid/solid interface. In general, the location of the Lagrangian 

boundary points does not coincide with the underlying fluid mesh discretization. 

Therefore, it is necessary to build a projection operator P from the fluid volume mesh to 

the immersed body surface mesh and an interpolation operator P
T
 from the surface mesh 

to the fluid volume mesh. It is worth mentioning that, the projection operator for the 

temperature field is different from the one used for the velocity field even if the same 

fluid mesh and immersed body mesh are used, since the latter field uses vector-valued 

test function and the temperature field uses scalar test functions. 

Writing the energy equation with immersed boundary method, it is possible to 

have a discretized form of the projection operator, which consists of interpolating the 

shape functions used for the fluid volume mesh on the immersed boundary surface mesh. 

This can be easily handled in finite element method framework by the deal.II library 

chosen [69] to perform the numerical simulations. 
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The energy equation with a heat source forcing term qK can be considered as the 

continuous analog of the IBM: 

    
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where we follow the same notation as in Section 2.4 and x in Ω (volume mesh), X(s,t) in 

Γi(t) (surface mesh) is the position of a point on the immersed boundary surface indexed 

by a position s in the reference configuration at time t. The last term on the rhs of the 

first in eq. (81) represents the effect of the immersed body on the fluid temperature field, 

that is the integral of the heat source forcing terms qK applied at the fluid/solid interface 

Γi(t). By forming the dot product from left of eq. (81) with a scalar test function Φ = (τ, 

η), the weak form of the system of eq. (81) is obtained: 
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  (82) 

Eq.(82) has to hold    Φ = (τ, η). The last term in the first of eq. (82) can be 

written as: 
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where λT(x,t) are the projection of the Lagrange multipliers due to the heat source forcing 

terms present at the immersed body interface from the surface mesh to the fluid volume 

mesh:  
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and P
T
 represents the interpolation operator (immersed body surface mesh → fluid 

volume mesh) for the temperature scalar test and shape functions. In the same way, the 

second of eq. (82) can be written as: 
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where θ(X(s,t) represents the temperature field projected on the immersed body mesh:  

        , , ,X s t x t x X dx P x t   


        (86) 

After applying the backward differentiation formula of second order (BDF2) for 

the discretization in time and integrating by parts the second term on the lhs of eq. (82) 

(for more details refer to Section 2.5.1), the discretization of the weak form for the 

energy equation with Dirichlet and Neumann boundary conditions and IBM reads: 
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where strongly imposed boundary conditions (i.e., Dirichlet-type) do not appear in the 

weak form, whereas Neumann-type boundary conditions are still present.   

The solution for the temperature and Lagrangian multipliers fields is found in the 

function spaces θTg = {ΦH
1
(Ω)

d 
: ΦΓD = θD }, λ TΛg = {ηH

1
(Ω)

d-1
}. When we 

discretize the NSEs with IBM by replacing the continuous variables and test functions 

by finite element functions in finite dimensional spaces Tg,hTg,  Λg,hΛg, we choose 

elements for the temperature field of the same order as those chosen for the velocity 

vector. Discretizing the energy equation with IBM and replacing the continuous 

variables and test functions by finite element functions in finite dimensional spaces we 

obtain: 
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The immersed body can be also discretized with a volume mesh overlapping the 

fluid volume mesh. In this case, the IBM introduces a set of Lagrangian points (XK) 

representing the immersed object ω(t). The fluid volume mesh does not need to conform 

to the body shape (i.e., non-body fitting mesh). At the Lagrangian points, approximate 

heat source forcing terms qK are applied to enforce the Dirichlet boundary condition 

along the fluid/solid body interface Γi and inside the immersed body volume ω(t). Since, 

in general, the location of the Lagrangian boundary points does not coincide with the 

underlying fluid mesh discretization, it is necessary to build a projection operator P from 

the fluid volume mesh to the immersed body volume mesh and an interpolation operator 

P
T
 from the immersed boundary volume mesh to the fluid volume mesh. The approach 

used is analogous to that used for the IBM surface mesh, where the discretized form of 

the projection operator is obtained interpolating the shape functions used for the fluid 

volume mesh on the immersed boundary volume mesh. The deal.II library [69] was used 

to perform the numerical simulations. In Section 2.4.2 were outlined the differences 

between the immersed body surface mesh and volume mesh approaches when applied to 

the time-dependent incompressible NSEs. Therefore, we will provide here the final 

result of the discretized energy equation with IBM when finite element functions in 

finite dimensional spaces replace the continuous variables and test functions. 
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2.5.3 The Discretized Boussinesq Equations with Immersed Boundary Projection 

Method 

Since we have decoupled the NESs from the energy equation by calculating the 

buoyancy term in the momentum equations in an explicit way (i.e., the temperature from 

the previous time step is used in eq. (76), the solution of the NSEs with immersed 

boundary method is the same as the one outlined in Section 2.4.3 with the only 

difference that the buoyancy term is added to the external force f in eq. (43). 

If we write the discretized energy equation with immersed body surface mesh 

approach eq. (88) or immersed body volume mesh approach eq (89) in matrix form, the 

following linear system needs to be solved for each time step: 
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     (90) 

where P is the projection operator from the fluid volume mesh to the immersed body 

surface/volume mesh, hT
n
 and λT

n+1
(X) are the Dirichlet boundary condition for 

temperature at the fluid/solid interface and the Lagrange multipliers at the immersed 

body surface/volume mesh, respectively, and P
T
 is the interpolation operator from the 



 

49 

 

immersed body surface/volume mesh to the fluid volume mesh. To simplify the notation 

in eq. (90) we added all the known terms on the rhs of the energy equation in the q
n
 term, 

that is: 
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The other terms in eq. (90) are identical to those defined in eq. (79). The system of eq. 

(90) is very similar to the system of eq. (44), which is the system of momentum 

equations coupled with the Lagrange multipliers for the immersed boundary and with the 

pressure term calculated explicitly from the previous time step. This is equivalent to 

solve the diffusion step of the projection method described in Section 2.3. We solve the 

system of eq. (90) for both θ
n+1

 and λT
n+1

 at the same time. After applying the boundary 

conditions to the matrix AT = MT+ LT, we solve for: 

   

 

1 1

1

n T n n

T T

n n

T

A x P X q

P x h

 



 



 


        (92) 

Multiplying the first of eq. (92) by PAT
-1

 we obtain: 
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And using the second of eq. (93), we can solve for λT
n+1

 and θ
n+1

: 
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We calculate the inverse of AT with the Conjugate Gradient iterative method, and 

use as preconditioner for AT UMFPACK in two dimensions and ILU in three 

dimensions. For the Schur complement S = PAT
-1

P
T
 we used a very simple and efficient 
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preconditioner   
1

11 T

TS P diagA P


  . With this preconditioner, the Conjugate 

Gradient method for the first of eq. (94) converged in a few iterations.   

 

2.6 Immersed Boundary Methods Comparison 

The immersed boundary formulation discussed in the previous section will be 

compared to other IBMs. We choose the original IBM (see [1]), the direct-forcing 

approach (see [60, 70]), the Immersed Interface Method (IIM) (see [23, 26]), and the 

Distributed Lagrange Multipliers (DLM) (see [36]). A more extensive review of the 

IBMs is presented in [52, 53]. We briefly discuss the IBM formulation of the methods 

addressed above, omitting the details for clarity of discussion. 

 

2.6.1 The Original Immersed Boundary Method 

The original IBM (see [1]) can be seen as a modification of the traditional 

fractional step method, where an explicit boundary force is used to take into account the 

effect of the immersed body: 
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and the force applied at the immersed body surface is calculated explicitly with Hooke’s 

law. Source/sink can be applied to the Poisson equation to correct the continuity 

equation (see [64]). To determine the force at the immersed body surface, also a 

feedback controller has been used (see [5]). As discussed in the introduction, to simulate 



 

51 

 

rigid immersed bodies, large gains are required. The system of equations becomes very 

stiff, prohibiting the use of larger CFL numbers. Lowering the gains to have larger CFL 

would result in a relaxation of the no-slip boundary constraint. The proposed fractional 

step/immersed boundary method solves for the boundary force implicitly with no 

constitutive laws. It is worth to point out that the method implemented satisfies the 

continuity equation and the no-slip condition to round-off error. 

 

2.6.2 The Direct-Forcing Method 

In the direct-forcing method (see [60]) the boundary force for rigid bodies is 

approximated with an intermediate velocity field u
*
. The force is implemented directly 

into the momentum equation by substituting the regularized no-slip condition near the 

immersed boundary. The momentum equation is modified with an interpolation operator 

to extract the velocity field near the immersed body surface. The difference between the 

modified momentum equation and the momentum equation from the traditional 

fractional step method represents the boundary force for the direct-forcing method. This 

method enforces the no-slip condition on u
*
 and not on u

n+1
, therefore, slip at the 

immersed surface will be present. 

 

2.6.3 The Immersed Interface Method (IIM) 

In the IIM (see [23, 26]) the boundary force is decomposed into tangential and 

normal components. The tangential component is included in the momentum equation as 

an explicit term, while the explicit normal component is included into the pressure 
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Poisson equation in terms of a pressure jump condition across the interface. This will 

generate a sharp velocity solution in the vicinity of the immersed body surface. Linnick 

et al. [73] developed a high order IIM employing one-sided finite differences to obtain 

jump conditions for higher-order derivatives. 

 

2.6.4 The Distributed Lagrange Multiplier (DLM) Method 

Glowinski et al. [36] introduce Lagrange multipliers on the immersed rigid body 

to satisfy the no-slip boundary conditions through a projection operator for a variational 

principle (i.e., finite element) approach. In our formulation we use the second order 

pressure-correction scheme (see Section 2.3), while Glowinski et al. used for the DLM 

the Marchuk-Yanenko fractional step scheme (see [74, 75]), which is composed of three 

operations: (i) the divergence-free condition and pressure; (ii) the convective and 

diffusive operators; (iii) the no-slip condition and boundary force. 
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3. FINITE VOLUME IMMERSED BOUNDARY METHOD 

 

For the finite volume discretization a ghost-cell methodology was implemented 

to impose the boundary conditions at the immersed body surface. The methodology is 

similar to the approaches proposed by Tseng and Ferziger [15], Majumdar et al. [16], 

and later used by Ghias et al. [17, 18]. 

In general, the immersed body geometry is imported from a CAD program. Once 

the immersed body is embedded to an underlying volume mesh, it is necessary to flag 

the computational cells as either fluid or solid (i.e., inside the immersed body) cells. We 

used a ray-tracing technique to determine which cells belong to the fluid region and 

which cells belong to the solid region, respectively. This methodology is extremely 

efficient for both 2D and 3D simulations from a computational point of view, easily 

parallelizable, and does not represent an overhead in case of moving immersed bodies. 

Once the solid cells are flagged, it is necessary to determine the intersection of the ghost 

cells centroid with the immersed body surface. Using the normal intercept to the 

immersed boundary it is possible to determine the closest point on the immersed 

boundary surface for each ghost cell; this point and the fluid cells around it are used to 

construct a bi/tri-linear interpolation scheme in a fashion similar to that described in Kim 

et al. [64]. 

Since the exterior sharp interface scheme implemented is explicit, the “fresh cell” 

problem (i.e., fluid cells which at the previous time step were inside the immersed body) 

for moving boundaries is less restrictive than for other direct-forcing IBMs. It is worth 
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mentioning that no velocity field is computed inside the immersed body, and computing 

the Poisson equation for the pressure correction field on the entire computational domain 

or on the fluid cells only gives the same pressure correction distribution for the fluid 

region. This is in agreement with what expected. The Poisson equation for the pressure 

correction is derived from the continuity equation. Since no velocity field in the solid 

boundary is computed, the pressure correction is zero inside the immersed boundary and 

does not influence the solution in the fluid region. With a fractional step method for the 

solution of the NSEs, if the constraint at the immersed body surface is added before the 

incompressibility constraint, the finial field at the end of each time step will be 

solenoidal, but the no-slip boundary condition at the fluid/solid interface will be 

approximately respected. On the other hand, if the constraint at the immersed boundary 

interface is added after the incompressibility, the no-slip boundary condition will be 

satisfied at the immersed body surface, but the flow will be approximately solenoidal. 

With an iterative process this problem is eliminated. For pressure correction type NSEs 

solvers (see [47, 48]) the iterative nature of the methods allows to satisfy both 

constraints upon convergence to the predefined accuracy. 

 

3.1 Numerical Implementation of the Time-Dependent Incompressible NSEs and Energy 

Equation 

The non-dimensional time-dependent incompressible NSEs and energy equation 

governing incompressible flows under the Boussinesq approximation for the entire 

computational domain Ω can be written as: 
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In eq. (96) the dimensionless external force fIB, which represent the effect of the 

immersed body on the fluid flow, can be expressed as: 
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         (98) 

In eq. (97) the dimensionless heat source forcing term qIB, which represent the 

effect of the immersed body on the fluid temperature distribution, can be expressed as: 

    
 

,

i

IB K

t

q q X s t X x ds


         (99) 

The immersed body introduces a set of Lagrangian points (XK) representing the 

surface Γi(t) of the immersed body at time t within the computational domain which does 

not need to conform to the “immersed” body shape (i.e., non-body fitting mesh). At the 

Lagrangian points, approximate surface forces fK are applied to enforce the no-slip 

condition along Γi(t). For the energy equation, approximate heat source qK are applied to 

enforce the Dirichlet boundary condition along Γi(t).  

In the IFVM approach implemented we use “ghost-cells” inside the immersed 

body such that the boundary conditions are imposed at the precise location of the 

fluid/solid interface. Consequently this method results in a sharp representation of the 

immersed boundary. No spurious spreading of the boundary forcing into the fluid region 

is present as in diffuse interface scheme. Since in general the location of the ghost-cells 
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centroids is not at the fluid/solid interface, an interpolation scheme is necessary to 

project the constraint from the fluid/solid interface Lagrangian points XK to the relative 

ghost-cells. The interpolation operations are performed in a direction normal to the 

immersed body surface. More details on the implementation of the interpolation 

operators for the IFVM will be given in the next section. 

The heat source forcing term qIB at the Lagrangian points (XK) representing the 

surface Γi(t) enforces the Dirichlet boundary condition on the temperature field at the 

immersed body interface, in a fashion similar to the one used for the NSEs where fIB 

enforces the no-slip boundary conditions at the fluid/solid interface. It is worth 

mentioning that Neumann boundary conditions for the energy equations can be imposed 

as well at the immersed body interface. In this case the forcing term qIB must be chosen 

in such a way that the gradient of the temperature in the normal direction to the 

fluid/solid interface satisfies the required boundary conditions instead of the temperature 

itself. 

 

3.2 Implementation of the Direct Forcing Scheme for the IFVM 

Next the implementation of the direct forcing immersed boundary method for the 

finite volume approach is described. In order to have the velocity at the Lagrangian 

points of the immersed body satisfy the no-slip boundary condition, a forcing term 

fK(XK(s,t)) is imposed on the Lagrangian points XK(s,t) to modify its velocity, which must 

equal the immersed body velocity uIB(XK(s,t)). The forcing term fK(XK(s,t)) is determined 

as follows. From eq. (96), the force at the immersed body fIB
n+1

 can be determined as: 
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Where n and n+1 represent the time step n and the following time step and rhsu 

is equal to:  

 2
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Eq. (100) must be satisfied at all Lagrangian points XK(s,t) on the immersed body 

surface: 
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where uK
*
 is a temporary velocity vector which satisfies the NESs:  
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Since we want to satisfy the no-slip boundary condition at the fluid/solid 

interface, the velocity uK
n+1

 is equal to uIB(XK) at time step n+1. Therefore, the forcing 

exerted on the Lagrangian points at the immersed body surface is: 
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By the way of example if the immersed body is at rest uIB(XK) = 0 for all XK at 

the immersed body surface. From solving the NSEs on the fluid volume we will 

determine a fluid velocity at the locations XK (uK
*
) which in general is not equal to zero. 

Therefore, the forcing term to apply at the Lagrangian points XK will be: 
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       (105) 
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It is not a surprise that the forcing term is equal in module and opposite in sign to 

the fluid velocity at the Lagrangian point XK if at that location the immersed body was 

not present. In other words the effect of the immersed body is to generate a force at the 

fluid/solid interface which will produce the desired value of velocity at the Lagrangian 

points. 

When Dirichlet boundary conditions are considered for the immersed boundary 

in the energy equation, the fluid/solid interface is at temperature θIB. In order to satisfy 

the boundary condition at the immersed body Lagrangian points XK, a heat source 

qIB(XK) is determined as flows. 

From the energy equation eq. (97) it is possible to get: 
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where rhsT is: 

21
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e
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P
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At the Lagrangian points XK on the immersed boundary surface the heat source 

forcing term qIB(XK) reads: 
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where θK
*
 is the temporary temperature which satisfies the energy equation: 

*

, 0
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K K
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t
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
         (109) 

Since we want to satisfy the Dirichlet boundary condition for the temperature at 

the fluid/solid interface the heat source at the Lagrangian points must be: 
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The forcing on the NSEs and the energy equation is direct in the sense that the 

desired velocity and temperature at the immersed body surface are imposed directly on 

the boundary without any projection on a Lagrangian mesh and interpolation of the 

corresponding forcing term back to the Eulerian fluid mesh as for the diffuse interface 

scheme implemented in the IFEM described in Section 2. 

 

3.3 Coupling of Momentum and Energy Equations with Immersed Boundary Method 

To solve the NSEs we used a finite volume approach on a staggered grid coupled 

with the Semi-Implicit Method for Pressure-Linked Equation Revised (SIMPLER) 

algorithm ([47, 48]). A fully implicit scheme is used for time discretization, and a second 

order upwind scheme is used for discretizing the flux term (convection fluxes). Central 

difference discretization is used for the viscous term. The momentum equations when 

discretized on a Cartesian mesh can be written as: 
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where I, J and K refer to the cell center, and i, j and k refer to the cell faces for a 

staggered approach. u, v and w are the three components of the velocity vector, anb are 

the cell neighbor coefficients for the finite volume discretization used and unb, vnb and 

wnb represent the velocity at the neighbor cells for the three velocity components, 

respectively. The b term represents the cell source term in the momentum equations and 

the last term on the rhs of eq. (111) – (113) represent the discretized pressure gradient 

across the cell faces. 

In the SIMPLER algorithm we first determine the “pseudo-velocities” û defined 

as: 
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Using Eq. (114) – (116) we can rewrite eq. (111) – (113) as: 

, , , , , , , , 1, ,
ˆ ( )i J K i J K i J K I J K I J Ku u d p p           (117) 

, , , , , , , , , 1,
ˆ ( )I j K I j K I j K I j K I j Kv v d p p           (118) 

, , , , , , , , , , 1
ˆ ( )I J k I J k I J k I J K I J Kw w d p p          (119) 

where d = A /a are the pressure coefficients for the three momentum equations. 

For the time-dependent incompressible NSEs, the continuity equation is replaced by a 
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pressure-Poisson equation, which after discretization with a finite volume approach 

reads as: 

, , , , , ,

p p p

I J K i J K nb nb I J Ka p a p b         (120) 

The source term b
p
 in the rhs of eq. (120) is determined by using the pseudo-

velocities. Once the discretized pressure equation [eq. (120)] is solved, the new pressure 

field is used to solve the discretized momentum equations for the intermediate velocity 

field u
*
: 
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At this step we use the forcing terms calculated explicitly from the previous 

iteration to enforce the no-slip boundary condition at the immersed body surface (i.e., 

b
IB

). Once the discretized momentum equations are solved, the flow field will satisfy the 

no-slip constraint at the fluid/solid interface, but it will not be divergence-free. 

Therefore, it is necessary to solve a pressure correction equation for p` to correct the 

velocity field and satisfy the divergence-free constraint:  

' ' '

, , , , , ,

p p

I J K i J K nb nb I J Ka p a p b         (124) 

The term b’ in eq. (124) represents the mass imbalance for each cell. At 

convergence the flow satisfies the divergence-free constraint and b’ is zero in each cell 
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of the computational domain Ω. Since eq. (124) is a Poisson equation with homogeneous 

boundary conditions, at convergence p’ is zero, hence the name pressure correction. 

With the pressure correction determined at the internal iteration n, the intermediated 

velocity field u
*
 is corrected: 

* ' '

, , , , , , , , 1, ,( )i J K i J K i J K I J K I J Ku u d p p           (125) 
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* ' '

, , , , , , , , , , 1( )I J k I J k I J k I J K I J Kw w d p p          (127) 

With the corrected velocity field the interpolation scheme determines the 

corrected forcing terms to be applied at the ghost-cells for the next iteration in such a 

way to satisfy the no-slip constraint at the immersed body surface, and if the check for 

residuals convergence is passed the computation moves to the next time step, otherwise 

it is necessary to perform one additional internal iteration.  

Due to the iterative nature of the algorithm, for each iteration in time, it is 

necessary to perform a certain number of internal iterations to satisfy the 

incompressibility constraint. Adding the no-slip constraint at the immersed body in an 

explicit way (i.e., the immersed boundary force is determined from the velocity field at 

the previous internal iteration) determines a system which satisfies both no-slip 

condition at the fluid/solid surface and incompressibility constraint upon convergence. In 

fact, if the forcing term due to the immersed body keeps changing at the internal 

iterations, no converged solution can be obtained, and the incompressibility constraint 

cannot be satisfied. On the other hand, if the flow field does not satisfy incompressibility 

in the fluid cells close to the immersed boundary, very large pressure gradients are 
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present there, which will affect the solution at the next internal iteration. We insist on 

this point due to the importance of the issue. The iterative process will enforce both the 

no-slip and divergence-free constraints by progressively correcting the velocity field and 

the forcing terms at the immersed boundary until both reach the correct value (to the 

numerical error limit imposed). This issue will be clearly seen in problems where the 

forcing term at the immersed body is one of the parameters we use to benchmark the 

implemented immersed boundary method. By the way of example, in the two-

dimensional steady channel flow, we monitor the lift coefficient at the cylinder surface. 

Due to the symmetric and steady nature of the problem, no lift is present on the cylinder, 

and the total force acting at the body surface in the cross flow direction is zero. Both the 

IFEM and IFVM predict a lift coefficient for this kind of problem of the same order of 

magnitude as the threshold on the residuals imposed to stop the internal iteration 

convergence. This is to say, if we set a threshold of 10
-10

 for the residuals, the lift 

coefficient for both the IFEM and IFVM is of the same order of magnitude. 

This is not enough to state that the no-slip constraint at the immersed body is 

satisfied for the IFEM due to the diffusive nature of the scheme (i.e., the no-slip 

constraint is satisfied in an integral way on the fluid cell cut by the immersed body 

surface). On the other hand, the sharp nature of the IFVM means that the forcing term 

applied at the ghost-cells has a local nature. Only a correct satisfaction of the no-slip 

condition at the immersed body surface will provide the right value for the forcing terms 

at the ghost-cells inside the immersed body and the right lift coefficient. 
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For the energy equation the same procedure applied to the solution of the 

momentum equations coupled with an explicit immersed boundary treatment is used. 

The discretized energy equation with immersed body forcing term can be written as: 
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       (128) 

where θ is the non-dimensional temperature field, anb are the cell neighbors coefficients 

after discretizing the energy equation, b is the cell source term, and b
IB

 is the forcing 

term for the ghost-cells which are considered as boundary cells (i.e., cells where the 

known boundary conditions are imposed). For problems where the fluid flow equations 

are strongly coupled with the energy equation the NSEs coupled with IBM are solved 

first and the discretized energy equation is solved next. The forcing terms at the ghost-

cells are determined explicitly from the temperature field at the previous internal 

iteration in a way equivalent to the calculation of the forcing term in the momentum 

equations for the no-slip constraint at the immersed body surface. For the energy 

equation if Dirichlet boundary conditions are imposed, the temperature at the fluid/solid 

interface is known. The interpolation scheme will determine the forcing term in the 

ghost-cell necessary to satisfy the known value of the temperature field at the 

corresponding point on the interface. The iterative process will converge when the 

temperature at the immersed body surface equals the known value and the forcing term 

from the previous internal iteration reaches a converged value. 
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3.4 Immersed Boundary Treatment 

The implemented immersed boundary method employs a multi-dimensional 

ghost-cell approach to impose the boundary condition on the immersed body surface. It 

is similar to the methodology proposed by Tseng and Ferziger [15], Majumdar et al. 

[16], Ghias et al. [17, 18] and Mittal et al. [19]. 

The current method is designed with the spirit of simulating flows over arbitrary 

complex 2D and 3D immersed stationary and moving rigid boundaries. The approach 

chosen to represent the immersed body surface is believed to be flexible enough in such 

a way not to limit the type of geometries that can be handled. Moreover, the immersed 

body surface representation method introduces a negligible overhead in terms of 

memory and CPU time for all the operations associated with the immersed boundary 

surface (e.g., tracing of the fluid/solid interface, determination of the forcing terms at the 

ghost-cells interpolated from the flow field, etc.). It is also important to mention the 

compatibility of the IFVM solver developed with pre-processing software as CAD 

programs from which to import the immersed body geometry, and post-processing tools, 

such as Tecplot, for visualization purposes. 

In the IFVM approach we choose to represent the surface of the IB with an 

unstructured mesh made of triangular elements. Many fast and efficient algorithms are 

available for generation of triangular meshes [76, 77]. Accurate and efficient 

representation of surfaces can be obtained through the use of non-uniform, non-isotropic 

meshes. In Figure 4 is shown the surface mesh before a uniform mesh triangulation was 

generated with STAR-CCM+ (STL file imported from SolidWorks) and after the 



 

66 

 

uniform mesh generation. This apparently simple mesh will be used to point out some 

aspects of the immersed boundary interface tool developed. 

The unstructured surface mesh is embedded into a Cartesian volume mesh. In 

Figure 5 is shown an example of a cubic enclosure domain with a sphere at the center of 

the domain (left), and the sphere surface mesh embedded to the Cartesian mesh (right). 

Once the immersed body mesh is read from the IFVM solver, the next step is to 

build the fluid/solid interface. This allows to identify the Cartesian cells whose centroid 

is inside the immersed body or at the interface (identified as “solid cells”) and the 

Cartesian cells whose centroid is outside the solid boundary (identified as “fluid cells”). 

We used a ray tracing technique to determine if the Cartesian mesh cells are inside or 

outside the immersed body. By generating a ray at the cell centroid in an arbitrary 

direction and counting the number of intersections of this ray with the immersed body 

surface, it is possible to determine if the fluid cell is inside (odd number of intersections) 

or outside (even number of intersections). This technique is very efficient and easily 

parallelizable. For stationary boundaries, the fluid cells flagging needs to be performed 

only once, and represents a very small fraction of the total computational time. For 

moving boundaries, the fluid cell flagging needs to be performed at every time step. 

Even for this case this operation takes only a very small fraction of the total CPU time. 

Therefore, very fine immersed body surface meshes can be used to provide highly 

accurate representations of the immersed body geometry without any significant 

overhead for the computing time. 
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Figure 4. Reference geometry: sphere. Left: before uniform triangulation; right: after 

uniform triangulation. 

 

 

Figure 5. Example of the immersed body (sphere) embedded in a three-dimensional 

Cartesian grid. 
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The next step in building the fluid/solid interface for the IBM is the 

determination of the ghost cells, which are those cells with centroid inside the solid body 

but with at least one neighbor cell in the fluid region. This is a straightforward operation 

to perform for Cartesian meshes. Once the ghost cells are identified, it is necessary to 

determine an appropriate equation for these ghost-cells which leads to an implicit 

satisfaction of the boundary condition at the fluid/solid interface in the vicinity of each 

ghost-cell. We follow the approach of Kim et al. [64], where the interpolation procedure 

for the ghost-cell uses second-order bi-linear (for 2D problems) and tri-linear (for 3D 

problem) interpolations. The value of the forcing function at the ghost-cell is determined 

by using the point on the immersed body surface closest to the ghost-cell (i.e., the 

normal intercept to the immersed body surface passing for the ghost cell considered) and 

the fluid cells closest to the ghost-cell. In two-dimensional problems the procedure is 

straightforward since at most four points are used to determine the value of the forcing 

term at the ghost-cell, with one point being on the immersed body surface (i.e., the 

immersed boundary condition we want to satisfy) and the other three points being 

located in the fluid region. In Figure 6 (a) is shown a schematic of the interpolation 

scheme used for two-dimensional problems, where P1 represents the point on the 

immersed body surface for which we want to satisfy the no-slip boundary condition, ũ2, 

ũ3 and ũ4 are the fluid velocity in the ghost-cell neighbors, and U1 is the ghost-cell for 

which the forcing term needs to be determined. If any of the ghost-cell neighbors 

happens to be inside the immersed body as shown in Figure 6 (b), the interpolation 

scheme reverses to a linear interpolation in the only direction left (a ghost-cell is by 
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definition a cell in the immersed boundary with at least one neighbor fluid cell). Once 

the set of fluid cells neighbors for each ghost-cell is determined, it becomes trivial to 

determine the value of U1 for which the no-slip condition at pointP1 (or P2 for linear 

interpolation) is satisfied. In case of linear interpolation, when the ghost-cell fluid 

neighbor centroid (i.e., ũ4) is very close to P2, to avoid stability problems as suggested 

by Kim et al. [64], the velocity in the fluid region to be used for the interpolation scheme 

is reconstructed by using the first and second velocity points outside the solid body 

region. If the ghost-cell fluid neighbor is very close to the interface, the absolute value in 

the ghost-cell may be greater than the nearby fluid point values and the solution may not 

converge. By using the first two points in the fluid region close to the ghost-cell this 

problem is eliminated.  

 

 

Figure 6. Two-dimensional schematic diagram for the interpolation scheme: (a) bilinear 

interpolation; (b) linear interpolation.  
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For three-dimensional problems at most eight points can be used to determine the 

value of the forcing term at the ghost cells. One of this is located on the immersed body 

(the immersed boundary condition we want to satisfy) and the other seven points are 

located in the fluid region. If any of these points is inside the immersed body, that 

direction is eliminated by the interpolation procedure which reverses to bi-linear or 

linear interpolation. Mode details about the handling of the interpolation scheme when 

the immersed body surface is very close to the first fluid cell centroid and the 

corresponding stability issues can be found in Kim et al. [64]. 

It is worth mentioning that the IFVM implemented does not require any internal 

treatment of the body except at the ghost-cells since the SIMPLER algorithm is used and 

the forcing needs to be applied only at the solid body boundary. Therefore, the little 

extra computational effort in building the fluid/solid interface and the interpolation 

procedure at the ghost-cells is offset by the reduction in the number of cells where the 

discretized fluid equations need to be solved. The same does not apply to the IFEM 

where the entire domain Ω is solved for the fluid field (i.e., even the flow inside the 

immersed body), with the additional constraints on the fluid cells overlapping with the 

immersed body cells as was described in Section 2. 

Another important point about the location of the ghost-cells at fluid/solid 

interface is the use of a staggered grid arrangement. For staggered grids the velocity 

components are computed at the cells faces, meanwhile pressure, temperature and scalar 

fields are computed at the cells centroids. This implies that the location of the ghost-cells 

for each component of the velocity vector and the pressure field will be at different 
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positions, i.e., we need to perform an interpolation procedure for each of the velocity 

components and for the pressure field. In Figure 7 is shown a two-dimensional 

schematic of the velocity components location on a staggered grid and at the ghost cells. 

The figure clearly shows that the ghost-cells for the U-velocity component (bold 

horizontal arrow) and the ghost-cells for the V-velocity component (bold vertical arrow) 

are located at different positions inside the solid body. The staggered grid arrangement 

increases the required storage and computational effort to track the fluid/solid interface. 

However, this increase is not significant since the boundary is of co-dimension one, i.e., 

is lower dimensional than the fluid domain. On the other hand, the solver improvements 

in stability and robustness when using a staggered approach versus a collocated 

arrangement have been widely documented in literature. 

 

 

Figure 7. Two-dimensional schematic of a computational domain with an immersed 

boundary for a staggered grid approach. Ghost-cell U location (►) and V location (▲). 
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Once the forcing term at every ghost-cell is determined from the flow field 

calculated at the previous iteration, the discretized system of NSEs can be solved for the 

current iteration with the ghost-cells having the same effect that boundary cells have for 

unstructured solvers, which means a direct imposition of the boundary condition 

explicitly determined at every ghost-cell is added to the source term in the rhs of the 

discretized NSEs. The same argumentation applies to the energy equation. This implies 

that, in contrast to the feedback forcing method, the stability limit of the current 

integration scheme is the same as that without the immersed boundary. In turn, this 

makes possible the simulation of complex three-dimensional conjugate heat transfer 

problems practical. As Udaykumar et al. [20] and Ye at al. [21] pointed out the use 

higher order extrapolation/interpolation schemes to evaluate the variables at ghost-cells 

can preserve at least second-order spatial accuracy. 

Due to the bilinear interpolation scheme used, the Dirichlet boundary conditions 

for the velocity field are prescribed to second order accuracy. Also for the fluid cells a 

second order accuracy discretization was used. For the solution of the discretized 

pressure and pressure correction equations, central difference was used, which has 

second order accuracy. Therefore, we expected local and global second order accuracy 

for the IFVM solver implemented. The results shown in Section 4 confirm this 

assumption. 

The described ghost-cell method has some similarities with the methodology 

implemented by Ghias et al. [17], Mittal et al. [19] and the ghost-fluid method (GFM) of 

Gibou et al. [78]. As Mittal et al. [19] point out, the accuracy, robustness and efficiency 
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of the GFM method is limited by the 1D interpolation along Cartesian direction. The 

current method as the one described in Mittal et al. [19] constructs the interpolation 

along the solid body boundary-normal direction and this not only improves stability, 

accuracy and robustness of the IFVM solver implemented, but also has implications for 

the implementation of Neumann boundary conditions at the immersed body surface. 

 

3.5 Immersed Boundary Motion 

For rigid immersed boundary, the solid motion can be included into the 

implemented IFVM relatively easily. Either if the boundary motion is predetermined or 

if it is determined by the Newton’s equations of motion, when the field equations are 

advanced in time to the next iteration, it is necessary to update the location of the 

immersed body. This is accomplished by moving the nodes of the surface triangles with 

a known Δx = (Δx, Δy, Δz), predetermined in the case of known body motion, or 

determined with the Newton’s equation of motion from the previous time step, for a 

freely moving immersed body. Once the location of the immersed body is updated, the 

process of building the immersed body interface, determining the ghost-cells location, 

and the interpolation operators previously described needs to be updated as well. 

We can consider the IFVM as an Eulerian-Lagrangian approach, where the 

immersed boundary interface is explicitly tracked in a Lagrangian fashion, while the 

flow equations are solved on a fixed Eulerian grid.  

For sharp interface schemes, one stability issue in moving boundary problems is 

the so-called “fresh-cell” problem [20]. In fact, for moving immersed bodies, cells that 
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are inside the solid at one time step, might be into the fluid region at the next time step 

due to the boundary motion. In Figure 8 is shown a 2D schematic of an immersed body 

boundary motion creating “fresh-cells” from time step n to time step n+1. 

 

 

Figure 8. Two-dimensional schematic of an immersed body boundary motion showing 

the appearance of “fresh-cells” at the next time step. 

 

Due to the iterative nature of the scheme adopted, the “fresh-cell” problem is of 

no concern for the implemented IFVM. At the current time step some “fresh-cells” will 

appear in the simulation which do not have any reasonable value from the previous 

iteration (since they were inside the solid body). The solver starts the internal iterative 

process to enforce no-slip constraint at the fluid/solid interface and divergence-free 
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constraint for the fluid region. At each internal iteration the forcing terms at the current 

ghost-cells are updated explicitly from the previous internal iteration. Even if the first 

guess of velocity field at the “fresh-cells” and forcing terms at the new ghost-cells is 

incorrect, after a few internal iterations the process will converge. We do not expect to 

see a large increase in the number of internal iterations necessary to reach convergence 

for transient problems with immersed body motion if compared to transient problems 

with fixed body. 

 

3.6 Multi-Grid Methodology 

It is a well-known fact that the discretization error reduces with mesh spacing. 

Increasing the number of cells (i.e., finer mesh) improves the accuracy of CFD 

simulations. The SIMPLER algorithm is iterative in nature, so we use the Three-

Diagonal Matrix Algorithm (TDMA) in a line-by-line fashion to progressively converge 

to the “true” numerical solution. Unfortunately the convergence rate of the TDMA 

rapidly reduces when the mesh is refined. The reason for this behavior is that the 

iterative solution procedure used removes efficiently only those Fourier modes of the 

error whose wavelengths are smaller than or comparable to the grid spacing. The 

multigrid procedure aims at covering a wider spectrum of wavelengths by iterating on 

various grids, so that on each grid the corresponding error components are efficiently 

damped. 

Consider the discretized system of NSEs in matrix form: 

A x b            (129) 
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where A represents the coefficient matrix, x is the numerical solution and b is the source 

term. Using an iterative method we obtain an intermediate solution y, which satisfies eq. 

(129) up to a residual r: 

A y b r             (130) 

The error vector between the true numerical solution and the approximate one is: 

e x y            (131) 

Subtracting eq. (130) from eq. (129) we have a relationship between the error e 

and the residual r: 

A e r            (132) 

The residual vector is obtained at every time step by using eq. (130). We can use 

the iterative process to solve eq. (132) and obtain a better approximation of the error 

vector. It has been established that the solution error has components with a range of 

wavelengths that are multiples of the mesh size. Iterative methods cause rapid reduction 

of error components with short wavelengths up to a few multiples of the mesh size. The 

long-wavelengths components of the error tend to decay very slowly as the iteration 

process advances. Coarse meshes can attenuate the error components with large 

wavelengths and, therefore, all error components reduce rapidly. Fine mesh can 

attenuate only error components with relative short wavelengths. Consequently the 

convergence process requires a very large number of iterations. Multigrid methods are 

designed to take advantage of the error behavior and use iteration on meshes of different 

sizes. The short-wavelength error components are effectively reduced on the finest 

meshes, whereas the long-wavelength error components are eliminated on coarse 
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meshes. The computational cost on coarse meshes is a fraction if compared to the one of 

the finest meshes and is offset by the benefit of much improved convergence rate. 

In our approach we use a Full Multi-Grid (FMG) W cycle. Following will be 

outlined only the main steps of this procedure. We start by solving the discretized 

equations (e.g., the NSEs, the energy equation or both) on a very coarse mesh. Once 

convergence is obtained for this coarse mesh, the solution is “prolongated” to a mesh 

with a refinement factor of two in all directions. The word “prolongation” is used in 

Multi-Grid approaches to state that the solution is interpolated from the coarse mesh to 

the fine mesh. We use the solution find on the coarse mesh as a starting guess for solving 

the discretized equations on the fine mesh. We solve one on the fine mesh and transfer 

the residual to the coarse mesh. This is the “restriction” step. We use the residual from 

the fine mesh to solve an equation for the error [eq. (131)] on the coarse mesh knowing 

that the coarse mesh is more effective in damping the long-wavelength error components 

than the fine mesh. We solve the error equation on the coarse mesh and prolongate the 

result to the fine mesh where we add the interpolated error to the approximate solution 

found at the previous multi-grid step. This approximate solution is “filtered” of the long-

wavelength error components and will converge faster than if we kept iterating on the 

fine mesh. At this point we prolongate the approximate solution from the fine mesh to a 

finer mesh and start one more cycle on the multi-grid process, by “restricting” the 

residual from this finer mesh to the coarser meshes, solving for the error equation on 

these finer meshes, and “prolongating” the improved error back to the finer mesh. At 
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every cycle we get an error filtered of the long-wavelength components, and the 

convergence rate is strongly improved. 

The cost of every iteration is increased by a factor 5 when we introduce the FMG 

approach, but the convergence rate is increased of two orders of magnitude, with a total 

reduction in computational time larger than 10. 
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4. NUMERICAL SIMULATIONS AND RESULTS 

 

In this section we present the numerical results to validate the IBM implemented 

for solving the time-dependent incompressible NESs with fractional step method applied 

to finite element discretization and with Semi-Implicit Method for Pressure-Linked 

Equations Revised (SIMPLER) applied to the finite volume discretization. First we 

address the spatial and temporal accuracy of both methods by comparing the numerical 

results to the analytical solution for the Taylor-Green decaying vortex. Them we 

consider the simulation of flow past a backward-facing step at Re = 100, 200 and 400. 

This benchmark case is particularly interesting because of the recirculating zone 

downstream of the step. Open boundary simulations were performed for two-

dimensional flow past a circular cylinder at Re = 20, 40, 100, 150 and 200, and the 

numerical analyses were compared to experimental data and an extensive collection of 

other numerical simulations present in literature to address qualitatively and 

quantitatively the accuracy of the implemented method. Simulations were performed for 

three-dimensional flow past a sphere at Re = 50, 100, 150, 200, 250 and 300. These 

simulations allowed to test the accuracy of the implemented IFEM for steady state and 

transient problems in 2D and 3D configurations, respectively. 

To test the accuracy of the coupled NSEs with the energy equation, two and 

three-dimensional simulations of natural convection in an enclosure at different Rayleigh 

numbers were performed. Then the IFEM and IFVM approaches were tested against 
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conjugate heat transfer problems for two and three dimensional natural convection in an 

enclosure with immersed bodies. 

For all the numerical simulations mesh convergence was extensively studied and 

the converged results from the IFEM and IFVM were compared to experimental data 

and other numerical data available from literature and  against the commercial code 

STAR-CCM+/V7.04.006, where a body fitted finite volume discretization is 

implemented. 

 

4.1 Taylor-Green Decaying Vortex 

The spatial and temporal accuracy of the IFEM and IFVM implemented is 

addressed considering the two-dimensional Taylor-Green decaying vortex flow (see 

[29]) in a square box, for which the analytical solution is available: 
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   (135) 

The square box dimensions are [-L,L] x [-L,L]. A circle of diameter D = L is 

embedded at the center of the box. Initial conditions can be obtained by eqs. (133) - 

(135) with t = 0. Time dependent boundary conditions at the box and the embedded 

circle are given by eq. (133) and eq. (134). Since we use a diffuse interface scheme for 

the finite element discretization, our forcing points are located on the circle boundary 
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with Δs = π/2•Δx, where Δs represents the surface mesh size and Δx represents the fluid 

volume mesh size (for uniform volume meshes). Le et al. [23] point out that for too 

many surface control points, the system becomes ill-conditioned and oscillations in the 

surface forces are observed which cause stability problems at high Reynolds numbers. 

They suggested as criterion Δs ≈ 0.9 Δx. We observed stability problems for Δs < π/4•Δx 

(i.e., Δs ≈ 0.785 Δx) and in general, a reduction in the CFL number is determined with 

increasing the number of control points above this threshold. Due to the third order 

accuracy in space and excellent agreement with the experimental data (see below) this is 

of no concern. Actually, the use of less control points if compared to traditional IBMs, 

determines a significant reduction in the computational time due to the reduced sizes of 

the projection and interpolation operator which require additional numerical 

computations for solving the Lagrange multipliers (i.e., the force at the immersed body) 

at every time step. Su et al. [79] address Δs =2/3 Δx as spacing-independent solution 

when they use delta functions as interface scheme. On the other hand, Kang and Hassan 

[29] and Wu [80] point out that for the explicit diffuse interface scheme streamlines 

penetrate the boundary of the cylinder. This means that the no-slip boundary condition at 

the fluid/solid interface is satisfied up to a certain approximation. 

The approximation introduced at the IB interface by the diffuse interface scheme 

can be completely removed if the immersed body is discretized with a volume mesh 

having the same dimension as the fluid volume mesh, instead of a surface mesh of co-

dimension one. Using a volume mesh for the immersed body allows to have forcing 

points inside the immersed body, where the same boundary conditions applied at the 
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fluid/solid interface are used [see last of eq. (42)]. This means that the fluid inside the 

immersed body will be forced to have the same velocity as the fluid at the fluid/solid 

interface. By the way of example, if the immersed body is at rest, then the fluid at the 

immersed body interface must have zero velocity because of the no-slip condition at the 

interface. Using a surface mesh for the immersed body of co-dimension one, the no-slip 

condition is imposed only at the fluid/solid interface and, if the surface mesh used is too 

coarse, some fluid might enter the solid region, which means streamlines penetrate the 

boundary of the cylinder. Using a volume mesh for the immersed body, the no-slip 

condition is enforced in the entire fluid region overlapping the solid region, and no fluid 

crosses the cylinder boundary. 

This problem is completely eliminated in the IBM with finite volume 

discretization, where the fluid volume mesh and the immersed body volume mesh are 

the same (i.e., overlap). For each fluid volume cell which happens to be crossed by the 

immersed body interface, the only information needed is the distance from the ghost-cell 

centroid to the immersed body surface. A finer triangulation of the immersed body will 

provide a better approximation of the immersed body geometry, but it is of no concern 

from a numerical stability point of view. This is due to the fact that the number of points 

actually used to discretize the immersed body surface is always equal to the number of 

fluid volume cells crossed by the immersed body (i.e., the number of ghost-cells found at 

the fluid/solid interface). 

The Taylor-Green decaying vortex simulation was performed at Re = 10. Six 

uniform volume mesh refinements (i.e., cycle = 0 through cycle = 5) were used to 
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determine the accuracy in space, with Δx = L / 2
2+cycle

, Δs =π L / (2
2+cycle

•2) in the finite 

element discretization. The numerical results were compared to the analytical solution at 

normalized time t
*
 = t•U0 / L. In Table 1 are shown the volume and surface mesh sizes 

(relative to the reference length L) for the 6 refinements considered.  

For the finite volume discretization the simulations were performed with the 

same number of fluid volume cells used in the finite element case, whereas 100 cell 

points for the embedded circle were used for all cycles. As mentioned previously, for the 

finite volume approach the actual number of forcing points is not correlated to the 

triangulation of the immersed body surface but depends only on the fluid volume mesh. 

Table 2 shows the fluid volume mesh size (relative to the reference length L) and the 

total number of fluid cells used in the 6 refinements considered for the finite volume 

approach simulations. 

 

Table 1. Volume and immersed body surface mesh sizes for the refinement considered 

(finite element discretization) 

Cycle Fluid volume mesh Δx  IB surface mesh Δs 

0 L/4 πL/8 

1 L/8 πL/16 

2 L/16 πL/32 

3 L/32 πL/64 

4 L/64 πL/128 

5 L/128 πL/256 
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Table 2. Volume mesh sizes and total number of cells for the refinement considered 

(finite volume discretization) 

Cycle Volume mesh Δx Number of fluid cells 

0 L/4 64 (8x8) 

1 L/8 256 (16x16) 

2 L/16 1024 (32x32) 

3 L/32 4096 (64x64) 

4 L/64 16384 (128x128) 

5 L/128 65536 (256x256) 

 

The numerical accuracy in space of the finite element IBM method implemented 

was determined comparing the L2, H
1
 and L∞ error norms inside the embedded circle. 

For each cell of the triangulation, the three error norms are defined as: 
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Once the error norms at every cell have been evaluated, it is possible to 

determine the global error norms as: 
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The L2 error norm is an integral measure of how much the numerical results 

deviate from the analytical solution, meanwhile the H
1
 error norm is a combination of 

the L2 error norm and the H
1
 error semi-norm, where the latter is an integral measure of 

the difference between the gradient of the numerical results and the gradient of the 

analytical solution. Since Lagrange multipliers present at the embedded circle introduce 

a discontinuity in the solution (i.e., the solution is not smooth there), the H
1
 error norm 

gives a very good indication of the IBM effect on the analytical solution. The L∞ error 

norm determines the maximum deviation of the numerical results with respect to the 

analytical solution. 

In Figure 9 are shown the Taylor-Green decaying vortex velocity magnitude 

(left) and velocity vector (right) at normalized time t
*
 = 1.0, with the implicit diffuse 

interface scheme implemented for the finite element IBM used. The figures show a 

central vortex and the embedded circle rotating at the same fluid velocity. This means 

that in the limit for very small meshes the Lagrange multipliers that represent the forces 

at the embedded circle surface would become infinitesimal. The numerical results 

confirm what expected providing a maximum Lagrange multiplier of 4.2•10
-5

 at the 

embedded circle surface. 
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Figure 9. Taylor-Green decaying vortex velocity magnitude (left) / velocity vector 

(right) at t* = 1.0, and Δx = L/128 (IFEM). The solid line represents the embedded 

circle. 

 

In Figure 10 are shown the Taylor-Green decaying vortex velocity magnitude 

(left) and velocity vector (right) at normalized time * 1.0t  , with the explicit sharp 

interface scheme implemented for the finite volume IBM used. The velocity contours 

and velocity vectors are qualitatively and quantitatively in excellent agreement with the 

results obtained from the finite element simulations of the Taylor-Green Decaying 

vortex. The numerical results confirm what expected providing a maximum forcing term 

of 5.3•10
-9

 at the embedded circle surface. 
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Figure 10. Taylor-Green decaying vortex velocity magnitude (left) / velocity vector 

(right) at t* = 1.0, and Δx = L/128 (IFVM). The solid line represents the embedded 

circle. 

 

In Table 3 and Table 4 are shown the Taylor-Green decaying vortex finite 

element IBM error table and convergence rate table, respectively. Table 1 provides the 

finite element volume and immersed body surface mesh sizes for the refinements (i.e., 

cycles) considered. Table 3 addresses for each cycle the volume mesh number of cells, 

how many degrees of freedom were used for the volume mesh (# dofs) and the 

embedded circle surface mesh (# dofs IB) and the L2, H
1
 and L∞ error norms defined in 

eq. (136) – (139), respectively. 

The implicit diffuse interface scheme was used to take into account the presence 

of the embedded circle in the IFEM approach, and the explicit sharp interface scheme 

was used for the IFVM approach. From Table 3 it is possible to address the excellent 

quality of the numerical simulations due to the use of bi-quadratic shape functions for 

the velocity field and the Lagrange multipliers, and bi-linear shape functions for the 

pressure field in the IFEM. With relatively coarse mesh (i.e., for cycle 5: Δx = L/128, Δs 
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= πL/256) the L2 error norm is of the order 9.6•10
-8

, while the maximum error norm L∞ 

is of the order 2.4•10
-7

. 

Table 4 shows the IFEM convergence rate in log scale for the H
1
 and L2 error 

norms in columns four and six, respectively. As expected, for bi-quadratic shape 

function the numerical scheme shows an H
1
 error norm convergence rate of 2.0, and an 

L2 error norm convergence rate of 3.0. The last value in the L2 error norm convergence 

rate points out that the accuracy cutoff with which the linear system of discretized NSEs 

is solved was reached, and the error norm convergence starts to deteriorate. Increasing 

the accuracy of the conjugate gradient solver for the NSEs will result in a larger number 

of iterations to get the converged solution at each time step, preserving the third order 

accuracy of the implemented IBM scheme also for the finest meshes. The implicit 

diffuse interface scheme was used to take into account the presence of the embedded 

circle. 

 

Table 3. IFEM error table for the Taylor-Green decaying vortex – spatial accuracy 

Cycle # fluid volume cells Δx Δs L2 – error H
1
 – error L∞ – error 

0 16 L/4 πL/8 2.595e-03 3.421e-02 5.819e-02 

1 64 L/8 πL/16 2.975e-04 8.794e-03 7.500e-04 

2 256 L/16 πL/32 3.588e-05 2.176e-03 7.584e-05 

3 1024 L/32 πL/64 4.426e-06 5.347e-04 1.240e-05 

4 4096 L/64 πL/128 5.485e-07 1.327e-04 1.468e-06 

5 16384 L/128 πL/256 9.662e-08 3.319e-05 2.409e-07 
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Table 4. IFEM convergence rate table for the Taylor-Green decaying vortex – spatial 

accuracy 

Cycle # fluid volume cells Δx H
1
 – error L2 – error 

0 16 L/4 3.421e-02 conv. rate 2.595e-03 conv. rate 

1 64 L/8 8.794e-03 1.96 2.975e-04 3.12 

2 256 L/16 2.176e-03 2.01 3.588e-05 3.05 

3 1024 L/32 5.347e-04 2.03 4.426e-06 3.02 

4 4096 L/64 1.327e-04 2.01 5.485e-07 3.01 

5 16384 L/128 3.319e-05 2.00 9.662e-08 2.50 

 

Table 5 shows the Taylor-Green decaying vortex IFVM error table. Table 2 

provides the finite volume mesh sizes and the total number of fluid cells for the 

refinements (i.e., cycles) considered. For each refinement cycle are shown in Table 5 the 

total number of fluid volume cells used, the L2 and L∞ error norms defined in eq. (137) 

and eq. (139) respectively. The explicit sharp interface scheme was used to take into 

account the presence of the embedded circle. There is no need to check for the gradient 

of the solution at the fluid/solid interface (i.e., H
1
 error norm) since the sharp interface 

scheme used for the IFVM approach does not introduce any discontinuity at the 

fluid/solid interface. Due to the second order accuracy for the space discretization of the 

NSEs and the projection-interpolation operators at the immersed body surface (see 

discussion below), both the L2 and L∞ error norms for the finite element discretization 

are superior to the L2 and L∞ error norms for the finite volume discretization if the same 

mesh size is considered, as the comparison of Table 3 and Table 5 points out. By the 
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way of example, for the finest mesh considered the finite volume discretization gives L2 

and L∞ error norms two orders of magnitude larger than the respective error norms for 

the finite element discretization. The loss of accuracy in the numerical results is 

counterbalanced by the reduction in the computing time for the finite volume approach 

with respect to the finite element one of at least one order of magnitude, as will be better 

addressed in the following sections. 

 

Table 5. IFVM error table for the Taylor-Green decaying vortex – spatial accuracy 

cycle # fluid volume cells Δx #dofs L2 – error L∞ – error 

0 64 L/4 262 4.854e-03 9.997e-03 

1 256 L/8 902 2.327e-03 5.0286e-03 

2 1024 L/16 3334 5.507e-04 1.248e-04 

3 4096 L/32 12806 1.622e-04 4.116e-04 

4 16384 L/64 50182 4.508e-05 1.171e-04 

5 64536 L/128 198662 2.367e-05 5.476e-05 

 

In Figure 11 is shown the L2 error norm function of the number of mesh points 

across the embedded circle in a log scale for the implemented IFEM with implicit 

diffuse interface scheme compared to the L2 error norm for the finite element simulations 

without embedded boundary (i.e., no IBM), and a reference slope -3 error norm. With 

and without the embedded circle the finite element discretization shows a third order 

convergence rate in space as expected by using bi-quadratic shape functions for 



 

91 

 

discretizing the velocity field. It is worth mentioning that in our approach we do not use 

discrete delta functions, which are well known to reduce the spatial accuracy (see [29, 

72, 80, 81] among others) of the numerical method implemented. As pointed out before, 

the use of finite element methods allows to discretize the immersed boundary surface 

with the same shape functions used to solve the flow problems, and an ad hoc projection 

and interpolation operators (i.e., discrete delta functions) are not necessary. This is the 

reason why we get the same error norms convergence rate with and without IBM. 

For the finite volume IBM approach with explicit sharp interface scheme, a 

second order accuracy was used for the space discretization of the NSEs, and bi-

linear/tri-linear (i.e., second-order) interpolation scheme were used for evaluating the 

momentum forcing at the immersed body surface. Figure 12 shows the L2 error norm 

function of the number of mesh points across the embedded circle in a log scale for the 

finite volume approach, compared to the L2 error norm for the finite volume simulations 

without embedded boundary, and a reference slope -2 error norm. Both the simulations 

with and without the embedded circle show a second order accuracy in space in 

agreement with the numerical and interpolation schemes implemented. 
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Figure 11. Spatial accuracy of the IFEM with implicit diffuse interface scheme applied 

to the Taylor-Green decaying vortex. 

 

 

Figure 12. Spatial accuracy of the IFVM with explicit sharp interface scheme applied to 

the Taylor-Green decaying vortex. 
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To assess the temporal accuracy of the implemented finite element and finite 

volume IBMs, we simulated the Taylor-Green decaying vortex with the finest volume 

and surface meshes (Δx = L/128, Δs = πL/256) considered (i.e., cycle 5), reducing the 

time step from 0.2 to 6.25•10
-3

, and determined the L2, H
1
 and L∞ error norms. In Table 6 

are shown the calculated error norms for the temporal accuracy test (finite element 

discretization). In Figure 13 are shown the three error norms function of the time 

stepping in a log scale (finite element discretization).  The comparison with a reference -

2 slope indicates that the accuracy in time of the implemented finite element IBM is 

second order as expected by using the BDF-2 second order discretization in time 

discussed in Section 2.2. 

 

Table 6. Finite element error table for the Taylor-Green decaying vortex – temporal 

accuracy 

Cycle # fluid volume cells Δx time step L2 – error H
1
 – error L∞ – error 

0 16384 L/128 0.2 7.570e-03 4.031e-02 1.543e-02 

1 16384 L/128 0.1 1.276e-03 7.502e-03 2.550e-03 

2 16384 L/128 0.05 2.372e-04 1.651e-03 4.658e-04 

3 16384 L/128 0.025 6.235e-05 4.733e-04 1.163e-04 

4 16384 L/128 0.0125 1.790e-05 1.461e-04 3.615e-05 

5 16384 L/128 0.00625 5.605e-06 5.587e-05 1.277e-05 
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Figure 13. Temporal accuracy for the IFEM with implicit diffuse interface scheme 

applied to the Taylor-Green decaying vortex. 

 

For the finite volume IBM approach, a first order discretization in time was used. 

When the L2 and L∞ error norms are plotted against the normalized time step, the 

temporal accuracy of the IFVM is first order, as shown in Table 7 and Figure 14. The 

comparison of the L2 and L∞ error norms for the finite element and finite volume IBM 

approaches shows the superior accuracy of the former. For a 256x256 cells mesh with a 

time step of 36.25 10  the finite volume discretization error norms are two orders of 

magnitude larger than the finite element ones. 
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Table 7. Finite volume error table for the Taylor-Green decaying vortex – temporal 

accuracy 

cycle # fluid volume cells Δx Time step L2 – error L∞ – error 

0 16384 L/128 0.2 1.852e-01 4.027e-01 

1 16384 L/128 0.1 6.786e-02 1.588e-01 

2 16384 L/128 0.05 3.674e-02 7.959e-02 

3 16384 L/128 0.025 1.510e-02 3.180e-02 

4 16384 L/128 0.0125 4.652e-03 9.673e-03 

5 16384 L/128 0.00625 1.333e-03 2.516e-03 

 

 

Figure 14. Temporal accuracy for the IFVM with explicit sharp interface scheme 

applied to the Taylor-Green decaying vortex. 
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To test the accuracy of the IFEM proposed with adaptive mesh refinement, the 

same problem was solved using adaptive meshes. The Kelly error estimator was chosen 

as refinement-coarsening method. The Kelly error estimator is based on refining the 

mesh in those regions where the solution (i.e., velocity vector) shows larger gradients, 

and vice versa, coarsen the mesh in regions where the solution is smooth. When adaptive 

mesh refinement is used, the determination of convergence rates is not as clear as for 

uniform meshes.  

In Table 8 we show the error tables to address the reduction of the L2, H
1
 and L∞ 

error norms with adaptive mesh refinement. In Figure 15 (left) is shown the adaptive 

mesh for cycle 4 of Table 8 and the velocity magnitude (right) at normalized time t
*
 = 

1.0. As expected, using adaptive mesh refinement the error convergence rate is reduced 

with respect to the uniform mesh refinement. Due to the smoothness of the solution in 

the central region, adaptive mesh refinement is performed mainly close to the embedded 

circle and to the box boundaries (see Figure 15), where large gradients in the velocity 

vector field are present. The spatial accuracy, on the other hand, is considered in the 

region internal to the embedded circle. For this reason the error norms show second 

order accuracy in Figure 16. 
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Table 8. Error table for the finite element IBM with adaptive mesh refinement applied to 

the Taylor-Green decaying vortex – spatial accuracy 

Cycle # fluid volume cells #dofs # dofs IB L2 – error H1 – error L∞ – error 

0 64 659 16 1.563e-03 3.145e-02 4.267e-03 

1 208 2107 32 9.270e-04 1.862e-02 2.327e-03 

2 652 6623 64 2.743e-04 6.442e-03 6.953e-04 

3 2023 19966 128 7.564e-05 2.487e-03 1.980e-04 

4 6277 61601 256 1.672e-05 6.504e-04 5.064e-05 

5 19483 191599 512 3.870e-06 1.536e-04 1.326e-05 

6 60400 592742 1024 9.610e-07 4.222e-05 2.626e-06 

 

 

Figure 15. Taylor-Green decaying vortex adaptive mash (left) / velocity magnitude 

(right) at t* = 1.0 for the IFEM. The solid line represents the embedded circle. 
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Figure 16. Spatial accuracy of the IFEM with adaptive mesh refinement, fractional step 

method and implicit diffuse interface scheme applied to the Taylor-Green decaying 

vortex. 

 

4.2 Two-Dimensional Flow Over a Backward-Facing Step 

The flow over a backward-facing step in a two-dimensional channel represents 

an excellent test case for the accuracy of numerical methods because of the strong 

dependence of the reattachment length xr on the Reynolds number. An excessive 

numerical smoothing to guarantee numerical stability will results in an underestimation 

of the predicted reattachment length. 

The objective of this simulation was to test both the implemented immersed 

finite element method and immersed finite volume method against the commercial code 
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100, 200 and 400, respectively, where the Reynolds number is defined as: Re = U0•H/ν. 

U0, H and ν are the inlet reference velocity, the channel height, and the fluid kinematic 

viscosity, respectively. The channel height was set equal to twice the step height h 

(aspect ratio of two), where h = 0.05. 

At the inlet boundary, located at the step, a constant velocity profile of U0 = 1.0 

was imposed, with V = 0.0. Wall boundary conditions were set for the top and bottom 

boundaries, and homogeneous Neumann boundary conditions were imposed at the 

outlet, located at x = 20 h. The step length is l = 5 h. 

The reattachment length xr is defined as the length of the recirculation zone 

behind the step normalized to the step height h. In Table 9, Table 10 and Table 11 are 

shown the mesh sensitivity comparison for xr computed at Re = 100, 200 and 400 with 

the IFEM, the IFVM and STAR-CCM+, respectively. The results show that for each 

case mesh convergence was obtained with the IFVM and STAR-CCM+, meanwhile the 

IFEM results for Re = 200 and 400 might require further mesh refinement. The 

numerical results obtained with the IFVM and STAR-CCM+ are in good agreement with 

the numerical results of Kim and Moin [63] and the experimental data of Armaly et al. 

[82] for the range of Re number considered. It is worth mentioning that for higher Re 

numbers three-dimensional effects are present and, therefore, three-dimensional 

simulations would be necessary as pointed out by Armaly et al. [82]. 

The results obtained with the IFEM approach are in good agreement with the 

results from the IFVM and STAR-CCM+ for the Re = 100 case, with the predicted 
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recirculation length equal to: xr = 2.85, 2.99 and 2.98 for the IFEM, IFVM and STAR-

CCM+, respectively. 

Also the flow pattern predicted with the finite element approach is qualitatively 

and quantitatively similar to that predicted with the finite volume approach and the 

body-fitted commercial code, as the streamlines and velocity contours show in Figure 17 

and Figure 18, respectively. 

  

Table 9. IFEM mesh sensitivity analysis for the reattachment length xr in the two-

dimensional laminar flow over a backward-facing step Re = 100, 200 and 400 

Fluid #cells (#dofs) Δx IB #cells (#dofs) Δs xr 

    Re = 100 Re = 200 Re = 400 

160x16 (23923) h/16 40x8 (320) h/8 2.65 4.51 6.95 

320x32 (93923) h/32 80x16 (1280) h/16 2.81 4.71 7.15 

640x64 (372163) h/64 160x32 (5120) h/32 2.85 4.81 7.22 

 

Table 10. IFVM mesh sensitivity analysis for the reattachment length xr in the two-

dimensional laminar flow over a backward-facing step Re = 100, 200 and 400 

Fluid #cells Δx xr 

  Re = 100 Re = 200 Re = 400 

200x20 h/10 2.81 4.71 7.91 

500x50 h/25 2.91 4.91 7.98 

1000x100 h/50 2.96 4.92 8.01 

2000x200 h/100 2.99 4.96 8.04 
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Table 11. STAR-CCM+ mesh sensitivity analysis for the reattachment length xr in the 

two-dimensional laminar flow over a backward-facing step Re = 100, 200 and 400 

Fluid #cells Δx xr 

  Re = 100 Re = 200 Re = 400 

500x50 h/25 2.92 4.92 7.92 

1000x100 h/50 2.96 4.95 8.02 

2000x200 h/100 2.98 4.97 8.06 

 

 

Figure 17. Streamlines for two-dimensional laminar flow over a backward-facing step at 

Re = 100. Left: IFEM vm, dg = 1; center: IFVM; right: STAR-CCM+. 

 

 

Figure 18. Contours of velocity magnitude for two-dimensional laminar flow over a 

backward-facing step at Re = 100. Left: IFEM vm, dg = 1; center: IFVM; right: STAR-

CCM+. 

 

For Re = 200, the IFEM slightly underestimates the recirculation length if 

compared to the IFVM and STAR-CCM+, with the finest meshes predicting: xr = 4.81, 

4.96 and 4.97 for the IFEM, IFVM and STAR-CCM+, respectively. The flow patterns 

determined with the two immersed boundary methodologies are very similar to the ones 
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determined with the body fitted approach as can be seen from the streamlines and 

velocity contours plotted in Figure 19 and Figure 20, respectively. 

For Re = 400, the IFEM results deviates from the IFVM and STAR-CCM+ 

results, underpredicting the recirculation length: xr = 7.22, 8.04 and 8.06 for the IFEM, 

IFVM and STAR-CCM+, respectively. The streamlines plotted in Figure 21 point out 

that the recirculation zone predicted with the IFEM is visibly smaller than that predicted 

with the IFVM and STAR-CCM+. This behavior is due to the diffusive nature (i.e., 

artificial or numerical viscosity) of finite element methods if compared to finite volume 

methods. As Kim and Moin [63] point out excessive numerical smoothing in favor of 

stability determines an incorrect prediction of the reattachment length. 

 

 

Figure 19. Streamlines for two-dimensional laminar flow over a backward-facing step at 

Re = 200. Top: IFEM vm, dg = 1; middle: IFVM; bottom: STAR-CCM+. 
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Figure 20. Contours of velocity magnitude for two-dimensional laminar flow over a 

backward-facing step at Re = 200. Top: IFEM vm, dg = 1; middle: IFVM; bottom: 

STAR-CCM+. 

 

The flow distribution determined with the IFEM is qualitatively similar to that 

determined with the IFVM and STAR-CCM+ as can be seen from the velocity contours 

plotted in Figure 22.  

It is also worth mentioning that the computations performed with the finest meshes for 

the IFVM and STAR-CCM+ have a mesh size the same order of the smallest turbulent 

structures for the Re number considered. Although the two-dimensional simulations 

were performed as steady state and, therefore, the use of Direct Numerical Simulations 

(DNS) would be improper, the IFVM and STAR-CCM+ simulations were performed 

with a very large number of cells if compared to the IFEM simulations, due to the higher 
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computational effort of the latter. This might have an impact on the accuracy of the 

IFEM results. 

 

 

Figure 21. Streamlines for two-dimensional laminar flow over a backward-facing step at 

Re = 400. Top: IFEM vm, dg = 1; middle: IFVM; bottom: STAR-CCM+. 
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Figure 22. Contours of velocity magnitude for two-dimensional laminar flow over a 

backward-facing step at Re = 400. Top: IFEM vm, dg = 1; middle: IFVM; bottom: 

STAR-CCM+. 

 

4.3 Two-Dimensional Flow Past a Circular Cylinder 

Flow past a stationary circular cylinder is considered next. This is one of the 

representative benchmark problems for which a vast literature is available of both 

experimental and numerical data. For this problem, the flow is stationary at low 

Reynolds numbers (i.e., Re < 46). A pair of counter-rotating vortices are generated 

symmetrically respect to the cylinder centerline in the wake. We investigated 

simulations at Re = 20 and 40 for steady flows. For larger Re numbers, small instabilities 

in the flow upstream the cylinder are amplified and unsteadiness arises spontaneously. 

Vortex shedding occurs in the cylinder wake. If the Re number is further increased 
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transition to 3D is induced in the near wake. For unsteady flows, Re = 100, 150 and 200 

were investigated. It is worth mentioning, that above Re = 150, 2D flow simulations do 

not completely reflect the transition in the near wake (see [83, 84]). For the flow past a 

stationary circular cylinder, analyses were performed using the IFEM implemented with 

both surface and volume mesh approaches for the embedded cylinder, and the IFVM 

with explicit sharp interface scheme. For the finite element IBM, bi-linear and bi-

quadratic shape functions were used to address the effect of the interpolation (i.e., 

projection operator) on the implicit diffuse interface scheme used. 

 

4.3.1 Two-Dimensional Steady Flow Past a Circular Cylinder 

For the steady flow simulation, the cylinder of diameter D is located at the center 

of a rectangular domain Ω = [-10D, 10D] x [-10D, 10D]. In Table 12 is shown the mesh 

sensitivity analysis for the IFEM simulations of steady flow past a circular cylinder at Re 

= 20. Table 12 addresses the number of cells used for the fluid volume mesh and the 

immersed body mesh, respectively. In the second column of Table 12 is shown the cell 

size normalized to the cylinder diameter D. For the IB both surface and volume meshes 

were considered, and bi-linear and bi-quadratic shape functions were used. For the finest 

mesh were used 641 x 641 dofs for each component of the fluid velocity field and 128 

forcing points for each component of the Lagrange multipliers at the surface mesh (i.e., 

Δx = D / 32, Δs = πD / 128).   For inlet and lateral boundaries, Dirichlet boundary 

conditions were used (i.e., free stream velocity U∞ = 1.0, V = 0.0). For the outlet, 

homogeneous Neumann (i.e., convective) boundary conditions were used. 
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For steady flow, the drag coefficient CD and the recirculation length Lw of the 

counter-rotating vortices in the cylinder wake are used as reference parameters for 

benchmark with the experimental and numerical data available. The drag coefficient CD 

is defined as: 

21

2

D
D

F
C

U D 

          (141) 

Where ρ, U∞ and D represent the fluid density, the fluid free stream velocity and the 

cylinder diameter, respectively. FD is the drag force on the cylinder and can be 

determined using eq. (30) if the immersed body surface mesh approach is used: 

        
 

, ,
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x x t
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

          (142) 

and eq. (38) for the immersed body volume mesh approach: 

        
 

, ,D x K x

x x t

F t x t n dx F X s t X x ds n dx


            (143) 

The definition of the recirculation length follows the notation used in Coutanceau 

and Bouard [85]. In the following figures the flow is from left to right (or top to bottom) 

unless otherwise specified. The last column in Table 12 shows the drag coefficient 

function of the mesh sensitivity for the IFEM. Refining the mesh the drag coefficient 

decreases, approaching the experimental value determined by Tritton [86]. Using for the 

immersed body a surface mesh with bi-linear shape function (i.e., degree = 1) instead of 

bi-quadratic shape function (i.e., degree = 2) allows to have smaller surface cells, and the 

diffusive effect of the interpolation scheme is reduced. If volume meshes are used for the 
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immersed body, even with very coarse meshes, the drag coefficient is very close to the 

experimental value. 

 

Table 12. IFEM mesh sensitivity analysis for the drag coefficient in the steady flow past 

a circular cylinder at Re = 20 

Fluid #cells Δx Immersed body #cells Δs CD 

20x20 D/2 32 (surface mesh, degree = 1) πD/32 2.776 

40x40 D/4 64 (surface mesh, degree = 1) πD/64 2.423 

80x80 D/8 64 (surface mesh, degree = 1) πD/64 2.290 

160x160 D/16 64 (surface mesh, degree = 1) πD/64 2.220 

320x320 D/32 128 (surface mesh, degree = 1) πD/128 2.184 

320x320 D/32 32 (surface mesh, degree = 2) πD/64 2.229 

80x80 D/8 20 (volume mesh degree = 1) πD/8 2.314 

160x160 D/16 80 (volume mesh degree = 1) πD/16 2.187 

320x320 D/32 320 (volume mesh degree = 1) πD/32 2.168 

 

In Table 13 is shown the mesh sensitivity analysis for the drag coefficient 

determined with the IFVM and that calculated by STAR-CCM+, respectively. The mesh 

convergence study shows that the drag coefficient reached an asymptotic value for both 

the finite volume IBM and body fitted approaches. It is worth mentioning that the drag 

coefficient value decreases with mesh refinement for the finite volume IBM approach, 

and slightly increases with mesh refinement for the body-fitted approach. 
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Table 13. IFVM and STAR-CCM+ mesh sensitivity analysis for the drag coefficient in 

the steady flow past a circular cylinder at Re = 20 

IBM Fluid #cells Δx CD STAR-CCM+ Fluid #cells Δx CD 

200x200 D/10 2.239 200x200 D/10 2.150 

400x400 D/20 2.263 500x500 D/25 2.165 

800x800 D/40 2.141 1000x1000 D/50 2.167 

1600x1600 D/80 2.124 //  // 

 

In Table 14 is shown a comparison of the drag coefficient and recirculation 

length for Re = 20 with experimental data (see [85, 86, 87]) and other numerical results 

available in literature (see [13, 21, 23, 25, 29, 54, 73, 79, 80, 88-100]). The numerical 

results obtained with the implemented IFEM and IFVM are in good agreement with the 

experimental data and the other IBM approaches. Also good agreement with the results 

obtained by running the commercial CFD code STAR-CCM+ is found. Considering the 

experimental data as reference value for the drag coefficient, the IFEM with a surface 

mesh approach and bi-linear or bi-quadratic shape functions gives a -0.09% and 0.315% 

error on the drag coefficient, respectively.  

Using a volume mesh for the immersed body with bi-linear shape function the 

error on the drag coefficient is -2.430% for the IFEM; the IFVM and STAR-CCM+ give 

an error equal to -4.41% and -2.475%, respectively. The recirculation length determined 

with the IFEM for the different immersed body discretizations and shape functions used 

are very close to the experimental data of Coutanceau and Bouard [85] when the IB is 

discretized with a surface mesh. If the IB is discretized with a volume mesh, smaller 
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recirculation lengths are predicted. The recirculation length predicted with IFVM and 

STAR-CCM+ is very close to the experimental data of Coutanceau and Bouard [85]. 

 

Table 14. Comparison of the drag coefficient and recirculation length in the two-

dimensional steady flow past a circular cylinder at Re = 20 

 Year Characteristics l/d CD 

Coutanceau and Bouard [85] 1977 Experiment 0.93 - 

Tritton [86] – set #6 1959 Experiment - 2.222 

Tritton [86] – set #5 1959 Experiment - 2.022 

Wieselsberger [87] 1922 Experiment - 2.050 

Lima E Silva et al. [13] 2003 Implicit diffuse direct-forcing, NSEs 1.04 2.040 

Ye et al. [21] 1999 Cut cell method, NSE 0.92 2.030 

Le et al. [23] 2006 IIM, NSE 0.93 2.050 

Le et al. [25] 2008 Implicit diffuse direct-forcing, NSEs 1.05 2.070 

Kang and Hassan [29] 2010 Exterior sharp direct-forcing, LBE 0.91 2.057 

Taira and Colonius [54] 2007 Implicit diffuse direct-forcing, NSEs 0.97 2.070 

Linnick and Fasel [73] 2005 IIM, streamfunction-vorticity 0.93 2.160 

Su et al. [79] 2007 Implicit diffuse direct-forcing, NSEs - 2.200 

Wu and Shu [80] 2009 Implicit diffuse direct-forcing, LBE 0.93 2.091 

Dennis and Chang [88] 1970 Numerical solution 0.94 2.045 

Fornberg [89] 1980 Numerical solution 0.91 2.000 
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Table 14 Continued 

 Year Characteristics l/d CD 

Calhoun [90] 2002 

Interior sharp direct-forcing, 

streamfunction-vorticity 

0.91 2.190 

Russel and Wang [91] 2003 

Interior sharp direct-forcing, 

streamfunction-vorticity 

0.94 2.130 

Niu et al. [92] 2006 Explicit sharp direct-forcing, LBE 0.95 2.144 

He and Doolen [93] 1997 Implicit diffuse direct-forcing, LBE 0.92 2.152 

Wang et al. [94] 2009 Implicit diffuse direct-forcing, NSEs 0.98 2.250 

Park et al. [95] 1998 Body-fitted method, NSEs - 2.010 

Xu [96] 2008 IIM, NSEs 0.93 2.230 

Xu and Wang [97] 2006 IIM, NSEs 0.92 2.230 

Choi et al. [98] 2007 Interior sharp direct-forcing, NSEs 0.90 2.020 

Rogers and Kwak [99] 1991 Body-fitted method, NSEs 0.93 2.080 

Pacheco et al. [100] 2005 Exterior sharp direct-forcing, NSEs 0.91 2.080 

Present (IFEM sm, dg = 1) 2012 Implicit diffuse direct-forcing, NSEs 0.90 2.220 

Present (IFEM sm, dg = 2) 2012 Implicit diffuse direct-forcing, NSEs 0.93 2.229 

Present (IFEM vm, dg = 1) 2012 Implicit diffuse direct-forcing, NSEs 0.85 2.168 

Present (IFVM) 2012 Explicit sharp direct-forcing, NSEs 0.92 2.124 

STAR-CCM+/V7.04.006 2012 Body-fitted method, NSEs 0.92 2.167 
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In Figure 23 are shown the vorticity contours for the IFEM numerical simulation 

of the steady flow past a circular cylinder at Re = 20. For the immersed body, the 

simulations were performed considering a surface mesh and a volume mesh approach, 

and sensitivity over the shape functions used (i.e., bi-linear and bi-quadratic shape 

functions) were performed. The figure shows that there is good agreement among the 

different IFEM approaches considered. 

In Figure 24 are shown the vorticity contours for the IFEM with volume mesh for 

the immersed body and bi-linear shape functions (left), the vorticity contours for the 

IFEM (center), and the vorticity contours obtained from STAR-CCM+ (right).. Also 

good agreement is found between the IFEM and the IFVM approaches. The vorticity 

contours predicted with the two immersed boundary methodologies are qualitatively in 

good agreement with the vorticity contours determined by the body-fitted commercial 

code. 

 

 

Figure 23. Vorticity contours for steady flow past a circular cylinder at Re = 20. IFEM; 

left: sm, dg = 1; center: sm, dg = 2; right: vm, dg = 1. 
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Figure 24. Vorticity contours for steady flow past a circular cylinder at Re = 20. Left: 

IFEM vm, dg = 1; center: IFVM; right: STAR-CCM+. 

 

In Figure 25 are shown the streamlines for the steady flow past a circular 

cylinder at Re = 20 determined with the direct-forcing IFEM and implicit diffuse 

interface scheme using surface mesh for the immersed body with bi-linear and bi-

quadratic shape functions, and volume mesh for the immersed body with bi-linear shape 

functions. As expected, the diffuse interface scheme allows some fluid to penetrate the 

cylinder surface when the IB is discretized with a surface mesh (left and center of Figure 

25). The pair of counter-rotating vortices appear slightly shifted downwards in the 

cylinder wake due to the fluid penetration at the cylinder surface. When a volume mesh 

is used for the immersed body, the fluid inside the cylinder is at rest, and the streamlines 

do not cross the boundary of the cylinder, with the result that the pair of counter-rotating 

vortices in the wake are very close to the cylinder surface as shown in the right of Figure 

25. In Figure 26 the streamlines for the steady flow past a circular cylinder at Re = 20 

obtained with the IFEM and volume mesh approach for the immersed body (left) are 

compared to the streamlines obtained with the IFVM (center) and with the streamlines 
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computed with STAR-CCM+ (right). The figure shows that for the IFVM there is no 

fluid penetration at the cylinder surface, and the streamlines predicted with the three 

different approaches look very similar. 

In Figure 27 is shown a comparison of the streamlines for Re = 24.3 (left) from 

the experimental data of Coutanceau and Bouard [85], the streamlines for the IFEM 

numerical simulations at Re = 20 (center) and the streamlines for the IFVM numerical 

simulations at Re = 20 (right). The numerical results show that the symmetric counter-

rotating vortices in the cylinder wake are qualitatively and quantitatively in good 

agreement with the experimental visualization. 

 

 

Figure 25. Streamlines for steady flow past a circular cylinder at Re = 20. IFEM; left: 

sm, dg = 1; center: sm, dg = 2; right: vm, dg = 1. 

 

 

Figure 26. Streamlines for steady flow past a circular cylinder at Re = 20. Left: IFEM 

vm, dg = 1; center: IFVM; right: STAR-CCM+. 
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Figure 27. Streamlines for steady flow past a circular cylinder at Re = 24.3 from [85] 

(left); Re = 20 IFEM vm, dg = 1 (center); Re = 20 IFVM (right). 

 

Table 15 addresses the number of cells and mesh size used for the IFEM fluid 

volume mesh and the immersed body mesh, respectively, in the steady flow past a 

circular cylinder at Re = 40. For the immersed body both surface and volume mesh 

approaches were considered, and bi-linear and bi-quadratic shape functions were used. 

For the finest mesh were used 641 641 dofs for each component of the fluid velocity 

field and 128 forcing points for each component of the Lagrange multipliers at the 

surface mesh (i.e., Δx = D / 32, Δs = πD / 128). The same boundary conditions applied 

for the steady flow past a circular cylinder at Re = 20 were used. The drag coefficient 

reached an asymptotic value for the finest mesh considered. 

In Table 16 is shown the drag coefficient determined with the IFVM and that 

calculated by STAR-CCM+, respectively. The mesh convergence study shows that the 
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drag coefficient reached an asymptotic value for both the finite volume IBM and body 

fitted approaches. Also for the steady flow past a circular cylinder at Re = 40 the drag 

coefficient value decreases with mesh refinement for the IFVM approach, and slightly 

increases with mesh refinement for the body-fitted approach. 

 

Table 15 IFEM mesh sensitivity analysis for the drag coefficient in the steady flow past 

a circular cylinder at Re = 40 

Fluid #cells Δx IB #cells Δs CD 

20x20 D/2 8 (surface mesh, degree = 1) πD/8 2.043 

40x40 D/4 16 (surface mesh, degree = 1) πD/16 1.910 

80x80 D/8 32 (surface mesh, degree = 1) πD/32 1.786 

160x160 D/16 64 (surface mesh, degree = 1) πD/64 1.707 

320x320 D/32 128 (surface mesh, degree = 1) πD/128 1.661 

20x20 D/2 4 (surface mesh, degree = 2) πD/8 2.069 

40x40 D/4 8 (surface mesh, degree = 2) πD/16 1.912 

80x80 D/8 16 (surface mesh, degree = 2) πD/32 1.828 

160x160 D/16 32 (surface mesh, degree = 2) πD/64 1.686 

320x320 D/32 32 (surface mesh, degree = 2) πD/64 1.656 

80x80 D/8 20 (volume mesh degree = 1) πD/8 1.726 

160x160 D/16 80 (volume mesh degree = 1) πD/16 1.627 

320x320 D/32 320 (volume mesh degree = 1) πD/32 1.615 
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Table 16 IFVM and STAR-CCM+ mesh sensitivity analysis for the drag coefficient in 

the steady flow past a circular cylinder at Re = 40 

IBM Fluid #cells Δx CD STAR-CCM+ Fluid #cells Δx CD 

200x200 D/10 1.646 200x200 D/10 1.605 

400x400 D/20 1.667 500x500 D/25 1.610 

800x800 D/40 1.588 1000x1000 D/50 1.611 

1600x1600 D/80 1.587 //  // 

 

In Table 17 is shown a comparison of the drag coefficient and recirculation 

length at Re = 40 with experimental data (see [85, 86, 87]) and other numerical results 

available in literature (see [13, 15, 19, 21, 23, 25, 29, 54, 64, 73, 79, 80, 88-103). Also 

for this case, the numerical results obtained with both the IFEM and IFVM are in 

excellent agreement with the experimental data. Good agreement with the other 

numerical IBM approaches and with the numerical results from STAR-CCM+ is 

achieved. For the IFEM, if the immersed body is discretized with a surface mesh using 

either bi-linear or bi-quadratic shape functions, the diffuse interpolation scheme predicts 

larger counter-rotating vortices in the cylinder wake. If the immersed body is discretized 

with a volume mesh, the presence of Lagrange multipliers in the fluid region inside the 

cylinder determines smaller counter-rotating vortices in the cylinder wake. Considering 

the experimental data of Tritton [86] as reference value, The IFEM with volume mesh 

approach and bi-linear shape functions gives an error on the drag coefficient of -2.298%. 

For the IFVM and STAR-CCM the error on the drag coefficient is equal to -3.992% and 

-2.541%, respectively. 
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Table 17 Comparison of the drag coefficient and recirculation length in the two-

dimensional steady flow past a circular cylinder at Re = 40 

 Year Characteristics l/d CD 

Coutanceau and Bouard [85] 1977 Experiment 2.13 - 

Tritton [86] – set #6 1959 Experiment - 1.653 

Wieselsberger [87] 1922 Experiment - 1.700 

Lima E Silva et al. [13] 2003 Implicit diffuse direct-forcing, NSEs 2.55 1.540 

Tseng and Ferziger [15] 2003 Interior sharp direct-forcing, NSEs 2.21 1.530 

Mittal et al. [19] 2008 Exterior sharp direct-forcing, NSEs - 1.530 

Ye et al. [21] 1999 Cut cell method, NSEs 2.27 1.520 

Le et al. [23] 2006 IIM, NSEs 2.22 1.560 

Le et al. [25] 2008 Implicit diffuse direct-forcing, NSEs 2.59 1.580 

Kang and Hassan [29] 2010 Exterior sharp direct-forcing, LBE 2.25 1.538 

Taira and Colonius [54] 2007 Implicit diffuse direct-forcing, NSEs 2.33 1.550 

Kim et al. [64] 2000 Exterior sharp direct-forcing, NSEs - 1.510 

Linnick and Fasel [73] 2005 IIM, streamfunction-vorticity 2.23 1.610 

Su et al. [79] 2007 Implicit diffuse direct-forcing, NSEs - 1.630 

Wu and Shu [80] 2009 Implicit diffuse direct-forcing, LBE 2.31 1.565 

Dennis and Chang [88] 1970 Numerical solution 2.35 1.522 

Fornberg [89] 1980 Numerical solution 2.24 1.500 

Calhoun [90] 2002 

Interior sharp direct-forcing, 

streamfunction-vorticity 

2.18 1.620 

Russel and Wang [91] 2003 

Interior sharp direct-forcing, 

streamfunction-vorticity 

2.29 1.600 
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Table 17 Continued 

 Year Characteristics l/d CD 

Niu et al. [92] 2006 Explicit sharp direct-forcing, LBE 2.26 1.589 

He and Doolen [93] 1997 Implicit diffuse direct-forcing, LBE 2.25 1.499 

Wang et al. [94] 2009 Implicit diffuse direct-forcing, NSEs 2.35 1.660 

Park et al. [95] 1998 Body-fitted method, NSEs - 1.510 

Xu [96] 2008 IIM, NSEs 2.24 1.660 

Xu and Wang [97] 2006 IIM, NSEs 2.21 1.660 

Choi et al. [98] 2007 Interior sharp direct-forcing, NSEs 2.25 1.520 

Rogers and Kwak [99] 1991 Body-fitted method, NSEs 2.29 1.549 

Pacheco et al. [100] 2005 Exterior sharp direct-forcing, NSEs 2.28 1.530 

Dias and Majumdar [101] // // 2.69 1.540 

Marella et al. [102] 2005 // 2.30 1.520 

Haeri and Shrimpton [103] 2012 // 2.23 1.580 

Haeri and Shrimpton [103] 2012 non-DLM/FD, NSEs 2.27 1.620 

Present (IFEM sm, dg = 1) 2012 Implicit diffuse direct-forcing, NSE 2.40 1.661 

Present (IFEM sm, dg = 2) 2012 Implicit diffuse direct-forcing, NSE 2.35 1.656 

Present (IFEM vm, dg = 1) 2012 Implicit diffuse direct-forcing, NSE 2.09 1.615 

Present (IFVM) 2012 Explicit sharp direct-forcing, NSE 2.29 1.587 

STAR-CCM+/V7.04.006 2012 Body-fitted method, NSE 2.40 1.611 

 

In Figure 28 are shown the vorticity contours for the IFEM numerical simulation 

of the steady flow past a circular cylinder at Re = 40. For the immersed body, 
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simulations were performed considering a surface mesh approach and a volume mesh 

approach, respectively, and sensitivity over the shape functions used (i.e., bi-linear and 

bi-quadratic shape functions) were performed. In Figure 29 are shown the vorticity 

contours for the IFEM with volume mesh for the immersed body and bi-linear shape 

functions (left), the vorticity contours for the IFEM (center), and the vorticity contours 

obtained from STAR-CCM+ (right), respectively. The figure shows that the vorticity 

contours for both IBM approaches are in good agreement with the commercial code 

predictions, and in general with the vorticity contours reported in literature for steady 

flow past a circular cylinder at Re = 40. 

 

 

Figure 28. Vorticity contours for steady flow past a circular cylinder at Re = 40. IFEM; 

left: sm, dg = 1; center: sm, dg = 2; right: vm, dg = 1. 

 

 

Figure 29. Vorticity contours for steady flow past a circular cylinder at Re = 40. Left: 

IFEM vm, dg = 1; center: IFVM; right: STAR-CCM+. 
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In Figure 30 are shown the streamlines for the steady flow past a circular 

cylinder at Re = 40 determined with the direct-forcing IFEM and implicit diffuse 

interface scheme using surface mesh for the immersed body with bi-linear and bi-

quadratic shape function, and volume mesh for the immersed body with bi-linear shape 

function. As discussed for the steady flow past a circular cylinder at Re = 20, the diffuse 

interface scheme allows some fluid to penetrate the cylinder surface, with the pair of 

counter-rotating vortices slightly shifted downwards in the cylinder wake (left and 

center). For the immersed body discretized with a volume mesh, the fluid inside the 

cylinder is at rest, and the streamlines do not cross the boundary of the cylinder. The pair 

of counter-rotating vortices in the wake are very close to the cylinder surface as shown 

in the left of Figure 31, and look very similar to the streamlines determined with the 

IFVM (center) and STAR-CCM+ (right). Due to the sharp nature of the interpolating 

functions at the immersed body surface, the no-slip boundary conditions is directly 

imposed in the IFVM approach and there is no fluid penetration inside the cylinder. 

In Figure 32 is shown a comparison of the streamlines for Re = 40.3 (left) from 

the experimental data of Coutanceau and Bouard [85], the streamlines from the IFEM 

numerical simulations at Re = 40 (center) and the streamlines from the IFVM numerical 

simulations at Re = 40 (right). The numerical results show that the length of the 

symmetric counter-rotating vortices in the wake is qualitatively and quantitatively in 

good agreement with the experimental visualization. In Table 17 is shown that the 

recirculation length determined numerically is very close to the one determined in [85] 

with an error of -1.878% for the IFEM and 7.511% for the IFVM, respectively. 
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Figure 30. Streamlines for steady flow past a circular cylinder at Re = 40. IFEM. Left: 

sm, dg = 1; center: sm, dg = 2; right: vm, dg = 1. 

 

 

Figure 31. Streamlines for steady flow past a circular cylinder at Re = 40. Left: IFEM 

vm, dg = 1; center: IFVM; right: STAR-CCM+. 

 

 

Figure 32. Streamlines for steady flow past a circular cylinder at Re = 40.3 from [85] 

(left); Re = 40 IFEM vm, dg = 1 (center); Re = 40 IFVM (right). 
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4.3.2 Two-Dimensional Unsteady Flow Past a Circular Cylinder 

For the two-dimensional unsteady flows with Re = 100, 150 and 200, due to the 

extended recirculation zone in the cylinder wake, the computational domain for the 

IFEM simulations is extended: Ω = [-5D, 25D] x [-10D, 10D], with the circular cylinder 

of diameter D being positioned 5D downstream the inlet and -0.1D off the axial 

symmetry line. This will introduce a small perturbation into the system, generating 

instability which will trigger unsteadiness. If the cylinder is positioned on the symmetry 

line, a much longer simulation time is required to trigger the instability. For the IFVM 

simulations the computational domain is: Ω = [-5D, 35D] x [-10D, 10D], with the 

circular cylinder of diameter D positioned 5D downstream the inlet and -0.1D off the 

axial symmetry line. For the finite volume discretization, the instability is generated 

even if the cylinder is positioned on the symmetry line. For consistency with the IFEM 

simulations an offset of -0.1D was set. It is worth noting that the finite volume 

simulations required the outlet boundary condition to be imposed further downstream the 

cylinder location if compared to the finite element simulations. No converged results 

could be obtained with the finite volume discretization if the outlet boundary condition 

was set 25D downstream the cylinder. 

Two new coefficients are introduced: the lift coefficient CL and the Strouhal 

number St, which can be compared to the experimental and numerical data available in 

literature. The lift coefficient is defined as: 

21

2

L
L

F
C

U D 

           (144) 
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where FL is the lift force on the cylinder and can be determined using eq. (30) for 

immersed body surface mesh approach: 

        
 

, ,

i

L y K y

x x t

F t x t n dx F X s t X x ds n dx 


          (145) 

and eq. (38) for immersed body volume mesh approach: 
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The Strouhal number is defined as: 

q

t

f D
S
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            (147) 

where U∞ and D represent the free stream velocity and the cylinder diameter, 

respectively, and fq is the vortex shedding frequency. The vortex shedding frequency can 

be obtained by the lift coefficient, due to its periodic oscillatory trend. Eq. (147) can be 

normalized using reference velocity U∞,0 and length scales D0 as: 
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where fq
*
 is the normalized vortex shedding frequency. 

In Table 18, Table 19 and Table 20 are shown the mesh sensitivity for the drag 

and lift coefficients and the Strouhal number using the IFEM, the IFVM and the 

commercial code STAR-CCM+, respectively, for the unsteady flow past a circular 

cylinder at Re = 100. The tables show that for the mesh refinements chosen both the 

IBMs implemented and STAR-CCM+ computations give converged results in good 

agreement with each other. 
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Table 18 IFEM mesh sensitivity analysis for drag and lift coefficients and Strouhal 

number in the unsteady flow past a circular cylinder at Re = 100 

Fluid #cells Δx IB #cells Δs CD CL St 

120x80 D/8 20 (vm, dg = 1) πD/8 1.483±0.011 ±0.325 0.169 

240x160 D/16 80 (vm, dg = 1) πD/16 1.429±0.008 ±0.322 0.179 

480x320 D/32 320 (vm, dg = 1) πD/32 1.425±0.008 ±0.321 0.177 

 

Table 19 IFVM mesh sensitivity analysis for drag and lift coefficients and Strouhal 

number in the unsteady flow past a circular cylinder at Re = 100 

Fluid #cells Δx CD CL St 

200x100 D/5 1.678±0.001 ±0.008 0.121 

400x200 D/10 1.586±0.008 ±0.279 0.150 

800x400 D/20 1.505±0.009 ±0.315 0.167 

1600x800 D/40 1.431±0.010 ±0.325 0.174 

 

Table 20 STAR-CCM+ mesh sensitivity analysis for drag and lift coefficients and 

Strouhal number in the unsteady flow past a circular cylinder at Re = 100 

Fluid #cells Δx CD CL St 

300x200 D/10 1.484±0.010 ±0.337 0.175 

1500x1000 D/50 1.458±0.010 ±0.347 0.164 

3000x2000 D/100 1.459±0.010 ±0.354 0.171 

 

Table 21 provides a comparison of the drag and lift coefficients and the Strouhal 

number for the IFEM, the IFVM, the commercial code STAR-CCM+, an extensive 
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literature of both experimental data (see [86, 104-106]) and numerical simulations 

performed with other IBM approaches (see [4, 13-15, 19, 23, 25, 29, 46, 64, 73, 79, 80, 

90, 91, 94, 96, 97, 98, 100-103, 107-112]) and body fitted approaches (see [95, 108]). 

The numerical results obtained with the IFEM and IFVM approaches implemented are in 

good agreement with the experimental data available, the results obtained with other 

IBM approaches and the STAR-CCM+ numerical predictions. The drag coefficient 

average value determined with STAR-CCM+ is slightly larger than the value predicted 

with the IFEM and IFVM approaches and the data available from literature. Also for the 

lift coefficient STAR-CCM+ predicts a value larger than the IFEM and the IFVM 

numerical results. The Strouhal number predictions for the IFEM, the IFVM and STAR-

CCM+ are in satisfactory agreement. 
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Table 21 Comparison of drag and lift coefficients and Strouhal number in the two-

dimensional unsteady flow past a circular cylinder at Re = 100 

 Year Characteristics CD CL St 

Tritton [86] – set #8 1959 Experiment 1.257 (avg.) - - 

Roshko [104] 1953 Experiment - - 0.164 

Williamson [105] 1989 Experiment - - 0.166 

Berger and Wille [106] 1972 Experiment - - 

0.16-

0.17 

Lai and Peskin [4] 2000 Explicit diffuse feedback-forc., NSEs 1.447 (avg.) ±0.330 0.165 

Lima E Silva et al. [13] 2003 Implicit diffuse direct-forcing, NSEs 1.390 (avg.) - 0.160 

Uhlmann [14] 2005 Explicit sharp direct-forcing, NSEs 1.453±0.011 ±0.339 0.169 

Tseng and Ferziger [15] 2003 Interior sharp direct-forcing, NSEs 1.420 (avg.) ±0.290 0.164 

Mittal et al. [19] 2008 Exterior sharp direct-forcing, NSEs 1.350 (avg.) - 0.165 

Le et al. [23] 2006 IIM, NSEs 1.370±0.009 ±0.323 0.160 

Le et al. [25] 2008 Implicit diffuse direct-forcing, NSEs 1.390±0.009 ±0.346 0.160 

Kang and Hassan [29] 2010 Exterior sharp direct-forcing, LBE 1.336 (avg.) ±0.329 0.165 

Apte et al. [46] 2009 non-DLM/FD, NSEs 1.360 (avg.) - 0.160 

Kim et al. [64] 2000 Exterior sharp direct-forcing, NSEs 1.330 (avg.) ±0.320 0.165 

Linnick and Fasel [73] 2005 IIM, streamfunction-vorticity 1.380±0.010 ±0.337 0.169 

Su et al. [79] 2007 Implicit diffuse direct-forcing, NSEs 1.400 (avg.) ±0.340 0.168 

Wu and Shu [80] 2009 Implicit diffuse direct-forcing, NSEs 1.364 (avg.) ±0.344 0.163 

Calhoun [90] 2002 

Interior sharp direct-forcing, streamf.-

vortic. 

1.330±0.014 ±0.298 0.175 

Russel and Wang [91] 2003 

Interior sharp direct-forcing, streamf.-

vortic. 

1.380±0.007 ±0.300 0.169 

Wang et al. [94] 2009 Implicit diffuse direct-forcing, NSEs 1.379 (avg.) ±0.357 0.170 
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Table 21 Continued 

 Year Characteristics CD CL St 

Park et al. [95] 1998 Body-fitted method, NSEs 1.330 (avg.) ±0.330 0.165 

Xu [96] 2008 IIM, NSEs 1.420±0.010 ±0.353 0.172 

Xu and Wang [97] 2006 IIM, NSEs 1.423±0.013 ±0.340 0.171 

Choi et al. [98] 2007 Interior sharp direct-forcing, NSEs 1.340 (avg.) ±0.315 0.164 

Pacheco et al. [100] 2005 Exterior sharp direct-forcing, NSEs 1.410 (avg.) - 0.167 

Dias and Majumdar [101] // // 1.395 (avg.) ±0.283 0.171 

Marella et al. [102] 2005 // 1.36 (avg.) - - 

Haeri and Shrimpton [103] 2012 // 1.320 (avg.) - 0.174 

Haeri and Shrimpton [103] 2012 non-DLM/FD, NSEs 1.380 (avg.) - 0.168 

Braza et al. [107] 1986 Numerical solution 1.364±0.015 ±0.250 - 

Liu et al. [108] 1998 Body-fitted method, NSEs 1.350±0.012 ±0.339 0.165 

Sui et al. [109] 2007 Explicit diffuse direct-forcing, LBE 1.438 (avg.) ±0.344 0.166 

Saiki et al. [110] 1996 Explicit diffuse feedback-forcing, NSEs 1.260 (avg.) - 0.171 

Engelman and Jaminia 

[111] 

1990 Body-fitted method, NSEs 1.411 (avg.) - 0.173 

Ji et al. [112] 2012 Interior sharp direct-forcing, NSEs 1.376±0.010 0.339 0.169 

Present (IFEM vm, dg = 1) 2011 Implicit diffuse direct-forcing, NSEs 1.425±0.008 ±0.321 0.177 

Present (IFVM) 2012 Explicit sharp direct-forcing, NSEs 1.431±0.010 ±0.325 0.174 

STAR-CCM+/V7.04.006 2012 Body-fitted method, NSEs 1.459±0.010 ±0.354 0.171 

 

In Figure 33 and Figure 34 are shown the time evolution of the drag and lift 

coefficient computed with the IFEM, the IFVM and STAR-CCM+, respectively. 

Following an initial transient where the periodic vortex shedding develops, both 
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methodologies are qualitatively and quantitatively in good agreement with the STAR-

CCM+ results. The IFEM and IFVM predic a slightly larger vortex shedding frequency, 

and STAR-CCM+ giving slightly larger drag and lift coefficients (see Table 21). 

 

 

Figure 33. Time evolution of CD for unsteady flow past a circular cylinder at Re = 100. 
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Figure 34. Time evolution of CL for unsteady flow past a circular cylinder at Re = 100. 

 

In Figure 35 and Figure 36 are shown the pressure distribution and velocity 

magnitude distribution close to the IB surface computed with the IFEM, IFVM and 

STAR-CCM+, respectively. The figures show that close to the IB the pressure and 

velocity distribution computed with the IFEM and IFVM approaches are qualitatively 

very similar to those obtained using the finite volume commercial code for a very fine 

mesh (6 million cells were used for the STAR-CCM+ simulation as shown in Table 20). 

The resemblance of the flow distribution obtained with the IFEM, the IFVM and that 

obtained with the commercial code STAR-CCCM+ can be noted as well from the 

velocity magnitude in the simulation domain considered shown in Figure 37 and the 

velocity and vorticity contours shown in Figure 38 and Figure 39, respectively. 
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Figure 35. Pressure distribution for unsteady flow past a circular cylinder at Re = 100. 

Left: IFEM vm, dg = 1; center: IFVM; right: STAR-CCM+. 

 

 

Figure 36. Velocity magnitude close to the IB surface for unsteady flow past a circular 

cylinder at Re = 100. Left: IB vm, dg = 1; right: STAR-CCM+. 

 

 

Figure 37. Velocity magnitude for unsteady flow past a circular cylinder at Re = 100. 

Left: IFEM vm, dg = 1; center: IFVM; right: STAR-CCM+. 

 

Figure 40 shows the streamlines determined with the IFEM, IFVM and those 

determined by STAR-CCM+ close to the IB surface. As pointed out previously, using a 

surface mesh to discretize the IB surface, some streamlines might penetrate the IB 

surface, due to the diffusive nature of the interpolation scheme. If a volume mesh is used 
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to discretize the immersed boundary, Lagrange multipliers are present not only on the 

surface of the immersed body, but also in the volume region inside the immersed body, 

and this guarantees no penetration of streamlines inside the cylinder boundary. The 

figure clearly shows that the IFEM and the IFVM properly simulate the vortex shedding 

at the cylinder surface. 

 

 

Figure 38. Velocity contours for unsteady flow past a circular cylinder at Re = 100. Left: 

IFEM vm, dg = 1; center: IFVM; right: STAR-CCM+. 

 

 

Figure 39. Vorticity contours for unsteady flow past a circular cylinder at Re = 100. 

Left: IFEM vm, dg = 1; center: IFVM; right: STAR-CCM+. 

 

 

Figure 40. Streamlines for unsteady flow past a circular cylinder at Re = 100. Left: 

IFEM vm, dg = 1; center: IFVM; right: STAR-CCM+. 
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In Table 22, Table 23 and Table 24 are shown the mesh sensitivity for the drag 

and lift coefficients and the Strouhal number using the IFEM, the IFVM and the 

commercial code STAR-CCM+, respectively, for the unsteady flow past a circular 

cylinder at Re = 150. The tables show that for the mesh refinements chosen the IFEM 

and the IFVM implemented give results in good agreement with the STAR-CCM+ 

predictions. 

 

Table 22 IFEM mesh sensitivity analysis for drag and lift coefficients and Strouhal 

number in the unsteady flow past a circular cylinder at Re = 150 

Fluid #cells Δx Immersed boundary #cells Δs CD CL St 

120x80 D/8 20 (vm, dg = 1) πD/8 1.627±0.030 ±0.583 0.193 

240x160 D/16 80 (vm, dg = 1) πD/16 1.400±0.025 ±0.518 0.199 

480x320 D/32 320 (vm, dg = 1) πD/32 1.395±0.021 ±0.508 0.195 

 

Table 23 IFVM mesh sensitivity analysis for drag and lift coefficients and Strouhal 

number in the unsteady flow past a circular cylinder at Re = 150 

Fluid #cells Δx CD CL St 

200x100 D/5 1.643±0.001 ±0.071 0.124 

400x200 D/10 1.566±0.013 ±0.324 0.155 

800x400 D/20 1.484±0.023 ±0.448 0.177 

1600x800 D/40 1.405±0.026 ±0.513 0.193 
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Table 24 STAR-CCM+ mesh sensitivity analysis for drag and lift coefficients and 

Strouhal number in the unsteady flow past a circular cylinder at Re = 150 

Fluid #cells Δx CD CL St 

300x200 D/10 1.415±0.022 ±0.458 0.194 

1500x1000 D/50 1.431±0.028 ±0.551 0.177 

3000x2000 D/100 1.434±0.029 ±0.563 0.195 

 

Table 25 provides a comparison of the drag and lift coefficients and the Strouhal 

number for the IFEM, the IFVM, the commercial code STAR-CCM+, an extensive 

literature of both experimental data (see [104, 105]) and numerical simulations 

performed with other IBM approaches (see [4, 13, 29, 79, 109, 112]) and body fitted 

approaches (see [108]) for the unsteady flow past a circular cylinder at Re = 150. The 

numerical results obtained with the IFEM and the IFVM approaches implemented are in 

good agreement with the experimental data available, the results obtained with other 

IBM approaches and the STAR-CCM+ numerical predictions.  
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Table 25 Comparison drag and lift coefficients and Strouhal number in the two-

dimensional unsteady flow past a circular cylinder at Re = 150 

 Year Characteristics CD CL St 

Roshko [104] 1953 Experiment - - 0.182 

Williamson [105] 1989 Experiment - - 0.183 

Lai and Peskin [4] 2000 Explicit diffuse feedback-forcing, NSEs 1.440 (avg.) - 0.184 

Lima E Silva et al. [13] 2003 Implicit diffuse direct-forcing, NSEs 1.370 (avg.) - 0.180 

Kang and Hassan [29] 2010 Exterior sharp direct-forcing, LBE 1.312 (avg.) ±0.513 0.184 

Su et al. [79] 2007 Implicit diffuse direct-forcing, NSEs 1.390 (avg.) - 0.187 

Liu et al. [108] 1998 Body-fitted method, NSE 1.334±0.012 ±0.530 0.182 

Sui et al. [109] 2007 Explicit diffuse direct-forcing, LBE 1.449 (avg.) ±0.709 0.197 

Ji et al. [112] 2012 Interior sharp direct-forcing, NSEs 1.354±0.026 ±0.524 0.188 

Present (IFEM vm, dg=1) 2012 Implicit diffuse direct-forcing, NSEs 1.395±0.021 ±0.508 0.195 

Present (IFVM) 2012 Explicit sharp direct-forcing, NSEs 1.405±0.026 ±0.513 0.193 

STAR-CCM+/V7.04.006 2012 Body-fitted method, NSEs 1.434±0.029 ±0.563 0.195 

 

In Figure 41 and Figure 42 are shown the time evolution of the drag and lift 

coefficient computed with the IFEM, the IFVM and STAR-CCM+, respectively, for the 

unsteady flow past a circular cylinder at Re = 150. Following an initial transient where 

the periodic vortex shedding develops, both immersed boundary methodologies are 

qualitatively and quantitatively in good agreement with STAR-CCM+ numerical data, 

with the IFEM predicting a slightly larger vortex shedding frequency, and STAR-CCM+ 

giving slightly larger drag and lift coefficients. 
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Figure 41. Time evolution of CD for unsteady flow past a circular cylinder at Re = 150. 

 

 

Figure 42. Time evolution of CL for unsteady flow past a circular cylinder at Re = 150. 
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In Figure 43 and Figure 44 are shown the pressure distribution and velocity 

magnitude distribution close to the IB surface computed with the IFEM, the IFVM and 

STAR-CCM+, respectively. The figures show that close to the IB the pressure and 

velocity distribution computed with the IFEM and the IFVM approaches are 

qualitatively very similar to those obtained using the finite volume commercial code for 

a very fine mesh (6 million cells were used for the STAR-CCM+ simulation as shown in 

Table 24).  

 

 

Figure 43. Pressure distribution for unsteady flow past a circular cylinder at Re = 150. 

Left: IFEM vm, dg = 1; center: IFVM; right: STAR-CCM+. 

 

 

Figure 44. Velocity magnitude close to the IB surface for unsteady flow past a circular 

cylinder at Re = 150. Left: IFEM vm, dg = 1; center: IFVM; right: STAR-CCM+. 

 

The resemblance of the flow distribution obtained with the IFEM and the IFVM 

to that obtained with the commercial code STAR-CCCM+ can be noted as well from the 
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velocity magnitude in the simulation domain considered shown in Figure 45 and the 

velocity and vorticity contours shown in Figure 46 and Figure 47, respectively. 

 

 

Figure 45. Velocity magnitude for unsteady flow past a circular cylinder at Re = 150. 

Left: IFEM vm, dg = 1; center: IFVM; right: STAR-CCM+. 

 

 

Figure 46. Velocity contours for unsteady flow past a circular cylinder at Re = 150. Left: 

IFEM vm, dg = 1; center: IFVM; right: STAR-CCM+. 

 

 

Figure 47. Vorticity contours for unsteady flow past a circular cylinder at Re = 150. 

Left: IFEM vm, dg = 1; center: IFVM; right: STAR-CCM+. 

 

Figure 48 shows the streamlines determined with the IFEM, the IFVM and those 

determined by STAR-CCM+ close to the IB surface. As pointed out previously, using a 
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surface mesh to discretize the IB surface for the IFEM, some streamlines might penetrate 

the IB surface, due to the diffusive nature of the interpolation scheme. If a volume mesh 

is used to discretize the immersed boundary for the IFEM, Lagrange multipliers are 

present not only on the surface of the immersed body, but also in the volume region 

inside the immersed body, and this guarantees no penetration of streamlines inside the 

cylinder boundary. The figure shows that the IFEM and the IFVM properly simulate the 

vortex shedding in the cylinder wake, and the agreement with the streamlines from 

STAR-CCM+ is clearly visible. 

 

 

Figure 48. Streamlines for unsteady flow past a circular cylinder at Re = 150. Left: 

IFEM vm, dg = 1; center: IFVM; right: STAR-CCM+. 

 

In Table 26, Table 27 and Table 28 are shown the mesh sensitivity for the drag 

and lift coefficients and the Strouhal number using the IFEM, the IFVM and the 

commercial code STAR-CCM+, respectively, for the unsteady flow past a circular 

cylinder at Re = 200. The tables show that for the mesh refinement chosen both the IBM 

implemented and the finite volume computations give converged results in good 

agreement with each other. 
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Table 26 IFEM mesh sensitivity analysis for drag and lift coefficients and Strouhal 

number in the unsteady flow past a circular cylinder at Re = 200 

Fluid #cells Δx Immersed boundary #cells Δs CD CL St 

120x80 D/8 20 (vm, dg = 1) πD/8 1.668±0.049 ±0.696 0.197 

240x160 D/16 80 (vm, dg = 1) πD/16 1.413±0.045 ±0.682 0.211 

480x320 D/32 320 (vm, dg = 1) πD/32 1.401±0.042 ±0.675 0.205 

 

Table 27 IFVM mesh sensitivity analysis for drag and lift coefficients and Strouhal 

number in the unsteady flow past a circular cylinder at Re = 200 

Fluid #cells Δx CD CL St 

200x100 D/5 1.620±0.001 ±0.580 0.124 

400x200 D/10 1.549±0.016 ±0.330 0.157 

800x400 D/20 1.487±0.032 ±0.515 0.182 

1600x800 D/40 1.407±0.041 ±0.648 0.202 

 

Table 28 STAR-CCM+ mesh sensitivity analysis for drag and lift coefficients and 

Strouhal number in the unsteady flow past a circular cylinder at Re = 200 

Fluid #cells Δx CD CL St 

300x200 D/10 1.344±0.029 ±0.502 0.206 

1500x1000 D/50 1.440±0.050 ±0.681 0.203 

3000x2000 D/100 1.443±0.050 ±0.743 0.207 

 

Table 29 provides a comparison of the drag and lift coefficients and the Strouhal 

number for the IFEM, the IFVM, the commercial code STAR-CCM+, an extensive 
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literature of numerical simulations performed with other IBM approaches (see [4, 23, 25, 

73, 80, 90, 91, 94, 96, 97, 98, 107, 109, 110, 112]) and body fitted approaches (see [108, 

113-115]). The numerical results obtained with the IFEM and IFVM approaches 

implemented are in good agreement with the experimental data available, the results 

obtained with other IBM approaches and the STAR-CCM+ numerical predictions. 

 

Table 29 Comparison for drag and lift coefficients and Strouhal number in the two-

dimensional unsteady flow past a circular cylinder at Re = 200 

 Year Characteristics CD CL St 

Lai and Peskin [4] 2000 Explicit diffuse feedback-forcing, NSEs - - 0.190 

Le et al. [23] 2006 IIM, NSEs 1.340±0.030 ±0.430 0.200 

Le et al. [25] 2008 Implicit diffuse direct-forcing, NSEs 1.380±0.040 ±0.676 0.208 

Linnick and Fasel [73] 2005 IIM, streamfunction-vorticity 1.370±0.046 ±0.700 0.199 

Wu and Shu [80] 2009 Implicit diffuse direct-forcing, NSEs 1.349 (avg.) - 0.193 

Calhoun [90] 2002 

Interior sharp direct-forcing, streamf.-

vortic. 

1.172±0.058 ±0.668 0.202 

Russel and Wang [91] 2003 

Interior sharp direct-forcing, streamf.-

vortic. 

1.290±0.022 ±0.500 0.195 

Wang et al. [94] 2009 Implicit diffuse direct-forcing, NSEs 1.262 (avg.) ±0.708 0.195 

Xu [96] 2008 IIM, NSEs 1.430±0.050 ±0.710 0.202 

Xu and Wang [97] 2006 IIM, NSEs 1.420±0.040 ±0.660 0.202 

Choi et al. [98] 2007 Interior sharp direct-forcing, NSEs 1.360±0.048 ±0.640 0.191 

Braza et al. [107] 1986 Numerical solution 1.400±0.050 ±0.750 - 

Liu et al. [108] 1998 Body-fitted method, NSEs 1.310±0.049 ±0.690 0.192 

Sui et al. [109] 2007 Explicit diffuse direct-forcing, LBE 1.449 (avg.) ±0.708 0.197 
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Table 29 Continued 

 Year Characteristics CD CL St 

Saiki et al. [110] 1996 Explicit diffuse feedback-forcing, NSEs 1.180 (avg.) - 0.197 

Ji et al. [112] 2012 Interior sharp direct-forcing, NSEs 1.354±0.044 ±0.681 0.200 

Belov et al. [113] 1995 Body-fitted method, NSEs 1.190±0.042 ±0.640 0.193 

Rosefeld et al. [114] 1991 Body-fitted method, NSEs 1.310±0.040 ±0.650 0.200 

Wright and Smith [115] 2001 Body-fitted method, NSEs 1.330±0.040 ±0.680 0.196 

Present (IFEM vm, dg = 

1) 

2011 Implicit diffuse direct-forcing, NSEs 1.401±0.042 ±0.675 0.205 

Present (IFVM) 2012 Explicit sharp direct-forcing, NSEs 1.407±0.041 ±0.648 0.202 

STAR-CCM+/V7.04.006 2011 Body-fitted method, NSEs 1.443±0.050 ±0.743 0.207 

 

In Figure 49 and Figure 50 are shown the time evolution of the drag and lift 

coefficient computed with the IFEM, the IFVM and STAR-CCM+, respectively. 

Following an initial transient where the periodic vortex shedding develops, both 

methodologies are qualitatively and quantitatively in good agreement with STAR-CCM+ 

numerical results, with the IFEM and IFVM predicting a slightly larger vortex shedding 

frequency, and STAR-CCM+ giving slightly larger drag and lift coefficients. 

In Figure 51 and Figure 52 are shown the pressure distribution and velocity 

magnitude distribution close to the IB surface computed with the IFEM, the IFVM and 

STAR-CCM+, respectively. The figures show that close to the IB the pressure and 

velocity distribution computed with the IFEM and IFVM approaches are qualitatively 

very similar to those obtained using STAR-CCM+.  
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The resemblance of the flow distribution obtained with the IFEM, the IFVM and 

that obtained with the commercial code STAR-CCCM+ can be noted as well from the 

velocity magnitude in the simulation domain considered shown in Figure 53 and the 

velocity and vorticity contours shown in Figure 54 and Figure 55, respectively. 

 

 

Figure 49. Time evolution of CD for unsteady flow past a circular cylinder at Re = 200. 
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Figure 50. Time evolution of CL for unsteady flow past a circular cylinder at Re = 200 

 

 

Figure 51. Pressure distribution for unsteady flow past a circular cylinder at Re = 200. 

Left: IFEM vm, dg = 1; center: IFVM; right: STAR-CCM+. 

 

 

Figure 52. Velocity magnitude close to the IB surface for unsteady flow past a circular 

cylinder at Re = 200. Left: IFEM vm, dg = 1; center: IFVM; right: STAR-CCM+. 
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Figure 53. Velocity magnitude for unsteady flow past a circular cylinder at Re = 200. 

Left: IFEM vm, dg = 1; center: IFVM; right: STAR-CCM+. 

 

 

Figure 54. Velocity contours for unsteady flow past a circular cylinder at Re = 200. Left: 

IFEM vm, dg = 1; center: IFVM; right: STAR-CCM+. 

 

 

Figure 55. Vorticity contours for unsteady flow past a circular cylinder at Re = 200. 

Left: IFEM vm, dg = 1; center: IFVM; right: STAR-CCM+. 

 

Figure 56 shows the streamlines determined with the IFEM, the IFVM and those 

determined by STAR-CCM+ close to the IB surface. As pointed out previously, using a 

surface mesh to discretize the IB surface, some streamlines might penetrate the IB 

surface, due to the diffusive nature of the interpolation scheme. If a volume mesh is used 

to discretize the immersed boundary, Lagrange multipliers are present not only on the 

surface of the immersed body, but also in the volume region inside the immersed body, 
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and this guarantees no penetration of streamlines inside the cylinder boundary. Figure 56 

shows that the IFEM and the IFVM properly simulate the vortex shedding at the cylinder 

surface, and the results from both immersed boundary methodologies are qualitatively in 

good agreement with STAR-CCM+ predictions. 

 

 

Figure 56. Streamlines for unsteady flow past a circular cylinder at Re = 200. Left: 

IFEM vm, dg = 1; center: IFVM; right: STAR-CCM+. 

 

4.4 Three-Dimensional Flow Past a Sphere 

To test the implemented immersed boundary methodologies against three-

dimensional problems, the laminar flow past a sphere was simulated next. Simulations 

were performed at Re = 50, 100, 150, 200, 250 and 300, where the Reynolds number is 

measured based on the sphere diameter D, the free stream velocity U∞, and the fluid 

kinematic viscosity ν (Re = U∞•D/ ν). For Re ≤ 200, the flow regime is steady 

axisymmetric. For 210 ≤ Re ≤ 270 the flow regime becomes steady nonaxisymmetric, 

and for 280 ≤ Re the flow regime becomes unsteady. The computational domain for both 

finite element and finite volume discretization is: Ω = [0, 20D] x [0, 10D] x [0,10D], 

where D is the sphere diameter D = 1.0. The sphere is centered at (10.0, 5.0, 5.0). Free 

stream velocity (U∞ = 1.0, V = 0.0, W = 0.0) conditions were specified at the inlet, north 
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and south boundaries. Homogeneous Neumann boundary conditions were imposed at the 

top, bottom and exit boundaries. The time step for all simulations was Δt = 0.01. 

For Re ≤ 200 the flow gradually reaches steady state conditions and the wake 

behind the sphere is axisymmetric and topologically similar as addressed in Johnson and 

Patel [116].  

In Figure 57, Figure 58, Figure 59 and Figure 60 are shown the streamlines on 

the (x, y)-plane for the three-dimensional flow past a sphere at Reynolds number Re = 

50, 100, 150 and 200, obtained with the IFVM (left) and STAR-CCM+ (right), 

respectively. The figures show that the flow in the wake separates from the surface of 

the sphere, forming a closed recirculation zone. For these low Reynolds number the flow 

is axisymmetric and at steady state conditions. Only the length of the recirculation zone 

and the angle of separation change with the Re number. Both the IFVM and STAR-

CCM+ show the appearance of minor three-dimensional effects for Re ≤ 200 as Figure 

57 through Figure 60 point out. This behavior is due to the relatively coarse mesh used 

to discretize the immersed body for both approaches. If a more refined mesh for the 

sphere is used, symmetry is reestablished in the simulations and these three-dimensional 

disturbances become negligible. 
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Figure 57. Streamlines on the (x,y)-plane for flow past a sphere at Re = 50: Left: IFVM; 

right: STAR-CCM+. 

 

 

Figure 58. Streamlines on the (x,y)-plane for flow past a sphere at Re = 100: Left: 

IFVM; right: STAR-CCM+. 

 

 

Figure 59. Streamlines on the (x,y)-plane for flow past a sphere at Re = 150: Left: 

IFVM; right: STAR-CCM+. 
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Figure 60. Streamlines on the (x,y)-plane for flow past a sphere at Re = 200: Left: 

IFVM; right: STAR-CCM+. 

 

In Figure 61, Figure 62, Figure 63 and Figure 64 are shown the vorticity contours 

on the (x, y)-plane for the three-dimensional flow past a sphere at Reynolds number Re = 

50, 100, 150 and 200, obtained with the IFVM (left) and STAR-CCM+ (right), 

respectively. From the figures it is possible to see that the flow distribution in the sphere 

wake determined with the IFVM approach is qualitatively similar to the one determined 

with the commercial code STAR-CCM+. Due to the very coarse mesh used for the 

IFEM method, the streamlines and vorticity contours form the IFEM were not presented. 

 

 

Figure 61. Vorticity contours on the (x,y)-plane for flow past a sphere at Re = 50: Left: 

IFVM; right: STAR-CCM+. 
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Figure 62. Vorticity contours on the (x,y)-plane for flow past a sphere at Re = 100: Left: 

IFVM; right: STAR-CCM+. 

 

 

Figure 63. Vorticity contours on the (x,y)-plane for flow past a sphere at Re = 150: Left: 

IFVM; right: STAR-CCM+. 

 

 

Figure 64. Vorticity contours on the (x,y)-plane for flow past a sphere at Re = 200: Left: 

IFVM; right: STAR-CCM+. 

 

For a three-dimensional flow past a sphere the drag coefficient CD is defined as: 
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where ρ, U∞ and D represent the fluid density, the fluid free stream velocity and the 

sphere diameter, respectively. FD is the drag force on the sphere and can be determined 

using eq. (30) for immersed body surface mesh approach: 
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and eq. (38) for immersed body volume mesh approach: 
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In Table 30 are shown the numerical results for the drag coefficient at Re = 50, 

100, 150 and 200 for the IFEM, and in Table 31 and Table 32 are presented the drag 

coefficient results at the same Reynolds numbers for the IFVM and STAR-CCM+, 

respectively. Also for the three-dimensional flow past a sphere the two immersed 

boundary methodologies give results in good agreement with the body-fitted commercial 

code results. The deviation in the IFEM results is due to the coarse mesh used for the 

finite element approach simulations. Due to the very large computational effort required 

by the IFEM for three-dimensional simulations, it was not possible to further refine the 

mesh for this test case using the IFEM approach. The IFVM results for the drag 

coefficient are in excellent agreement with the STAR-CCM+ predictions. Also for the 

three-dimensional flow over a sphere the IFEM shows a monotone decreasing drag 

coefficient with mesh refinement, meanwhile the two finite volume approaches have an 

opposite behavior, with the drag coefficient increasing with mesh refinement. 



 

152 

 

Table 30 IFEM mesh sensitivity analysis for drag coefficient in the three-dimensional 

flow past a sphere at Re = 50, 100, 150 and 200 

Fluid #cells) Δx IB #cells CD 

Re = 50 Re = 100 Re = 150 Re = 200 

40x20x20 D/4 56 3.358 2.585 2.306 2.105 

80x40x40  D/8 56 1.694 1.193 1.029 0.975 

 

Table 31 IFVM  mesh sensitivity analysis for drag coefficient in the three-dimensional 

flow past a sphere at Re = 50, 100, 150 and 200 

  CD 

Fluid #cells Δx Re = 50 Re = 100 Re =150 Re = 200 

100x50x50 D/5 0.917 0.804 0.766 0.704 

200x100x100 D/10 1.513 1.045 0.832 0.732 

400x200x200 D/20 1.534 1.050 0.855 0.752 

800x400x400 D/40 1.556 1.081 0.887 0.766 

 

Table 32 STAR-CCM+ mesh sensitivity analysis for drag coefficient in the three-

dimensional flow past a sphere at Re = 50, 100, 150 and 200 

  CD 

Fluid #cells Δx Re = 50  Re = 100 Re = 150 Re = 200 

300x200x200 D/10 1.542 1.068 0.873 0.757 

375x250x250 D/12.5 1.556 1.079 0.883 0.768 
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Good agreement was also found with the numerical data presented in Le et al. 

[25], Kim et al. [64], Fornberg [89], Johnson and Patel [116], Gilmanov et al. [117], 

Constantinescu and Squires [118] and the experimental data of Taneda [119]. In Table 

33 the numerical predictions from the IFEM, the IFVM and STAR-CCM+ are compared 

against the data from Kim et al. [44] and Fornberg [89]. 

 

Table 33 Comparison of the drag coefficient in the three-dimensional flow past a sphere 

at Re = 50, 100, 150 and 200 

 CD 

 Re = 50 Re = 100 Re = 150 Re = 200 

Kim et al [64] // 1.087 // // 

Fornberg [89] // 1.085 // 0.786 

Present (IFEM, vm, dg = 1) 1.694 1.193 // // 

Present (IFVM) 1.556 1.081 0.887 0.766 

Star-CCM+/V7.04.006 1.556 1.079 0.883 0.768 

 

For 210 ≤ Re ≤ 270 the flow is no longer axisymmetric, but it is still steady. The 

lateral force coefficient defined as: 

2
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          (152) 
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points out the loss of axial symmetry for the flow. In eq. (73) FL represents the lateral 

force on the sphere and can be determined using eq. (30) for immersed body surface 

mesh approach: 
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and eq. (38) for immersed body volume meshes: 
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For axisymmetric flow (i.e., Re ≤ 200) CL is zero. At Re > 210, the lateral force 

coefficient increases in absolute value and start to oscillate at Re > 270 for which the 

flow becomes unsteady. In Figure 65 are shown the streamlines for the IFVM on the 

(x,z)-plane at Re = 250. The IFVM simulation predicts loss of symmetry with respect to 

the (x,y)-plane for the flow at Re ~ 250, which is less than the value predicted by 

experimental data and other numerical simulations (Re ~ 270). We believe the loss of 

symmetry is due to the coarse discretization of the sphere surface which introduces some 

numerical instability on the flow distribution. This triggers the beginning of flow 

instability for Re < 270. In Figure 66 are shown the streamlines for the IFVM on the 

(x,y)-plane at Re = 250. The good qualitative prediction of the flow distribution in the 

(x,y)-plane for the IFVM with the results presented in Le et al. [25] gives us good 

confidence that a finer sphere surface discretization would reduce the instability which 

triggered the loss of symmetry for Re < 270. It is worth mentioning that STAR-CCM+ 

predicted loss of symmetry for Re ~ 270. 
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Figure 65. Streamlines on the (x,z)-plane for flow past a sphere at Re = 250: Top: 

IFVM; bottom: STAR-CCM+. 

 

In Table 34 and Table 35 are shown the IFVM/STAR-CCM+ mesh sensitivity 

analysis for drag and lateral force coefficients at Re = 250, respectively. The drag 

coefficient is in good agreement between the two approaches. No converged results on 

the lateral force coefficient could be obtained with STAR-CCM+ code. 
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Figure 66. Streamlines on the (x,y)-plane for flow past a sphere at Re = 250: Top: 

IFVM; bottom: STAR-CCM+. 

 

Table 34 IFVM and STAR-CCM+ mesh sensitivity analysis for drag and later force 

coefficients in the three-dimensional flow past a sphere at Re = 250 

IFVM STAR-CCM+/V7.04.006 

Fluid #cells Δx CD CL Fluid #cells Δx CD CL 

100x50x50 D/5 0.750 0.0002 (avg.) 300x200x200 D/10 0.678 0.0018 (avg.) 

200x100x100 D/10 0.760 0.0008 (avg.) 375x250x250 D/20 0.698 0.0451 (avg.) 

400x200x200 D20 0.702 0.02 (avg.) // // // // 
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Table 35 IFVM and STAR-CCM+ mesh sensitivity analysis for drag and later force 

coefficients in the three-dimensional flow past a sphere at Re = 300 

IFVM `STAR-CCM+/V7.04.006 

Fluid #cells Δx CD CL Fluid #cells Δx CD CL 

100x50x50 D/5 0.746 0.0001 (avg.) 300x200x200 D/10 0.637 // 

200x100x100 D/10 0.717 0.0037 (avg.) // // // // 

400x200x200 D20 0.673 0.027 (avg.) // // // // 

 

In Table 36 are shown the comparison for the drag and lateral force coefficients 

and Strouhal number between the IFVM, STAR-CCM+ and data available in the 

literature. The drag coefficient obtained with the IFVM approach and STAR-CCM+ 

compares very well with the other numerical data at Re = 250, meanwhile there are some 

differences at Re = 300. The IFVM underestimates the lateral force coefficient for both 

simulations. No converged results on the lateral force coefficient could be obtained with 

STAR-CCM+. 

In Figure 67 and Figure 68 are shown the IFVM streamlines in the (x,z)-plane 

and (x-y)-plane at Re = 300, respectively. Figure 67 confirms that the wake behind the 

sphere is not anymore symmetric about the (x-y)-plane in agreement with the loss of 

symmetry shown at Re = 250 in Figure 65. Nevertheless the flow distribution in the (x-

y)-plane is qualitatively very similar to the one observed by Le et al. [25] in the three-

dimensional flow past a sphere at Re = 300. 

Overall the results presented for the IFVM give a reasonable level of confidence 

that the IFVM approach can correctly predict three-dimensional flow problems. Further 
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analyses are necessary to address the discrepancies on the lateral force coefficient and on 

the premature loss of symmetry in the sphere wake determined with the IFVM approach. 

The poor quality of the STAR-CCM+ simulations is most likely due to the very coarse 

mesh used. Further analyses with a more refined mesh are necessary before a sound 

judgment of the results can be performed. No results for the IFEM were presented at Re 

= 250 and 300. The number of time steps required to reach a fully developed flow for the 

three-dimensional flow past a sphere at Re = 250, 300 would have required unreasonable 

computational time even with very coarse meshes using the IFEM approach. 

 

Table 36 Comparison of the drag and lateral force coefficients and Strouhal number in 

the three-dimensional flow past a sphere at Re = 250, 300 

 CD CL St 

 Re = 250 Re = 300 Re = 250 Re = 300 Re = 300 

Kim et al [64] 0.701 0.657 0.059 0.067 0.134 

Johnson and Patel [116] 0.70 0.656 0.062 0.069 0.137 

Constantinescu and Squires [118] 0.70 0.655 0.062 0.065 0.136 

Present (IFVM) 0.702 0.673 0.020 0.027 0.115 

Star-CCM+/ V7.04.006 0.698 0.637 0.045 // // 
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Figure 67. Streamlines on the (x,z)-plane for flow past a sphere at Re = 300: Top: 

IFVM; bottom: STAR-CCM+. 

 

 

Figure 68. Streamlines on the (x,y)-plane for flow past a sphere at Re = 300: Top: 

IFVM; bottom: STAR-CCM+. 
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4.5 Two-Dimensional Natural Convection in a Square Cavity 

To test the accuracy of the implemented energy equation for the finite element 

and finite volume discretizations, we considered the two-dimensional natural convection 

in a square cavity problem. This test case has been extensively used as benchmark for 

the validation of numerical methods in simulating natural convection problems. The 

square cavity has hot and cold isothermal boundary conditions at the left and right 

vertical walls, respectively, and adiabatic boundary conditions at the top and bottom 

horizontal walls, as shown in Figure 69. 

 

 

Figure 69. Geometry and boundary conditions for the two-dimensional natural 

convection in a square cavity. 

 

In natural convection problems the ratio of Grashof number (Gr) to the square of 

Reynolds number (Re) is small, that is: Gr/Re
2
 ≤ 1, where Gr/Re

2
 represents the 

importance of buoyancy forces compared to inertia forces. Using the definition of Gr 
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number from eq. (63) and Re number from eq. (3), it is possible to define a characteristic 

velocity Uc:  
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The characteristic velocity should be selected to be small so that the 

approximation of incompressible flow is still applicable. If buoyancy forces are of the 

same order or larger than inertia forces, it is possible to use two non-dimensional 

numbers to characterize natural convection problems: the Prandlt number (Pr) and the 

Rayleigh number (Ra), defined as: 
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where μ is the fluid dynamic viscosity, cp is the fluid specific heat, k is the fluid thermal 

conductivity,   ν is the kinetic viscosity (ν = μ/ρ); α is the thermal diffusivity (α = k/μcp); 

g represents the gravitational constant, β is the coefficient of thermal expansion, ΔT 

represents the temperature difference between the hot and cold walls (i.e.,  ΔT = Thot – 

Tcold) and is the driving force for the natural convection in a square cavity and L is the 

cavity reference length (i.e., the cavity height). The Pr number is a measure of the fluid 

molecular diffusivity to the thermal diffusivity. The Ra number is a measure of the 

strength of buoyancy forces (the driving phenomena) compared to viscous forces (the 

dissipative phenomena). 
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Qualitative comparisons were performed for the maximum horizontal velocity 

umax and its vertical position zu,max on the middle plane of the cavity (x = L/2), the 

maximum vertical velocity wmax and its horizontal position xw,max on the middle plane of 

the cavity (z = L/2), the average Nusselt number throughout the cavity Nuavg, the average 

Nusselt number on the middle plane of the cavity (x = L/2) Nu1/2, the average Nusselt 

number at the hot wall Nu0, the maximum value of the local Nusselt number at the hot 

wall Numax and its location zNu,max and the minimum value of the local Nusselt number at 

the hot wall Numin and its location zNu,min. We define a Nusselt number based on the heat 

transfer across the cavity by using the local heat flux in the horizontal direction: 

 
1 ( , )

, ( , ) ( , ) ( , )x

T x z
Nu x z Pe q x z Pe u x z T x z
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The average Nusselt number throughout the cavity is defined as: 

0 0
( , )

L L

avg xNu q x z dxdz           (159) 

where all variables have been normalized to their reference values. In a similar 

way it can be defined the average Nusselt number on the middle plane and at the hot 

wall: 
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Simulations were performed at Rayleigh numbers Ra = 10
3
, 10

4
, 10

5
 and 10

6
, for 

the IFEM, the IFVM and STAR-CCM+, and the results were compared with the 

numerical simulations of Kang and Hassan [29] and De Vahl Davis [120], Hortmann et 

al. [121], Barakos et al. [122], Markatos and Pericleous [123] and Fusegi et al. [124]. 
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Setting the fluid physical property, from eq. (76) it is possible to see that the two 

free parameters are the cavity height L and the temperature gradient across the cavity ΔT. 

All simulations were performed setting ΔT = 10. The cavity height was changed to 

match the desired Rayleigh number. This also implies that a different characteristic 

velocity [see eq. (155)] is obtained for each case considered. The Prandlt number was 

kept constant in all simulations equal to Pr = 0.71 corresponding to that of air. In Table 

37 are given the flow physical property used for the two-dimensional natural convection 

in a square cavity simulations, and the corresponding cavity height and characteristic 

velocity for the Rayleigh number range considered. 

 

Table 37 Air physical property and geometric configuration used for the two-

dimensional natural convection in a square cavity at Ra = 10
3
, 10

4
, 10

5
 and 10

6
 

Ra 10
3
 10

4
 10

5
 10

6
 

ρ (kg/m
3
) 1.205 1.205 1.205 1.205 

μ (Pa•s) 1.81562•10
-5

 1.81562•10
-5

 1.81562•10
-5

 1.81562•10
-5

 

cp (J/ kg K) 1005.0 1005.0 1005.0 1005.0 

k (W / m K) 0.0257 0.0257 0.0257 0.0257 

β (1/K) 0.00343 0.00343 0.00343 0.00343 

L (m) 0.009831 0.021181 0.045633 0.09831 

Uc (m/s) 0.057516 0.084422 0.123915 0.181882 

 

In Table 38, Table 39 and Table 40 are shown the mesh sensitivity analyses for 

the two-dimensional natural convection in a square cavity at Ra = 10
3
 performed with 
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the IFEM approach, the IFVM approach and STAR-CCM+, respectively. The results 

show that mesh convergence was obtained for the three different approaches. The results 

also show very close agreement between the IFEM and the IFVM.  Considering that for 

the two-dimensional natural convection in a square cavity no immersed boundary is 

present, excellent agreement with the body-fitted commercial code STAR-CCM+ was 

found.  

 

Table 38 IFEM mesh sensitivity analysis for the two-dimensional natural convection in 

a square cavity at Ra = 10
3
 

Fluid #cells Δx Nuavg Nu0 Numin 

(zNu,min) 

Numax 

(zNu,max) 

umax 

(zu,max) 

wmax 

(xw,max) 

8x8 L/16 1.118 1.123 0.691 

(1.0) 

1.516 

(0.125) 

3.650 

(0.812) 

3.692 

(0.187) 

16x16 L/32 1.118 1.119 0.691 

(1.0) 

1.508 

(0.094) 

3.650 

(0.812) 

3.692 

(0.187) 

32x32 L/64 1.118 1.118 0.691 

(1.0) 

1.507 

(0.094) 

3.650 

(0.812) 

3.695 

(0.172) 

64x64 L/128 1.118 1.118 0.691 

(1.0) 

1.506 

(0.086) 

3.650 

(0.812) 

3.698 

(0.180) 

128x128 L/256 1.118 1.118 0.691 

(1.0) 

1.506 

(0.090) 

3.650 

(0.812) 

3.698 

(0.180) 
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Table 39 IVEM mesh sensitivity analysis for the two-dimensional natural convection in 

a square cavity at Ra = 10
3
 

Fluid #cells Δx Nuavg Nu1/2 Nu0 Numax 

(zNu,max) 

Numin 

(zNu,min) 

umax 

(zu,max) 

wmax 

(xw,max) 

10x10 L/10 1.114 1.151 1.144 1.609 

(0.050) 

0.659 

(1.0) 

3.751 

(0.850) 

3.848 

(0.150) 

20x20 L/20 1.124 1.125 1.124 1.531 

(0.075) 

0.683 

(1.0) 

3.677 

(0.825) 

3.737 

(0.175) 

40x40 L/40 1.119 1.119 1.119 1.512 

(0.087) 

0.689 

(1.0) 

3.656 

(0.812) 

3.698 

(0.187) 

80x80 L/80 1.118 1.118 1.118 1.507 

(0.094) 

0.691 

(1.0) 

3.648 

(0.819) 

3.697 

(0.181) 

160x160 L/160 1.118 1.118 1.118 1.506 

(0.091) 

0.691 

(1.0) 

3.650 

(0.816) 

3.696 

(0.178) 

320x320 L/320 1.118 1.118 1.119 1.507 

(0.089) 

0.692 

(1.0) 

3.648 

(0.814) 

3.697 

(0.180) 

640x640 L/640 1.118 1.118 1.118 1.506 

(0.088) 

0.691 

(1.0) 

3.648 

(0.813) 

3.696 

(0.179) 

 

In Figure 70 and shown the temperature contours for the two-dimensional natural 

convection in a square cavity at Ra = 10
3
 obtained with the IFEM,  the IFVM and 

STAR-CCM+, respectively. The figures show that the temperature distribution across 
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the cavity is qualitatively very similar. For this small value of Ra number, the heat 

transfer mode is mainly dominated by conduction, convection being almost negligible.  

Figure 71 shows the velocity magnitude contours for the two-dimensional natural 

convection in a square cavity at Ra = 10
3
 determined with the IFEM, the IFVM and 

STAR-CCM+, respectively. Also for the flow field the three approaches give very 

similar qualitative distributions. 

 

Table 40 STAR-CCM+ mesh sensitivity analysis for the two-dimensional natural 

convection in a square cavity at Ra = 10
3
 

Fluid #cells Δx Nu0 Numax 

(zNu,max) 

Numin 

(zNu,min) 

umax 

(zu,max) 

wmax 

(xw,max) 

100x100 L/100 1.119 1.508 

(0.095) 

0.691 

(0.971) 

3.654 

(0.815) 

3.702 

(0.175) 

200x200 l/200 1.121 1.510 

(0.097) 

0.694 

(0.972) 

3.651 

(0.812) 

3.698 

(0.177) 

300x300 L/300 1.125 1.514 

(0.098) 

0.695 

(0.952) 

3.651 

(0.812) 

3.699 

(0.178) 
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Figure 70. Temperature contours for the two-dimensional natural convection in a square 

cavity at Ra = 10
3
. Left: IFEM vm, dg = 1; center: IFVM; right: STAR-CCM+. 

 

 

Figure 71. Velocity magnitude contours for the two-dimensional natural convection in a 

square cavity at Ra = 10
3
. Left: IFEM vm, dg = 1; center: IFVM; right: STAR-CCM+. 

 

In Table 41, Table 42 and Table 43 are shown the mesh sensitivity analyses for 

the two-dimensional natural convection in a square cavity at Ra = 10
4
 performed with 

the IFEM approach, the IFVM approach and STAR-CCM+, respectively. The results 

show that mesh convergence was obtained for the three different approaches. The IFEM, 

IFVM and STAR-CCM+ results are very close.  
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Table 41 IFEM mesh sensitivity analysis for the two-dimensional natural convection in 

a square cavity at Ra = 10
4
 

Fluid #cells (#dofs) Δx Nuavg Nu0 Numin 

(zNu,min) 

Numax 

(zNu,max) 

umax 

(zu,max) 

wmax 

(xw,max) 

8x8 (948) L/16 2.241 2.325 0.594 

(1.0) 

3.687 

(0.125) 

16.155 

(0.812) 

19.612 

(0.125) 

16x16 (3556) L/32 2.244 2.264 0.588 

(1.0) 

3.576 

(0.156) 

16.144 

(0.812) 

19.596 

(0.125) 

32x32 (13764) L/64 2.245 2.248 0.586 

(1.0) 

3.539 

(0.141) 

16.174 

(0.828) 

19.595 

(0.125) 

64x64 (54148) L/128 2.245 2.245 0.585 

(1.0) 

3.531 

(0.141) 

16.179 

(0.820) 

19.624 

(0.117) 

128x128 (214788) L/256 2.245 2.245 0.585 

(1.0) 

3.530 

(0.145) 

16.182 

(0.824) 

19.624 

(0.117) 

 

Table 42 IVEM mesh sensitivity analysis for the two-dimensional natural convection in 

a square cavity at Ra = 10
4
 

Fluid #cells Δx Nuavg Nu1/2 Nu0 Numax 

(zNu,max) 

Numin 

(zNu,min) 

umax 

(zu,max) 

wmax 

(xw,max) 

10x10 L/10 2.493 2.494 2.494 4.212 

(0.050) 

0.560 

(1.0) 

16.123 

(0.850) 

18.379 

(0.150) 

20x20 L/20 2.309 2.309 2.309 3.742 

(0.125) 

0.578 

(1.0) 

16.214 

(0.825) 

19.689 

(0.125) 
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Table 42 Continued 

Fluid #cells Δx Nuavg Nu1/2 Nu0 Numax 

(zNu,max) 

Numin 

(zNu,min) 

umax 

(zu,max) 

wmax 

(xw,max) 

40x40 L/40 2.260 2.260 2.261 3.585 

(0.137) 

0.584 

(1.0) 

16.146 

(0.812) 

19.642 

(0.112) 

80x80 L/80 2.248 2.249 2.249 3.546 

(0.144) 

0.585 

(1.0) 

16.177 

(0.819) 

19.636 

(0.119) 

160x160 L/160 2.246 2.246 2.246 3.536 

(0.147) 

0.585 

(1.0) 

16.183 

(0.822) 

19.621 

(0.122) 

320x320 L/320 2.245 2.245 2.246 3.532 

(0.145) 

0.585 

(1.0) 

16.183 

(0.823) 

19.627 

(0.120) 

640x640 L/640 2.245 2.245 2.246 3.533 

(0.145) 

0.586 

(1.0) 

16.186 

(0.823) 

19.631 

(0.120) 

 

 

In Figure 72 and Figure 73 are shown the IFEM, IFVM and STAR-CCM+ 

temperature contours and velocity magnitude contours for the two-dimensional natural 

convection in a square cavity at Ra = 10
4
, respectively. Also for Ra = 10

4
 the 

temperature and flow distribution across the cavity is qualitatively very similar for the 

three approaches used. The heat transfer mode is still mainly dominated by conduction, 

but the distortion on the temperature contours due to convection is more evident than for 

the natural convection in a square cavity for Ra = 10
3
 case. 
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Table 43 STAR-CCM+ mesh sensitivity analysis for the two-dimensional natural 

convection in a square cavity at Ra = 10
4
 

Fluid #cells Δx Nu0 Numax 

(zNu,max) 

Numin 

(zNu,min) 

umax 

(zu,max) 

wmax 

(xw,max) 

100x100 L/100 2.248 3.541 

(0.150) 

0.585 

(0.985) 

16.177 

(0.825) 

19.648 

(0.115) 

200x200 l/200 2.248 3.536 

(0.152) 

0.587 

(0.987) 

16.183 

(0.822) 

19.623 

(0.112) 

300x300 L/300 2.251 3.540 

(0.152) 

0.588 

(0.995) 

16.186 

(0.822) 

19.634 

(0.118) 

 

 

Figure 72. Temperature contours for the two-dimensional natural convection in a square 

cavity at Ra = 10
4
. Left: IFEM vm, dg = 1; center: IFVM; right: STAR-CCM+. 

 



 

171 

 

 

Figure 73. Velocity magnitude contours for the two-dimensional natural convection in a 

square cavity at Ra = 10
4
. Left: IFEM vm, dg = 1; center: IFVM; right: STAR-CCM+. 

 

In Table 44, Table 45 and Table 46 are shown the mesh sensitivity analyses for 

the two-dimensional natural convection in a square cavity at Ra = 10
5
 performed with 

the IFEM approach, the IFVM approach and STAR-CCM+, respectively. Also for Ra = 

10
5
 mesh convergence was obtained for the three different approaches and the results are 

in excellent agreement. 
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Table 44 IFEM mesh sensitivity analysis for the two-dimensional natural convection in 

a square cavity at Ra = 10
5
 

Fluid #cells (#dofs) Δx Nuavg Nu0 Numin 

(zNu,min) 

Numax 

(zNu,max) 

umax 

(zu,max) 

wmax 

(xw,max) 

8x8 (948) L/16 4.417 4.811 0.752 

(1.0) 

7.948 

(0.125) 

33.247 

(0.875) 

68.420 

(0.062) 

16x16 (3556) L/32 4.517 4.602 0.716 

(1.0) 

7.977 

(0.094) 

34.041 

(0.844) 

68.018 

(0.062) 

32x32 (13764) L/64 4.521 4.557 0.731 

(1.0) 

7.838 

(0.078) 

34.702 

(0.859) 

68.510 

(0.062) 

64x64 (54148) L/128 4.522 4.527 0.729 

(1.0) 

7.740 

(0.078) 

34.722 

(0.852) 

68.507 

(0.062) 

128x128 (214788) L/256 4.522 4.522 0.728 

(1.0) 

7.722 

(0.082) 

34.733 

(0.855) 

68.627 

(0.066) 

 

Table 45 IVEM mesh sensitivity analysis for the two-dimensional natural convection in 

a square cavity at Ra = 10
5
 

Fluid #cells Δx Nuavg Nu1/2 Nu0 Numax 

(zNu,max) 

Numin 

(zNu,min) 

umax 

(zu,max) 

wmax 

(xw,max) 

10x10 L/10 5.398 5.459 5.446 9.365 

(0.050) 

1.363 

(1.0) 

34.348 

(0.850) 

74.195 

(0.050) 

20x20 L/20 4.922 4.930 4.922 9.271 

(0.025) 

0.707 

(1.0) 

35.033 

(0.875) 

67.010 

(0.075) 
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Table 45 Continued 

Fluid #cells Δx Nuavg Nu1/2 Nu0 Numax 

(zNu,max) 

Numin 

(zNu,min) 

umax 

(zu,max) 

wmax 

(xw,max) 

40x40 L/40 4.627 4.629 4.627 8.220 

(0.062) 

0.720 

(1.0) 

34.880 

(0.862) 

69.048 

(0.062) 

80x80 L/80 4.547 4.548 4.548 7.843 

(0.081) 

0.726 

(1.0) 

34.790 

(0.856) 

68.616 

(0.069) 

160x160 L/160 4.528 4.528 4.529 7.751 

(0.078) 

0.728 

(1.0) 

34.752 

(0.853) 

68.659 

(0.065) 

320x320 L/320 4.523 4.523 4.524 7.728 

(0.083) 

0.728 

(1.0) 

34.747 

(0.855) 

68.612 

(0.067) 

640x640 L/640 4.522 4.522 4.523 7.723 

(0.082) 

0.728 

(1.0) 

34.744 

(0.854) 

68.631 

(0.066) 

 

Figure 74 and Figure 75 show the IFEM, IFVM and STAR-CCM+ temperature 

contours and velocity magnitude contours for the two-dimensional natural convection in 

a square cavity at Ra = 10
5
, respectively. The temperature and flow distribution across 

the cavity is qualitatively very similar for the three approaches used, with the heat 

transfer mode being driven predominantly by convection. 
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Table 46 STAR-CCM+ mesh sensitivity analysis for the two-dimensional natural 

convection in a square cavity at Ra = 10
5
 

Fluid #cells Δx Nu0 Numax 

(zNu,max) 

Numin 

(zNu,min) 

umax 

(zu,max) 

wmax 

(xw,max) 

100x100 L/100 4.538 7.799 

(0.075) 

0.726 

(0.995) 

34.594 

(0.855) 

68.677 

(0.065) 

200x200 l/200 4.528 7.745 

(0.082) 

0.728 

(0.997) 

34.655 

(0.852) 

68.642 

(0.067) 

300x300 L/300 4.528 7.735 

(0.085) 

0.729 

(0.998) 

34.691 

(0.855) 

68.658 

(0.065) 

 

 

Figure 74. Temperature contours for the two-dimensional natural convection in a square 

cavity at Ra = 10
5
. Left: IFEM vm, dg = 1; center: IFVM; right: STAR-CCM+. 
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Figure 75. Velocity magnitude contours for the two-dimensional natural convection in a 

square cavity at Ra = 10
5
. Left: IFEM vm, dg = 1; center: IFVM; right: STAR-CCM+. 

 

Table 47, Table 48 and Table 49 show the IFEM, the IFVM and STAR-CCM+ 

mesh sensitivity analyses for the two-dimensional natural convection in a square cavity 

at Ra = 10
6
, respectively. Also for Ra = 10

6
 mesh convergence was obtained for the three 

different approaches and the results are in good agreement with each other. In is worth 

mentioning that for the boundary conditions imposed, the flow velocity is of the same 

order of magnitude as the speed of sound for the fluid considered. For these conditions, 

the approximation of incompressible flow used for the three approaches is not valid 

anymore. 
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Table 47 IFEM mesh sensitivity analysis for the two-dimensional natural convection in 

a square cavity at Ra = 10
6
 

Fluid #cells (#dofs) Δx Nuavg Nu0 Numin 

(zNu,min) 

Numax 

(zNu,max) 

umax 

(zu,max) 

wmax 

(xw,max) 

8x8 (948) L/16 7.561 8.578 0.865 

(1.0) 

13.791 

(0.187) 

65.416 

(0.875) 

199.685 

(0.062) 

16x16 (3556) L/32 8.669 9.578 1.032 

(1.0) 

18.133 

(0.062) 

63.723 

(0.844) 

215.789 

(0.031) 

32x32 (13764) L/64 8.817 9.108 0.991 

(1.0) 

18.437 

(0.047) 

64.669 

(0.844) 

215.793 

(0.031) 

64x64 (54148) L/128 8.825 8.890 0.983 

(1.0) 

17.859 

(0.039) 

64.816 

(0.852) 

220.378 

(0.039) 

128x128 (214788) L/256 8.825 8.836 0.980 

(1.0) 

17.598 

(0.039) 

64.818 

(0.852) 

220.378 

(0.039) 

 

Table 48 IVEM mesh sensitivity analysis for the two-dimensional natural convection in 

a square cavity at Ra = 10
6
 

Fluid #cells Δx Nuavg Nu1/2 Nu0 Numax 

(zNu,max) 

Numin 

(zNu,min) 

umax 

(zu,max) 

wmax 

(xw,max) 

10x10 L/10 8.048 8.284 8.286 11.530 

(0.050) 

4.629 

(1.0) 

88.143 

(0.950) 

191.923 

(0.050) 

20x20 L/20 10.437 10.467 10.471 20.535 

(0.025) 

1.664 

(1.0) 

65.732 

(0.875) 

240.822 

(0.025) 



 

177 

 

Table 48 Continued 

Fluid #cells Δx Nuavg Nu1/2 Nu0 Numax 

(zNu,max) 

Numin 

(zNu,min) 

umax 

(zu,max) 

wmax 

(xw,max) 

40x40 L/40 9.415 9.418 9.456 21.164 

(0.012) 

0.9860 

(1.0) 

66.106 

(0.862) 

223.927 

(0.037) 

80x80 L/80 8.982 8.983 8.983 18.796 

(0.031) 

0.973 

(1.0) 

65.210 

(0.856) 

218.334 

(0.031) 

160x160 L/160 8.864 8.864 8.865 17.851 

(0.034) 

0.977 

(1.0) 

64.923 

(0.853) 

219.896 

(0.041) 

320x320 L/320 8.834 8.834 8.835 17.613 

(0.039) 

0.979 

(1.0) 

64.854 

(0.848) 

220.421 

(0.039) 

640x640 L/640 8.827 8.827 8.827 17.554 

(0.038) 

0.979 

(1.0) 

64.838 

(0.849) 

220.519 

(0.038) 

 

 

Figure 76 and Figure 77 show the IFEM, the IFVM and STAR-CCM+ 

temperature contours and velocity magnitude contours for the two-dimensional natural 

convection in a square cavity at Ra = 10
6
, respectively. The temperature and flow 

distribution across the cavity is qualitatively very similar for the three approaches used. 

The heat transfer mode is driven by convection. Figure 76 also shows that the thermal 

boundary layer close to the hot wall is extremely thin. Very fine meshes are required to 

determine the correct values for the temperature gradients close to the hot wall. Since the 
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temperature gradient is the driving phenomena in the momentum equations, only for 

very fine meshes (Δx/L ~ 10
-3

) a satisfying prediction of the flow and temperature 

distribution can be obtained. 

 

Table 49 STAR-CCM+ mesh sensitivity comparison for the two-dimensional natural 

convection in a square cavity at Ra = 10
6
 

Fluid #cells Δx Nu0 Numax 

(zNu,max) 

Numin 

(zNu,min) 

umax 

(zu,max) 

wmax 

(xw,max) 

100x100 L/100 8.928 18.315 

(0.035) 

0.969 

(0.995) 

65.438 

(0.845) 

221.033 

(0.035) 

200x200 l/200 8.853 17.749 

(0.037) 

0.977 

(0.997) 

64.980 

(0.847) 

220.697 

(0.037) 

300x300 L/300 8.840 17.633 

(0.038) 

0.980 

(0.998) 

64.893 

(0.848) 

220.595 

(0.038) 

 

 

Figure 76. Temperature contours for the two-dimensional natural convection in a square 

cavity at Ra = 10
6
. Left: IFEM vm, dg = 1; center: IFVM; right: STAR-CCM+. 

 



 

179 

 

 

Figure 77. Velocity magnitude contours for the two-dimensional natural convection in a 

square cavity at Ra = 10
6
. Left: IFEM vm, dg = 1; center: IFVM; right: STAR-CCM+. 

 

For the two-dimensional natural convection in a square cavity no immersed 

boundary was present. The objective of these analyses was to test the accuracy of the 

finite element and finite volume discretization schemes when the time-dependent 

incompressible NSEs are strongly coupled with the energy equation.  

In Table 50, Table 51, Table 52 and Table 53 are shown the comparison of the 

reference parameters for the two-dimensional natural convection in a square cavity at Ra 

= 10
3
, 10

4
, 10

5
 and 10

6
, respectively, for the IFEM, the IFVM, STAR-CCM+ and data 

from numerical simulations available in literature. The comparison of the reference 

parameters for the IFEM, the IFVM and STAR-CCM+ in the Rayleigh number range 

considered with the numerical data present in the literature shows very good agreement 

especially with the data of De Vahl Davis [120] and Hortmann et al. [121] numerical 

predictions. 
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Table 50 Comparison of the reference parameters for the two-dimensional natural 

convection in a square cavity at Ra = 10
3
 

 Nuavg Nu1/2 Nu0 Numax 

(zNu,max) 

Numin 

(zNu,min) 

umax 

(zu,max) 

wmax 

(xw,max) 

Kang and Hassan [29] 1.118 // // // // 3.646 

(0.810) 

3.695 

(0.180) 

De Vahl Davis [120] 1.118 1.118 1.117 1.505 

(0.092) 

0.692 

(1.0) 

3.649 

(0.813) 

3.697 

(0.178) 

Barakos et al. [122]  1.114 // // 1.581 

(0.099) 

0.670 

(0.994) 

4.105 

(0.806) 

4.159 

(0.181) 

Markatos and Pericleous [123] 1.108 // // 1.596 

(0.083) 

0.720 

(0.993) 

// // 

Fusegi et al. [124] 1.105 // // 1.420 

(0.083) 

0.764 

(1.0) 

3.542 

(0.833) 

3.515 

(0.200) 

Present (IFEM) 1.118 // 1.118 1.506 

(0.090) 

0.691 

(1.0) 

3.650 

(0.812) 

3.698 

(0.180) 

Present (IFVM) 1.118 1.118 1.118 1.506 

(0.088) 

0.691 

(1.0) 

3.648 

(0.813) 

3.696 

(0.179) 

STAR-CCM+/V7.04.006 // // 1.125 1.514 

(0.098) 

0.695 

(0.952) 

3.651 

(0.812) 

3.699 

(0.178) 
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Table 51 Comparison of the reference parameters for the two-dimensional natural 

convection in a square cavity at Ra = 10
4
 

 Nuavg Nu1/2 Nu0 Numax 

(zNu,max) 

Numin 

(zNu,min) 

umax 

(zu,max) 

wmax 

(xw,max) 

Kang and Hassan [29] 2.243 // // // // 16.165 

(0.820) 

19.614 

(0.120) 

De Vahl Davis [120] 2.243 2.243 2.238 3.528 

(0.143) 

0.586 

(1.0) 

16.178 

(0.823) 

19.617 

(0.119) 

Hortmann et al. [121] 2.245 // // 3.531 

(0.146) 

// 16.180 

(0.825) 

19.629 

(0.120) 

Barakos et al. [122]  2.245 // // 3.539 

(0.143) 

0.583 

(0.994) 

16.262 

(0.818) 

19.717 

(0.119) 

Markatos and Pericleous [123] 2.201 // // 3.482 

(0.143) 

0.643 

(0.993) 

// // 

Fusegi et al. [124] 2.302 // // 3.652 

(0.123) 

0.611 

(1.0) 

16.936 

(0.817) 

18.959 

(0.117) 

Present (IFEM) 2.245 // 2.245 3.530 

(0.145) 

0.585 

(1.0) 

16.182 

(0.824) 

19.624 

(0.117) 

Present (IFVM) 2.245 2.245 2.246 3.533 

(0.145) 

0.586 

(1.0) 

16.186 

(0.823) 

19.631 

(0.120) 

STAR-CCM+/V7.04.006 // // 2.251 3.540 

(0.152) 

0.588 

(0.995) 

16.186 

(0.822) 

19.634 

(0.118) 
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Table 52 Comparison of the reference parameters for the two-dimensional natural 

convection in a square cavity at Ra = 10
5
 

 Nuavg Nu1/2 Nu0 Numax 

(zNu,max) 

Numin 

(zNu,min) 

umax 

(zu,max) 

wmax 

(xw,max) 

Kang and Hassan [29] 4.514 // // // // 34.680 

(0.855) 

68.545 

(0.065) 

De Vahl Davis [120] 4.519 4.519 4.509 7.717 

(0.081) 

0.729 

(1.0) 

34.730 

(0.855) 

68.590 

(0.066) 

Hortmann et al. [121] 4.522 // // 7.720 

(0.083) 

// 34.740 

(0.855) 

68.637 

(0.067) 

Barakos et al. [122]  4.510 // // 7.636 

(0.085) 

0.773 

(0.999) 

29.963 

(0.859) 

58.564 

(0.066) 

Markatos and Pericleous [123] 4.430 // // 7.626 

(0.083) 

0.824 

(0.993) 

// // 

Fusegi et al. [124] 4.646 // // 7.795 

(0.083) 

0.787 

(1.0) 

33.368 

(0.855) 

56.067 

(0.065) 

Present (IFEM) 4.522 // 4.522 7.722 

(0.082) 

0.728 

(1.0) 

34.733 

(0.855) 

68.627 

(0.066) 

Present (IFVM) 4.522 4.522 4.523 7.723 

(0.082) 

0.728 

(1.0) 

34.744 

(0.854) 

68.631 

(0.066) 

STAR-CCM+/V7.04.006 // // 4.528 7.735 

(0.085) 

0.729 

(0.998) 

34.691 

(0.855) 

68.658 

(0.065) 
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Table 53 Comparison of the reference parameters for the two-dimensional natural 

convection in a square cavity at Ra = 10
6
 

 Nuavg Nu1/2 Nu0 Numax 

(zNu,max) 

Numin 

(zNu,min) 

umax 

(zu,max) 

wmax 

(xw,max) 

Kang and Hassan [29] 8.794 // // // // 64.596 

(0.848) 

219.593 

(0.036) 

De Vahl Davis [120] 8.800 8.799 8.817 17.925 

(0.038) 

0.989 

(1.0) 

64.630 

(0.850) 

219.360 

(0.038) 

Hortmann et al. [121] 8.825 // // 17.536 

(0.039) 

// 64.837 

(0.852) 

220.461 

(0.039) 

Barakos et al. [122]  8.806 // // 17.442 

(0.037) 

1.001 

(0.999) 

62.994 

(0.859) 

219.360 

(0.039) 

Markatos and Pericleous [123] 8.754 // // 17.872 

(0.038) 

1.232 

(0.993) 

// // 

Fusegi et al. [124] 9.012 // // 17.670 

(0.038) 

1.257 

(1.0) 

68.720 

(0.856) 

216.848 

(0.033) 

Present (IFEM) 8.825 // 8.836 17.598 

(0.039) 

0.980 

(1.0) 

64.818 

(0.852) 

220.378 

(0.039) 

Present (IFVM) 8.827 8.827 8.827 17.554 

(0.038) 

0.979 

(1.0) 

64.838 

(0.849) 

220.519 

(0.038) 

STAR-CCM+/V7.04.006 // // 8.840 17.633 

(0.038) 

0.980 

(0.998) 

64.893 

(0.848) 

220.595 

(0.038) 
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4.6 Two-Dimensional Natural Convection in a Square Cavity with an Eccentric Cylinder 

The next step is the validation of both finite element and finite volume immersed 

boundary approaches for the system of time-dependent incompressible NSEs coupled 

with the energy equation. The two-dimensional natural convection is a square cavity 

with an eccentric cylinder test case was chosen as benchmark exercise. 

In a square cavity of height L, a circular cylinder with diameter D = 0.4L is 

eccentrically located in the cavity 0.1L upward from the center, as shown in Figure 78. 

The circular cylinder surface is at temperature T = Thot, with the left and right cavity 

walls at temperature T = Tcold. Adiabatic boundary conditions were imposed for the top 

and bottom cavity walls. No-slip boundary conditions were imposed for the momentum 

equations at the cavity walls. This benchmark problem has been simulated by different 

numerical methods under Ra = 10
6
 and Pr = 0.1 and 10. The IFEM, the IFVM and 

STAR-CCM+ results were compared to the numerical data of Kang and Hassan [29], 

Pacheco et al. [100], Feng and Michaelidis [125], Demirdizic et al. [126] and Yu et al. 

[127]. In Table 54 are given the fluid properties and the geometric configurations 

necessary to have the specified Ra and Pr numbers inside the square cavity with 

eccentric cylinder. 
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Figure 78. Geometry and boundary conditions for the two-dimensional natural 

convection in a square cavity with an eccentric cylinder. 

 

Table 54 Fluid physical property and geometric configuration used for the two-

dimensional natural convection in a square with an eccentric cylinder at Ra = 10
6
 

Pr 0.1 10 

ρ (kg/m
3
) 1.205 1.205 

μ (Pa•s) 2.5572•10
-6

 2.5572•10
-4

 

cp (J/ kg K) 1005.0 1005.0 

k (W / m K) 0.0257 0.0257 

β (1/K) 0.00343 0.00343 

L (m) 0.051152 0.131194 

Uc (m/s) 0.237428 0.0282649 
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The average Nu number at the cold wall Nu0 (i.e., east wall), the maximum Nu 

number at the cold wall Numax and its vertical position yNu,max were considered as 

reference parameters to study mesh convergence and to compare the converged results to 

other numerical simulations of the natural convection in a square cavity with an 

eccentric cylinder present in literature.  

In Table 55 is shown the mesh sensitivity analysis for the IFEM approach. From 

the results it is possible to assess that mesh convergence is reached for the two finest 

mesh refinements. Table 56 shows the mesh sensitivity study for the IFVM approach 

when the natural convection in a square cavity with an eccentric cylinder is studied. The 

results show that for the three finest levels of mesh refinements the Nu number 

distribution at the cold has reached convergence for both cases Pr = 0.1 and Pr = 10. 

In Table 57 is reported the mesh sensitivity analysis for the natural convection in 

a square cavity with an eccentric cylinder when the STAR-CCM+ code is used. The 

results show that mesh convergence is not reached. Further mesh refinements were 

considered, but the simulation becomes unstable and does not reach a numerically 

converged state. 

Table 58 shows the comparison of the converged results for the IFEM, the IFVM 

and STAR-CCM+ (for STAR-CCM+ we considered the second refinement as converged 

results) with the numerical data of Demirdzic et al. [126] (reference data). The IFEM 

and STAR-CCM+ results are in satisfactory agreement with the reference data for Pr = 

0.1. For the Pr = 10 case, some discrepancies can be noted. The IFVM results are in 

excellent agreement with the reference data for both the Pr = 0.1 and Pr = 10 case. 
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Table 55 IFEM mesh sensitivity analysis for the two-dimensional natural convection in 

a square cavity with an eccentric cylinder at Ra = 10
6
 for Pr = 0.1 and 10 

  Pr = 0.1 Pr = 10 

Fluid #cells Δx Nu0 Numax yNu,max Nu0 Numax yNu,max 

16x16 L/32 6.124 11.924 0.937 7.407 20.349 0.937 

32x32 L/64 6.679 14.235 0.891 6.803 19.338 0.969 

64x64 L/128 6.482 14.101 0.883 6.929 19.323 0.961 

128x128 L/256 6.647 14.427 0.879 7.002 19.305 0.965 

 

Table 56 IVEM mesh sensitivity analysis for the two-dimensional natural convection in 

a square cavity with an eccentric cylinder at Ra = 10
6
 for Pr = 0.1 and 10 

  Pr = 0.1 Pr = 10 

Fluid #cells Δx Nu0 Numax yNu,max Nu0 Numax yNu,max 

10x10 L/10 5.624 10.908 1.0 7.348 12.170 1.0 

20x20 L/20 6.631 16.525 0.937 10.663 25.392 1.0 

40x40 L/40 6.510 15.783 0.937 8.064 24.692 1.0 

80x80 L/80 6.549 15.269 0.906 7.517 21.390 0.969 

100x100 L/100 6.569 15.071 0.905 7.460 20.836 0.965 

200x200 L/200 6.670 14.656 0.887 7.397 20.145 0.967 

400x400 L/400 6.724 14.553 0.879 7.385 19.985 0.964 

800x800 L/800 6.724 14.553 0.879 7.382 19.943 0.963 

1000x1000 L/1000 6.724 14.553 0.879 7.382 19.939 0.963 
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Table 57 STAR-CCM+ mesh sensitivity analysis for the two-dimensional natural 

convection in a square cavity with an eccentric cylinder at Ra = 10
6
 for Pr = 0.1 and 10 

  Pr = 0.1 Pr = 10 

Fluid #cells Δx Nu0 Numax yNu,max Nu0 Numax yNu,max 

100x100 L/100 6.745 14.690 0.865 7.354 20.657 0.965 

200x200 l/200 6.724 14.613 0.863 7.014 19.672 0.962 

300x300 L/300 6.798 14.698 0.882 6.529 18.684 0.962 

 

Table 58 Comparison of the reference parameters for the two-dimensional natural 

convection in a square cavity with an eccentric cylinder at Ra = 10
6
 for Pr = 0.1 and 10 

 Pr = 0.1 Pr = 10 

 Nu0 Numax yNu,max Nu0 Numax yNu,max 

Demirdzic et al [126] 6.730 14.558 0.879 7.384 19.949 0.965 

Present (IFEM) 6.482 14.101 0.883 6.929 19.323 0.961 

Present (IFVM) 6.724 14.553 0.879 7.382 19.939 0.963 

STAR-CCM+/V7.04.006 6.724 14.613 0.863 7.014 19.672 0.962 

 

In Figure 79, Figure 80 and Figure 81 are shown the temperature contours, velocity 

magnitude contours and streamlines for the two-dimensional natural convection in a 

square cavity with eccentric cylinder at Ra = 10
6
 and Pr = 0.1 computed with the IFEM 

approach, the IFVM approach and STAR-CCM+, respectively. The figures show an 

excellent agreement of the two immersed boundary method approaches with the body 

fitted STAR-CCM+ results. The numerical data presented in Table 55 through Table 58 
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demonstrate the quantitative good agreement of the three different approaches. Figure 79 

through Figure 81 show also the good qualitative agreement particularly close to the hot 

cylinder surface (i.e., the immersed boundary) where very large temperature gradients 

are present and the plume develops. All three approaches were able to catch the 

secondary recirculation zones above the cylinder surface. These results are in very good 

agreement with the numerical simulation of Demirdzic et al. [126]. 

To have a better quantitative validation of the immersed boundary methods 

developed, we compared the Nusselt number distribution at the cold wall for the 

converged IFEM, IFVM and STAR-CCM+ results with the numerical data of Demirdzic 

et al. [126] and Yu et al. [127]. Figure 82 shows the very good agreement that the IFVM 

and STAR-CCM+ have with the data from Demirdzic et al. [126] and Yu et al. [127] 

throughout the cavity height, especially close to the cavity top wall, where the IFEM 

results underestimate the Nusselt value.  

 

 

Figure 79. Temperature contours for the two-dimensional natural convection in a square 

cavity with an eccentric cylinder at Ra = 10
6
 and Pr = 0.1.  Left: IFEM; center: IFVM; 

right: STAR-CCM+. 
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Figure 80. Velocity magnitude contours for the two-dimensional natural convection in a 

square cavity with an eccentric cylinder at Ra = 10
6
 and Pr = 0.1.  Left: IFEM; center: 

IFVM; right: STAR-CCM+. 

 

 

Figure 81. Streamlines for the two-dimensional natural convection in a square cavity 

with an eccentric cylinder at Ra = 10
6
 and Pr = 0.1.  Left: IFEM; center: IFVM; right: 

STAR-CCM+. 
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Figure 82. Cold wall Nusselt distribution for the two-dimensional natural convection in 

a square cavity with an eccentric cylinder at Ra = 10
6
 and Pr = 0.1. 

 

In Figure 83 and Figure 84 are shown the IFEM, the IFVM and STAR-CCM+ 

temperature and velocity magnitude contours for the two-dimensional natural convection 

in a square cavity with eccentric cylinder at Ra = 10
6
 and Pr = 10, respectively. The 

IFEM and STAR-CCM+ predict a larger stratification region in the bottom part of the 

cavity with respect to the IFVM calculation. Comparing the temperature contours with 

those determined by Kang and Hassan [29], Pacheco et al. [100] and Demirdzic et al. 

[126], the IFVM is in better agreement then the IFEM and STAR-CCM+. In particular, 

none of the reference cited above predicts the secondary recirculation vortices close to 

the cavity bottom wall. Figure 85 shows the streamlines for the two-dimensional natural 

convection in a square cavity with eccentric cylinder at Ra = 10
6
 and Pr = 10 determined 
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with the IFEM, the IFVM and STAR-CCM+, respectively. The IFEM and STAR-CCM+ 

predicts secondary recirculation regions close to the cavity bottom wall due to a larger 

stratification region in the lower part of the cavity, meanwhile the IFVM streamlines are 

in very good qualitative agreement with the streamlined determined by Kang and Hassan 

[29], Pacheco et al. [100] and Demirdzic et al. [126]. 

 

 

Figure 83. Temperature contours for the two-dimensional natural convection in a square 

cavity with an eccentric cylinder at Ra = 10
6
 and Pr = 10.  Left: IFEM; center: IFVM; 

right: STAR-CCM+. 

 

 

Figure 84. Velocity magnitude contours for the two-dimensional natural convection in a 

square cavity with an eccentric cylinder at Ra = 10
6
 and Pr = 10.  Left: IFEM; center: 

IFVM; right: STAR-CCM+. 
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Figure 85. Streamlines for the two-dimensional natural convection in a square cavity 

with an eccentric cylinder at Ra = 10
6
 and Pr = 10.  Left: IFEM; center: IFVM; right: 

STAR-CCM+. 

 

In Figure 86 is plotted the Nusselt distribution al the lateral cold wall for the two-

dimensional natural convection in a square cavity with eccentric cylinder at Ra = 10
6
 and 

Pr = 10 determined with the IFEM, the IFVM and STAR-CCM+ against the reference 

data of Demirdzic et al. [126]. The figure shows the better agreement of the IFVM 

results with the reference data if compared to the IFEM and STAR-CCM+ numerical 

predictions. In Figure 87 we compare the Nusselt distribution at the lateral cold wall for 

the same test case obtained with the IFVM to the data from Pacheco et al. [100], 

Demirdzic et al. [126] and Yu et al. [127]. The IFVM predictions are in excellent 

agreement with the other numerical data, throughout the cavity height. 
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Figure 86. Cold wall Nusselt distribution for the two-dimensional natural convection in 

a square cavity with an eccentric cylinder at Ra = 10
6
 and Pr = 10. 

 

 

Figure 87. Comparison of the cold wall Nusselt distribution for the two-dimensional 

natural convection in a square cavity with an eccentric cylinder at Ra = 10
6
 and Pr = 10. 
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4.7 Three-Dimensional Natural Convection in a Cubic Enclosure 

The next step in the validation of the implemented finite volume immersed 

boundary method solver is to test the natural convection problem in a three-dimensional 

configuration. A reference benchmark is the three-dimensional natural convection in a 

cubic enclosure, which is an extension of the two-dimensional natural convection in a 

square cavity considered in Section 4.5. For this configuration one lateral wall it at 

constant temperature Thot and the other lateral wall is at constant temperature Tcold. All 

the other walls are considered adiabatic. In Figure 88 is shown a schematic of the 

geometry and boundary conditions imposed for the three-dimensional natural convection 

in a cubic enclosure. 

 

 

Figure 88. Schematic of the computational domain and boundary conditions used for the 

three-dimensional natural convection in a cubic enclosure. 
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Simulations were performed at Rayleigh number Ra = 10
3
, 10

4
 and 10

5
, with a 

Prandlt number Pr = 0.7, corresponding to that of air. The cubic enclosure reference 

length is L. Uc represents the enclosure characteristic velocity as defined in eq. (155). In 

Table 59 are shown the air physical property and the domain geometrical configurations 

used for the three-dimensional natural convection in a cubic enclosure at Ra = 10
3
, 10

4
 

and 10
5
, respectively. The temperature difference ∆T = Thot-Tcold was the fixed parameter 

in the Rayleigh number. The enclosure Rayleigh numbers were matched by changing the 

cavity reference length as shown in Table 59. 

 

Table 59 Air physical property and geometric configurations used for the three-

dimensional natural convection in a cubic enclosure at Ra = 10
3
, 10

4
 and 10

5
 

Ra 10
3
 10

4
 10

5
 

ρ (kg/m
3
) 1.205 1.205 1.205 

μ (Pa•s) 1.790•10
-5

 1.790•10
-5

 1.790•10
-5

 

cp (J/ kg K) 1005.0 1005.0 1005.0 

k (W / m K) 0.0257 0.0257 0.0257 

β (1/K) 0.00343 0.00343 0.00343 

L (m) 0.009785 0.021081 0.045418 

Uc (m/s) 0.05738 0.08422 0.12362 

 

The calculated surface-averaged Nusselt number at the hot wall determined with 

the IFVM approach and STAR-CCM+ was compared with the values of Fusegi et al. 

[124], Ha and Jung [128] and Yoon et al. [129]. In Table 60 is shown the IFVM mesh 
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convergence study of the surface-averaged Nusselt number at the hot wall for the three-

dimensional natural convection in a cubic enclosure. The results show that mesh 

convergence is reached for the three finest mesh refinements for all Rayleigh numbers 

considered. Simulations of the three-dimensional natural convection in a cubic enclosure 

were performed with STAR-CCM+ with a mesh resolution of 300x300x300. In Table 61 

the calculated hot wall surface-averaged Nusselt number for the IFVM and STAR-

CCM+ are compared to the data from Fusegi et al. [124], Ha and Jung [128] and Yoon et 

al. [129]. All the computations are substantially in good agreement, with STAR-CMM+ 

slightly overestimating the Nusselt number at the hot wall. In particular excellent 

agreement of the IFVM results if found with the computations form Yoon et al. [129]. 

 

Table 60 IFVM mesh sensitivity analysis for the surface-averaged Nusselt number at the 

cubic enclosure hot wall for Ra = 10
3
, 10

4
 and 10

5
 

Fluid #cells Δx Ra = 10
3
 Ra = 10

4
 Ra = 10

5
 

10x10x10 L/10 1.091 2.295 5.261 

20x20x20 L/20 1.076 2.118 4.738 

40x40x40 L/40 1.072 2.070 4.441 

80x80x80 L/80 1.071 2.058 4.361 

100x100x100 L/100 1.071 2.057 4.351 

200x200x200 L/200 1.071 2.055 4.338 

300x300x300 L/300 1.071 2.055 4.336 
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Table 61 Comparison of the surface-averaged Nusselt number at the cubic enclosure hot 

wall for Ra = 10
3
, 10

4
 and 10

5
 

 Ra = 10
3
 Ra = 10

4
 Ra = 10

5
 

Fusegi et al. [124] 1.085 2.100 4.361 

Ha et al. [128] 1.072 2.070 4.464 

Yoon et al. [129] 1.072 2.055 4.339 

Present (IFVM) 1.071 2.055 4.336 

Present (STAR-CCM+) 1.080 2.070 4.463 

 

In Figure 89 is shown the IFVM temperature distribution at the cubic enclosure 

boundaries for the Ra = 10
3
, 10

4
 and 10

5
 case, respectively. At low Rayleigh numbers 

the heat flux across the cavity is mostly controlled by diffusion with convection being 

negligible (left of Figure 89). As the Rayleigh number increases, buoyancy becomes 

larger with convection being the predominant heat transfer mode (right of Figure 89).   

 

 

Figure 89. IFVM boundary temperature distribution for the three-dimensional natural 

convection in a cubic enclosure at Ra = 10
3
 (left), 10

4
 (center) and 10

5
 (right). 
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In Figure 90 are shown the IFVM predictions of temperature contours at the 

enclosure symmetry plane (i.e., y = 0.5) for the Ra = 10
3
, 10

4
 and 10

5
 cases, respectively. 

The figure shows the effect of buoyancy on the temperature contours and the formation 

of the thermal boundary layer at the enclosure hot wall as the Rayleigh number is 

increased.   

 

 

Figure 90. IFVM symmetry plane (y = 0.5) temperature distribution for the three-

dimensional natural convection in a cubic enclosure at Ra = 10
3
 (left), 10

4
 (center) and 

10
5
 (right). 

 

The velocity distribution inside the three-dimensional enclosure is very complex. 

In general for low Rayleigh numbers the fluid moves upwards close to the cavity hot 

wall due to buoyancy, and downwards close to the cavity cold wall due to the larger air 

density in this region, with a stagnant region in the center of the enclosure as the velocity 

magnitude contours show in Figure 91. Increasing the Rayleigh number, the flow 

patterns become more and more complicated. At low Rayleigh numbers, the flow rotates 

clockwise in the cavity on parallel (x, z)-planes and the number of streamlines crossing 

from one plane to another is very limited, as the streamlines plot shows in the left of 
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Figure 92. Increasing the Rayleigh number, the flow becomes unstable and the y-

symmetry is progressively lost, with streamlines crossing from one (x, z)-plane to 

another, as shown in the right of Figure 92.  

 

 

Figure 91. IFVM symmetry plane (y = 0.5) velocity magnitude distribution for the 

three-dimensional natural convection in a cubic enclosure at Ra = 10
3
 (left), 10

4
 (center) 

and 10
5
 (right). 

 

 

Figure 92. IFVM streamlines for the three-dimensional natural convection in a cubic 

enclosure at Ra = 10
3
 (left), 10

4
 (center) and 10

5
 (right). 

 

To have a quantitative validation of the IFVM, we plotted the temperature 

distribution determined with the IFVM and 100x100x100 mesh size against the STAR-

CCM+ numerical predictions for a 300x300x300 mesh size at different locations in the 
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enclosure. In Figure 93 are shown the temperature predictions at the enclosure symmetry 

plane (y = 0.5) for different axial locations at Ra = 10
3
 determined with the IFVM and 

STAR-CCM+, respectively. In Figure 94 are shown the IFVM and STAR-CCM+ 

numerical results for the axial temperature distribution at the (x, y) = (0.5, 0.5) location 

for Ra = 10
3
. For this low Rayleigh number, the predominant heat transfer mode is 

conduction and the IFVM temperature distribution across the three-dimensional 

enclosure is in excellent agreement with the STAR-CCM+ predictions.  

 

 

Figure 93. IFVM and STAR-CCM+ comparison of the temperature distribution at the 

symmetry plane y = 0.5 for different z positions (Ra = 10
3
). 

 

z = 0.1

z = 0.5

z = 0.9
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Figure 94. IFVM and STAR-CCM+ comparison of the temperature distribution in the 

vertical direction at the (x, y) = (0.5, 0.5) location (Ra = 10
3
). 

 

Figure 95 and Figure 96 show the IFVM and STAR-CCM+ temperature 

predictions at the symmetry plane (y = 0.5) for different axial locations and in the axial 

direction at the (x, y) = (0.5, 0.5) location for Ra = 10
4
, respectively. Also for this mixed 

conduction/convection heat transfer mode the IFVM temperature distribution across the 

cavity is very close to that predicted by STAR-CCM+. 
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Figure 95. IFVM and STAR-CCM+ comparison of the temperature distribution at the 

symmetry plane y = 0.5 for different z positions (Ra = 10
4
). 

 

 

Figure 96. IFVM and STAR-CCM+ comparison of the temperature distribution in the 

vertical direction at the (x, y) = (0.5, 0.5) location (Ra = 10
4
). 

z = 0.1

z = 0.5

z = 0.9
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In Figure 97 and Figure 98 are shown the IFVM and STAR-CCM+ temperature 

predictions at the symmetry plane (y = 0.5) for different axial location and in the axial 

direction at the (x, y) = (0.5, 0.5) location for Ra = 10
5
, respectively. For this convection 

dominated heat transfer mode the IFVM predicts a slightly larger temperature 

distribution across the cavity if compared to the STAR-CCM+ numerical results. This 

disagreement can be explained by considering the surface-averaged Nusselt number at 

the hot wall predictions from the IFVM, STAR-CCM+, and other numerical data 

available in literature shown in Table 61. The Nu number at the hot wall represents a 

non-dimensional heat flux at that boundary. STAR-CCM+ numerical results point out 

that a larger heat flux at the hot wall is predicted. The heat flux at the hot wall is directly 

related to the gradient of the temperature normal to the wall. At the hot wall location the 

temperature is kept constant. This means that the temperature at the cells close to the 

enclosure hot wall predicted by STAR-CCM+ is lower than the one predicted by the 

IFVM and the other numerical data shown in Table 61. This trend is shown throughout 

the entire cavity, with STAR-CCM+ temperature distribution slightly below the IFVM 

predictions. If the surface-averaged Nusselt number at the hot wall is plotted against the 

number of iterations for STAR-CCM+, it is possible to see that after a relatively short 

transient with a sharp decrease in the Nusselt number, the solution does not reaches a 

converged value after 100,000 iterations. We expect to see a fully converged solution 

after about 1,000,000 iterations, for which the STAR-CCM+ surface-averaged Nusselt 

number at the hot wall prediction is in agreement with the other numerical data, and the 

temperature distribution across the cavity matches the IFVM results. 
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Figure 97. IFVM and STAR-CCM+ comparison of the temperature distribution at the 

symmetry plane y = 0.5 for different z positions (Ra = 10
5
). 

 

 

Figure 98. IFVM and STAR-CCM+ comparison of the temperature distribution in the 

vertical direction at the (x, y) = (0.5, 0.5) location (Ra = 10
5
). 

z = 0.1

z = 0.5

z = 0.9
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4.8 Three-Dimensional Natural Convection in a Cubic Enclosure with an Embedded 

Sphere 

To validate the IFVM approach for fluid flow and heat transfer problems, we 

considered the three-dimensional natural convection in a cubic enclosure with an 

embedded sphere at the center of the domain benchmark case. The cubic enclosure has 

reference length L and a sphere of radius R = 0.2 L is embedded at the center of the 

enclosure. The enclosure external boundary walls are at fixed Temperature Tcold, and the 

sphere wall is at temperature Thot. No-slip boundary conditions are imposed at enclosure 

boundary walls and at the internal sphere wall. In Figure 99 is shown a schematic of the 

computational domain and boundary conditions used for this benchmark problem. 

 

 

Figure 99. Schematic of the computational domain and boundary conditions used for the 

three-dimensional natural convection in a cubic enclosure with a sphere. 
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Simulations were performed at Rayleigh numbers Ra = 10
3
, 10

4
, 10

5
 and 10

6
, 

respectively. The Prandlt number was set equal to Pr = 0.7 corresponding to that of air. 

The temperature difference ∆T = Thot-Tcold = 10 K was the fixed parameter. The 

enclosure Rayleigh numbers were matched by changing the cavity reference length as 

shown in Table 62. 

 

Table 62 Air physical property and geometric configurations used for the three-

dimensional natural convection in a cubic enclosure with a sphere at Ra = 10
3
, 10

4
, 10

5
 

and 10
6 

Ra 10
3
 10

4
 10

5
 10

6
 

ρ (kg/m
3
) 1.205 1.205 1.205 1.205 

μ (Pa•s) 1.790•10
-5

 1.790•10
-5

 1.790•10
-5

 1.790•10
-5

 

cp (J/ kg K) 1005.0 1005.0 1005.0 1005.0 

k (W / m K) 0.0257 0.0257 0.0257 0.0257 

β (1/K) 0.00343 0.00343 0.00343 0.00343 

L (m) 0.009785 0.021081 0.045418 0.09785 

Uc (m/s) 0.05738 0.08422 0.12362 0.018145 

R (m) 0.001957 0.0042162 0.0090836 0.01957 

 

The surface-averaged Nusselt number at the enclosure side wall was taken as 

reference parameter to compare the IFVM predictions with the STAR-CCM+ results. In 

Table 63 is shown the mesh sensitivity study for the IFVM in the range of Rayleigh 

numbers considered. The results show that mesh convergence was reached for the two 
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finest mesh resolutions for all Rayleigh numbers considered. Simulations were 

performed with STAR-CCM+ considering a 100x100x100 grid resolution. In Table 64 

are shown the IFVM and STAR-CCM+ predictions for the surface-averaged Nusselt 

number at the enclosure side wall at Ra = 10
3
, 10

4
, 10

5
 and 10

6
, respectively. The IFVM 

and STAR-CCM+ calculated Nusselt numbers are in good agreement.  

  

Table 63 IVEM mesh sensitivity analysis for the side wall surface-averaged Nusselt 

number for the three-dimensional cubic enclosure with a sphere for Ra = 10
3
, 10

4
, 10

5
 

and 10
6
 

Fluid #cells Δx Ra = 10
3
 Ra = 10

4
 Ra = 10

5
 Ra = 10

6
 

10x10x10 L/10 0.620 0.589 0.691 1.278 

20x20x20 L/20 0.639 0.617 0.656 1.638 

40x40x40 L/40 0.642 0.623 0.649 1.102 

80x80x80 L/80 0.643 0.624 0.653 1.048 

100x100x100 L/100 0.643 0.625 0.655 1.031 

 

Table 64 Comparison of the side wall surface-averaged Nusselt number for the three-

dimensional cubic enclosure with a sphere for Ra = 10
3
, 10

4
, 10

5
 and 10

6
 

 Ra = 10
3
 Ra = 10

4
 Ra = 10

5
 Ra = 10

6
 

Present (IFVM) 0.643 0.625 0.645 1.031 

Present (STAR-CCM+) 0.637 0.618 0.646 0.939 
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4.8.1 Ra = 10
3
, Flow and Temperature Fields

For this low Rayleigh number the temperature contours shown in Figure 100 and 

the streamlines shown in Figure 101 are almost symmetric about the horizontal and 

vertical centers of the enclosure. This result comes with no surprise since the heat 

transfer mode is dominated by conduction, with the effect of convection being 

negligible. The temperature and flow distribution across the enclosure determined with 

the IFVM is qualitatively very close to the STAR-CCM+ predictions as Figure 100 and 

Figure 101 show. To have a quantitative estimate of the IFVM predictions, we plotted in 

Figure 102 the temperature distribution at the symmetry plane (y = 0.5) for different 

axial locations obtained with the IFVM approach and STAR-CCM+, respectively. 

Figure 102 shows that the IFVM numerical results at z = 0.1 and z = 0.9 are in excellent 

agreement with the STAR-CCM+ predictions. Particularly interesting is the temperature 

distribution on the symmetry plane (y = 0.5) for z = 0.5 for which we can show that the 

IFVM the STAR-CCM+ numerical results are in good agreement approaching the 

immersed body hot wall surface. Since this is a conduction dominated heat transfer 

mode, the effect of buoyancy (i.e., velocity field) is negligible and, therefore, we can 

state that the IFVM approach is properly solving a Laplace problem for the temperature 

filed. The same argumentation applies to the temperature distribution in the axial 

direction at the (x, y) = (0.5, 0.5) location shown in Figure 103. The IFVM predictions 

are in excellent agreement with the STAR-CCM+ numerical results all the way to the 

sphere hot wall.  
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Figure 100. Symmetry plane (y = 0.5) temperature contours for the three-dimensional 

natural convection in a cubic enclosure with a sphere at Ra = 10
3
. Left: IFVM; right: 

STAR-CCM+. 

 

 

Figure 101. Symmetry plane (y = 0.5) streamlines for the three-dimensional natural 

convection in a cubic enclosure with a sphere at Ra = 10
3
. Left: IFVM; right: STAR-

CCM+. 
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Figure 102. IFVM and STAR-CCM+ comparison of the temperature distribution at the 

symmetry plane y = 0.5 (different axial positions) for the three-dimensional natural 

convection in a cubic enclosure with a sphere at Ra = 10
3
. 

 

 

Figure 103. IFVM and STAR-CCM+ comparison of the temperature distribution in the 

vertical direction at the (x, y) = (0.5, 0.5) location for the three-dimensional natural 

convection in a cubic enclosure with a sphere at Ra = 10
3
. 

z = 0.1

z = 0.5

z = 0.9

z = 0.5
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4.8.2 Ra = 10
4
, Flow and Temperature Fields

As the Rayleigh number is increased to Ra = 10
4
, a very weak upward thermal

plume develops at the sphere hot wall. The temperature contours shown in Figure 104 

and streamlines shown in Figure 105 for the IFVM approach and STAR-CCM+ are 

qualitatively very similar. 

Figure 104. Symmetry plane (y = 0.5) temperature contours for the three-dimensional 

natural convection in a cubic enclosure with a sphere at Ra = 10
4
. Left: IFVM; right:

STAR-CCM+. 
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Figure 105. Symmetry plane (y = 0.5) streamlines for the three-dimensional natural 

convection in a cubic enclosure with a sphere at Ra = 10
4
. Left: IFVM; right: STAR-

CCM+. 

 

The temperature distribution at the symmetry plane (y = 0.5) obtained with the 

IFVM approach is in excellent agreement with the numerical data from STAR-CCM+ 

for z = 0.1, z = 0.5 and z = 0.9, as shown in Figure 106. Buoyancy forces are driving the 

flow, but the effect of convection on the heat transfer mode is still limited. Close to the 

immersed body hot surface, the local temperature distribution predicted by the IFVM 

approach is very close to the one predicted by the body-fitted commercial code STAR-

CCM+ both in the x-direction (see Figure 106) and in the z-direction (see Figure 107). 
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Figure 106. IFVM and STAR-CCM+ comparison of the temperature distribution at the 

symmetry plane y = 0.5 (different axial positions) for the three-dimensional natural 

convection in a cubic enclosure with a sphere at Ra = 10
4
. 

 

 

Figure 107. IFVM and STAR-CCM+ comparison of the temperature distribution in the 

vertical direction at the (x, y) = (0.5, 0.5) location for the three-dimensional natural 

convection in a cubic enclosure with a sphere at Ra = 10
4
. 

z = 0.1

z = 0.5

z = 0.9

z = 0.5
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4.8.3 Ra = 10
5
, Flow and Temperature Fields

As the Rayleigh number reaches Ra = 10
5
, the buoyant plume developing along

the hot sphere walls is clearly visible in Figure 108 showing the temperature contours at 

the symmetry plane (y = 0.5) for the IFVM approach and STAR-CCM+, respectively. 

Convection dominates the heat transfer mode. The dominant flow is in the upper 

part of the enclosure, and correspondingly the core of the recirculating eddies is located 

only in the upper half, as the streamlines plot at the symmetry plane (y = 0.5) show in 

Figure 109. Qualitatively there is good agreement between the IFVM results and STAR-

CCM+ numerical predictions. 

Figure 108. Symmetry plane (y = 0.5) temperature contours for the three-dimensional 

natural convection in a cubic enclosure with a sphere at Ra = 10
5
. Left: IFVM; right:

STAR-CCM+. 
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Figure 109. Symmetry plane (y = 0.5) streamlines for the three-dimensional natural 

convection in a cubic enclosure with a sphere at Ra = 10
5
. Left: IFVM; right: STAR-

CCM+. 

 

Plotting the temperature distribution at the symmetry plane (y = 0.5) for different 

axial locations in Figure 110 and Figure 111, we confirm that even for flows where 

convection is the predominant heat transfer mode, the IFVM predictions are in excellent 

agreement with the results from STAR-CCM+ across the enclosure, and close to the 

sphere hot wall. Also for the axial temperature distribution at the (x, y) = (0.5, 0.5) 

location shown in Figure 112, the predictions from the IFVM are in excellent agreement 

with the results for STAR-CCM+.  

If the sharp interpolation scheme used for the IFVM were not able to give a 

satisfactory prediction for the temperature and/or velocity fields close to the immersed 

body interface, due to the strong coupling of the NSEs with the energy equation, the 

results from the IFVM approach would not agree with the STAR-CCM+ predictions. 
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Figure 110. IFVM and STAR-CCM+ comparison of the temperature distribution in the 

x direction at the (y, z) = (0.5, 0.5) location for the three-dimensional cubic enclosure 

with a sphere at Ra = 10
5
. 

 

 

Figure 111. IFVM and STAR-CCM+ comparison of the temperature distribution in the 

x direction at the (y, z) = (0.5, 0.1) and (y, z) = (0.5, 0.9) locations for the three-

dimensional cubic enclosure with a sphere at Ra = 10
5
. 

z = 0.1

z = 0.9
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Figure 112. IFVM and STAR-CCM+ comparison of the temperature distribution in the 

vertical direction at the (x, y) = (0.5, 0.5) location for the natural convection in a cubic 

enclosure with a sphere at Ra = 10
5
.

4.8.4 Ra = 10
6
, Flow and Temperature Fields

For Rayleigh number equal to Ra = 10
6
 or larger, the heat transfer mode is

completely dominated by convections. A very strong buoyant plume develops along the 

sphere hot wall as the temperature contours at the symmetry plane (y = 0.5) for the 

IFVM approach and STAR-CCM+ show in Figure 113. The isotherms are strongly 

distorted towards the upper part of the enclosure leading to a stable stratification region 

in the lower part. The temperature predictions from the IFVM approach are is good 

agreement with STAR-CCM+ numerical results. For these Rayleigh numbers the 

convection velocity is significantly larger than for the cases shown in the previous 

sections. From Figure 113 it is also possible to see the boundary layer formation at the 

sphere hot wall, and its separation from the surface near the top of the sphere which 
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determines the formation of a strong plume in the enclosure upper region. The core of 

the inner vortices moves upwards and towards the corner of the enclosure as the 

predictions from the streamlines at the symmetry plane (y = 0.5) plotted in Figure 114 

show for both the IFVM approach and STAR-CCM+, respectively. 

 

 

Figure 113. Symmetry plane (y = 0.5) temperature contours for the three-dimensional 

natural convection in a cubic enclosure with a sphere at Ra = 10
6
. Left: IFVM; right: 

STAR-CCM+. 

 

In Figure 115 is shown the temperature distribution at the symmetry plane (y = 

0.5) and at the axial location z = 0.5 predicted with the IFVM approach and STAR-

CCM+. The IFVM numerical results are in good agreement with STAR-CCM+ results 

in the enclosure region and close to the sphere hot wall. 
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Figure 114. Symmetry plane (y = 0.5) streamlines for the three-dimensional natural 

convection in a cubic enclosure with a sphere at Ra = 10
6
. Left: IFVM; right: STAR-

CCM+. 

 

 

Figure 115. IFVM and STAR-CCM+ comparison of the temperature distribution in the 

x-direction at the (y, z) = (0.5, 0.5) location for the cubic enclosure with a sphere at Ra = 

10
6
. 
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Figure 116 shows the temperature predictions for the IFVM approach and STAR-

CCM+ at the symmetry plane (y = 0.5) and at the axial locations z = 0.1 and z = 0.9, 

respectively. In the lower part of the cavity (i.e., z = 0.1) where stratification is present, 

the two approaches give very close predictions. In the upper part of the cavity (i.e., z = 

0.9) there are some discrepancies between the IFVM predictions and the numerical data 

from STAR-CCM+. A closer look at Figure 113 reveals that the IFVM temperature 

distribution in proximity of the sphere hot wall shows some minor discontinuities. This 

unphysical effect is due to the coarse triangulation used for discretizing the sphere 

surface. If a finer mesh is used for the sphere to embed into the fluid Cartesian mesh, the 

discretization error due to the interpolation algorithm at the immersed boundary can be 

reduced, and the unphysical discontinuities in the temperature distribution would be 

smoothed out. The same considerations apply to the axial temperature distribution at the 

(x, y) = (0.5, 0.5) location shown in Figure 117 for the IFVM approach and STAR-

CCM+, respectively. In the bottom part of the cavity the IFMV predicts a temperature 

distribution slightly larger than STAR-CCM+ due to a too coarse mesh triangulation for 

the immersed body. In the upper part of the cavity this discrepancy disappears due to the 

reduced convection velocity right above the sphere upper part. 
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Figure 116. IFVM and STAR-CCM+ comparison of the temperature distribution in the 

x-direction at the (y, z) = (0.5, 0.1) and (y, z) = (0.5, 0.9) locations for the cubic enclosure 

with a sphere at Ra = 10
6
. 

 

 

Figure 117. IFVM and STAR-CCM+ comparison of the temperature distribution in the 

vertical direction at the (x, y) = (0.5, 0.5) location for the natural convection in a cubic 

enclosure with a sphere at Ra = 10
6
. 

z = 0.1

z = 0.9
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This slight discrepancy between the IFVM and STAR-CCM+ numerical results 

for the three-dimensional natural convection in a cubic enclosure with embedded body at 

large Rayleigh numbers points out that to have an accurate reconstruction on the 

fluid/solid interface from an interpolation point of view, immersed boundary methods 

need a fine triangulation mesh of the solid object to be embedded in the fluid region. If a 

coarse mesh is used, the interpolation scheme will inevitably determine approximate 

forcing terms at the ghost-cells, and this approximation will be reflected on the solution 

close to the fluid/solid interface.  
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5. IMMERSED BOUNDARY METHODS: IFEM VERSUS IFVM APPROACH 

 

In this section we briefly discuss the strengths and weaknesses of the IFEM and 

IFVM approaches discussed in the previous sections. In Section 2 we addressed the 

mathematical formulation of the IFEM and in Section 3 we discussed the mathematical 

formulation of the IFVM. The use of Lagrange multipliers for the IFEM to be projected 

on the immersed body mesh, and the forcing terms to be interpolated back on the fluid 

volume mesh implies that two mesh discretizations are used to solve the problem at 

hand: one for the fluid and one for the immersed body. We can think of this as an 

Eulerian/Lagrangian approach, where the fluid flow equations are solved on an Eulerian 

mesh and the additional constraints due to the immersed body are solved on a 

Lagrangian mesh. On the other hand, in the IFVM we stressed the point that the forcing 

terms are directly applied at ghost-cells. There is no need to solve equations on an 

additional mesh, which is only needed to determine the location of the ghost-cells on the 

fluid mesh. Therefore, we can talk of an Eulerian IFVM approach meaning that we solve 

the fluid flow equations on an Eulerian mesh. Solving the discretized system of 

equations on one mesh is computationally more efficient than using two meshes. 

In the IFEM approach we solve for the fluid flow equations on the entire 

computational domain, i.e., fluid and immersed body, and then we add additional 

constraints to the fluid cells overlapping the solid body. In the IFVM we solve only for 

the fluid region, neglecting the fluid cells overlapping with the immersed body, and 
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adding forcing terms directly to the ghost-cells. This represents a saving in terms of 

memory and number of unknowns to compute. 

Concerning the interface scheme, we discussed the use of a diffuse interface 

scheme for the IFEM approach and a sharp interface scheme for the IFVM approach. 

Diffuse interface scheme require a projection of the field (e.g., velocity, temperature) 

from the Eulerian mesh to the Lagrangian mesh to determine the Lagrangian multipliers 

(i.e., forcing terms), and an interpolation of the forcing terms from the Lagrangian mesh 

back to the Eulerian mesh. The forcing term is “spread” or “diffused” back on the 

Eulerian mesh, hence the name diffuse interface scheme. In the sharp interface scheme 

we use the velocity field variables close to the fluid/solid interface and the constraint at 

the immersed body surface to determine the value of the forcing terms at the 

corresponding ghost-cells through an appropriate interpolation, where a ghost-cell is by 

definition a cell inside the solid body with at least one neighbor in the fluid region. The 

diffusive nature of the interface scheme for the IFEM will satisfy the constraint at the 

immersed body surface in an integral way, whereas the sharp nature of the interface 

scheme for the IFVM will satisfy the constraint at the fluid/solid interface in a local way. 

Since immersed boundary methods approximate the immersed boundary surface with a 

forcing term, the local nature of sharp interface schemes will results in a better 

approximation of the interface especially for coarse meshes. This is perhaps one of the 

key points in applying immersed boundary method to the solution of differential 

equations. The idea behind the immersed boundary approach is to use simple Cartesian 

meshes to represent complex geometries. By simple we mean from a numerical point of 
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view, i.e., the data structure of Cartesian meshes is order of magnitude less expensive 

that the one for body-fitted unstructured meshes. We also would like to use a reduced 

number of cells to simulate complex geometries. The use of coarser mesh reduces the 

computational time, making the simulation of very large domains possible. If we are 

forced by the interpolation scheme to use very fine meshes close to the immersed 

boundary interface, somehow we defeat the original goal of using immersed boundary 

methodologies. With a diffuse interface scheme we are forced to have a very fine mesh 

close to the fluid/solid interface, which can be easily accomplished with a body-fitted 

approach. With a sharp interface scheme, on the other hand, we directly impose the 

constraint at the fluid/solid interface as long as there are enough ghost-cells (i.e., forcing 

points) representing the geometric features of the immersed object we are trying to 

simulate, just like for body-fitted approaches where boundaries are properly represented 

only if the mesh discretization is fine enough. Therefore, the IFEM 

projection/interpolation process introduces an additional discretization error in the 

solution of the field equations, meanwhile the IFVM interpolation process leaves 

unchanged the base solver discretization error at the fluid/solid interface. This issue can 

be clarified considering the two-dimensional flow past a circular cylinder results shown 

in Section 4.3. The IFEM drag and lift coefficients are in satisfactory agreement with the 

IFVM predictions, STAR-CCM+ numerical results, and data from available literature. 

This means that from an integral point of view the IFEM predicts the right streamwise 

and cross-flow forces at the fluid/solid interface, just like the other approaches do. Then 

we mentioned the unphysical fluid penetration at the cylinder wall if a surface mesh is 
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used to discretize the immersed body in the IFEM approach. This unphysical behavior is 

due to the diffusive nature of the interface scheme used in the IFEM, where the no-slip 

condition at the fluid/solid interface is satisfied in an integral way across the cell. 

Locally the fluid velocity at the interface might not satisfy the no-slip boundary 

condition, but it does satisfy this constraint when integrated over the cell size. By 

refining the mesh close to the fluid/solid interface the number of Lagrange multipliers is 

increased and the quality of the solution at the immersed body surface improves (i.e., the 

number of streamlines crossing the fluid/solid interface is reduces). For the same 

problem we showed that by discretizing the cylinder with a volume mesh instead of a 

surface mesh the unphysical behavior of fluid penetration at the solid boundary is 

eliminated. Therefore, by using diffuse interface scheme we are forced to have a very 

fine mesh close to the immersed body interface, when our initial objective was to have a 

coarse representation of the solid object. 

In Section 4.1 we showed that the IFEM is third order accurate in space and 

second order accurate in time, meanwhile the IFVM is second order accurate in space 

and first order accurate in time. One of the strength of finite element methods is to be 

numerically more accurate than finite volume methods, so we are not surprised by this 

result. On the other hand, the IFEM higher numerical accuracy comes with an order of 

magnitude increase in the computational effort if compared to the IFVM approach. From 

an engineering point of view this is perhaps the most limiting issue in the application of 

immersed boundary methods to finite element discretizations. 
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Another important issue is the numerical algorithm used to solve the time-

dependent incompressible NSEs. In our IFEM we use the fractional step method coupled 

with the immersed boundary method to solve the NSEs, and we solve first for the 

velocity field and the Lagrange multipliers related to the no-slip constraint at the solid 

surface (diffusion step), then for the pseudo-pressure (projection step) and finally we 

correct the pressure field (correction step) with the value of the pseudo-pressure from the 

previous step. The projection and correction steps are necessary to guarantee the 

divergence-free constraint for the velocity field. The projection of the velocity vector on 

a divergence-free field might actually alter the no-slip constraint at the fluid/solid 

interface. On the other hand, for the IFVM, we use the SIMPLER algorithm to solve the 

time-dependent incompressible NSEs computed with a direct-forcing sharp interface 

immersed boundary method, where the forcing term is determined from the NSEs in a 

fully explicit way. The iterative nature of the SIMPLER algorithm determines a 

divergence-free velocity field upon convergence at every time step. The presence of an 

immersed boundary is discretized numerically by adding the forcing terms explicitly into 

the NSEs.  At every time step, the NSEs are iterated until both divergence-free and no-

slip constraints are satisfied to the desired residual accuracy. 

The deal.II library [69] used for the IFEM implementation allows to construct the 

projection/interpolation operators with the same shape and test functions used to 

discretize the field equations, and no ad hoc projection and interpolation operators were 

necessary. In the IFVM approach, we had to develop an interpolation scheme to 

determine the forging terms at the ghost-cells. 
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Finally we end our discussion on the IFEM versus IFVM with a note on the 

Verification&Validation process through which any software should go before any claim 

can be made about the quality of its results. The deal.II library [69] is widely used across 

the scientific community and will probably become a cornerstone of numerical analysis 

in the years to come. Our IFVM approach was developed in the spirit of academic 

research for alternative immersed boundary methodologies. 

In Table 65 is shown a summary of the IFEM and IFVM strengths and 

weaknesses rom an immersed boundary methodology application point of view. 
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Table 65 Comparison of IFEM and IFVM
 

Criteria IFEM IFVM 

Mesh approach 2 –mesh approach: 

Eulerian/Lagrangian 

1-mesh approach: Eulerian 

Domain to compute  fluid and solid fluid only 

Interface scheme diffuse direct-forcing sharp direct-forcing 

Nature of interface diffusive: fluid penetration 

at the IB 

Sharp: no fluid penetration at the 

IB 

Numerical accuracy very accurate  

(third order in space) 

Less accurate 

(second order in space) 

Computational effort very large reduced 

Numerical algorithm to 

solve NSEs 

fractional step method Semi-Implicit Pressure-Linked 

Equation Revised (SIMPLER) 

Solution method iterative iterative 

Projection/interpolation 

operators 

build-in ad-hoc projection/ interpolation 

operators 

V&V validated to validate 
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6. SCALABILITY ANALYSIS OF THE IFVM APPROACH 

 

In this section we study the behavior of the IFVM approach from a parallel 

program point of view, that is we will present the performance of the IFVM code when it 

is parallelized with Message-Passing Interface [130, 131]. We will begin by showing the 

scalability analysis for the two-dimensional IFVM code with and without immersed 

body embedded to the Cartesian mesh. Then we will present the scalability analysis for 

the three-dimensional IFVM code with and without immersed boundary. 

In Section 3 we discussed the discretization of the field equations (i.e., NSEs and 

energy equation) on a Cartesian mesh, and the application of the TDMA in a line-by-line 

fashion to sweep across the domain and iteratively get to a converged solution. In Figure 

118 is shown a schematic of a Cartesian mesh for a two-dimension domain. If the entire 

domain is solved serially (i.e., on a single processor), the discretized equations are 

solved first by applying the TDMA to each row of the domain and sweeping in the y-

direction, and then by applying the TDMA to each column of the domain and sweeping 

in the x-direction. This is the serial version of the IFVM code. Minor modifications to 

this solution procedure would allow the use of OpenMP [132] for shared memory 

architectures. This would speedup the performance of the serial IFMV to a theoretical 

limit equal to the number of processors available for shared memory architectures. The 

discussion of why there is a very low threshold in the number of processors that can be 

used in shared memory architectures is beyond the scope of the present research. Thing 

is that shared memory architectures are limited to tens of processors at the present time. 
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On the other hand, distributed memory architectures have theoretically no limit on the 

number of available processors. Supercomputers of small/medium size have thousands 

of processing units, with the largest supercomputer (IBM Sequoia) on earth having over 

1,57 million parallel computing cores. 

 

 

Figure 118. Solution of discretized equations on a two-dimensional mesh using the 

TDMA algorithm in a line-by-line fashion. 

 

The objective of our present research was to develop a CFD code for the solution 

of the time-dependent incompressible NSEs coupled with the energy equation for very 

complex geometries and mesh sizes in the range 100 million – 1 billion cells. For this 

mesh sizes, trying to solve even steady-state problems on a single processors or on a 

shared memory architecture would require months/years. Therefore, the natural choice 

was to develop a parallel version of the IFVM code for distributed memory architectures 
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(i.e., supercomputers). Without going too much into the details of parallel computing, we 

can address the two key points in a parallel version of our IFVM code, or any parallel 

code. The first step is to partition the discretization mesh across the processors. In Figure 

119 is shown the two-dimensional domain decomposed across 16 processors. There is a 

one-to-one correspondence between processes and physical processors (i.e., core units), 

that is to say each process is associated to a physical processor. 

 

 

Figure 119. Two-dimensional Cartesian decomposition of a domain with sixteen MPI 

processes. 

 

Once the domain is decomposed, the discretized equations can be solved for each 

process independently. In our parallel IFVM approach we used the same TDMA 

algorithm in a line-by-line fashion to solve the field equations on each core unit just like 

we did for the serial version of the code on the entire domain. 

At every iterations, once the discretized equations are solved for each process, it 

is necessary to transfer the solution field at the boundary of every partition (i.e., 
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interface) to the neighbor processes. This represents the second aspect of running a code 

on distributed memory system. Every process must have an interface to communicate 

data with the neighbor processes. The data transfer is handled by the Message-Passing 

Interface (MPI) library. We only need to concern about when to perform the data 

transfer. The how is left to the MPI implementation. In Figure 120 is shown a schematic 

of a two-dimensional mesh decomposed in 16 processes, with two-dimensional 

communication across the processors, where by two-dimensional communication we 

mean that the two-dimensional physical domain is decomposed in a two-dimensional 

fashion with communication at the four boundaries of every process.  

 

 

Figure 120. Solution of discretized equations on a two-dimensional mesh using the 

TDMA algorithm in a line-by-line fashion for sixteen MPI processes with two-

dimensional decompositions. 
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If T1 is the IFVM execution time on a single processor (sequential) and TP is the 

execution time of the parallel IFVM implementation on p processors the speedup SP is 

defined as: 

1
P

P

T
S

T
           (161) 

In Figure 121 is shown the speedup for a two-dimensional 512x512 mesh 

without immersed body function of the number of processors used. The figure shows 

that for a reduced number of processors (i.e., up to 64) the actual speedup is very close 

to the theoretical value (red line). For 64 processors we observe super linear speedup due 

to an efficient use of cache memory. Increasing the number of processors, the fraction of 

computational effort for each process is reduced and communication across the 

processes is increased, due to the larger number of processes. Communication is an 

overhead (i.e., an additional task to perform which in not present in the serial version of 

the code). Reducing the computational effort on each process and increasing 

communication across nodes will determine a deterioration of the parallel IFVM 

performance if too many processes are used. For the mesh size considered (i.e., 

512x512), Figure 121 shows that using more than 128 cores will actually slow down the 

computation (communication becomes the dominant fraction of the computational time). 

If the mesh size is increased to 1024x1024 cells, the workload of each process is 

correspondingly increased if compared to the 512x512 mesh case. Therefore, the number 

of processors for which the parallel IFVM code speedup starts to deteriorate is 256 cores 
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as shown in Figure 122. For less than 256 cores the parallel version of the IFVM code 

shows linear/super-linear speedup.   

 

 

Figure 121. Speedup for a two-dimensional 512x512 mesh without immersed boundary 

(two-dimensional decomposition). 
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Figure 122. Speedup for a two-dimensional 1024x1024 mesh without immersed 

boundary (two-dimensional decomposition). 
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size to 4096x4096, Figure 124 shows that that the parallel IFVM version shows a linear 

behavior form parallel performance point of view. 

 

 

Figure 123. Speedup for a two-dimensional 2048x2048 mesh without immersed 

boundary (two-dimensional decomposition). 
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Figure 124. Speedup for a two-dimensional 4096x4096 mesh without immersed 

boundary (two-dimensional decomposition). 
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the computational effort and, consequently, the computational time. Figure 125 points 

out the linear correlation between mesh size and computational time in the range 1-512 

#processors. The IFVM shows a linear trend with respect to the number of cells used. 

 

 

Figure 125. Computational time function of mesh size for a two-dimensional mesh 

without immersed boundary. 
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to say a way to generate correctly interpolated forcing terms at the ghost-cells of the 

fluid Cartesian mesh. In the serial version of the IFVM code, once we have created the 

computational interface, we solve the discretized equations by sweeping in the x and y-

direction, respectively. The immersed boundary does not introduce any alteration of the 

base solver algorithm. This can be easily understood by looking at Figure 126, where we 

apply the TDMA in a line-by-line fashion to the two-dimensional Cartesian mesh with 

immersed boundary. The effect of the immersed boundary is an additional forcing term 

in the discretized equations at the ghost-cells. 

 

 

Figure 126. Solution of discretized equations on a two-dimensional mesh with 

immersed body using the TDMA in a line-by-line fashion. 
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“interface” for the immersed boundary following the same criteria used for the serial 

version of the IFVM code. Therefore, in the parallel IFVM approach, we split the 

immersed boundary interface across processors in the same way we decompose the 

Cartesian mesh. Processes which will happen to compute the flow equations in physical 

regions crossed by the immersed boundary will have the corresponding cells flagged as 

solid, and ghost-cells to apply the forcing terms> On the other hand, processes outside 

the immersed body will solve the discretized equations on a simple two-dimensional 

Cartesian mesh where all cells belong to the fluid region. This can be easily visualized 

with the sketch shown in Figure 127, where a two-dimensional domain with immersed 

body is distributed across 16 processes. The figure also points out that the processes 

crossed by the immersed body solve the discretized equations on a reduced number of 

computational cells if compared to the processors outside the solid body. This might 

generate work unbalance when many MPI processes are requested to perform 

computations. The computational overhead required to perform the interpolation for the 

forcing term at the ghost cells balances with the reduced number of cells for the 

processes overlapping with the solid body (i.e., reduced computational effort). The 

presence of solid objects in the parallel version of the IFVM code does not represent any 

significant load balance concern as the results from the two/three-dimensional version of 

the parallel IFVM code point out. 
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Figure 127. Solution of discretized equations on a two-dimensional mesh with 

immersed body using the TDMA in a line-by-line fashion for sixteen MPI processes 

with a two-dimensional decomposition. 

 

In Figure 128 is shown the speedup for a two-dimensional 512x512 mesh with 

immersed boundary function of the number of processors used. The results are consistent 

with the IFVM code without immersed boundary (see Figure 121). For this relatively 

coarse mesh, above 64 processors the overhead due to communication represents most of 

the computational time and there is no gain in increasing the number of processors. Also 

for a two-dimensional 1024x1024 mesh with immersed boundary shown in Figure 129 

the results are consistent with the case without immersed body (see Figure 122). The 

parallel IFVM code shows almost linear scaling up to 256 processors. 
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Figure 128. Speedup for a two-dimensional 512x512 mesh with immersed boundary 

(two-dimensional decomposition). 
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Figure 129. Speedup for a two-dimensional 1024x1024 mesh with immersed boundary 

(two-dimensional decomposition). 
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Figure 130. Speedup for a two-dimensional 2048x2048 mesh with immersed boundary 

(two-dimensional decomposition). 
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solid body on the overall computational time can be noticed. The presence of a bluff 

body inside the computational domain will prevent the effective use of all scheduled 

processors. Some of them might be completely inside the solid body for which the IFVM 

approach does not compute the field equations. These processors actually do not perform 

any computations. This is a limitation of the IFVM approach implemented and would 

require a major data structure change to eliminate the problem. Two aspects mitigate this 

limitation of the IFVM. In general complex geometries consider either immersed body 

which span most of the computational domain or are localized in a limited region of a 

very large computational domain (e.g., two-dimensional flow over a circular cylinder 

and three-dimensional flow over a sphere). For problems where the immersed body 

covers most of the computational domain, many processes will intersect the solid body 

and, therefore, the work load is balanced. On the other hand, for very large 

computational domains a limited number of processors will intersect the immersed 

boundary and the overall effect on performances is very limited. We presented the 

results for the worst case scenario possible, which is the one of an immersed body size 

comparable to that of the embedded fluid region. For this case, when a large number of 

processors are used, it is inevitable to have a reduction in performance due to the 

inefficient use of the processors overlapping the bluff solid object. Figure 131 shows that 

the reduction in performance due to the presence of the immersed body is still in the 

order of 20% reduction if compared to the case without embedded body. 
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Figure 131. Speedup for a two-dimensional 4096x4096 mesh with immersed boundary 

(two-dimensional decomposition). 
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size. Therefore, the computational effort is proportional to the mesh size for any number 

of processes used as shown in Figure 132. 

 

 

Figure 132. Computational time function of mesh size for a two-dimensional mesh with 

immersed boundary. 

 

When three-dimensional problems are considered we apply the TDMA in a line-

by-line fashion sweeping alternatively in the x, y and z-direction, respectively. The base 

solver is the same as for two-dimensional problems, and besides sweeping in the third 

dimension, the approach to the solution of the field equation remains unchanged for 

two/three-dimensional problems as the schematic shown in Figure 133 points out. 
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Figure 133. Solution of discretized equations on a three-dimensional mesh using the 

TDMA algorithm in a line-by-line fashion. 

 

In Figure 134 is shown the two-dimensional decomposition of a reference three-

dimensional domain across 16 MPI processes. This implies that for physical three-

dimensional problems we split the computational mesh in such a way to have 

communication at the interfaces in the x and y-direction, with a continuous mesh in the 

z-direction as shown in Figure 135. We implemented both a two and three-dimensional 

decomposition of the physical domain, but for the time being we tested the two-

dimensional decomposition only. The reason behind this choice is to keep 

communication overhead to a minimum even for very large meshes. The profiling of the 

IFVM code estimates a communication time inferior to 20% for the largest mesh 

considered (500x500x500 cells). This choice was made in the spirit of testing the 

performance of the implemented three-dimensional IFVM more from a computational 

effort point of view, trying to limit the overhead due to communication across processes. 
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Figure 134. Two-dimensional decomposition of a three-dimensional Cartesian domain 

with sixteen MPI processes. 

 

 

Figure 135. Solution of discretized equations on a three-dimensional mesh using the 

TDMA algorithm in a line-by-line fashion for a sixteen MPI processes with a two-

dimensional decomposition. 

 

In Figure 136 is shown the speedup for a three-dimensional 100x100x100 mesh 

without immersed boundary with two-dimensional decomposition. For a reduced 

number of processors, linear scaling performances are shown. If the number of 
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processors in increased, communication becomes the relevant part of the computational 

time for this relatively coarse mesh, and there is a limited gain in total computational 

time by increasing the number of processors above 32. 

 

 

Figure 136. Speedup for a three-dimensional 100x100x100 mesh without immersed 

boundary (two-dimensional decomposition). 
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Considering a three-dimensional 200x200x200 mesh without immersed boundary 

with a two-dimensional decomposition, the IFVM shows linear scaling up to 64 

processors, that is approximately 125,000 cells per processor. For a larger number of 

processes, the overhead due to communication becomes the dominant factor in the total 

computing time as shown in Figure 137. 

Figure 138 shows the speedup for a three-dimensional 300x300x300 mesh 

without immersed boundary and with two-dimensional decomposition. The parallel 

IFVM code shows linear speedup up to 256 processors, and almost linear speedup for 

512 processors. 

When the number of cells is increased to 400x400x400, linear speedup is 

achieved up to 512 processors as shown in Figure 139. For these very large meshes, the 

computational time represents the relevant fraction of total computing time, with 

communication time being a few percent of the total computing time. 
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Figure 137. Speedup for a three-dimensional 200x200x200 mesh without immersed 

boundary (two-dimensional decomposition). 
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Figure 138. Speedup for a three-dimensional 300x300x300 mesh without immersed 

boundary (two-dimensional decomposition). 

 

 

Figure 139. Speedup for a three-dimensional 400x400x400 mesh without immersed 

boundary (two-dimensional decomposition). 
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The results obtained for the three-dimensional 500x500x500 mesh without 

immersed boundary shown in Figure 140 are in contradiction with what expected. 

Increasing the mesh size, the parallel IFVM code speedup should be closer to the 

theoretical one. Figure 140 shows that for 512 cores the IFVM performances start to 

deteriorate, when a coarser mesh shows theoretical speedup for this number of 

processors (see Figure 139). We did not investigate further this result for the time being.  

In Figure 141 we show the computational time function of the mesh size for 

three-dimensional problems without the immersed boundary. The figure shows that the 

computational time is linearly related to the mesh size for the number of cores 

considered to solve the problem. 

 

 

Figure 140. Speedup for a three-dimensional 500x500x500 mesh without immersed 

boundary (two-dimensional decomposition). 
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Figure 141. Computational time function of mesh size for a three-dimensional mesh 

without immersed boundary. 
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and immersed body interface are split across processes and two-dimensional 

communication at the processes interface is required as shown in Figure 143. 

 

 

Figure 142. Solution of discretized equations on a three-dimensional mesh with 

embedded body using the TDMA algorithm in a line-by-line fashion. 

 

 

Figure 143. Solution of discretized equations on a three-dimensional mesh with 

embedded body using the TDMA algorithm in a line-by-line fashion for sixteen MPI 

processes with two-dimensional decomposition. 
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When the immersed body is included in the computational domain, the main 

issue related to parallel performance of the IFVM is the possibility that a large number 

of processes are located inside the solid body, which implies the corresponding cores are 

partially or fully unutilized. As we discussed for the two-dimensional configuration, the 

only way to completely avoid this problem would require a major change in the IFVM 

data structure organization. We tested the parallel IFVM three-dimensional 

configuration against a bluff body (i.e., a sphere) of diameter D = 0.4 L, where L is the 

cubic enclosure reference length.  As we pointed out before, this represents the worse 

scenario with a large region of the computational domain occupied by the solid object. 

In Figure 144 is shown the speedup for a three-dimensional 100x100x100 mesh 

with immersed boundary and two-dimensional decomposition. The figure shows that for 

more than four processors the parallel IFVM deviates from the theoretical speedup in 

agreement with the same case without immersed body shown in Figure 136. For a 

200x200x200 mesh size the parallel IFVM code with embedded body shows in Figure 

145 a linear speedup up to 32 processors, meanwhile the parallel IFVM code without 

immersed body linear speedup is maintained up to 64 processors (see Figure 137). This 

slight reduction in performance is clearly due to the presence of the immersed body.   
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Figure 144. Speedup for a three-dimensional 100x100x100 mesh with immersed 

boundary (two-dimensional decomposition). 
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Figure 145. Speedup for a three-dimensional 200x200x200 mesh with immersed 

boundary (two-dimensional decomposition). 
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respectively. The presence of the immersed body inevitably introduces a reduction in the 

parallel performance of the IFVM code, but even for the conservative configuration 

chosen, this reduction can be considered acceptable if compared to the speedup for the 

three-dimensional cases without immersed boundary (see Figure 138, Figure 139 and 

Figure 140, respectively). 

In Figure 149 is shown the computational time function of the mesh size for the 

three-dimensional mesh with embedded body. As expected the computational time is a 

linear function of the mesh size. 

 

 

Figure 146. Speedup for a three-dimensional 300x300x300 mesh with immersed 

boundary (two-dimensional decomposition). 
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Figure 147. Speedup for a three-dimensional 400x400x400 mesh with immersed 

boundary (two-dimensional decomposition). 

 

 

Figure 148. Speedup for a three-dimensional 500x500x500 mesh with immersed 

boundary (two-dimensional decomposition). 
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Figure 149. Computational time function of mesh size for a three-dimensional mesh 

with immersed boundary. 
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iteration as a parameter for the IFVM/STAR-CCM+ comparison, due to the superior 

convergence rate of the IFVM, especially if the problem at hand is solved with the Full 

Multigrid Approach. 

 

Table 66 Computational time comparison for the IFVM with STAR-CCM+ applied to 

the three-dimensional natural convection in a cubic enclosure for 50,000 iterations
 

Mesh size IFVM (sec.) STAR-CCM+ (sec.) STARCCM+/IFVM 

100x100x100 (16 pp.) 12723.43 32850.05 2.582 

200x200x200 (32 pp.) 50136.20 146521.32 2.922 

300x300x300 (64 pp.) 96217.28 271854.55 2.825 

 

To test the performances of the parallel IFVM with immersed boundary we 

compared in Table 67 the IFVM computational time for a 100x100x100 mesh size with 

that of STAR-CCM+ when a three-dimensional natural convection in a cubic enclosure 

with embedded sphere problem is considered. The number of processors used was 16. 

The results show that with the introduction of the immersed body the parallel IFVM is 

approximately 2.5 times faster than STAR-CCM+ (using a trim mesh for the latter). This 

reduction in performance of the parallel IFVM is due to the partial utilization of 

computational power for the processes crossed by the solid body surface. 
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Table 67 Computational time comparison of the IFVM with STAR-CCM+ applied to 

the three-dimensional natural convection in a cubic enclosure with embedded sphere for 

a mesh size of 100x100x100 (16 pp.)
 

Rayleigh number IFVM (sec.) STAR-CCM+ (sec.) STARCCM+/IFVM 

10
3
 3581.44 8792.02 2.455 

10
4
 3785.74 9364.05 2.473 

10
5
 3585.65 8946.08 2.495 

10
6
 3576.68 8895.01 2.487 
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7. CONCLUSIONS 

 

A new formulation of the immersed boundary method for simulating the time-

dependent incompressible Navier-Stokes equations was presented in this work. The 

direct-forcing IFEM implemented is algebraically equivalent to the fractional step 

method. Lagrange multipliers are introduced to take into account the force at the 

fluid/solid interface. The no-slip constraint is satisfied through a projection operator in a 

way similar to the divergence-free constraint for the velocity field in the classical 

projection approach. The boundary force is determined implicitly without using any 

constitutive relations (e.g., Hooke’s law) for the rigid body. This allowed using larger 

CFL numbers. Rigid bodies for which the motion is imposed a priori can be simulated 

as well. The current scheme is found to have a second order convergence rate for the H
1
 

error norm, and a third order convergence rate for the L2 error norm, respectively, when 

the Taylor-Green decaying vortex is simulated. Second order convergence rate for the 

temporal discretization was determined in agreement with the numerical scheme used. 

For the direct-forcing IFVM implemented, a ghost-cell approach was used, 

where ghost cells are defined as additional cells inside the immersed body, with at least 

one neighbor in the fluid domain, and an explicit sharp interface scheme was 

implemented to determine the forcing terms at the ghost cells, in such a way to satisfy 

the no-slip boundary condition at the immersed interface points. Bi/tri-linear 

interpolation operators were used to satisfy the Dirichlet boundary conditions at the 

fluid/solid interface. Second order convergence rates for the L2 error norm was achieved 
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for the Taylor-Green decaying vortex test case. First order convergence rate for the 

temporal discretization was determined in agreement with the numerical scheme used. 

Computations were performed for the time-dependent incompressible Navier-

Stokes equations in a two-dimensional flow over a backward-facing step, two-

dimensional steady/unsteady flow past a stationary circular cylinder, three-dimensional 

flow past a sphere. Also conjugate heat transfer problems were considered to test the 

NSEs coupled with the energy equation. Two/three-dimensional natural convection in a 

square cavity and two/three-dimensional natural convection in an enclosure with 

embedded body benchmark test cases were considered.  

The direct-forcing implicit diffuse interface scheme for the IFEM implemented 

was tested against bi-linear and bi-quadratic shape functions to address the accuracy of 

the projection operator (i.e., interpolation) on the Dirichlet boundary condition (i.e., no-

slip and fixed temperature) imposed at the fluid/solid interface. Computations with either 

surface or volume mesh for the immersed body were performed, to investigate the effect 

of Lagrange multipliers imposition not only at the fluid/solid interface but in the entire 

immersed solid volume. The numerical results showed the volume mesh approach being 

more reliable than the surface mesh approach, due to some fluid “penetration” at the 

cylinder surface when the latter approach is used to discretize the immersed boundary. 

On the other hand, the sharp nature of the IFVM interpolation scheme allows a direct 

imposition of the boundary conditions at the fluid/solid interface. No fluid penetration or 

other unphysical behaviors close to the immersed body interface were observed for the 

benchmark problems considered. The IFEM and IFVM numerical results for the 
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benchmark test cases considered show good qualitative and quantitative agreement with 

the experimental data available, numerical predictions from other immersed boundary 

methods calculation present in literature, and the results from the commercial code 

STAR-CCM+. 

The IFEM and IFVM discussed in this work represent two completely different 

approaches to immersed boundary methodologies. The IFEM uses an 

Eulerian/Lagrangian approach, where the field equations are solved on the Eulerian 

mesh and the additional constraints due to the immersed boundary are solved on a 

Lagrangian mesh representing the solid body. For IFVM the field equations are solved 

on an Eulerian mesh and the only information required from the immersed body mesh is 

the location of the fluid/solid interface. 

The IFEM computational domain covers the fluid and solid regions, whereas the 

IFVM approach solves the discretized equations in the fluid region only. 

The diffuse nature of the interface scheme used for the IFEM can give unphysical 

results at the fluid/solid boundary for coarse discretizations. The sharp nature of the 

IFVM interface scheme allows a direct imposition of the boundary condition at the 

immersed body surface avoiding any unphysical behavior at the fluid/solid interface. 

The IFEM approach showed a superior numerical accuracy if compared to the 

IFVM approach. On the other hand, the former is computationally very expensive, 

meanwhile the latter showed a computational time three times smaller than the 

commercial CFD code STAR-CCM+. 
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For the IFEM we used the fractional step method to solve the NSEs. The no-slip 

constraint at the immersed boundary surface was solved implicitly with the momentum 

equations. Then a correction (i.e., projection) on the velocity field is necessary to satisfy 

the divergence-free constraint. This correction on the velocity field might compromise 

the accuracy with which the no-slip constraint is satisfied at the fluid/solid interface. The 

iterative nature of the SIMPLER algorithm used for the IFVM enforces divergence-free 

and Dirichlet boundary conditions at the fluid/solid interface upon convergence of the 

scheme. 

A high performance IFVM for massive parallel computations was developed. 

The scalability analysis with/without embedded body showed linear scaling for very 

large meshes with hundreds of processors. This means that a correct and efficient use of 

the allocated resources is made, that is the first step towards high performance 

computational fluid dynamics. Communication is the predominant effect in controlling 

the total computational time for massive CFD problems where hundreds/thousands of 

processors are required to perform the simulation. By overlapping communication to 

computation we believe it will be possible to substantially increase the performance of 

the parallel IFVM. In this work we tested our IFEM and IFVM against benchmark 

problems for low Reynolds numbers (i.e., laminar flows). Industrial applications often 

require computations at very large Reynolds numbers. For this kind of flow problems 

turbulence modeling and a very fine mesh close to the wall are a must. Therefore, as 

future work we will focus on coupling implementing turbulence modeling and adaptive-

mesh-refinement techniques for the parallel IFVM. 
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