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ABSTRACT 

 In recent years, physically-based hydrological models provided a robust 

approach to better understand the cause-effect relationships of effective hydraulic 

properties in soil hydrology. These have increased the flexibility of studying the 

behavior of a soil system under various environmental conditions.  One disadvantage of 

physical models is their inability to model the vertical and horizontal heterogeneity of 

hydraulic properties in a soil system at the regional scale. In order to overcome this 

limitation, inverse modeling may be used. Near surface soil moisture, which has been 

collected routinely by remote sensing (RS) platforms, and evapotranspiration, that is also 

a pivotal key for water balance near the land surface can be used as alternatives for 

quantifying the effective soil hydraulic parameters through inverse modeling. However, 

the new approach suffers from not only the scale discrepancy between RS pixel 

resolution and model grid resolution, but also its application in complex terrains. 

Furthermore, hydrological models require a number of required input parameters. Hence, 

this dissertation focuses on developing a methodology for addressing these problems. 

The field-scale Soil-Water-Atmosphere-Plant model (SWAP) was extended to regional 

application, and then coupled with a Genetic Algorithm (GA), to operate as the core of 

the developed decision support system at the regional level. Also, various stochastic 

processes were developed and applied to the GA for improving the searching ability of 

optimization algorithms. The computational simulation-optimization approach was 

tested and evaluated under various synthetic and field validation experiments 

demonstrating that the methodology provided satisfactory results. In this dissertation, the 
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proposed methodologies analyzed the spatio-temporal root zone soil moisture with RS 

and in-situ soil moisture data at the multiple scales. Also, these approaches could 

provide better input parameters for hydro-climatic models, resulting in better 

understanding of the hydrologic cycle. Thus, a better understanding of water cycle 

would help us to be better prepared for efficient water resources management, 

agriculture, and devastating natural disasters in the real world. 
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CHAPTER I 

GENERAL INTRODUCTION 

1.1 Problem Statement 

Hydrological processes take place at field- to large-scales in the real world. 

Better understanding of the water cycle at different scales would be a key for sustainable 

water resources, agricultural production, and ecosystems health in the 21
st
 century. 

Efficient agricultural/water resources management are required for sustainability of the 

growing global population. This warrants better predictive tools for root zone soil 

moisture at various scales. It will provide useful strategies for not only efficient water 

use but also for reducing potential risk due to agricultural drought and flood.  

The soil hydraulic properties at the land surface and in the unsaturated zone are 

key variables for many hydro-climatic processes, because these parameters are essential 

inputs to large-scale hydrologic and hydro-climatic models. Soil hydraulic properties 

vary in the horizontal and vertical directions. Their variability is dependent on various 

factors like tillage practice, pore-size distribution due to structural cracks and root 

development and decay, textural layering, land surface conditions, etc. Thus, the 

understanding of how the land surface and subsurface information might affect vertical 

and horizontal moisture exchange is a challenging issue. In order to capture the vertical 

and horizontal variability of hydraulic parameters, field-scale measurements are 

required. However, obtaining insitu measurements of required soil hydraulic parameters 

at various spatial scales is practically impossible. Therefore, alternatives for quantifying 

the soil hydraulic parameters at the scales of interest are necessary. 
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1.2 Motivation 

The influence of variable landscape heterogeneities (i.e., soil textures, vegetation 

covers, topography, etc.), atmospheric forcings (precipitation), complexity of the layered 

soil profile, initial and bottom boundary conditions, evapotranpiration, etc. on effective 

soil hydraulic properties is required to better understand soil hydrology at different 

scales. It will lead to the development of useful strategies for efficient water resources 

management and reducing potential risk of agricultural drought in the real world. 

Furthermore, new methodologies with respect to data assimilation, down-/up-scaling 

algorithms, non physically-based stochastic models, etc. need to be developed for 

overcoming limitations of current approaches in quantifying the soil hydraulic 

parameters across temporal and spatial domains.  

This research focused on scaling (downscaling and upscaling) algorithms, data 

assimilation, inverse model development, and incorporation of stochastic evolutionary 

algorithms for addressing the connections between the environmental factors and soil 

hydraulic parameters at various scales across the land surface.  

1.3 Research Objectives  

The primary objectives of this research are to better understand hydro-climatic 

processes at the local and large scales and develop/improve efficient water resources 

management for agriculture, ecosystem dynamics and alteration, and hydrology. 
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The specific research objectives of this project are:  

 To analyze the impacts of soil heterogeneity, vegetation covers, initial and 

bottom boundary conditions on prediction of near-/sub-surface water flow in a layered 

soil profile. 

 To develop and test an improved inverse modeling algorithm for pixel-based 

effective soil hydraulic properties estimation at multiple scales using remotely sensed 

soil moisture and evapotranspiration data products. 

 To develop a deterministic downscaling algorithm for pixel-based soil moisture 

and evapotranspiration to produce sub-pixel level soil moisture products from remote 

sensing pixel data at various resolutions.  

 To develop and implement a scaling (joint downscaling and upscaling) algorithm 

for remotely sensed and in-situ soil moisture data.  

 To develop a non-parametric evolutionary algorithm (using hidden Markov 

model genetic algorithms) for predicting long-term root zone soil moisture dynamics 

with multivariate time series of precipitation. 

 To develop a drought severity assessment framework using remotely sensed soil 

moisture products with climate change scenarios under various regional hydro-climatic 

conditions.  

In Chapter II, a layer-specific soil moisture assimilation scheme using a 

simulation-optimization framework, Soil-Water-Atmosphere-Plant model with genetic 

algorithm (SWAP-GA), was developed to analyze the impact of soil layering associated 

with various soil textural combinations in the profile. The new data assimilation scheme 
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quantifies soil hydraulic properties of different soil layers in the root zone (0-200 cm). 

This approach was tested under various synthetic and field validation experiments (i.e., 

initial and bottom boundary conditions, soil textures, vegetation covers, presence of 

ground water table depths, etc.) at the Lubbok site in Texas and Little Washita (LW) 

watershed in Oklahoma.  

In Chapter III, a new inverse modeling algorithm by combining soil moisture 

based Noisy Monte Carlo Genetic Algorithm (NMCGA) and Surface Energy Balance 

Algorithm for Land (SEBAL) based ET products was developed. The coupled NMCGA 

and SEBAL approach uses remotely sensed (RS) soil moisture and evapotranspiration 

products for quantifying pixel-scale soil hydraulic properties. This approach was 

evaluated at multiple scales under different hydro-climates (Lubbock, Texas; Little 

Washita watershed, Oklahoma; and Walnut Creek watershed, Iowa). 

In Chapter IV, a new deterministic downscaling algorithm (DDA) was developed 

for estimating finer-scale soil moisture with pixel-based remotely sensed (RS) soil 

moisture (SM) and evapotranspiration (ET) products. This approach was evaluated under 

various synthetic and field validation experiment (Little Washita 13 and 21, Oklahoma) 

conditions including homogeneous and heterogeneous land surface conditions composed 

of different soil textures and vegetation. Our algorithm is based on determining soil 

hydraulic properties for different sub-pixels and their specific locations within a RS 

pixel and estimating root zone soil moisture dynamics of each individual sub-pixel.  

In Chapter V, a new scaling (joint downscaling and upscaling) algorithm was 

developed for improving the availability of remotely sensed (RS) and in-situ soil 
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moisture in hydrologic applications. This scheme can downscale RS soil moisture 

footprints as well as upscale in-situ measurements simultaneously across a 

topographically complex regional area. This algorithm adapted a near-surface soil 

moisture assimilation approach based on inverse modeling using a simulation-

optimization framework, Soil-Water-Atmosphere-plant model with genetic algorithm 

(SWAP-GA). Also, various hydrological models such as Noah Land Surface Model 

(Noah LSM) and Community Land Model (CLM) were used for testing our proposed 

approach. The new algorithm used normalized digital elevation model (DEMnorm 

representing topography) and normalized difference vegetation index (NDVInorm 

representing vegetation covers) components at finer-scale (30 m30 m) for capturing the 

heterogeneity of land surface in scaling down and up soil moisture data. We selected the 

Little Washita watershed for testing this scheme at multiple scales.  

In Chapter VI, a new genetic algorithm-based hidden Markov model (HMMGA) 

was developed for exploring root zone soil moisture dynamics at different soil depths 

using the multivariate time series of precipitation under two different hydro-climatic 

regions. It uses optimal state sequences derived by the HMMGA and statistics of 

historical soil moisture measurements for predicting root zone soil moisture in the future. 

Also, this approach reproduced rainfall occurrence probabilities and wet/dry spell 

lengths. To test the new approach, we selected two regions including Oklahoma (130 km 

 130 km) and Illinois (300 km  500 km) soil moisture fields during 1995 to 2009 and 

1994 to 2010, respectively.  
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In Chapter VII, a drought severity assessment framework was explored using a 

modified grid-based disaggregation algorithm adapting a combined simulation-

optimization algorithm, soil-water-atmosphere-plant (SWAP) model with a genetic 

algorithm (GA). Here, we developed a new evolutionary algorithm (called Ensemble 

Multiple Operators Genetic Algorithm, EMOGA) for improving limitations of GAs. A 

sub-grid analysis of root zone soil moisture using the SWAP-EMOGA linkage was 

performed for downscaling remotely sensed (RS) soil moisture products at the soil-

vegetation level. Based on the historical data, pixel-scale hydraulic parameters at finer-

scales were estimated from RS soil moisture using the SWAP-EMOGA. These estimated 

hydraulic parameters along with meteorological variables obtained from general 

circulation models (GCMs) were used to predict soil moisture using the SWAP model. 

Further, drought severity was calculated using a Soil Moisture Deficit Index (SMDI) 

based on the projected soil moisture obtained from the SWAP model. Then, we assessed 

potential risks (i.e., agricultural drought severity, water resources management, etc.) 

with forecasted root zone soil moisture dynamics at sub-grid scales for the next decade 

(2010-2020). 
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CHAPTER II 

SOIL HYDRAULIC PROPERTIES IN ONE-DIMENSIONAL LAYERED SOIL 

PROFILE USING LAYER-SPECIFIC SOIL MOISTURE ASSIMILATION 

SCHEME* 

2.1 Synopsis 

 We developed a layer-specific soil-moisture assimilation scheme using a 

simulation-optimization framework, Soil-Water-Atmosphere-Plant model with genetic 

algorithm (SWAP-GA). Here, we explored the quantification of the soil hydraulic 

properties in a layered soil column under various combinations of soil types, vegetation 

covers, bottom boundary conditions and soil layering using idealized (synthetic) 

numerical studies and actual field experiments. We demonstrated that soil layers and 

vertical heterogeneity (layering arrangements) could impact to the uncertainty of 

quantifying soil hydraulic parameters. We also found that, under layered soil system, 

when the sub-surface flows are dominated by upward fluxes, e.g., from a shallow water 

table, the solution to the inverse problem appears to be more elusive. However, when the 

soil profile is predominantly draining, the soil hydraulic parameters could be fairly 

estimated well across soil layers, corroborating the results of past studies on 

homogenous soil columns.  

 

____________ 

*Reprinted with permission from “Soil hydraulic properties in one-dimensional layered 

soil profile using layer-specific soil moisture assimilation scheme” by Shin, Y., B. P. 

Mohanty, and A. V. M. Ines (2012), Water Resour. Res., 48: W06529, doi:10.1029/ 

2010WR009581. 
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In the field experiments, the layer-specific assimilation scheme successfully 

matched soil moisture estimates with observations at the individual soil layers 

suggesting that this approach could be applied in real world conditions. 

2.2 Introduction 

Soil hydraulic parameters are significant components for many hydrological, 

meteorological, and general circulation models [Hansen et al., 1999; Mohanty et al., 

2002; Mohanty and Zhu, 2007]. They are used to define the soil hydraulic properties in 

the vadose zone, characterizing the effective hydraulic behavior of the soil system 

[Wood, 1994; Vrugt et al., 2004].    

With the objective of exploring the utility of remote sensing of soil moisture for 

deriving soil hydraulic properties at aggregate scale, Ines and Mohanty [2008a,b, 2009] 

tested the hypothesis that near-surface soil moisture assimilation scheme can be used to 

quantify effective soil hydraulic properties of an “effective” soil column based on the 

inverse modeling. The effective soil column is a ‘homogenous’ conceptual 

representation of a real-world soil column (composed of soil horizons) characterized by 

effective soil hydraulic properties. The inverse method using near-surface soil moisture 

assumes that any perturbations made at the near-surface soil layer could influence the 

soil moisture dynamics at the sub-surface and hence can inform the estimations of sub-

surface soil hydraulic properties. The effective soil hydraulic properties serve as 

‘average’ properties of the system. Ines and Mohanty [2008b] however found that if the 

system is highly heterogeneous, the assumption of effective soil column could fail.  
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Understanding of how soil vertical layering might affect soil moisture exchange 

and soil hydraulic parameter estimations is therefore important. Significant efforts have 

been made to account for the impact of soil heterogeneity on field soil moisture contents. 

The soil hydraulic conductivity, moisture content, and soil hydraulic parameters are 

variable at the field scale [Nielsen et al., 1973; Stockton and Warrick, 1971; Jana and 

Mohanty, 2012a,b]. Bosch [1991] studied an analytical expression for forecasting 

(potential) errors by using point observation of the matric potential (h) to determine the 

average matric potential (h) in a heterogeneous column. The instantaneous profile 

method suggested by Green et al., [1986] can be used to measure hydraulic 

conductivities (K(h)) at field-scales [Rose et al., 1965; van Bavel et al., 1968; Nielsen et 

al., 1973]. This method involves measurement of moisture content () and matric 

potential (h) throughout the profile.  

Zhu and Mohanty [2002] reported various hydraulic parameter averaging 

schemes and the mean hydraulic conductivity for predicting the mean fluxes in the 

horizontal heterogeneous blocks under steady-state of infiltration and evaporation using 

Gardner-Russo exponential model [Gardner 1958] and the Brooks-Corey model [Brooks 

and Corey 1964]. The effective hydraulic parameter estimations were related to areal 

soil heterogeneity and land surface conditions such as root distribution and surface 

ponding depth [Zhu and Mohanty 2003, 2004, 2006; Zhu et al. 2004, 2006]. The soil 

hydraulic properties were also influenced by vertical heterogeneity (e.g., tillage practice, 

pore-size distribution due to structural cracks and root development and decay, textural 

layering and geology), and parameter estimations could vary in the vertical direction 
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(Mohanty et al., 1994, Mallants et al., 1996). Although Mohanty and Zhu [2007] 

investigated effective soil hydraulic parameter averaging schemes for steady-state flow 

in heterogeneous shallow subsurface useful to land-atmosphere interaction modeling, not 

many studies have been carried out to explore issues for vertical subsurface 

heterogeneity associated with various soil types.  

In this study, we adopted a layer-specific soil moisture assimilation scheme for 

determining the soil hydraulic parameters in layered soil profiles. The main objective is 

to analyze the impact of soil layering associated with various soil textural combinations 

in the profile and to quantify the one-dimensional soil hydraulic properties of different 

soil layers in the root zone (0-200 cm) based on the layer-specific soil moisture 

assimilation scheme. This work could be useful to characterize hydrologic systems that 

are instrumented to measure root zone soil moisture. Additionally, this approach may 

serve as a basis for developing futuristic analytical platforms to characterize vadose zone 

systems at regional and global scales by synthesizing profile soil moisture data collected 

using various ground-, air-, and space-based sensors of different spectral frequencies and 

penetrating depths. 

2.3 Materials and Methods 

2.3.1 1D Layer-Specific Soil Moisture Assimilation 

2.3.1.1 Conceptual Framework 

 The aim of the layer-specific soil moisture assimilation scheme is to estimate the 

soil moisture retention θ(h) and hydraulic conductivity K(h) curves in a layered soil 

column (e.g., 1
st
: 0-10 cm, 2

nd
: 10-60 cm, and 3

rd
: 60-200 cm) by optimizing the 
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effective soil hydraulic parameters for each layer based on a simulation-optimization 

[Ines and Droogers, 2002]. As depicted in Fig. 2.1, the approach uses the soil moisture 

in the layers (here, we set up at 5 cm depth for the 1
st
 and 2

nd
 layers and at 10 cm depth 

for the 3
rd

 layer) to estimate the layer specific soil hydraulic properties. The choice on 

locations of soil moisture measurements in the soil profile to be used in the simulation-

optimization can be established in a more systematic way. Mathematically, the soil 

hydraulic parameters are obtained by finding a set of soil hydraulic parameter p such 

that the differences between observed qi(t) and simulated 
i
 (t; pi) soil moisture at soil 

layers i, are minimized; where p = pi=1,…,M; and pi is the corresponding soil hydraulic 

parameters in the individual soil layers. The choice of objective function is critical in 

inverse modeling; from sensitivity analysis (see Section 3.3) we selected the additive 

absolute form (Eq. 2.1) as it produced better results than other forms considered in this 

study (e.g., multiplicative and additive squared delta); Z(p) is the objective function, M 

is the number of soil layers, N is the time domain, and t is the index for time.  

N M

i i i
t 1 i 1

1 1
Z( ) min | (t) (t;p ) |

N M
p

 


 

    
 

        (2.1) 
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Figure 2.1: (a) Schematic diagram of layer-specific soil moisture assimilation 

scheme (SWAP-GA linkage) based on inverse modeling, (b) layered soil column 
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2.3.1.2 Description of the SWAP Model 

SWAP is a physically-based model that simulates the processes of the soil-water-

atmosphere-plant system [van Dam et al., 1997]. The soil moisture dynamics in the soil 

column can be described using the one-dimensional Richards' equation (Eq. 2.2). SWAP 

model solves Eq. (2.3) numerically using the implicit finite difference scheme of 

Belmans et al. (1983), 

h(z, t)
[K(h(z, t))( 1)]

(z, t) h(z, t) zC(h(z, t)) S(h,z, t)
t t z


 

    
     

 (2.2) 

where K is the hydraulic conductivity (cm d
-1

), h is the soil water pressure head (-cm), z 

is the vertical soil depth (cm) taken positively upward, C is the differential water 

capacity (cm
-1

), and S(h,z,t) is the actual soil moisture extraction rate by plant roots (cm
3
 

cm
-3

 d
-1

) defined as Eq. (2.3).  

pot

w r

r

r

T (t)
(h,z, t) ;z Z

ZS(h,z, t)

0;z Z


 

 
 

      (2.3) 

where Tpot is the potential plant transpiration (cm d
-1

), Zr is the rooting depth (cm), and 

αw is a reduction factor as function of h (at depth z and time t) and accounts for water 

deficit and oxygen stress [Feddes et al., 1978].  

The soil hydraulic functions are described by analytical expressions of van 

Genuchten [1980] and Mualem [1976]. 

mres

e n

sat res

(h(z, t)) 1
S (h,z, t) [ ]

1 | h(z, t) |

  
 

    

     (2.4) 

1/m m 2

sat e e
K(h,z, t) K S (h,z, t) [1 (1 S (h,z, t) ) ]        (2.5) 
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where Se is the relative saturation (-), θres and θsat are the residual and saturated water 

contents (cm
3
 cm

-3
),  (cm

-1
), n (-), m (-), and λ (-) are shape parameters of the retention 

and the conductivity functions, Ksat is the saturated hydraulic conductivity (cm d
-1

), and 

m=1-1/n.  

The SWAP model considers for several combinations of the top (atmospheric) 

and bottom boundary conditions [van Dam et al., 1997]. Moreover, it contains water 

management modules for irrigation and drainage modules as well as process-based crop 

growth models including WOFOST for simulating the impacts of weather, soil type, 

plant type, and water management on the crop growth [van Dam et al., 1997, van Dam, 

2000]. The SWAP model calculates the potential evapotranspiration (ETpot) according to 

the Penman-Monteith equation using daily meteorological data. The partition of ETpot 

rate into potential transpiration rate (Tpot) and potential evaporation rate (Epot) is 

determined by the leaf area index or the soil cover fraction. The potential 

evapotranspiration (ETpot) is calculated using the minimum value of canopy resistance 

and actual resistance. Then the actual evapotranspiration (ETact) is calculated by the root 

water uptake reduction due to water and salinity stress.   

2.3.1.3 Genetic Algorithm 

 Genetic algorithms (GAs) are powerful search algorithms based on the precept of 

natural selection [Holland, 1975; Goldberg, 1989]. The unknown parameters in a search 

problem are represented by genes, which are arranged in an array called chromosome. 

The search starts by initializing a population of chromosomes becoming the starting 

points in the search across the search surface. The suitability of a chromosome is 



 

15 

 

evaluated using a fitness function. Based on their fitness, they are selected to the mating 

pool, reproduce through the process of crossover, and allowed to mutate. The solution of 

the search problem would be the fittest chromosome that survives after many 

generations. In this study, a modified-microGA was used to search for the parameter set 

(p) by minimizing the error between the simulated and observed soil moisture in the 

layered soil column. The modified-microGA is a GA variant that uses a micro 

population to search for the solution of the inverse problem. The uniqueness in the 

modified-microGA is the ability to restart when the chromosomes of the micro-

population are nearly 90% similar in structure, allowing more micro-population restarts 

[Ines and Droogers, 2002; Carroll, 1996; Goldberg, 2002; Krishnakumar, 1989; D. L. 

Carroll, Fortran genetic algorithm (GA) driver, available at 

www.cuaerospace.com/carroll/ga.html]. The modified-microGA allows a creep mutation 

(at base 10). Ines and Mohanty (2008a) added an intermittent jump mutation to further 

introduce new genetic materials during the search. A time saving mechanism was 

designed by remembering not only the elite chromosome of the previous generation (g-

1) but also its remaining chromosomes such that when they are generated in the next 

generation, there is no need to run them anymore in the SWAP model, saving 

computational time [Ines and Honda, 2005]. The elite chromosome is always reproduced 

in the next generation. The modified-microGA was applied to the inverse modeling 

(IM)-based layer-specific soil moisture assimilation scheme [Ines and Droogers, 2002, 

Ines and Mohanty, 2008a,b]. The search spaces for each Mualem-Van Genuchten 

parameters in the multi-layered soil system as used in this study are shown in Table 2.1.  

http://www.cuaerospace.com/carroll/ga.html
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Table 2.1: Summary of the parameter constraints in the genetic algorithm 

Case studies Parameter 
Search space 

No. of bit (L) Binary(2
L
) 

Min. values Max. values 

Case 1 to 2 

 0.006 0.033 5 2
5 
(32) 

n 1.200 1.610 6 2
6
 (64) 

res 0.061 0.163 7 2
7
 (128) 

sat 0.370 0.550 5 2
5
 (32) 

Ksat 1.840 55.700 10 2
10

 (1024) 

      

Case 3 

(LW 02 and 11) 

 0.006 0.033 5 2
5 
(32) 

n 1.200 2.200 6 2
6
 (64) 

res 0.040 0.163 7 2
7
 (128) 

sat 0.340 0.550 5 2
5
 (32) 

Ksat 1.840 250.000 10 2
10

 (1024) 

      

Case 3 

(LW 07) 

 0.006 0.033 5 2
5 
(32) 

n 1.200 2.200 6 2
6
 (64) 

res 0.040 0.163 7 2
7
 (128) 

sat 0.340 0.550 5 2
5
 (32) 

Ksat 1.840 130.000 10 2
10

 (1024) 

Note: Total search space = 32*64*128*32*1024 = 8,589,934,592 

Example of p = {, n, res, sat, Ksat } = {00101, 110010, 0001111, 00001, 0101000101} 

Prob. of crossover = 0.5 

Prob. of creep mutation = 0.5 

Prob. of intermittent jump mutation = 0.05 

Population = 10 chromosomes 

No. of multi-population = 3 

Max. generation = 500 
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2.3.1.4 Parameter Uncertainty 

When an elitist modified-microGA converges to the solution, all of the 

chromosomes in a population are almost similar. To create some sort of uncertainty 

bounds to the solution, a multi-population generated by various random number 

generator seeds (e.g., -1000, -950, and -750) were run concurrently. After many 

generations, the average fitness of all the chromosomes from the multi-populations is 

calculated and classified as above or below average. The above average solutions are 

considered as the most probable solutions. The 95 percent confidence interval (95PCI) of 

the most probable solutions was calculated as, 

Rangep,s,t,i = 95PCIp,s,t,i+  95PCIp,s,t,i-      (2.6) 

where 95PCIp,s,t,i+ and 95PCIp,s,t,i- are the upper and lower boundary of the 95PCI, p is 

the soil hydraulic parameter, s is the index of soil type, t is the time (running) index, and 

i is the soil layers.   

Pearson's correlation (R
2
) and uncertainty analysis (Mean Absolute Error-MAE, 

Mean Bias Error-MBE, and Root Mean Square Error-RMSE) between observed and 

simulated data are also used to assess the performance of the modified-microGA,  
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         (2.8) 

where,  tisim ,,̂  is the average soil moisture of different populations with the time index 

(t), isim, is the average of tisim ,,̂ , tiobs ,,  is the observed soil moisture for the time index 

(t), and iobs,  is the average of tiobs ,, , respectively. Note that the MBE and RMSE were 

tested only for the field experiments. 

2.3.2 Numerical Experiments 

This study estimates the effective soil hydraulic parameters in a layered soil 

column adopting the layer-specific soil moisture assimilation scheme based on the 

inverse modeling approach [Ines and Mohanty, 2008a,b, 2009]. The numerical 

experiments were conducted for three cases: i) Case 1: layered soil column with free 

drainage, ii) Case 2: layered soil column with varying water table depths (i.e., -200, -

150, and -100 cm from the soil surface), and iii) Case 3: field experiments.   

The soil profile layering is given as follows: the 1
st
 (top 0-10 cm), 2

nd
 (10-60 

cm), and 3
rd

 (60-200 cm) soil layers (Fig. 2.2). The top soil moisture (1
st
: 0-5 cm, 2

nd
: 

10-15 cm, 3
rd

: 60-70) below the soil interfaces were only extracted and used for 

quantifying the soil hydraulic parameters in the soil layers for Cases 1 to 3, respectively.  
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Figure 2.2: Layered soil columns used in the numerical experiments with free 

drainage and various ground water (GW) table depths; (a) GW -100 cm, (b) GW -

150 cm, (c) GW -200 cm, (d) free drainage 
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In real-world conditions, soil profiles are irregularly layered, thus the decision for 

selecting the layer depths where soil moisture observations will be compared with 

simulations should be based upon the available data. For all the simulations, the soil 

column was discretized into 33 computational layers. The first soil layer was finely 

discretized at intervals of 1 cm. The second and third soil layers were discretized at 

intervals of 5 cm and 10 cm (except 33
rd

 layer with 20 cm discretization), respectively. 

For the free-draining case, the initial soil water pressure head distribution in the soil 

profile was prescribed uniformly at -150 cm. For the cases with groundwater table 

bottom boundaries, they are prescribed with initial soil water pressure head distribution 

in hydrostatic equilibrium with the initial water table depths. Various land covers (bare 

soil, grass, and wheat) representative of annual crops in the study area (Little Washita 

Watershed, Oklahoma) were considered for the numerical experiments.  

In the hypothetical cases, we used the soil hydraulic parameter values from the 

UNSODA database as reference soil hydraulic data for the given soils in each soil layers. 

Using the weather data at the Little Washita (ARS 134) site in 1997, we generated 

synthetic daily soil moisture datasets using SWAP in a forward mode. These daily soil 

moisture data were then used to estimate back the soil hydraulic parameters for the 

layered system. Several field sites were selected to evaluate the applicability of the 

layer-specific soil moisture assimilation scheme under actual field condition in Case 3 

(Fig. 2.3). Some details of the different cases are given below. 
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2.3.2.1 Case 1: Layered Soil Column under Free Drainage Condition 

Some of the uncertainties in the estimation of soil hydraulic parameters in the 

soil system can be associated with various environmental factors (e.g., root density, 

rooting depth, soil layers, different combinations of soil types, and profile arrangement, 

etc.). For this reason, we conducted nine inverse modeling scenarios for Case 1 

comprising of various soil types, soil layers, and vegetation combinations. As base case 

scenarios, the six scenarios were comprised of layer combinations of sandy loam, silt 

loam, and clay loam along the soil profile with grass cover. These scenarios aimed at 

assessing the effects of soil layering and heterogeneity in the sub-surface (Table 2.2, 

where CB1 to 6 denote soil layering combinations).  

The other three scenarios included varying the vegetation covers, e.g., bare soil, 

grass, and wheat to evaluate the impact of varying vegetations in the layer specific data 

assimilation procedure using only the CB 5 case (Table 2.2). Also analyzed are the 

interactions between water stress by crops (Tact/Tpot) and near-surface (0-5 cm) soil 

moisture changes near the land surface using the CB 5. This study considered only rain-

fed conditions for the numerical cases. 
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Figure 2.3: The study area; (a) Oklahoma, (b) the Little Washita (LW 02, 07, and 

11) watershed 

 

 

Table 2.2: Combinations of three soil types for Case 1 

Depth 
Combinations (CB) of three soil types 

CB 1 CB 2 CB 3 CB 4 CB 5 CB 6 

1st (0-10 cm) Sandy loam Sandy loam Silt loam Silt loam Clay loam Clay loam 

2nd (10-60 cm) Silt loam Clay loam Sandy loam Clay loam Sandy loam Silt loam 

3rd (60-200 cm) Clay loam Silt loam Clay loam Sandy loam Silt loam Sandy loam 

 

 

2.3.2.2 Case 2: Layered Soil Column under Various Ground Water Table 

Conditions  

Under cases when soil moisture dynamics in the unsaturated zone is governed 

significantly by shallow water table, additional experiments with various water table 

depths (-200, -150, and -100 cm from the soil surface) were conducted. This case aimed 

to assess the effects of groundwater on the estimates of effective soil hydraulic 
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properties (only for CB 5 in Case 1 - grass cover) using the layer-specific soil moisture 

assimilation approach. 

2.3.2.3 Case 3: Field Experiments 

The layer-specific soil moisture assimilation scheme was applied to the several 

field monitoring sites within the Little Washita (LW 02, 07, and 11) watershed in 

Oklahoma using datasets from the Southern Great Plains Hydrology Experiment 1997 

(SGP97) [Mohanty et al., 2002; Heathman et al., 2003, Das and Mohanty, 2006].  

Daily weather datasets (e.g., precipitation, solar radiation, relative humidity, 

minimum and maximum temperature, and wind speed) were collected at the USDA 

Agricultural Research Service (ARS 136 and 151) micronet and the Oklahoma Mesonet 

weather stations from Jan. 1 – Dec. 31, 1997. The LW 02, 07, and 11 sites are 

characterized by a mixture of loam, sandy loam, and sandy loam with grass covers, with 

a rooting depth of (up to) 100-120 cm [Mohanty et al., 2002; Table 2.3]. The bottom 

boundary condition was unknown at the field sites. Therefore, we tested free-drainage 

conditions and several ground water table depths (-100, -150, and -200 cm) as bottom 

boundaries and selected the bottom boundary condition (free-drainage conditions for the 

LW 02, 07, and 11 were selected), with the best performance (fitness) obtained by the 

genetic algorithm.   
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Table 2.3: Field-scale soil texture and soil hydraulic properties in the layered soil column at the LW 02, 07, and 

11 sites 
             

Sites 
No. of Depth 

Sanda (%) Silta (%) Claya (%) Soil texturea a na res
a sat

a Ksat
a 

Vegetation 

rooting 

depth(cm) 
soil layers incrementa 

LW 02 

1st layer 0-30 cm 40.47 43.15 16.37 Loam (L) 0.012 1.679 0.127 0.397 114.650 
 

2nd layer 30-60 cm 40.47 41.38 18.14 Loam (L) 0.013 1.505 0.091 0.397 203.560 Up to 120 

3rd layer 60-90 cm 35.66 45.59 18.75 Loam (L) 0.027 1.616 0.102 0.482 238.120 
 

             

LW 07 

1st layer 0-20 cm 83.89 8.61 7.50 Loam sand (LS) 0.011 2.112 0.061 0.348 53.533 
 

2nd layer 20-40 cm 65.86 20.39 13.75 Sandy loam (SL) 0.016 1.736 0.048 0.345 65.837 Up to 100 

3rd layer 40-60 cm 61.82 24.43 13.75 Sandy loam (SL) 0.021 1.711 0.091 0.387 120.100 
 

             LW 11 1st layer 0-20 cm 59.13 21.40 19.47 Sandy loam (SL) 0.019 1.460 0.046 0.416 186.190 Up to 100 
a
Field

 
observations [Mohanty et al., 2002] 
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In this study, the soil core samples extracted from the different soil depths (1
st
: 0-

5 cm, 2
nd

: 30-35 cm, 3
rd

: 60-65 cm for LW 02 and 1
st
: 0-5 cm, 2

nd
: 20-25 cm, 3

rd
: 40-45 

cm for LW 07) collected during the SGP97 (June 18 to July 18, 1997) were analyzed to 

obtain the soil hydraulic parameters in the laboratory experiment. Using the laboratory 

derived soil hydraulic properties, we estimated the soil moisture in the soil layers for the 

field sites with the hydrological (SWAP) model in a forward modeling mode. These soil 

moisture data were used to estimate back the heterogeneous soil hydraulic properties 

across the soil profile to test if the layer specific assimilation method could successfully 

match the laboratory derived soil hydraulic parameters (a.k.a., forward-backward 

modeling under actual field condition setting). This part of the study does not serve as a 

validation of the method because there were no measured soil moisture profile data 

available at the sites to derive independently the layer soil hydraulic parameters, but 

aimed to ascertain the utility of the approach under field conditions. We compared the 

derived soil hydraulic properties by inverse modeling, with UNSODA soil hydraulic 

data [Leij et al., 1999] and the laboratory-derived data.  

The case of LW 11 is more of calibration-validation study. The daily (in-situ) 

soil moisture observations (21 days; DOY: 169-181) measured by the time domain 

reflectometer (TDR) probe in the soil layers (1
st
: 0-5 cm, 2

nd
: 20-25 cm, 3

rd
: 40-45 cm) 

were used for calibration, then validation runs were done for DOY: 182-197. Validation 

here means that we used the derived layered soil hydraulic parameters to simulate soil 

moisture for the remaining days. The modeling soil column was composed of three 

layers (1
st
: 0-20 cm, 2

nd
: 20-40 cm, 3

rd
: 40-60 cm for LW 11) determined by the depths 
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at where the soil moisture were measured. The derived soil hydraulic parameters were 

compared with laboratory-derived parameters (no data at deeper depths from our SGP97 

hydraulic property database near-by).   

2.4  Results and Discussion 

In this study, various combinations of soil layers, soil types, vegetations, and 

ground water table depths are used for studying their impacts on estimation of soil 

hydraulic parameters in a layered soil domain. The following sections present the results 

of the inverse modeling experiments. 

2.4.1 Case 1: Layered Soil Column under Free Drainage Condition 

We estimated the θ(h) and K(h) curves in the layered soil profile using the 

combinations (CB 1 to 6) of three soil types in Fig. 2.4. The estimated θ(h) in CB 1 to 6 

corresponded well with the reference curves although the uncertainty bounds showed 

increasing trends with soil depths. On the other hand, the estimated K(h) in the layered 

soil profile is more uncertain than (h), suggesting that K(h) is more difficult to estimate 

than (h) in a layered system with soil moisture information only being used in the 

inverse modeling. We observed that soil hydraulic parameter estimation is influenced 

not only by soil layering, but also the order/sequence of vertical heterogeneity in the soil 

profile. CB 6 for example, although clay loam and silt loam soils were located in the 1
st
 

and 2
nd

 layers, their (h) and K(h) uncertainty bounds have broader range (more 

uncertainty) than those at the 3
rd

 layer, while when they are located in other 

arrangements, they are better identified.  
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Figure 2.4: Derived (h) and K(h) functions of the layered soil column with grass 

for Case 1 using the layer-specific soil moisture assimilation scheme; (a) CB1: 

1
st
sandy loam, 2

nd
silt loam, 3

rd
clay loam, (b) CB2: 1

st
sandy loam, 2

nd
clay loam, 

3
rd

silt loam, (c) CB3: 1
st
silt loam, 2

nd
sandy loam, 3

rd
clay loam, (d) CB4: 1

st
silt loam, 

2
nd

clay loam, 3
rd

sandy loam, (e) CB5: 1
st
clay loam, 2

nd
sandy loam, 3

rd
silt loam, (f) 

CB6: 1
st
clay loam, 2

nd
silt loam, 3

rd
sandy loam 
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Table 2.4 presents the correlations (R
2
) and uncertainties (MAE) of observed and 

simulated soil moisture dynamics in the top portion (near the soil layer interfaces) of the 

1
st
 (between 0-5 cm), 2

nd
 (between 10-15 cm), and 3

rd
 (between 60-70 cm) soil layers for 

the 6 combinations involving three different soil types at the ARS 134 site. Mostly, the 

simulated soil moisture estimates in the soil layers matched well with the observations in 

the range of R
2
 (1

st
: 0.974-0.999, 2

nd
: 0.978-0.998, 3

rd
: 0.980-0.997) and MAE (1

st
: 

0.004-0.016, 2
nd

: 0.004-0.020, 3
rd

: 0.001-0.012) as shown in Fig. 2.4.  

Figure 2.5 shows the daily precipitation, water stress (Tact/Tpot), and soil moisture 

changes for CB 5 (only shown here for CB5 case). Under the rain-fed condition, the 

water stress by the crop (grass) corresponded to the weather condition. As the near-

surface soil moisture becomes dry, the water stress level for the CB 5 increased 

considerably during the dry periods indicating that the plant activities were affected by 

the dry condition near the land surface. The soil moisture estimates in all the layers were 

identified well with the target values and the uncertainties in the 1
st
 layer (between 0-5 

cm depth) are higher than those in the 2
nd

 (between 10-15 cm depth) and 3
rd

 (between 

60-70 cm depth) layers. It is evident that there are uncertainties involved in (h) and 

K(h) estimates, because the soil moisture estimates reflect uncertainties associated with 

various conditions (e.g. vegetation covers, soil hydraulic properties or meteorological 

data, as well as functional errors of the hydrological model itself for estimating the soil 

moisture). The correlation (R
2
) and MAE values of the simulated and observed 

(hypothetical) soil moisture estimates in the numerical experiments range from 0.990 to 

0.996 and 0.001 to 0.013, respectively.   
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Table 2.4: Correlations (R
2
) and mean absolute error (MAE) of soil moisture dynamics at 0-5 cm, 10-15 cm, and 

60-70 cm depths in the layered soil column using the θ(h) and K(h) functions derived by the layer-specific soil moisture 

assimilation scheme at the ARS 134 site for Case 1 (CB 1 to 6: free drainage with grass) 

Depth 
CB1 CB2 CB3 CB4 CB5 CB6 

R2 MAE R2 MAE R2 MAE R2 MAE R2 MAE R2 MAE 

1 s t  ( 0 - 5  c m ) 0.989 0.007 0.974 0.016 0.998 0.006 0.999 0.004 0.996 0.013 0.998 0.013 

2 n d  ( 1 0 - 1 5  c m ) 0.992 0.007 0.978 0.020 0.998 0.004 0.998 0.004 0.990 0.004 0.995 0.006 

3 r d  ( 6 0 - 7 0  c m ) 0.980 0.006 0.997 0.012 0.990 0.009 0.997 0.001 0.996 0.001 0.994 0.005 
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Figure 2.5: (a) Daily precipitation (mm) and water stress (Tact/Tpot) and (b-d) root 

zone soil moisture dynamics (cm
3
 cm

-3
) at 0-5 cm, 10-15 cm, and 60-70 cm depths in 

the layered soil column using the θ(h) and K(h) functions derived by the layer-

specific soil moisture assimilation scheme at the ARS 134 site (Case 1- CB 5: free 

drainage with grass) 
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Various land covers (e.g., bare soil, grass, and wheat) were applied to CB 5 as 

shown in Table 2.5. The soil hydraulic parameters with the bare soil cover were better 

identified with the target values than those with grass and wheat, although the estimates 

in the 2
nd

 and 3
rd

 layers have uncertainties, especially for Ksat. In the cases of grass and 

wheat, the parameter uncertainties in the 1
st
 and 3

rd
 layers were considerably higher than 

those in the 2
nd 

layer. This is more evident when compared with the results of bare soil, 

which indicates that complexities incurred by plant root activities to soil moisture 

dynamics in the root zone. The parameters in the 3
rd

 layer have more uncertainties than 

those in the 1
st
 and 2

nd
 layers with all vegetation covers as shown in Table 2.5. There are 

no apparent differences between grass and wheat vegetations, although the Ksat values in 

the 2
nd

 and 3
rd

 layers with grass are better identified than those with wheat. 

 

Table 2.5: Solutions of the layer-specific soil moisture assimilation scheme of CB 5 

with bare soil, grass, and wheat vegetations (1
st
: clay loam, 2

st
: sandy loam, 3

rd
: silt 

loam) for Case 1 – layered soil column 
Soil 

Layers 
Parameter 

Target 

Values* 

Bare soil Grass Wheat 

Mean PCI Mean PCI Mean PCI 

1st 

 0.030 0.031 0.028-0.033 0.028 0.020-0.036 0.031 0.029-0.032 

n 1.370 1.393 1.292-1.493 1.492 1.269-1.715 1.423 1.332-1.514 

res 0.129 0.132 0.088-0.177 0.141 0.106-0.176 0.141 0.114-0.169 

sat 0.470 0.474 0.457-0.490 0.515 0.463-0.566 0.480 0.465-0.495 

Ksat 1.840 2.397 0.765-4.029 2.817 -0.140-5.775 2.004 1.808-2.200 

         

2nd 

 0.021 0.027 0.018-0.035 0.023 0.019-0.028 0.022 0.021-0.024 

n 1.610 1.577 1.562-1.592 1.605 1.596-1.614 1.597 1.577-1.617 

res 0.067 0.062 0.060-0.064 0.065 0.061-0.068 0.065 0.061-0.069 

sat 0.370 0.376 0.371-0.381 0.375 0.365-0.384 0.373 0.364-0.381 

Ksat 41.600 52.466 43.918-61.015 39.984 23.391-56.578 31.019 17.579-44.459 

         

3rd 

 0.012 0.010 0.005-0.014 0.014 0.005-0.024 0.014 0.010-0.017 

n 1.390 1.384 1.218-1.550 1.530 1.368-1.692 1.446 1.320-1.572 

res 0.061 0.063 0.059-0.066 0.117 0.050-0.184 0.119 0.021-0.217 

sat 0.430 0.404 0.380-0.429 0.441 0.432-0.450 0.429 0.421-0.437 

Ksat 30.500 16.446 8.964-23.927 27.237 0.280-54.193 26.960 24.898-29.021 
*
UNSODA database [Leij et al., 1999] 
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2.4.2 Case 2: Layered Soil Column under Varying Ground Water Table 

Conditions  

This analysis is done only for the CB 5 soil-layering scenario. Table 2.6 shows 

the summary of results of the layered soil column with the ground water table depths of -

200, -150, and -100 cm from the soil surface. We can see a visible trend which indicates 

that the soil hydraulic parameters in the 1
st
, 2

nd
, and 3

rd
 layers with the presence of 

deeper ground water (GW) table depth of -200 cm are identified better than the estimates 

for the scenarios with shallow GW tables at -150 and -100 cm. The , n, and res values 

for GW -200 cm in the 1
st
 layer correspond well with the target values, while only the α 

values for GW -150 and -100 cm have a good matching with the target values. For the 

2
nd

 layer, the solutions of the hydraulic parameters (, n, res, and sat) for all the ground 

water table depths of -200, -150, and -100 cm are better matched compared to the results 

of the 1
st
 layer indicating that it may be affected by the root activities more than other 

layers as shown in Table 2.5. Overall, the parameter estimations at the GW -200 cm are 

matched better with the target values than those at the GW -150 and -100 cm. Especially, 

as the ground water table is lowered, the n, sat, and Ksat values at the GW -150 cm in the 

1
st
 layer were identified better than those for the GW -100 cm indicating that the 

parameter estimations at the upper layers are influenced by the upward flows from 

shallow ground water table [see Ines and Mohanty, 2008a].   

In the 3
rd

 layer, close to ground water boundary, only  and Ksat values are 

identifiable with the target values. The errors of estimation in the 3
rd

 layer are 

considerably worse than those in the 1
st
 and 2

nd
 layers. The inverse solutions for Case 2 



 

33 

 

(in the presence of ground water tables) have more uncertainties than for Case 1 (well 

drained). In general, the uncertainty range (  95PCI) of soil hydraulic parameters with 

GW at -200 cm is smaller than those for GW at -150 and -100 cm. It confirms that soil 

hydraulic estimates in the layered soil column are governed not only by soil layering but 

also by the bottom boundary conditions, especially in the presence of shallow ground 

water table. 

 

Table 2.6: Solutions of the layer-specific soil moisture assimilation scheme of CB 5 

(1
st
: clay loam, 2

st
: sandy loam, 3

st
: silt loam) for Case 2 – layered soil column with 

ground water tables (-200, -150, and -100 cm) 

Soil 

Layers 
Parameter 

Target 

Values* 

GW -200 cm GW -150 cm GW -100 cm 

Mean PCI Mean PCI Mean PCI 

1st 

 0.030 0.032 0.029-0.034 0.031 0.027-0.034 0.032 0.030-0.033 

n 1.370 1.372 1.235-1.508 1.389 1.237-1.542 1.459 1.189-1.728 

res 0.129 0.127 0.098-0.156 0.136 0.089-0.184 0.136 0.076-0.196 

sat 0.470 0.502 0.444-0.560 0.481 0.465-0.497 0.498 0.415-0.582 

Ksat 1.840 5.815 -1.383-13.013 2.390 1.448-3.333 3.637 0.107-7.166 

         

2nd 

 0.021 0.020 0.019-0.021 0.020 0.016-0.023 0.022 0.016-0.029 

n 1.610 1.587 1.563-1.611 1.600 1.577-1.622 1.600 1.588-1.612 

res 0.067 0.063 0.057-0.070 0.065 0.058-0.072 0.097 0.042-0.152 

sat 0.370 0.375 0.365-0.385 0.374 0.362-0.385 0.371 0.367-0.375 

Ksat 41.600 30.290 24.131-36.449 27.303 25.044-29.562 34.917 -1.796-71.629 

         

3rd 

 0.012 0.013 0.006-0.019 0.009 0.003-0.016 0.008 0.003-0.013 

n 1.390 1.497 1.366-1.628 1.434 1.109-1.760 1.515 1.419-1.610 

res 0.061 0.141 0.104-0.178 0.122 0.069-0.175 0.125 0.052-0.198 

sat 0.430 0.423 0.356-0.490 0.411 0.361-0.462 0.422 0.405-0.440 

Ksat 30.500 31.778 14.576-48.980 20.487 10.982-29.992 51.981 37.939-66.023 

*
UNSODA database [Leij et al., 1999] 
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2.4.3 Case 3: Field Validation Experiment 

Figures 2.6 and 2.7 show the daily rainfall and simulated/observed soil moisture 

in the 1
st
 (LW 02: 0-30 cm and LW 07: 0-20 cm), 2

nd
 (LW 02: 30-60 cm and LW 07: 20-

40 cm), and 3
rd

 (LW 02: 60-90 cm and LW 07: 40-60 cm) layers at the field sites during 

the simulation period based on the inverse modeling. In general, (h) at the LW 02 and 

07 sites derived by the layer-specific soil moisture assimilation scheme matched well 

with the observations, although uncertainties exist in the estimated (h) functions for the 

1
st
, 2

nd
, and 3

rd
 layers. When we compared the Ksat values of UNSODA database and 

laboratory-based experiments in Table 2.1 and 2.3, the laboratory-based Ksat values were 

extremely higher than those of UNSODA database due to measurement errors. Thus, we 

excluded the K(h) functions for further analysis due to its non-sensitivity. The simulated 

soil moisture (1
st
: R

2
=0.998 and MAE=0.011, 2

nd
: R

2
=0.997 and MAE=0.001, 3

rd
: 

R
2
=0.992 and MAE=0.002 for LW 02, and 1

st
: R

2
=0.991 and MAE=0.005, 2

nd
: 

R
2
=0.992 and MAE=0.003, 3

rd
: R

2
=0.993 and MAE=0.003 for LW 07) estimates in the 

layered soil column identified well with the estimates derived by the soil hydraulic 

parameters taken near the LW 02 and 07 sites. The soil moisture estimates in the 1
st
 layer 

at the field sites have more uncertainties than those in 2
nd

 and 3
rd

 layers. These results 

are in agreement with the results of CB5 in Case 1, which indicate that the estimated soil 

moisture with the grass cover in the 2
nd

 and 3
rd

 layers are closer to the target values than 

those in the 1
st
 layer, as shown in Figure 2.5. The derived soil hydraulic properties 

compared well with UNSODA, based on dominant textural class.  
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Figure 2.8 shows the measured (TDR-based) and simulated soil moisture 

dynamics in the soil layers at the LW 11 site. Overall, the simulated results (R
2
: 0.891, 

MAE: 0.018 for the 1
st
 layer; R

2
: 0.967, MAE: 0.006 for the 2

nd
 layer; R

2
: 0.894, MAE: 

0.034 for the 3
rd

 layer) for the calibration period matched well with the measurements. 

The result (R
2
: 0.965, MAE: 0.051 for the 1

st
 layer; R

2
: 0.891, MAE: 0.035 for the 2

nd
 

layer; R
2
: 0.949, MAE: 0.037 for the 3

rd
 layer) for the validation period also shows the 

good matching in the soil layers at the field site. The derived soil hydraulic parameters 

by inverse modeling in the 1
st
 layer (0-20cm) compared well with the independently 

measured soil hydraulic parameters from laboratory. Table 2.7 presents the uncertainty 

analysis of estimated soil moisture dynamics for the soil layers using various objective 

functions (additive absolute value, multiplicative absolute value, and additive square 

delta forms) with three different methods (MAE, MBE, and RMSE) at the LW 11 site. It 

is clear that the additive absolute value form of the objective function used in this study 

produced better results than by the multiplicative and square delta forms for the 

calibration and validation. Also, The MAE and RMSE performed similarly during the 

calibration and validation whereas the MBE was less sensitive than others. 

Although this method has a limitation (available measurements in the soil 

layers), it gives us insights of the implication/impact of soil heterogeneity and layering 

in quantifying soil hydraulic parameters in the layered soil column. With more in-situ 

soil moisture networks in place globally (e.g., Oklahoma Mesonet, Soil Climate Analysis 

Network: SCAN, USDA-Agricultural Research Service: USDA-ARS network, National 

Ecological Observatory Network: NEON, International Soil Moisture Network: ISMN, 
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etc.) and data available in the recent years at multiple soil depths from benchmark 

experiments, this layer-specific assimilation method can prove to be quite useful for 

predicting the soil moisture dynamics in the soil layers. 

 

 

Figure 2.6: (a) Daily precipitation (mm), (b-d) observed/simulated root zone soil 

moisture dynamics, and (e-g) (h) functions of target, derived solutions, and 

UNSODA database (dominated by loam soil) at the 1
st
 (0-30 cm), 2

nd
 (30-60 cm), 

and 3
rd

 (60-90 cm) in the LW 02 site (ARS 136) using the layer-specific soil 

moisture assimilation scheme 
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Figure 2.7: (a) Daily precipitation (mm), (b-d) observed/simulated root zone soil 

moisture dynamics, and (e-g) (h) functions of target, derived solutions, and 

UNSODA database (dominated by sandy loam soil) at the 1
st
 (0-30 cm), 2

nd
 (30-60 

cm), and 3
rd

 (60-90 cm) in the LW 07 site (ARS 151) using the layer-specific soil 

moisture assimilation scheme 
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Figure 2.8: (a-c) Observed (in-situ) and simulated root zone soil moisture dynamics 

and (d-f) (h) functions of target (1
st
 layer was only measured), derived solutions, 

and UNSODA database (dominated by sandy loam soil) at the 1
st
 (0-20 cm), 2

nd
 (20-

40 cm), and 3
rd

 (40-60 cm) in the LW 11 site (ARS 136) using the layer-specific soil 

moisture assimilation scheme during the calibration (DOY 169-181) and validation 

(DOY 182-197) periods 
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Table 2.7: Uncertainty analysis using various objective functions (additive absolute value, multiplicative absolute value, 

and additive square delta forms) with three different methods (Mean Absolute Error-MAE, Mean Bias Error-MBE, 

and Root Mean Square Error-RMSE) based on the layer-specific soil moisture assimilation scheme during the 

calibration (DOY 169-181) and validation (DOY 182-197) periods 

 

 
Soil Layers 

Additive Absolute form Multiplicative form Additive Square delta form 

R
2
 MAE MBE RMSE R

2
 MAE MBE RMSE R

2
 MAE MBE RMSE 

Calibration 

1
st*

 0.891 0.018 0.004 0.006 0.972 0.017 -0.017 0.007 0.979 0.027 -0.027 0.010 

2
nd**

 0.967 0.006 0.004 0.002 0.971 0.058 -0.058 0.019 0.963 0.013 0.008 0.005 

3
rd***

 0.894 0.034 0.034 0.011 0.886 0.067 -0.067 0.022 0.891 0.021 0.021 0.007 

              

Validation 

 

1
st*

 0.965 0.051 -0.051 0.026 0.994 0.073 -0.073 0.032 0.996 0.079 -0.079 0.034 

2
nd**

 0.891 0.035 -0.035 0.013 0.023 0.094 -0.094 0.028 0.009 0.047 -0.046 0.016 

3
rd***

 0.949 0.037 -0.029 0.016 0.940 0.133 -0.133 0.040 0.943 0.044 -0.041 0.018 
*
0-20 cm 

**20-40 cm 
***

40-60 cm
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2.5 Conclusions 

In this study, a layer-specific soil moisture assimilation procedure based on 

simulation-optimization (SWAP-GA) scheme was developed to quantify effective soil 

hydraulic parameters in the layered soil profile. Various numerical experiments with the 

conditions of free drainage, presence of ground water tables at several different depths, 

different vegetation covers, and field experiments were conducted. The impacts of soil 

layers, heterogeneity of different soil textures, and different land covers in a vertically 

layered soil column were evaluated in Case 1 using the layer-specific soil moisture 

assimilation scheme. Case 2 was conducted to evaluate the impacts of various ground 

water table depths with a grass cover. The field experiments of Case 3 were conducted 

for assessing the applicability of this approach at the field-scales (LW 02, 07, and 11 

sites). 

The results of Case 1 show that the soil layers and order/sequence of vertical 

heterogeneity of soil textures affect the uncertainties of parameter estimations due to 

complex signature of soil water in the layered soil profile. Also, the estimated 

parameters in the 1
st
 and 3

rd
 layers with the grass and wheat covers have relatively more 

errors than that of the bare soil. It may indicate that the hydrological model has the own 

weakness for simulating plant root activities in the root zone. In Case 2, we found that as 

the ground water table becomes deeper, the estimates of soil hydraulic parameters 

improved as well as the results with the free drainage condition. These results suggest 

that the bottom boundary condition has a large influence on the hypothesis of layer-

specific data assimilation studies. In the field experiments of Case 3, the soil moisture 
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dynamics and (h) functions were only estimated at the LW 02 and 07 sites using the 

layer-specific soil moisture assimilation scheme, because of the limited observations. 

The simulated near-surface and sub-surface soil moisture estimates at the field sites 

identified well with the field observations (derived by the soil hydraulic parameters 

obtained from the soil core samples collected at the field sites), even though the soil 

moisture estimates near the land surface have slightly higher uncertainties than those in 

the deeper soil layers. The simulated soil moisture dynamics in the soil layers were also 

matched well with the in-situ measurements for the LW 11 site. It suggests that the 

layer-specific assimilation scheme based on inverse modeling could be used to model 

soil moisture dynamics in the layered soil profile even with the limited soil moisture 

measurements in the real world conditions. We envisaged that the new soil moisture 

assimilation procedure would be useful for vadose zone and land surface modeling in 

well-instrumented hydrologic system. In future, with the advent of advanced soil 

moisture remote sensing capabilities with deeper penetrating depths, this layer-specific 

assimilation platform can be useful for estimating large-scale effective soil hydraulic 

properties under heterogeneous/layered soil condition, as the near-surface assimilation 

proved to be useful in homogeneous soil conditions in the past studies (Ines and 

Mohanty, 2008a,b, 2009).   
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CHAPTER III 

QUANTIFYING EFFECTIVE SOIL HYDRAULIC PROPERTIES USING 

PIXEL-BASED SOIL MOISTURE AND EVAPOTRANSPIRATION PRODUCTS 

AT MULTIPLE SCALES 

3.1 Synopsis 

With the development of many earth-observing remote sensing platforms, pixel-

based products are becoming critical inputs in many hydrological and meteorological 

models. Remotely sensed soil moisture (SM) and ground-based evapotranspiration (ET) 

have been used in the past to estimate pixel-scale soil hydraulic parameters [Ines and 

Mohanty, 2008a,b]. However, effect of disparate spatial support scales for SM and ET 

estimation were not accounted in those efforts. In this study, we developed a new inverse 

modeling algorithm by combining soil moisture based Noisy Monte Carlo Genetic 

Algorithm (NMCGA) [Ines and Mohanty 2009] and Surface Energy Balance Algorithm 

for Land (SEBAL) [Daroonwan et al., 2008] based ET products (using remote sensing 

data) for quantifying pixel-scale effective soil hydraulic properties. This coupled 

NMCGA and SEBAL algorithm was evaluated for estimating the effective soil hydraulic 

parameters of the root zone (0-200 cm) under synthetic scenarios (e.g., different soil 

textures, weather conditions, vegetation covers, and ground water table depths) and the 

results were tested using field validation experiments from point- to satellite-scale. For 

comparison purposes, inverse modeling results were analyzed under three scenarios; 1) 

evapotranspiration (ET) only in the optimization algorithm, 2) soil moisture (SM) only 

in the optimization algorithm, and 3) soil moisture and evapotranspiration (SM+ET) 



 

43 

 

jointly in the optimization criteria. When we considered both SM and ET components 

jointly in the optimization algorithm, it improved the estimations of effective soil 

hydraulic properties and soil moisture fluxes and reduced their uncertainties better than 

those of using SM-only (NMCGA) or ET-only (SEBAL). Similar results were shown in 

the presence of ground water table depth (-100 cm from the soil surface) indicating that 

the ET component plays a key role in the soil profile dominated by upward flow from 

ground water. For the field validation experiments, the SM and ET estimates derived by 

the optimized parameters under the (SM+ET) joint criterion matched the observations at 

various spatial scales better than those of the SM-only criterion. Also, the estimated SM 

and ET at the airborne sensing-scale provide more reasonable statistics in both the 

spatial and temporal scales than those of the point- and satellite-scales. These results 

demonstrate the robustness of our approach providing estimates of effective soil 

hydraulic properties using pixel-based SM and ET products at multiple scales. 

3.2 Introduction 

Soil hydraulic properties at the land surface and in the unsaturated zone are key 

variables for many hydro-climatic processes [Hansen et al., 1999; Mohanty et al., 2002; 

Mohanty and Zhu, 2007], because they are necessary to characterize effective hydraulic 

behavior of the soil system [Wood, 1994; Vrugt et al., 2003; Jana and Mohanty, 

2012a,b,c]. In general, laboratory methods are used to determine the soil hydraulic 

functions by direct measurement using soil core samples extracted from field. The major 

concern of this traditional method is the question of whether the soil parameters derived 

by a cm-scale soil core sample with pre-defined boundary conditions can represent field- 
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and regional-scale features [Kool and Parker, 1988; Van Dam, 2000, Das et al., 2008a, 

2011]. With increasing availability of remote sensing (RS) platforms characterized by 

large spatial and temporal coverage, an inverse modeling is better suited for estimating 

spatially distributed effective soil hydraulic properties [Yeh, 1989; Ines and Mohanty, 

2008a,b, 2009] and provides an attractive alternative to direct measurement.  

From the hydrologic process point of view, soil moisture (SM) dynamics and 

evapotranspiration (ET) dynamics play significant and complementary roles for water 

balance in the vadose zone [Xevi et al., 1996]. As both the SM and ET estimates are 

spatially distributed, using remote sensing data (instead of point measurements) in the 

inverse estimation provide a more uniform representation of effective soil hydraulic 

properties for a regional extent. In this context remotely sensed soil moisture products 

have been used by Ines and Mohanty [2008a,b]. However, to our knowledge, no remote 

sensing based ET product has been used to date for inverse estimation of effective soil 

hydraulic properties at the field-/footprint-scale. Over the past decade, several pixel-

based RS schemes (SEBAL [Bastiaanssen et al., 1998, 2005], METRIC [Allen et al., 

2007], simplified-SEBI [Roerink et al., 2000], and SHEBA [Su, 2002]) have been 

developed for estimating spatially distributed ET.  

Estimation of soil hydraulic parameters using different hydrological models for 

the inversion could be quite complex indicating that a unique optimum soil hydraulic 

parameter set is impractical. Alternatively, Aronica et al., [2002] suggested Generalized 

Likelihood Uncertainty Estimation (GLUE) [Beven and Binley, 1992; Beven and Freer, 

2001] using Monte Carlo simulation techniques [Kuczera and Parent, 1998; Bates and 
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Campbell, 2001] to improve the search algorithm in a Bayesian framework, which 

provide dependable simulations for a range of model inputs. From the effective 

parameter estimation perspective, a number of methods have been developed such as 

Genetic Algorithm (GA) [Wang, 1991; Ines and Droogers, 2002; Ines and Mohanty, 

2008a,b, 2009], Shuffled Complex Evolution-University of Arizona (SCE-UA) [Duan et 

al., 1992], and Artificial Neural Networks (ANNs) [Pachepsky et al, 1996; Schaap and 

Bouten, 1996; Schaap and Leij, 1998; Schaap, et al., 1998; Jana et al.,2007]. Ines and 

Mohanty [2008a,b, 2009] developed the near-surface soil moisture assimilation scheme 

and Noisy Monte Carlo Genetic Algorithm (NMCGA) based on the inverse modeling for 

quantifying the effective soil hydraulic properties using the remote sensing (RS) soil 

moisture (SM) products. In their study, effective soil hydraulic properties and their 

uncertainties were estimated simultaneously using the near-surface soil moisture derived 

from a RS footprint. Both point-scale SM and ET values were also considered for the 

parameter estimations under the synthetic condition [Ines and Mohanty, 2008a]. But 

there was no consideration of remotely sensed ET products while searching for the 

effective soil hydraulic parameters with the pixel-based SM. The land surface 

heterogeneity composed of various soil textures and vegetation covers indicate that 

point-scale ET may influence uncertainties in extracting soil hydraulic parameters from 

RS soil moisture products.  

In this study, our primary goal is to develop an improved inverse modeling 

algorithm for pixel-based effective soil hydraulic property estimation at multiple scales 

using remotely sensed SM and ET products. Main objectives are three-fold: 1) to 
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develop the coupled data assimilation algorithm based on NMCGA and SEBAL, which 

integrates pixel-based SM and ET components in order to quantify the pixel-scale 

effective soil hydraulic properties, 2) to analyze the impact of SM-only, ET-only, and 

SM+ET-jointly in the optimization criteria for the soil hydraulic parameter estimations 

under various wetness range, and 3) to evaluate the robustness of this approach at 

different spatial scales ranging from point, airborne sensing, to satellite.   

3.3 Materials and Methods 

3.3.1 Coupled Data Assimilation Algorithm 

Figure 3.1 shows the framework of coupled NMCGA and SEBAL based near-

surface SM and ET assimilation scheme. We can define this approach as the coupled 

NMCGA and SEBAL algorithm to determine the effective soil water content ((h)) and 

hydraulic conductivity (K(h)) functions in the soil profile using the remotely sensed 

near-surface (0-1 or 0-5 cm) SM and ET estimates based on a simulation-optimization 

approach. The data assimilation scheme repeatedly runs the hydrologic model until the 

derived solutions (soil hydraulic properties) have converged [Abbaspour et al., 1997; 

Kool and Parker, 1988; Ines and Droogers, 2002].   
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Figure 3.1: Framework of the coupled NMCGA and SEBAL algorithm used in this 

study 

 

 

3.3.2 Hydrological Model 

The Soil Water Atmosphere Plant (SWAP) model is a one-dimensional (1-D) 

physically-based model for simulating water flow across soil, water, atmosphere, and 

plant system [Kroes et al., 1999; van Dam et al., 1997]. In the SWAP model, water flow 

is modeled using Richards’ equation (Eq. (3.1)). The soil hydraulic functions in the soil 

column can be described by analytical expressions of van Genuchten [1980] and 

Mualem [1976] using the relationship between the soil water content (, pressure head 

(h), and unsaturated hydraulic conductivity (K). 
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where  is the volumetric water content (cm
3
 cm

-3
), K is the hydraulic conductivity (cm 

d
-1

), h is the soil water pressure head (-cm), z is the vertical soil depth (cm) taken 

positively upward, t is the time (d), C is the differential soil water capacity (cm
-1

), and 

S(h) is the actual soil water extraction rate by plants (cm
3
 cm

-3
 d

-1
) defined as Eq. (3.2).  
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where Tpot is the potential transpiration (cm d
-1

), Zr is the rooting depth (cm), and w is a 

reduction factor as function of h and accounts for water deficit and oxygen stress 

[Feddes et al., 1978]. The Richards’ equation (3.1) using the finite difference scheme as 

described by Belmans et al. [1983] allows the use of soil hydraulic databases and all 

kinds of management scenarios.  
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where Se is the relative saturation (-), θres is the residual water content (cm
3
 cm

-3
) in the 

dry range, and θsat is the saturated water content (cm
3
 cm

-3
), α, n, m, and  are shape 

parameters, Ksat is the saturated hydraulic conductivity (cm d
-1

), and m=1  
n

1
, 

respectively.  

Various conditions for the top (atmospheric) and bottom boundary conditions 

(free drainage condition and ground water table depths) can be simulated by the SWAP 
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model [van Dam et al., 1997]. The SWAP model contains simple and detailed 

(WOFOST) crop growth routines. A simple model simulates the impacts of climate, soil 

textures, plant types, and water managements. In this study, the simple crop model 

combined with the water management modules (e.g., irrigation and drainage) [van Dam 

et al., 1997, van Dam, 2000] is used. Using the Penman-Monteith equation, the SWAP 

model calculates not only the potential and actual soil evaporation (Epot and Eact), but 

also plant transpiration (Tpot and Tact) partitioned by the leaf area index (LAI) or soil 

cover fraction (SC) of the land unit. This model performs well under various climatic 

and environmental conditions [Wesseling and Kroes, 1998; Sarwar et al., 2000; 

Droogers et al., 2000; Singh et al., 2006a,b]. 

3.3.3 SEBAL Model 

Evapotranspiration (ET) across the land-atmosphere boundary is generated by the 

water loss from open water, soil, and plant surface. ET is governed by the energy and 

heat exchanges at the land surface as illustrated in Figure 3.2. The computation of ET by 

the Surface Energy Balance Algorithm for Land (SEBAL) model includes three steps: 1) 

preliminary processing of remote sensing data (producing normalized difference 

vegetation index, NDVI, albedo, and temperature images), 2) selection of hot and cold 

pixel (hot pixel assumes all the energy used to heat the surface and cold pixel assumes 

all the energy used to evaporate water), and 3) estimation of pixel-based ET 

[Daroonwan et al., 2008]. The key input datasets for the SEBAL model consist of 

spectral radiances in the visible, near-infrared, and thermal infrared wavelengths (e.g., 

Moderate Resolution Imaging Spectroradiometer (MODIS) surface reflectance products, 
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solar zenith angle, quality control band, land surface temperature, and band emissivities 

31 and 32), weather data (wind speed), and regional information (e.g., height of 

vegetation, altitude of target area, specific locations of hot and cold pixels), and day of 

year (DOY). ET is related to the surface-energy balance (Eq. (3.5)) which is defined as  

Rn = G0 + H + LE           (3.5) 

where Rn (W·m
−2

) is the net radiation absorbed at the land surface, G0 (W·m
−2

) is the soil 

heat flux, H (W·m
−2

) is the sensible heat flux, and LE (W·m
−2

) is the latent heat flux 

associated with ET. 

 

 
Figure 3.2: Schematic diagram of the surface energy balance for computing 

evapotranspiration (ET) 

 

 

3.3.4 Genetic Algorithm Implementation 

Genetic Algorithms (GAs) developed by Holland and his colleagues are based on 

the theory of “survival of the fittest” by Darwin [Holland, 1975; Goldberg, 1989]. GAs 
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are useful for searching optimal solutions from unknown variable spaces. Basically, GAs 

create the chromosome which contains the variable information using a “string” 

structure of binary digits (i.e. 0 and 1). These binary strings recursively compete to 

survive in the mating pool to produce the next generation through GA operations of 

selection, crossover, and mutation.   

1) Selection: In the selection process, the strongest chromosome competes against 

others and survives to be selected. Then the rest of them die (discard).  

2) Crossover: The surviving binary chromosomes then exchange their genetic 

information through mating during crossover to produce their offspring.  

3) Mutation: The freshly selected chromosomes are mutated to generate new 

genetic materials for the next generation. Finally, the mutated chromosomes are 

restored instead of the certain genetic characteristics lost by degeneration.  

 Usually, GAs have numerous uncertainties (‘noise’) for solving real-world 

problems. Noisy genetic algorithms (NGAs) operated in a noisy environment are 

suggested for fitness evaluation of the chromosome variables subjected to a stochastic 

field [Miller and Goldberg, 1996; Wu et al., 2006]. Ines and Mohanty (2008b) integrated 

a NGA with a re-sampling (ensemble: e) algorithm for the Monte Carlo (MC) simulation 

[Efron, 1982; Miller and Goldberg, 1996; Miller, 1997; Ines and Mohanty, 2008b], 

called the noisy Monte Carlo genetic algorithm (NMCGA), to determine the fittest 

chromosomes (effective soil hydraulic parameter sets: P = {, n, res, sat, Ksat}). The 

input parameter sets for the hydrological model can be shown as k = {P, }. The shape 

parameter of lamda (=0.5) is fixed in modeling. We transferred the parameter set (P) as 



 

52 

 

parameter set (P*={

, n


, res


, sat


, Ksat


}) to consider the uncertainties (e.g., 

representing heterogeneities of land surface in a RS product) of individual soil 

parameters in modeling. Thus, the set (k={P*, }) is used in this approach. In the 

NMCGA, GA estimates the combinations of parameter statistics (P
*
) in Eq. (3.6). Then, 

the MC algorithm derives realizations (r) of parameter combinations based on statistics. 

The noisy fitness of parameter combinations for all the realizations derived by the MC 

simulation in one resampling event is estimated along the given generations. 

In this study, we integrated the SEBAL model with the NMCGA for the 

parameter estimations. The coupled NMCGA and SEBAL algorithm quantifies the 

effective hydraulic parameters by minimizing the difference between the observed 

(pixel-based) and simulated estimates of both soil moisture and ET time series (t). The 

representations of parameter statistics (Eq. (3.6)) are shown in Table 3.1. The objective 

functions (OFSM and OFET) for the SM and ET components are shown in Eq. (3.7) and 

(3.8) below.  

P
*
={


n


nres


ressat


satKsat


Ksat}    (3.6) 

OFSM(k)e=Min )|ObsSM))SimSM(k(
N

1
|

T

1
(

T

1t

N

1r

tet,r

resample

resample

 
 

 e      (3.7) 

OFET(k)e=Min )|ObsET))SimET(k(
N

1
|

T

1
(

T

1t

N

1r

tet,r

resample

resample

 
 

 e      (3.8)  
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Table 3.1: Representation of the effecitve soil hydraulic properties for the coupled 

NMCGA
a
 and SEBAL algorithm 

Parameters (P*) 
Initial 

Chromosomes 

Case1 to 3 Number of 

Bits (L) 
2L 

Minimum values Maximum values 

() (cm-1) 00101 0.006 0.033 5 32 

() (cm-1) 00101 0.000 0.033 5 32 

 (n) (-) 110010 1.200 1.610 6 64 

(n) (-) 110010 0.000 1.000 6 64 

(res) (cm3 cm-3) 0001111 0.000 0.800 7 128 

(res) ( cm3 cm-3) 0001111 0.000 0.020 7 128 

 (sat) ( cm3 cm-3) 00001 0.370 0.550 5 32 

(sat) ( cm3 cm-3) 00001 0.000 0.200 5 32 

 (Ksat) (cm d-1) 0101000101 1.840 55.700 10 1024 

(Ksat) ( cm d-1) 0101000101 0.000 10.000 10 1024 
a
Global search space = 32 32 64 64 128 128 32 32 1024 1024 = 7.3787E+19 

 

 

Note that P
*
 is the statistics ( means, ( ): standard deviations) of effective soil 

hydraulic parameters, kr is the combinations of effective soil hydraulic parameters (k) 

with realizations (r) generated by the MC resampling, where e is the resampling numbers 

or ensemble, Nresample is the number of realizations (r) derived from each resampling 

event, SimSM(kr) is the simulated soil moisture with Nresample(r), SimET(kr) is the 

simulated ET with Nresample(r), ObsSM is the observed (pixel-based) soil moisture, and 

ObsET is the observed (pixel-based) ET, t is the time index, respectively. All variables 

(SM-cm
3
 cm

-3
 and ET-mm d

-1
) were normalized for the objective functions. The 

optimization is constrained as  

Constrained SM(k)t,e= t,
ObsSM))(SimSM(kPCI

ObsSM))(SimSM(kPCI

tet,rSM

tet,rSM









(where t T), e    (3.9) 
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Constrained ET(k)t,e= t,
ObsET))(SimET(kPCI

ObsET))(SimET(kPCI

tet,rET

tet,rET









(where t T), e    (3.10) 

where 





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SMet,r

resample
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resample

N

1r

N

1r
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et,r

resample resample
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

 
 
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

 
 

(where t T), e     (3.12) 

where, Constrained SM(k  is the logical constraint of SM, Constrained ET(k  is the 

logical constraint of ET, ±PCIfactorSM are the ±95 percent (%) confidence intervals of 

SM, and ±PCI factorET are the ±95 percent (%) confidence intervals of ET.     

The MC spectrum of simulated soil moisture and ET estimates is constrained by 

the observed soil moisture and ET with ± PCIfactorSM in Eq. (3.9) and ± PCIfactorET in 

Eq. (3.10). For the fitness evaluation (Z(k)), the modified penalty method suggested by 

Chan-Hilton and Culver [2000] is used with the weighing factor (f): 

Z(k)e = {f (OFSM(k)e) (1+PenaltySM(k)e)+(1-f) (OFET(k)e) (1+PenaltyET(k)e)} 

e




















criterionjoint ETSM

criteriononly ET

criteriononly SM

1,f0

0,f

1,f

        (3.13) 
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fitness (P
*
)e = e

Z(k)

1

e

           (3.14) 

The weighting factor (f) is used to assign different weights to SM and ET in the 

objective function. kr is highly subjected to a stochastic field indicating that the fitness 

(P
*
) is not always similar for each MC re-sampling event. The noisy fitness is minimized 

by estimating the so-called sampling fitness (Sfitness(P
*
)) suggested by Ines and 

Mohanty [2009] by averaging the fitness (P
*
) of each ensemble (e) from the MC re-

sampling.  

Sfitness(P
*
) = 



E

1e

* )fitness(P
E

1
         (3.15) 

where E is the ensemble domain for the MC resampling. PenaltySM(k)e and PenaltyET(k)e 

in the Eq. (3.13) are determined by Constrained SM(k)te of Eq. (3.9) and Constrained 

ET(k)te of Eq. (3.10), 

PenalSM(k)e,j=


T

1t

jt,ξ (ObsSMt-PCISMj(SimSM(kr))t,e)
2

e       (3.16) 

PenalET(k)e,j=


T

1t

jt,ξ (ObsETt-PCIETj(SimET(kr))t,e)
2

e       (3.17) 

where 









ETSM

ETSM

PCI,PCI2,

PCI,PCI1,
j , the penalty coefficient tj,

otherwise0,

FALSE, if10,
ξ jt, 





   (3.18) 

PenaltySM(k)e=


2

1j

SMPenal (k)e,j e          (3.19) 

PenaltyET(k)e=


2

1j

ETPenal (k)e,j e          (3.20) 
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3.3.5 Numerical Experiments 

We conducted this study under the assumption that the effective soil hydraulic 

parameters in the unsaturated zone can be quantified using the pixel-based remotely 

sensed soil moisture (e.g., Polarimetric Scanning Radiometer: PSR, Electronically 

Scanned Thinned Array Radiometer: ESTAR, Advanced Microwave Scanning 

Radiometer - Earth Observing System: AMSR-E, etc.) and ET (e.g., MODIS, Landsat). 

To evaluate the parameter estimation algorithm, two synthetic and field validation 

experiments were conducted: 1) Case 1: homogeneous soil column with free drainage, 2) 

Case 2: homogeneous soil column with a ground water table depth (GW -100 cm from 

the soil surface), and 3) Case 3: field validation experiments under various hydroclimatic 

conditions in Iowa, Illinois, and Texas. For Case 1 and 2, the near-surface soil moisture 

(0-1cm) and ET time series (as target) values were generated by the SWAP model using 

the available soil hydraulic parameters from the UNSODA database [Leij et al., 1999]. 

The numerical experiments have no complexities unlike the RS pixel or in-situ soil 

moisture, which have uncertainties due to various vegetation covers, soil textures, land 

management practices, climatic conditions, etc. Thus, the numerical experiments are 

suitable for evaluating the efficiency of the coupled NMCGA and SEBAL algorithm. In 

Case 3, several field sites at Brown (BRW) in Illinois, Walnut Creek (WC 11 to 14) in 

Iowa, and Lubbock in Texas were selected for validation studies as shown in Fig. 3.3. 

The homogeneous soil columns with free drainage condition representing arid/semi-arid 

regions and ground water table depth of -200, -150, and -100 cm (as shown in Fig. 3.4) 

representing humid and semi-humid regions were used in this study. 
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Figure 3.3: Study area; (a) the Brown (BRW) site in Illinois, (b) the Walnut Creek 

(WC 11-14) sites in Iowa, (c) the Lubbock site in Texas 
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Figure 3.4: Homogeneous soil column for numerical experiments under the free 

drainage and shallow ground water (GW) tables; (a) GW -100 cm, (b) GW -150 cm, 

(c) GW -200 cm, (d) free drainage 

 

 

3.3.5.1 Case 1: Homogeneous Soil Column with Free Drainage 

 We generated the soil moisture and ET using three different soil textures 

including sandy loam, silt loam, and clay loam soils with various climate conditions and 

maize cover. The SWAP model simulations used a standard crop growing season (May 1 

- October 31, 2005) in Lubbock, Texas, under the rain-fed condition. For the Lubbock 

site, weather data are available at Texas ET network (http://texaset.tamu.edu/index.php). 
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For these (Case 1) numerical studies, it is assumed that the bottom boundary of the soil 

column is well drained. To evaluate the impact of ET component for quantifying the 

effective soil hydraulic parameters, three different scenarios were used: 1) the 

evapotranspiration (ET only: f=0) criterion, 2) the soil moisture (SM only: f=1) criterion, 

and 3) the soil moisture + evapotranspiration (SM+ET jointly: 0<f<1) criterion. We 

tested various weighing factors (“f” ranging from 0.1 to 0.9) assigning different weights 

to SM and ET and selected the weighting factor of 0.8, which has a better match (both 

simulated SM and ET) with observations.  

3.3.5.2 Case 2: Homogeneous Soil Column with a Ground Water Table Depth of -

100 cm 

According to the findings of Ines and Mohanty [2008a,b, 2009], the estimation of 

effective soil hydraulic properties was affected by the presence of ground water table. 

The ET component contributing to the water balance in the unsaturated zone was 

examined in estimating the soil parameters for sandy loam, silt loam, and clay loam soils 

with the presence of ground water table at -100 cm.  

3.3.5.3 Case 3: Field Validation Experiments 

Field testing of our proposed inverse modeling based data assimilation algorithm 

was carried out for evaluating the effective soil hydraulic parameter estimation at the 

point-, airborne-, and satellite-scales. The Brown site in Illinois (April 1 – October 31, 

2002), Walnut Creek (WC) field 11 to 14 in Iowa (May 1 – October 31, 2002), and 

Lubbock, Texas (March 1 – July 31, 2002) sites were selected for field validation. 

Vegetation cover of the field sites consisted of corn (WC 11 and WC 12), soybean (WC 
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13 and WC 14), and grass (Brown and Lubbock), respectively. In-situ soil moisture data 

(for 13 days) for the Brown site at the Global Moisture Soil Moisture Data Bank 

(GMSDB: http://climate.envsci.rutgers.edu/soil_moisture/) was measured by the neutron 

probe technique. Airborne PSR (800 m  800 m footprints) soil moisture datasets (for 10 

days) [Bindlish et al., 2006] during the Soil Moisture Experiment 2002 (SMEX02) were 

used for the WC sites (http://nsidc.org/). For the larger scale, we used the AMSR-E (~25 

km X 25 km footprints, [Njoku, 2008]) soil moisture product (soil depth of 0-1 cm) for 7 

days at the Lubbock site.  

The observed ET (4-6 days during the simulation period because of the limited 

available MODIS datasets due to the weather conditions and scanning intervals) for the 

Brown, WC 11-14, and Lubbock sites were estimated by the SEBAL model. Daily 

weather data (e.g., precipitation, wind speed, maximum and minimum temperature, 

relative humidity, and solar radiation) were collected from the Soil Climate Analysis 

Network (SCAN: http://www.wcc.nrcs.usda.gov/scan/) in Iowa and the Illinois Climate 

Network (ICN: http://www.isws.illinois.edu/warm/datatype.asp) in Illinois. For the 

Lubbock site, we used the Tropical Rainfall Measuring Mission (TRMM: 

http://trmm.gsfc.nasa.gov/)-based precipitation which has the same resolution matching 

with the AMSR-E product.  

The limitation of the field validation study is the resolution discrepancy between 

PSR-based soil moisture (800 m X 800 m) and MODIS-based ET (500 m X 500 m) 

products. Also, the initial and bottom boundary conditions were unknown at the field 

sites. Thus, we tested our approach with various combinations of initial and bottom 

http://nsidc.org/
http://www.wcc.nrcs.usda.gov/scan/
http://www.isws.illinois.edu/warm/datatype.asp
http://trmm.gsfc.nasa.gov/
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boundary conditions such as the ground water table depths of -200 cm, -150 cm, and -

100 cm from the soil surface and selected the best conditions (GW -150 cm for the WC 

11 to 14 sites and GW -200 cm for the Brown and Lubbock sites), which have the 

highest fitness for the individual sites. We assumed that the initial conditions (h(z,t=0) = 

-150 cm for WC 11 to 14 sites and h(z,t=0) = -200 cm for Brown and Lubbock sites) 

were in equilibrium with the ground water tables.   

Pearson’s correlation (R
2
) and root mean square error (RMSE) of the observed 

and simulated soil moisture and evapotranspiration (ET uses the same equations in Eq. 

(3.21) and (3.22)) were used to evaluate our numerical and field validation experiments 

of the inverse modeling based data assimilation (using integrated NMCGA and SEBAL) 

algorithm:  

R
2
 =

 



 







n

1t

n

1t

2
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2
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n

1t

obstobs,simtsim,

)θ(θ)θ(θ

)θ)(θθ(θ

        (3.21) 
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n

n

t

tsimtobs



1

2
,, )( 

         (3.22) 

where sim,t is the simulated soil moisture with the time index (t), simθ  is the average soil 

moisture ofsim,t, obs,t is the observed soil moisture with the time index (t), obsθ  is the 

average soil moisture of obs,t, and t is the time index, respectively. 
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3.4 Results and Discussion 

3.4.1 Numerical Case Studies  

3.4.1.1 Case 1: Homogeneous Soil Column with Free Drainage  

Table 3.2 shows the summary of solutions (P
*
: (n)res), (sat)(Ksat)) for 

the numerical experiments derived by the proposed data assimilation algorithm under the 

ET-only, SM-only, and SM+ET-joint criteria with different soil textures and maize crop 

cover for Case 1 scenario. Estimated soil hydraulic parameters are shown in terms of 

their arithmetic means (3 ensembles  30 realizations) and ±95PCI.  

 

Table 3.2: Solutions for sandy loam, silt loam, and clay loam soils under the ET-

only, SM-only, and SM+ET-joint criteria for Case 1 

Soil Types 
Parameter

s 

Targe

t  

values
a 

ET criteria SM criteria SM+ET criteria 

Averag

e 
 95PCI 

Averag

e 
 95PCI 

Averag

e 
 95PCI 

Sandy 

loam 

α 0.021 0.023 0.011-0.036 0.022 0.014-0.030 0.024 0.012-0.036 

n 1.610 1.589 1.566-1.613 1.586 1.549-1.623 1.579 1.530-1.627 

θres 0.067 0.077 0.074-0.080 0.067 0.060-0.074 0.065 0.063-0.068 

θsat 0.370 0.387 0.387-0.387 0.370 0.370-0.370 0.377 0.368-0.387 

Ksat 41.600 53.321 
50.006-

56.637 
50.875 

45.129-

56.620 
47.432 

41.040-

53.824 

         

Silt loam 

α 0.012 0.014 0.004-0.024 0.013 0.002-0.024 0.013 0.007-0.019 

n 1.390 1.457 1.233-1.681 1.498 1.322-1.674 1.429 1.190-1.669 

θres 0.061 0.067 0.059-0.076 0.064 0.060-0.069 0.076 0.060-0.091 

θsat 0.430 0.481 0.396-0.566 0.457 0.355-0.560 0.452 0.417-0.487 

Ksat 30.500 45.970 
39.322-

52.619 34.505 

16.419-

52.591 33.567 

26.510-

40.624 

     
  

  

Clay loam 

α 0.030 0.028 0.021-0.035 0.030 0.030-0.030 0.032 0.032-0.032 

n 1.370 1.409 1.159-1.659 1.304 1.304-1.304 1.413 1.183-1.643 

θres 0.129 0.119 0.109-0.129 0.125 0.097-0.153 0.135 0.109-0.160 

θsat 0.470 0.473 0.370-0.576 0.452 0.354-0.549 0.494 0.413-0.575 

Ksat 1.840 4.854 0.883-8.824 2.380 1.493-3.267 4.168 0.968-7.368 

Max generation: 30, Number of chromosomes in a generation: 10, Number of ensembles: 3, Number of 

resample: 30, 
a
UNSODA database [Leij et al., 1999] 
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In general, the shape () parameter under most conditions (described by the three 

criteria) for sandy loam soil closely identified with the target value, while the estimated 

(n) parameters are more variable. The scaling (res and sat) parameters under the SM-

only and SM+ET-joint criteria are better than those of the ET-only criterion suggesting 

that they have more uncertainties in the later case. The Ksat values under all the criteria 

are considerably overestimated compared to the target values. But it is apparent that the 

Ksat value estimated under the SM+ET-joint criterion is better than those of the ET-only 

and SM-only criteria. Figure 3.5 shows the (h) and K(h) functions derived by the 

estimated soil hydraulic parameters (Table 3.2) for sandy loam soil. The (h) functions 

under all the criteria appeared to be identifiable with the observations, but the K(h) 

functions have more (mean) bias errors. Uncertainties of the K(h) values under the ET-

only and SM-only criteria are considerably higher compared to the target values. The 

SM+ET-joint criterion also has variations in the K(h) function. However, the estimated 

values are closer to the true observations compared to those of the SM-only and ET-only 

criteria as the target value is only adequately defined in a range of ±95PCI under the 

SM+ET-joint criterion. This may imply that by adding an ET component in the near-

surface soil moisture assimilation algorithm improves the estimates of K(h) functions.  
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Figure 3.5: (h) and K(h) functions from MC simulations for sandy loam soil under 

rain-fed condition; (a) ET-only criterion, (b) SM-only criterion, (c) SM+ET-joint 

criterion 

 

 

In silt loam soil, the  and res values under the ET-only and SM-only criteria 

matched well with the target values. In contrast, for the SM+ET-joint criteria, only  is 

predictable with high accuracy. The Ksat value fared better in performance under the 

SM+ET-joint criterion compared to the SM-only criterion, while the ET-only criterion 

showed large uncertainties. The (h) functions under the SM-only and SM+ET-joint 

criteria are found to be superior to those obtained for the ET-only criteria as shown in 

Figure 3.6. But uncertainty bound (±95PCI) for the (h) functions under the SM+ET-

joint criterion are smaller than those of the ET-only and SM-only criteria. The most 

profound impact of ET component is visible more clearly in the K(h) functions, because 
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variations of the simulated K(h) function under the SM+ET-joint criterion are 

considerably decreased compared to those of the SM-only and ET-only criteria.  

 

 
Figure 3.6: (h) and K(h) functions from MC simulations for silt loam soil under 

rain-fed condition; (a) ET-only criterion, (b) SM-only criterion, (c) SM+ET-only 

criterion 

 

 

For clay loam soil (see Figure 3.7), the  and sat values under the ET-only 

criterion are easily identifiable with the target values, but the n, res, and Ksat estimates 

are relatively less clear (Table 3.2). The  res, and Ksat values under the SM-only 

criterion are matched well. Only the  value under the SM+ET-joint criterion matched 

well with the observation unlike the solutions for sandy loam and silt loam soils. Figure 

3.7 shows the (h) and K(h) functions of clay loam soil for all the criteria considered. 
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The (h) and K(h) functions estimated under the SM-only criterion are slightly better 

than those for the ET-only and SM+ET-joint criteria. Also, uncertainties of ±95PCI 

under the SM-only criterion are narrow compared to those for the ET-only and SM+ET-

joint criteria.  

Figure 3.8 shows the comparisons of observed and simulated ET for various 

criteria with clay loam soil under the synthetic conditions. Note that ET comparisons for 

sandy loam and silt loam soils are not presented for the sake of brevity. For DOY 129, 

the extremely high (synthetic/observed) ET value (0.55 mm d
-1

) was generated in this 

numerical study due to the inherent weakness of the adopted hydrological model. This 

may imply that an error in ET influences the uncertainties in the parameter estimation 

and modeling performance for clay loam soil in the unsaturated zone. Although the 

simulated K(h) functions of the ET-only and SM+ET-joint criteria have bias (caused by 

an unusual synthetic/observed ET value), the simulated (h) functions still correspond 

well to the target values. The results of clay loam soil indicate that the hydraulic 

conductivity function (K(h)) is more sensitive to ET component than the soil water 

retention function ((h)). Overall, most of the (h) and K(h) functions under the 

SM+ET-joint criterion are better identifiable than those for the ET-only and SM-only 

criteria. Furthermore, the effect of ET component is relatively less sensitive to the soil 

water retention ((h)) than the hydraulic conductivity (K(h)).  

Figure 3.9 shows the soil moisture in the deeper soil depth (180-200 cm) for 

three soil textures. In sandy loam soil, simulated soil moisture under the SM-only 

(RMSE: 0.001) and SM+ET-joint (RMSE: 0.004) criteria matched well with the target 
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values. But the soil moisture (RMSE: 0.010) for the ET-only criterion was overestimated 

compared to the true value. We can confirm similar patterns for silt loam and clay loam 

soils as well. The soil moisture estimates under the SM+ET-joint criterion for silt loam 

(RMSE: 0.008) and clay loam (RMSE: 0.002) soils are closer to the target value than 

those for the ET-only (RMSE: 0.015 for silt loam, RMSE: 0.008 for clay loam) and SM-

only (RMSE: 0.011 for silt loam, RMSE: 0.004 for clay loam) criteria, respectively. 

These results demonstrate that an ET component is attributable to improving the 

predictive skill of soil moisture flux at the deeper soil depths. These findings are quite 

significant for quantifying the effective soil hydraulic parameters of the vadose zone 

with the coupled NMCGA and SEBAL algorithm using only near-surface (0-1 or 0-5cm) 

soil moisture estimates from airborne/satellite RS platform. Uncertainties may result in 

identifying the soil hydraulic parameters as the soil depth increases due to textural 

layering, rooting depth and density, pore-size distribution, etc. Summarily, results of 

Case 1 indicate that the coupled NMCGA and SEBAL algorithm including an ET 

component (with SM), that provides more information in the unsaturated zone 

hydrologic behavior, improves the estimates of effective soil hydraulic parameters.  
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Figure 3.7: (h) and K(h) functions from MC simulations for clay loam soil under 

rain-fed condition; (a) ET-only criterion, (b) SM-only criterion, (c) SM+ET-joint 

criterion 
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Figure 3.8: Comparisons of evapotranspiration for clay loam soil under rain-fed criterion; (a) ET-only criterion, (b) 

SM-only criterion, (c) SM+ET-joint criterion. 

 

 

 
Figure 3.9: Comparisons of the deep (180-200 cm) soil moisture dynamics for sandy loam, silt loam, and clay loam soil; 

(a) ET-only criterion, (b) SM-only criterion, (c) SM+ET-joint criterion
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3.4.1.2 Case 2: Homogeneous Soil Column with Ground Water Table 

 We simulated Case 2 scenario to evaluate the impact of an ET component in the 

presence of a ground water table (-100 cm from the soil surface) in the homogeneous 

soil column under the SM-only and SM+ET-joint criteria (the ET criteria is excluded). 

Table 3.3 shows the derived effective soil hydraulic parameters with the ground water 

table depth of -100 cm.  

In sandy loam soil, the soil hydraulic parameters under the SM+ET-joint 

criterion are a better match than those for the SM-only criterion with the true values 

except of res and sat. Although the standard deviation (SD) of Ksat under the SM+ET-

joint criterion is slightly higher than for the SM-only criterion, the average value of Ksat 

is estimated more successfully. The results for silt loam soil are also similar compared to 

the findings of sandy loam soil. The , n, res, and sat values under the SM+ET-joint 

criterion are identifiable well with the target values, while under the SM-only criterion 

only the  value matched well. The Ksat value under the SM-only criterion has large 

uncertainties compared to that of the SM+ET-joint criterion. Usually, silt loam soil with 

shallow water tables is less sensitive than those for sandy loam and clay loam soils. In 

this study, when an ET component is included in quantifying the effective soil hydraulic 

properties, the solutions for the silt loam soil in the presence of a ground water table are 

much improved. In clay loam soil, the parameters under the SM+ET-joint criterion are 

perfectly identified with the target value, while the n value has small variations. 

However, the  and res values under the SM-only criterion are only well matched. In 

general, SM+ET-joint criterion performed better for predicting the soil hydraulic 
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parameters and their uncertainties better than SM-only criterion under the ground water 

table condition.  

Mostly, the solutions with the shallow water table depth of -100 cm are not as 

well identified as those under the free drainage condition indicating that the parameter 

estimations have more uncertainties in the soil profile dominated by upward flows from 

the ground water table rather than the free drainage condition. Based on the results of 

Case 2, we suggest that this approach can reflect the hydrological condition in the 

unsaturated zone affected by both the top (atmospheric) and bottom boundary 

conditions.   

 

Table 3.3: Solutions with a shallow water table depth of -100 cm for sandy loam, silt 

loam, and clay loam soils under the SM and SM+ET criteria for Case 2 

Soil Types Parameters 
Target  

values 

GW -100 

SM SM+ET 

Average SD Average SD 

Sandy loam 

α 0.021 0.029 0.000 0.016 0.005 

n 1.610 1.399 0.118 1.510 0.055 

θres 0.067 0.074 0.009 0.080 0.013 

θsat 0.370 0.370 0.000 0.471 0.037 

Ksat 41.600 50.157 2.274 38.422 3.042 

       

Silt loam 

α 0.012 0.013 0.006 0.013 0.002 

n 1.390 1.591 0.012 1.397 0.115 

θres 0.061 0.082 0.011 0.067 0.003 

θsat 0.430 0.456 0.048 0.445 0.055 

Ksat 30.500 45.642 5.276 36.049 5.050 

   
  

  

Clay loam 

α 0.030 0.033 0.000 0.031 0.002 

n 1.370 1.386 0.145 1.401 0.135 

θres 0.129 0.127 0.015 0.130 0.004 

θsat 0.470 0.486 0.014 0.472 0.054 

Ksat 1.840 4.522 0.880 2.050 0.055 
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3.4.1.3 Case 3: Field Validation Experiments 

In Case 3 we tested the applicability of the coupled NMCGA and SEBAL 

algorithm under the SM-only and SM+ET-joint criteria at various spatial scales in the 

field conditions. Table 3.4 shows the statistics of simulated soil moisture and ET with 

respect to the measurements. Mostly, the statistics (R
2
 and RMSE) of soil moisture and 

ET estimates under the SM+ET-joint criterion show good performance and generally 

better than those under the SM-only criterion. Figs. 3.10 and 3.11 show the observed and 

simulated results (SM and ET) at different spatial scales (point-scale for the Brown, 

Illinois site, airborne-scale for the WC 11, Iowa site, and satellite-scale for the Lubbock, 

Texas site) under the SM-only and SM+ET-joint criteria. As shown in the synthetic Case 

1 and 2 (in Table 3.2 and 3.3), not only the simulated SM and ET estimates but also their 

uncertainty ranges under the SM+ET-joint criterion improved compared to those of the 

SM-only criterion in these field situations at different spatial scales. 

 

Table 3.4: Correlation (R
2
) and RMSE of the pixel-based (in-situ)/simulated soil 

moisture and ET under the SM and SM+ET criteria at the Brown, WC (11-14) and 

Lubbock sites for Case 3 

Sites 

SM SM+ET 

Soil moisture ET Soil moisture ET 

R2 RMSE R2 RMSE R2 RMSE R2 RMSE 

aBrown 0.927 0.085 0.874 1.663 0.936 0.101 0.874 0.990 

bWC 11 0.777 0.050 0.955 0.554 0.781 0.047 0.952 0.500 

bWC 12 0.799 0.042 0.948 0.605 0.792 0.049 0.957 0.432 

bWC 13 0.777 0.054 0.954 1.022 0.782 0.054 0.949 0.978 

bWC 14 0.784 0.045 0.943 1.208 0.785 0.044 0.944 1.200 

cLubbock 0.537 0.053 0.600 1.316 0.569 0.060 0.665 1.296 
a
In-situ soil moisture and pixel-based ET datasets are used for the Brown site in Illinois 

b
Pixel-based (PSR) soil moisture and ET datasets are used for the Walnut Creek (WC 11 to 14) sites in 

Iowa 
c
 Pixel-based (AMSR-E) soil moisture and ET datasets are used for the Lubbock site in Texas
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Figure 3.10: Comparisons of the observed and simulated soil moisture (SM) and evapotranspiration (ET) at the 

different scales using the coupled NMCGA and SEBAL algorithm under the SM criterion; (a) point-scale (in-situ) SM 

and pixel-based ET, (b) airborne-scale (PSR) pixel-based SM and ET, (c) satellite-scale (AMSR-E) pixel-based SM and 

ET 



 

 

74 

 

 
Figure 3.11: Comparisons of the observed and simulated soil moisture (SM) and evapotranspiration (ET) at the 

different scales using the coupled NMCGA and SEBAL algorithm under the SM+ET-joint criterion; (a) point-scale (in-

situ) SM and pixel-based ET, (b) airborne-scale (PSR) pixel-based SM and ET, (c) satellite-scale (AMSR-E) pixel-based 

SM and ET
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At the point-scale, simulated soil moisture dynamics have large uncertainties due 

to various factors (e.g., climatic data from sparse weather stations, limited information 

on rooting depth and density, lack of plant growth functions, inherent weakness of 

hydrologic model structure) with respect to measurements (including measurement 

errors) during the early simulation period (DOY: 90-150). Note that soil moisture lacked 

response to the rainfall event on DOY 175-177. At the footprint-scale, model estimated 

soil moisture matched relatively well with the PSR-based soil moisture measurements. 

Compared to point-scale, remote sensing footprint-scale result has smaller uncertainties. 

Footprint-scale discrepancy could be attributed to the data qualities of the specific pixels, 

weather conditions and variations within the pixel, and discrepancy between PSR- and 

MODIS-scales for input data. Especially, the observed (PSR) and simulated soil 

moisture patterns have shown good match with the rainfall pattern indicating that the 

pixel-based soil moisture at the field scale reflects well the spatial correspondence rather 

than the point-scale. The observed/simulated soil moisture dynamics at the satellite-scale 

are relatively lower than those of the point- and airborne-scales. Although various 

uncertainties from the heterogeneities of areal soil textures and vegetation covers across 

the land surface are included in a remote sensing pixel, the results estimated by this 

approach matched well with the measurements.  

Above results show the impact of different spatial scales in parameter estimation. 

As the scale increases from the point- to satellite-scale, soil moisture quantities trend to 

be decreased compared to rainfall amounts, because of the bias of different scales. 

However, the uncertainty (RMSE) at the point-scale was higher than at the other scales 
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in the limited conditions undertaken for this study. It demonstrates that the airborne-

scale provides us relatively reasonable statistics (both R
2
 and RMSE) than those of the 

point- and satellite-scales. These results beg a question, because the results with the in-

situ measurements at the point-scale have more variations in the modeling performance 

than those at the satellite-scale. In-situ datasets usually have a high accuracy indicating 

that the large errors of in-situ soil moisture in this study might be an extreme (unusual) 

case. However, it shows one of the potential uncertainties, which can be incurred at 

fields. Thus, pixel-based datasets can provide more stable soil moisture information with 

predictable uncertainties (e.g., weather conditions, quality of a pixel, etc). 

The ET values have similar patterns as the soil moisture. The estimated ET 

values matched the pixel-based ET, but the observation in DOY 169 is considerably 

lower than the simulated ET value, which means that the MODIS images as input data 

for the SEBAL algorithm may have noise. The ET estimates at the field-scale have a 

good match with the MODIS-based ET. But the large-scale ET results have more 

variations, since an AMSR-E product consists of areal heterogeneities of soil textures 

and vegetation covers whereas the 1-D physical model (SWAP) is limited to model a 

homogeneous land surface. Based on these results, it is evident that the (pixel-based) ET 

component improves the parameter estimations and contributes towards the reduction of 

uncertainty ranges in simulating soil moisture and ET under the inverse modeling.  

These results further support the robustness of the coupled NMCGA and SEBAL 

algorithm for quantifying effective soil hydraulic parameters at different scales in a real 

world scenario.  
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3.5 Conclusions 

 This study was conducted to evaluate the applicability of a new coupled 

NMCGA and SEBAL based data assimilation algorithm for quantifying effective soil 

hydraulic properties using the RS pixel-based near-surface soil moisture and ET 

products at the point- to satellite-scales. Numerical experiments for the synthetic 

conditions and field validations are undertaken with different soil textures, climate 

scenarios, presence of ground water table, and vegetation covers under the ET-only, SM-

only, and SM+ET-joint criteria. Generally, the (h) and K(h) functions (derived by the 

searched soil hydraulic parameters) under the SM+ET-joint criterion are identified better 

than those of the ET-only and SM-only criteria for Case 1, although the K(h) functions 

still have small variations. As the simulated soil moisture dynamics under the SM+ET-

joint criterion in the deeper soil depth (180-200 cm) for three soil textures (sandy loam, 

silt loam, and clay loam soils) have a better match with the target values compared to 

those for the ET-only and SM-only criteria, it confirms that this approach improves not 

only the parameter estimations, but also the soil moisture flux in the deep soil depth 

(180-200 cm). In Case 2, the soil hydraulic properties in the presence of a ground water 

table (-100 cm) under the SM+ET-joint criterion are superior to those for the SM-only 

criterion. It is evident that this inverse modeling based data assimilation approach 

including an ET component contributes towards the reduction of uncertainties generated 

by the upward flow of ground water table.  

In a real world situation, the results of soil moisture and ET estimates under the 

SM+ET-joint criterion still matched the measurements from point- to satellite-scales 
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more than those of the SM-only criterion as shown in the synthetic experiments, 

although the correlations (WC 12 site for the SM, WC 11 and 13 sites for the ET) and 

RMSE (Brown and Lubbock sites for the SM) under the SM-only criterion were slightly 

better. At the point-scale, the estimated SM has no matching with the measurements 

during the initial simulation period indicating that the discrepancy of spatial scales 

(measuring location and weather station) and measuring errors may cause large 

uncertainties in estimating the parameters. The satellite-scale results were influenced by 

the areal heterogeneity of land surface (e.g., soil texture, vegetation covers, etc.), but the 

SM estimates were comparable with the AMRE-E products. In the airborne-scale, the 

estimated soil moisture was more reasonable for the spatial and temporal scales, 

although the discrepancy between PSR- and MODIS-based resolutions was included. 

The ET estimates at the satellite-scale have more variations than those of the point- and 

airborne-scales, because of the limitation of model structure, noise of pixels, etc.   

Thus, these results of synthetic and field validation experiments demonstrate that 

although the RS pixel-based product has variations in the inverse modeling, the coupled 

NMCGA and SEBAL algorithm can be useful for estimating the hydraulic parameters at 

the multiple scales across the land surface and contributes towards the reduction of 

uncertainties. 
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CHAPTER IV 

DEVELOPMENT OF A DETERMINISTIC DOWNSCALING ALGORITHM 

FOR REMOTE SENSING SOIL MOISTURE FOOTPRINT USING SOIL AND 

VEGETATION CLASSIFICATIONS 

4.1 Synopsis 

Soil moisture at the local scale is required to account for small-scale spatial 

heterogeneity of land surface, because many hydrological processes manifest at scales 

ranging from cm to km. Although remote sensing (RS) platforms provide large-scale soil 

moisture dynamics, scale discrepancy between observation scale (e.g., ~ 40 km) and 

modeling scale (e.g., ~ 1 km) leads to uncertainties in the performance of land surface 

hydrologic models. To overcome this drawback, we developed a new deterministic 

downscaling algorithm (DDA) for estimating fine-scale soil moisture with large pixel-

based remotely sensed (RS) soil moisture (SM) and evapotranspiration (ET) products 

using a genetic algorithm. This approach was evaluated under various synthetic and field 

experiment (Little Washita (LW) 13 and 21, Oklahoma) conditions including 

homogeneous and heterogeneous land surface conditions composed of different soil 

textures and vegetation. Our algorithm is based on determining effective soil hydraulic 

properties for different sub-pixels within a RS pixel and estimating the long-term soil 

moisture dynamics of individual sub-pixels using the hydrological model with the 

extracted soil hydraulic parameters.  

The soil moisture dynamics of sub-pixels from synthetic experiments matched 

well with the observations under heterogeneous land surface condition, although 
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uncertainties (MBE: -0.049~0.049) exist. Field experiments typically have more 

variations due to weather conditions, measurement errors, unknown bottom boundary 

conditions, and scale discrepancy between remote sensing pixel and model grid 

resolution. However, the soil moisture estimates of individual sub-pixels (from ESTAR 

footprints) downscaled by this approach matched well (R
2
: 0.724~0.914, MBE: -0.203~-

0.169 for the LW 13; R
2
: 0.343~0.865, MBE: -0.165~-0.122 for the LW 21) with the in-

situ soil moisture measurements. The good correspondence of observed (h) functions 

(from the soil core samples) and GA searched soil parameters at the LW 13 and 21 sites 

demonstrated the robustness of this algorithm. Although this algorithm is tested under 

limited conditions at field-scale, this approach improves the availability of remotely 

sensed soil moisture product at finer-resolution for various land surface and hydrological 

model application. 

4.2 Introduction 

Land surface soil moisture is a pivotal factor for hydrology, agronomy, and 

meteorology. In general, soil moisture data is limited to a few spatio-temporal scales. 

Point-scale soil moisture datasets are time consuming, expensive, and do not provide a 

uniform representation at larger scales. Remote sensing (RS) techniques can provide an 

attractive alternative to direct measurement. Ottlé and Vidal-Madjar [1994] derived land 

surface soil moisture using thermal infrared remote sensing. Directly active [Ulaby et al., 

1996] and passive microwave [Njoku and Entekkabi, 1996] remote sensing approach 

were developed to estimate surface soil moisture dynamics. However, the use of RS 

pixel-based data is limited due to the scale discrepancy between observed RS resolution 



 

 

81 

 

and required modeling resolution [Engman, 1991; Entekhabi et al., 1999]. In this regard, 

downscaling schemes are necessary to improve the availability of sub-pixel soil moisture 

products from RS footprints/pixels for agriculture and water resources management at 

the field scale. 

A few studies have explored downscaling or disaggregation methods for 

extracting subgrid soil moisture estimates within a RS pixel. Crow et al., [2000] 

downscaled spaceborne soil moisture products to obtain surface soil dielectric values 

approximating to volumetric soil moisture content using a soil dielectric inversion 

model. Merlin et al., [2005] developed a downscaling method using fine-scale optical 

data during the Soil Moisture and Ocean Salinity (SMOS) mission [Kerr et al., 2001] to 

improve the availability of SMOS near-surface soil moisture at the sub-grid scale. Also, 

an interpolation approach of passive microwave data based on fine-scale active 

microwave data was developed by Kim and Barros [2002] and further refined by Das et 

al. [2008b] particularly for the Soil moisture Active and Passive (SMAP) mission. More 

recently, Ines et al., [2012] developed a stochastic disaggregation method for soil 

moisture using a simulation-assimilation scheme. This approach extracts soil type 

identification (representing soil hydraulic properties) and sub-area fractions of 

corresponding soil-vegetation combinations within a RS soil moisture product. However, 

the stochastic disaggregation method estimates only the soil characteristics (soil ID 

values) and sub-area fractions (%) by the soil-vegetation combinations within a pixel in 

a probabilistic sense without their specific locations practically recognized. In other 

words, few studies have addressed the issue of downscaling remotely sensed soil 
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moisture with footprints ranging from several hundred meters to several kilometers (e.g., 

airborne Electronically Scanned Thinned Array Radiometer, ESTAR, Polarimetric 

Scanning Radiometer, PSR, space-borne SMOS, and Soil Moisture Active and Passive, 

SMAP sensors), and resolving them at fine scale (e.g., for individual fields with 

homogeneous soil and vegetation). 

The main goal of this study is to develop and test a new downscaling algorithm 

with pixel-based soil moisture (SM) and evapotranspiration (ET). The primary 

objectives are two-fold: 1) to develop a deterministic downscaling algorithm (DDA) 

using a genetic algorithm (GA) scheme for producing sub-pixel level soil moisture 

products from large spatial scale data at various resolutions and 2) to assess the 

robustness of this approach for remotely sensed data under real and synthetic 

experiments in the time domain.  

4.3 Materials and Methods 

4.3.1 Deterministic Downscaling Algorithm (DDA) 

Heterogeneity in land surface comprises different soil textures and vegetation 

covers (assuming the case of flat topography). It is assumed that various soil-vegetation 

combinations have their unique characteristics of soil moisture and evapotranspiration 

dynamics as illustrated in Fig. 4.1(a).  
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Figure 4.1: (a) Description of the deterministic downscaling algorithm, (b) simple (2 

  2 matrix), relatively complex (33 matrix), and complex (44 matrix) land 

surface conditions, (c) homogeneous soil columns with the free drainage condition 

and various shallow ground water table depths (GW -200, -150, -100 cm) 

 

 

As we estimate the distributed ET values of various soil-vegetation combinations 

within a pixel, the SM estimates and their locations corresponding to the ET values can 

be also obtained. High resolution RS images provide finer-scale ET products across land 

surface. Thus, in this study we developed a deterministic downscaling algorithm (DDA) 

for extracting fine-scale soil moisture (for sub-pixels) within a RS footprint using pixel-

based SM and ET. Basically, the spectral mixtures within a RS pixel-based product have 
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linear relationships. The response of each sub-pixel in any spectral wavelength can be 

considered as a linear combination of the responses of each component which is 

assumed to be in the mixture. Thus, each image (sub-pixel) contains land surface 

information with respect to the fraction and spectral response of each component within 

the ground resolution unit. Hence, individual sub-pixel spectral images (ai=1,…M,j=1,…,N), 

which have the soil components (P={ jis , }) in Eq. (4.1), can be practically designed as a 

linear mixture [Ferreira et al., 2007; Ines et al., 2012] (Eq. (4.2-4)) as below, 

P = { jis , = 1,1s ,…, NMs , }          (4.1) 
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Minsi,j jis ,    Maxsi,j (1  jis ,   29)           (4.5) 

where P: the variables whose jis ,  component is the soil hydraulic properties of all the 

soil contained within the ij pixel, sub,i,j,t
θ : the simulated soil moisture of individual sub-

pixel in the time index (t), i: the row number of sub-pixels with the domain (M), j: the 

column number of sub-pixels with the domain (N), sum,t
θ : the sum of simulated soil 

moisture ( sub,i,j,t
θ ) of individual sub-pixels in the time index (t), sub,i,j,t

ET : the simulated 

evapotranspiration of individual sub-pixel with the time index (t), sum,t
ET : the sum of 

simulated evapotranspiration ( sub,i,j,t
ET ) of individual sub-pixels with the time index (t), 
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tRSsub,i,j,
ET : the RS evapotranspiration product of individual sub-pixel with the time 

index (t), RSsum,t
ET : the sum of RS evapotranspiration products ( tRSsub,i,j,

ET ) of 

individual sub-pixels with the time index (t), and t: the time index, respectively. The jis ,  

component was constrained in the Eq. (4.5).   

We used the un-mixing model (Eq. (4.6)) designed to solve P ( jis , component) 

using a simulation-optimization scheme based on inverse modeling [Ines and Droogers, 

2002; Ines and Mohanty, 2008a,b,2009]. The un-mixing model indicates that a RS soil 

moisture product ( RS,t
θ ) can be estimated by the sum ( sum,t

θ ) of simulated soil moisture (

sub,i,j,t
θ ) of individual sub-pixels and adding an error term (et). To minimize the error (et) 

between the observed/simulated SM and ET by tuning a hydrological model, we used a 

genetic algorithm. The objective (Z(P)) and fitness (Fitness(P)) functions are shown in 

Eq. (4.7-8) as below, 

RS,t
θ (P)= 

N

1

M

1
{

 

N

j

M

i

sub,i,j,t
θ

1 1

} + te   t         (4.6) 

Z(P)= te  = Min{ 



T

t

RSsum,tsum,tRS,tsum,t
|}ET|ETf)(|θ|θ{f

T
1

1
1

}    (4.7) 

Fitness(P) = Max[Z(P)]
-1

           (4.8) 

where RS,t
θ : the remotely sensed soil moisture product in the time index (t), Z: the 

objective (minimizing) function (Note: All variables were weighted and normalized for 

the objective function), f: the weighting factor (0 < f < 1.0) indicating that the weighting 

factor of 0.1 means more weight is given to ET and the weighting factor of 0.9 means 

more weight to SM, and Fitness(P): the maximization function if Z(P) is minimized.  
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Genetic algorithms (GAs) are search algorithms to solve the optimized solutions 

for complex problems based on the survival of competing mechanism [Holland, 1975; 

Goldberg, 1989]. GAs are influenced by not only initial random generator seeds (e.g., 

idum: -3000, -2000, -1000, etc.), but also by the number of parameters (P) to be 

searched from unknown spaces. In this study, we selected the Ensemble Multiple 

Operators Genetic Algorithm (EMOGA, [Shin and Mohanty, 2012]). The Multiple 

Operators Genetic Algorithm (MOGA) has the unique ability to reproduce the fittest 

chromosomes (P) in the individual population as much as the number of chromosomes 

(parameters: MN) to be searched (see Fig. 4.2).  

 

 

Figure 4.2: Schematic of ensemble multiple operators genetic algorithm (EMOGA) 
RC: reproduced chromosomes; SC: strongest chromosome; WC: weak chromosomes 
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The reproduced chromosomes ( NM1,...,rRC  ) have new genetic information 

through the GA operators (selection, crossover, and mutation) and explore more search 

spaces. Then, the MOGA restarts when the chromosomes are converged to one region, 

which means that the better chromosomes are not searched than the previous strongest 

one for sequential 50 generations (note that the number of generations is subjective) at 

the converged region before all generations are completed. With the restarting technique, 

the MOGA provides new genetic materials through the creep and jump mutation 

operators [Ines and Honda, 2005]. The MOGA always remember the previous (g-1) elite 

chromosomes and reproduce in the next generation [Ines and Mohanty, 2008a]. We 

integrated a random re-sampling (ensemble) algorithm [IBM Programmers’ Guide; 

Efron, 1982] into the MOGA for searching more unknown spaces, called EMOGA.  

This approach with the EMOGA uses a physically-based (1-D) soil water 

atmosphere plant (SWAP) model to simulate soil water flow between the soil, water, 

atmosphere, and the plant system [Kroes et al., 1999; van Dam et al., 1997]. The SWAP 

model calculates the soil water flow based on Richards’ equation in Eq. (4.9). We can 

describe the soil hydraulic functions by analytical expressions (van Genuchten [1980] 

and Mualem [1976]) using the relationship between the soil water content ( pressure 

head (h), and unsaturated hydraulic conductivity (K), 
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where θthe soil moisture content (cm
3
 cm

-3
), K: the hydraulic conductivity (cm d

-1
), h: 

the pressure head (-cm), z: the soil depth (cm) taken positively upward, t: the time 
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domain (d), C: the differential water capacity (cm
-1

), and S(h): the actual soil moisture 

extraction rate by plants (cm
3
 cm

-3
 d

-1
) defined as Eq. (4.10).  

r
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w
Z

T
(h)αS(h)            (4.10) 

where Tpot: the potential transpiration (cm d
-1

), Zr: the rooting depth (cm), and w: the 

reduction factor as function of h and accounts for water deficit and oxygen stress 

[Feddes et al., 1978]. The Richards’ equation (4.11) with the finite difference approach 

[Belmans et al., 1983] allows the use of soil hydraulic database and various management 

scenarios.  
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


           (4.11) 

2111 ])S([SKK(h)
m/m

e
λ
esat           (4.12) 

where Se: the relative saturation (-), θres: the residual water contents (cm
3
 cm

-3
), and θsat: 

the saturated water contents (cm
3
 cm

-3
), α (cm

-1
), n (-), m (-), and  -): the shape 

parameters of the retention and the conductivity functions, Ksat: the saturated hydraulic 

conductivity (cm d
-1

), and m=1 1/n, respectively.  

The SWAP model considers various top and bottom boundary conditions such as 

weather conditions, water table depths, flux, aquifer, and surface drain, etc. [van Dam et 

al., 1997]. The SWAP model has three crop routines: i) a simple model to simulate the 

impacts of weather, soil feature, and plant type, ii) a detailed model (WOFOST), and iii) 

the same model attuned to simulate crop growth. Also, the water management modules 

(irrigation and drainage) were combined with this model [van Dam et al., 1997, van 

Dam, 2000]. The SWAP model estimates the potential evapotranspiration (ETpot) using 
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the Penman-Monteith equation and partitions potential transpiration (Tpot) and soil 

evaporation (Epot) by the leaf area index or the soil cover fraction. Then, ETpot into actual 

ET (ETact) is reduced through adjusting the Epot and Tpot into actual values based on 

empirical relationships as the soil becomes dry. This model conducts well with various 

meteorological and environmental criteria [Wesseling and Kroes, 1998; Sarwar et al., 

2000; Droogers et al., 2000, Singh et al., 2006a].  

4.3.2 Physical Soil Texture Database 

When the land surface within a RS product is comprised of several soil textures 

(e.g., sandy loam, silt loam, and clay loam, etc.), we traditionally need to search the 

effective soil hydraulic parameters (, n, res, sat, Ksat) for each soil unit, which means 

that the parameter estimation would take a large combinational problem. We suggest a 

physical soil texture database including various soil information from the UNSODA 

[Leij et al., 1999], Staring soil database [ stenoW   et al., 1994] and Rosetta [Schaap et al., 

1999] in Table 4.1. This database contains the soil hydraulic properties (29 soil textures) 

of Mualem-van Genechthen. Using the physical soil texture database, the soil 

information ( jis , ) corresponding to the soil ID values can be provided for individual soil 

unit for the model performance. 
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Table 4.1: Physical soil texture database for the deterministic downscaling 

algorithm 

Soil ID Soil textures 
Shape parameters 

Scaling 

parameters 

Hydraulic 

conductivity 
 

 n res sat Ksat 

1
a
 Sandy Loam 0.021 1.61 0.067 0.37 41.6 0.5 

2
b
 Sandy Loam 0.075 1.89 0.065 0.41 106.1 0.5 

3
c
 Sandy Loam 0.027 1.45 0.039 0.39 38.3 -0.861 

4
a
 Loam 0.025 1.31 0.083 0.46 38.3 0.5 

5
b
 Loam 0.036 1.56 0.078 0.43 25.0 0.5 

6
c
 Loam 0.011 1.47 0.061 0.40 12.1 -0.371 

7
a
 Silt 0.006 1.53 0.123 0.48 55.7 0.5 

8
b
 Silt 0.016 1.37 0.034 0.46 60.0 0.5 

9
c
 Silt 0.007 1.68 0.050 0.49 43.8 0.624 

10
a
 Silt Loam 0.012 1.39 0.061 0.43 30.5 0.5 

11
b
 Silt Loam 0.020 1.41 0.067 0.45 10.8 0.5 

12
c
 Silt Loam 0.005 1.66 0.065 0.44 18.2 0.365 

13
a
 Sandy Clay Loam 0.033 1.49 0.086 0.40 9.7 0.5 

14
b
 Sandy Clay Loam 0.059 1.48 0.100 0.39 31.4 0.5 

15
c
 Sandy Clay Loam 0.021 1.33 0.063 0.38 13.2 -1.280 

16
a
 Clay Loam 0.030 1.37 0.129 0.47 1.8 0.5 

17
b
 Clay Loam 0.019 1.31 0.095 0.41 6.2 0.5 

18
c
 Clay Loam 0.016 1.42 0.079 0.44 8.2 -0.763 

19
a
 Silty Clay Loam 0.027 1.41 0.098 0.55 7.4 0.5 

20
b
 Silty Clay Loam 0.010 1.23 0.089 0.43 1.7 0.5 

21
c
 Silty Clay Loam 0.008 1.52 0.090 0.48 11.1 -0.156 

22
b
 Sandy Clay 0.027 1.23 0.100 0.38 2.9 0.5 

23
c
 Sandy Clay 0.033 1.21 0.117 0.39 11.4 -3.665 

24
a
 Silty Clay 0.023 1.39 0.163 0.47 8.4 0.5 

25
b
 Silty Clay 0.005 1.09 0.070 0.36 0.5 0.5 

26
c
 Silty Clay 0.016 1.32 0.111 0.48 9.6 -1.287 

27
a
 Clay 0.021 1.20 0.102 0.51 26.0 0.5 

28
b
 Clay 0.008 1.09 0.068 0.38 4.8 0.5 

29
c
 Clay 0.015 1.25 0.098 0.46 14.8 -1.561 

a
UNSODA[Leij et al., 1999] 

b
SoilSurvey[ stenoW   et al., 1994] 

c
Rosetta[Schaap et al., 1999] 
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4.3.3 Simplified-Surface Energy Balance Index (S-SEBI) Model 

Evapotranspiration is the process by which liquid water evaporates from open 

water, soil, and plant surfaces to the atmosphere across the land-atmosphere boundary. 

Remote sensing measurements of the surface energy balance provide a means to 

evaluate spatially and temporally distributed vegetation conditions at large scales 

[Moran et al., 1995; Moulin et al., 1998]. In this study, we selected a Simplified-Surface 

Energy Balance Index (S-SEBI) model for calculating pixel-based evapotranspiration 

(ET) estimates using RS products [Roerink et al., 2000]. The land surface energy 

balance can be solved on a pixel by pixel basis using RS (e.g., LANDSAT5-TM, 

Moderate Resolution Imaging Spectroradiometer-MODIS, Advanced Very High 

Resolution Radiometer-AVHRR, etc.) datasets. The land surface energy balance is given 

by, 

Rn = G0 + H + E           (4.13) 

where, Rn: the net radiation [W/m
2
], G0: the soil heat flux [W/m

2
], H: the sensible heat 

flux [W/m
2
], and E: the latent heat flux [W/m

2
].  

The S-SEBI model uses scanned spectral radiance (visible, near-infrared, and 

thermal infrared range) for estimating surface reflectance, surface temperature, and 

vegetation index under clear weather conditions. We used the LANDSAT5-TM images 

(30 m30 m) to compute fine-scale pixel-based ET using the S-SEBI model in Table 

4.2.   
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Table 4.2: Description of the LANDSAT5-TM 

Image Character Value 

Sensor LANDSAT5-TM 

Path/Row 28/36 

Acquisition date 

(time) 

20 April 1997 (16:35:29) 

07 June 1997 (16:37:10) 

09 July 1997 (16:38:16) 

 

Reference system UTM-24N 

Resolution Band 1 to 7 (30m30m) 

 

 

4.3.4 Data Assimilation Framework 

We conducted numerical data assimilation experiments for assessing the 

deterministic downscaling algorithm based on inverse modeling. The experiments were 

composed of synthetic and field validation experiments under rain-fed conditions 

including: i) synthetic experiments with various land surface conditions, ii) impacts of 

different vegetation covers and ground water tables under the synthetic conditions, and 

iii) field validation experiments, respectively.  

We designed three (simple - 22 matrix, relatively complex - 33 matrix, and 

complex - 4  4 matrix) land surface conditions representing homogeneous and 

heterogeneous land surface with free drainage (indicating semi/arid regions) for testing 

this approach under the synthetic condition at the Lubbock site (March 1 to July 31, 

2002) in Texas (Fig. 4.1b). We collected the weather datasets at the Irrigation 

Technology Center (http://texaset.tamu.edu/index.php).  
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An evapotranspiration component is the major factor for downscaling RS soil 

moisture products. To confirm the impact of ET component for the downscaling process, 

we analyzed the characteristics of (synthetic) soil moisture (0-1 cm) and ET dynamics by 

the combinations of different soil textures (see Table 4.1: e.g., Soil ID: 1-sandy loam, 4-

loam, 7-silt, and 13- sandy clay loam) and various vegetation covers (wheat, soybean, 

grass, and maize). The various weighting factors (0.1 to 0.9) for the objective function 

(Eq. (4.7)) were also tested under the relatively complex land surface condition.  

Additional experiments were conducted to evaluate the impacts of various 

vegetation covers (wheat, soybean, grass, and maize) and varying ground water table 

depths of -200, -150, and -100 cm (Fig. 4.1c) under the relatively complex land surface 

condition. The bottom flux (positive upward) is set to test that the interdependency 

assumption used in the inverse modeling is still executable when the soil water flow in 

the unsaturated zone is dominated by the bottom boundary condition, e.g., by major 

upward flows from the ground water table (van Dam, 2000).  

For the field validation experiments, we selected the Little Washita watershed 

(LW 13 and 21 footprints) in Oklahoma during the simulation period (March 1 to July 

31, 1997) as shown in Fig. 4.3. The in-situ/pixel-based soil moisture (0-5 cm) were 

measured during the Southern Great Plains experiment (SGP97) from June 18, 1997 to 

July 18, 1997 [Mohanty et al., 2002]. The daily volumetric soil moisture datasets (24 

days for the LW 13 and 17 days for the LW 21 sites) were measured at the 49 (77) 

sampling points, except for the heavy rainfall events. We used the airborne 
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Electronically Scanned Thin Array Radiometer (ESTAR) pixel-based soil moisture 

products for 17 days at the LW sites [Jackson et al., 1999].  

 

 
Figure 4.3: (a) Oklahoma, (b) Little Washita (LW) watershed, (c) LW 13 site, (d) 

LW 21 site including the in-situ soil moisture sampling points and weather stations 

for the field experiments 
†
Silt loam soil with different slope ranges. 

Cross indicates the soil core sampling points. 

 

 

This approach downscaled the ESTAR soil moisture products under relatively 

complex land surface condition and validated subgrid (or sub-pixel) soil moisture values 

with the in-situ soil moisture measurements. The soil core samples in the soil depth of 3-

9 cm were collected to obtain the effective soil hydraulic properties [Mohanty et al., 

2002] at the field sites. The sub-pixels a1,3 and a2,3 at the LW 13 site (Fig. 4.3) have three 



 

 

95 

 

and two soil core samples (i.e., soil hydraulic properties), respectively. Soil core sample 

at the sub-pixels a1,1 and a1,3 were taken at the LW 21 site. Besides soil moisture 

dynamics ((t)) at 49 in-situ sampling locations for LW13 or LW21 (Fig 4.3), we further 

validated the downscaling approach through the comparison of soil water retention 

functions ((h)). They were derived by the searched soil ID values (in terms of their soil 

hydraulic parameters in Table 4.1) and field-observed soil hydraulic properties in Table 

4.3. We excluded the hydraulic conductivity (K(h)) functions for validation, because of 

the extreme variations in Ksat (5.063-129.427 mm day
-1

).   

 

Table 4.3: Soil hydraulic properties derived by the soil core samples obtained at the 

LW 13 and 21 sites 

Sites Soil depth Sub-pixel (aij) a na res
a sat

a Ksat
a 

LW 13 3-9 cm 

3 (a13) 

0.009 1.430 0.115 0.354 6.679 

0.015 1.204 0.002 0.322 5.063 

0.026 1.229 0.109 0.366 5.702 

 
     

6  (a23) 
0.012 1.262 0.106 0.435 129.427 

0.009 1.387 0.068 0.387 22.550 

 
     

LW 21 3-9 cm 
1 (a11) 0.006 1.581 0.117 0.429 31.795 

3 (a13) 0.009 1.734 0.115 0.432 17.885 

a
Field observations [Mohanty et al., 2002] 

 

 

The pixel-based ET (30m30m) estimates using the LANDSAT5-TM datasets 

were computed by the S-SEBI model [Roerink et al., 2000] for a few days (i.e., 3 days 

for LW13 and 2 days for LW 21 during the simulation period due to the limited 
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available LANDSAT5-TM datasets and weather condition. The LW 13 and 21 sites have 

the silt loam (predominant), sandy loam, and loam soils (from SSURGO: 

http://www.nrcs.usda.gov/). During the simulation period in the LW 21 site, two-thirds 

were covered by the winter wheat, and the other third was covered by the short native 

grass. The wheat cover area is flat (slope less than 1%) and the grass cover area has a 

rolling slope (3-12%). The LW 13 site also has rolling topography with grass cover and 

a small pond in sub-pixel a2,1 as shown in Fig. 4.4.  

 

 

Figure 4.4: Digital elevation method (DEM) for the study sites at the Little Washita 

(LW) watershed in Oklahoma; (a) LW 13 site, (b) LW 21 site 

 

 

http://www.nrcs.usda.gov/


 

 

97 

 

We set the different crop growing periods (March 1 to June 27 for the wheat and 

grass cover at the LW 21 site and March 1 to July 31 for the LW 13 site), because the 

wheat was harvested on June 27 at the LW 21 site. Daily climatic datasets (e.g., 

precipitation, wind speed, maximum and minimum temperature, and solar radiation) for 

the model input were collected from the USDA-Agricultural Research Service micronet 

weather station (ARS 133 for the LW 13 and ARS 149 for the LW 21, 

http://ars.mesonet.org/) in Oklahoma. 

In this study, we assumed that the remote sensing pixel (field) comprised of 

parallel stream tubes or soil columns (sub-pixels) and the vertical soil columns are 

discretized by 33 texturally-homogeneous computational layers. The soil profile was 

discretized at the intervals of 1 cm for the top 10 cm (1-10
th

 layer) from the soil surface. 

For the soil depths of 10-60 cm (11-20
th

 layer) and 60-200 cm (20-32
nd

 layer), vertical 

grid intervals of 5 cm and 10 cm were used (except 20 cm in the 33
rd

 layer). The initial 

conditions (h(z,t=0) = -100 cm) were specified for the soil columns in the synthetic 

cases. We tested this approach under the free drainage and various ground water table 

depths (-200, -150, and -100 cm), because of the unknown bottom boundary conditions 

at the field sites. We assumed that the initial conditions were in equilibrium with the 

bottom boundary conditions. The model parameters used for genetic algorithm and 

SWAP model for the synthetic and field validation experiments are shown in Table 4.4.  

 

  

http://ars.mesonet.org/
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Table 4.4: Modeling conditions of genetic algorithm and SWAP model 

  Synthetic experiments Field experiments 

GA parameters: 
  

  No. population 30 30 

  No. seed -3000, -2000, -1000 -3000, -2000, -1000 

  No. generation 5000 5000 

  No. search restart 
4 (only complex 

condition) 
- 

  No. ensemble 10 10 

   
Modeling 

Conditions:   

  Top boundary Time dependent flux/head Time dependent flux/head 

  Bottom boundary 

Free drainage,  

ground water table 

depth (-100, -150, -200 

cm) 

Free drainage,  

ground water table 

depth (-100, -150, -200 cm) 

  Initial conditions h(z,t=0)=-100 cm 
Equilibrium with bottom boundary 

conditions 

 

 

 

For the uncertainty analysis, we used the simulation-optimization scheme 

(SWAP-EMOGA) with re-sampling (ensemble e) and multi-population by various 

random generator seeds (-3000, -2000, and -1000) and selected the maximum fitness for 

the individual simulations, respectively. Using the selected solutions (ethree different 

random seeds), we estimated the Pearson’s correlation (R
2
) and mean bias error (MBE). 

The 95 percent confidence interval (95PCI) of the selected solutions was calculated as, 

Ranget,i,j = 95PCIt,i,j+ - 95PCIt,i,j-          (4.14) 

where 95PCIt,i,j+ is the upper boundary, 95PCIt,i,j- is the lower boundary, and t is the time 

(running) index.   
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4.4 Results and Discussion 

4.4.1  Synthetic Experiments - Various Land Surface Conditions 

The various combinations of soil textures (soil ID: 1, 4, 7, 13) and vegetation 

covers (wheat, soybean, grass, and maize) have their unique characteristics of soil water 

retention ((h), cm
3
 cm

-3
), hydraulic conductivity (K(h), cm day

-1
), soil moisture 

dynamics (t) (cm
3
 cm

-3
), and evapotranspiration ET (t) (mm day

-1
) in Fig. 4.5. The (h) 

function of silt (ID: 7) soil is higher than those of loam (ID: 4), sandy clay loam (ID: 

13), and sandy loam (ID: 1) soils (in Fig. 4.5a,b). Fig. 4.5c,d show the impacts of various 

vegetation covers on estimating the SM and ET dynamics with a loam (ID: 4) soil. 

Overall, the grass cover with the average soil moisture (0.287 cm
3
 cm

-3
) contains more 

moisture in the soil matrix than others (soybean-0.233, maize-0.221, and wheat-0.183 

cm
3
 cm

-3
) during the simulation period. However, average ET estimates (wheat-2.504, 

soybean-2.278, maize-1.866, and grass-1.159 mm day
-1

) are contrary to the SM trends, 

except for the soybean cover, which has both relatively high SM and ET. It shows that 

the vegetation covers influence not only the ET estimates but also soil moisture.  
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Figure 4.5: Various characteristics of the combinations of soil textures (soil ID: 1-

sandy loam, 4-loam, 7-silt, and 13-sandy clay loam) and vegetation covers (wheat, 

soybean, grass, and maize); (a) soil water contents ((h)), (b) hydraulic 

conductivities (K(h)), (c) soil moisture dynamics (cm
3
 cm

-3
), (d) evapotranspiration 

(mm day
-1

) 

 

 

We tested the range of weighting factors f (0.1~0.9) for the DDA with the 

relatively complex land surface condition. When the weighting factors (f) were in the 

ranges of 0.1 to 0.5, the derived solutions were identified well with the synthetic 

observations in Table 4.5. The derived soil ID values (si=1,…,3,j=1,…,3) of individual sub-

pixels with the weighting factor (f=0.1) have the highest fitness than others (f=0.2~0.5). 

But when more weights (f=0.6~0.9) were given to the soil moisture, maximum fitness 

decreased. Furthermore, the soil ID values for sub-pixels with weighting factors (f=0.6 

and 0.8) did not match well with the observations compared to the results for weighting 
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factors (f=0.1 to 0.5). Most of all, the DDA showed good matching with the synthetic 

observations (soil ID), but the specific locations of derived soil ID values were not 

matched in the range of f=0.6~0.9. It demonstrated that the ET component assigns the 

downscaled soil moisture estimates (by the searched soil ID values) of individual sub-

pixels to the specific locations within a RS product.  

Table 4.6 shows the derived solutions (soil ID) under various land surface 

conditions. The solutions for each sub-pixel are fairly well identified (minimum 

uncertainties) with the synthetic observations under the simple land surface condition. 

The results with the relatively complex land surface condition also matched well with 

the observations, even though they have small errors for sub-pixels (a1,1, a1,2, a1,3, a2,1, 

a2,2, a3,3). However, the uncertainty ranges of solutions increased considerably when the 

land surface condition becomes complex. The DDA approach found the exact soil ID 

values (a1,1: 4, a1,2: 7, a1,3: 7, a1,4: 13, a2,1: 27, a2,2: 4, a2,3: 1, a2,4: 20, a3,1: 20, a3,2: 7, a3,3: 

4, a3,4: 7, a4,1: 13, a4,2: 27, a4,3: 27, a4,4: 1 from the physical soil texture database in Table 

4.1) of sub-pixels, but the solution uncertainties for the complex condition were 

considerably higher than those of the simple and relatively complex conditions.  
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Table 4.5: Solutions (soil ID) of sub-pixels derived by the deterministic downscaling algorithm using the genetic 

algorithm (EMOGA) based on the various weighting factors (f=0.1 to 0.9) under the relatively complex land surface 

condition for Case 1 

Sub-pixel 

(ai,j) 

Observations 

(Soil ID)
*
 

Relatively complex land surface condition 

Weighting factor  

f=0.1 f=0.2 f=0.3 f=0.4 f=0.5 f=0.6 f=0.7 f=0.8 f=0.9 

Maximum 

Fitness  
1.11E+07 9.44E+06 8.39E+06 7.33E+06 6.27E+06 5.84E+05 1.82E+02 7.86E+05 2.21E+02 

a1,1 4 4 4 4 4 4 7 7 1 5 

a1,2 7 7 7 7 7 7 1 22 7 18 

a1,3 13 13 13 13 13 13 13 13 13 1 

a2,1 1 1 1 1 1 1 1 1 1 1 

a2,2 4 4 4 4 4 4 13 18 1 7 

a2,3 7 7 7 7 7 7 4 7 7 5 

a3,1 13 13 13 13 13 13 7 11 4 1 

a3,2 1 1 1 1 1 1 4 1 4 20 

a3,3 1 1 1 1 1 1 1 1 13 7 

*
Soil identification (soil ID) values from the simplified soil hydraulic database 

Vegetation cover: wheat crop 

Bold: the exact solution searched 
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Table 4.6: Solutions (soil ID) derived by the deterministic downscaling algorithm using the genetic algorithm 

(EMOGA) under the simple, relatively complex, and complex land surface conditions for Case 1 

Sub-

pixel 

(ai,j) 

Simplex land surface condition Relatively complex condition Complex land surface condition 

Observations 

(Soil ID)* 

Vegetation 

cover** 

Solution Observations 

(Soil ID)* 

Vegetation 

cover** 

Solution Observations 

(Soil ID)* 

Vegetation 

cover** 

Solution 

Soil ID Soil ID Soil ID 

a1,1 4 1-4 4 4 1 4,7 4 1 4,27 

a1,2 7 1-4 7 7 1 4,7 7 2 7,15,27 

a1,3 - - - 13 1 1,13 7 
1 6,7,26,29 

a1,4 - - - - - - 13 1 5, 13 

a2,1 13 1-4 13 1 1 1,4 27 2 4,10,27 

a2,2 1 1-4 1 4 1 4,13 4 2 4,7,10,27 

a2,3 - - - 7 1 7 1 1 1 

a2,4 - - - - - - 20 1 20 

a3,1 - - - 13 1 13 20 2 4,20,27 

a3,2 - - - 1 1 1 7 2 7,27 

a3,3 - - - 1 1 1,13 4 1 4,27 

a3,4 - - - - - - 7 1 6,7,29 

a4,1 - - - - - - 13 1 5,13 

a4,2 - - - - - - 27 2 10,11,20,27 

a4,3 - - - - - - 27 2 4,7,8,10,11,18,27,28 

a4,4 - - - - - - 1 1 1 
*
Soil identification (soil ID) values from the simplified soil hydraulic database; 

**
Vegetation covers: 1-wheat, 2-soybean, 3-grass, 4-maize  

Bold: the exact solution searched 
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Figures 4.6 and 4.7 show the soil moisture dynamics (derived by the searched 

solutions in Table 4.4) estimated by this approach and ET for the sub-pixels under the 

complex land surface condition (Figures for the simple and relatively complex 

conditions are not shown). The soil moisture dynamics of sub-pixels (a1,1, a2,2, and a4,3) 

have a bias compared to the observations as the mean bias error (MBE) were -0.031, -

0.049, and 0.049, respectively. But the other sub-pixels matched well to the observations 

with -0.021 ~ -0.013 for the MBE. The simulated ET values tend to be similar with the 

results of soil moisture as the sub-pixels (a1,1, a2,2, and a4,3) have more uncertainties 

(MBE: -0.009, -0.014, -0.011) than those (MBE: -0.006 ~ 0.000) of the other sub-pixels. 

From the results for the sub-pixels of a1,2 (silt and soybean), a1,3 (silt and wheat), and a2,2 

(loam and soybean), we confirmed that different vegetation covers of sub-pixels 

(soybean for a1,2 and wheat for a1,3) with the same soil texture (ID: 7) influence not only 

the soil moisture, but also ET estimates. The soil moisture dynamics of sub-pixels (a1,2 

and a2,2) with different soil textures (ID: 4, 7), which have the same vegetation cover 

(soybean), were affected by different soil textures (silt vs. loam), but the vegetation type 

influences the ET values slightly more than soil textures. On the basis of above findings, 

we suggest that the ET component is the key factor for this downscaling approach.  
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Figure 4.6: Soil moisture dynamics (0-1 cm) of sub-pixels downscaled by the 

deterministic downscaling algorithm using the genetic algorithm (EMOGA) under 

the complex land surface condition for Case 1 
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Figure 4.7: Evapotranspiration of sub-pixels by the deterministic downscaling 

algorithm using the genetic algorithm (EMOGA) under the complex land surface 

condition for Case 1 
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4.4.2 Impacts of Various Vegetation Covers and Ground Water Tables 

Table 4.7 shows the results of various vegetation covers (wheat, soybean, grass, 

and maize) under synthetic condition. Overall, the DDA approach searched well the soil 

ID values of sub-pixels with various land covers under relatively complex condition, 

although the solutions with the wheat and soybean covers have more uncertainties than 

those of the grass and maize crops. The derived soil ID values for the maize cover 

perfectly matched with the synthetic observations. The results with different water table 

depths (-200, -150, and -100 cm) show somewhat the similar trend with those of the free 

drainage condition (Table 4.8). The solutions with the GW -100 cm have more variations 

than those of GW -150 cm indicating that the estimations of soil parameters were 

disturbed due to the upward flow of shallow ground water table. The soil ID values with 

the GW -200 cm relatively have less uncertainties in modeling, but the results (ID: 1-

sandy loam) of sub-pixels (a1,1 and a2,2) were not matched with the observation (ID: 4-

Loam). The soil ID values (ID: 1, 4) have the similar soil hydraulic properties (see Table 

4.1) indicating that this approach can be affected by the non-sensitivity of the similar soil 

water content ((h)) and hydraulic conductivity (K(h)) curves. Overall, the impacts of 

ground water tables were less sensitive than the vegetation covers, which mean that the 

land surface conditions (e.g., soil textures, land covers, atmospheric condition, etc.) 

influence this approach more than the ground water tables.  
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Table 4.7: Solutions (soil ID) derived by the deterministic downscaling algorithm 

using the genetic algorithm (EMOGA) with various vegetation covers (wheat, 

soybean, grass, and maize) under the relatively complex land surface condition for 

Case 2 

Sub-pixel 

(ai,j) 

Observations
*
 

(Soil ID) 

Relatively complex land surface condition 

wheat soybean grass maize 

a1,1 4 4 4 4,10,18 4 

a1,2 7 7,10 7 7 7 

a1,3 13 1,5,13 7,13 13 13 

a2,1 1 1,4 1,13 1 1 

a2,2 4 4,13 4,27 4 4 

a2,3 7 7,10 4,7,13 7 7 

a3,1 13 13 1,7,13 13 13 

a3,2 1 1 1 1 1 

a3,3 1 1 1 1 1 
*
Soil identification (soil ID) values from the simplified soil hydraulic database 

Bold: the exact solution searched 

 

 

Table 4.8: Solutions (soil ID) derived by the deterministic downscaling algorithm 

using the genetic algorithm (EMOGA) for different ground water table depths (-

200, -150, and -100 cm) with the wheat crop under the relatively complex land 

surface condition for Case 2 
Sub-pixel 

(ai,j) 

Observations
*
 

(Soil ID) 
GW -100 cm GW -150 cm GW -200 cm 

a1,1 4 4,27 4 1 

a1,2 7 7,12 7,9,12 7,12 

a1,3 13 13 13 13 

a2,1 1 1 1 1 

a2,2 4 4,27 4 1 

a2,3 7 7,9,12 7,9,12 7,12 

a3,1 13 5,13 13 1,13 

a3,2 1 1 1 1,13 

a3,3 1 1 1 1 
*
Soil identification (soil ID) values from the simplified soil hydraulic database 

Bold: the exact solution searched 
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4.4.3 Field Validation Experiments  

Figure 4.8 shows the statistics (maximum, minimum, median, and 1
st
/3

rd
 quartiles 

of solutions) of model performance with free drainage condition and various ground 

water table depths for the field validation experiments. 

 

 

Figure 4.8: Maximum fitness of the field experiments (10 ensemblesthree different 

random number generator seeds) with the various bottom boundary conditions 

(free drainage condition and GW-100, -150, -200 cm); (a) LW 13 site, (b) LW 21 

site 

 

 

We tested the various bottom boundary conditions for the field sites under the 

free drainage and ground water tables (-200, -150, and -100 cm) in modeling and the 

derived solutions for the ground water depth (GW) of -100 cm and free drainage 

condition at the LW 13 and 21 sites identified better with the measurements than those 
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of the other conditions, respectively. Thus, we selected the bottom boundary conditions 

of GW -100 cm (LW 13) and free drainage condition (LW 21) for the field sites. The 

soil ID values derived by this approach were shown in Table 4.9. The solutions (soil ID 

values) of sub-pixels vary across the range of sandy loam (ID: 2, 3), loam (ID: 6), silt 

(ID: 8), silt loam (ID: 10), and silty clay loam (ID: 21) at the LW 13 site. However, silt 

and silt loam soils (ID: 8, 9) are dominant (30-70 %) in the solutions of sub-pixels 

compared to the actual soil textures (silt loam-predominant, sandy loam, and loam soils). 

Similar trends are also shown in the results of the LW 21 site. The range of derived 

solutions including sandy loam (ID: 1, 2, 3), loam (ID: 5), silt (ID: 7, 9), silt loam (ID: 

12), and sandy clay loam (ID: 13, 14) is more variable than those of the LW 13 site. As 

mentioned above, the soil water retention ((h)) and hydraulic conductivity (K(h)) 

curves from the physical soil texture database across a range of pressure heads have 

similarity, indicating that the search of soil textures (soil ID values) by this approach can 

be limited due to the non-sensitivity of (h) and K(h) functions (as in Fig. 4.9). 

However, this approach still searched silt and silt loam soils (ID: 7, 9, 12) as the 

dominant soils (36.7-73.3 %) for the individual sub-pixels, except for the sub-pixel of 

a2,3. When we compared the solutions at the LW 13 and 21 sites, a sandy clay loam soil 

(ID: 14) was relatively more prominent in the derived solutions (a1,1 and a2,1) at the LW 

21 site. This is because soil moisture at the LW 21 site were measured only for 17 days 

during the dry season indicating that the actual soil conditions could favor more a sandy 

or sandy clay loam soil. On the contrary, the LW 13 site has a small pond (sub-pixel: 

a2,1) (Fig. 4.4), which means that the actual field site has more moisture explaining better 
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solutions for the shallow GW of -100 cm than the others. Thus, it is not unusual that this 

approach searched different soil ID values, even though the field sites have similar soil 

textures.  

 

 

Figure 4.9: (a) Soil water contents ((h)) and (b) hydraulic conductivities (K(h)) of 

physical soil texture database 

UNSODA[Leij et al., 1999]; SoilSurvey[ stenoW   et al., 1994]; Rosetta[Schaap et al., 1999]
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Table 4.9: Solutions (soil ID) derived by the deterministic downscaling algorithm using the genetic algorithm 

(EMOGA) at the LW 13 and 21 sites for Case 3 

 Study 

sites 

Sub-pixel (ai,j) 

a1,1 a1,2 a1,3 a2,1 a2,2 a2,3 a3,1 a3,2 a3,3 

Soil ID % Soil ID % Soil ID % Soil ID % Soil ID % Soil ID % Soil ID % Soil ID % Soil ID % 

LW 13 

3 10.0 2 10.0 3 6.7 3 16.7 2 3.3 2        6.7  2 3.3 2 3.3 2 3.3 

6 23.3 3 30.0 6 23.3 6 36.7 3 6.7 3     10.0  3 23.3 3 6.7 3 3.3 

8 63.3 6 30.0 8 66.7 8 46.6 6 33.3 6     40.0  6 16.7 6 30.0 6 26.7 

21 3.4 8 30.0 10 3.3 
  

8 50.0 8     43.3  8 56.7 8 56.7 8 56.7 

        
21 6.7 

    
21 3.3 10 6.7 

                
21 3.3 

  Sum 100   100   100   100   100   100   100   100   100 

LW 21 

9 43.3 9 30.0 12 26.7 14 50.0 5 13.3 2 33.3 9 73.3 9 53.3 1 13.3 

5 6.7 1 10.0 2 16.7 9 43.3 9 30.0 12 20.0 14 23.3 1 23.3 2 10.0 

14 43.3 2 23.3 9 26.7 3 3.3 1 20.0 1 23.3 1 3.4 5 6.7 5 10.0 

13 3.3 12 13.3 1 16.7 1 3.4 12 23.3 9 13.3 
  

12 13.3 9 43.3 

1 3.4 5 20.0 5 6.7 
  

2 13.4 7 3.3 
  

2 3.4 12 23.4 

  
7 3.4 3 3.3 

    
5 3.3 

      

    
7 3.4 

    
14 3.4 

      

  Sum 100   100   100   100   100   100   100   100   100 

See Table 4.1 for soil identification (soil ID) values from the simplified soil hydraulic database 

Bold: the exact solution searched 



 

 

113 

 

Figure 4.10a shows the measured (in-situ) and downscaled soil moisture 

dynamics of sub-pixels (ai:1,..,3,j:1,..,3) at the LW 21 site. Mostly, the approach downscaled 

reasonably well the soil moisture estimates (R
2
: 0.343 ~ 0.865 and MBE: -0.165 ~ -

0.122) for the individual sub-pixels with the measurements, although the soil moisture 

values in the sub-pixels (a1,3, a2,2, a3,1) have uncertainties (below 0.1 cm
3
 cm

-3
). The 

lowest soil moisture simulated by the hydrological model is about 0.1 (cm
3
 cm

-3
), but the 

in-situ soil moisture measurements are even lower than the simulated estimates (<1.0 

cm
3
 cm

-3
), which means that the hydrological model is less sensitive during the dry 

condition. We also compared the (h) functions derived by the dominant soil ID values 

(ID: 9, 14 for the sub-pixel 1, and ID: 9, 12 for the sub-pixel 3) for the individual sub-

pixels with the observed (h) functions measured with the soil core samples collected at 

the LW 21 sites (shown in Fig. 4.10(b,c)). The derived (h) functions, which have silt 

(ID: 9) and silt loam (ID: 12) soils, in the sub-pixel a1,3 matched well with the observed 

soil water retention curve, but the (h) functions of sub-pixel a1,1 have a bias compared 

to the observation, especially for sandy clay loam (ID: 14) soil.  

Pixel-based simulated ET estimates for the LW 21 site are illustrated in the Fig. 

4.11. Simulated ET estimates (MBE: -4.378 ~ -3.630, R
2
 is excluded, because of few 

datasets) with wheat crop (at the sub-pixels a1,2, a1,3, a2,2, a2,3, a3,2, a3,3) are higher than 

those of the grass cover (sub-pixels: a1,1, a2,1, a3,1). On DOY 190 ET is relatively 

underestimated compared to the observations, because wheat crop was harvested at 

LW21 site on June 27 (DOY 178) and converted to bare ground. Overall, although DDA 

estimated soil moisture and ET at sub-pixel level have errors due to inherent weaknesses 
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of the adopted hydrological model (SWAP) and limited field measurements, the 

approach generally shows good performance for downscaling the remote sensing 

(ESTAR) soil moisture product.  

 

 
Figure 4.10: (a) Soil moisture dynamics (0-5 cm) of sub-pixels downscaled by the 

deterministic downscaling algorithm using the genetic algorithm (EMOGA) at the 

LW 21 site in Oklahoma, (b) (h) functions of the observation and solutions (soil 

ID: 9, 14), (c) (h) functions of the observation and solutions (soil ID: 9, 12) 
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Figure 4.11: Evapotranspiration of sub-pixels by the deterministic downscaling 

algorithm using the genetic algorithm (EMOGA) at the LW 21 site in Oklahoma 

 

 

  



 

 

116 

 

The downscaled soil moisture dynamics (MBE: -0.203 ~ -0.169) at the LW 13 

site showed more variations than those (MBE: -0.165 ~ -0.122) of the LW 21 site, 

although the correlations (R
2
: 0.724 ~ 0.914) for LW13 are better than those (R

2
: 0.343 ~ 

0.865) for the LW 21 site in Fig. 4.12(a). The simulated soil moisture for the sub-pixels 

(a1,1, a1,2, a1,3, a2,1, a2,3, a3,1) are underestimated compared to the in-situ measurements 

(a1,1, a1,2, a1,3, a2,1, a2,3, a3,1) at LW13. We suggest that as the land surface at the LW 13 

site has a significant slope compared to the flat terrain of LW 21 site (<2% slope) 

indicating that topography causes more uncertainties in downscaling of the RS soil 

moisture products than for a flat site. The derived (h) functions with the solutions (ID: 

8-dominant, silt soil) of the sub-pixels (3 and 6) are compared with the observations in 

Fig. 4.12(b,c). The estimated (h) function in the sub-pixel 6 (a1,3) somewhat 

corresponded well to the observed (h) function, but the water retention curve in the 

sub-pixel 3 (a2,3) deviated from the observed curve. Mostly, the simulated ET estimates 

matched well with the pixel-based ET with the correlations (R
2
: 0.368 ~ 0.990) and 

MBE (MBE: -4.652 ~ -4.171). But, pixel-based ET estimation of sub-pixel (a3,1) on 

DOY 158 is considerably higher than other values estimated by the S-SEBI model (Fig. 

4.13), because of a noise within the pixel and the presence of a small pond. The presence 

of pond is ignored during hydrologic model simulation. In summary, the DDA approach 

has uncertainties for extracting the soil ID values of sub-pixels within the RS soil 

moisture footprints. However, the (h) functions, soil moisture dynamics (t), and ET (t) 

estimates of individual sub-pixels matched reasonably well with the observations and 

demonstrated the applicability of our approach at the field-scale.  
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Figure 4.12: (a) Soil moisture dynamics (0-5 cm) of sub-pixels downscaled by the 

deterministic downscaling algorithm using the genetic algorithm (EMOGA) at the 

LW 13 site in Oklahoma, (b) (h) functions of the observation and solutions (soil 

ID: 8), (c) (h) functions of the observation and solutions (soil ID: 8) 
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Figure 4.13: Evapotranspiration of sub-pixels by the deterministic downscaling 

algorithm using the genetic algorithm (EMOGA) at the LW 13 site in Oklahoma 
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4.5 Conclusions 

We developed a deterministic downscaling algorithm using the ensemble 

multiple operator genetic algorithm (EMOGA) for estimating the (sub-pixel) finer-scale 

soil moisture from the remotely sensed (RS) soil moisture (SM) and evapotranspiration 

(ET) products based on the inverse modeling. We extracted the pixel-based soil ID 

values (representing soil textures) of sub-pixels within the RS pixel and simulated the 

long-term SM and ET dynamics through the hydrological model using the searched (soil 

ID) results of sub-pixels. Synthetic experiments were conducted under various (simple, 

relatively complex, and complex) land surface conditions with different vegetation 

covers (wheat, soybean, grass, and maize) and ground water tables (-100, -150, and -200 

cm), respectively. Then, we validated the applicability of this approach with the in-situ 

soil moisture measurements and (h) curves derived by the soil hydraulic parameters 

obtained from the soil core samples collected at the field (LW 13 and 21) sites in 

Oklahoma.  

The synthetic cases show the robustness of the algorithm for extracting the soil 

ID values of sub-pixels. Under the simple, relatively complex, and complex land surface 

conditions, this approach fairly identified the solutions of sub-pixels, although 

uncertainties were included in the derived solutions. Land covers have more impacts on 

the model performance than the presence of ground water tables. In the field 

experiments, the downscaled soil moisture estimates of sub-pixels (from ESTAR) show 

the moderate correlation (R
2
: 0.724 ~ 0.914, MBE: -0.203 ~ -0.169 for the LW 13; R

2
: 

0.343 ~ 0.865, MBE: -0.165 ~ -0.122 for the LW 21) with the in-situ measurements. 
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Mostly, the DDA searched silt and silt loam soils (soil ID: 8, 9, 12) as dominant soils at 

the individual sub-pixels compared to the observations (predominantly silt loam) at the 

LW 13 and 21 sites. Although there exists uncertainties due to the non-uniqueness of 

solutions (e.g., similarities of soil hydraulic responses among the soil textures included 

in the physical soil texture database, co-linearity of covariates, inherent weakness of 

hydrological model structures, and errors in measurements and initial/boundary 

conditions) and few pixel-based ET measurements available, results show good 

performance of the approach. In other words soil moisture estimates downscaled by the 

deterministic downscaling algorithm matched well with the generated observations 

under synthetic conditions and field measurements. The good match of observed (field-

observed soil hydraulic properties) and simulated (derived-soil ID values) (h) functions 

supports the robustness of our approach further in downscaling the RS products at the 

airborne or spaceborne footprint scales. On the basis of these findings, we suggest that 

the deterministic downscaling algorithm with the genetic algorithm (EMOGA) is useful 

for downscaling the remotely sensed soil moisture products at the spatio-temporal scales 

using the pixel-based evapotranspiration. 
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CHAPTER V 

DEVELOPMENT OF DOWNSCALING AND UPSCALING ALGORITHMS FOR 

REMOTELY SENSED SOIL MOISTURE IN COMPLEX TERRAIN AT 

MULTIPLE SCALES 

5.1 Synopsis 

More recently spatial scaling algorithms have been developed to improve the 

availability of remotely sensed (RS) soil moisture for hydrologic applications. Existing 

approaches still have limitations, i.e., application in complex terrain, complexity of 

coupling down- and up-scaling schemes, etc. In this study, we developed a scaling (joint 

downscaling and upscaling) algorithm for remotely sensed and in-situ soil moisture 

measurements. Our new scheme can downscale RS soil moisture products as well as 

upscale in-situ measurements simultaneously across a topographically complex regional 

area. The approach is based on an inversion model using a genetic algorithm. 

Normalized digital elevation model (NDEM) and normalized difference vegetation index 

(NDVI) representing the heterogeneity of topography and vegetation covers were used to 

characterize the complexity of land surface. First, the approach quantified soil hydraulic 

parameters from RS and in-situ soil moisture data at multiple scales. Soil moisture 

predictions were derived by these estimated hydraulic parameters using the Soil-Water-

Atmosphere-Plant (SWAP) model. As model simulated soil moisture predictions were 

generated for different NDEM and NDVI values across the spatial domain at a finer-

scale (30 m30 m), downscaled and upscaled values were obtained at the scale of 

interest. The Little Washita watershed in Oklahoma was selected to validate this 
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methodology at the airborne- and satellite-footprint scales. New scaling approach 

performed well in several topographically complex footprints. The newly developed 

scaling (joint downscaling and upscaling) algorithm could improve the availability of RS 

soil moisture for agriculture and water resources management efficiently.  

5.2 Introduction 

 Remote sensing (RS) techniques provide routine land surface soil moisture (SM) 

data at regional and global scale such as airborne-sensing (Electronically Scanned 

Thinned Array Radiometer, ESTAR [Jackson et al., 1999], Polarimetric Scanning 

Radiometer, PSR [Bindlish et al, 2006]), and space-borne (Soil Moisture and Ocean 

Salinity, SMOS [Kerr et al., 2001], Advanced Microwave Scanning Radiometer - Earth 

Observing System, AMSR-E [Njoku, 2008], and upcoming Soil Moisture Active and 

Passive, SMAP [http://smap.jpl.nasa.gov], among others). However, RS soil moisture 

data have a limitation in application at regional scales due to the scale discrepancy 

between the RS footprint size and model grid resolution [Engman, 1991; Entekhabi et 

al., 1999]. In order to overcome this drawback, down-/up-scaling algorithms are required 

to improve the quality of available RS soil moisture for agriculture and water resources 

management.  

 A few downscaling methods [Das et al., 2008b; Kerr et al., 2001; Kim and 

Barros, 2002; Merlin et al., 2005] have been explored for extracting fine-scale soil 

moisture information within a large RS pixel. Satellite-based soil moisture products were 

downscaled to obtain surface soil dielectric values approximating to soil water contents 

with a soil dielectric inversion model [Crow et al., 2000]. An interpolation approach was 
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developed for passive microwave data based on fine-scale active microwave data [Kim 

and Barros, 2002; further Das et al., 2008b; Das et al., 2011]. A downscaling algorithm 

was developed by Merlin et al., [2005] using fine-scale optical data during the SMOS 

mission for scaling down large-scale soil moisture footprints. However, downscaling 

schemes still have been limited in applications across complex landscapes at various 

scales.  

Upscaling algorithms have been developed with considerable attention for 

extracting land surface information contained within RS soil moisture footprints by 

calibration of coarse-scale land surface models. In upscaling algorithms, in-situ soil 

moisture measurements at point-scale should be representative of the heterogeneity 

across the land surface comprising of various soil textures, vegetation covers, and 

topography [Crow et al., 2005; Jana and Mohanty, 2012a,b,c]. De Lannoy et al., [2007] 

conducted a data assimilation experiment for the upscaling approach indicating that soil 

moisture data measured from a site that can represent a study region improved the 

upscaled results. Das et al. [2008a] developed a Markov Chain Monte Carlo (MCMC) 

based data assimilation algorithm where moisture evolution was modeled at a spatial 

scale comparable to the AMSR-E soil moisture product. The basic hypothesis for their 

study was that the characterization of soil microwave emissions and their variations with 

space and time on soil surface within the remote sensing footprint can be represented by 

an ensemble of upscaled soil hydraulic parameters. These upscaled soil hydraulic 

parameters could somewhat represent the hydrologic complexities due to topography, 

vegetation, soil, and other landscape features within the RS footprint. However, in-situ 
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soil moisture measurements are necessarily required for evaluating the upscaling 

performance indicating that this approach is also limited in areas where observation 

information is not available.  

 From the above point of view, downscaling and upscaling algorithms have not 

only complementary features, but also retain their own limitations of application (due to 

the scale discrepancy, applications in complex terrain, requirement of in-situ soil 

moisture measurements etc.). Most of all, the use of both downscaling and upscaling 

approaches could reduce their drawbacks, but at the same time may require a large 

number of input parameters for hydrological models using different optimization 

schemes and cause complexity in its application. To our knowledge, no studies have 

been conducted with respect to down-/up-scaling approaches simultaneously with an 

easy application to soil moisture variability. Furthermore, topographic complexity of 

landscapes still has not been considered for downscaling RS soil moisture footprints at 

various scales.  

In this study, we developed a new scaling algorithm for estimating finer-scale 

soil moisture in complex terrains at the airborne- and satellite-footprint scales. The 

approach uses a simulation-optimization scheme, Soil-Water-Atmosphere-Plant (SWAP) 

model with genetic algorithm (GA) based inverse modeling. The objectives are two-fold; 

1) to develop a joint downscaling and upscaling algorithm for remotely sensed and in-

situ soil moisture data and 2) to analyze the impacts of land surface conditions 

(topography and vegetation covers) in the model performance at multiple scales. This 

approach could provide an attractive alternative and easy application for improving the 
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availability of RS soil moisture products at different scales and efficient water resources 

management in the real world.  

5.3 Methods and Materials 

5.3.1  Conceptual Framework for the Joint Downscaling and Upscaling Algorithm  

Topography [Jana and Mohanty, 2012a] and variable vegetation covers [Clark 

and Arritt, 1995] represented by elevation from digital elevation models (DEM) and 

normalized difference vegetation index (NDVI) respectively, significantly influence soil 

moisture dynamics near the land surface. The influence of DEM [Jana et al., 2008; Jana 

and Mohanty, 2012a,b,c] and NDVI [Farrar et al., 1994; Liu and Kogan, 1996; Adegoke 

and Carleton, 2002; Wang et al., 2007] on soil moisture can be used as physical controls 

for downscaling RS soil moisture as well as upscaling in-situ measurements. Thus, we 

hypothesize that the inclusion of topography (DEM) and vegetation (NDVI) in spatial 

scaling algorithms of soil moisture will lead to better estimates of soil moisture. 

Influence of topography and vegetation can be incorporated in the scaling algorithm by 

including the relative spatial distribution of elevation and vegetation cover in the 

domain.  

Although the moisture redistribution process could be quite complex with 

multiple parallel surface and near-surface flow mechanisms contributing to soil moisture 

status in topographically complex landscapes, generally, surface runoff causes the soil 

moisture values at lower elevations to become higher than those at higher elevations 

under homogeneous land surface conditions [Jana and Mohanty, 2012a,b,c]. In a relative 

sense it may mean that DEM enables the routing of soil water across a three-dimensional 
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(3-D) topographically complex landscape and thus can be treated as a proxy for near-

surface soil water status. In the proposed algorithm, normalized DEM (NDEM) values in 

Eq. (5.1) have been used as an indicator of the relative topographical position of a point. 

The NDEM values range from 0.0 to 1.0 with 0 representing the highest point on the 

slope (Fig. 5.1a). If soil moisture at a given elevation on the slope is known then the soil 

moisture at another elevation can be determined based on its NDEM.  

ji
i,j

i,j 



  

DEMDEM

DEMDEM
NDEM

minmax

max
      (5.1) 

where, i: the row number of sub-pixels within a RS soil moisture pixel,  j: the column 

number of sub-pixels within a RS soil moisture pixel, DEM: the digital elevation model 

(m), NDEM: the normalized DEM, DEMmax: the maximum DEM, and DEMmin: the 

minimum DEM within the RS pixel. 

 

 

Figure 5.1: (a) Normalized digital elevation model (NDEM), (b) schematic of the 

downscaling and upscaling algorithm based on NDEM and NDVI using the genetic 

algorithm 
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Normalized difference vegetation index (NDVI) can be used to represent the 

degree of land surface that is covered by vegetation. It implies regions with high NDVI 

values (representing a higher vegetation cover) can hold more water than those with low 

NDVI [Wang et al., 2007]. This also indicates that root zone soil moisture has a 

significant correlation with NDVI under semi-arid and humid regions [Wang et al., 

2007, Sharma et al., 2006, Farrar et al., 1994, Liu and Kogan, 1996]. Thus, we used 

fine-scale NDVI estimates (Eq. 5.2) obtained from RS images (provided from 

LANDSAT5-TM and LANDSAT7-ETM) for this approach. Considering daily 

variations of fine-scale NDVI is practically impossible due to the sparsely available time 

series of RS datasets. Furthermore, hydrological models already include physically-

based crop growth models (i.e., WOFOST, Supit et al., [1994]) that consider plant 

growth across the time series. For these reasons, we used NDVI taken for a single day 

during the simulation period and considered the relative impact of areal heterogeneity of 

vegetation covers at the RS pixel-scale. Analogous to NDEM, as soil moisture at a given 

NDVI is known then soil moisture at another NDVI can be obtained based on its NDVI. 

ji
i,ji,j

i,ji,j

i,j 



  

rr

rr
NDVI

p3,p4,

p3,p4,
       (5.2) 

where, rp3 and rp4: the RS images (band 3 and 4 from LANDSAT5-TM, 1997 and 

LANDSAT7-ETM, 2003, 30 m  30 m). 

For this approach, we adapted a near-surface (0-1/0-5 cm) soil moisture data 

assimilation scheme [Ines and Mohanty, 2008a] using a simulation-optimization 

framework. The simulation is carried out by running the one-dimensional (1-D) 
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hydrological model, Soil-Water-Atmosphere-Plant (SWAP, van Dam et al., [1997]), and 

the outputs are optimized through a genetic algorithm (GA). The data assimilation 

scheme aims for quantifying soil water retention (θ(h)) and hydraulic conductivity 

(K(h)) by optimizing ‘effective’ soil hydraulic parameters {P=(, n, res, sat, Ksat)}. Soil 

hydraulic parameters k (Eq. 5.3) are determined by minimizing the difference (e) 

between observed and simulated soil moisture estimates using the objective function 

(Z(k)) in Eq. (5.4). Genetic algorithms (GAs) are powerful search algorithms for solving 

the optimized solutions based on the precept of natural selection mechanism [Holland, 

1975; Goldberg, 1989]. In this study, we used the modified-microGA [Ines and 

Mohanty, 2008a] for this approach based on an inversion model. The GA has been 

successfully used in quantifying the soil hydraulic properties in the unsaturated zone. 

The readers are referred to Ines and Mohanty, [2008a,b, 2009] and Shin et al., [2012] for 

more details of the modified-microGA.  

A remote sensing footprint assigns an average soil moisture value to the entire 

pixel, irrespective of the heterogeneity of topography and vegetation covers the pixel is 

comprised of. For the downscaling algorithm, our proposed approach quantified 

effective soil hydraulic parameters of the RS soil moisture pixel. These estimated 

hydraulic parameters have been used to simulate pixel-scale soil moisture estimates 

(θp(k,t)) using the SWAP model and that in turn were used to generate distributed 

(subpixel-scale) soil moisture estimates ( i,jd,θ̂ (k,t), Eq. 5.5) at different elevations and 

vegetation covers based on the NDEM and NDVI with the weighted formulation as in 

Eq. (5.4). The GA repeatedly estimates hydraulic parameters in the given generations 
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until the difference between the RS pixel and average of distributed (subpixel-scale) soil 

moisture predictions was minimized (Fig. 5.1b and Eq. 5.4). Thus distributed soil 

moisture estimates optimized by the GA for different elevations and heterogeneous 

vegetations across the land surface ( i,jd,θ̂ (k,t)) are obtained.  

For the upscaling algorithm, in-situ soil moisture data at a particular elevation 

(m) within a RS footprint were used. Analogous to the downscaling algorithm, this 

approach quantifies soil hydraulic parameters (k) from in-situ ( (t)θ situin ) data and 

simulates soil moisture dynamics (in(k,t)) with the SWAP model. In-situ data already 

incorporated the impacts of elevation (NDEM) and vegetation cover (NDVI) at field-

scales. By using NDEM and NDVI information, we assumed that simulated soil 

moisture data (in(k,t)) at the in-situ data sampling location can be mathematically 

solved as shown in Eq. (5.6). Note that the soil moisture θref(k,t) defined as the reference 

soil moisture indicates that the effects of elevation and vegetation were mathematically 

excluded from simulated soil moisture data. As we extract the reference soil moisture, 

distributed soil moisture ( i,ju,θ̂ (k,t)) for another sub-pixel can be determined by adding 

NDEM and NDVI to the reference value (Eq. 5.7). In order to assign different weights to 

NDEM and NDVI in the objective function (Eq. 5.4), we used the weighting factor (f) in 

Eqs. (5.5-5.6). A weighting factor of f=0 indicates that the entire weight is given to 

NDVI whereas a weighting factor of f=1 means that the entire weight is given to NDEM.  

k ={P, =0.5}           (5.3) 
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t )NDVIt)(k,θ()f1() |NDEM|t)(k,θ(ft)(k,θt)(k,θ̂ ,pji,ppd,  jii,j  (5.5) 

tNDVIt)(k,θf)1(NDEMt)(k,θft)(k,θt)(k,θ refrefrefrefrefin   (5.6) 

t NDVIt)(k,θ|NDEM|t)(k,θt)(k,θt)(k,θ̂ ,refji,refrefu,  jijii,j  (5.7) 

where, t: the (running) index for time, T: the time domain,  M: the number of rows (i), 

N: the number of columns (j), (t): the observed soil moisture with the time (t), Z: the 

(minimizing) objective function, e: the difference between the observed and simulated 

results, f: the weighting factor (0  f  1), and DEMref and NDVIref: the reference 

elevation and vegetation (indicating NDEM and NDVI at the in-situ soil moisture 

sampling location), respectively. Note it is assumed that lateral flow between sub-pixels 

incorporated the DEM near the land surface. The fitness of searched solutions 

(representing the soil parameters) is assessed using the fitness function in Eq. (5.8). The 

Fitness(k) function is maximized as Z(k) is minimized. 

Fitness(k)=maximize[Z(k)]
-1

       (5.8) 

The Noah Land Surface Model (Noah LSM, NCEP, [2005]) and Community 

Land Model [CLM, Oleson et al., 2010] can also simulate vertical soil moisture 

dynamics in the soil profile as well as SWAP. These models have different model 

structures and parameters such as input parameters (climatic forcing datasets, soil 

textures, vegetation covers, initial and bottom boundary conditions, soil layering, etc.) 
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indicating that each model has its own performance capability and drawbacks. In order 

to verify our methodology, we additionally tested these models and analyzed the impacts 

of different model structures for the newly developed scaling algorithm. These 

hydrological models are robust-validated models under various meteorological and 

environmental conditions [Wesseling and Kores, 1998; Droogers and Bastiaanssen, 

2002; van Dam et al, 1997; Ahmad et al., 2002; NCEP, 2005; Oleson et al., 2010, among 

other]. The soil water flow along the soil profile can be described based on the Richards' 

equation. The SWAP, Noah LSM, and CLM models are well known in the hydro-

climate modeling literature and, thus, not elaborated here. The search spaces of input 

parameters for three models were shown in Table 5.1. 

In this study, we only considered the near-surface (0-1/0-5 cm) soil moisture data 

corresponding to the penetration depths of passive microwave C-/L-band sensors (6.9 

and 1.4 GHz) in the unsaturated zone (representing that vertical soil water flow is 

dominant). For these reasons, it is assumed that the soil column is homogeneous in the 

model performance. The soil profile was discretized by 33 computational layers for the 

SWAP model. The soil column at the near-surface of 10 cm (1-10
th

 layer) had intervals 

of 1 cm. And the sub-surface (11-20
th 

and 20-32
nd

 layers) 10-60 and 60-200 cm from the 

soil surface were discretized at the intervals of 5 cm and 10 cm (20 cm for the 33
rd

 

layer), respectively. The soil column (total depth: 200 cm) for the Noah LSM model was 

discretized by seven computational layers with thickness of 5, 5, 10, 10, 20, 30, and 120 

cm. The CLM model has the soil profile discretized into 10 computational layers and the 
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layer thicknesses increase with depth such as 1.75, 2.76, 4.55, 7.5, 12.36, 20.38, 33.60, 

55.39, 91.33, and 113.7 cm from the soil surface (total depth: 343 cm). 

5.3.2  Description of Study Sites and Data  

We tested the performance of this approach for the Little Washita (LW) 

watershed in Oklahoma at multi-scales (LW 13 and 21 sites for the airborne-scale and 

LW site for the satellite-scale) during the crop growing season (March 1 to July 31), as 

shown in Fig. 5.2. The in-situ and airborne-based soil moisture (0-5 cm) estimates were 

taken during the Southern Great Plains experiment (SGP97: June 18 - July 18, 1997) 

[Mohanty et al., 2002]. The in-situ near-surface (0-5 cm) soil moisture measurements 

(24 days for the LW 13 and 17 days for the LW 21, Mohanty et al., [2002]) were 

collected at the 49 (77) sampling points across the field sites. The RS pixel-based (0-5 

cm) soil moisture products (airborne Electronically Scanned Thin Array Radiometer, 

ESTAR) were taken for 17 days at the LW 13 and 21 sites [Jackson et al., 1999]. The 

satellite-based (Advanced Microwave Sensing Radiometer, AMSR-E, [Njoku, 2004]) 

soil moisture products (46 days) during 2003 were used for the LW site. 
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Table 5.1: Parameter constraints used in the genetic algorithm for various 

hydrological models 

Numerical 

scenarios 

Numerical 

scenarios 
Parameters 

Search space No. of  

bit (L) 
Binary(2

L
) 

Min. values Max. values 

Scenarios 

1
*
 and 2

**  SWAP 

a
a
 0.006 0.033 5 2

5 
(32) 

n
b
 1.2 2.1 6 2

6
 (64) 

res
c
 0.03 0.16 7 2

7
 (128) 

sat
d
 0.3 0.55 5 2

5
 (32) 

Ksat
e
 1.84 130 10 2

10
 (1024) 

 
      

Scenarios 1
*
 Noah LSM 

maxsmc
f
 0.35 0.55 5 2

5 
(32) 

psisat
g
 0.1 0.65 6 2

6
 (64) 

satdk
h
 1.0E-06 1.0E-05 6 2

6
 (64) 

B
i
 4 10 6 2

6
 (64) 

quartz
j
 0.1 0.82 5 2

5
 (32) 

vrcmin
k
 40 400 8 2

8 
(256) 

rgl
l
 30 100 7 2

7
 (128) 

Hs
m

 36 55 6 2
6
 (64) 

Z0
n
 0.01 0.1 5 2

5
 (32) 

LAI
o
 0.1 5 6 2

6
 (64) 

 
      

Scenarios 1
*
 CLM 

WATSAT
p
 0.33 0.66 5 2

5 
(32) 

HKSAT
q
 1.00E-05 0.1 8 2

8 
(256) 

BCH
r
 3 10 6 2

6
 (64) 

SMPSAT
s
 -750 -30 7 2

7
 (128) 

WATDRY
t
 0.02 0.3 5 2

5 
(32) 

*
airborne-scale; 

**
satellite-scale 

SWAP: 
a
Empirical shape parameter (cm

-1
), 

b
Empirical shape parameter (-), 

c
Residual water content (cm

3
 

cm
-3

), 
d
Saturated water content (cm

3
 cm

-3
) and 

e
Saturated hydraulic conductivity (cm d

-1
). 

Noah LSM: 
f
Maximum volumetric soil moisture (m

3
 m

-3
); 

g
Saturated soil matric potential (m m

-1
); 

h
Saturated soil hydraulic conductiviey (m s

-1
); 

i
Clapp-Hornberger b parameter; 

j
Quartz content;

 k
Minimal 

stomatal resistance (s m
-1

); 
l
Parameter used in solar radiation term of canopy resistance; 

m
Parameter used 

in vapor pressure deficit term of canopy resistance; 
n
Roughness length (m); 

o
Leaf area index. 

CLM: 
p
Volumetric soil water content at saturation; 

q
Saturated soil hydraulic conductivity (mms

-1
); 

r
Clapp-

Hornberger b parameter; 
s
Saturated soil matric potential (mm mm

-1
); 

t
Soil water content 
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Figure 5.2: Study area; (a) Little Washita (LW) watershed in Oklahoma, (b) LW 21, (c) LW 13, and (d) LW sites 

including the digital elevations (49 in-situ soil moisture measuring points), NDVI, vegetation covers, and remotely 

sensed (ESTAR and AMSR-E) soil moisture footprints 
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The LW 13 and 21 sites are composed of a (predominant) silt loam soil [Mohanty 

et al., 2002]. The LW 21 site has two different vegetation covers (winter wheat for the 

two thirds and the other third for the short native grass). The wheat cover area has a flat 

slope (less 1%) and the grass cover region is relatively rolled (3-12%). The LW 13 site 

has a hill slope with the grass cover. The LW site at the satellite-scale has various soil 

textures with different vegetation covers (with grass being dominant). The land surface 

information for the LW study site is shown in Fig. 5.2d. Daily weather datasets such as 

precipitation, wind speed, maximum and minimum temperature, and solar radiation for 

the input parameters of hydrological (SWAP, Noah LSM, and CLM) models were 

collected from the USDA-Agricultural Research Service (ARS 136 for the LW 13 site, 

ARS 149 for the LW 21 site, and ARS 133, 134, 146, and 149 for the LW site; 

http://ars.mesonet.org/) Micronet weather station in Oklahoma. We used the digital 

elevation model (http://seamless.usgs.gov/website/seamless/viewer.htm) and NDVI 

obtained from LANDSAT5-TM (taken on DOY 110, 1997) and LANDSAT7-ETM 

(taken on DOY 119, 2003) images with a finer resolution (30 m30 m) at the study sites 

(Table 5.2). The field-observed hydraulic parameters [as shown in Table 5.3 from 

Mohanty et al., 2002] obtained from the soil core samples at the soil depth of 3-9 cm 

were used for validation. 

  

http://ars.mesonet.org/
http://seamless.usgs.gov/website/seamless/viewer.htm
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Table 5.2: Description of the fine-scale LANDSAT images 
Image Character Values 

Sensor LANDSAT5-TM LANDSAT7-ETM 

Path/Row 28/36 28/36 

Acquisition date (time) 20 April 1997 (DOY 110) 29 April 2003 (DOY 119) 

Reference system UTM-14N UTM-14N 

Resolution Band 3 and 4 (30m30m) Band 3 and 4 (30m30m) 

 

 

Table 5.3: Field-observed soil hydraulic properties derived by the soil core samples 

collected at the LW 03, 13, and 21 sites in Oklahoma 

Sites Soil depth 
Soil 

samples 


a
 n

a
 res

a
 sat

a
 Ksat

a
 

LW 03 3-9 cm 

1 0.010 1.787 0.039 0.370 46.051 

2 0.012 1.381 0.089 0.341 4.216 

3 0.014 2.085 0.030 0.380 95.645 

4 0.014 2.057 0.046 0.361 88.128 

        

LW 13 3-9 cm 
1 0.012 1.262 0.106 0.435 129.427 

2 0.009 1.387 0.068 0.387 22.550 

        

LW 21 3-9 cm 
1 0.006 1.581 0.117 0.429 31.795 

2 0.009 1.734 0.115 0.432 17.885 
a
Field observations  [Mohanty et al., 2002] 
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5.3.3  Field Experiment 

 We conducted the field studies for testing the scaling (joint downscaling and 

upscaling) algorithm at multi-scales. The field experiments were comprised of two 

scenarios under the rain-fed conditions: i) scenario 1: airborne-scale and ii) scenario 2: 

satellite-scale, respectively.  

In scenario 1, we tested various weighting factors (f) ranging from 0.1 to 0.9 at 

the LW 13 site for evaluating the impacts of topography (NDEM) and vegetation covers 

(NDVI) in the model performance and selected the one providing the best fitness. With 

the selected weighting factor, the RS (ESTAR) and in-situ soil moisture data were down- 

and up-scaled by this approach at the study sites. Then, downscaled and upscaled results 

were validated with the in-situ soil moisture data. The soil moisture measurements of 

sub-pixels at the LW 13 (sample ID 04 with the elevation 372 m) and 21 (sample ID 27 

with the elevation 437 m) sites were upscaled (Fig. 5.2b-c). Additionally, Noah LSM 

and CLM models were used to test our approach in only upscaling in-situ soil moisture 

data at the LW 13 site based on the selected weighting factor. Three hydrological models 

have different model settings for the initial and bottom boundary conditions. In order to 

compare the impacts of different model structures, we assumed that the bottom boundary 

condition was governed under free drainage (Table 5.4). Note that the initial soil 

moisture conditions for Noah LSM and CLM were determined through spinning up of 

models in the preceded term before the simulation period. Also, we only used the fitted 

parameters searched by the GA for each model in the comparison study.  
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Table 5.4: Modeling conditions of the genetic algorithm and various hydrological 

models 
  Field experiments 

 
SWAP Noah LSM CLM 

GA parameters: 
 

  

  No. population 10 10 10 

  No. seed -1000 -1000 -1000 

  No. generation 500 500 500 

  
  

  Pcreep 0.05 0.05 0.05 

  Pcross 0.5 0.5 0.5 

  Pmutate 0.05 0.05 0.05 

  
  

Modeling Conditions: 
 

  

  Top boundary 
Time dependent 

flux/head 

Time dependent 

flux/head 

Time dependent 

flux/head 

  Bottom boundary 

Free drainage (FD),  

ground water (GW) 

table 

depths (-100, -150, -200 

cm) 

Initial soil moisture 

condition was 

determined through 

spinning up of model 

Initial soil moisture 

condition was 

determined through 

spinning up of model 

  Initial conditions 

h(z,t=0)=-200, -300, -

500 cm for FD 

Equilibrium with the 

bottom boundary 

conditions for GW  

 

 

For the scenario 2, we downscaled the satellite-scale (AMSR-E) soil moisture (0-

1 cm) products across the LW site using the joint NDEM and NDVI. Downscaled results 

were validated using the fine-scale (30 m30 m) temperature (C) obtained from 

LANDSAT7-ETM data, because of no in-situ soil moisture data available. The LW 13 

and 21 sites have relatively small areas (800 m800 m) and predominant silt loam soils 

[Mohanty et al., 2002] indicating that a silt loam soil can represent these study sites. 

Therefore, this approach can upscale in-situ soil moisture data measured from a single 

location across each study site at the airborne-scale. However, the upscaling approach at 

the satellite-scale needs in-situ datasets measured from multiple locations representing a 
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large area to be verified. In this study, the in-situ data in a single location (LW 03 site) is 

only available for validation within a large-scale RS pixel. Hence, the upscaling 

algorithm at the satellite-scale was excluded and will be verified with available in-situ 

measurements in a future work. Additionally, we compared water retention curves ((h)) 

derived by the field-observed (Table 5.3) and estimated soil hydraulic parameters to 

support the robustness of this approach at the airborne- and satellite-scales. 

Generally, the initial and bottom boundary conditions significantly influence the 

performance of physically-based hydrological model in estimating hydraulic parameters, 

but these conditions were unknown at field-scales. We tested the impacts of various 

initial and bottom boundary conditions in modeling under free-drainage and presence of 

ground water table depths (-200, -150, and -100 from the soil surface) in Table 5.4. 

Then, we conducted uncertainty analysis under the different initial and bottom boundary 

conditions. The solutions (maximum fitness) of various conditions searched by the GA 

were averaged and classified them above and below the average. We only selected the 

solutions (above average) and calculated the statistics (correlation-R
2
 and root mean 

square error-RMSE) of chosen solutions in Eqs. (5.9-5.10). The variability of solutions 

selected above average was shown as the 95 percent confidence interval ( 95PCI) in 

Eq. (5.11).  

R
2

(Y)(X)

Y)(X,

VarVar

Cov
         (5.9) 

RMSE=
T

)Y(X
T

1t

2
tt





        (5.10) 
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 95PCI=Avg.  1.96SD       (5.11) 

where R
2
: the Pearson’s correlation, X: the observations, Y: the output results, Cov: the 

covariance of X and Y, Var: the variance of X or Y, +95PCI: the upper boundary, 

95PCI: the lower boundary, Avg.: the average of output results, and SD: the standard 

deviation of output results.   

5.4 Results and Discussion 

5.4.1 Scenario 1: Airborne-Scale 

We tested the impacts of various weighting factors (0.1f0.9) for the model 

performance at the LW 13 site as shown in Fig. 5.3. Overall, the correlations (R
2
: 

0.408~0.495) with various weighting factors were not considerably changed. However, 

as the more weights were given to the NDEM (f=0.9) or NDVI (f=0.1), the upscaled 

results (RMSE: 0.097 and RMSE: 0.091) had more uncertainties compared to the in-situ 

data. Especially, as the weights were given to the NDEM, the distributed soil moisture 

predictions were similarly shown across topography with more uncertainties. The results 

(R
2
: 0.489 and RMSE: 0.087) under the joint NDEM and NDVI (f=0.5) matched the in-

situ data with good correlation and reduced uncertainties. Thus, we selected the 

weighting factor of f=0.5 for the downscaling and upscaling approaches.  

Figure 5.4 shows the impacts of various initial and bottom boundary conditions 

for the model performance at the LW 13 site. We compared the averaged near-surface 

soil moisture predictions of all sub-pixels downscaled by this approach with the 

observations (ESTAR and in-situ measurement).  
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The results have large variations in modeling along the time series. Since the 

rainfall events were generated, the near-surface soil moisture predictions under free-

drainage were considerably increased up compared to those of ground water tables, 

especially with the initial condition of -500 cm (from the soil surface). As the variations 

became stable during the dry days, the soil moisture dynamics with the presence of 

shallow ground water tables tend to gradually increase more than those of the free-

drainage conditions. It may indicate that soils near the surface absorbed rainfall water 

quickly into the soil matrix under the free-drainage conditions. On the other hand, when 

the bottom boundary condition is governed by the ground water table, moisture is 

constantly delivered from ground water to the root zone by the capillary upward flow 

phenomena and root activities.  

Generally, the soil water content near the soil surface is significantly affected by 

the atmospheric forcings at field-scale. However, these findings showed that the initial 

and bottom boundary conditions also have a large impact on soil moisture estimates as 

much as the weather conditions.  

Therefore, we used the statistics (average and 95 PCI) of derived soil moisture 

dynamics under various initial and bottom boundary conditions for uncertainty analysis 

at the spatio-temporal scales.  
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Figure 5.3: (a) In-situ and (b-j) upscaled near-surface (0-5 cm) soil moisture with the various weighting factors 

(0.1f0.9) on DOY 178 at the LW 13 site 
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Figure 5.4: The observed (ESTAR and in-situ) and averaged (for the downscaled sub-pixels) near-surface (0-5 cm) soil 

moisture dynamics at the time series under various initial and bottom boundary conditions 
FD: free-drainage with the initial condition of -500, -300, and -200 cm from the soil surface 

GW: ground water tables of -200, -150, and -100 cm (the initial conditions were in equilibrium with the GW) 
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Figure 5.5 presents the measured (at the 49 measuring points) and predicted 

(downscaled and upscaled) near-surface (0-5 cm) soil moisture estimates on DOY 178 

and 182 for the LW 13 site. We showed the results of two days only for the sake of 

brevity. Mostly, the downscaled and upscaled near-surface soil moisture estimates (R
2
: 

0.307~0.500 and RMSE: 0.064~0.102) matched the in-situ measurements across a hill 

slope, although some uncertainties exist. However, when we compared the in-situ 

measurements on DOY 178 to those on DOY 182, the measured soil moisture estimates 

were not matched exactly across the land surface (topographically). Soil moisture values 

could be different based on the rainfall amounts, but the spatial distributions of soil 

moisture on DOY 178 and 182 would be similarly shown at least. It indicated that 

uncertainties between the estimated results and in-situ soil moisture data might be due to 

the measurement errors (i.e., determination of sampling points near plants, operator 

errors, etc.). The downscaled (R
2
: 0.406 and RMSE: 0.040) and upscaled (R

2
: 0.406 and 

RMSE: 0.074) soil moisture estimates on DOY 173 at the LW 21 site matched well with 

the measurements (Fig. 5.6), but the results (R
2
: 0.204 and RMSE: 0.064 for the 

downscaling, R
2
: 0.204 and RMSE: 0.091 for the upscaling) on DOY 180 were less 

identifiable. As shown in the results of LW 13 site, the in-situ data at the sub-pixels (i=1, 

j=5,…,7) on DOY 173 and 180 even had uncertainties each other indicating that the 

relatively low statistics of results on DOY 180 might be affected by the measuring 

errors. When we considered that the LW 21 site has the grass (i=1,…,3, j=1,…,7) and 

wheat (i=4,…,7, j=1,…,7) covers as shown in Fig. 5.2b, the downscaled and upscaled 

soil moisture estimates were similarly distributed with both topography and vegetations.  
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Figure 5.5: In-situ, downscaled, and upscaled near-surface (0-5 cm) soil moisture; 

(a-c) DOY 178 and (d-f) DOY 182 on a hill slope at the LW 13 site 

 

 

 

Figure 5.6: In-situ, downscaled, and upscaled near-surface (0-5 cm) soil moisture; 

(a-c) DOY 173 and (d-f) DOY 180 on a hill slope at the LW 21 site 
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We compared the averaged near-surface (0-5 cm) soil moisture dynamics of all 

sub-pixels downscaled from the ESTAR products with the in-situ measurements at the 

LW 13 site along the time series (Fig. 5.7). The results were only shown from June 1 to 

July 31 comparable to the in-situ data. The results fairly matched the ESTAR products 

with the correlation (R
2
: 0.881) and root mean square error (RMSE: 0.019). However, 

the downscaled results (R
2
: 0.836 and RMSE: 0.072) were underestimated when 

compared to the in-situ measurements. The RS pixel-based soil moisture products tend 

to be underestimated from the in-situ measurements on a hill slope. This tendency 

contributed to the underestimation of downscaled soil moisture estimates. We derived 

the water retention curves (h) using the searched (Table 5.5) and field-observed (Table 

5.2) hydraulic parameters and validated our approach. The obtained (h) curves have 

some uncertainties (Fig. 5.7b), but the average curve matched the observations.  

 

 

Figure 5.7: (a) The precipitation, remotely sensed (ESTAR), in-situ, and average 

(for the downscaled sub-pixels) near-surface (0-5 cm) soil moisture dynamics at the 

LW 13 site and (b) comparison of the field-observed and estimated curves ((h)) 
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Table 5.5: The effective soil hydraulic properties derived by the downscaling and 

upscaling algorithms at the Little Washita watershed in Oklahoma 

Scaling 

Soil  

hydraulic 

parameters 

Scenario 1 

(Airborne-scale) 

Scenario 2 

(Satellite-scale) 

LW 13 LW 21 LW 

Average SD Average SD Average SD 

Down
*
 

 0.012 0.007 0.022 0.011 0.015 0.010 

n 1.655 0.197 1.948 0.205 1.999 0.098 

res 0.033 0.031 0.030 0.014 0.068 0.006 

sat 0.405 0.084 0.376 0.047 0.414 0.073 

Ksat 111.828 19.191 72.586 35.800 94.983 44.038 

 
 

      

Up
** 

 0.012 0.008 0.024 0.010 - - 

n 1.572 0.158 2.024 0.141 - - 

res 0.043 0.039 0.059 0.060 - - 

sat 0.494 0.063 0.368 0.031 - - 

Ksat 80.525 29.471 78.114 43.641 - - 
*
Pixel-scale soil hydraulic parameters derived from a remotely sensed soil moisture footprint by our 

proposed approach. 
**

Soil hydraulic parameters derived from in-situ soil moisture data measured at the sub-pixels (sample ID 

04 with the elevation 372 m for the LW 13 site and sample ID 27 with the elevation 437 m for the LW 21 

site). 

 

 

Figure 5.8 illustrated the results of upscaling performance at the LW 13 site. The 

simulated soil moisture dynamics (R
2
: 0.918 and RMSE: 0.042 for the ESTAR and R

2
: 

0.880 and RMSE: 0.027 for the in-situ) identified well with the in-situ measurements 

while the derived (h) curves (Fig. 5.8b) had small uncertainties. This result indicated 

that the upscaling algorithm is more suitable for representing the soil moisture estimates 

on a hill slope.  

In the LW 21 site, the downscaled soil moisture dynamics identified well with 

the ESTAR soil moisture products (R
2
: 0.903 and RMSE: 0.035) and in-situ 

measurements (R
2
: 0.706 and RMSE: 0.084) in Fig. 5.9. The in-situ datasets during 

DOY 173 to 177 were not matched with the trend of ESTAR soil moisture products. 
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When we considered that there were no rainfall events for three days since it rained on 

DOY 174 (6.7 mm), the relatively high soil moisture value (0.228 cm
3
 cm

-3
) on DOY 

177 may be caused by the measuring errors as mentioned above. The estimated (h) 

curves were also underestimated in the range of uncertainties (95 PCI) when compared 

to the field observations in Fig. 5.10b. However, these results still show good match with 

the RS products and in-situ measurements. In the upscaling algorithm, the estimated soil 

moisture (R
2
: 0.941 and RMSE: 0.042 for the ESTAR and R

2
: 0.742 and RMSE: 0.083 

for the in-situ) also matched well with the ESTAR and in-situ data as shown in the 

downscaled results (Fig. 5.10), although the estimated curves ((h)) were biased 

compared to the observations. 

 

 

Figure 5.8: (a) The precipitation, remotely sensed (ESTAR), in-situ, and average 

(for the upscaled sub-pixels) near-surface (0-5 cm) soil moisture dynamics at the 

LW 13 site and (b) comparison of the field-observed and estimated curves ((h)) 
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Figure 5.9: (a) The precipitation, remotely sensed (ESTAR), in-situ, and average 

(for the downscaled sub-pixels) near-surface (0-5 cm) soil moisture dynamics at the 

LW 21 site and (b) comparison of the field-observed and estimated curves ((h)) 

 

 

 

Figure 5.10: (a) The precipitation, remotely sensed (ESTAR), in-situ, and average 

(for the upscaled sub-pixels) near-surface (0-5 cm) soil moisture dynamics at the 

LW 21 site and (b) comparison of the field-observed and estimated curves ((h)) 
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Additionally, the RS soil moisture products taken across a relatively flat 

topography (LW 21 site) show the similar trends (soil moisture quantities and pattern 

along the time series) with the in-situ measurements. As mentioned in the results of LW 

13 site, the RS soil moisture datasets over a hill slope had relatively lower values than 

the in-situ data indicating that topography significantly affects the quality of RS 

products. Consequentially, these underestimations propagate to the downscaled soil 

moisture estimates directly. But our approach proposed in this study can improve a 

drawback of RS products in topographically complex terrains by comparing downscaled 

and upscaled soil moisture estimates simultaneously. Thus, these findings support the 

robustness of this approach at the field-scales.  

Fig. 5.11 showed the upscaled (average for all sub-pixels) soil moisture dynamics 

using various hydrological models with the selected weighting factor (f=0.5) at the LW 

13 site along the time series. Note that the estimated parameters for each model were not 

shown, because these models have different parameters (incomparable between models) 

for simulating soil moisture dynamics. Overall, the upscaled soil moisture dynamics 

estimated by the SWAP (R
2
: 0.913 and RMSE: 0.029), Noah LSM (R

2
: 0.877 and 

RMSE: 0.058), and CLM (R
2
: 0.927 and RMSE: 0.051) models showed good match 

with the measurements along the time scenarios whereas the results of Noah and CLM 

models were overestimated. In the given condition of this study, the SWAP model 

provided slightly better predicted soil moisture dynamics than others for the upscaling 

approach.  
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Figure 5.11: The precipitation, in-situ, and average (for the upscaled sub-pixels) 

near-surface (0-5 cm) soil moisture dynamics for various hydrological models 

(SWAP, Noah LSM, and CLM) at the LW 13 site 

 

 

5.4.2 Scenario 2: Satellite-Scale 

In the scenario 2, we downscaled the satellite-based (AMSR-E, 25 km25 km) 

soil moisture products at the LW site. The downscaled near-surface (0-1 cm) soil 

moisture estimates on DOY 119 were validated with the pixel-based (LANDSAT7-

ETM) temperature (30 m30 m, C) at the spatial coverage in Fig. 5.12. The simulated 

soil moisture estimates at the sub-pixels with relatively low temperature were higher 

than those, which have high temperature. Because moisture at the sub-pixels with high 

temperature dries quickly due to active generations of soil evaporation near the soil 

surface. Overall, the downscaled soil moisture distributions (R
2
: 0.627 on DOY 119) 

fairly matched the fine-scale distributed temperature. Also, the results corresponded well 

to the NDEM and NDVI across the study site. As the elevation becomes lower as shown 
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in the lower corner of the left side, the downscaled soil moisture estimates were 

increased along the lower elevations (topography). Further, although the elevations were 

relatively lower than other regions in the upper corner on the right side, these sub-pixels 

have various (high and low) soil moisture ranges indicating that soil moisture estimates 

at the sub-pixels were also affected by vegetation covers (NDVI). It demonstrated that 

this approach could map the near-surface soil moisture estimates based on the NDEM 

and NDIV at the satellite-scale, although this approach needs to be verified with the in-

situ measurements in a future study. 

 

 
Figure 5.12: (a) Digital elevation model (DEM), (b) pixel-based (LANDSAT7-ETM) 

normalized difference vegetation index (NDVI, 30 m30 m), (c) pixel-based 

(LANDSAT7-ETM) temperature (30 m30 m), and (d) downscaled (30 m30 m) 

soil moisture (DOY: 119, 2003) for the LW site at the satellite-scale 
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Figure 5.13 shows the satellite (AMSR-E)-based and downscaled (average for all 

sub-pixels) near-surface soil moisture dynamics along the time steps. The downscaled 

soil moisture dynamics were considerably overestimated compared to the AMSR-E 

products during the early rainy period (DOY: 152-180) with the correlation (R
2
: 0.351) 

and uncertainties (RMSE: 0.090), but the results during the dry days (DOY: 181-212) 

relatively matched well. It may indicate that the AMSR-E soil moisture products have 

been tempered by C-band frequencies contaminated with anthropogenic radio frequency 

interference (RFI) causing underestimation [Jackson et al., 2005]. Also, the rainfall 

event (16.7 mm) on DOY 177 was generated, but the AMSR-E soil moisture value was 

not corresponded. It might show that the scale discrepancy between the weather station-

based rainfall and AMSR-E products caused uncertainties in modeling across the 

regional site. Overall, this approach estimated well the near-surface soil moisture 

dynamics at the spatio-temporal scales with existing uncertainties.  

 We compared the water retention curves ((h)) estimated by this approach and 

the field-observations at the LW 03 site located within the boundary of LW site in Fig. 

5.13b. Although we could not validate these results with in-situ measurements directly at 

the spatial domain, good match of the derived and field-observed (h) curves (Fig. 

5.13b) supported the robustness of this approach. Our findings showed that this approach 

provides realistic downscaled near-surface soil moisture dynamics at the satellite-scale.   
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Figure 5.13: (a) The precipitation, remotely sensed (AMSR-E), and average (for the 

downscaled sub-pixels) near-surface (0-1 cm) soil moisture dynamics at the LW site 

and (b) comparison of the field-observed and estimated curves ((h)) 

 

 

5.5 Conclusions 

In this study, we developed a new genetic algorithm-based spatial scaling 

algorithm that can downscale remotely sensed (RS) soil moisture footprints as well as 

upscale in-situ measurements across a complex regional area. Normalized digital 

elevation model (NDEM) and normalized difference vegetation index (NDVI) were used 

to characterize the heterogeneity of topography and vegetation covers within a RS pixel. 

The newly developed approach quantified soil hydraulic parameters using the soil-water-

atmosphere-plant (SWAP) model with a genetic algorithm (GA) based on an inversion 

model. Near-surface soil moisture estimates were driven by the SWAP model using the 

derived hydraulic parameters in a forward mode. Then, the soil moisture predictions for 

different elevations and NDVI values were generated across field sites. Finally, the 
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distributed soil moisture predictions were used as downscaled and upscaled results. The 

Little Washita (LW) watershed in Oklahoma was selected for validating our proposed 

methodology including two scenarios; i) scenario 1: airborne-scale for the LW 13 and 21 

sites and ii) scenario 2: satellite-scale for the LW site. 

In the scenario 1, we tested the impacts of various initial and bottom boundary 

conditions (see Table 5.4) for the model performance at the LW 13 site. This result 

showed that the initial and bottom boundary conditions significantly influence root zone 

soil moisture dynamics in modeling. The downscaled and upscaled soil moisture 

predictions had more uncertainties when more weight was given to the NDVI (f=0.1) or 

NDEM (f=0.9), respectively. However, the joint NDEM and NDVI (f=0.5) reduced 

uncertainties for the scaling performance. The downscaled (R
2
: 0.204~0.406 and RMSE: 

0.040~0.102) and upscaled (R
2
: 0.204~0.500 and RMSE: 0.064~0.091) soil moisture 

predictions at the LW 13 and 21 sites had good match with the in-situ measurement 

across the regional areas, although uncertainties exist due to the measuring errors, model 

structure, a lag between sampling points and pixel-based DEM and NDVI, etc. 

 The averaged near-surface (0-5 cm) soil moisture dynamics of all sub-pixels for 

the downscaled (R
2
: 0.706~0.903 and RMSE: 0.019~0.084) and upscaled (R

2
: 

0.742~0.941 and RMSE: 0.027~0.083) results matched well with both the airborne 

sensing (ESTAR) and in-situ soil moisture data across the LW 13 and 21 sites. Also, the 

airborne-based (ESTAR) soil moisture products taken over the LW 21 (relatively flat 

topography) matched well with the in-situ measurements, but the RS datasets at the LW 

13 site were considerably lower than in-situ data indicating bias included within pixel-
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based soil moisture products taken across a hill slope. Also, the upscaled results by using 

various hydrological models (SWAP, Noah LSM, and CLM) matched well with the in-

situ soil moisture data across the LW 13 site, while the SWAP model estimated slightly 

better than others.  

 At the satellite-scale, this approach downscaled well the near-surface (0-1 cm) 

soil moisture distributions on DOY 119 (R
2
: 0.627) at the LW site compared to the fine-

scale (LANDSAT7-ETM, 30 m30 m) land surface temperature (C), although our 

approach was limited in validating with the in-situ measurements due to no datasets 

available at the satellite-scale. The averaged (for all sub-pixels) soil moisture dynamics 

along the time steps also appeared to be identifiable with the AMSR-E footprints with 

the statistics (R
2
: 0.351 and RMSE: 0.090), although there exists uncertainties in the 

early simulation period. Good match of field-observed and estimated water retention 

curves ((h)) at the airborne-/satellite-scales supported the robustness of our proposed 

methodology. This approach provides easy applications for downscaling RS soil 

moisture products as well as upscaling in-situ measurements simultaneously with the 

given observations. Also, the scaling algorithm can characterize the variability of 

topography and vegetation covers across topographically complex terrains within a RS 

pixel based on the NDEM and NDVI obtainable easily at multiple scales. Thus, we 

suggest that our proposed approach could be very useful to improve the availability of 

remotely sensed and in-situ soil moisture data for water resources management 

efficiently in the real world.  
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CHAPTER VI 

DEVELOPMENT OF NON-PARAMETRIC EVOLUTIONARY ALGORITHM 

FOR PREDICTION OF ROOT ZONE SOIL MOISTURE 

6.1 Synopsis 

Prediction of root zone soil moisture is critical for water resources management. 

In this study, we explored a multivariate framework for prediction of root zone soil 

moisture from a time series of spatially-distributed rainfall across multiple weather 

locations under two different hydro-climatic regions. A new non-parametric 

evolutionary algorithm (genetic algorithm-based hidden Markov model, HMMGA) was 

developed to estimate long-term root zone soil moisture dynamics at different soil 

depths. Also, we analyzed rainfall occurrence probabilities and dry/wet spell lengths 

reproduced by this approach. The HMMGA was used to estimate the optimal state 

sequences (surface soil wetness) based on the precipitation history. Historical root zone 

soil moisture statistics were then determined based on the soil wetness conditions. To 

test the new approach, we selected two different soil moisture fields,  Oklahoma (130 

km  130 km) and Illinois (300 km  500 km), during 1995 to 2009 and 1994 to 2010, 

respectively. We found that the newly developed framework performed well in 

predicting root zone soil moisture dynamics at both the spatial scales. Also, the 

reproduced rainfall occurrence probabilities and dry/wet spell lengths matched well with 

the observations at the spatio-temporal scales. Since the proposed algorithm requires 

only precipitation and historical soil moisture data from existing, established weather 
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stations, it can serve an attractive alternative for predicting root zone soil moisture in the 

future using climate change scenarios and root zone soil moisture history.   

6.2 Introduction 

Root zone soil moisture is an important component of many hydro-climatic 

processes. Accurate measurements of root zone soil moisture are required for water 

resources management, understanding rainfall and runoff processes, irrigation 

scheduling, water quality monitoring, determining the partitioning of sensible and latent 

heat fluxes, etc. In general, in-situ soil moisture measurements are fairly accurate, but 

these point-scale measurements may not be representative at the field scale. Since 

remote sensing (RS) soil moisture retrievals have been developed and improved, remote 

sensing techniques are better suited for estimating root zone soil moisture with respect to 

spatial and temporal coverages across the world [Ines and Mohanty, 2008a,b, 2009]. The 

major concern regarding RS products is, however, the question of whether their 

resolution is too coarse to represent the scale at which hydrological processes occur 

[Engman, 1991; Entekhabi et al., 1999]. This indicates that RS data suffer on account of 

the scale discrepancy between observation (RS) and modeling resolution.  

 Various physically-based hydrological models such as Soil-Plant-Atmosphere-

Water (SWAP) [van Dam et al., 1997], Community Land Model (CLM) [CLM3.0 

User’s Guide, Oleson et al., 2004], Variable Infiltration Capacity (VIC) Macroscale 

Hydrologic Model [Liang et al., 1996], the U.S. Department of Agriculture Hydrograph 

Laboratory (USDAHL) model [Holtan, 1961], the Sacramento Soil Moisture Accounting 

(SAC-SMA) Model [Peck, 1976], among others were developed for estimating root zone 
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soil moisture dynamics. Besides the above mentioned deterministic models, several 

other approaches have been developed for soil moisture estimations. A sequential 

assimilation approach was developed [Mahfouf, 1990] and improved [Bouttier et al., 

1993a,b] for soil moisture estimations from atmospheric temperature and relative 

humidity. A genetic algorithm-based assimilation scheme was developed for quantifying 

effective soil hydraulic properties based on inverse method (IM) [Ines and Mohanty, 

2008a,b, 2009; Shin et al., 2012]. In addition, statistical models have also been 

developed for forecasting soil moisture estimates. Liou et al., [2001] explored an error 

propagation learning back propagation (EPLBP) neural network for retrieving soil 

moisture dynamics using the brightness temperature. Neural networks using a 

backscattering coefficient were used to retrieve surface roughness and soil moisture with 

various radar configurations (VV 23, HH 39, and HH 47) [Baghdadi et al., 2002]. 

However, these approaches are limited by the number and complexity of required 

physical parameters in modeling. 

 In the case of weather prediction, various stochastic models such as parametric 

empirical-statistical models [Stern and Coe, 1984; Woolhiser and Roldan, 1982], non-

parametric scheme [Young, 1994; Lall et al., 1996], etc. exist for representing daily 

weather sequence. Wilks [1998a,b] conditioned daily stochastic precipitation at multiple 

sites on total monthly precipitation. Young [1994] described a multivariate chain model 

for simultaneously simulating temperatures and daily precipitation amounts. Kirshner 

[2005] used hidden Markov models (HMMs) to model discrete multivariate time series 
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data of rainfall. However, till date, no stochastic methods have been designed for 

forecasting root zone soil moisture dynamics across the land surface.  

In this study, we explored a multivariate framework for forecasting long-term 

daily root zone soil moisture dynamics using a stochastic optimization approach on a 

multivariate time series of rainfall datasets obtained from a network of weather stations. 

The objective of our study was to predict root zone soil moisture dynamics at various 

spatial domains using a newly developed non-parametric evolutionary algorithm 

(genetic-algorithm based hidden Markov model, HMMGA) under different hydro-

climate regions. Additionally, rainfall occurrence probabilities and dry/wet spell lengths 

estimated by the HMMGA were analyzed at the spatio-temporal scales. Overall the 

study is to develop a HMMGA algorithm for surface and root zone soil moisture 

prediction based on rainfall history and dry/wet pattern.     

6.3 Methods and Materials 

6.3.1 Conceptual Multivariate Framework 

In this study, we developed a novel methodology for daily root zone soil 

moisture predictions at various spatial-scales using multi-site precipitation data. The 

approach comprised of three steps; i) development of a hidden Markov model using a 

genetic algorithm (HMMGA) for estimating the optimal state sequences (representing 

daily surface soil wetness) using precipitation; ii) estimation of statistics (mean and 

standard deviation) of categorized root zone soil moisture measurements based on the 

surface soil wetness, and iii) root zone soil moisture predictions using the derived 
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surface soil wetness and statistics of categorized soil moisture history. The methodology 

is schematically shown in Fig. 6.1.  

Stochastic approaches coupled with physically-based hydrological models have 

been commonly used in hydrological predictions such as optimum interpolation-based 

sequential assimilation technique for estimating soil moisture [Bouttier et al., 1993a,b], 

genetic algorithm-based near-surface [Ines and Mohanty, 2008a,b, 2009] and layer-

specific [Shin et al., 2012] soil moisture data assimilation, among others. However, these 

coupled models are parameter intensive and are considerably influenced by the initial 

parameter values. In order to address this limitation of existing schemes, we developed a 

new algorithm by integrating a stochastic hidden Markov model (HMM) with genetic 

algorithm. The hypothesis of our proposed approach is that a HMM can provide better 

trained parameters for obtaining the surface soil wetness through optimized initial 

parameters derived by a GA. This coupling eliminated the need of using a parameter 

intensive physical model and is immune to user-based errors in estimating initial 

parameter values. 
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Figure 6.1: Flow chart of the multivariate framework for forecasting root zone soil moisture dynamics; (a) hidden 

Markov model based on a genetic algorithm (HMMGA), (b) categorized soil moisture measurements using the K-

means clustering algorithm, and (c) predictions of root zone soil moisture dynamics 
State 1: wet condition; State 2:

 
relatively wet condition; State 3:

 
relatively dry condition; State 4:

 
dry condition 
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6.3.2 Hidden Markov Model (HMM) Based on Genetic Algorithm 

In a regular Markov model, state transition probabilities are directly visible to the 

observer. However, as its name suggests, a hidden Markov model (HMM) has invisible 

(or hidden) state transition probabilities. A HMM can be defined as a joint distribution 

on a rainfall occurrence observation and hidden state of rainfall along the time (t) based 

on two conditional independence assumptions [Hughes et al., 1999; Robertson et al., 

2004; Kirshner, 2005]. Note that we denoted all random variables as capital letters (e.g., 

O and S) and values of random variables by lowercase letters (e.g., o and s):  

(i) the random vector of rainfall occurrence tO  ( 1
tO ,…, M

tO ) from multiple 

weather stations (M) at the time (t) is independent of other occurrences ( 1-tO or 1tO  ), 

conditional only on the hidden states St (S1,…,ST) with the number K (representing the 

transition matrix of K  K ) of hidden states at the time (t) in Eq. (6.1). The observed 

rainfall value 1om
t   indicates “rain” on day t and 0om

t   means “no rain” on day t at 

weather station m (m=1,…,M), respectively. Note that this assumption only represents 

independence of rainfall events across time. The spatial dependence of rainfall is 

accounted for by the state variable in the model,  

P(Ot|S1:t, O1:t-1) = P(Ot|St)          (6.1) 

(ii) the hidden (rainfall) state process (St) is first-order Markovian (representing 

that Markov process is homogeneous with the transition matrix of KK in time) in Eq. 

(6.2).  

P(St|S1:t-1) = P(St|St-1)         (6.2) 
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 It is also assumed that the rainfall observations across weather stations (m) at the 

time (t) are spatially independent (conditional on the hidden state) [Robertson et al., 

2004; Kirshner, 2005]. We estimated P(Ot|St) as,    

P(Ot|St)= 
 


M

1m

M

1m

m
os,t

m
t ps)S|oP(O         (6.3) 

where the rainfall occurrences at each weather station (m) were denoted as “o” ( m
0os,p   

means no rain and m
1os,p   indicates rain). The readers are referred to Rabiner [1989], 

McDonald and Zucchini [1997], Robertson et al. [2004], and Kirshiner [2005] for a 

more detailed explanation of the HMM.  

Sequences of daily rainfall occurrences (Ot) and hidden rainfall states (St) are 

shown in Fig. 6.2. In this study, a GA searches the optimized first (initial) hidden state 

parameters (i=1,…,K) and transition matrix (ai=1,…K,j=1,…,K) composed of parameters 

(k
*
={i, ai,j}) to be trained by a HMM, because GAs are powerful search algorithms for 

solving complex problems (parameters) through the survival of the fittest mechanism 

[Holland, 1975; Goldberg, 1989]. Thus, a HMM can train a set of parameters (, Eq.  

6.4) for estimating the surface soil wetness conditions using the optimized initial hidden 

states (k
*
) provided by a GA,  

 = (B, k
*
) = (A, B, i)         (6.4) 

where, A is the transition probabilities (aij) on row state i and column state j, B is the 

observation (output) probability, i is the first state probability at the time (t=1) on row 

state i.   
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Figure 6.2: Graphical model representation of a hidden Markov model 

Ot: the observations (outputs) of rainfall occurrences with the time series (t) 

St: the hidden states with the time series (t) 

 

 

The appropriate number of transition probabilities (K=2,…,N) are necessary to 

predict accurate rainfall occurrences. It must be considered that a high N value will 

increase the number of elements in the transition matrix (which is of size K K) causing 

excessive repetitions of simulations. There are no set guidelines for determining the 

optimum orders of K. Robertson et al., [2004] tested the HMM with K ranging from 2 to 

6 and suggested that four hidden states (K=4) provide the most reasonable results. 

Therefore, we tested different orders of K (2,…,6) for selecting the optimum order K of 

hidden states, which gives better results.   

We used the log-likelihood (l) of the datasets to improve the computational 

process for this statistical model in Eq. (6.5), 

l=logP(O)=log  




T

1t

tt

S

T

2t

1tt1 )]S|P(O[ )]S|P(S)[P(S        (6.5) 

 To compute the log-likelihood of the data P(O1:T|S1:T), the Forward-Backward 

procedure [Rabiner, 1989] was adopted as a recursive method. For observations 
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(O1,…,OT) and optimal state sequences (S1,…,ST) to reproduce the observations is given 

by the recurrence relations for the Forward algorithm,  

V1(i)=P(O1|S1)i         (6.6) 

Vt(j)= )(V)S|P(Omax 1-tttK1 iaiji         (6.7) 

Here Vt is the probability of optimal state sequences (Viterbi path, Viterbi, [1967]) 

representing the daily surface soil wetness for the observation at time t+1. In the 

Backward procedure, the optimal state sequences can be retrieved by saving back 

pointers that remember which state St was used,  

ST= )(Vmax TK1 ii            (6.8) 

St=St+1 )(Vmax arg tK1 iaiji        (6.9) 

 Note that “arg max” meant the argument for selecting the maximum value in the 

given data sets (i=1,…,K). Fig. 6.3 shows the log-likelihood values and correlations (R
2
, 

see section 2.3) between the observed rainfall occurrence probabilities and surface soil 

wetness conditions derived by the HMMGA for various orders of hidden states 

(K=2,…,6) in the Oklahoma domain (see section 2.2). Note that a log-likelihood value 

closer to zero denotes better performance. The log-likelihood values considerably 

decreased from K=2 to K=5, but the decreasing trend from K=5 to K=6 was relatively 

gentle. The correlation was highest at K=4 indicating that four hidden states can 

represent the soil wetness conditions better than others as shown in the findings of 

Robertson et al., [2004]. Thus, we selected the four hidden states (K=4) for estimating 

surface soil wetness conditions. Four hidden states represent wet (state 1), relatively wet 

(state 2), relatively dry (state 3), and dry (state 4) conditions, respectively.  
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Figure 6.3: Comparison of log-likelihood values and correlations (between the 

observed rainfall occurrences and HMMGA-based optimal state sequences) with 

different orders (K=2,…,6) of hidden states for the Oklahoma domain 

State 2: K=2; State 3: K=3, State 4: K=4, State 5: K=5; State 6: K=6 

 

  



 

 

168 

 

In this study, a modified-microGA [Ines and Honda, 2005; Ines and Mohanty, 

2008a] was used to search parameters (k
*
) along the generations. The parameters are 

composed of genes, which are arranged in an array of binary values called a 

chromosome. The modified-microGA is a GA variant that uses a micro-population for 

searching parameters [Ines and Droogers, 2002; Carroll, 1996; Goldberg, 2002; 

Krishnakumar, 1989]. It has the unique ability to restart when the searched 

chromosomes of the micro-population are similar in structure (90 %) to each other 

before the generations are completed. This improves the algorithm computationally and 

makes it more efficient. Restarting allows the modified-microGA to search the solutions 

in the global space. In order to infuse new genes, creep (at the decimal level, D. L. 

Carroll, Fortran genetic algorithm (GA) driver, available at 

www.cuaerospace.com/carroll/ga.html) and intermittent jump [Ines and Mohanty, 

2008a] mutations are implemented in the modified-microGA. Furthermore, a time 

saving mechanism used in the GA remembers the elite (fittest) chromosome in the 

previous generation (g-1) [Ines and Honda, 2005]. Then the elite chromosome is 

reproduced in the next generation (g) without computation (note that the modified-

microGA always reproduces the elite chromosome in the next generation). The search 

spaces of variables and probabilities of selection, crossover, and mutation used in a GA 

for the different study domains are shown in Table 6.1.  
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Table 6.1: The search spaces of variables and probabilities of selection, crossover, and mutation used in the genetic 

algorithm 

Locations 
Parameters

  

Search space of parameters 
No. of  

bit (L) 
2L 

Population  

size 

Seed  

Number 

Number of  

generation 
Pcreep Pmutate Pcross Minimum  

values 

Maximum  

Values 

Oklahoma 

domain 

i 0.0 1.0 7 128 
10 3000 30 0.05 0.05 0.05 

aij 0.0 1.0 7 128 

            

Illinois 

domain 

i 0.0 1.0 7 128 
10 3000 30 0.05 0.3 0.05 

aij 0.0 1.0 7 128 

i=1,…,K: initial state probabilities of being in state i (K is the number of transition probabilities) 

aij: transition probabilities (K  K) of transitioning from state i to state j 

Pcreep: creep probability 

Pmutate: mutation probability 

Pcross: crossover probability 
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6.3.3 Categorizing Root Zone Soil Moisture 

In this study, the HMMGA predicted the surface soil wetness conditions using 

only the observed rainfall occurrences. However, soil moisture values are usually 

affected by the precipitation, as well as by the land surface conditions (i.e., soil textures, 

vegetation covers, topography, etc.) in different regions. Thus, corresponding to the 

four-hidden states fitted by the HMMGA in section 2.1.1, we classified historical root 

zone soil moisture data into four categories (K=4) ranging from wet to dry (represented 

by 1, 2, 3, 4 in order of wetness) at each weather station using the K-means clustering 

algorithm [Hartigan and Wong, 1979] based on the Euclidean distance,   





Q

1

2)y(x
L

2
)yx,(d

q

qq           (6.10) 

where d(x,y) is the Euclidean distance between two points of xq and yq on the order of q, 

xq and yq are the root zone soil moisture measurement on the order of q, q is the running 

index, and Q is the total number of root zone soil moisture measurements, respectively.  

Initially, the K-means clustering algorithm assigns the soil moisture data 

randomly to a cluster. This clustering approach repeats a two-step process in the given 

number (n=100) of runs as follows; i) the mean soil moisture data of individual cluster is 

estimated and ii) the soil moisture data are reallocated to each cluster whose mean value 

is closest to the soil moisture data. For more details on the popular K-means clustering 

algorithm refer to Jain et al., 1999. In order to incorporate site specific root zone soil 

moisture dynamics, the clustering of soil moisture data was done for each weather 

station (m) separately. Then, we calculated mean ( M1,...,mK,1,...,i  ) and standard deviation (
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M1,...,mK,1,...,i  ) of the classified root zone soil moisture measurements for each weather 

station. The soil wetness ranges (maximum and minimum) for four wetness categories 

were determined based on clustered soil moisture measurements at individual weather 

station.  

6.3.4 Prediction of Root Zone Soil Moisture  

Based on the derived optimal state sequences (Vt={S1,…,ST}, section 2.1.1) and 

estimated statistics ( m,i  and m,i , the section 2.1.2) of historical soil moisture data, we 

generated normal distributions ( ) ,( 2
m,m, iiN  ) of root zone soil moisture for each 

individual surface soil wetness state along the time series. The predicted daily root zone 

soil moisture ( m
tθ ) value was determined by randomly selecting a value from the 

generated normal distribution corresponding to the optimal state sequences selected by 

the HMMGA (Eq. 6.11). Each optimal state value indicates the surface wetness 

condition (St) at the time (t). Note that the function of f( ) returns the randomly generated 

soil moisture values for each weather station (m) along the time series (t).  

m
tθ f(Vt, ) ,( 2

m,m, iiN  )  m t       (6.11)  

6.3.5 Study Sites and Data Description 

We Since the proposed approach is sensitive to the domain size, two domains of 

different sizes were chosen to evaluate the applicability of this approach under two 

hydro-climatic regions; i) the Oklahoma domain (130 km  130 km) with humid 

subtropical climate and ii) the Illinois domain (300 km  500 km) with humid 

continental climate, respectively. For the Oklahoma domain, we selected seven Mesonet 
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weather stations (site 1-ELRE, site 2-SPEN, site 3-MINC, site 4-ACME, site 5-WASH, 

site 6-PAUL, and site 7-BYAR, http://www.mesonet.org/index.php) as shown in Fig. 

6.4a. The weather stations have elevations in the range of 265.8 m ~ 421.2 m above 

MSL. Sites 1, 3, and 4 in the west have higher elevations (404.3 m ~ 421.2 m) than those 

located in the east (265.6 m ~ 349.5 m). For the Illinois domain, we selected seven 

weather station sites from the International Soil Moisture Network (ISMN: 

http://www.ipf.tuwien.ac.at/insitu/) in Illinois (site 1-Bondville, site 2-Dekalb, site 3-

Freeport, site 4-Monmouth, site 5-Olney, site 6-Orr Center, and site 7-Peoria) as shown 

in Fig. 6.4b. The weather stations located in the northern portion of this domain had 

slightly higher elevations. The Oklahoma and Illinois areas generally have a flat 

topography.  

 

 

Figure 6.4: Network of multiple locations (sites 1 to 7), digital elevation model 

(DEM), and observed rainfall occurrence probabilities under different hydro-

climatic regions; (a) Oklahoma domain and (b) Illinois domain 
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Daily precipitation datasets were obtained from the Oklahoma mesonet stations 

(1995 to 2009) in Oklahoma and the ISMN (1994-2010) in Illinois during the crop 

growing season (90 days from March 1 to May 29). At the Oklahoma sites, daily soil 

temperature readings (available from 2003 to 2009) measured by Campbell scientific 

229-L sensors were converted to root zone (0-5 cm) volumetric soil moisture with the 

empirical coefficients provided from the mesonet stations [see details, Illston et al., 

2008]. At the Illinois locations, biweekly volumetric soil moisture data at different soil 

depths (0-10, 10-30, 30-50, and 0-50 cm) were measured from 1994-2004 using Troxler 

neutron surface and depth probes by the Illinois State Water Survey [Hollinger and 

Isard, 1994]. Note that soil moisture at 0-50 cm was obtained by averaging soil moisture 

measurements at the soil depths of 0-10, 10-30 and 30-50 cm. Descriptive statistics 

(mean, standard deviation, minimum, and maximum) of root zone soil moisture 

measurements for the Oklahoma and Illinois sites were shown in Table 6.2 and 6.3.  

Precipitation data from the weather stations were available from 1995-2009 in 

Oklahoma and 1994-2010 in Illinois. However, the soil moisture data were measured for 

a shorter duration (2003 to 2009 for Oklahoma and 1994 to 2004 for Illinois). The 

optimal (hidden) state sequences for both study domains were determined by the 

HMMGA using the entire range of precipitation data available. However, in order to 

generate the normal distributions for the root zone soil moisture, we used only the 

estimated optimal state sequences from 2003 to 2009 for Oklahoma and 1994 to 2004 

for Illinois. The measurements used for the calibration were taken from 1994 to 2000 

and the validation was conducted from 2001 to 2004 at the Illinois sites.    
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Table 6.2: Statistics of categorized soil moisture measurements at the soil depth (0-5cm) using the K-means clustering 

algorithm in Oklahoma (2003-2009) 

Soil 

depth 
Sites 

Oklahomaa 

State 1 (Wet condition) State 2 (Relatively wet condition) State 3 (Relatively dry condition) State 4 (Dry condition) 

Mean SD Min. Max. Mean SD Min. Max. Mean SD Min. Max. Mean SD Min. Max. 

0-5 cm  

1 0.391 0.014 0.379 0.418 0.350 0.013 0.328 0.361 0.293 0.015 0.273 0.314 0.248 0.011 0.234 0.266 

2 0.221 0.001 0.221 0.227 0.211 0.002 0.208 0.216 0.201 0.003 0.195 0.205 0.187 0.003 0.183 0.193 

3 0.364 0.014 0.346 0.391 0.321 0.007 0.316 0.331 0.290 0.012 0.260 0.302 0.224 0.011 0.215 0.253 

4 0.246 0.004 0.243 0.257 0.235 0.002 0.232 0.237 0.221 0.005 0.213 0.227 0.200 0.005 0.194 0.210 

5 0.294 0.003 0.293 0.304 0.281 0.003 0.274 0.283 0.253 0.009 0.238 0.265 0.217 0.011 0.201 0.233 

6 0.401 0.005 0.400 0.423 0.370 0.010 0.355 0.377 0.314 0.015 0.297 0.334 0.253 0.026 0.209 0.282 

7 0.204 0.000 0.202 0.206 0.198 0.002 0.195 0.199 0.186 0.003 0.181 0.191 0.173 0.004 0.169 0.179 
a
 Campbell scientific 229-L sensor (daily soil temperature estimates were measured by this sensor and converted to daily soil moisture dynamics using 

the equation of volumetric water content (VWC: cm
3
 cm

-3
) with the empirical coefficients provided from the mesonet stations [Illston et al., 2008].) 
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Table 6.3: Statistics of categorized soil moisture measurements at the different soil depths (0-10, 10-30, 30-50, and 0-50 

cm) using the K-means clustering algorithm in Illinois (1994-2000)  

Soil 

depths 
Sites 

Illinois (Troxler Neutron Surface and Depth Probes [Hollinger and Isard, 1994]) 

State 1 (Wet condition) State 2 (Relatively wet condition) State 3 (Relatively dry condition) State 4 (Dry condition) 

Mean SD Min. Max. Mean SD Min. Max. Mean SD Min. Max. Mean SD Min. Max. 

0-10 cm 

1 0.493 0.037 0.456 0.558 0.414 0.018 0.384 0.439 0.338 0.020 0.312 0.363 0.273 0.024 0.218 0.300 

2 0.444 0.025 0.415 0.503 0.380 0.016 0.354 0.405 0.316 0.016 0.298 0.343 0.260 0.015 0.244 0.280 

3 0.448 0.016 0.434 0.481 0.405 0.010 0.389 0.421 0.339 0.016 0.304 0.361 0.246 0.015 0.221 0.265 

4 0.464 0.032 0.424 0.506 0.380 0.020 0.352 0.417 0.311 0.021 0.281 0.335 0.240 0.029 0.191 0.262 

5 0.531 0.025 0.509 0.581 0.474 0.017 0.450 0.494 0.420 0.014 0.399 0.445 0.352 0.036 0.306 0.384 

6 0.448 0.023 0.417 0.482 0.374 0.017 0.348 0.406 0.310 0.021 0.271 0.339 0.202 0.037 0.167 0.240 

7 0.515 0.044 0.473 0.580 0.404 0.020 0.373 0.441 0.335 0.018 0.304 0.361 0.252 0.030 0.206 0.287 

                  

10-30 cm 

1 0.428 0.012 0.416 0.447 0.385 0.011 0.369 0.400 0.349 0.011 0.331 0.365 0.285 0.015 0.267 0.302 

2 0.407 0.021 0.386 0.444 0.350 0.019 0.326 0.376 0.297 0.020 0.262 0.321 0.182 0.035 0.147 0.217 

3 0.370 0.016 0.350 0.413 0.323 0.010 0.306 0.336 0.285 0.019 0.254 0.301 0.171 0.010 0.161 0.181 

4 0.403 0.015 0.383 0.420 0.361 0.010 0.348 0.380 0.325 0.013 0.301 0.340 0.273 0.019 0.242 0.289 

5 0.341 0.003 0.337 0.347 0.332 0.002 0.328 0.336 0.323 0.003 0.318 0.327 0.303 0.010 0.291 0.309 

6 0.408 0.015 0.389 0.438 0.358 0.010 0.343 0.377 0.310 0.020 0.282 0.327 0.243 0.014 0.234 0.264 

7 0.515 0.044 0.473 0.580 0.404 0.020 0.373 0.441 0.335 0.018 0.304 0.361 0.252 0.030 0.206 0.287 

                  

30-50 cm 

1 0.421 0.011 0.404 0.439 0.384 0.007 0.376 0.400 0.366 0.006 0.350 0.373 0.316 0.014 0.300 0.328 

2 0.427 0.014 0.409 0.453 0.386 0.010 0.374 0.404 0.359 0.009 0.344 0.371 0.318 0.031 0.272 0.337 

3 0.347 0.011 0.336 0.363 0.324 0.008 0.311 0.333 0.297 0.011 0.283 0.306 0.219 0.010 0.209 0.229 

4 0.391 0.012 0.376 0.401 0.360 0.007 0.350 0.371 0.340 0.007 0.326 0.347 0.309 0.013 0.285 0.320 

5 0.374 0.004 0.368 0.382 0.356 0.003 0.353 0.361 0.347 0.003 0.341 0.350 0.333 0.005 0.327 0.338 

6 0.431 0.008 0.421 0.446 0.408 0.007 0.398 0.418 0.377 0.009 0.359 0.388 0.337 0.017 0.320 0.354 

7 0.432 0.008 0.425 0.444 0.415 0.006 0.404 0.421 0.387 0.006 0.376 0.398 0.349 0.009 0.340 0.358 

                  

0-50 cm 

1 0.433 0.017 0.413 0.469 0.388 0.009 0.370 0.401 0.346 0.009 0.331 0.359 0.311 0.012 0.294 0.327 

2 0.411 0.015 0.383 0.434 0.355 0.013 0.339 0.371 0.314 0.012 0.293 0.332 0.221 0.010 0.211 0.231 

3 0.384 0.008 0.374 0.398 0.342 0.013 0.319 0.361 0.289 0.007 0.280 0.297 0.210 0.010 0.200 0.220 

4 0.423 0.006 0.416 0.430 0.367 0.015 0.344 0.392 0.318 0.010 0.305 0.337 0.273 0.011 0.261 0.282 

5 0.412 0.010 0.400 0.433 0.384 0.007 0.375 0.394 0.361 0.006 0.353 0.371 0.325 0.016 0.309 0.341 

6 0.432 0.012 0.417 0.453 0.392 0.010 0.374 0.410 0.349 0.010 0.333 0.363 0.281 0.023 0.247 0.297 

7 0.437 0.018 0.416 0.464 0.387 0.012 0.368 0.403 0.344 0.010 0.330 0.360 0.296 0.015 0.279 0.313 
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6.3.6 Analysis Method 

The challenge of this study is to model and predict the rainfall occurrence 

probabilities and root zone soil moisture dynamics by using historical precipitation data 

and statistics of soil moisture measurements across the multiple locations (sites 1 to 7) 

for the Oklahoma and Illinois domains. In this study, the spatial dependence of rainfall 

occurrence was analyzed during given time periods in different study domains. Also, 

long-term daily precipitation records in any region can be analyzed by evaluating the 

probability of dry and wet spells based on a Markov chain model [Barron, et al., 2003; 

Krishnamurti, et al., 1995; Wilks and Wilby, 1999]. Thus, long-term frequency behaviors 

of dry and wet spell lengths were considered in the modeling. Here, we defined a dry 

spell length as consecutive dry days preceded and followed by a wet day (more than 0 

mm rainfall) while a wet spell length means consecutive wet days preceded and followed 

by a dry day (no rainfall).   

To verify the accuracy of our suggested HMMGA method, we compared root 

zone soil moisture predictions derived by this approach with those from a near-surface 

soil moisture assimilation scheme based on inversion model [Ines and Mohanty, 2008a] 

in Illinois. The data assimilation scheme determined effective soil hydraulic properties 

(, n, res, sat, Ksat) by tuning a physical-based hydrological (Soil Water Atmosphere 

Plant: SWAP) model with a genetic algorithm [see details in Ines and Mohanty, 2008a]. 

The root zone soil moisture dynamics were estimated by the SWAP model [van Dam et 

al., 1997] using the soil hydraulic parameters derived by GA.  



 

 

177 

 

 In the proposed HMMGA process, we generated multiple realizations (r) using a 

re-sampling technique [Efron, 1982] for uncertainty analysis of daily root zone soil 

moisture dynamics. Also, the multi-populations (from initial random seed numbers of -

1000, -950, and -750) were used for assessing uncertainties of the near-surface soil 

moisture assimilation scheme. The Pearson’s correlation (R
2
) and root mean square error 

(RMSE) were used for evaluating uncertainties,  

R
2

(Y)(X)

Y)(X,

VarVar

Cov
         (6.12) 

RMSE=
n

)Y(X
n

1z

2
zz





       (6.13) 

where R
2
 is the Pearson’s correlation, X is the observed dataset, Y is the simulated 

dataset, Cov is the covariance of X and Y, Var is the variance of X or Y, n is the number 

of datasets, and z is the running index. 

6.4 Results and Discussion 

Figure 6.4 shows the observed rainfall occurrence probabilities across the 

multiple weather stations with the digital elevation models (DEM) for the Oklahoma 

(130 km  130 km) and Illinois (300 km  500 km) domains. The rainfall occurrence 

probabilities (0.31~0.36) in Illinois were usually higher than those (0.26~0.29) in 

Oklahoma. The rainfall occurrences were evenly spread within each study area in both 

domains. The topographies of the two domains were relatively flat and thus, the rainfall 

occurrences were not influenced as much by topography of the domains. The observed 

rainfall occurrence probabilities at the weather stations in the Oklahoma (relatively 
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smaller) domain were highly correlated among the weather stations (with R
2
 > 0.615), 

but the Illinois domain had relatively lower correlations (R
2
: 0.223~0.592) between sites, 

as shown in Fig. 6.5. It showed that spatial dependence of rainfall occurrences were 

significantly affected by the distance between the stations. In other words, the capability 

of HMM in simulating the multivariate time series of rainfall occurrences is influenced 

by how closely the weather stations are located across the spatial domain. 

The plots in Fig. 6.6 represent the performance (maximum log-likelihood) of 

HMMGA for the Oklahoma and Illinois domains. The step-wise improvements in 

searched solutions show that the log-likelihood maximum fitness derived by the 

HMMGA was instantly converged during the initial generation (max: 30). This result 

demonstrated that HMM can train the parameter set ( from Eq. 6.3) well through the 

optimized initial parameters by the GA.  

 

 

Figure 6.5: Correlations of observed rainfall occurrence probabilities at the 

network of multiple locations (site 1 to 7); (a) Small domain in Oklahoma, (b) Large 

domain in Illinois 
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Figure 6.6: Fitness of hidden Markov model based on a genetic algorithm 

(HMMGA); (a) Small domain in Oklahoma, (b) Large domain in Illinois 
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6.4.1 Oklahoma Domain 

The (hidden) surface wetness state transition probabilities for the Oklahoma 

domain (130 km  130 km) are given in Table 6.4. The rows (i) represent the present 

wetness conditions (state 1: wet, state 2: relatively wet, state 3: relatively dry, and state 

4: dry conditions) at time t whereas the columns (j) represent the expected wetness 

conditions at time t+1.  

The Given a wet condition at time t, the probability of observing a wet condition 

at time t+1 is highest (at 0.455) while the probability of transitioning to a dry state is 

0.318. A relatively wet condition at time t also has the relatively high probabilities of 

observing wet (0.346) and dry conditions (0.375) at time t+1 whereas relatively dry and 

dry conditions at time t has the high transition probabilities with a dry condition (0.679 

and 0.753) at time t+1. Overall, the surface wetness conditions at time t had the 

relatively high transition probabilities with wet and dry conditions at time t+1. It is 

inferred that rainfall events for a single day (or few consecutive days) were usually 

generated rather than for a few (more than three or four) consecutive days during the 

given period. It indicated that moisture on the soil surface at these sites quickly run dry 

since the short-term rainfall durations. Further, the direct transitions between states 2 and 

3 were rare, which meant that states 2 and 3 play the role of intermediaries. 
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Table 6.4: Predicted transition probabilities for surface wetness states under 

different hydro-climatic regions 

Study sites State at time t 

State at time t+1 

State 1 State 2 State 3 State 4 

Oklahoma domain 

State 1 0.455 0.140 0.087 0.318 

State 2 0.346 0.094 0.185 0.375 

State 3 0.167 0.138 0.016 0.679 

State 4 0.134 0.077 0.036 0.753 

      

Illinois domain 

State 1 0.377 0.131 0.341 0.151 

State 2 0.246 0.294 0.067 0.393 

State 3 0.191 0.091 0.358 0.360 

State 4 0.096 0.090 0.165 0.649 

State 1: wet condition; State 2:
 
relatively wet condition; State 3:

 
relatively dry condition; State 4:

 
dry 

condition 

 

 

 Fig. 6.7 shows the comparison of observed rainfall occurrence probabilities and 

optimal state sequences (surface soil wetness) derived by the HMMGA during the 

simulation period (90 days from March 01 for each year during 1995 to 2009). Overall, 

the optimal state sequences had good match (R
2
: 0.945) with the observed rainfall 

occurrence probabilities along the time series. This result showed that the derived 

sequences were capable of representing the surface soil wetness conditions. We present 

the reproduced rainfall occurrence probabilities corresponding to the four soil wetness 

states for all the weather stations in the Oklahoma domain in Fig. 6.8. The rainfall 

occurrence probabilities for state 1 (wet condition) and 4 (dry condition) were slightly 

higher and lower, respectively than those for states 2 and 3, but there were no apparent 

trends for four states. Also, the individual states usually had similar probabilities across 

the spatial domain as shown in the observations (0.26~0.29) Fig. 6.4a.  



 

 

182 

 

 

Figure 6.7: (a) The observed rainfall occurrence probabilities and (b) optimal state sequences derived by the HMMGA 

(representing soil wetness conditions comprised of hidden states 1 to 4) during 1995~2009  (years 1 to 15) in Oklahoma 
State 1: wet condition; State 2: relatively wet condition; State 3: relatively dry condition; State 4: dry condition 
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Figure 6.8: Predicted four-state rainfall occurrence probabilities together with digital elevation model (DEM) for the 

Oklahoma domain 
State 1: wet condition; State 2:

 
relatively wet condition; State 3:

 
relatively dry condition; State 4:

 
dry condition 

*
(the total number of days for each state) 
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Fig. 6.9 shows the seasonal variations (daily average) of the four hidden wetness 

states for all (1995-2009) years. The probabilities of dry condition for state 4 were 

considerably higher than those of wet, relatively wet, and relatively dry conditions 

indicating that the Oklahoma area had significant durations of dry conditions during the 

simulation period (90 days from March 01). The probabilities of wet condition for state 1 

tend to be contrary to those of state 4. The probabilities of states 2 and 3 show relatively 

irregular trends, because relatively wet and dry conditions played a role as an 

intermediary of transitioning from a wet condition to a dry condition (or from dry to wet) 

as shown in Table 6.4. The probabilities of four states had no apparent seasonality 

indicating that the rainfall events were evenly generated along the time series. 

 

 
Figure 6.9: Seasonal variations (daily average from 1995 to 2009) of four hidden-

states at the Oklahoma domain 
State 1: wet condition; State 2:

 
relatively wet condition; State 3:

 
relatively dry condition; State 4:

 
dry 

condition 
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Fig. 6.10a-g shows the comparison of yearly observed and simulated rainfall 

occurrence probabilities for the individual sites. The yearly simulated probabilities 

matched fairly well with the observed datasets (R
2
: 0.460~0.676, RMSE: 0.074~0.084). 

However, when we compared the observed and predicted rainfall occurrence 

probabilities (averaged for all years) for the individual weather stations at the entire 

spatial domain (Fig. 6.10h), the results (R
2
: 0.784 and RMSE: 0.012) were highly 

correlated. This implies that our proposed scheme could predict long term rainfall 

occurrences well at both the spatial and temporal scales, especially better for the spatial 

domain. In Fig. 6.11, the frequency distributions of dry (R
2
: 0.931~0.993 and RMSE: 

6.387~9.980) and wet (R
2
: 0.945~0.995 and RMSE: 6.458~14.381) spell-lengths 

estimated by the HMMGA matched well with the observations, although small 

uncertainties exist. Overall, the correlations (R
2
) of dry and wet spell lengths for each 

weather station were similarly shown, but the wet spell lengths had more uncertainties 

than those of the dry spell lengths. 

Similarly, we predicted the time averaged (2003 to 2009) root zone soil moisture 

(0-5 cm) for the individual sites, as shown in Fig. 6.12. The predicted root zone soil 

moisture matched quite well with the measurements (R
2
: 0.999 and RMSE: 0.005). The 

observed and estimated soil moistures for the sites 2, 4, 5, and 7 were relatively lower 

than those of sites 1, 3, and 6. When we compared the (observed/simulated) rainfall 

occurrence probabilities with the root zone soil moisture predictions, the soil moisture 

estimates did not correspond to the rainfall patterns. This supported that the soil moisture 
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was affected by not only the weather conditions, but also by the land surface conditions 

(i.e., soil textures, vegetation covers, topography, etc.). 

 

 

Figure 6.10: (a-g) Yearly observed and simulated rainfall occurrence probabilities 

(1995-2009) for each weather station (sites 1 to 7) at the temporal domain and (h) 

average probabilities of observed and simulated rainfall occurrences for all years at 

the spatial domain in the Oklahoma domain 
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Figure 6.11: Observed and simulated dry/wet spell lengths in the network of 

multiple weather locations (a-g: sites 1 to 7) for the Oklahoma domain (a-g: sites 1 

to 7) during 1995-2009 
Total number of days: 1350 (15 years  90 days). 
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Figure 6.12: (a) Observed rainfall occurrence probabilities (averaged for all years) 

and (b) measured and predicted root zone soil moisture values
*
 (averaged for all 

years, cm
3
 cm

-3
) at the soil depth of 0-5 cm in the network of multiple weather 

locations for the Oklahoma domain during the simulation period (2003-2009) 
*
On each box indicating the simulated soil moisture, the central line is the median value of data, the edges 

of the box are the 25
th

 and 75
th

 percentiles, and the whiskers extend to the most extreme data points.  
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6.4.2 Illinois Domain 

We tested the HMMGA approach for the Illinois domain (300 km  500 km). 

The (hidden) state transition probabilities given in Table 6.4 show slightly different 

behavior compared to the results of the Oklahoma domain.  

A wet condition at time t had relatively high probabilities of observing wet 

(0.377) and relatively dry (0.341) conditions at time t+1. A relatively wet condition at 

time t was evenly transitioned to other conditions (0.246~0.393) at time t+1, except of a 

relatively dry condition (0.067). Given a relatively dry condition at time t, the 

probabilities of observing relatively dry (0.358) and dry (0.360) conditions at time t+1 

were higher than others, but a dry condition at time t still had the highest self-transition 

probability (0.649) at time t+1. Overall, the probabilities of observing a dry condition at 

time t+1 in Illinois were lower than those of Oklahoma indicating that the Illinois sites 

had more rainfall events.  

 Fig. 6.13 exhibits the comparison of observed rainfall occurrence probabilities 

and estimated optimal state sequences. The estimated optimal state sequences matched 

quite well (R
2
: 0.912) with the observed rainfall occurrence probabilities, similar to the 

results of the Oklahoma domain (shown in Fig. 6.7). This result indicated that the 

HMMGA performs well in predicting the surface soil wetness for the Illinois (relatively 

larger) domain also.  
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Figure 6.13: (a) The observed rainfall occurrence probabilities and (b) optimal state sequences derived by the HMMGA 

(representing soil wetness conditions comprised of hidden states 1 to 4) during 1994~2010  (years 1 to 17) over the 

multiple weather locations in Illinois 
State 1: wet condition; State 2: relatively wet condition; State 3: relatively dry condition; State 4: dry condition 
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The rainfall occurrence probabilities at four different states were presented for 

the multiple sites of the Illinois domain in Fig. 6.14. In general, the results for four 

different states showed similarly across the study sites. However, the probabilities of 

rainfall occurrences under a dry condition (state 4) were lower than for the other states, 

which meant that less rainfall events were generated. Fig. 6.15 showed the seasonal 

variations (daily average from 1994 to 2010) of four hidden states. Overall, the variation 

characteristics of different states (1 to 4) in Illinois were similar as shown in the results 

of Oklahoma (Fig. 6.9) and the seasonality of the probabilities for four states was also 

elusive. The probabilities of dry condition (state 4) were slightly lower than those of 

Oklahoma indicating that the Illinois sites had relatively more rainfall events than those 

of the Oklahoma sites. The comparison of observed rainfall occurrence probabilities for 

the Oklahoma (Fig. 6.7a) and Illinois (Fig. 6.13a) domains supported these findings. 

Also, the state 4 probabilities were still higher than other states (1, 2, and 3).  

In Fig. 6.16a-g, the yearly predicted rainfall occurrence probabilities (R
2
: 

0.102~0.436 and RMSE: 0.063~0.084) for the sites 1 to 5 derived by the HMMGA were 

less identifiable with the observations than those (R
2
: 0. 460-0.676 and RMSE: 0.074-

0.084) of the Oklahoma (relatively smaller) domain in Fig. 6.10a-g, especially for the 

sites 6 and 7 (R
2
: -0.383 and -0.077, RMSE: 0.084 and 0.077). It may indicate that the 

predictions were considerably influenced by the distance between the weather stations. 

The time averaged probabilities (R
2
: 0.962 and RMSE: 0.006) for all years in the 

individual sites were fairly matched with the observations (Fig. 6.16h) at the spatial 

domain, although the predicted rainfall probabilities were slightly underestimated. In 



 

 

192 

 

line with the results for the Oklahoma domain, it was found that the stochastic approach 

may be more robust in predicting long-term rainfall across the entire spatial domain 

rather than predicting the short term daily time series of rainfall at individual weather 

stations. The statistics of rainfall predictions have some uncertainties in modeling for the 

Illinois domain, but overall the predicted results tend to be similar with the observations. 

The simulated dry/wet spell lengths (R
2
: 0.958~0.992 for the dry and R

2
: 0.946~0.994 

for the wet) by this approach matched well with the observations in Fig. 6.17. Also, the 

uncertainties (RMSE: 9.274~19.209) of wet spell lengths were slightly higher than those 

(RMSE: 7.937~12.661) of the dry condition as shown in the results of Oklahoma 

domain.  

 

 
Figure 6.14: Predicted four-state rainfall occurrence probabilities together with 

digital elevation model (DEM) for the Illinois domain 
State 1: wet condition; State 2:

 
relatively wet condition; State 3:

 
relatively dry condition; State 4:

 
dry 

condition 
*
(the total number of days for each state) 
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Figure 6.15: Seasonal variations (daily average from 1995 to 2009) of four hidden-states at the Illinois domain 

State 1: wet condition; State 2:
 
relatively wet condition; State 3:

 
relatively dry condition; State 4:

 
dry condition 
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Figure 6.16: (a-g) Yearly observed and simulated rainfall occurrence probabilities 

(1994-2010) for each weather station (sites 1 to 7) at the temporal domain and (h) 

average probabilities of observed and simulated rainfall occurrences for all years at 

the spatial domain in the Illinois domain 
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Figure 6.17: Observed and simulated dry/wet spell lengths in the network of 

multiple weather locations (a-g: sites 1 to 7) for the Illinois domain during 1994-

2010 
Total number of days: 1530 (17 years  90 days) 
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Fig. 6.18 shows the daily measured and predicted root zone soil moisture 

estimates (cm
3
 cm

-3
) derived by our HMMGA approach and also from the data 

assimilation scheme [Ines and Mohanty et al., 2008a] at Site 1 (Bondville) in Illinois. 

Note that the daily comparison of observed and predicted root zone soil moisture 

dynamics in 1994 only is shown for the sake of brevity. The daily root zone (0-50 cm) 

soil moisture dynamics derived by the physical-based assimilation scheme were better 

estimated (R
2
: 0.739 and RMSE: 0.027) than the HMMGA-based predictions (R

2
: 0.433 

and RMSE: 0.058). Although the stochastic HMMGA soil moisture estimates had 

uncertainties in modeling, the predictions matched well with the observations. This 

result shows that the stochastic approach can provide somewhat available root zone soil 

moisture predictions on a daily basis. 

We predicted the time averaged (1994 to 2000) soil moisture at the near-surface 

(0-10 cm) and in the sub-surface layers (10-30, 30-50, and 0-50 cm) at each of the 

weather stations (Fig. 6.19). The predicted root zone soil moistures (R
2
: 0.675~0.918 and 

RMSE: 0.024~0.041) at the various soil depths matched well with the measurements. 

The near-surface (0-10 cm) soil moisture estimates were more variable than those of the 

sub-surface layers. Mostly, the predicted root zone soil moisture values have 

uncertainties compared to the measurements, especially for the sites 2 and 3. These 

uncertainties may be caused by the underestimations of predicted rainfall occurrence 

probabilities (Fig. 6.16h). 
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Figure 6.18: Comparison of the measured and predicted soil moisture at Illinois 

Site 1 in 1994 (90 days from March 01 to May 29); (a) rainfall in Bondville (site 1), 

(b) predicted near-surface (0-50 cm) soil moisture dynamics derived by the 

HMMGA approach
a
, and (c) Simulated near-surface (0-50 cm) soil moisture 

dynamics derived by the near-surface data assimilation scheme
b
 

a
Realizations=30; Random number generator seeds (3000); Max. generation=30; Population=10 

b
Random number generator seeds (-1000, -950, and -750); Max generation=500; Population=10 

   



 

 

198 

 

 
Figure 6.19: Measured and predicted root zone soil moisture dynamics

*
 (averaged 

for all years, cm
3
 cm

-3
) at various soil depths in the network of multiple weather 

locations for the Illinois domain during the simulation period (2003-2009); (a) 0-10 

cm, (b) 10-30 cm, (c) 30-50 cm, and (d) 0-50 cm 
*
On each box indicating the simulated soil moisture, the central line is the median value of data, the edges 

of the box are the 25
th

 and 75
th

 percentiles, and the whiskers extend to the most extreme data points.  
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Figure 6.20 shows the calibration (1994-2000) and validation (2001-2004) results 

for soil moisture (the soil depth of 0-50 cm). Overall, the predicted root zone soil 

moisture estimates (R
2
: 0.310 and RMSE: 0.051) during the validation period matched 

the observations as well as those (R
2
: 0.877 and RMSE: 0.040) for the calibration (1994-

2000), while the soil moisture predictions of sites 2 and 3 for the validation have more 

bias, especially for site 2 causing the relatively low correlation. These findings are quite 

important in this study, because our proposed methodology can provide an attractive 

alternative in forecasting long-term root zone soil moisture for the future using only 

climate change scenarios (i.e., global climate models-GCMs, regional climate models-

RCMs, etc.) and historical soil moisture measurements (available). In this regard, this 

approach could be quite useful for developing/improving efficient agricultural/water 

resources management in the future.  

Generally, the root zone soil moisture predictions for the Illinois domain had 

more uncertainties than those of the Oklahoma (relatively smaller) domain indicating 

that the stochastic soil moisture predictions may be considerably influenced by the 

spatial domain size. Although the results for the Illinois domain had more bias compared 

to the measurements, the HMMGA approach still predicted the root zone soil moisture 

well across the spatial domain with some uncertainties.  
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Figure 6.20: Measured and predicted root zone soil moisture dynamics

*
 (averaged for all years, cm

3
 cm

-3
) at the soil 

depth (0-50 cm) in the network of multiple weather locations for the Illinois domain during the calibration and 

validation periods; (a) observed rainfall occurrence probabilities, (b) calibration (1994-2000), and (c) validation (2001-

2004) 
*
On each box indicating the simulated soil moisture, the central line is the median value of data, the edges of the box are the 25

th
 and 75

th
 percentiles, 

and the whiskers extend to the most extreme data points.  
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The data assimilation scheme using the physical-based hydrological (SWAP) 

model also has uncertainties (i.e., due to the model structure, parameter uncertainties, 

user based errors, etc.). When we considered these limitations mentioned above and 

complexity of applications, our suggested approach can provide an easy application for 

root zone soil moisture predictions using only precipitation and historical soil moisture 

measurements existing in the real world conditions. 

6.5 Conclusions 

In this study, we developed a non-parametric evolutionary algorithm (genetic 

algorithm-based hidden Markov model, HMMGA) for predicting root zone soil moisture 

dynamics using only precipitation and historical soil moisture measurements across 

multiple weather stations. Rainfall occurrence probabilities and dry/wet spell lengths 

reproduced by the HMMGA were also analyzed.  

The HMMGA was used to estimate optimal state sequences (representing surface 

soil wetness comprised of the four hidden states-wet, relatively wet, relatively dry, and 

dry conditions) based on precipitation history. Historical soil moisture data measured at 

different soil depths (0-5, 0-10, 10-30, 30-50, and 0-50 cm) were categorized based on 

the soil wetness conditions. Then, statistics (mean and standard deviation) of categorized 

soil moisture data were determined. Using the HMMGA-based surface soil wetness and 

historical categorized soil moisture statistics, root zone soil moisture dynamics were 

estimated.  
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Two different domain sizes in Oklahoma (1995-2009, 130 km  130 km) and 

Illinois (1994-2010, 300 km  500 km) under different hydro-climatic locations were 

selected for testing this approach.  

The HMMGA estimated well the optimal state sequences for the Oklahoma (R
2
: 

0.945) and Illinois (R
2
: 0.912) domains compared to the observed rainfall occurrence 

probabilities. The yearly predicted rainfall occurrence probabilities at the individual 

weather stations for the Oklahoma domain had a better match (R
2
: 0.460~0.676, RMSE: 

0.074~0.084) with observations, but the Illinois domain had more variations (R
2
: -

0.383~0.436, RMSE: 0.063~0.084) indicating that the HMMGA processes are 

dependent on the distance between the weather stations.  

The average rainfall occurrence predictions for all years across the individual 

sites matched the observations well (R
2
: 0.784 and RMSE: 0.012 for the Oklahoma 

domain, R
2
: 0.962 and RMSE: 0.006 for the Illinois domain). This result showed that the 

HMMGA provided better long-term predictions across a spatial domain than short term 

(daily) predictions. Also, the estimated dry/wet spell lengths have some uncertainties 

with the observations for both the domains, but they still matched well.  

The average near-surface (0-5 cm) soil moisture dynamics for all seven years at 

the Oklahoma domain matched almost perfectly (R
2
: 0.999 and RMSE: 0.005) with the 

measurements. For the Illinois domain, the daily root zone (0-50 cm) soil moisture 

predictions (R
2
: 0.433 and RMSE: 0.058) at the site 1 (Bondville, 1994) were 

identifiable with the observations. Also, the average root zone soil moisture dynamics at 

the different soil depths (0-10, 10-30, 30-50, and 0-50 cm) performed fairly well (R
2
: 
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0.675~0.918 and RMSE: 0.024~0.041) compared to the observations, although 

uncertainties were evident in the predictions.  

Generally, the soil moisture predictions had slightly different trends compared to 

the rainfall occurrence probabilities for both domains. These findings showed that the 

predicted root zone soil moisture estimates were influenced by not only the precipitation, 

but also the land surface conditions (e.g., topography, soil textures, vegetation covers, 

etc.). Thus, this scheme which uses rainfall and historical soil moisture data performed 

well in predicting root zone soil moisture.  

The results of calibration and validation supported the robustness of this 

approach in forecasting the root zone soil moisture dynamics at multiple locations. This 

result indicates that our approach can be used to predict root zone soil moisture 

dynamics in the future using only climate change scenarios and soil moisture history 

existing.  

Based on these findings, our proposed methodology can predict well not only the 

rainfall occurrences and dry/wet spell lengths, but also the root zone soil moisture 

estimates at the multiple sites. Further, as the predicted results at the spatial domain 

matched quite well with the observations, this approach can be also used for 

downscaling both remotely sensed precipitation [Robertson et al., 2004] and soil 

moisture products. Thus, the newly developed algorithm could provide an attractive 

alternative for agricultural/water resources management in an efficient and economical 

manner.  
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CHAPTER VII 

DEVELOPMENT OF A DROUGHT SEVERITY ASSESSMENT FRAMEWORK 

USING REMOTELY SENSED SOIL MOISTURE PRODUCTS UNDER 

CLIMATE CHANGE SCENARIO 

7.1 Synopsis 

  Evaluating drought severity based on future climate scenarios plays an important 

role for water resources management. In this study we assessed drought severity based 

on soil moisture for individual soil-crop combinations. Based on the historical data, 

pixel-scale hydraulic parameters at finer-scales were estimated from remotely sensed 

(RS) soil moisture using a newly developed algorithm EMOGA (Ensemble Multiple 

Operators Genetic Algorithm) coupled with Soil-Water-Atmosphere-Plant (SWAP) 

hydrological model. These estimated hydraulic parameters along with meteorological 

variables obtained from general circulation models (GCMs) were used to predict soil 

moisture using the SWAP model. Further, drought severity was calculated using a soil 

moisture deficit index (SMDI) based on the projected soil moisture obtained from the 

SWAP model. The proposed model was evaluated based on synthetic and field data 

under different hydro-climates (Lubbock, Texas; Little Washita watershed, Oklahoma; 

Walnut Creek watershed, Iowa). Finer-scale root zone soil moisture predictions were 

considerably influenced by various combinations of environmental factors (soils, crops, 

groundwater table, etc.) along with GCM scenarios. However, these local environmental 

factors had relatively limited impacts (compared to precipitation dynamics) on reducing 

drought severity in the study region. The absolute SMDI values do indicate the 
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occurrence of agricultural drought during 2010-2020. Thus, our proposed approach can 

be used to assess drought severity at finer-scales using a RS soil moisture product for 

efficient agricultural/water resources management. 

7.2 Introduction 

Drought is one of the most severe environmental outcomes of the climate change. 

It impacts agriculture, ecosystem, food security, etc. leading to economic loss. 

According to the U.S. Federal Emergency Management Agency [FEMA, 1995], annual 

loss due to drought is approximately U.S. $ 6-8 billion. In 2011, Texas suffered under an 

intense drought driven by La Niña with a total damage of $ 7.6 billion [LBB, 2011]. 

Generally, droughts develop and evolve gradually with time when compared to other 

natural disasters (i.e., earthquake, tornado, etc.) indicating the possibility of making 

appropriate mitigation plans through drought prediction and monitoring systems 

[Cancelliere et al., 2007]. 

Drought evaluations have been conducted by using precipitation frequency and 

intensity based on drought indices. Many global circulation models (GCMs) have been 

developed/improved to simulate earth’s climate change [Roeckner et al., 1996; Gong et 

al., 2003; among others]. The Intergovernmental Panel on Climate Change (IPCC) 

provides various meteorological, socioeconomic, and environmental data based on the 

past and future scenarios for the assessment of climate change [IPCC, 2007]. Goddard 

Institute for Space Studies (GISS), National Aeronautics and Space Administration 

(NASA) also provides various GCM versions (e.g., Model E, Model AOM-GR and 

Model II). A number of climate models from Canadian Centre for Climate modeling and 
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analysis (CCCma) are available for understanding climate change and variability in 

various Earth system processes. Despite better understanding in climatic forecasts, 

hydrologists still struggle to improve coarse-scale GCM scenarios in applications (e.g., 

water resources planning, water management, etc.). Various studies were conducted for 

developing downscaling algorithms to best reproduce realistic predicted values of 

climate data. The widely used approaches are dynamic modeling such as a regional 

climate model (RCM) [Leung et al., 2004] within GCM scenarios, statistical or empirical 

transfer functions [Hewitson and Crane, 1996; Wilby and Wigley, 1997, Wilby et al., 

1998], etc. Further, the frequency and intensity distribution of GCM daily [Ines and 

Hansen, 2006] and monthly [Wood et al., 2002] precipitation scenarios were corrected 

using a quantile-based mapping [Cayan et al., 2008; Hayhoe et al., 2004; Maurer and 

Duffy, 2005; Maurer, 2007; Panofsky and Brier, 1968].  

Root zone soil moisture dynamics is a key factor in agricultural water 

management, rainfall-runoff processes, seasonal climate predictions, and ecosystem 

dynamics and alteration. Its spatio-temporal variability in a field influences runoff at the 

soil surface and in the sub-surface, evapotranspiration, and groundwater recharge. In this 

regard, importance of root zone soil moisture prediction has increased for agricultural 

water management, because of unbalanced water supply and demand due to agricultural 

drought, differences in irrigation and drainage practices, farm level water distribution 

and scheduling, etc.  

In order to evaluate a drought condition, various drought indices such as the 

Palmer Drought Severity Index (PDSI) [Palmer, 1965], Crop Moisture Index (CMI) 
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[Palmer, 1968], Standardized Precipitation Index (SPI) [McKee et al., 1993], Surface 

Water Supply Index (SWSI) [Shafer and Dezman, 1982], Soil Moisture Deficit Index 

(SMDI) [Narasimhan and Srinivasan, 2005], and Evapotranspiration Deficit Index 

(ETDI) [Narasimhan and Srinivasan, 2005], among others were designed for water 

resources management decision-making. Two of the most widely used drought indices 

are the PDSI and the SPI. The PDSI is primarily a climate-based drought index for 

assessing long periods under abnormally wet and dry conditions. However, crops are 

usually influenced not only by climatic variability, but also by soil water content in the 

root zone governed by bottom boundary conditions (shallow ground water table) 

[Jobbágy and Jackson, 2004; Nosetto et al., 2009; Pollacco et al., 2012]. In this regard, 

the SMDI based on weekly soil moisture deficit [Narasimhan and Srinivasan 2005] 

could be more suitable for assessing agricultural drought severity.  

A remote sensing (RS) scheme has some advantages for mapping distributed root 

zone soil moisture at the spatial domain. Many airborne- and satellite-scale RS data sets 

have been used to observe pixel-based (~m to tens of km scale) soil moisture products 

[Jackson et al., 1999; Jackson et al., 2005]. However, these RS datasets suffer from their 

coarse spatial resolutions to effectively be used for agricultural water management at 

local-/field-scales. Crow et al., [2000] downscaled satellite-based RS soil moisture 

products for obtaining soil dielectric values by using a soil dielectric inversion model. A 

new downscaling algorithm was developed by Merlin et al., [2005] to improve RS near-

surface soil moisture products at fine scale for the Soil Moisture and Ocean Salinity 

(SMOS) mission [Kerr et al., 2001] with fine-scale optical data. Recently, Ines et al., 
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[2012] developed a stochastic disaggregation method to derive soil moisture for various 

land covers (representing soil properties and area fractions of corresponding soil-

vegetation combinations) within a RS soil moisture footprint using a genetic algorithm.  

Historically, many studies have been conducted with respect to interaction 

between soil moisture variations and climate changes at the lower boundary of the 

atmosphere [e.g., Charney et al., 1977; Walker and Rowntree; 1977; Srinivasan, et al., 

1995; Yang and Lau, 1998; Shen et al., 1998], sensitivity of a GCM simulation to land 

surface hydrology [Stamm and Wood, 1994], among others. However, till date studies 

have not been designed to evaluate agricultural drought severity using root zone soil 

moisture predictions based on weather forecast models. The scale incompatibility 

between hydrologic and weather models leads to errors at the catchment-, watershed-, 

and basin-scales for predicting root zone soil moisture. To address proper water balance 

in the root zone, we need to develop better long-term root zone soil moisture prediction 

schemes at localized regions by scaling down coarse-scale RS data.   

In this study, we used root zone soil moisture forecast (at fine spatial scale) 

coupled with a local land surface parameterization approach. We adapted a grid-based 

disaggregation algorithm [Ines et al., 2012] with a new simulation-optimization scheme, 

Genetic Algorithm (GA) and Soil-Water-Atmosphere-Plant (SWAP) model [van Dam et 

al., 1997] to predict root zone soil moisture for the current decade (2010-2020). The 

objectives of this research were two-fold: (1) to develop a drought severity assessment 

framework using remotely sensed soil moisture products with global circulation model 

(GCM) based climate forecasts under various regional hydro-climatic conditions; and (2) 
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to evaluate local environmental factors such as various soil textures, vegetations, soil 

depths, shallow ground water tables, etc. on reducing drought severity at fine-scales 

across local regions. This approach will greatly assist in assessing potential risk (e.g., 

agricultural drought) and correspondingly in determining most efficient 

agricultural/water management practices during the current decade at 

functional/operational scales rather than at large remote sensing footprints. 

7.3 Materials and Methods  

As mentioned above, the first objective of this study was to develop a drought 

severity assessment framework using remote sensing soil moisture products for a GCM 

scenario. We modified a GA-based disaggregation algorithm [Ines et al., 2012] to extract 

land surface information comprising of soil-vegetation combinations within a RS 

footprint. The modified algorithm, described in detail (section 2.1), was grid-based and 

enabled incorporation of gridded RS data. This new scheme also determined the 

uncertainties associated with extracting land surface information and improved the 

efficiency of the GA. Using the extracted soil-vegetation information with GCM 

scenarios, long-term daily root zone soil moisture dynamics were predicted at fine-scales 

with the help of a hydrological model as depicted in Fig. 7.1a. Then, we evaluated 

drought severities with an appropriate drought severity assessment index under various 

environmental conditions (e.g., soil textures, vegetation covers, presence of shallow 

water tables, etc.) at local-scales. The modified grid-based algorithm is described below.  
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Figure 7.1: (a) Schematic of drought severity assessment framework using climate 

changes and a modified grid-based disaggregation algorithm; (b) basic concept of 

Ensemble Multiple Operators Genetic Algorithm (EMOGA)  
Note: RC-reproduced chromosomes, SC-strongest chromosome, WC-weak chromosome, and Gn-

generations 

 

 

7.3.1  Modified Grid-based Disaggregation Algorithm 

7.3.1.1 Basic Concepts of Linear Mixture/Un-mixing Models for Grid-based 

Disaggregation Algorithm 

A linear relation has been used successfully to characterize the spectral mixture 

of a RS pixel-based product [Holben and Shimabukuro, 1993; Ferreira et al., 2007]. 

Based on this approach, the response of individual pixel in any spectral wavelength is 

assumed as a linear combination of the responses of individual component of the 

mixture. Thus, each image pixel contains land surface conditions (si: soil identification-
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soil ID and ai,j: sub-grid fraction) with respect to the fraction and spectral response of 

each component within the ground resolution unit. Hence, it is possible to model each 

sub-pixel spectrum ( is  and ji,a  components k in Eq. (7.1)) of the image as linear mixture 

(Eq. (7.2)) model within a multispectral image. An un-mixing (Eq. (7.3)) can be 

described by the linear mixture with error term (et).  

k = { is = 1s ,…, Ms , ji,a = 1,1a ,…, 1-NM,a  }     (7.1) 

sum
tθ̂ (k)= 

 

N

1j

M

1i

sub
tj,i,ji, θ̂a  t        (7.2) 

RS
tθ̂  (k)= 

 

N

1j

M

1i

sub
tj,i,ji, θ̂a + et  t        (7.3) 


 

N

1j

M

1i

ji,a  = 100        (7.4) 

0ai,j100         (7.5) 

Minsi si Maxsi         (7.6) 

where k is the set of variables whose si component is the soil hydraulic properties 

contained within the pixel and ai,j is the sub-grid cell ( NM,a  was calculated as 100 -




 

1N

1j

M

1i

ji,a ) of corresponding the soil-vegetation combinations within a RS product, sub
tj,i,θ̂ is 

the simulated soil moisture of each sub-grid, sum
tθ̂  is the sum of simulated soil moisture (

sub
tj,i,θ̂ ) of each sub-grid fraction, RS

tθ̂  is the RS soil moisture product, i is the number of 

soil textures, j is the number of vegetation covers, M is the soil domain, N is the 
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vegetation domain, and t is the time index, respectively. The internal constraints are 

shown in Eqs. (7.4-6).  

The objective function used to search for the parameters (k) by minimizing the 

errors between the mixed-scale ( sum
tθ̂ ) and RS ( RS

tθ̂ ) near-surface soil moisture is shown 

in Eq. (7.7),  

Z(k) = Min{ 



T

1t

RS
t

sum
t |θ̂θ̂|

T

1
}      (7.7) 

Fitness(k) = Max[Z(k)]
-1

       (7.8) 

where Z is the (minimization) objective function. The suitability of searched parameters 

(k) is evaluated using the fitness function (Eq. 7.8).  

7.3.1.2 Ensemble Multiple Operators Genetic Algorithm (EMOGA) 

Genetic algorithms (GAs) are powerful search algorithms based on the survival 

of the fittest mechanism [Holland, 1975; Goldberg, 1989]. In a GA, genes (called 

chromosomes) are arranged in a population (an array) to represent the unknown 

parameters. A GA initializes a population comprised of genes (i.e., binary “0” or “1”) for 

the first generation (g=1) as the starting point in the search space and evaluates the 

suitability of chromosomes using a fitness function. Then, a new population is produced 

through a GA operator composed of selection, crossover, and mutation for the next 

generation (g+1). In the GA operator, elite (best fitness) chromosomes were selected 

from the mating pool, reproduced via the crossover process, and mutated for diversity of 

genes. The searching ability of GAs is dependent on initial random seed numbers (e.g., 

1000, 2000, and 3000) along with the number of generations. Also, as the number of 
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parameters (k) increases, the searching ability of GA decreases. In this study, we 

developed a new genetic algorithm for searching solutions more efficiently in the 

unknown search space. A GA was integrated with multiple operators (MOGA) to 

address the weakness of GA in searching solutions more efficiently from the unknown 

space. The unique ability of the MOGA is to reproduce the strongest (elite) chromosome 

in each population as many times as the number of parameters to be searched (i.e., the 

number of sub-grid fractions: M  N) as shown in Fig. 7.1b. The reproduced 

chromosomes (RC
r=1,…,M×N

) have new genetic information through the GA operators, 

which can search more spaces. Then the MOGA restarts under the assumption that the 

chromosomes are converged to one region when the maximum fitness of populations is 

not changed for fifty generations (note that the number of generations is subjective) 

before the maximum number of generations are completed. Along with restarting the 

population, creep (at base 10) and intermittent jump mutation operators are introduced 

for new genetic materials and a time-saving mechanism allows the MOGA to remember 

both the elite chromosome of the previous generation (g-1) and the remaining 

chromosomes [Ines and Honda, 2005]. In the MOGA, the elite chromosomes are always 

reproduced in the next generation. A random re-sampling (ensemble e) algorithm [IBM 

Programmers’ Guide; Efron, 1982] is integrated with the MOGA, to create an Ensemble 

Multiple Operators Genetic Algorithm (EMOGA).  

We used multiple populations (seeds: 1000, 2000, and 3000) and the re-sampling 

technique (ensemble e) with the EMOGA for uncertainty analysis. At the end of the GA 

generations, the average of individual maximum fitness values generated by the 
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combinations of ensemble processes and multi-populations (ensemble e   seeds) was 

calculated and classified as above- and below-average. Then, we determined the filtered 

(above-average) and un-filtered (both above- and below-average) solutions and 

calculated the statistics (average and 95 percent confidence interval-PCI) of searched 

solutions in the numerical experiments.  

A near-surface soil moisture assimilation scheme based on inverse modeling 

(IM) [Ines and Droogers, 2002; Ines and Mohanty, 2008a,b] was integrated with the 

newly developed EMOGA. It was developed under the assumption that the land surface 

information (soil ID and sub-grid fractions) can be obtained using only near-surface 

remotely sensed (0-1/0-5 cm) soil moisture by tuning the hydrological model using a 

genetic algorithm. The search spaces for soil ID values and sub-grid fractions used in the 

EMOGA are shown in Table 7.1. We used the physically-based Soil Water Atmosphere 

Plant (SWAP) model for simulating soil water flow between the soil, water, atmosphere, 

and plant systems in the soil profile [Kroes et al., 1999; van Dam et al., 1997]. The 

SWAP model is well known in the hydro-climate model literature. The readers are 

referred to Kroes et al., [1999] and van Dam et al., [1997].  

7.3.1.3 Soil Database 

In this study, we used soil database shown in Table 7.2 based on synthesis of 

selected textures from available national and global soil databases (HYPRES [Wösten et 

al., 1999], Rosetta [Schaap et al., 1999], Staring soil database [Wösten et al., 1994], 

UNSODA [Leij et al., 1999], and USDA-SCS (Soil Survey) [Carsel and Parrish, 1988]. 

These databases have been established with point scale measurements using laboratory-
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based techniques. By using the soil database containing soil textural information at a 

local-scale (homogeneous) soil unit, we can save the computational time for quantifying 

soil hydraulic parameters at the sub-grid or fine scales. This is because as opposed to 

searching for multiple hydraulic parameters, the GA searches for one soil ID value. The 

soil moisture dynamics are determined based on the soil hydraulic parameters associated 

with the soil ID value. The soil database has various soil textural ranges for the Mualem-

van Genuchten soil hydraulic parameters. 

 

Table 7.1: Search spaces of linear mixture/un-mixing parameters (soil 

identification-soil ID and sub-grid fractions) used in the EMOGA 

  
Linear mixture/ 

un-mixing parameters 

Searching space of parameters 
No. of bit (L) 2L 

 
Minimum values Maximum values 

Simple land surface  

Conditions (1v-3s) 

s1 1 64 6 64 

s2 1 64 6 64 

s3 1 64 6 64 

a1,1(s1v1) 0 100 8 256 

a2,1(s2v1) 0 100 8 256 

* a3,1(s3v1) - - - - 

      

Compolex land surface  

conditions  (2v-3s) 

 

s1 1 64 6 64 

s2 1 64 6 64 

s3 1 64 6 64 

a1,1(s1v1) 0 100 8 256 

a1,2(s1v2) 0 100 8 256 

a2,1(s2v1) 0 100 8 256 

a2,2(s2v2) 0 100 8 256 

a3,1(s3v1) 0 100 8 256 

*a3,2(s3v2) - - - - 

Note: 1v-3s (one vegetation cover and three different soil textures); 2v-3s (two vegetation covers and three 

different soil textures); ai,j-sub-grid fractions. 
*
aM,N = 100 – (



 

1N

1j

M

1i

ji,a ) 
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Table 7.2: Soil database used in the modified grid-based disaggregation algorithm 

Soil 

ID 
Soil texture 

Shape parameters Scaling parameters 
   

Soil 

ID 
Soil texture 

Shape parameters Scaling parameters 
  

 n res sat Ksat    n res sat Ksat 

1a Sandy Loam 0.021 1.61 0.067 0.37 41.6 0.5 
 

33a Silt Loam 0.012 1.39 0.061 0.43 30.5 0.5 

2b Sandy Loam 0.075 1.89 0.065 0.41 106.1 0.5 
 

34b Silt Loam 0.02 1.41 0.067 0.45 10.8 0.5 

3c Sandy Loam 0.027 1.45 0.039 0.39 38.3 -0.861 
 

35c Silt Loam 0.005 1.66 0.065 0.44 18.2 0.365 

4d Tsand B1 0.025 1.51 0.01 0.43 17.5 -0.14 
 

36a SandyClayLoam 0.033 1.49 0.086 0.4 9.7 0.5 

5d Tsand B2 0.023 1.55 0.02 0.43 9.7 -0.983 
 

37b SandyClayLoam 0.059 1.48 0.1 0.39 31.4 0.5 

6d Tsand B3 0.015 1.41 0.01 0.45 17.8 -0.213 
 

38c SandyClayLoam 0.021 1.33 0.063 0.38 13.2 -1.28 

7d Tsand B4 0.016 1.56 0.01 0.42 54.8 0.177 
 

39e Tfine 0.037 1.1 0.01 0.52 24.8 -1.9772 

8e Scoarse 0.043 1.52 0.025 0.37 70 1.25 
 

40a Clay Loam 0.03 1.37 0.129 0.47 1.8 0.5 

9d SsandO3 0.021 1.56 0.01 0.34 18.3 -0.522 
 

41b Clay Loam 0.019 1.31 0.095 0.41 6.2 0.5 

10d SsandO4 0.022 1.54 0 0.36 53.1 -0.52 
 

42c Clay Loam 0.016 1.42 0.079 0.44 8.2 -0.763 

11d SsandO5 0.06 2.06 0.01 0.32 43.6 0.343 
 

43a Silty Clay Loam 0.027 1.41 0.098 0.55 7.4 0.5 

12d SsandO6 0.029 1.15 0 0.41 5.5 -6.864 
 

44b Silty Clay Loam 0.01 1.23 0.089 0.43 1.7 0.5 

13e Tcoarse 0.038 1.38 0.025 0.4 60 1.25 
 

45c Silty Clay Loam 0.008 1.52 0.09 0.48 11.1 -0.156 

14a Loam 0.025 1.31 0.083 0.46 38.3 0.5 
 

46b Sandy Clay 0.027 1.23 0.1 0.38 2.9 0.5 

15b Loam 0.036 1.56 0.078 0.43 25 0.5 
 

47c Sandy Clay 0.033 1.21 0.117 0.39 11.4 -3.665 

16c Loam 0.011 1.47 0.061 0.4 12.1 -0.371 
 

48a Silty Clay 0.023 1.39 0.163 0.47 8.4 0.5 

17d TloamB7 0.019 1.25 0 0.4 14.1 -0.802 
 

49b Silty Clay 0.005 1.09 0.07 0.36 0.5 0.5 

18d TloamB8 0.01 1.28 0 0.43 2.3 -2.733 
 

50c Silty Clay 0.016 1.32 0.111 0.48 9.6 -1.287 

19d TloamB9 0.007 1.33 0 0.43 1.5 -2.161 
 

51a Clay 0.021 1.2 0.102 0.51 26 0.5 

20d SloamO8 0.014 1.34 0 0.47 9.1 -0.803 
 

52b Clay 0.008 1.09 0.068 0.38 4.8 0.5 

21d SloamO9 0.009 1.4 0 0.46 2.2 -1.382 
 

53c Clay 0.015 1.25 0.098 0.46 14.8 -1.561 

22d SloamO10 0.011 1.28 0 0.49 2.2 -2.123 
 

54d TclayB10 0.012 1.22 0.01 0.42 1.2 -4.795 

23e Tmedium 0.031 1.18 0.01 0.44 12.1 -2.3421 
 

55d TclayB11 0.024 1.11 0 0.6 5.3 -5.395 

24a Silt 0.006 1.53 0.123 0.48 55.7 0.5 
 

56d TclayB12 0.053 1.08 0 0.55 15.5 -8.823 

25b Silt 0.016 1.37 0.034 0.46 60 0.5 
 

57d SclayO11 0.019 1.15 0 0.42 13.8 -1.384 

26c Silt 0.007 1.68 0.05 0.49 43.8 0.624 
 

58d SclayO12 0.01 1.16 0 0.56 1.1 -4.171 

27d TsiltB14 0.005 1.31 0.01 0.42 0.8 0 
 

59d SclayO13 0.017 1.11 0 0.57 3.3 -4.645 

28d SsiltO14 0.003 1.69 0 0.38 0.4 0.057 
 

60e Sfine 0.02 1.09 0.01 0.48 8.5 -3.7124 

29d SsiltO15 0.007 1.3 0.01 0.41 3.7 0.912 
 

61e Tveryfine 0.027 1.1 0.01 0.61 15 2.5 

30e Smedium 0.025 1.17 0.01 0.39 10.8 -0.7437 
 

62e Sveryfine 0.017 1.07 0.01 0.54 8.2 0.0001 

31e Tmediumfine 0.008 1.25 0.01 0.43 2.3 -0.5884 
 

63d TpeatB16 0.013 1.32 0 0.73 13.4 0.534 

32e Smediumfine 0.008 1.22 0.01 0.41 4 0.5 
 

64d TpeatB17 0.018 1.14 0 0.72 4.5 -0.35 
a
UNSODA; 

b
SoilSurvey; 

c
Rosetta; 

d
Staring; 

e
Hypres (T and S prefixes mean Top- and Sub-surface soils) [Ines et al., 2012]
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7.3.2 Numerical Experiments 

We conducted synthetic and field validation experiments to evaluate the 

proposed approach for the current decade (2010-2020, with growing season from March 

01 to July 31). The numerical experiments were composed of various steps under rain-

fed conditions including; Step 1: testing of the modified grid-based disaggregation 

algorithm for simple/complex synthetically generated land surface conditions based on 

the coupled IM-EMOGA, Step 2: incorporation of future climatic scenarios from global 

circulation models (GCMs) into the algorithm, Step 3: prediction of daily root zone soil 

moisture at sub-grid scales, Step 4: drought severity assessment for the study domain, 

and Step 5: field validation experiment and drought severity assessment in the future.  

Step 1 is to test the approach under various synthetic land surface conditions 

(representing the areal heterogeneity) during the simulation period (2002) at the 

Lubbock site in Texas with (1) simple land surface condition (1 vegetation and 3 soil 

textures, 1v-3s) and (2) complex land surface condition (2 vegetations and 3 soil 

textures, 2v-3s), respectively. Figure 7.2a shows the complex land surface condition 

designed for this experiment. Additionally, six different scenarios comprised of various 

sub-grid fractions of soil textures and vegetation covers were tested in the simple land 

surface case (Table 7.3).  
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Figure 7.2: (a) Grid domain (10  10) for the numerical experiments (e.g., complex 

land surface condition for Step 1); (b) the Walnut Creek (WC 1 and 2: 800 m  800 

m) and Little Washita (LW 1 and 2: 800 m  800 m) sites in Iowa and Oklahoma 

for the field validation experiments; (c) homogeneous soil column under free-

drainage and various ground water table depths (-200, -150, -100, and -50 cm) 
Note: v1 - vegetation 1 (wheat), v2 – vegetation 2 (soybean), s1 – soil 1 (sandy loam-SL), s2 – soil 2 (silt 

loam-SiL), s3 – soil 3 (clay loam-CL) 
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Table 7.3: Filtered/un-filtered solutions derived by the modified grid-based 

disaggregation algorithm using the EMOGA with the simple land surface condition 

for Step 1 

Categories 
Filtered/ 

un-filtered 

Soil  

types 

Target values Solutions 

Soil 

ID 

Sub-grid 

fractions  

(ai,j) 

Soil 

ID 

Average of 

sub-grid 

fractions(ai,j) 

SD of 

sub-grid 

fractions 

Scenario 1 

(v1: wheat) 

Filtered 

s1 1 20 1 20 0 

s2 33 30 33 30 0 

s3 40 50 40 50 0 

Un-filtered 

s1 1 20 1 19.5 1.5 

s2 33 30 16, 33 30.6 1.2 

s3 40 50 40 49.9 0.6 

Scenario 2 

(v1: wheat) 

Filtered 

s1 1 30 1 30 0 

s2 33 30 33 30 0 

s3 40 40 40 40 0 

Un-filtered 

s1 1 30 1 29.5 1.8 

s2 33 30 16, 33 30.2 0.9 

s3 40 40 40 40.2 0.8 

Scenario 3 

(v1: wheat) 

Filtered 

s1 1 80 1 80 0 

s2 33 10 33 10 0 

s3 40 10 40 10 0 

Un-filtered 

s1 1 80 1 80 0 

s2 33 10 33 10 0 

s3 40 10 40 10 0 

        

Scenario 4 

(v1: soybean) 

Filtered 

s1 1 20 1 20 0 

s2 33 30 33 30 0 

s3 40 50 40 50 0 

Un-filtered 

s1 1 20 1 20 0 

s2 33 30 33 30.2 0.4 

s3 40 50 40 49.8 0.4 

Scenario 5 

(v1: soybean) 

Filtered 

s1 1 30 1 30 0 

s2 33 30 33 30 0 

s3 40 40 40 40 0 

Un-filtered 

s1 1 30 1 29.4 2.6 

s2 33 30 33, 38 30.8 3.8 

s3 40 40 40 39.8 0.9 

Scenario 6 

(v1: soybean) 

Filtered 

s1 1 80 1 80 0 

s2 33 10 33 10 0 

s3 40 10 40 10 0 

Un-filtered 

s1 1 80 1 80 0 

s2 33 10 33 10 0 

s3 40 10 40 10 0 

Population: 30; Total generations: 5000 (restart 8); seed number: 1000, 2000, 3000; pcreep: 0.05; pmutate: 

0.05 

Note: the target values –soil types (s1: 1-sandy loam, s2: 33-silt loam, s3: 40-clay loam); filtered – above 

average solutions; unfiltered-all solutions 
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In Step 2, we selected weather input datasets for the hydrological model from the 

Coupled Global Climate Model 2 (CGCM2) provided by Canadian Centre for Climate 

modeling and analysis (CCCma) for predicting root zone soil moisture dynamics. The A2 

(regionally oriented economic growth and continuously increasing global population) 

story line [see details, Nakicenovic et al., 2000] was selected for the CGCM2 scenarios. 

The CGCM2 has a very coarse resolution (3.75 by 3.75, corresponding to more than 

400 km by 400 km), which means that it is not representative of climate changes at the 

local-scale. Therefore, we corrected the monthly CGCM2 products (e.g., precipitation, 

humidity, wind speed, solar radiation, maximum and minimum temperature) to represent 

local scales using the historical weather data (1998-2009) based on a simple 

multiplicative shift method (Eq. 7.9) suggested by Ines and Honda [2005], 

GCM

obs
tt

X

X
xx '  t         (7.9) 

where xt and '
tx  are the daily raw and corrected GCM scenarios and 

GCMX  and 
obsX  are 

the monthly mean weather predictions of the GCM and historical observed weather data, 

respectively.  

As the bias of raw CGCM2 scenarios were corrected in Eq. (7.9), the bias 

correction coefficients can be obtained for each month during the previous decade 

(1998-2009). By using the derived monthly bias correction coefficients of the past 

decade, future climate changes were compensated for the current decade (2010-2020). In 

order to capture the variation range of corrected CGCM2 scenarios, we estimated the 

monthly average and 95 percent confidence interval (PCI) of CGCM2 scenarios. 



 

 

221 

 

With the derived land surface information (Step 1) and bias corrected CGCM2 

products (Step 2), we predicted the long-term root zone soil moisture dynamics in the 

study domain for Step 3 during the current decade (2010-2020). This was computed for 

both the disaggregated pixels composed of individual soil vegetation combinations (s1v1, 

s2v1, and s3v1) and the non-disaggregated pixels consisting of mixed soil vegetation 

combinations (s1v1 + s2v1 + s3v1). Three different soil thicknesses (0-1, 0-30, and 0-60 

cm) and four different ground water table depths (-200, -150, -100, and -50 cm) were 

used for the root zone soil moisture predictions. When the bottom boundary condition 

was governed by the presence of ground water table, it was assumed that the initial 

pressure condition in the soil profile was in equilibrium with the ground water table. 

Also, we tested the impacts of various vegetation covers (i.e., wheat, soybean, grass, and 

maize) for predicting the root zone soil moisture dynamics. Finally we evaluated a local-

scale drought severity using the predicted soil moisture dynamics based on the soil 

moisture deficit index (SMDI) [see details, Narasimhan and Srinivasan, 2005] in Step 4. 

In order to verify our proposed approach for evaluating grid-scale drought severity, the 

Little Washita sites in Oklahoma (LW1 and 2, June 22 – July 16, 1997) and Walnut 

Creek sites in Iowa (WC1 and 2, June 25 – July 12, 2002) were selected for the field 

validation experiments under different hydro-climates in Step 5, as shown in Figure 

7.2b. Based on fine-scale soil moisture predictions estimated from the LW and WC sites, 

we evaluated drought severity for the current decade (2010-2020).  
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7.3.3 Model Condition and Data Description 

In this study, the soil column (total depth 200 cm) had 33 discretized 

computational layers. The depth of 0-10 cm from the soil surface was finely discretized 

at intervals of 1 cm. The depths of 10-60 cm and 60-200 cm were discretized at intervals 

of 5 cm and 10 cm (the 33
rd

 layer has a soil depth of 20 cm), respectively. In the 

numerical study, the bottom boundary condition was set as free-drainage representing 

semi-/arid-regions. We assumed the initial condition of h(z,t=0) = -200 cm below soil 

surface. In the field validation experiments, the bottom boundary conditions were chosen 

based on the observed range of water table in the given field, i.e., 100-200 cm below soil 

surface. Ground water interacts with the vadose zone through upward capillary flow of 

water. In other words, a higher ground water table can lead to more uncertainties in soil 

hydraulic parameter estimation for the soil profile. Therefore, the bottom boundary 

condition was prescribed with initial soil water pressure head distribution in hydrostatic 

equilibrium with an initial water table depth of -200cm from the soil surface.  

For the synthetic experiment (Step 1), the (target) soil moisture dynamics were 

generated by the SWAP model using the soil ID values from the soil database (Table 

7.2) with combinations of various sub-grid fractions (Table 7.3) in a forward mode. 

Synthetic experiments included less complexity compared to RS pixels or in-situ soil 

moisture measurements, which have variations due to heterogeneity of land surface 

(distributed soil textures and vegetation covers), land management practices, weather 

conditions, etc. Thus, the synthetic experiments were considered suitable for assessing 

the application of the approach in a strict sense. In the field validation experiments (Step 
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5), the RS soil moisture footprints (ESTAR [Jackson et al., 1999] for 17 days at the 

LW1 and LW2 sites and PSR [Bindlish et al, 2006] for 10 days at the WC1 and WC2 

sites, 800 m  800 m) were downscaled for extracting the soil ID values and sub-grid 

fractions.  

Then we validated the results derived by our approach with the observed soil 

type and vegetation cover. The vegetation cover and soil information were obtained from 

Geographic Information Systems Resources-GISR (http://www.webgis.com/index.html) 

and Natural Resources Conservation Service-NRCS (http://www.nrcs.usda.gov/), 

respectively. Remotely sensed soil moisture products usually have a penetration depth of 

0-1 cm (C-band) and 0-5 cm (L-band) from the soil surface. Thus, land surface 

information (soil ID values and sub-grid fractions) were determined using only the near-

surface (0-1 cm for the synthetic conditions and 0-5 cm for the field validations) soil 

moisture with the modified grid-based disaggregation algorithm.  

Field observed hydraulic parameters were used to verify our approach. Soil 

parameters were derived from the soil core samples at the soil depth of 3-9 cm collected 

near the LW1 and 2 sites. However, no field-observed data were available for the WC1 

and 2 sites. Thus, we only compared the observed and estimated (from soil ID values) 

water retention curves ((h)) for validation at the LW1 and 2 sites. The LW (1 and 2) 

and WC (1 and 2) regions have a grass cover. Daily climatic data (e.g., precipitation, 

wind speed, maximum and minimum temperature, and solar radiation) for the model 

inputs were collected from the USDA-ARS Micronet weather station 

http://www.webgis.com/index.html
http://www.nrcs.usda.gov/
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(http://ars.mesonet.org/) in Oklahoma and the Soil Climate Analysis Network (SCAN: 

http://www.wcc.nrcs.usda.gov/scan/) in Iowa. 

7.4 Results and Discussion 

7.4.1 Step 1: Various Land Surface Conditions 

Figures 7.3a,b show the performance (maximum fitness and average errors) of 

newly developed coupled IM-EMOGA linkage with the combinations of multi-

populations (1000, 2000, and 3000) and ensembles (e=10) for the simple land surface 

condition. The performance of maximum fitness and average errors for the six scenarios 

were similar under the simple land surface conditions. Thus, we present the results of 

only one of the scenarios (scenario 6, see section 2.2) in this discussion (Figs, 7.3a,b). 

The improvement of the solutions as the generations progress indicates that the 

parameters derived by the EMOGA converge to the global/local solutions within the 

unknown search space. The maximum fitness of elite chromosomes with the 

combinations of multi-populations and ensembles showed different trends, which meant 

that their genetic traits were attributable to their initial points in the search space. As 

shown in Figure 7.3b, the average errors of soil moisture corresponded to the maximum 

fitness of solution combinations. Overall, the EMOGA usually found well the optimized 

solutions during the initial generations. 

http://www.wcc.nrcs.usda.gov/scan/
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Figure 7.3: Example of the EMOGA solutions for Step 1 (scenario 6 - soybean 

cover; a1: 80, a2: 10, a3: 10) with combinations of different random number 

generator seeds and ensemble e; (a) maximum fitness and (b) average soil moisture 

error 
Seeds: 1000, 2000, and 3000 

Ensemble e: 10 

 

 

Table 7.3 shows the filtered/un-filtered solutions (described in section 2.1.2 

above) for the combinations of various sub-grid fractions derived by the EOMGA. 

Overall, the filtered/un-filtered solutions for the simple land surface condition 

corresponded with the (synthetic) target values. The filtered solutions of soil ID (s1=1, 

s2=33, s3=40) values and sub-grid fractions (a1,1=20, a2,1=30, a3,1=50 for the scenario 1, 
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and a1,1=30, a2,1=30, a3,1=40 for scenario 2) with the wheat crop matched well with the 

target values. But the un-filtered solutions have small variations compared to the filtered 

ones. The filtered/un-filtered solutions for scenario 3 representing the relatively irregular 

land surface (a1,1=80, a2,1=10, a3,1=10) were perfectly identifiable with the observations 

compared to the results of scenario 1 and 2. The results of scenarios 4 to 6 with the 

soybean cover and three soil textures showed similar trends as shown in those of 

scenarios 1 to 3. The filtered solutions of scenarios 4 and 5 matched exactly with the 

target values, although the un-filtered ones had small errors in modeling. The filtered/un-

filtered solutions for scenario 6 also appeared to be identifiable with the target values. In 

most cases, the solutions were effectively found under the synthetic experiment 

conditions, but the un-filtered soil ID (s2: 16, 33, 38, bold means the exact solution) 

values with silt loam soil had more variations in modeling for scenarios 1 to 6.  It 

showed that a silt loam soil caused more uncertainties than other soils in the model 

performance. Table 7.4 shows the derived (filtered/un-filtered) solutions for the complex 

land surface conditions (2 vegetation covers and 3 different soil textures), which had six 

sub-grid fractions (a1,1: 17, a1,2: 17, a2,1: 17, a2,2: 17, a3,1: 17, a3,2: 15). In the filtered 

solutions, the soil ID values (s1: 1, s2: 33, s3: 40) corresponded well to the target values. 

Although the searched sub-grid fractions (a1,1: 16.7, a1,2: 16.3, a2,1: 17.0, a2,2: 16.7, a3,1: 

16.5, a3,2: 16.8) have small errors in estimating parameters, the solutions were close to 

the target values. The un-filtered solutions of soil ID (s1: 1, 15, 16, 38; s2: 33, 36, 38; s3: 

40, 46) and sub-grid fractions (a1,1: 15.3, a1,2: 17.3, a2,1: 18.5, a2,2: 16.7, a3,1: 16.4, a3,2: 

15.8) have more uncertainties compared to the filtered ones. The standard deviations of 
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sub-grid fractions were also higher than those of the filtered solutions. Thus, these 

findings showed that the modified grid-based disaggregation algorithm using the new 

simulation-optimization (SWAP-EMOGA) with both filtered (above-average) and un-

filtered (both above- and below-average) solutions performed well in extracting valuable 

information within a RS footprint using only the near-surface (0-1/0-5 cm) soil moisture, 

although small variations exist. 

7.4.2    Step 2: Future Climate Changes Using Global Climate Models (GCMs) 

Figures 7.4a,b show the comparison of bias uncorrected and corrected CGCM2 

scenarios at the Lubbock site, Texas, during the historical period (1998 to 2009). In this 

study, the precipitation data at the Lubbock site was only shown for the sake of brevity. 

The bias uncorrected CGCM2 scenario was considerably overestimated compared to the 

historical weather data (Fig. 7.4a), but the CGCM2 data corrected by the multiplicative 

approach showed the similar frequency and intensity with the observation (Fig. 7.4b) 

with some uncertainties. Using the coefficients (not shown in this text) obtained through 

the bias correction for the historical period (1998-2009), we compensated the CGCM2 

scenarios for the current decade (2010-2020) as shown in Fig. 7.4c. The monthly 

average CGCM2-based precipitation forecasts show seasonal periodicity during the 

simulation period.  
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Table 7.4: Filtered/un-filtered solutions derived by the modified grid-based 

disaggregation algorithm using the EMOGA with complex land surface conditions 

from Step 1 

Categori

es 

Soil 

types 

Target values Solutions 

Soi

l 

ID 

Sub-grid 

fraction 

(ai,j) 
Soil ID 

Average of sub-grid 

fractions 

(ai,j) 

SD of sub-grid 

fractions 

v1 v2 v1 v2 v1 v2 

Filtered 

solutions 

s1 1 
1

7 
17 1 16.7 16.3 1.1 1.1 

s2 33 
1

7 
17 33 17.0 16.7 0.0 0.5 

s3 40 
1

7 
15 40 16.5 16.8 1.0 0.6 

          

Un-

filtered 

solutions 

s1 1 
1

7 
17 

1, 15, 16, 

38 
15.3 17.3 6.6 4.7 

s2 33 
1

7 
17 33, 36, 38 18.5 16.7 5.0 3.1 

s3  40 
1

7 
15 40, 46 16.4 15.8 3.3 2.2 

Population: 30; Total generations: 5000 (restart 8); seed number: 1000, 2000, 3000; pcreep: 0.05; pmutate: 

0.05 

Note: the target values – vegetations (v1 - wheat cover, v2 - soybean cover); soil types (s1: 1-sandy loam, 

s2: 33-silt loam, s3: 40-clay loam)  
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Figure 7.4: (a) Bias uncorrected monthly average GCM and historical precipitation 

at the Lubbock site, Texas during 1998 – 2009; (b) bias corrected monthly average 

GCM and historical precipitation based on the multiplicative shift method at the 

Lubbock site, Texas during 1998 – 2009; (c) bias corrected GCM precipitation 

using the bias correction coefficients (obtained from 1998 to 2009) at the Lubbock 

site, Texas during 2010 - 2020 
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7.4.3    Step 3: Prediction of Daily Root Zone Soil Moisture  

In Step 3, we predicted the daily root zone soil moisture dynamics at the 

Lubbock site using only the filtered solutions for various soil-vegetation conditions (Step 

1) with the corrected CGCM2 scenarios (Step 2) under the synthetic conditions during 

2010 - 2020. The predicted soil moisture dynamics at the soil depth 0-1 cm were more 

variable than those of the soil depths of 0-30 and 0-60 cm as shown in Figures 7.5a-c. It 

indicated that soil water storage at the soil depth of 0-1 cm is minimal and moisture 

actively evaporates near the soil surface. The predicted soil moisture estimates at the soil 

depths of 0-30 and 0-60 cm were relatively stable compared to that at the soil depth of 0-

1 cm, but they have no significant differences between each other. This result showed 

that the soil water contents near the soil surface (only 0-1/0-5 cm) are not appropriate for 

assessing a drought severity, because the bulk of the root zone exists in the deeper 

(below top 5cm) soil profile. Also, the near-surface soil moisture is significantly affected 

by the weather conditions directly. Thus, we used the root zone soil moisture from a soil 

thickness of 0-30 cm for evaluating drought conditions.  

Figures 7.5d-i show the statistics (average and 95 PCI) of disaggregated-(s1v1, 

s2v1, s3v1) and mixed-(s1v1+s2v1+s3v1) scale root zone soil moisture predictions for 

scenarios 1 to 3 (from Table 7.3) with wheat cover (v1). At the disaggregated-scale, soil 

texture greatly influences the predictions of soil moisture dynamics as the disaggregated 

soil moisture for sandy loam (s1) soil were considerably lower than those of silt loam (s2) 

and clay loam (s3) soils. The prediction of mixed-scale soil moisture for scenario 3 (Fig. 

7.5i), which had a (dominant) sandy loam soil (80%) within a pixel, was slightly lower 
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than those of scenarios 1 and 2. Usually, the mixed-scale soil moistures of scenarios 1 to 

3 had less variations compared to the disaggregated (s1v1, s2v1, s3v1) results.  

 

 
Figure 7.5: Predicted daily long-term root zone soil moisture; (a-c) different soil 

thicknesses, (d-f) disaggregated-scale (s1v1, s2v1, s3v1) with soil thickness of 0-30 cm, 

(g-i) mixed-scale (s1v1+s2v1+s3v1) with soil thickness of 0-30 cm using the CGCM2 

scenario during 2010-2020 (s1: sandy loam, s2: silt loam, s3: clay loam, v1: wheat 

cover, scenario 1 - a1,1: 20, a2,1: 30, a3,1: 50, scenario 2 - a1,1: 30, a2,1: 30, a3,1: 40, 

scenario 3 - a1,1: 80, a2,1: 10, a3,1: 10) 
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In Fig. 7.6, we present the effects of various vegetation covers (v1: wheat, v2: 

soybean, v3: grass, and v4: maize) on forecasting the root zone soil moisture (only 

scenario 2 with regular sub-grid fractions was shown). Vegetation covers have 

significant impact on the prediction of root zone soil moisture during the simulation 

period (2010-2020). The predicted root zone soil moisture estimates with soybean, grass, 

and maize covers were considerably higher than that of the wheat cover, especially for 

the grass cover. This may indicate that the grass cover, which has less bare soil, can 

endure a drought better than the other vegetation covers. As shown in the findings of 

simple land surface condition (Fig. 7.6), the predicted soil moisture of clay loam under 

the complex land surface condition (figure for the complex land surface condition was 

excluded, because the trends of soil moisture dynamics were similar to those of the 

simple land surface condition) was higher than those of sandy loam and silt loam soils. 

Also, for the two vegetation covers studied under the complex land surface conditions, 

soybean cover was shown to hold more water content than a wheat cover in the soil 

depth (0-30 cm).  

We considered the impacts of various shallow water table depths (-200, -150, -

100, and -50 cm) on the prediction of mixed-scale root zone soil moisture with the wheat 

cover (scenario 2) as shown in Figures 7.7a-d. The predicted root zone soil moisture 

with the shallow water table depth of -50 cm was considerably higher compared to that 

of the free-drainage condition (Fig. 7.5h), but the deeper water table depths of -200, -

150, and -100 cm have less direct impacts on the root zone soil moisture quantities. 
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Figure 7.6: Predicted daily root zone soil moisture of disaggregated- (s1v1, s2v1, s3v1) and mixed- (s1v1 + s2v1 + s3v1) scale 

soil-vegetation conditions in Step 1 during 2010-2020 (s1: sandy loam, s2: silt loam, s3: clay loam, v1: wheat, v2: soybean, 

v3: grass, v4: maize covers) 
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Figure 7.7: Predicted daily root zone soil moisture and monthly soil moisture deficit index (SMDI) values of mixed-scale 

(s1v1+s2v1+s3v1) soil-vegetation conditions with the presence of water table depths of -50 (a,e), -100 (b,f), -150 (c,g), and -

200 (d,h) cm for scenario 2 during 2010-2020 (s1: sandy loam, s2: silt loam, s3: clay loam, v1: wheat cover)
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7.4.4    Step 4: Drought Severity Assessment 

Based on the findings of Step 3, we estimated the monthly statistics (average and 

95PCI) of SMDI values for evaluating the drought severity. The SMDI values of silt 

loam and clay loam soils with the wheat cover were slightly higher than that of sandy 

loam soil (Table 7.5) at the disaggregated-scale. But the SMDI values at the mixed-scale 

(scenarios 1, 2, and 3 were only shown) have no significant differences.  

Table 7.6 presents the monthly average SMDI values for the disaggregated- and 

mixed-scale root zone soil moisture with the combinations of different soil textures (s1, 

s2, s3) and vegetation covers (v1, v2, v3, v4) under the simple land surface condition (one 

vegetation and three soil textures). The mixed-scale SMDI values for soybean (v2), grass 

(v3), and maize cover (v4) were similar indicating that these crops were affected by the 

drought condition from May to July, but the SMDI of wheat cover decreased steeply 

from April. Overall, it is inferred that the Lubbock site may be affected by a drought 

condition from April or May to July during the current decade and different vegetation 

covers considerably influence the SMDI values. The field sites with soybean, grass, and 

maize covers had more positive SMDI values, as compared to the sites with a wheat 

cover, indicating that the former vegetation covers would handle drought better. In the 

complex land surface condition (2 vegetations and 3 soil textures, Table 7.7), the SMDI 

values had a trend similar to the simple land surface condition. The SMDI values with 

the soybean cover and silt loam/clay loam soils were higher than those, which had sandy 

loam soil and wheat cover. But they were still influenced by the drought from May to 

July under the complex land surface conditions. Figures 7.7e-h show the monthly SMDI 
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values for various water table depths of -200, -150, -100, and -50 cm with the wheat 

cover (scenario 2) at the Lubbock site. As shown in the predicted root zone soil moisture 

(Figures 7.8a-d), the shallow water table depth of -50 cm only increased the SMDI. This 

result indicated that the water table depths of below -100 cm may have less direct 

influence on reducing drought severity at the field site. 

 

 

Figure 7.8: Field-observed and estimated (from soil ID values) water retention 

curves ((h)); (a-c) sub regions (s1v1, s2v1, s3v1) at the LW 1 site, (d) sub-regions 

(s1v1 and s2v1) at the LW 2 site 
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Table 7.5: Monthly average and ±95 PCI of soil moisture deficit index (SMDI) values of disaggregated- (s1v1, s2v1, s3v1) 

and mixed- (s1v1 + s2v1 + s3v1) scale soil-vegetation conditions for Step 4; a) s1: sandy loam, b) s2: silt loam, c) s3: clay 

loam , d) scenario 1 - a1: 20, a2: 30, a3: 50, e) scenario 2 - a1: 30, a2: 30, a3: 40, f) scenario 3 - a1: 80, a2: 10, a3: 10 with a 

wheat cover (v1) 

Month 

Sandy loam 

(s1v1) 

Silt loam 

(s2v1) 

Clay loam 

(s3v1) 

Scenario 1 

Mixed (20-30-50) 

Scenario 2 

Mixed (30-30-40) 

Scenario 3 

Mixed (80-10-10) 

Avg.  
Pos 

95PCI 
neg95PCI Avg.  pos95PCI neg95PCI Avg.  pos95PCI neg95PCI Avg.  pos95PCI neg95PCI Avg.  pos95PCI neg95PCI Avg.  pos95PCI neg95PCI 

March 1.5 1.6 1.4 2.1 2.1 2.0 1.4 1.6 1.2 1.7 1.8 1.6 1.7 1.8 1.6 1.6 1.7 1.5 

April -1.4 -1.0 -1.8 -0.6 -0.2 -0.9 -1.3 -0.9 -1.8 -1.0 -0.5 -1.5 -1.1 -0.6 -1.5 -1.0 -0.5 -1.5 

May -2.1 -1.5 -2.7 -1.6 -1.0 -2.3 -1.7 -1.0 -2.5 -1.5 -0.7 -2.2 -1.7 -1.0 -2.4 -1.5 -0.8 -2.2 

June -2.1 -1.5 -2.7 -1.8 -1.4 -2.3 -1.8 -0.9 -2.8 -1.4 -0.8 -2.1 -2.0 -1.2 -2.7 -1.4 -0.9 -1.8 

July -2.2 -1.3 -3.0 -2.2 -1.7 -2.8 -2.1 -1.2 -3.1 -2.0 -1.3 -2.7 -2.2 -1.4 -3.0 -1.9 -1.2 -2.7 
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Table 7.6: Monthly average and ±95 PCI of disaggregated (s1v1, s2v1, and s3v1) and mixed (s1v1+s2v1+s3v1) scale SMDI 

values with various vegetation covers for Scenario 2 during the current decade (2010-2020) 

Index 
March April May June July 

Avg. pos95PCI neg95PCI Avg. pos95PCI neg95PCI Avg. pos95PCI neg95PCI Avg. pos95PCI neg95PCI Avg. pos95PCI neg95PCI 

s1v1 1.5 1.6 1.4 -1.4 -1.0 -1.8 -2.1 -1.5 -2.7 -2.1 -1.5 -2.7 -2.2 -1.3 -3.0 

s2v1 2.1 2.1 2.0 -0.6 -0.2 -0.9 -1.6 -1.0 -2.3 -1.8 -1.4 -2.3 -2.2 -1.7 -2.8 

s3v1 1.4 1.6 1.2 -1.3 -0.9 -1.8 -1.7 -1.0 -2.5 -1.8 -0.9 -2.8 -2.1 -1.2 -3.1 

Mixed 1.7 1.8 1.6 -1.1 -0.6 -1.5 -1.7 -1.0 -2.4 -2.0 -1.2 -2.7 -2.2 -1.4 -3.0 

                

s1v2 1.9 2.1 1.7 0.1 0.4 -0.2 -1.2 -0.6 -1.9 -1.7 -0.9 -2.4 -2.4 -1.6 -3.1 

s2v2 2.4 2.5 2.4 1.2 1.4 0.9 -0.7 -0.1 -1.3 -2.0 -1.4 -2.7 -2.8 -2.2 -3.4 

s3v2 1.4 1.8 1.0 0.2 0.7 -0.2 -0.6 0.1 -1.3 -1.2 -0.1 -2.3 -2.1 -0.9 -3.2 

Mixed 1.9 2.2 1.7 0.6 0.9 0.2 -0.7 0.0 -1.4 -1.6 -0.6 -2.5 -2.3 -1.4 -3.3 

                

s1v3 1.9 2.2 1.6 -0.3 0.2 -0.7 -0.9 -0.2 -1.6 -1.3 -0.5 -2.1 -1.7 -1.0 -2.5 

s2v3 2.3 2.5 2.2 1.1 1.4 0.8 -0.6 0.1 -1.3 -1.9 -1.1 -2.7 -2.7 -1.9 -3.5 

s3v3 0.5 1.0 0.0 -0.6 0.1 -1.3 -0.3 0.5 -1.1 -0.9 0.1 -2.0 -1.2 0.0 -2.3 

Mixed 1.6 2.0 1.3 0.3 0.8 -0.2 -0.6 0.2 -1.3 -1.5 -0.5 -2.4 -2.0 -1.1 -3.0 

                

s1v4 1.9 2.1 1.7 0.3 0.6 0.0 -1.2 -0.5 -1.9 -2.0 -1.2 -2.8 -2.5 -1.8 -3.1 

s2v4 2.5 2.6 2.4 1.3 1.5 1.1 -0.7 -0.1 -1.2 -2.3 -1.7 -2.9 -2.9 -2.4 -3.5 

s3v4 1.5 1.9 1.1 0.5 1.0 -0.1 -0.5 0.2 -1.2 -1.5 -0.4 -2.7 -2.4 -1.3 -3.4 

Mixed 2.1 2.3 1.9 0.8 1.2 0.5 -0.6 0.0 -1.3 -1.9 -1.0 -2.8 -2.6 -1.8 -3.3 

s1: sandy loam, s2: clay loam, s3: clay loam, v1: wheat, v2: soybean, v3: grass, v4: maize 
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Table 7.7: Monthly average and ±95 PCI of disaggregated (s1v1, s1v2, s2v1, s2v2, s3v1, s3v2) and mixed (s1v1+s1v2+s2v1+ 

s2v2+s3v1+s3v2) scale SMDI values with complex land surface conditions during the current decade (2010-2020) 

Index 
March April May June July 

Avg. pos95PCI neg95PCI Avg. pos95PCI neg95PCI Avg. pos95PCI neg95PCI Avg. pos95PCI neg95PCI Avg. pos95PCI neg95PCI 

s1v1 1.5 1.6 1.4 -1.4 -1.0 -1.8 -2.1 -1.5 -2.7 -2.1 -1.5 -2.7 -2.2 -1.3 -3.0 

s1v2 1.9 2.1 1.7 0.1 0.4 -0.2 -1.2 -0.6 -1.9 -1.7 -0.9 -2.4 -2.4 -1.6 -3.1 

s2v1 2.1 2.1 2.0 -0.6 -0.2 -0.9 -1.6 -1.0 -2.3 -1.8 -1.4 -2.3 -2.2 -1.7 -2.8 

s2v2 2.4 2.5 2.4 1.2 1.4 0.9 -0.7 -0.1 -1.3 -2.0 -1.4 -2.7 -2.8 -2.2 -3.4 

s3v1 1.4 1.6 1.2 -1.3 -0.9 -1.8 -1.7 -1.0 -2.5 -1.8 -0.9 -2.8 -2.1 -1.2 -3.1 

s3v2 1.4 1.8 1.0 0.2 0.7 -0.2 -0.6 0.1 -1.3 -1.2 -0.1 -2.3 -2.1 -0.9 -3.2 

Mixed 1.9 2.0 1.8 0.1 0.4 -0.2 -1.0 -0.3 -1.6 -1.8 -0.9 -2.6 -2.3 -1.4 -3.1 

s1: sandy loam, s2: clay loam, s3: clay loam, v1: wheat, v2: soybean 
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7.4.5    Step 5: Field Validation Experiments and Drought Severity Assessments in 

the Future 

In Step 5, this approach was applied to several field sites. Table 7.8 and 7.9 

present the filtered/un-filtered (soil ID and sub-grid fractions) solutions at the WC (1 and 

2) and LW (1 and 2) sites, respectively. The searched soil ID values and sub-grid 

fractions at the WC2 and LW2 sites, which had relatively simple land surface (2 soils 

and 1 vegetation cover-grass), appeared to be more identifiable than those of the others 

WC1 and LW1 (3 soils and 1 vegetation-grass) at the field scales. Overall, uncertainties 

of the unfiltered and filtered sub-grid fractions were similarly shown for both the WC (1 

and 2) and LW (1 and 2) sites, but the unfiltered soil ID values had more variations in 

modeling compared to those of the filtered solutions. Generally, land surface is 

heterogeneous in terms of soil textures in a real world scenario, but the soil 

characteristics are assumed to be homogeneous for modeling purposes. It showed that 

ignoring the heterogeneity of soil textures within a RS pixel may cause errors in the 

model predictions at the airborne-scale (800 m  800 m).  

The water retention curves ((h)) derived from the estimated soil ID values for 

all sub-regions were compared with the field-observations obtained near the LW1 and 2 

sites as shown in Fig. 7.8. Although limited observed (h) curves were used for 

validation, the results for sub-regions at the LW1 and 2 sites matched the observed (h) 

functions with small uncertainties demonstrating the robustness of our approach, 

especially for the LW2 site. Overall, the estimated soil ID and sub-grid fractions at the 

field-scales had more uncertainties than the results under the synthetic conditions, 

because the field-scale experiments were affected by various environmental factors such 
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as the dynamic local weather conditions, heterogeneity of land surface conditions, 

unknown initial and bottom boundary conditions in soil profile, measurement errors, etc. 

Furthermore, in searching the solutions, the simulation-optimization approach also had 

its own weakness of model structures (e.g., improper description of rooting depth, root 

distribution, etc.). It is usual that the field-scale experiments have more variations than 

the results of synthetic conditions (step 1).  

Based on the filtered solutions at the LW1 and WC1 sites, we predicted the 

disaggregated- and mixed-scale root zone soil moisture dynamics for the current decade 

(2010-2020) in Fig. 7.9. The LW1 and WC1 sites comprised of relatively complicated 

land surface conditions were only shown here. The predicted root zone soil moisture 

dynamics (quantities) showed different trends at the disaggregated-scale (s1v1, s2v1, s3v1 

at LW1 and WC1 sites) with the grass cover. The sub-regions, which had lower 

hydraulic conductivities (s3v1: 6.2 and 7.4 mm/d at LW1; s3v1: 0.4 mm/d at WC1), can 

hold more soil water than the other sites with high Ksat values (LW1: 9.7~106.1 mm/d; 

WC1: 43.6~106.1 mm/d). It indicated that the physical soil characteristics were 

significantly influencing soil water contents at the disaggregated-scales. Overall, the 

mixed-scale root zone soil moistures for the LW1 and WC1 sites were similar with those 

of the disaggregated sub-grid fractions (s2v1 for the LW1 and s3v1 for the WC1), because 

these sub-regions had the sub-grid fractions of 61.9 % and 58.1 % within the RS pixels, 

respectively.  

The SMDI values were similar to the trends of predicted soil moisture dynamics 

as shown in Table 7.10. The monthly average SMDI values at the mixed-scales were 
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positive for the LW 1 site, which meant that the land surface may have a wet condition. 

But the sub-region (s1v1) had negative (average) SMDI values in March and April. This 

shows that crops at the disaggregated-region can be damaged by the drought severity 

partially owing to the land surface conditions (i.e., different soil textures, vegetation 

cover, etc.). The average SMDI value at the sub-region (s1v1) from April to July was 

positive for the WC 1 site, except in March. The other regions (s2v1 and s3v1) also 

showed positive SMDI values, but the SMDI values in June and July were negative. 

There was a decreasing trend of SMDI starting in April, except of the sub-region (s1v1). 

This trend follows the soil moisture predictions in the sub-regions (s2v1 and s3v1), 

because these sub-regions (s2v1 and s3v1) had total sub-grid fractions of 77.8 % within 

the RS pixel. For the LW1 and WC1 sites, overall the -95PCI of SMDI values were 

negative (-2 to 0) during the simulation period. This meant that these sites were at a 

potential risk of agricultural drought in the worst scenario. Also, the average and 

95PCI of SMDI values in July were negative probably because the simulation period for 

crops was set during March 01-July 31 indicating that crop growths decreased in July 

causing a reduction in soil moisture. This could cause the negative SMDI values in July. 

In this study, we evaluated drought severity based on fine-scale soil moisture predictions 

for individual soil-crop combinations using GCM scenarios in the current decade. These 

findings showed that the drought severity of each sub-region was variable based on the 

local land surface conditions (i.e., various soil textures, vegetations, ground water tables, 

etc.) in the study sites. Thus, our proposed methodology can assess drought severity at 

each sub-region within a RS pixel for efficient water resources management. 
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Table 7.8: Filtered/un-filtered solutions derived by the modified grid-based disaggregation algorithm using the 

EMOGA at the Walnut Creek (WC 1 and 2) sites 

Field sites Categories 

Observations 
Derived solutions 

Filtered Un-filtered 

Soil ID 
Sub-grid 

fractions 

Soil ID 

(Soil texture) 

Average of  

sub-grid 

fractions 

(ai,j) 

SD of  

sub-grid 

fractions 

Soil ID 

(Soil texture) 

Average of  

sub-grid 

fractions 

(ai,j) 

SD of  

sub-grid 

fractions 

WC 1 

(v1: grass) 

s1 Loam 12 2 (Sandy loam) 22.2 4.0 
2 (Sandy loam) 

 
22.6 4.9 

s2 Silty clay 12 
10 (SsandO4),  

11 (SsandO5) 
19.8 9.0 

1 (Sandy loam), 

10 (SsandO4), 

11 (SsandO5), 

28 (SsiltO14), 

52 (Clay) 

 

20.8 8.7 

s3 Clay loam 76 28 (SsiltO14) 58.0 5.9 
28 (SsiltO14), 

52 (Clay) 
56.6 7.4 

          

WC 2 

(v1: grass) 

s1 Clay loam 57 2 (Sandy loam) 52.0 0.0 
2 (Sandy loam) 

 
51.7 0.9 

s2 Loam 43 49 (Silty clay) 48.0 0.0 
46 (Sandy clay), 

49 (Silty clay) 
48.3 0.9 

Population: 30; Total generations: 5000 (restart 8); seed number: 1000, 2000, 3000; pcreep: 0.05; pmutate: 0.05 
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Table 7.9: Filtered/un-filtered solutions derived by the modified grid-based disaggregation algorithm using the 

EMOGA at the Little Washita (LW 1 and 2) sites 

Field sites Categories 

Observations 
Derived solutions 

Filtered Un-filtered 

Soil ID 

Sub-grid 

fractions 

(ai,j) 

Soil ID 

(Soil texture) 

Average of  

sub-grid 

fractions 

(ai,j) 

SD of  

sub-grid 

fractions 

Soil ID 

(Soil texture) 

Average of  

sub-grid 

fractions 

(ai,j) 

SD of  

sub-grid 

fractions 

LW 1 

(v1: grass) 

s1 f sandy loam 44 

2 (Sandy loam), 

8 (Scoarse), 

37  

(Sandy Clay Loam) 

28.2 9.0 

1 (Sandy loam), 

2 (Sandy loam), 

8 (Scoarse), 

9 (SsandO3), 

37 (Sandy clay loam) 

 

24.9 9.1 

s2 Silt loam 47 

13 (Tcoarse), 

36  

(Sandy clay loam) 

61.9 13.9 

13 (Tcoars), 

15 (Loam), 

36 (Sandy Clay Loam) 

 

63.5 12.6 

s3 Loam 9 
41 (Clay loam), 

43 (Silty clay loam) 
9.9 8.8 

6 (TsandB3), 14 (Loam), 

28 (SsiltO14), 34 (Silt loam), 

39 (Tfine), 40 (Clay loam), 

41 (Clay loam), 43 (Silty clay 

loam), 48 (Silty clay) 

11.6 7.0 

          

LW 2 

(v1: grass) 

 

s1 Sandy loam 38 11 (SsandO5) 33.0 0.0 

2 (Sandy loam), 3 (Sandy loam), 

11 (Sandy loam) 

 

25.7 10.5 

s2 Silt loam 62 5 (Tsand B2) 67.0 0.0 5, 9 (SsandO3) 74.3 10.5 

Population:  30; Total generations: 5000 (restart 8); seed number: 1000, 2000, 3000; pcreep: 0.05; pmutate: 0.05 
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Figure 7.9: Disaggregated- (s1v1, s2v1, s3v1) and mixed- (s1v1 + s2v1 + s3v1) scale root zone soil moisture predictions with 

the grass cover; (a-d) Little Washita (LW1) site and (e-h) Walnut Creek (WC1) site 
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Table 7.10: Monthly average and ±95 PCI of disaggregated (s1v1, s2v1, and s3v1) and mixed (s1v1+s2v1+s3v1) scale SMDI 

values with the grass cover at the Little Washita (LW1) and Walnut Creek (WC1) sites during the current decade 

(2010-2020) 

Sites Month 

Disaggregated-scale Mixed-scale 

s1v1 s2v1 s3v1 s1v1+s2v1+s3v1 

Avg.  pos95PCI neg95PCI Avg.  pos95PCI neg95PCI Avg.  pos95PCI neg95PCI Avg.  pos95PCI neg95PCI 

LW1 

March -0.7 -0.2 -1.3 0.2 0.5 0.0 -0.1 0.3 -0.4 0.0 0.3 -0.3 

April -0.6 0.4 -1.6 0.0 0.9 -1.0 -0.1 0.8 -1.0 -0.1 0.9 -1.1 

May 0.2 1.1 -0.6 0.4 1.2 -0.4 0.4 1.3 -0.5 0.4 1.3 -0.4 

June 0.5 1.2 -0.1 0.5 1.2 -0.2 0.5 1.2 -0.2 0.6 1.2 -0.1 

July -0.9 0.1 -1.9 -1.4 -0.5 -2.4 -1.3 -0.3 -2.3 -1.4 -0.5 -2.3 

              

WC1 

March -1.1 -0.4 -1.7 0.6 0.9 0.4 1.3 1.7 1.0 0.9 1.3 0.6 

April 0.0 0.6 -0.6 0.8 1.4 0.3 1.3 1.8 0.9 1.2 1.6 0.7 

May -0.1 0.5 -0.6 0.0 0.4 -0.5 0.3 0.9 -0.3 0.2 0.8 -0.3 

June 0.1 0.7 -0.4 -0.9 -0.3 -1.4 -0.7 -0.2 -1.1 -0.6 -0.1 -1.1 

July 0.4 0.9 -0.2 -1.7 -1.1 -2.3 -2.0 -1.6 -2.5 -1.8 -1.4 -2.3 
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7.5 Conclusions 

We explored a drought severity assessment framework using remotely sensed 

soil moisture footprints with global circulation model (GCM) scenarios at fine sub-grid 

scales for the current decade (2010-2020). The soil hydraulic properties were quantified 

from remotely sensed soil moisture footprints using the newly developed simulation-

optimization scheme by coupling SWAP with EMOGA. The estimated soil parameters 

were used along with climatic variables provided by GCMs to predict fine-scale soil 

moisture dynamics. Finally, we evaluated drought severity using SMDI based on the 

predicted soil moisture at finer-scales. Synthetic and field experiments were conducted 

for testing the new approach under different hydro-climates (Lubbock, Texas; Little 

Washita watershed, Oklahoma; and Walnut Creek watershed, Iowa). These experiments 

were comprised of different combinations of soil textures, vegetation covers, and ground 

water table depths.  

The estimated solutions under the synthetic case matched well with the target 

values for the simple/complex land surface conditions indicating that this approach was 

able to extract the available land surface information from a RS footprint. The 

predictions of disaggregated (s1v1, s2v1, and s3v1) soil moisture derived by the estimated 

solutions were affected more by the soil textures, whereas the vegetation covers 

influenced the soil moisture dynamics at the mixed-scale (s1v1+s2v1+s3v1). A shallow 

water table depth of -50 cm influenced the root zone soil moisture quantity by leading to 

an increase, but there were barely any impacts due to deeper water table depths of -200, -

150, and -100 cm. The SMDI values showed a similar trend with the predicted root zone 
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soil moisture. The SMDI values were increased by conditioning on various soil textures, 

vegetation covers, and presence of ground table depths at local-scales, but crops were 

still at a potential risk of drought severity during April to July. This indicated that 

conditioning of soil texture, vegetation, and groundwater table depth can exert only a 

limited influence in overcoming a drought. In the field validation experiments, the 

results at the WC and LW sites had more uncertainties compared to the experiment 

under the synthetic conditions. This was attributed to the model performance being 

influenced by not only the soil, vegetation, and ground water, but also by the limitations 

in model structures and observation errors. Although the results at the field sites had 

some variations in estimating the soil parameters and sub-grid fractions, the derived 

solutions matched the GIS-based observations. The comparison of field-observed and 

estimated water retention curves (h) for the LW1 and 2 sites supports the robustness of 

our approach. Overall, positive monthly average SMDI values at the LW1 and WC1 

sites indicated that these sites had less drought risk for the current decade. However, the 

average SMDI values of sub-regions were variable indicating that these sub-sites could 

be partially affected by the drought severity in March and April.  

In this study, our approach performed well in extracting land surface information 

within a RS product. According to the predicted root zone soil moisture and SMDI based 

on the derived land surface information and bias corrected CGCM2 scenarios, the field 

sites can be influenced by drought conditions during crop growing season for the current 

decade. This approach has been demonstrated to be helpful in forecasting root zone soil 

moisture dynamics and assessing drought severity at the field-scales.    
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CHAPTER VIII 

GENERAL CONCLUSIONS 

 In this dissertation, we focused on quantifying soil hydraulic properties at 

multiple scales across the land surface. A new inversion model, various scaling 

(downscaling and upscaling) algorithms, optimization techniques, and a stochastic 

evolutionary approach were developed with a goal to contribute to the understanding of 

water resources/agricultural water management, rainfall-runoff processes, seasonal 

climate predictions, and ecosystem dynamics and alteration.  

A layer-specific soil moisture assimilation scheme in Chapter II was developed 

for determining the soil hydraulic properties in the layered soil profile. In Chapter III, a 

new inverse modeling algorithm by combining soil moisture (SM) based Noisy Monte 

Carlo Genetic Algorithm (NMCGA) and Surface Energy Balance Algorithm for Land 

(SEBAL) based evapotranspiration (ET) products (using remote sensing data) was tested 

for quantifying pixel-scale soil hydraulic properties at multiple scales.  

In Chapters IV and V, new deterministic downscaling and scaling (joint 

downscaling and upscaling) algorithms were developed for improving usage of remotely 

sensed soil moisture footprints and in-situ data in complex terrains at various hydro-

climatic regions. In order to predict root zone soil moisture in the soil profile using 

rainfall data and (limited) soil moisture history at the network of multiple weather 

stations under two different hydro-climatic regions, a new non-parametric evolutionary 

algorithm (genetic algorithm-based hidden Markov model, HMMGA) was developed in 

Chapter VI.  
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A drought severity assessment platform based on a grid-based disaggregation 

algorithm adapting a combined optimization and hydrological model (Soil-Water-

Atmosphere-Plant, SWAP and Ensemble Multiple Operators Genetic Algorithm, 

EMOGA) was developed in Chapter VII. We demonstrated that soil layers and vertical 

heterogeneity could impact the uncertainty of quantifying soil hydraulic parameters. 

Although the sub-surface flows dominated by the upward fluxes were more elusive, this 

approach successfully matched root zone soil moisture estimates with observations at the 

individual soil layers suggesting that this approach could be applied in real world 

conditions.  

Considering both soil moisture and evapotranspiration components in the 

optimization algorithm improved the estimations of soil hydraulic properties and 

reduced their uncertainties better than those of using SM-only (Noisy Monte Carlo 

Genetic Algorithm, NMCGA) or ET-only (Surface Energy Balance Algorithm for Land, 

SEBAL). Also it improved the predictions of soil moisture dynamics in the deep soil 

depth (180-200 cm) dominated by upward flows with the presence of ground water table 

depth (-100 cm from the soil surface). These results demonstrated that the ET 

component plays the key role in estimating the soil hydraulic parameters along the soil 

column as well as soil moisture. 

The deterministic disaggregation algorithm estimated well the soil moisture 

dynamics of sub-pixels from synthetic and field validation experiments with the 

observations under heterogeneous land surface condition with uncertainties. It indicated 

that the ET component can be used to capture the heterogeneity of land surface within a 
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remotely sensed soil moisture data. The good correspondence of observed water 

retention ((h)) functions (from the soil core samples) and soil parameters searched by 

the genetic algorithm at the study (LW 13 and 21) sites showed the robustness of this 

algorithm.  

Furthermore, the scaling (joint downscaling and upscaling) algorithm based on 

inversion model could scale down and up near-surface soil moisture estimates 

considerably well in the airborne-/satellite-scales compared to the in-situ root zone soil 

moisture measurement. Although the upscaling approach was excluded at the satellite-

scale due to no available in-situ root zone soil moisture datasets, these findings 

demonstrated that our algorithm performs well in scaling down and up across 

complicated land surface at various scales. 

The hidden Markov model genetic algorithm (HMMGA) performs quite well in 

forecasting rainfall occurrence probabilities, dry/wet spell lengths, and daily root zone 

soil moisture dynamics, although uncertainties were included in predicted estimates. 

Especially, the measured and predicted root zone soil moisture estimates were 

considerably affected by both the precipitation and land surface characteristics (e.g., soil 

texture, vegetation covers, topography, etc.). We demonstrated that our approach could 

provide reasonable predictions over multiple locations with the historical precipitation 

and (limited) root zone soil moisture data in the future. 

A drought severity assessment platform based on a grid-based disaggregation 

algorithm adapting a combined optimization and hydrological model (SWAP-EMOGA) 

executed quite well in disaggregating the RS soil moisture products under the synthetic 
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and field validation experiments, although the uncertainties due to the RS resolutions 

and variability of climatic conditions contribute to the modeling performance. Finer-

scale root zone soil moisture predictions were considerably influenced by various 

combinations of environmental factors (soils, crops, groundwater table, etc.) along with 

GCM scenarios.  

However, environmental factors had relatively limited impacts on reducing 

drought severity. The absolute soil moisture deficit index values do indicate the 

occurrence of agricultural drought during 2010-2020. Thus, our proposed approach can 

be used to assess drought severity at finer-scales using a remotely sensed soil moisture 

product for efficient agricultural/water resources management. 

The methodologies developed in this dissertation can contribute significantly to 

the spatial and temporal analysis of root zone soil moisture using remotely sensed and 

in-situ soil moisture data at the multiple scales in the real world. Also, our proposed 

approaches may provide better input parameters for large-scale hydrologic and hydro-

climatic models, resulting in better understanding of the hydrologic cycle. Furthermore, 

a better understanding of water cycle would help us to be better prepared for sustainable 

water resources, agricultural production, and devastating natural disasters in the real 

world.  
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APPENDIX A 

1.  Noah Land Surface Model (Noah LSM) 

Noah Land Surface Model (Noah LSM) is widely used to simulate water and 

energy fluxes based on coupled and uncoupled mode at various scales [Ek et al., 2003]. 

In this study, we used the uncoupled mode for estimating soil moisture dynamics in the 

vertical direction.  

This model simulates soil moisture estimates using the diffusive form of the 

Richards equation (Eq. (A.1)) based the Campbell [Campbell, 1974] soil hydraulic 

properties (SHP) model in Eqs. (A.2 and A.3), the simple water balance (SWB) model 

[Schaake et al., 1996] for surface runoff, and internal parameterization scheme [Clapp 

and Hornberger, 1978] for parameterization.   
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where  is the soil matric potential, sat is the saturated soil matric potential, b is the 

curve fitting parameter, θ is the soil moisture, θsat is the saturated soil moisture, k is the 

hydraulic conductivity, and ksat is the saturated hydraulic conductivity in the soil profile, 

respectively.  
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2.  Community Land Model (CLM)   

Community Land Model (CLM) combined with Land surface model (LSM) 

[Bonan, 1996], biosphere-atmosphere transfer scheme (BATS) [Dickinson et al., 1993], 

and the Chinese Academy of Sciences Institute of Atmospheric Physics’s LSM, 1994 

version [Dai and Zeng, 1997] provides land surface forcing as the physical boundary for 

atmospheric model in Community Climate System Model (CCSM). The CLM model 

requires input datasets such as land surface type, soil and vegetation parameters, model 

initialization, and atmospheric boundary conditions [Dai et al., 2003].  

This model requires the forcing data (i.e., solar radiation, downward wave 

radiation, air temperature, wind speed, air pressure, humidity, and precipitation). The 

CLM also adapted simple parameterizations [Clapp and Hornberger, 1978] for 

identifying soil and vegetation parameters.  

The CLM simulates soil moisture dynamics in the vertical direction based on a 

modified Richards’ equation (Eq. (A.4)). Hydrostatic equilibrium soil moisture 

distribution was subtracted to improve the mass-conservative numerical scheme when 

the water table is within the soil column [Zeng and Decker, 2009].   
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where θ is the volumetric soil water content (mm
3
 mm

-3
), k is the hydraulic conductivity 

(mm s
-1

 ),  is the soil matric potential (mm), E is the equilibrium soil matric potential 

(mm), and Q is the soil moisture sink term.  
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The hydraulic conductivity and equilibrium soil matric potential are given as 

equations (Eqs. (A.5-A.7)), respectively. 
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where ffrz,i is the impermeable fraction, zh,i is the depth of the interface of two adjacent 

layers, Nlevsoi is the number of soil layer, B is a function of soil texture, θE is the 

equilibrium volumetric water content (mm
3
 mm

-3
) at depth z, θsat is the saturated 

volumetric water content (mm
3
 mm

-3
), and  z▽ is the water table depth, respectively. 
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APPENDIX B 

1. Expectation-Maximization Algorithm for Hidden Markov Model (HMM)  

In this study, HMM trained the parameter set (={A, B, i}) through the 

optimized initial parameters by a genetic algorithm (GA). HMM trains parameters 

through a three-step process as follows,  

i) State transition probabilities A=|ai,j| 

The transition probabilities (ai,j) at time t determine states at time t+1. aj is the 

probabilities of transitioning state Si at time t to state Sj at time t+1. K is the orders of 

hidden states.  
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ii) Observation probabilities B=|bj(oj)| in state j, where  
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iii) Initial transition probabilities || i  , where 












n

i

i

ii KisSP

1

1 1),(




        (B.3) 

We used the Forward-Backward algorithm (FBA) to compute P(O|) with the 

parameter sets () of HMM. The FBA is to estimate the posterior marginals of hidden 

state variables with a sequential observations (O1:T=O1,…,OT). The forward variable 

)(it  can be solved as follows, 

KiObi ii  1 ),()( 11         (B.4) 
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Then, the algorithm computes a set of backward variable )(it  defined as below, 

KiiT  1 ,1)(          (B.7) 
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Then, P(O|) is maximized using the given parameter set (={A, B, i}) through an 

iterative procedure using the Baum-Welch method (called as the expectation-

maximization algorithm, Dempster et al., [1977]). For the procedure of re-estimation of 

HMM parameter set (), we first define ),( jit  indicating the probability of 

transitioning state Si at time t to state Sj at time t+1 as follows,  
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We defined )(it  as the probability of being in state Si at time t with the 

observation sequence and the model. Thus, )(it is related to ),( jit  by summing over j, 
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