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ABSTRACT 

 

Shape memory polymers (SMPs) are a relatively new class of active materials 

that can store a temporary shape and return to the original configuration upon application 

of a stimulus such as temperature. This shape changing ability has led to increased 

interest in their use for biomedical and aerospace applications.  A major challenge, 

however, in the advancement of these applications is the ability to accurately predict the 

material behavior for complex geometries and boundary conditions.  This work 

addresses this challenge by developing an experimentally calibrated and validated 

constitutive model that is implemented as a user material subroutine in Abaqus – a 

commercially available finite element software package. 

The model is formulated in terms of finite deformations and assumes the SMP 

behaves as a thermoelastic material, for which the response is modeled using a 

compressible neo-Hookean constitutive equation.  An internal state variable, the glassy 

volume fraction, is introduced to account for the phase transformation and associated 

stored deformation upon cooling from the rubbery phase to the glassy phase and 

subsequently recovered upon heating.  The numerical implementation is performed such 

that a system of equations is solved using a Newton-Raphson method to find the updated 

stress in the material. The conductive heat transfer is incorporated through solving 

Fourier’s law simultaneously with the constitutive equations.   

To calibrate and validate the model parameters, thermomechanical experiments 

are performed on an amorphous, thermosetting polyurethane shape memory polymer. 
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Strains of 10-25% are applied and both free recovery (zero load) and constrained 

displacement recovery boundary conditions are considered for each value of applied 

strain.  Using the uniaxial experimental data, the model is then calibrated and compared 

to the 1-D experimental results.  The validated finite element analysis tool is then used to 

model biomedical devices, including cardiovascular tubes and thrombectomy devices, 

fabricated from shape memory polymers.   The effects of heat transfer and complex 

thermal boundary conditions are evaluated using coupled thermal-displacement analysis, 

for which the thermal material properties were experimentally calibrated.   
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NOMENCLATURE 

 

   Coefficient of thermal expansion ( g  for the glassy phase, r for 

the rubbery phase) 

ij   Kronecker delta ( ij = 1 when i=j, 0 otherwise) 

ε   Logarithmic strain ( Tln ln ε V FF ) 

   Entropy per unit mass ( 0  is the reference value) 

c  Entropy per unit volume 

   Absolute temperature ( 0 is the initial value), in Kelvin 

max   Upper bound for the temperature range over which the glassy 

volume fraction is fit ( min  is the lower bound) 

   In Chapter IV, the Lamé coefficient ( g  for the glassy phase, r  

for the rubbery phase) 

i   Principal components of the stretch tensor U  (  is the axial 

component, g  is the axial component in the glassy phase, r  is 

the axial component in the rubbery phase) 

   Shear modulus ( g  for the glassy phase, r  for the rubbery 

phase) 

   Poisson’s ratio ( g  for the glassy phase, r for the rubbery phase)  

   Backtrack parameter ( 0 1  ) used in the line search method 

   Density ( 0  is the density in the reference configuration) 

σ   Cauchy stress (1-D form:  ). gσ  for the glassy phase, rσ for the 

rubbery phase 

   Last time a material point was transformed from the rubbery 

phase to the glassy phase 
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τ   Kirchhoff stress tensor 



τ   Jaumann rate of the Kirchhoff stress tensor 

   Ratio of the current volume to the reference volume 

   Glassy volume fraction 

rev   Value of the glassy volume fraction at the most recent time when 

cooling ceased and heating began 

   Helmholtz free energy per unit mass 

   Helmholtz free energy per unit volume 

   Region over which the volume average is taken 

g   Glassy region 

r   Rubbery region 

a   Fourth order modulus relating the Jaumann rate of the Kirchhoff 

stress to the rate of deformation tensor 

A   Shifting factor for the glassy volume fraction function 

b   Body force vector  

B   Scaling factor for the glassy volume fraction function 

c   Heat capacity per unit mass   

dc   Heat capacity per unit volume 

c   Fourth order spatial (co-rotational) elasticity tensor 

C   Normalizing factor for the glassy volume fraction function 

(applicable when piecewise hyperbolic tangent used) 

C   Right Cauchy-Green deformation tensor 

matC   Fourth order material elasticity tensor derived from the Helmholtz 

thermodynamic potential 
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  Fourth order elasticity tensor (material Jacobian).  g  for the 

glassy phase, r  for the rubbery phase 

CR Constrained recovery 

CTE Coefficient of thermal expansion 

D   Rate of deformation tensor 

DMA Dynamic mechanical analysis 

DSC Differential scanning calorimetry 

0e   Reference internal energy per unit volume 

E   Young’s modulus ( gE  for the glassy phase, rE  for the rubbery 

phase) 

f   Norm of the residual vector  

F   Deformation gradient 

F   Average deformation gradient (written later simply as F ) 

natF   Deformation gradient from the rubbery phase stress-free 

configuration to the glassy phase natural configuration 

eF   Elastic deformation gradient ( g
eF for the glassy phase, r

eF for the 

rubbery phase) 

storF   Accumulated stored deformation upon cooling from the rubbery 

phase to the glassy phase 

stor
revF   Value of the accumulated stored deformation at the most recent 

time when cooling ceased and heating began 

FR Free recovery 

( )g    Norm of the residual vector when the increment in the unknowns 

is applied 

h   Entropy flux 
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HDI 1,6-hexamethylene diisocyanate 

HPED N,N,N0,N0-tetrakis(2-hydroxy-propyl)ethylenediamine 

I   Second order identity tensor 

I   Fourth order identity tensor 

IC   First invariant of the right Cauchy-Green deformation tensor  

k   Superscript representing the current increment ( 1k   represents 

the previous increment)  

thk   Thermal conductivity 

K   Bulk modulus 

J   Determinant of the deformation gradient and a function of the 

third invariant of C   J III C .  gJ for the glassy phase and 

rJ  for the rubbery phase 

ijJ   Components of the Jacobian matrix in the Newton-Raphson 

method  

L   Length ( 0L  is the initial value) 

vL τ   Lie derivative of the Kirchhoff stress tensor 

p Hydrostatic pressure required to maintain incompressibility  

( gp  for the glassy phase, rp  for the rubbery phase) 

P   First Piola-Kirchhoff stress 

q   Heat flux vector ( nq  in the normal direction) 

Q   Rotation component of the polar decomposition of P  

r   Heat source/sink per unit volume 

r   Heat source/sink per unit mass 
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plr   Volumetric heat generation per unit time caused by mechanical 

working 

R   Rotation component of the polar decomposition of F  ( gR for the 

glassy phase, rR for the rubbery phase) 

iR   Components of the residual vector used in the Newton-Raphson 

method 

PID Proportional-integral-derivative 

PTFE Polytetrafluoroethylene 

is   Principal components of the first Piola-Kirchhoff stress tensor P  

( s  is the axial component, gs  is the axial component in the glassy 

phase, rs  is the axial component in the rubbery phase) 

( )s t   As used as an integral limit, the previous time the material 

experienced the current temperature 

S   Second Piola-Kirchhoff stress 

SDV20 Abaqus variable used to represent the glassy volume fraction 

SMA Shape memory alloy 

SMC Shape memory ceramic 

SMP Shape memory polymer 

t Time 

t   Traction vector 

T Temperature, usually in degrees Celsius 

T   Stretch component of the polar decomposition of P  

TEA Triethanolamine 

Tg Glass transition temperature 

Tm Melting temperature 
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TMA Thermomechanical analysis 

Ttrans Transition temperature (can be melting or glass transition temp.) 

u   Internal energy per unit mass ( 0u is the reference value) 

u   Vector of unknowns in the Newton-Raphson method 

U   Stretch component of the polar decomposition of F  ( gU for the 

glassy phase, rU for the rubbery phase) 

natU   Stretch component of the deformation gradient from the rubbery 

phase stress-free configuration to the glassy phase natural 

configuration 

storU   Accumulated stored deformation upon cooling from the rubbery 

phase to the glassy phase 

stor
revU   Value of the accumulated stored deformation at the most recent 

time when cooling ceased and heating began 

UMAT User material subroutine in Abaqus 

v   Spatial velocity field 

V Volume 

W   Spin tensor 

X   Material point vector in the reference configuration 
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CHAPTER I  

INTRODUCTION AND LITERATURE REVIEW 

 

Breakthroughs in engineering designs and applications are often a result of research and 

innovation in material systems.  Through a better understanding of the fundamental 

material behavior, new materials have been designed to provide multifunctional 

capability and/or solve complex engineering problems.  Advances in composite and 

active materials has directly impacted the state of the art in engineering, from composite 

and morphing panels on new commercial and military aircraft to shape changing metals 

being used for cardiovascular stents and aneurysm treatments .  More recently, advances 

in new stimuli-responsive polymer systems – including piezoelectric, electroactive, and 

shape memory polymers (SMPs) – has broadened the engineering design space by 

introducing multifunctionality into materials that are capable of large deformations. 

Shape memory polymers are a relatively new class of active materials that are 

capable of storing a temporary shape and then returning to its original, permanent shape 

upon the application of a stimulus such as heat [1-9].  As such, SMPs join the broader 

category of shape memory materials, which contains shape memory alloys (SMAs) and 

shape memory ceramics (SMCs).  Compared to these other shape memory materials, 

SMPs are lightweight, inexpensive, and can recover large deformations.  This shape 

changing ability has led to increased interest in their use for biomedical and aerospace 

applications.  A major challenge, however, in the advancement of these applications is 

the ability to understand and accurately predict the material behavior for complex 
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geometries and boundary conditions.  This dissertation addresses these challenges by 

performing an experimental characterization of a new thermosetting shape memory 

polymer and by developing an experimentally calibrated and validated constitutive 

model that is implemented as a subroutine in Abaqus
®
 – a commercially available finite 

element software package. 

 

I.A.  Shape Memory Effect   

 The shape memory effect can be observed to some extent in all polymer systems; 

however, the term shape memory polymer generally refers to systems in which the shape 

memory effect has been specifically tailored or exploited in an application.  This section 

provides an overview of the standard thermomechanical cycle, the broad categories of 

shape memory polymers, and an overview of the mechanism responsible for the shape 

memory effect as related to the categories of SMPs.    

 

I.A.1.  Thermomechanical Cycle 

 As this work focuses on thermally activated shape memory polymers, the cycle 

for inducing the shape memory effect will be limited to that which requires a change in 

temperature.  The general thermomechanical cycle for such SMPs [1-9] is as follows and 

is shown in Figure 1:  
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(1) Heat the material to above the transition temperature and deform the material 

to a new configuration 

(2) Cool the material to below the transition temperature under constraint 

(constant strain or constant force) to ‘fix’ the material 

(3) Hold the temperature below the transition temperature and reduce the force to 

zero  

(4a) Heat the material at zero load (free recovery), or  

(4b) Heat the material at constant displacement (constrained recovery) 

 

 

Figure 1 – Schematic of the thermomechanical cycle for shape memory polymers.  

Large deformations are imposed along (1), the SMP is cooled along (2) to lock in 

the temporary shape, and the thermal stress is released during unloading along 

path (3).  The free and constrained displacement paths are shown in (4a) and (4b), 

respectively. 
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I.A.2.  Categories of Shape Memory Polymers 

In SMPs, the transition temperature Ttrans can be the glass transition temperature 

(Tg) and/or the melting temperature (Tm).  In [1, 10] , shape memory polymers were 

placed into four categories based on their transition temperature and molecular structure. 

The four categories were: 

(I) Covalently cross-linked glassy thermosetting polymers,  

(II)  Covalently cross-linked semi-crystalline polymers,  

(III)  Physically cross-linked glassy copolymers, and  

(IV)  Physically cross-linked semi-crystalline copolymers 

 

I.A.2.1.  Covalently Cross-Linked Glassy Thermosetting Polymers 

The first category of SMPs, type I, is representative of an amorphous, 

thermosetting polymer.  In this type, the material is cured at high temperature to form the 

covalent cross-links (also known as chemical cross-links).  Due to the nature of the 

polymer chains and molecular structure, however, the polymer does not form crystalline 

regions upon cooling; thus, the polymer only exhibits a change in material properties 

about the glass transition temperature.  As such, the Tg is the transition temperature 

invoked during the shape memory cycle. 

 

I.A.2.2.  Covalently Cross-Linked Semi-Crystalline Polymers 

The second classification of SMP (II) is similar to that of (I) except the polymer 

is semi-crystalline.  In this case, the polymer contains both amorphous regions and 
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regions which are capable of crystallizing.  As such, there is a change in material 

properties observed during heating to above both the glass transition temperature (for the 

amorphous regions) and the melting temperature (for the crystalline regions) [4].  

Consequently, either the Tg or the Tm can be used as the transition temperature for the 

shape memory effect. 

 

I.A.2.3.  Physically Cross-Linked Glassy Copolymers 

The third type of SMP is a copolymer comprised of two (or more) repeating units 

in which both repeating units are amorphous.  In this type of SMP, one segment 

(commonly referred to as the ‘hard’ segment or a physical cross-link) has a melting 

temperature which is higher than the glass transition temperature of the other (‘soft’) 

segment [4, 11].  As a result, the glass transition temperature is used as the transition 

temperature for the shape memory behavior but heating through the melting temperature 

of the hard phase can be used to remold the permanent shape of the SMP. 

 

I.A.2.4.  Physically Cross-Linked Semi-Crystalline Copolymers 

The final type of SMP, type IV, is similar to (III) except that the soft segment is 

semi-crystalline.  Therefore, the soft segment will experience both a glass transition and 

a melting temperature and the polymer will begin flowing upon heating through the 

melting temperature of the   hard segment.  In these SMPs, the melting temperature of 

the soft segment is typically used as the transition temperature for the shape memory 

effect [1, 2, 4]. 
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I.A.3.  Physical Mechanism for the Shape Memory Effect 

In this section, the mechanisms of the shape memory capability are briefly 

discussed.  The mechanisms are presented corresponding to the steps presented in the 

thermomechanical cycle in Figure 1, and they are related to the classes of SMPs 

presented in the previous section.   

 

I.A.3.1.  Loading at High Temperature (T>Ttrans) 

 In the first step of the shape memory thermomechanical cycle, the material is 

loaded.  It is during this step that the polymer can be loaded to large values of 

deformation (>10% strain).  The mechanism responsible for allowing the large 

deformations is comparable to that of rubber elasticity. Stretching vulcanized 

(chemically cross-linked) rubber above the glass transition temperature results in the 

straightening of the polymer chains from their original, coiled configuration.  The cross-

links in the system, however, link the chains together and prevent them from slipping 

past each other to cause permanent, irrecoverable deformation [4].  During this 

stretching process, the aligning of the polymer chains significantly reduces the entropy 

(disorder) of the system.   

In relating the stretching response of SMPs with the elastomeric behavior of 

vulcanized rubber, it is necessary to consider the chemically cross-linked SMP systems 

(types I and II) independent of the physically cross-linked SMPs (types III and IV).  The 

chemically cross-linked SMPs are most directly comparable to vulcanized rubber, which 

is also chemically cross-linked.  Therefore, the chemical cross-links (covalent bonds) act 
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as the net points, or physical entanglements, between which the polymer chains are 

extended by overcoming the secondary forces between individual polymer chains [11, 

12].  In physically cross-linked SMP systems, on the other hand, these large 

deformations are possible below the melting temperature of the hard segment but above 

the glass transition temperature of the soft segment.  In this temperature range, the 

crystalline or rigid amorphous hard segments serve as the net points between which the 

polymer chains are extended.   

 

I.A.3.2.  Cooling to Low Temperature (T<Ttrans) and Unloading 

In the second step of the thermomechanical cycle, the material is constrained 

(either by applying constant strain or constant force) while the temperature is decreased 

to below the transition temperature.  Below the transition temperature, the polymer 

stiffens and prevents further large deformations.  This stiffening is accomplished by 

different mechanisms for amorphous and semi-crystalline polymers.   

 In semi-crystalline polymers (types II and IV), the process of cooling causes the 

soft segment (regions between the net points) to form crystalline nuclei where the 

polymer chains become ordered (aligned) into periodic, unit cell configurations and do 

not have sufficient thermal energy to move.  The continued growth of these crystalline 

regions throughout the polymer prohibits the long-range motion of the remaining 

amorphous regions [1, 2, 4, 11].  In purely amorphous (glassy) polymers (type I), the 

process of cooling causes the material to pass through the glass transition temperature.  
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During cooling through the Tg, thermal energy is removed from the system and the 

molecules do not have sufficient energy to significantly vibrate or translate [11].   

Unloading the SMP after cooling results in a slight contraction, but the limited 

chain flexibility prevents significant long range motion of the chains.  As a result of this 

lack of motion, the polymer is sometimes referred to as ‘frozen’ at temperatures below 

the glass transition temperature [4]. 

 

I.A.3.3.  Heating to High Temperature (T>Ttrans) for Recovery 

 After cooling and removing the external force, the final step of the 

thermomechanical cycle is to heat the polymer to above its transition temperature, either 

at zero load (free recovery) or at constant displacement (constrained displacement 

recovery).   

In the free recovery case, the polymer will recover its original shape.  The 

material is heated through its transition temperature and either crystalline regions melt 

(when Ttrans = Tm) or the glass transition temperature is exceeded (when Ttrans = Tg).  In 

either case, the molecular motion is unimpeded and the polymer returns to its original 

configuration [1, 2].  The mechanism facilitating the return to its original configuration 

is two-part.  The first part is because of the chemical or physical cross-links which help 

‘remember’ (maintain) the original shape of the polymer.  The second part is the entropy 

gain due to the regions between the cross-links returning to their original, coiled 

configuration.   
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In some polymer systems, there is irrecoverable deformation observed during the 

first thermomechanical cycle [1, 2, 4].  This irrecoverable deformation is due to local, 

microscopic rearrangements of the entanglements (physical and/or chemical cross-links) 

as compared to the pristine state of the polymer [13, 14].  During subsequent loading 

cycles, thermosetting polymer systems will often return to this new configuration with 

no, or very little, irrecoverable deformation; however, thermoplastic polymers may 

continue to develop additional irrecoverable deformations with each cycle [13]. 

In the constrained recovery case, the polymer will recover a tensile stress (if the 

original deformation was tensile) upon heating [1, 13].  If heating begins at a 

temperature well below the transition region, the stress will initially become 

compressive.  This compressive stress is because the polymer wants to thermally expand 

upon heating but is kinematically constrained.  Upon entering the transition region, the 

material will attempt to return to its original configuration for reasons previously 

discussed.  Thus, the desire to return to the original configuration during heating results 

in a tensile stress on the polymer chains.     

 

I.B.  Applications of Shape Memory Polymers 

The ability for shape memory polymers to recover large deformations, with 

tunable material properties and relatively low cost, has garnered significant interest in 

aerospace and biomedical applications.  In the aerospace industry, concepts of using 

SMPs for morphing wings [10], active joints [15], or deployable space structures [16] 

has been investigated.  However, the limitation of SMPs to withstand larger forces has 
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hindered their acceptance in aerospace applications.  As a result, numerous efforts have 

focused recently on improving the material properties of SMPs through the fabrication 

of shape memory polymer composites and nanocomposites [17] or by improving the 

heating ability of the SMP through vascular means [18-38] or alternate energy sources 

[39].   

On the other hand, shape memory polymers have found promise in biomedical 

applications, such as stents, thrombectomy devices, and tissue scaffolds, that often 

necessitate self-expansion, tunable material properties, biocompatibility, and/or 

biodegradability [25, 40-48].  Some devices that have been conceived and/or prototyped 

include artificial muscles [49-54], pressure bandages [55], and dialysis needles [56].   

Perhaps the most commonly investigated biomedical applications are shape 

memory polymer stents, which have the potential for a better compliance mismatch with 

arterial walls compared to metallic stents as well as biocompatibility.  As an example, 

Baer et al. [57] fabricated neurovascular stents from polyurethane shape memory 

polymers and demonstrated that they could be actuated using temperature or lasers.  

Recent efforts by Xue et al. [41, 58] and Yu et al. [59] have attempted to further tailor 

SMP stents by incorporating the ability for the stents to be drug-eluting or 

biodegradable, respectively.   

In efforts to treat aneurysms, Maitland et al. [60] and Small et al. [43] have 

designed and prototyped light diffusers, shape memory polymer stents, and shape 

memory polymer foams, which can potentially be actuated using alternate sources of 

energy such as lasers of magnetic fields.  Expanding the use of the alternate energy 
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sources as the driving force of actuation, additional efforts have been performed by 

Small et al. [44, 61] and Buckley et al. [45, 62] to prototype net-like and spiral-like 

thrombectomy devices that can recover their permanent shape without directly 

increasing the temperature. 

 

I.C.  Experimental Characterization 

In the previous two decades, numerous experimental investigations have been 

performed to better understand and characterize the material properties and shape 

memory effect for new SMPs.   Many of the initial studies focused on the SMP response 

when subjected to small deformations (<10% extension) [42].  In particular, Tobushi et 

al. tested polyurethane films to extensions of up to 10% [10, 63] under both free and 

constrained displacement recovery conditions.  In these experiments, Tobushi et al. 

observed significant irrecoverable deformation (up to 4% when 10% strain applied) as 

well as relaxation in the rubbery phase at the start of the constrained cooling.  In 

addition, Liu et al. tested the small deformation response in both free and constrained 

displacement recovery for an epoxy-based SMP [63].  In this epoxy system, complete 

recovery was observed for tensile and compressive extensions of up to 9.1%.  In 

addition, the stress increase during cooling was observed to be the same independent of 

the applied strain, supporting the notion that this stress increase is primarily a response 

of the material undergoing a prescribed temperature change.   

Recent experimental efforts have investigated in more depth the large 

deformation (>10% extension) response of SMPs, specifically polyurethane, 
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polystyrene, acrylic, and/or epoxy SMPs.  The most commonly investigated type of 

shape memory polymers is polyurethanes, in part due to the tunable material properties, 

potential biocompatibility, and ability to fabricate as thermoplastic or thermosetting 

polymers.  In [10], Tobushi et al. characterized thin films of a Mitsubishi
®
 thermoplastic 

polyurethane SMP.  In these experiments, extensions of up to 100% were applied, and 

the isothermal, viscoplastic, and free recovery behavior was characterized.  The SMP 

was observed to exhibit significant creep strains during isothermal loading as well as 

large irrecoverable strains during the shape memory cycle.  Expanding the investigation 

of the Mitsubishi
®
 SMPs to include the thermosetting category, Baer et al. [64, 65] 

observed failure strains of up to 250% in the rubbery phase, isothermal strain recoveries 

of up to 94%, and shape recovery ratios of up to 85% in the first thermomechanical 

cycle.  A parameter study was performed by Lin et al. [13] that demonstrated the effects 

of varying the hard segment in a polyurethane system.  Specifically, for increasing 

amounts of the hard segment, a higher glass transition temperature was observed and a 

smaller ratio of the glassy modulus to the rubbery modulus.  Recently, Azra et al. [66] 

performed a parameter study on the programming and recovery temperatures as well as 

the stress relaxation and storage times.  They found that the time period for recovery 

could be tuned to occur over a broad time range, and they observed a tradeoff in the rate 

of shape recovery and the recoverable stress.   

Improving on the shape recovery ratios and mechanical properties of the 

available polyurethane SMPs, Wilson et al. [67] proposed a new series of thermosetting 

polyurethane shape memory polymers based on aliphatic urethane networks.  In this 
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work, the ability to modify the glass transition temperature and/or the rubbery modulus 

independently was highlighted, and the SMPs were observed to isothermally recover all 

of the applied deformation in the 2
nd

 through 5
th

 load/unload cycles.  Recently, Volk et 

al.  [68] performed free and constrained recovery experiments on one of the proposed 

compositions of [69, 70] and observed complete recovery in the first and second 

thermomechanical shape memory cycles on applied extensions of up to 25%. 

In addition to the polyurethane SMPs, efforts by , Atli et al. [68] and Volk et al. 

[71] have been conducted on a commercially available polystyrene SMP.  In these 

experiments, extensions of up to 100% were applied, and nearly all of the deformation 

was recovered under free recovery conditions.  In addition, Atli et al. [72] characterized 

the constrained recovery response and observed a stress recovery of up to 0.17MPa for 

75% extension.  The work of Volk et al. [71] represented one of the first reported 

investigations of using digital image correlation as a non-contact technique for measure 

the displacement of the material.  Recently, Schmidt et al. [72] performed cyclic 

experiments on a shape memory polymer called Tecoflex
®
, to which extensions of 50% 

and 225% were cyclically applied below the glass transition temperature, and the 

changes to the surface morphology were observed using scanning electron microscopy. 

In related efforts, Chowdhury et al. [73] tested the cyclic recovery of the Veriflex
®
 SMP 

when programmed at 5°C above and below the glass transition temperature.  Although 

both conditions showed a significant decrease in the recovery ratios as a function of 

cycles, an improvement was observed when programming 5°C above the glass transition 

temperatures as compared to 5°C below.  
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 Focusing on acrylic SMPs, Yakacki et al. [74] fabricated shape memory 

polymers and injection molded the material into tubes representing simplified SMP 

stents, for which the unconstrained recovery was characterized.  It was observed that a 

tube with machined holes initiated recovery faster than a solid tube although the same 

amount of time was required to finish recovery.  Building upon the materials developed 

in [75], Srivastava et al. [75] performed isothermal tests at various temperatures and 

loading rates to characterize the mechanical response of the SMP.  Recently, Voit et al. 

[76] have developed new materials that exhibited strain-to-failure values of up to 900% 

as well as complete recovery in a 200% free recovery experiment.  In addition, Lakhera 

et al. [77, 78] recently performed experiments on methacrylate SMP networks with 

varying crosslink densities.  In these experiments, the polymers were compressed at 

various temperatures and heated for recovery under constant stresses up to 1.5MPa.   

For epoxy SMPs, recent studies by McClung et al. [79] have examined the rate 

and cycle dependence of the Veriflex
®
-E shape memory epoxy resin.  In these 

experiments, the material was subjected to isothermal loading at different temperatures 

and different loading rates in addition to shape memory tests with different hold times 

and number of cycles.  Additional experiments on composites fabricated from this series 

of epoxy resins as well as styrene resins have focused on quantifying the response of the 

SMPs and SMP composites when exposed to potentially degrading conditions [80, 81].  

In another recent work, Song [82, 83] performed viscoelastic tests on a shape memory 

epoxy system with varying component ratios and observed the viscoelastic effects were 
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predominant near the glass transition temperature as compared to temperatures above or 

below the Tg.   

In efforts to better improve the testing equipment and methods for the 

characterization of shape memory polymers, Volk et al. [84] and McClung et al. [69, 70, 

72] have introduced non-contact techniques (digital image correlation and/or laser 

extensometers) to measure the displacement of the SMP undergoing free recovery.  In 

[85], good agreement was observed in the measurements recorded by the digital image 

correlation method as compared to the laser extensometer.  Further, in [85], Diani et al. 

has developed a torsion testing apparatus that can provide an alternate method for testing 

the large deformation response of SMPs.  Additionally, [86] recently showed that a 

polyurethane shape memory polymer was capable of two way shape memory effect 

under a biasing load.  In these experiments, the SMP was deformed above the melting 

temperature, cooled to between the glassy and melting temperatures, and then cycled 

under constant load to temperatures above and below the melting temperature.  Finally, 

in [87], Li and Xu presented a new method to achieve the shape memory effect.  Rather 

than deforming the material above the glass transition temperature, it was shown that the 

SMP could be deformed at temperatures below the glass transition temperature, held to 

induce stress relaxation, and then subsequently reheated to obtain the original shape.   
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I.D.  Constitutive Modeling 

In steps toward developing models for designing and analyzing SMP devices, 

there have been efforts to more accurately describe and predict the complex material 

behavior of SMPs.  While the majority of the modeling efforts have been focused on the 

small deformation response of shape memory polymers, modeling efforts in the last five 

years have begun to emphasize and formulate the models in terms of large deformations.   

 

I.D.1.  Small Deformations 

Initial models by Tobushi used rheological models with elastic, viscous, and slip 

elements to model the small deformation response of SMPs [88].  Recently, Bailin et al. 

[63, 89-91] performed a one-dimensional numerical study to verify the Tobushi 

constitutive model against the experimental data and found good agreement.  Another 

rheological model was proposed by Lin and Chen [92], which used two Maxwell models 

in parallel with each Maxwell model representing a different phase (i.e., rubbery and 

glassy).  The Maxwell models had unique relaxation times and thus accounted for the 

difference in relaxation times for each phase.  Kohnakdar et al. [93] studied the recovery 

behavior of a polyurethane SMP by using a Voigt model in series with a damper.  Using 

a Kelvin-Voigt model in combination with a transient stress dip test, Bonner et al. [94] 

demonstrated the ability to predict the recovery time for SMPs with recovery times less 

than 1000s.  In addition, Srinivasa and Gosh [95] have proposed a three element 

rheological model with a dashpot threshold function accounting for the strain storage 

and release.  This work was extended in [96] and observed to have good comparison 
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with the experimental data of Tobushi et al. [97] and Liu et al. [63] for applied strains up 

to 10%. 

An internal variable approach was first utilized for SMPs in a small deformation 

framework by Liu et al. [10], who introduced a glassy volume fraction to account for the 

transformation between the rubbery and glassy phases and the associated stored 

deformation.  Follow up efforts by Wang et al. [10], Zhou et al. [98] and Husson et al. 

[99, 100] extended the work of Liu et al. to account for rate dependency of the glassy 

volume fraction, viscous strains, and the temperature dependence of the elastic modulus, 

respectively.  An effort by Gilormini and Diani [101] further investigated the assumption 

of constant stress between the two phases in [102] and found that assuming constant 

strain in the two phases could also lead to good model predictions. In addition, Kim et al. 

[10] used a similar approach to develop one-dimensional equations that were 

implemented in a user material subroutine to model braided SMP polyurethane stents 

comprised of simple beam elements. 

Recent efforts by Baghani et al. [103] have followed a similar approach to [104, 

105] with an additive decomposition of the strain into the rubbery phase elastic, glassy 

phase elastic, glassy phase stored, and thermal strains.  The model was 

thermodynamically motivated with evolution equations for the glassy volume fraction 

during both cooling and heating.  The model was subsequently implemented in a user 

material subroutine in Abaqus with the material properties, including heat transfer 

properties, calibrated from the data of Diani et al. [10], Liu et al. [86], and Volk et al. 

[10].  Subsequent model predictions were shown to match well with experimental data, 
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and the shape memory profile of the extruded and perforated stent in [72] was modeled.  

Further efforts by Baghani et al. [75] used the model to perform semi-analytical studies 

of helical springs fabricated from shape memory polymers.  The semi-analytical results 

were shown to match well with the finite element solutions. 

 

I.D.2.  Large Deformations   

Considering large deformations, there have been two general approaches in the 

literature.  The first approach is to model the SMP using temperature dependent material 

properties, such as relaxation times.  The other approach is to use an internal variable 

approach, similar to that proposed by Liu et al. [106], to evolve the volume fraction of a 

phase.  In the first approach, Diani et al. [10] introduced a model that accounted for 

viscoelastic deformation and thermal expansion. The expression for the entropy was 

inspired by rubber elasticity, and an evolution equation was proposed to account for the 

viscous deformation.  Another approach to modeling SMPs was introduced by Nguyen 

et al. [107], which assumed the shape memory effect was due to a combination of 

structural and stress relaxation mechanisms.  In other words, they assumed the shape 

memory effect was due to the notion that the SMP could relax back to its original state in 

the rubbery phase but not in the glassy phase.  Thus, the SMP was modeled using 

temperature dependent relaxation parameters and a fictive temperature to track when the 

SMP was in a non-equilibrium state.  Similar approaches have also been used to model 

by Westbrook et al. [108-110] to model the behavior of semi-crystalline shape memory 

polymers, some of which may undergo stretch induced crystallization.  A recent model 
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was proposed by Srivastava et al. [111, 112], which posed a general formulation that 

provides the framework and methodology to account for an arbitrary number of 

deformation mechanisms.  The free energy is assumed to be an additive decomposition 

of each mechanism, and an evolution equation must be defined for each separate 

mechanism.  The model was implemented in finite elements for the case of three 

deformation mechanisms and thermomechanical coupling.   

In the second classification of large deformation models for SMPs, multiple 

efforts have used a similar approach to Liu et al. [76].  One effort was that of Chen and 

Lagoudas [10], which modeled the SMP as a system in which the glassy phase was 

nucleated from the rubbery phase and the deformation in each the rubbery and glassy 

phases was taken to be thermoelastic.  This model has been implemented in 1-D by Volk 

et al. [113, 114] and shown to have good comparison of the model predictions with 

experimental results for polystyrene and polyurethane thermosetting shape memory 

polymers.  Another effort, by Qi et al. [69, 70, 115], considered the SMP a combination 

of a rubbery phase, a frozen glassy phase (transformed from the rubbery phase), and an 

initial glassy phase.  The deformations in the rubbery and glassy phases were described 

by the thermoelastic (Arruda-Boyce) and viscoplastic models, and evolution equations 

were posed for the glassy volume fractions and the viscoplastic strains.  Reese et al. 

[116] recently took a similar approach by defining contributions to the free energy for 

each the rubbery and glassy phases and an evolution equation for the glassy volume 

fraction.  The work of Reese et al. also introduced a method to model SMPs using 
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individual tetrahedral cells and incorporated thermomechanical coupling using Fourier’s 

Law. 

 

I.D.3.  Current Modeling Approach 

 In this work, a large deformation approach is used to model the response of the 

shape memory polymers.  This modeling approach is an extension of the kinematic 

framework proposed by Chen and Lagoudas [117], which provides a phenomenological 

representation of the shape storing and recovery behavior of SMPs.  Specifically, this 

modeling effort considers the SMP phase transition as a nucleation phenomenon.  As 

such, it is assumed the material is initially completely in a discrete ‘rubbery’ phase and 

the material smoothly transforms over a range of temperatures to a discrete glassy phase.  

During this cooling, it is assumed the glassy regions nucleate until all rubbery phase 

regions cease to exist.  This kinetic phase transition approach is used to account for the 

changes in the material properties that occur during cooling from high temperatures to 

lower temperatures.  However, it is noted that the molecular structure of the SMP is not 

physically changing during this transition but rather the ability for the molecular chains 

to undergo large-scale conformational motion is restricted upon cooling to below the 

glass transition temperature. 

 In addition, this work  considers only the thermoelastic response of the rubbery 

and glassy phases.  That is, no permanent irrecoverable deformations, strain- or 

temperature-rate dependent effects of the SMP behavior are considered.  The choice to 

focus on the rate-independent elastic response generally limits this modeling approach to 
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considering highly crosslinked thermosetting polymers, such as the thermosetting 

polyurethane that is the focus of the experimental portion of this work.  In these 

covalently crosslinked SMPs, a more uniform molecular network is formed and the 

irrecoverable deformation and viscoplastic response is generally minimal compared to 

physically crosslinked systems.    

 

I.E.  Summary of the Dissertation 

 This dissertation builds on the existing efforts in the literature, the number of 

which have increased rapidly in the previous two decades, which aim to focus on 

understanding and predicting the behavior of shape memory polymers.  This dissertation, 

which will focus on  the experimental characterization and modeling of thermosetting 

shape memory polymers, is organized as follows. 

 In Chapter II, experiments are performed on a relatively new thermosetting shape 

memory polymer that is being considered for use in biomedical applications.  In this 

chapter, the details of the material fabrication, experimental setup, and test methodology 

and results are presented.  This investigation provides further evidence of the necessity 

of non-contact measurement techniques to accurately measure the displacement of the 

material during the constrained cooling and recovery steps.  As part of this work, free 

recovery and constrained displacement recovery experiments are performed, for which 

the conventional thermomechanical path is modified to avoid undesired influence due to 

the grips.  
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 In Chapter III, a large deformation constitutive model for shape memory 

polymers is implemented in a 1D framework.  The model is formulated such that the 

material is assumed to be a mixture of the glassy and rubbery phases, and each phase 

behaves as an incompressible neo-Hookean material.  In addition, a functional form for 

the glassy volume fraction is introduced to represent the portion of the material in the 

glassy phase at any temperature, and an assumption is made considering the rotations in 

the rubbery and glassy phases.  This implementation is performed in a general manner to 

allow for prediction the response of the SMP for load paths in which the stress or the 

displacement of the material is known.  The model is calibrated from the uniaxial 

experiments of Chapter II, and subsequent model predictions are shown to compare well 

with the remaining uniaxial shape memory experiments. 

 In Chapter IV, the implementation of Chapter III is expanded to three dimensions 

as part of a user material subroutine in Abaqus.  Providing more versatility, the 

constitutive equations for each phase are now modeled as compressible neo-Hookean 

materials, and an evolution equation is introduced for the recovery heating.  The material 

properties are calibrated from the experiments of Chapter II, and then a series of 

boundary value problems are analyzed.  Coupled temperature-displacement analyses are 

performed to evaluate the effects of applying various thermal boundary conditions 

and/or temperature rates.   
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CHAPTER II  

EXPERIMENTAL CHARACTERIZATION* 

 

An introduction to the shape memory effect and the relevant experimental and 

modeling works in the literature was presented in Chapter I.  This chapter presents the 

details of the experimental effort to characterize a previously untested polyurethane 

shape memory polymer.  In particular, the experimental parameters and results are 

presented for the experiments that obtain the basic material properties as well as the 

experiments that characterize the shape memory capability of the material.   

 

II.A.  Materials and Methods 

This section presents the fabrication procedure for creating the polyurethane 

SMP as well as details of the experimental parameters and setup used for characterizing 

the resulting material.   

 

II.A.1.  Specimen Type and Preparation 

The shape memory polymer used for this study was a polyurethane SMP 

proposed by Wilson et al. [113], which consisted of 1,6-hexamethylene diisocyanate  

 

____________ 

*Part of this chapter is reprinted with permission from “Characterizing and 

Modeling the Free Recovery and Constrained Recovery of a Polyurethane Shape 

Memory Polymer” by Volk, B.L., Lagoudas, D.C., and Maitland, D.J., 2011. Smart 

Materials and Structures. 20, 094004, DOI: 10.1088/0964-1726/20/9/094004, Copyright 

2011 by IOP Publishing Limited. 
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(HDI), N,N,N0,N0-tetrakis(2-hydroxy-propyl)ethylenediamine (HPED), and 

triethanolamine (TEA).  In [68], Wilson et al. demonstrated the glass transition 

temperature of the polymer could be varied, as a function of the molar ratios of the 

monomers, from approximately 35°C to 85°C while maintaining similar (but shifted 

with respect to Tg) trends in the shear modulus and tan delta as a function of 

temperature.  As a result, this work selected an intermediate composition, of which the 

respective molar amounts of HDI, HPED, and TEA were 1.00, 0.40, and 0.133, and the 

glass transition temperature was nominally 76°C – measured by differential scanning 

calorimetry (DSC) with a temperature rate of 20°C/min [68].   

The method for fabricating the thermoset polyurethane SMP was adapted from 

[68].  The monomers were first decanted from source containers to 60mL glass 

containers and then subsequently vacuum degassed for 24 hours at 45°C.  The 

monomers were weighed on a Mettler Toledo
®

 PB403-S scale and combined in a 

Labconco
®
 Precision Basic Glovebox to reduce exposure to moisture.  After removing 

the combination from the glove box, the monomers were mixed using a VWR
® 

Analog 

Vortex Mixer for 2 minutes.  The mixture was sonicated for 2 minutes and vacuum 

degassed for 6.5 minutes.  The mixture was then sonicated again for 3 minutes and then 

vacuum degassed again for 3 minutes. 

The mixture was then cast into an aluminum mold to create a sheet of the 

polymeric material.  The mold was designed to produce a sheet of material that would 

accommodate the fabrication of ASTM D638 [68] Type V specimens.  Type V 

specimens with a thickness of 1mm were selected (i) to maximize the number of defect-
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free sample that could be obtained from a sheet of material (compared to Type IV 

specimens), and (ii) to result in stresses that would not exceed the capacity of the 

available load cell.  The resulting mold design is shown in Figure 2, and has two 

aluminum pieces.  One h has a cavity with a depth of 2mm and the other piece has an 

extrusion of 1mm.  Upon placing the two pieces in contact, the effective cavity depth is 

reduced to 1mm while helping to create a seal around the edges of the cavity.  Further, 

two ports are machined into the mold – one for injecting the polymer solution and one 

for allowing the trapped air to escape during injection.   

After fabrication, the aluminum mold was coated with a polytetrafluoroethylene 

(PTFE) spray, which was sintered on the mold and served to aid in releasing the polymer 

from the mold.  The mold was sealed using a VersaChem
®
 Type 613 silicone gasket 

between the two pieces, and then was positioned vertically in a clamp.   Stopcocks, of 

which the tips were wrapped with a PTFE tape to provide a better seal, were placed into 

the tapered ports of the mold, and quick-setting epoxy was used to hold the stopcocks in 

place during the casting process.  Figure 2(a) presents the mold setup ready for casting 

the polymer.  The polymer mixture was injected into the bottom port of the mold using a 

syringe and tubing which attached to the stopcock via a Luer connection and air was 

allowed to escape through the top port of the mold. The mold and clamp setup was then 

placed in a VWR
®
 1430M temperature chamber that was controlled by a Cole-Parmer

®
 

Digi-Sense Temperature Controller R/S.  The temperature profile was programmed to 

heat at 30°C/hour to 120°C, at which the chamber was held constant for an hour before 

slowly cooling to room temperature. The fabrication process resulted in sheets of 
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polymer material that measured 6in. x 4in. x 1mm thick.  A GravoGraph
®
 LS100 CO2 

laser cutter was used to cut nine ASTM D-638 Type V specimens from each sheet of  

 

(a) 

   

 (b) (c) 

Figure 2 – (a) Mold setup used to fabricate the polyurethane SMPs.  The SMP resin 

is injected through the bottom port.  (b)  A resulting sheet of shape memory 

polymer, after curing in an oven.  (c) An ASTM Type V dogbone sample, which 

was laser cut. 
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material.  A sheet of material and a resulting Type V specimen are shown in Figure 2(b) 

and (c), respectively.   

 

II.A.2.  Experimental Parameters 

The experiments performed in this work focus on obtaining the basic material 

properties in addition to the shape memory response of a thermosetting polyurethane 

SMP.  Through determining the basic material properties, the thermomechanical load 

path parameters for the shape memory experiments are determined. 

 

II.A.2.1. Thermal and Mechanical Characterization 

 Experiments were performed to obtain the material properties, such as the glass 

transition temperature, the modulus in the rubbery and the glassy phases, and the strain 

to failure in the rubbery phase.  These properties were obtained by performing 

experiments that included Differential Scanning Calorimetry (DSC), Dynamic 

Mechanical Analysis (DMA), ThermoMechanical Analysis (TMA) and isothermal 

tensile testing.   

 

II.A.2.1.1. Differential Scanning Calorimetry 

 Differential scanning calorimetry tests were performed on a TA Instruments 

Q200 machine to obtain the glass transition temperature.  Three samples were tested 

from each sheet of polyurethane SMP that was fabricated.  Each sample was subjected to 
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two cycles in which the temperature was cycled from -40°C to 150°C.  The temperature 

rate for both cycles was 1°C/min.   

 In addition, a preliminary experiment was performed to obtain an estimate of the 

effects of the temperature rate on the measured Tg.  In this experiment, a single sample 

was subjected to five consecutive cycles, with the heating rate increasing from 1°C/min 

to 5°C/min in increments of 1°C/min.   

 

II.A.2.1.2. Dynamic Mechanical Analysis 

Dynamic mechanical analysis tests were performed on a TA Instruments Q800 

machine to obtain the rubbery modulus, the glassy modulus, and the glass transition 

temperature.  Three samples were tested from each sheet of polyurethane SMP that was 

fabricated.  Each sample was subjected to one cycle in which the temperature was raised 

from 0°C to 120°C.  The heating rate was 1°C/min.  The glassy and rubbery moduli were 

measured at room temperature (25°C) and high temperature (90°C), which were located 

in the plateau regions for the respective phases.  

 

II.A.2.1.3. Thermomechanical Analysis 

Thermomechanical analysis tests were performed on a TA Instruments Q400 

machine to obtain the coefficients of thermal expansion in the rubbery and glassy 

phases.  A sample from each batch of polymer fabrication was subjected to one cycle in 

which the temperature was raised from 0°C to 120°C.  The heating rate was 1°C/min.  

The coefficients of thermal expansion in the glassy and rubbery phases were calculated 
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as the slopes of the linear dimension change vs. temperature data from 20°C to 50°C and 

85°C to 105°C, respectively. 

 

II.A.2.1.4. Tensile Testing 

  Isothermal tension tests were performed on a MTS
®
 Insight 30kN 

electromechanical, screw-driven test frame equipped with a Thermcraft
®
 temperature 

chamber that uses forced convection for heating and liquid nitrogen for cooling.  The test 

frame was equipped with MTS
®
 Advantage 2kN pneumatic grips and a Honeywell

®
 222 

N (50 lbf) load cell.  To avoid undesirable effects of a contact-based measurement 

technique [118], a MTS
®

 LX1500 laser extensometer was used to measure the extension 

of the material.  Figure 3 presents the test frame, temperature chamber, and laser 

extensometer used for testing the shape memory polymers.  To prepare the specimens 

for use with the laser extensometer, two pieces of reflective tape were attached, at the 

ends of the gauge region, to the surface of the specimen.  Six specimens, including three 

that were lightly polished on the edges using sandpaper after CO2 laser cutting, were 

strained to failure at 90°C (T ≈ Tg + 30°C) to determine the extensibility of the rubbery 

phase.   The extension of the material was calculated as the change in the distance 

between the reflective tapes divided by their initial separation. 

 

II.A.2.2. Shape Memory Characterization 

Shape memory tests were performed on ASTM Type V specimens, of which the 

fabrication was presented in Figure 2.  The experiments were conducted using the 

experimental setup used for isothermal tensile testing in Figure 3. 



 

30 

 

 

Figure 3 - Experimental setup used for testing the shape memory polymers. 

 

II.A.2.2.1. Thermomechanical Load Path 

The experiments performed in this work evaluated both the free recovery 

(extension recovery at zero load) and the constrained displacement recovery (stress 

recovery at constant extension) of the SMP.  The free recovery experiments were 

performed to determine the maximum shape recovery, and the constrained displacement 

recovery tests were performed to provide information (e.g., blocking stress) about the 

response of the SMP while subjected to external constraints.  The tests primarily 

followed the thermomechanical load path presented in Figure 1 for free and constrained 

recovery conditions.  First, the specimens were held at zero load and the temperature 



 

31 

 

was increased to 90°C, which was higher than the glass transition temperature that was 

measured by DSC.  The temperature was held at 90°C for 25 minutes to allow the 

system to reach thermal equilibrium.  Zero load was maintained during the heating and 

dwell periods by keeping the bottom grip released.   

The bottom of the material was then gripped and the sample was subsequently 

deformed at 50mm/min – the displacement rate recommended for nonrigid materials by 

the ASTM D638 standard for testing tensile properties of plastics [69-72, 85].  Although 

larger values of extension may be possible by deforming at temperatures near Tg [118], 

this loading temperature was selected to evaluate the material response of the rubbery 

phase at temperatures above the glass transition region.  The temperature was then 

decreased to 25°C.  During the cooling step, the laser extensometer measurements were 

used as feedback to the proportional-integral-derivative (PID) controller in the MTS
®

 

Testworks
®

 software to adjust the crosshead to minimize the extension induced in the 

specimen by the thermal contraction of the grips and extension rods. The temperature 

was held at 25°C for 25 minutes to allow the system to reach thermal equilibrium.  

Figure 4 shows the temperature for a thermocouple near the center of the chamber 

compared to the temperature for a thermocouple on the surface of the grip as a function 

of time.  Note that the thermocouple in the center of the chamber reaches the desired 

temperatures (25°C) at approximately 32 minutes.  After approximately 15 minutes, the 

grip temperature is within 3°C of the chamber temperature.   
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Figure 4 – Comparison, during cooling to 25°C at 1°C/min, of the temperature 

readings from the thermocouple placed in the center of the oven and the 

thermocouple placed on the surface of the pneumatic grip.   

 

After reaching thermal equilibrium at 25°C, the displacement was decreased at 5 

mm/min – the rate recommended by ASTM D638 for rigid materials [78, 119] – until 

the load equaled zero.  The temperature was again raised to 90° and the recovery was 

measured. For the free recovery experiments – the bottom grip was opened after 

unloading and the specimen was again allowed to hang freely from the top grip to ensure 

zero applied load.   

 

II.A.2.2.2. Modification to Constrained Recovery Step 

This work also introduced a modification to the constrained displacement 

recovery presented in Figure 1.  In preliminary tests, the standard thermomechanical step 

was used, in which specimen was held gripped and the displacement was maintained 
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constant during the entire heating procedure.  However, it was observed that the 

specimen was subjected to thermal buckling in the glassy phase due to the thermal 

expansion of the grips and extension rods as well as the constrained thermal expansion 

of the specimen.  Figure 5 presents the observed out-of-plane motion for an undeformed 

specimen that is heated, at constant displacement, from the glassy phase to the rubbery 

phase.  Thus, to alleviate this out-of-plane motion, the step was modified such that the 

specimen was allowed to hang freely from the top grip during the first part of the heating 

step.  Before the specimen reached the transition temperature range and initiated shape 

recovery, the bottom grip was again closed.  The displacement was then held constant 

and the remainder of the heating step was completed. 

 

II.A.2.2.3. Shape Memory Test Matrix    

Table 1 presents the test matrix that summarizes all of the shape memory tests 

performed on the polyurethane SMP.  In particular, the SMP was tested at extensions of 

10%, 15%, 20%, and 25% for each of the free recovery and constrained recovery 

conditions.  The 25% extension upper limit was observed to be the largest value for 

which shape memory tests could be repeatability performed.  This value of extension, 

although lower than recently developed high-strain SMPs [118], is a result of the trade-

off for developing a high recovery force SMP with a rubbery modulus greater than 20 

MPa [77, 78] and is considered appropriate for the devices under consideration.  It is 

noted that this value is lower than the average elongation to failure presented in the 

upcoming results section.  As such, larger extensions may be possible for shape memory 
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characterization by further optimization of the fabrication and processing conditions, 

which was not a focus of this work. 

 

Figure 5 – Observation of out-of-plane deformation while heating an undeformed 

specimen from 25°C to 90°C.  Buckling is induced due to the thermal expansion of 

the specimen, the grips and extension rods, and the constraint  that holds the 

crosshead fixed during heating. 

 

The temperature rate, the rate of heating and cooling, was 1°C/min for all tests to 

minimize the temperature rate effects [68].  A pristine specimen was used for each 

experiment and each specimen was subjected to two cycles under the same parameters.  

The tests were repeated twice for a total of three specimens (2 cycles per specimen) per 
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test condition.  Additional cycles were not performed after observing negligible change 

in the shape memory response from the first to the second cycle and based on isothermal 

results [72] that indicate the largest hysteresis may occur as a result of loading in the first 

cycle with stable material response beginning in the second cycle. 

 

Table 1 – Test matrix of free (zero load) and constrained displacement recovery 

experiments performed on polyurethane shape memory polymer.  Applied strains 

were increased from 10% to 25%.  Three specimens were tested for each load case, 

and each specimen was subjected to two thermomechanical cycles. 

Applied 

Strain 

Loading 

Strain 

Rate 

Heating/ 

Cooling Rate 

Recovery 

Temperature 

Recovery 

Stress 

(MPa) 

Recovery 

Strain 

Free recovery (zero load recovery) experiments 

10% 

50mm/min 1°C/min 
90°C  

(T ≈ Tg + 30) 
σ = 0 Output 

15% 

20% 

25% 

Constrained displacement recovery experiments 

10% 

50mm/min 1°C/min 
90°C  

(T ≈ Tg + 30) 
Output 

10% 

15% 15% 

20% 20% 

25% 25% 

 

 

II.B. Results 

 The results from the experimental characterization of the thermosetting 

polyurethane SMP are presented in this section.  Representative results from the 

experiments are shown; however, where applicable, the discussion and/or tables provide 

more information on the repeatability and variation in the resulting data for each type of 

experiment that was performed in duplicate or triplicate. 
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II.B.1. Thermal and Mechanical Characterization  

 The first results presented in this section are from the experiments that were 

performed to obtain the basic material properties, including the glass transition 

temperature, the rubbery and glassy tensile modulus, and the coefficients of thermal 

expansion. 

 

II.B.1.1. Differential Scanning Calorimetry 

The DSC experiments were performed such that each sample was subjected to 

two heat/cool cycles from -50°C to 150°C.  The average glass transition temperature 

during the first heating cycle was 61.6°C with a standard deviation of 2.2°C (7.3% of the 

average).  During the second heating cycle, the average glass transition temperature was 

67.1°C with a standard deviation of 0.7°C (1.2% of the average).  A result from the 

second heating cycle of a DSC experiment is presented in Figure 6, in which the glass 

transition temperature is measured as the inflection point of the change in the heat 

capacity as the material transforms from the glassy to the rubbery phase.   

Upon increasing the temperature rate from 1°C/min to 5°C/min, the glass 

transition temperature was observed to increase from 66.0°C at 70.8°C.  These results 

indicate a trend that indicates agreement with the Tg of 75.7°C measured by Wilson et al. 

when a temperature rate of 20°C/min. was used [68]. 
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Figure 6 – Differential scanning calorimetry result on the polyurethane shape 

memory polymer when heated from -50°C to 150°C at 1°C/min.  The glass 

transition is calculated, from the inflection point in the data shift, to be 

approximately 67°C.   

 

 

II.B.1.2. Dynamic Mechanical Analysis 

 A result from a DMA experiment is shown in Figure 7, in which the specimen 

was heated from 0°C to 120°C at a heating rate of 1°C/min.  Three samples were tested 

from each batch of polymer that was fabricated.  The average glass transition 

temperature, as measured by the peak of the tan δ curve, was 84.5°C with a standard 

deviation of 1.6°C (1.9% of the average).  The rubbery plateau modulus, measured at 

100°C, was 20.6 MPa with a standard deviation of 0.33 (1.6% of the average).  In 

addition, the glassy plateau modulus, measured at 25°C, was 2454 MPa with a standard 

deviation of 139 MPa (5.7% of the average).   



 

38 

 

 

Figure 7 – Dynamic mechanical analysis result on the polyurethane shape memory 

polymer when heated from 0°C to 120°C at 1°C/min.  Presented is the storage 

modulus (black data points) and the tan δ (blue data points).  The glassy and 

rubbery storage moduli are calculated as approximately 2500MPa and 21MPa, 

respectively. 

 

II.B.1.3. Thermomechanical Analysis 

The TMA experiments were conducted, on one specimen from each batch of 

polymer that was fabricated, to measure the coefficients of thermal expansion (CTEs) in 

the glassy and the rubbery phases.  Figure 8 presents a representative result, in which the 

sample was heated from 0°C to 120°C at a heating rate of 1°C/min. The average glassy 

CTE, calculated from the linear displacement vs. temperature data from 20°C to 50°C, 

was 7.9E-5 (mm/mm)/ °C with a standard deviation of 5.1E-5 (mm/mm)/ °C (6.5% of 

the average).  Similarly, the average rubbery CTE, calculated from the linear 

displacement vs. temperature region from 85°C to 105°C, was 2.1E-4 (mm/mm)/°C with 

a standard deviation of 2.9E-4 (mm/mm)/ °C (1.4% of the average).  
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Figure 8 – Thermomechanical analysis result on the polyurethane shape memory 

polymer when heated from 0°C to 120°C at 1°C/min.  The glassy and rubbery 

coefficients of thermal expansion are calculated from the linear regions to be 

approximately 7.9E-5/°C and 2.1E-4/°C, respectively. 

 

 

II.B.1.4. Tensile Testing 

 The results from the isothermal tensile testing at 90°C are presented in Figure 9.  

The elongation to failure ranged from 0.37mm/mm to 0.59mm/mm with an average of 

0.48mm/mm.  The corresponding stresses at failure ranged from 6.4 MPa to 12.6 MPa 

with an average of 9.9 MPa.  It is observed that the rubbery phase stress-strain response 

of all specimens is approximately linear during deformation to failure.  In addition, there 

was no distinguishable improvement in the failure strains of the polished specimens as 

compared to the unpolished specimens.   
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Figure 9 – Elongation-to-failure results for six polyurethane samples.  The 

maximum extension ranged from 0.37mm/mm to 0.59m/mm with an average of 

0.48mm/mm.   

 

II.B.2. Shape Memory Characterization  

 This section presents the results for the free recovery and constrained 

displacement recovery experiments that were tested at extensions of 10%, 15%, 20%, 

and 25%. A single, complete result for each of the test cases is presented first, in figures 

3 and 4.  The data corresponding to the individual segments of the tests, including the 

samples tested for repeatability, are then presented in greater detail in Sections 2.1 - 2.3.  

Note that Sections 2.1 and 2.2 present the data for segments that are common to all tests 

performed (loading at high temperature, constrained cooling, and unloading at low 

temperature).  Section 2.3 presents the data for the two different types of recovery steps 

– free (zero load) recovery (Section 2.3.1) and constrained displacement recovery 

(Section 2.3.2).  
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To begin, consider the results presented in Figure 10 and Figure 11, where the 

temperature, extension, and stress are plotted with respect to time and the key steps of 

the thermomechanical load path are labeled as ‘A’, ‘B’, ‘C’, and ‘D’.  The reference 

temperature for each test was 90°C, at which the temperature was held constant for 25 

minutes to allow the system to reach thermal equilibrium.  During this dwell period, 

each specimen was allowed to hang freely from the top grip at zero load.  At the end of 

the dwell period, denoted by point ‘A’, the load and extension readings were zeroed and 

the bottom of the specimens was gripped using the handheld pneumatic controls.  The 

gripping procedure often resulted in a small, compressive force, and thus a non-zero 

extension at the beginning of loading on the specimen.  The specimens were then 

stretched to a predetermined value of extension, specifically 10%, 15%, 20%, or 25%.  

After loading the extension was constrained and the temperature was lowered to 25°C. A 

stress increase was measured during this constrained cooling step from ‘A’ to ‘B’.  The 

temperature was then held at 25°C for 25 minutes to allow the system to reach thermal 

equilibrium, which coincides with the plateau in the stress profile.  The additional 

increase in stress from ‘B’ to ‘C’ after cooling is complete is likely due to continued 

cooling of the grips and extension rods, which results in additional elastic stress imposed 

on the SMP [68].  The load is then removed at time ‘C’ and the recovery step is initiated. 
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 (a)            (b) 

 

 

 (c)            (d) 

Figure 10 - (a) 10%, (b) 15%, (c) 20%, and (d) 25% free recovery experiments 

performed with a temperature rate of 1°C/min.  Two shape memory cycles per test 

were performed, and the data for both cycles is presented with respect to time. 
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 (a) (b) 

 

 

 (c)            (d) 

Figure 11 - (a) 10%, (b) 15%, (c) 20%, and (d) 25% constrained displacement 

recovery experiments performed with a temperature rate of 1°C/min.  Two shape 

memory cycles per test were performed, and the data for both cycles is presented 

with respect to time. 
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At the beginning of the recovery heating in the free recovery experiments (cf. 

Figure 10), the bottom grip was released using the handheld pneumatic controls.  By 

releasing the grip, zero load was maintained on the specimen, neglecting gravity.  The 

temperature was then raised to 90°C, and the extension (shape) recovery was measured 

using the laser extensometer from ‘C’ to ‘D’.  After a 25 minute dwell period at 90°C, 

the bottom of the specimen was re-gripped, and the thermomechanical cycle was 

repeated. 

In the constrained recovery experiments (cf. Figure 11), the bottom grip was 

released at the beginning of the recovery step, denoted by time ‘C’.  Releasing the 

bottom grip ensured zero load during the beginning of the recovery heating; otherwise, 

the thermal expansion of the SMP combined with the thermal expansion of the grips and 

extension rods could have created a significant compressive stress and the potential for 

thermal buckling in the SMP [69, 72].  At 60°C, before shape recovery would initiate, 

the bottom of the specimen was re-gripped.  This gripping procedure resulted in a small, 

compressive force on the SMP.  To offset this force, the crosshead was moved slightly 

up using the handheld control of the MTS
®
 test frame.  The crosshead was then held 

constant and a tensile stress increase was measured as the SMP attempted to return to its 

original shape.  During the heating from 60°C to 90°C after re-gripping, the thermal 

expansion of the grips and extension rods imposed an elastic deformation on the 

specimen.  At the end of the recovery heating (time ‘D’), the system was allowed to 

dwell at 90°C for 25 minutes and then the thermomechanical cycle was repeated. 
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II.B.2.1. Loading at 90°C (T>Tg) and Unloading at 25°C (T<Tg) 

The stress-extension behavior during loading at 90°C and unloading at 25°C (cf. 

steps ‘A’ and ‘C’ in Figure 10 and Figure 11, respectively) for sample 10%, 15%, 20%, 

and 25% extension experiments is presented in Figure 12(a) and (b), respectively, with 

the beginning (loading) and end (unloading) points offset to zero for comparison.  It is 

observed that the stress-extension relationship is approximately linear during loading, 

even to extensions of 25%, and the behavior is consistent between specimens.  The data 

for the loading and unloading modulus for both cycles of all test cases is presented in 

Table 2.  Specifically, the average modulus value, calculated using a linear fit to the 

unloading data and initial loading data, and the range (maximum - minimum) of all three 

specimens tested at each test condition is presented.  It is observed that the modulus 

during loading at 90°C, calculated up to an extension of 5%, is approximately 20 MPa in 

both the first and second cycles for all tests performed, and the unloading modulus at 

25°C is approximately 1700 MPa.  Further, there is a negligible change in the modulus 

values from the first cycle to the second cycle for the tests performed. 
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 (a) (b) 

Figure 12 - Stress-extension results during (a) loading at 90°C and (b) unloading at 

25°C for 10%, 15%, 20%, and 25% extension experiments. 

 

 

 

 (a) (b) 

Figure 13- (a) Stress-temperature and (b) extension-temperature results during 

constrained cooling from 90°C to 25°C for 10%, 15%, 20%, and 25% extension 

experiments. 
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Table 2 - Tensile modulus during loading at 90°C and unloading at 25°C.  (Note: FR: free recovery, CR: constrained 

recovery). 

 

 

Loading at 90°C Unloading at 25°C 

Cycle 1 Cycle 2 Cycle 1 Cycle 2 

Tensile 

Modulus 
Range

a
 

Tensile 

Modulus 
Range 

Tensile 

Modulus 
Range 

Tensile 

Modulus 
Range 

(MPa) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa) 

FR 10% 20.2 2.3 20.8 2.0 1794 312 1802 90 

FR 15% 19.7 2.6 20.3 2.3 1700 154 1734 141 

FR 20% 20.1 0.8 20.4 1.0 1567 182 1613 60 

FR 25% 18.8 1.1 19.6 1.7 1520 115 1497 266 

 FR Avg. 19.7 1.7 20.3 1.8 1645 191 1661 139 

 

CR 10% 20.8 1.4 21.6 1.5 1799 149 2113 563 

CR 15% 20.0 0.7 21.0 1.4 1814 359 1778 92 

CR 20% 20.8 1.2 19.5 1.5 1634 283 1658 413 

CR 25% 20.6 0.3 21.1 2.8 1555 350 1614 334 

 CR Avg. 20.6 0.9 20.8 1.8 1701 285 1791 351 
a
Range is the maximum value minus the minimum value of the three specimens tested in each case. 
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II.B.2.2. Constrained Cooling from 90°C to 25°C 

The stress-temperature and extension-temperature relationship during 

constrained cooling (cf. step ‘A’ to ‘B’ in Figure 10 and Figure 11) is presented in 

Figure 13(a) and (b), respectively, for sample 10%, 15%, 20%, and 25% extension 

experiments.  During this portion of the thermomechanical path, the laser extensometer 

measurements are used as feedback to the MTS
®
 Testworks

®
 PID control to offset the 

extension imposed by the thermal contraction of the grips and extension rods.  Due to 

the resolution of the laser extensometer, which is 0.001 in. or 0.3% of the specimen gage 

length, the system is unable to completely offset the thermal contraction of the grips and 

rods without causing significant oscillations in the stress of the material.  Therefore, the 

PID parameters were adjusted such that the SMP experienced a relatively smooth stress 

increase while minimizing the extension increase during the constrained cooling.  As 

presented in Table 3, the SMP specimens experienced a resulting increase in the 

extension of 1-1.5%, which was a combination of thermal contraction of the SMP and 

elastic deformation on the SMP due to the thermal contraction of the grips and rods.  The 

stress increase during the cooling step was approximately 15 MPa.  Further, no 

significant differences were observed in the material response from the first cycle to the 

second cycle. 
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Table 3 - Stress and extension increases (stress increase and extension increase are the stress and extension values, 

respectively, measured at the end of cooling (25°C) minus the stress and extension values measured at the beginning of 

cooling (90°C)) during constrained cooling from 90°C to 25°C.  (Note: FR: free recovery, CR: constrained recovery). 

 Cycle 1 Cycle 2 

Stress 

Increase 
Range

a
 

Extension 

Increase 
Range 

Stress 

Increase 
Range 

Extension 

Increase 
Range 

(MPa) (MPa) (%) (%) (MPa) (MPa) (%) (%) 

FR 10% 16.0 0.8 1.4 0.1 15.8 0.2 1.3 0.7 

FR 15% 14.1 0.1 0.8 0.7 14.3 1.0 1.7 0.4 

FR 20% 14.5 0.9 1.8 0.6 14.2 1.3 1.5 0.6 

FR 25% 13.7 0.5 1.8 0.6 14.3 0.3 1.5 0.9 

FR Avg. 14.6 0.6 1.5 0.5 14.7 0.7 1.5 0.6 

 

CR 10% 15.7 0.5 1.3 0.5 15.7 1.3 0.8 0.5 

CR 15% 15.1 0.8 1.3 0.1 14.3 1.3 0.6 0.9 

CR 20% 15.2 2.6 1.8 0.5 14.2 1.4 0.7 0.7 

CR 25% 15.1 1.1 2.1 0.7 14.0 1.5 1.4 1.8 

CR Avg. 15.3 1.3 1.6 0.5 14.6 1.4 0.9 1.0 
a
Range is the maximum value minus the minimum value of the three specimens tested in each case. 

 



 

50 

 

II.B.2.3. Recovery during Heating from 90°C to 25°C 

The following sections present the recovery data for the free recovery (2.3.1) and 

constrained displacement recovery (2.3.2).  This step of the load path starts at time ‘D’ 

in Figure 10 and Figure 11 and ends when the original temperature of 90°C is achieved. 

 

II.B.2.3.1. Free Recovery 

The extension recovery during heating at zero load for each of the four extension values 

is presented in Figure 14.  Figure 14(a) presents the extension recovery as a function of 

temperature, and Figure 14(b) presents the extension recovery normalized by the 

extension at the start of the heating.  It is observed that the recovery occurs at the same 

temperature, regardless of the value of applied extension, with the midpoint of recovery 

occurring at approximately 75°C.  Further, Table 4 presents the average values for the 

extension at the start (25°C) and the end (90°C) of the heating procedure.  In the first 

cycle, the 10% extension tests had a small irrecoverable deformation (0.4%) but the 

15%, 20%, and 25% tests recovered 100% of the applied deformation as the final 

extension at 90°C was within the error range (+/- 0.3%) of the resolution of the laser 

extensometer.  In the second cycle, the specimens recovered 100% of the applied 

deformation for all values of applied extension.    
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II.B.2.3.2. Constrained Displacement Recovery 

The results for the stress-temperature and extension-temperature behavior during 

the constrained displacement recovery are presented in Figure 15.  In this heating step, 

the load is first maintained at zero by allowing the specimen to hang freely from the top 

grip.  At approximately 60°C, the bottom of the specimen is re-gripped, the crosshead is 

adjusted to satisfy zero load conditions, and then the crosshead is held constant until the 

temperature reaches 90°C.  In Figure 15(a), the increase in stress is observed to initiate at 

approximately 65°C, with recovery complete by approximately 75°C. In addition, the 

extension-temperature results in Figure 15(b) indicate the bottom of the SMP was re-

gripped before the onset of shape recovery, and then the thermal expansion of the grips 

and extension rods imposes an elastic deformation on the SMP from 60°C to 90°C.   

Table 5 presents the values for the stress recovery and the resulting decrease in 

the extension after re-gripping the bottom of the specimen that is caused by the thermal 

expansion of the extension rods and grips.  The value of the stress at the end of recovery 

ranges approximately linearly from 1.5 MPa at 10% extension to 4.2 MPa at 25% 

extension, and the stress recovery is observed to be repeatable between the first and 

second cycles.  
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 (a) (b) 

Figure 14 - (a) Extension-temperature and (b) normalized extension-temperature 

results during the first cycle recovery heating at zero load from 25°C to 90°C for 

10%, 15%, 20%, and 25% extension experiments. 

 

 

 

 

 (a) (b) 

Figure 15- (a) Stress-temperature and (b) extension-temperature results during the 

first cycle constrained displacement recovery heating from 25°C to 90°C for 10%, 

15%, 20%, and 25% extension experiments.  The specimen is allowed to hang 

freely from the top grip until 60°C, at which temperature the bottom is re-gripped 

and the crosshead is manually adjusted to offset the compressive stress, denoted by 

the points near the asterisk * in (a), caused by the gripping procedure. 

* 
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Table 4 - Extension recovery at zero load. 

 Cycle 1 Cycle 2 

Extension 

at 25°C 
Range

a
 

Extension 

at 90°C 
Range 

Extension 

at 25°C 
Range 

Extension 

at 90°C 
Range 

(%) (%) (%) (%) (%) (%) (%) (%) 

10% 10.2 0.5 0.4 0.3 10.2 0.4 0.1 0.1 

15% 15.5 0.6 -0.2 0.8 15.3 0.4 0.1 0.8 

20% 20.2 0.9 -0.1 0.6 25.0 0.2 0.0 0.8 

25% 25.0 0.2 0.0 0.8 24.9 0.1 0.3 0.2 
a
Range is the maximum value minus the minimum value of the three specimens tested in each case. 

 

Table 5 – Stress recovery at constant crosshead displacement. 

 Cycle 1 Cycle 2 

Stress at End 

of Recovery 
Range

a
 

Extension 

Decrease after  

Re-gripping 

Range 

Stress at 

End of 

Recovery 

Range 

Extension 

Decrease after  

Re-Gripping 

Range 

(MPa) (MPa) (%) (%) (MPa) (MPa) (%) (%) 

10% 1.5 0.5 -1.8 0.5 1.4 0.2 -1.8 0.5 

15% 2.4 0.1 -1.7 1.0 2.4 0.3 -1.8 0.9 

20% 3.3 0.0 -1.6 0.9 3.4 0.1 -1.8 0.7 

25% 4.2 0.1 -1.8 1.2 4.1 0.5 -1.7 0.8 
a
Range is the maximum value minus the minimum value of the three specimens tested in each case. 
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II.C. Summary and Conclusions 

 An experimental investigation of a polyurethane shape memory polymer was 

conducted.  The SMP was a thermosetting shape memory polymer first proposed by 

Wilson et al. [69] that is being considered for use in biomedical applications and was 

previously untested in terms of shape memory properties.  As such, the material was 

fabricated in a custom mold that resulted in sheets of SMP.  Thermal and/or mechanical 

experiments were conducted, including differential scanning calorimetry, dynamic 

mechanical analysis, thermomechanical analysis, and tensile tests.  These tests were 

performed to obtain the material properties, including the glass transition temperature, 

rubbery and glassy moduli, coefficients of thermal expansion, and the strain to failure in 

the rubbery phase.   

 In addition, shape memory tests were performed on dogbone specimens, which 

were cut from the sheet of SMP according to ASTM D638 standards [68].  In these 

experiments, the material was loaded in the rubbery phase, cooled under constraint to the 

glassy phase, unloaded to zero stress, and then heated for recovery.  Two recovery 

conditions were tested – free (zero load) recovery and constrained displacement 

recovery.  During the free recovery heating, zero load (neglecting gravity) was 

maintained by ungripping the bottom of the specimen and allowing the specimen to hang 

freely from the top grip.  During the constrained displacement recovery heating, out-of-

plane deformation was observed in the specimen due to the thermal load.  Consequently, 

the constrained displacement recovery load path was modified to hold the material at 

zero load (bottom grip released) until before the sample was expected to recover.  Both 
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recovery conditions were tested for applied extensions of 10%, 15%, 20%, and 25%.  A 

laser extensometer was used for measuring the displacement of the specimen.  This non-

contact technique enabled two key features of the shape memory load path: (i) capturing 

the strains imposed on the specimen during the constrained cooling due to the thermal 

contraction of the grips and extension rods, and (ii) capturing the strain of the material 

during zero load recovery, in which the bottom of the specimen is ungripped. 

 In analyzing the experimental results, it was observed that the tensile modulus of 

the glassy phase was approximately two orders of magnitude higher than that of the 

rubbery phase.  On the other hand, the coefficient of thermal expansion of the rubbery 

phase was an order of magnitude larger than that of the glassy phase.  It was observed 

that the specimen was able to withstand up to 55% extension in isothermal strain-to-

failure tensile tests.  However, the specimen was limited to 25% extension in shape 

memory experiments as the material was observed to often fail shortly after the initial 

loading was complete and the constrained cooling began.  Thus, this difference in 

maximum extensions may be a result of the holding procedure, which provides more 

time for defects in the SMP to propagate.   

In the shape memory experiments, the stress-extension response during loading 

remains approximately linear at 90°C for all values of extension up to 25%.  The tensile 

modulus was calculated to be approximately 20 MPa at 90°C and 1700 MPa at 25°C.  

During the constrained cooling step, the PID system in the MTS
®
 Testworks

®
 software 

was able to limit the extension imposed on the SMP by the thermal contraction of the 

grips and extension rods to approximately 1.5%.  In the free recovery experiments, it 
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was observed that the specimens tested to 10% extension recovered nearly all of the 

deformation in the first cycle and then 100% of the applied deformation in the second 

cycle.  For the 15%, 20%, and 25% extensions, 100% recovery was observed in both 

cycles.  In addition, the shape recovery occurred at the same temperatures, regardless of 

the value of applied deformation.  In the constrained recovery experiments, it was 

observed that the value of the stress at the end of recovery, ranging from 1.5 MPa at 10% 

extension to 4.2 MPa at 25% extension, was approximately linear with respect to the 

value of the applied extension. 
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CHAPTER III  

ONE-DIMENSIONAL MODELING OF THE FREE AND CONSTRAINED 

DISPLACEMENT RECOVERY IN SHAPE MEMORY POLYMERS* 

 

An introduction to the shape memory effect and a survey of experimental and 

modeling efforts in the literature was presented in Chapter I.  Chapter II expanded on the 

experimental efforts to characterize a polyurethane shape memory polymer that is being 

considered for biomedical applications.  In this experimental investigation, uniaxial 

experiments were performed to evaluate the free and constrained displacement recovery 

behavior for increasing values of applied extension.  This chapter utilizes the 

experimental data in Chapter II to calibrate a constitutive model that is reduced to and 

implemented in 1-D.  The calibrated model is used to predict the response of the SMP 

for the other experimental cases.     

 

 

 

 

____________ 

*Part of this chapter is reprinted with permission from “Analysis of the Finite 

Deformation Response of Shape Memory Polymers: II. 1D Calibration and Numerical 

Implementation of a Finite Deformation, Thermoelastic Model” by Volk, B.L., 

Lagoudas, D.C., and Chen, Y.-C.., 2010. Smart Materials and Structures. 19, 075006, 

DOI: 10.1088/0964-1726/19/7/075006, Copyright 2010 by IOP Publishing Limited. 

and from “Characterizing and Modeling the Free Recovery and Constrained 

Recovery of a Polyurethane Shape Memory Polymer” by Volk, B.L., Lagoudas, D.C., 

and Maitland, D.J., 2011. Smart Materials and Structures. 20, 094004, DOI: 

10.1088/0964-1726/20/9/094004, Copyright 2011 by IOP Publishing Limited.  
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III.A.  Kinematics 

In agreement with the type of shape memory polymer that was experimentally 

characterized and is being considered for biomedical devices, this work focuses on 

modeling the shape memory polymer response in a finite deformation framework for 

thermosetting SMPs that are actuated about the glass transition temperature.  Thus, the 

modeling efforts assume the SMP is a rubbery material at high temperatures, a glassy 

material at low temperatures, and that the shape memory effect (i.e. strain storage and 

release) is enabled by a phase transition between the two phases during heating or 

cooling.  Due to the fact that the modulus of the rubbery phase is much lower than the 

glassy phase (cf. Figure 7) and can thus undergo larger deformations, the stress-free 

rubbery phase is assumed to be the reference configuration.   

Further, it is assumed that deformations imposed while the material is in the 

rubbery phase are stored in the glassy phase upon constrained cooling.  As a result of the 

deformation storing process during constrained cooling, an evolving, intermediate 

natural configuration is generated.  The intermediate natural configuration attains its 

final configuration once the SMP has been completely transformed (i.e. cooled) to the 

glassy phase.  This final natural configuration can be realized by completing the 

constrained cooling and removing the applied loads.  This configuration is termed the 

temporary shape, in which it is assumed the SMP can remain indefinitely until heat is 

applied.  Upon subsequent heating from the glassy phase to the rubbery phase, the 

natural configuration evolves from the temporary shape to the reference configuration of 

the rubbery phase.  A kinematic schematic of this behavior is presented in Figure 16. 
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 To model this behavior, this work uses the kinematic relationship proposed by 

Chen and Lagoudas [118], which is developed on the basis of nonlinear thermoelasticity 

and thus assumes the deformation gradient is a function of the first Piola-Kirchhoff  

 

Figure 16 – Kinematic schematic of the shape memory polymer behavior.  The 

reference configuration is assumed to be the stress-free in the rubbery phase 

(‘permanent shape).  An intermediate natural configuration evolves during cooling 

(to the ‘temporary shape’) and is recovered upon subsequent heating. 

 

stress P  and absolute temperature  .  The approach adopted in the kinematics is to first 

consider a collection of individual material points that begin in the rubbery phase and 

transform (i.e. nucleate) at a discrete temperature to the glassy phase.  Through 

consideration of the response of individual particles that are in the glassy and rubbery 

phases, a volume averaging technique is then employed to obtain the constitutive 
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response temperature in which both particles are present.  First, it is proposed that the 

deformation gradient     , , ,r
e t tF P X X  describes the elastic response of a material 

point X that has a rubbery phase stress-free configuration and is subsequently 

undergoing deformation in the rubbery phase.  Similarly, a deformation gradient 

    , , ,g
e t tF P X X  is proposed to describe the elastic response of a material point that 

has a natural configuration in the glassy state and is subsequently undergoing 

deformation in the glassy phase.   

Considering the assumption that all material points have a reference 

configuration in the rubbery phase, a deformation gradient natF
 
is introduced to describe 

the transformation from the reference rubbery phase to the natural configuration of the 

glassy phase.  Thus, the total deformation gradient for a material point that has a rubbery 

reference configuration and is currently in the glassy phase is obtained through the 

multiplicative decomposition     , , ,g
e natt tF F P X X F .  The deformation gradient 

that describes the transformation from the rubbery phase to the glassy phase is obtained 

through assuming the deformation gradient of the material is continuous as it transforms 

from the rubbery phase to the glassy phase at time  , as shown in Equation (1).  The 

resulting expression for natF  is obtained by rearranging Equation (1) to Equation (2).  

          , , , , , ,r g
e e nat     F P X X F P X X F   (1)

          
1

, , , , , ,g r
nat e e     



 F F P X X F P X X   (2) 
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A summary of the deformation gradients for individual material particles and 

their respective reference and current phases is presented in Table 6.  A visual 

description of the deformation gradients and the enforcement of continuity at the 

transition temperature can be seen in [113] (cf. Figure 1).   

Table 6 – Deformation gradients for material points with different reference and 

current configurations. 

Reference 

configuration 

Current 

configuration 
Deformation gradient 

Rubbery Rubbery     , , ,r
e t tF P X X  

Glassy Glassy     , , ,g
e t tF P X X  

Rubbery Glassy     , , ,g
e natt tF P X X F  

 

It is then assumed that the SMP smoothly transitions from the rubbery phase to 

the glassy phase over a range of temperatures, during which the stress is allowed to 

change due to elastic and thermal (expansion, contraction) effects.  This smooth 

transition is assumed to be due to the collection material points that are transforming at 

different temperatures.  As such, a representative volume element is introduced and the 

volume average deformation gradient is calculated through Equation (3).  In calculating 

this equation, it is assumed that the stress and temperature are spatially constant 

throughout the body.  In other words, it is assumed that the stress and temperature are 

only functions of time.       
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where   represents the body, r  and g  represent the rubbery and glassy regions, 

respectively, and V is the volume of the body.  Note that, consistent with the assumption 

of being spatially constant, P  and   now depend solely on the time t.  However, P  and 

  in the deformation gradient natF  depend instead on the time  , which remains a 

function of position X,  at which the particle was last cooled through the glass transition 

temperature.   

A glassy volume fraction   
 
is introduced in Equation (4) to represent the 

fraction of material that has transformed from the rubbery phase to the glassy phase.  

Consistent with experimental results [113], this volume fraction is assumed to be a 

function of temperature only and does not depend on the value of applied stress or strain.  

  
1

g

dV
V

 



    (4) 

After substituting the expression for the glassy volume fraction into Equation (3) 

and performing a change of variables on the glassy region integral [70, 72], the resulting 

kinematic relationship is presented in Equation (5). 
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where the dependence of F , P  and   on time t has been suppressed for simplicity.  

Note that, for the remainder of this work, the average deformation gradient is taken to be 

equivalent to the deformation gradient of the shape memory polymer F .  Thus, F  (and 

quantities derived from F ) will not be shown with the overbar. 

 

III.A.1.  Constraint on the Rubbery and Glassy Rotations 

In performing the volume average of the deformation gradient, the stress and 

temperature were assumed to be spatially uniform.  An additional consequence of this 

assumption, as well as objectivity, is that the rotations of the rubbery and the glassy 

phases must be arbitrary.  That is, when decomposing the deformation gradients into 

their rotational and stretch components, the rotations should not affect the constitutive 

response of the material as to maintain the spatially uniform stress state. 

 As a result, a kinematic assumption is made about the rotations of the material.  

First, the polar decompositions of the average deformation gradient as well as the elastic 

deformation gradients in the rubbery and glassy phases are considered in Equation (6).  

Consistent with the assumption of spatially uniform stress and without loss of generality, 

the rotations in the polar decompositions are then assumed, in Equation (7), to be 

spatially constant within the SMP.  That is, the average rotation is assumed to be equal 

to the rotations in each the rubbery and the glassy phases. 
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 Substituting the polar decompositions of Equation (6) into the kinematics 

presented in Equation (5)  results in Equation (8).   
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where the deformation gradient natF  was reduced in Equation (5) to natU  by substituting 

Equations (6) and (7) into Equation (2), as shown in Equation (9).   
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III.B.  Constitutive Equations 

 In addition to the kinematics derived in Section A, constitutive equations must be 

prescribed to model the stress-strain behavior of the shape memory polymer.  In 

Equation (5), the average deformation gradient is expressed as a function of the rubbery 

and glassy phase deformation gradients, which are functions of the current stress and 

temperature.  This section presents the derivations for the constitutive equations for the 

rubbery and glassy phases.  The stress for the entire SMP, as a mixture of the two 
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phases, is provided through the assumption that the stress is spatially constant; thus, it is 

assumed that the stress in the rubbery phase is equal to that of the glassy phase.   

 The constitutive equations in this work follow the previous works by Chen and 

Lagoudas [113] and Volk et al. [113, 114], in which the rubbery and glassy phases are 

modeled as incompressible neo-Hookean materials and the material response is assumed 

to be isotropic.  The Helmholtz free energy for the incompressible neo-Hookean material 

is given through Equation (10),  

  ( ) 3
2

I


  CC   (10) 

where C  is the right Cauchy-Green deformation tensor  TC F F  [69, 70, 115],  is 

the shear modulus, and tr( )I C C is the first invariant of C .  For incompressible 

materials that are functions of C , the second Piola-Kirchhoff stress S  is derived 

through Equation (11) [120, 121]. 

 
 1 2p  

  


C
S C

C
  (11) 

where p is the hydrostatic pressure necessary to maintain incompressibility.  The 

derivative of the Helmholtz free energy with respect to C is calculated to be  

 
 

2 2

I  
 

 

CC
I

C C
  (12) 

where I  is the second order identity tensor.  Substituting Equation (12) into Equation 

(11), the second Piola-Kirchhoff stress is given by Equation  (13).  The first Piola-
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Kirchhoff stress P  is then calculated through a transformation of the second Piola-

Kirchhoff stress and is given by Equation (14). 

 1p   S C I   (13) 

 Tp    P FS F F   (14) 

While the phases are assumed to be incompressible due to isothermal 

deformations, the ability for the material to thermally contract and expand is accounted 

for through the introduction of a volume ratio   det   F  that is a function of only the 

temperature.  This quantity represents the ratio of the volume at the current temperature 

  to that at the reference temperature 0 .   

Thus, in assuming incompressible neo-Hookean elastic response for each the 

rubbery and the glassy phases, the constitutive equations for the individual phases are 

obtained and presented in Equation (15). 
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III.C.  Reduction to 1D  

The previous sections have established the kinematic and constitutive equations 

that are the focus of this chapter.  In this section, these equations are reduced to 1D to 

facilitate implementation in a computational code such that the material response in 1D 

can be quickly predicted. 
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III.C.1.  Constitutive Equations 

Beginning with the constitutive equations presented in Equation (15) and 

following previous efforts [121], the polar and spectral decompositions are employed in 

reducing the general 3D equation into 1D.  To begin, consider the polar decomposition 

in Equation (16) of the constitutive equation and the associated kinematic quantities in 

Equation (14). 

 




P QT

F RU
  (16) 

where Q and R  are the proper orthogonal tensors related to the rotation component of 

the deformation.  Similarly, T and U  are the symmetric tensors related to the stretching 

component of the deformation.  By substituting the polar decompositions and assuming 

the  Q R I [108, 115], Equation (14) reduces to Equation (17).   

  T ,      detp      T U U U   (17) 

After employing the polar decomposition, the spectral decomposition is used to 

relate the eigenvalues of the stress to the eigenvalues of the stretches.  Thus, the spectral 

decomposition of the stresses and stretches are presented in Equation (18), where is and 

i  are the principal stresses and stretches, respectively.  The stretch of the material is 

defined as the ratio of the current dimension compared to the initial dimension.  In other 

words, the stretch assumes a value of 1 when the material is undeformed, a value greater 

than 1 during extension, and a value less than 1 during compression.   
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Substituting Equation (18) into Equation (17), the stresses and volume ratios in 

terms of the principal stretches of the rubbery and glassy phases are presented in 

Equation (19).  Note that no ‘r’ or ‘g’ superscript is present on stress components in the 

constitutive equations, indicating the assumption of constant stress throughout the body 

 r gs s s  has already been enforced. 
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     1,2,3i    (19) 

 

III.C.1.1. Uniaxial Deformations  

For uniaxial deformations in which the applied stress state is 1 ( )s s t
 
while 

2 3 0s s  , the pressure terms in Equation (19) can be eliminated through a system of 

algebraic equations.   The resulting relationship between the principal stretches is given 

through Equation (20), where   is defined as the stretch is the direction of the applied 

stress.   

  
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2 3

 

 
 





 
  (20) 
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In relating the axial stretch to the experimental data presented in Chapter II, the 

axial stretch is defined through Equation (21), where L is the length of the SMP, 0L is 

the initial length of the SMP, and L is the change in the SMP length in the axial 

direction.  The quantity  0/L L  is defined as the extension, which is the quantity that 

is experimentally measured and presented in the resulting data. 
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 
  (21) 

After eliminating the pressure terms in Equation (19), the resulting constitutive 

equations relating the applied stress and the stretch in the principal direction are given by 

Equation (22). 
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III.C.2.  Kinematics 

After performing the polar decomposition of the average deformation gradient in 

Equation (5) and eliminating the rotational components from the deformation gradients, 

the average deformation gradient F  is reduced to an expression for the average stretch 

U  as shown in Equation (8).  Through the spectral decomposition of Equation (18), the 

stretch tensor is further reduced to a diagonal matrix with components equal to the 

principal stretches in Equation (20).  Considering only the stretch in the direction of the 
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applied stress, Equation (23) presents the principal stretch  in terms of 
r  and 

g  – 

the rubbery and glassy principal stretches in the direction of the applied stress, 

respectively, which are quantified through the constitutive equations in Equation (22).  

Note that the axial glassy stretch as a function of the current stress and temperature has 

been moved outside the integral to isolate only the terms that depend on   inside the 

integral. 
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III.D.  Calibration of Material Properties 

The rubbery and glassy phase constitutive equations and the kinematic equation 

presented in Equations (22) and (23), respectively, result in a total of five parameters 

that must be calibrated to solve the system of equations for the state of the material.  

These parameters are the shear moduli in the rubbery and glassy phases ( r  and g , 

respectively), the volume ratios in the rubbery and glassy phases (  r   and  g  , 

respectively), and the glassy volume fraction     as a function of temperature.  In 

considering the experiments performed in Chapter II, it is determined that all of the five 

calibration functions can be calculated from the data when functional forms are assumed 

for the volume ratios and glassy volume fraction.  In particular, the five calibration 

parameters can be calculated from a single experimental result. As the elastic modulus is 

commonly defined at smaller values of extension and because the mechanism for shape 
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recovery is observed to be independent of applied extension (cf. Figure 14(b)), the 

material properties for the model are calibrated from the 10% free recovery experiment 

presented in Figure 10(a).   

 

III.D.1.  Shear Moduli 

Considering first the shear moduli in the rubbery and glassy phases, it is 

observed that these parameters can be calculated from the isothermal loading and 

unloading data in the thermomechanical load path.  In this work, the shear moduli of the 

individual phases are assumed to be temperature independent. The effective material 

properties, however, of the composite are temperature dependent due to the mixture of 

the rubbery and glassy phases.  Specifically, assuming each phase is isotropic, the shear 

moduli for the rubbery and glassy phases are calculated from Equation (24). 
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where 
r and 

g are the Poisson’s ratios for the rubbery and glassy phases, respectively, 

and rE  and gE are the Young’s moduli for the rubbery and glassy phases, respectively.  

The Young’s modulus for the rubbery phase and glassy phase is calculated from the 

loading segment at 90°C and the unloading segment at 25°C, respectively.  Figure 17(a) 

and (b) presents the respective stress-strain data for the loading and unloading steps.  

Consistent with the assumption of incompressible response in each phase, the values of 
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the Poisson’s ratios are assumed to be 0.5 for the rubbery and glassy phases
1
.  Thus, the 

shear moduli for the rubbery and glassy phases are calculated to be 1/3 of the value of 

the tensile moduli during the loading and unloading steps, respectively.  The rubbery and 

glassy shear moduli are thus calculated, from the 10% free recovery experiment to be 

7.03 MPa and 606 MPa, respectively. 

 

 

 (a)   (b) 

Figure 17 – Stress-extension data for (a) isothermal loading at 90°C and (b) 

isothermal unloading at 25°C.  Results shown are from a 10% extension free 

recovery experiment. 

 

  

                                                 

1
 In the next chapter, more general compressible neo-Hookean constitutive equations are derived for these 

two phases that provide a means for calibrating the material properties when the Poisson’s ratios are 
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III.D.2.  Volume Ratios 

The volume ratios for the rubbery and glassy phases are the ratio of the volume 

of the material at the current temperature compared to the volume of the material at the 

reference temperature.  In deriving the constitutive equations for the rubbery and glassy 

phases, it is assumed the material is incompressible when deformed at a constant 

temperature. When considering the material response due to a change in temperature, on 

the other hand, the volume ratio is proposed to be expressed as a function of the 

coefficients of thermal expansion as shown in Equation (25). 
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where 
r  and 

g  are the coefficients of thermal expansion calculated under zero stress 

in the rubbery and glassy phases, respectively, and   and 0  are the current and initial 

temperatures, respectively.  It is observed that, for no change in temperature, the volume 

ratio is equal to one and the assumption of incompressibility at a constant temperature is 

maintained. Furthermore, substituting Equation (25) into Equation (22) for a zero stress 

condition results in Equation (26). 
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where the stretch of the material in each phase is defined as a function of the coefficient 

of thermal expansion and the change in the temperature. Substituting Equation (26) into 
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Equation (21) results in the familiar equations for the thermal strain in a material, 

presented in Equation (27). 
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Through the introduction of Equation (25), the volume ratios are reduced to 

coefficients of thermal expansion 
r  and 

g  that must be calibrated.  From the 

experimental results, the coefficients of thermal expansion for the rubbery and glassy 

phases can be calculated from the extension–temperature curve during recovery heating, 

as shown in Figure 18.  In particular, the glassy and rubbery CTEs can be calculated 

from the linear extension-temperature response before recovery initiates and after 

recovery has completed, respectively.  However, due to the low coefficient of thermal 

expansion in the glassy phase and the limitations on the laser extensometer resolution in 

the experiments in Chapter II, the glassy phase coefficient of thermal expansion is 

manually adjusted
2
 in this work such to fit the stress simulation during cooling to the 

experimental data.  The resulting values of 
r  and

g , as calibrated from the 10% free 

recovery experiment, are 5.1E-4 (mm/mm)/ °C and 2.0E-5 (mm/mm)/°C, respectively. 

 

                                                 

2
 In the next chapter, the material properties for the more general compressible neo-Hookean constitutive 

equations are recalibrated using the more accurate values for the CTEs obtained from the TMA tests in 

Chapter II.  The current method, however, is maintained in this chapter to demonstrate the ability to 

calibrate all of the material properties from the data of a single experiment.   
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Figure 18 – Extension-temperature results for a 10% free recovery experiment.  

Indicated are the linear regions outside the transformation region that can be used 

to calculate the glassy and rubbery coefficients of thermal expansion.   

 

III.D.3.  Glassy Volume Fraction 

The experimental investigation in Chapter II lacks the capability to directly 

measure the glassy volume fraction during the experiment. As such, the glassy volume 

fraction is assumed to behave in a manner similar to that of the shape recovery profile 

upon heating at zero load. This assumption is supported by reducing Equation (23) and 

the neo-Hookean relationships for the free recovery condition of   0s t  . By reducing 

these equations and assuming the thermal stretch is negligible, it can be shown that 

   ~t   . Consequently, a hyperbolic tangent function is assumed for the glassy 

volume fraction of the polymer, and is optimized to fit the profile of the strain recovery 

profile used for calibration. The general form of the proposed function is given in 

Equation (28).  
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where min  and max  are the lower and upper temperature bounds, respectively, for 

which the hyperbolic tangent function is to be fit.  A and B are the respective shifting 

and scaling factors for adjusting the shape of the hyperbolic tangent function. The 

parameter A represents the inflection point of the hyperbolic tangent function, and 

represents a measure of the glass transition temperature Tg. For experiments in which the 

recovery is observed to be a function of the temperature rate [113], A can be assumed to 

be proportional to the temperature rate. In addition, the parameter B is inversely 

proportional to the rate of strain recovery when transforming from the glassy phase to 

the rubbery phase. B approaches zero in the limit of the phase transition occurring as a 

step function. The parameters A and B are adjusted to best match the strain recovery 

profile from which the model is being calibrated.  

In this work, the function for the glassy volume fraction is fit to the strain 

recovery profile for the free recovery experiment with an extension of 10%, which is 

shown in Figure 19(a).  The experimental data curve is first shifted to end at a value of 

zero and then normalized from 0 to 1.  Similarly, the denominator in Equation (28) is 

used to normalize the resulting hyperbolic tangent function from 0 to 1 to correspond to 

a material in a pure rubbery or pure glassy phase, respectively.  It is observed that a 

single hyperbolic tangent function of the form presented in Equation (28) is unable to 

precisely capture the initiation of the shape recovery, as presented in Figure 19(b).   
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 (a)   (b) 

Figure 19 – (a) 10% extension-temperature free recovery profile and (b) a 

piecewise hyperbolic tangent function fit to the normalized extension-temperature 

data.  A single hyperbolic tangent is unable to precisely capture the onset of shape 

recovery and is presented for comparison. 

 

As such, a piecewise function composed of two hyperbolic tangents is used in 

the current work, with one hyperbolic tangent dictating the curvature of the initiation of 

recovery and the second hyperbolic tangent dictating the rest of the recovery process.  

The switch temperature between the two functions is chosen to be the corner at the onset 

of shape recovery.  In addition, a multiplying factor C is introduced to scale the modify 

the upper limit of the second hyperbolic tangent.  A least squares method is used to fit 

the parameters for the two hyperbolic tangents while enforcing continuity of the glassy 

volume fraction and its derivative at the switch temperature.  The resulting, piecewise 

hyperbolic tangent is shown in Figure 19(b) as fit to the normalized extension recovery 

data. It should be noted that the model predictions for the SMP are extremely sensitive to 
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the fit for the glassy volume fraction.  For instance, modeling the glassy volume fraction 

using the single hyperbolic tangent can be shown, for this polyurethane SMP, to affect 

the stress at the end of cooling by more than 25%.  After determining the function for 

   , all of the necessary calibration requirements have been determined.  Table 7 

presents a summary of the material properties for a polyurethane SMP as calibrated from 

the 10% extension free recovery experiment of Figure 10(a). 

 

Table 7 – Material properties calculated from a 10% free recovery experiment and 

used as input to the 1D constitutive model using incompressible neo-Hookean 

equations. 

Parameter Value 

Rubbery phase volume ratio 
 
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Rubbery phase shear modulus
 
 a 7.03 MPa   

Glassy phase shear modulus
 
 f 606 MPa   

Glassy volume fraction  
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III.E.  Numerical Implementation in 1D 

The previous section reduced the constitutive equations and kinematic 

relationship for uniaxial deformations.  Specifically, Equation (23) reduced the full 3D 

kinematic relationship in Equation (5) to an expression for the axial stretch in terms of 

the axial stretches in the rubbery and glassy phases.  In addition, Equation (22) presents 

the reduction of Equation (19) for uniaxial deformations, in which the pressure term is 

eliminated to result in an equation for the axial stress in terms of the axial stretch for 

each the rubbery and the glassy phases. 

   To simulate and predict the uniaxial experiments performed in Chapter II, these 

1D equations are numerically implemented in MATLAB
®
.  This implementation is an 

expansion of previous efforts [72], but improved such that arbitrary uniaxial 

thermomechanical load paths can be considered.  As such, the resulting equations are 

discretized with respect to time and a system of equations is solved at each increment. 

The implementation is performed in such a way to provide two ways of 

calculating the resulting state of a material during any given load path. In particular, a 

subroutine is established that calculate the stress of a material when the deformation (i.e. 

stretch) of the material is given as input.  On the other hand, another subroutine 

calculates the stretch of a material for a given stress input.  These two subroutines 

provide greater flexibility in simulating a standard thermomechanical cycle, in which 

different segments will control the deformation (e.g., cooling at a fixed strain) or the 

stress (e.g. heating at zero applied load) of the shape memory polymer.  
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III.E.1.  Stress Controlled Processes 

 In the system of equations, the method for solving for the state of the material is 

relatively straightforward for steps in which the applied stress is known.  Consider first 

the kinematic relationship of Equation (23), in which the axial stretch is a function of the 

axial stretches in the rubbery and glassy phases.  The axial stretches of the two 

constituent phases are subsequently defined through the constitutive relations presented 

in Equation (22).  In these relationships, the stretches are both a function of the applied 

stress ( )s t , which is assumed to be constant throughout the body.  Solving these 

equations for the stretch in terms of the stress results in Equation (29). 
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  (29) 

where the temperature   is provided as input and  is used to calculate the current 

volume ratios of the glassy and rubbery phases according to the relationship to the 

coefficients of thermal expansion in Equation (25).  In addition, the shear moduli are 

given as input as the values previously calibrated in Section D.   

    Thus, for a step in which the applied stress, current temperature, and calibration 

parameters are known, the axial stretch for each phase is determined in a straight-
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forward manner.  These stretches calculated in Equation (22) are then substituted into 

the kinematic relationship of Equation (23) to solve for the overall axial stretch.  With 

the current rubbery and glassy stretches calculated, the integral term in Equation (23) is 

now considered.  Note that the integral term contains the derivatives of the glassy 

volume fraction with respect to temperature and the temperature with respect to time.  

Thus, at high temperature (i.e., above the transformation temperature range), the glassy 

volume fraction is zero, there is no contribution to the integral, and the axial stretch of 

the SMP is equal to that of the rubbery phase.   In addition, for isothermal processes and 

for processes at temperatures lower than the transformation region, there is no 

contribution to the integral term.     

 For processes in which the SMP is being cooled through the transformation 

region, the value of   (i.e., the time at which the SMP is last cooled through the 

transformation region) becomes identical to the current time t.  The integral is then 

discretized, using a trapezoidal method, to provide a means of calculating the updated 

integral as a function of the previous integral value and the current variables.  Using the 

trapezoid method, the value of the integral at time t is given by Equation (30), where ( )k  

and ( 1)k   represent the quantities at the current and previous time steps, respectively.  

While the trapezoidal method is not the most precise method for numerical integration, it 

is relatively simple to implement.  By using small increments in this work, the numerical 

error is reduced and this method is assumed to be sufficient. 
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Assuming the derivative of the glassy volume fraction is equal to zero as an 

initial condition at the start of cooling, the value of the integral during the first cooling 

increment reduces to a function only of the rubbery and glassy phase stretches and the 

derivative of the glassy volume fraction at the current time, as shown in Equation (31).  

By determining the value of the integral in this first cooling step, the results are used to 

calculate the results of the subsequent steps in Equation (30). 
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During heating, the integral term is known from the history during cooling.  The 

kinematics used in the work assume the SMP has fully recovered its stored deformation 

when it is reheated through the same temperature range [115].  Thus, the integral term in 

Equation (23) is rewritten as Equation (32), where ( )s t t and     s t t  .  

Physically, ( )s t  represents the last time that the material was at the current temperature 

and was being cooled through the transformation region.   
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Substituting this relationship into the kinematics of Equation (23) results in 

Equation (33), which describes the axial stretch during the heating process. 
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With the methods established to handle the integral term during heating and 

cooling, the system of equations, for a given stress and temperature input, are well 

defined and programmed in the 1D MATLAB
®
 code.  

 

III.E.2.  Stretch Controlled Processes 

 The previous section described the methodology used to predict the response of a 

SMP for steps in which the stress and temperature of the material are given as input and 

the stretch is the output.  This section considers the alternate scenario – steps in which 

the stretch and temperature is given as input, but the stress is the output.  Recall the 

stress is not explicitly described a function that is in terms of all known variables.  

Rather, the stress is included in the functional dependence for the glassy and rubbery 

axial stretches in addition to the constraint that the stress is assumed to be equal between 

the two phases. 

 The approach used to solve for the stress in a stretch-controlled step is to first 

simplify the kinematic relationship to remove the integral term.  Then, the resulting 

differential equation is solved simultaneously with the constitutive equations to calculate 

the updated state of the material.  

 First, the inverse of the glassy axial stretch is multiplied through the kinematic 

relationship in Equation (23) to isolate the integral in the last term of the equation. 
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Equation (34) is then differentiated with respect to time and the fundamental 

theorem of calculus is used on the integral term.   
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Expanding the time derivative on the right hand side of the first line of Equation 

(35) results in a term that cancels with the second line.  Equation (36) is then the result 

of combining this result with the initial condition that the derivative of the glassy volume 

fraction at 0t   is equal to zero, which eliminates the third line of Equation (35). 
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Using a Backward Euler method [113] and the product rule, the differential 

equation in Equation (36) is rewritten as Equation (37). 
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where the superscripts ( )k  and ( 1)k   represent the current and previous time steps, 

respectively.  Equation (37) is then further simplified to Equation (38) through the 

elimination of cancelling terms as well as the elimination of the t  parameter in each 

term.  Note that the elimination of t is expected as the model was developed as a rate-

independent model such that the material response should not depend on the time. 
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The unknowns in Equation (38) are current step rubbery and glassy axial 

stretches, 
( )kr and 

( )kg , respectively.  For the first increment, the initial conditions 

(0)r and 
(0)g are prescribed to be equal to 1 (i.e., the initial configuration for the 

rubbery and glassy phases is the undeformed configuration).   

 Equation (38) represents the discretized kinematic relationship between the total 

axial stretch and the axial stretches of the rubbery and glassy phases.  In addition to this 

equation, Equation (39) represents the constraint between the stresses of the rubbery 

phase and the glassy phase.  Specifically, as a result of assuming spatially constant stress 

in the body, the constitutive equations of Equation (22) are set equal to result in 

Equation (39). 
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Equations (38) and (39) form a nonlinear system of equations with 
( )kr and 

( )kg

as the unknowns.  These equations are solved using the Newton Method for solving 

nonlinear equations.  In this method, of which the full details are described in [122], a 

matrix equation is set up as shown in Equation (40).   

     
( )/ kr gJ R    (40) 

In this system, the 2x2 Jacobian matrix J  is composed of the partial derivatives 

of the equations with respect to the unknowns, the 2x1 unknowns vector consists of 

increments to
( )kr and 

( )kg , respectively, and the 2x1 vector on the right hand side is 

the residual vector R , which contains the residual of the equations when solved using 

the guess solution.  The components of the Jacobian, after rearranging Equations (38) 

and (39) such that right hand side of the equation is set equal to zero, are calculated with 

the results shown in Equation (41). 
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The equations for the residual vector are presented in Equation (42), where the 

first equation represents the kinematic relationship and the second equation represents 

the constraint equating the stress in the rubbery and glassy phases. 
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The Newton Method, which seeks to minimize the residuals in the system of 

equations, is solved using the previous converged (or initial) value as the starting guess 

for 
( )kr and 

( )kg . The system of equations presented in Equation (40) is solved 

iteratively until the increments to the unknowns have converged and are no longer 

changing.  Once the values for the rubbery and glassy stretches are obtained, the stress of 

the SMP is calculated by substituting these values back into the constitutive equations in 

Equation (22).  Note that, consistent with the assumption of the stresses in the two 

phases being equal, the constitutive equation for only one of the phases needs to be 

solved for the new stress.    

 

III.F.  Modeling Results 

After calculating the parameters necessary to calibrate the constitutive model, the 

10% extension free recovery experiment from which the material properties were 

calculated was first simulated and then the model was validated by comparing the model 

predictions to the experimental data for the 15%, 20%, and 25% extension free recovery 

experiments and the 10%, 15%, 20%, and 25% constrained displacement recovery 

experiments.   
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III.F.1.  Simulation of Calibration Experiment 

The simulation of the 10% extension free recovery experiment from which the 

material properties were calibrated is presented in a three-dimensional extension-stress-

temperature plot in Figure 20.  It is observed that the model predictions (shown in blue) 

match well with the experimental data (shown in black) in all steps of the 

thermomechanical load path.   

In addition to the 3-D plot, Figure 21 – Figure 23 present the two-dimensional 

projections of the data.  Figure 21 first presents the stress-extension response as 

compared to the model simulation.  It is observed that the model simulation captures the 

stress-extension response during loading, which supports the choice of modeling the 

material behavior as a neo-Hookean material
3
.  

Figure 22 presents the stress-temperature response for the model simulation and 

the experimental data.  In performing the simulations, the extension increase during 

constrained cooling (cf. Section 2.2 in Chapter II) from 90°C to 25°C was approximated 

as a linear function.  It is observed that the model simulation matches well with the 

experimental data.  In particular, the model captures well the onset of the large stress 

increase that initiates around 65°C during the cooling step.  This agreement is primarily 

a result of using a piecewise hyperbolic tangent to calibrate the glassy volume fraction.   

                                                 

3
 While the neo-Hookean representation of the material response appears sufficient for this material 

system, new constitutive equations may need to be derived and implemented in future efforts for materials 

that exhibit more nonlinearity, larger deformations, and/or stiffening.   
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Figure 20 –Simulation of the 10% extension free recovery experiment, presented in 

extension-stress-temperature space and compared to experimental data, from 

which the material properties and glassy volume fraction were calibrated. 

 

Figure 21 – Stress-extension comparison between the model simulation and the 

experimental data for the 10% extension free recovery experiment from which the 

material properties and glassy volume fraction were calibrated. The asterisk * 

denotes an example of oscillations in the experimental data as the PID system 

attempts to maintain a constant extension during cooling through the glass 

transition. 

 

* 
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By using a single hyperbolic tangent, the transition from the rubbery to the glassy 

phase (upon cooling) would have completed at a higher temperature and the resulting 

stresses during cooling would have been higher (~25%) than the current simulation.  In 

addition to the piecewise hyperbolic tangent, it is recalled that the coefficient of thermal 

expansion for the glassy phase was calibrated to this stress-temperature data 

experimental during cooling.  In particular, the glassy CTE was adjusted such that the 

slope of the linear region in the model simulations during cooling from 50°C to 25°C 

(i.e., the cooling that occurred after the phase transition was complete) matched well 

with the experimental data.   

 

 

Figure 22 – Stress-temperature comparison between the model simulation and the 

experimental data for the 10% extension free recovery experiment from which the 

material properties and glassy volume fraction were calibrated. 
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Figure 23 – Extension-temperature comparison between the model simulation and 

the experimental data for the 10% extension free recovery experiment from which 

the material properties and glassy volume fraction were calibrated.  The asterisk * 

denotes an example of oscillations in the experimental data as the PID system 

attempts to maintain a constant extension during cooling through the glass 

transition. 

 

Finally, Figure 23 presents the extension-temperature response for the 10% 

extension free recovery experiment as simulated by the 1-D model and compared to the 

experimental data.  Note that the extension in the simulation increases linearly during 

cooling from 90°C to 25°C.  This linear increase, which represents an approximation to 

the actual oscillating behavior seen experimentally, was the input to the model during 

the cooling step as previously described.   In addition, it is observed that the simulation 

matches well with the experimental data during the zero load recovery heating from 

25°C to 90°C.  In particular, the onset temperature, qualitative shape of recovery, and 

completion temperature of the shape recovery matches well between the simulations and 

the experimental data.  Small differences are observed, however, in comparing the 

* 
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curves at the onset and completion of the extension recovery.  These differences may be 

reduced by optimizing the temperature range across which the glassy volume fraction is 

calibrated or by considering the thermal expansion effects, which were neglected in this 

calibration, when calibrating the glassy volume fraction.  As expected, the simulation 

indicates the material recovers all of the applied deformation.  This assumption is 

supported upon comparison to the experimental data in this figure and the data tabulated 

in Table 4.  

 

III.F.2.  Free Recovery Predictions 

After simulating the 10% extension free recovery experiment, from which the 

material properties were calibrated, the model was used to predict the 15%, 20%, and 

25% extension free recovery experiments that were presented in Figure 10.   Figure 24 – 

Figure 26 present the three-dimensional extension-temperature-stress predictions for the 

15%, 20%, and 25% extension experiments, where the black dash, dotted, and solid lines 

represent the predicted results.  It is observed that the model predictions match well with 

the experimental data in all cases.  Further investigation into the comparison between the 

model predictions and the experimental data is presented in the two-dimensional 

projections shown in Figure 27 – Figure 29.   
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Figure 24 – Prediction of the 15% extension free recovery experiment, presented in 

extension-stress-temperature space and compared to experimental data. 

 

Figure 27 presents the two-dimensional projections in stress-extension space.  It 

is observed that the predictions for the stress as a function of the applied extension match 

well with the experimental data for all values of applied extension.  As presented in the 

experimental data of Chapter II (cf. Figure 12(a) and Table 2), the stress-extension 

response of this polyurethane SMP is approximately linear for all values of extension, 

and the variation (i.e., range) in the rubbery phase modulus is less than 10% of the 

average rubbery modulus.  As such, these results agree with the expectation that the neo-

Hookean constitutive behavior, which is a relatively simple constitutive model, should 

be able to adequately capture the response of the material for the extension range in 

consideration and for the material system which displays relatively consistent behavior 

from sample-to-sample.  
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Figure 25 – Prediction of the 20% extension free recovery experiment, presented in 

extension-stress-temperature space and compared to experimental data. 

 
 

 

(c) 

Figure 26 – Prediction of the 25% extension free recovery experiment, presented in 

extension-stress-temperature space and compared to experimental data. 
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In addition, Figure 28 presents the stress-temperature response of the 15%, 20%, 

and 25% extension cases as compared to the model predictions.  It is observed that the 

model is able to predict well the response of the SMP for all three values of applied 

extensions.  In addition to matching the general trend of the stress increase during 

cooling, the value of the stress at the end of cooling is near that of the experiments.  The 

differences in the end values are likely due to variations in the material properties.  

Specifically, there may be small differences in the coefficients of thermal expansion, 

glassy modulus, or glass transition temperature that would in a different stress increase 

when cooled through the same temperature range.  Further, the error in the laser 

extensometer readings may influence the model predictions.  Due to the resolution of the 

laser extensometer being ~0.3% strain, a potential source of error is in the linear  

 

 

Figure 27 – Stress-extension model predictions compared to the experimental data 

for the 15%, 20%, and 25% extension free recovery experiments.  

 



 

96 

 

 

Figure 28 – Stress-temperature model predictions compared to the experimental 

data for the 15%, 20%, and 25% extension free recovery experiments. 

 

 

Figure 29  – Extension-temperature model predictions compared to the 

experimental data for the 15%, 20%, and 25% extension free recovery 

experiments. 
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approximation used to model the extension increase during cooling for each experiment.   

The final two-dimension comparison for the free recovery mode predictions is 

shown in Figure 29, which presents the extension-temperature response of the SMP for 

the three predicted values of applied extension.  It is observed that the model predictions 

match well with the experimental data.  Specifically, the model is able to predict well the 

transformation temperatures and the general shape recovery trend.  The largest 

difference between the predictions and experiments appears at the onset of recovery.  

This difference is likely due to small differences in the material properties and/or the 

shape of the onset of shape recovery (cf. Figure 14(b)), to which the glassy volume 

fraction is fit and is a critical calibration parameter in predicting the response of the 

SMP.  The assumption of no irrecoverable deformation in the model results in all of the 

applied extension being recovered in the predictions, which match well with the results 

observed experimentally.   

 

III.F.3.  Constrained Displacement Recovery Predictions 

In addition to predicting the free recovery experiments, the calibrated model was 

used to predict the constrained recovery experiments (cf. Figure 11) for all four values of 

applied extension – 10%, 15%, 20%, and 25%.  The three-dimensional predictions for 

the constrained recovery experiments are presented in Figure 30.  While the figure 

indicates good agreement between the predictions and the experiments, Figure 31 – 

Figure 33 present the two-dimensional projections, including a better comparison for the 

stress recovery as a function of temperature. 
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Figure 31 presents the extension-temperature comparison for the four values of 

applied extension.  While it is observed that the predictions match well with the 

experimental data, it is noted that the extension increase during cooling and decrease 

 

Figure 30 – Prediction of the 10%, 15%, 20%, and 25% extension constrained 

displacement recovery experiments, presented in extension-stress-temperature 

space and compared to experimental data 

 

 

during heating are actually used as input to the model.  Specifically, a linear 

approximation is used to model the extension increase during the constrained cooling.  

In heating from 25°C to 60°C, the model maintains zero load.  Thus, the extension 

during this temperature range of heating is a prediction.  However, at 60°C (i.e., when 

the bottom of the specimen is regripped in the experiments), the extension decrease 

observed while heating from 60°C to 90°C is approximated using a linear function and  
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subsequently used as input to the model.  Thus, as expected, the overall predictions for 

the extension as a function of temperature match well with the experimental data. 

In addition, Figure 32 presents the stress-temperature results for the four 

experimental cases.  It is observed that the predictions match reasonably well with the 

experimental data.  Specifically, the predictions capture the onset of the phase transition 

when cooling from the rubbery phase to the glassy phase.  Although matching the 

qualitative trend well, there are deviations in the stress prediction during this constrained 

cooling step (~5-11% error in the value at the end of cooling).  These deviations are 

likely a result of variations in the oscillations of the PID system attempting to maintain a 

constant extension during the constrained cooling.   

 

 

Figure 31 – Extension-temperature model predictions compared to the 

experimental data for the 10%, 15%, 20%, and 25% extension constrained 

displacement recovery experiments. 
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Figure 32 – Stress-temperature model predictions compared to the experimental 

data for the 10%, 15%, 20%, and 25% extension constrained displacement 

recovery experiments. 

 

 

Figure 33 – Stress-temperature model predictions, during the recovery heating 

step, compared to the experimental data for the 10%, 15%, 20%, and 25% 

extension constrained displacement recovery experiments. 
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Finally, in Figure 33, the stress-temperature results during the constrained 

displacement recovery are presented.  These results are a subset of the results shown in 

Figure 32with focus on just the final step in the thermomechanical path.  It is observed 

that the model is able to predict well the recovery temperature and recovery stresses for 

each of the four extension values.  There is some deviation in the comparison at the start 

of the recovery, in which the model predicts a more gradual increase in the stress as 

function of temperature.  This deviation is likely due to the piecewise form of the glassy 

volume fraction as well as the experimental procedure, in which the crosshead was 

manually adjusted to keep the stress at zero for a few degrees after closing the bottom 

grip.   

 

III.G.  Summary and Conclusions  

 In this work, a large deformation model for modeling shape memory polymers 

was implemented in 1-D.  The kinematics, formulated in terms of the deformation 

gradients, assumed a mixture of the rubbery and the glassy phases.  A glassy volume 

fraction was introduced as an internal state variable to quantify the amount of the 

material that is in the glassy phase, and the average state variables were obtained by 

performing a volume average on the mixture of the rubbery and glassy phases.  

Consistent with the assumption of constant stress in the representative volume element, 

the rotations of the rubbery and glassy phases were assumed to be equal to that of the 

average rotation, and the expression for the average deformation gradient was reduced to 

an expression for the average stretch in the SMP.  Motivated by the experimental results 
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of Chapter II, this glassy volume fraction is assumed to be only a function of 

temperature. 

The constitutive response was defined for each the rubbery and glassy phases and 

assumed to take the form of an incompressible neo-Hookean material.  The resulting 

constitutive equations related the stress to the deformation gradient and the hydrostatic 

pressure required to maintain incompressibility.  After performing the polar and spectral 

decompositions, the system of equations was reduced to their one-dimensional form.  By 

considering uniaxial deformations, the indeterminate hydrostatic pressure term in the 

constitutive equations was eliminated, and the constitutive equations in each phase were 

reduced to the stress in terms of the principal stretch.  The equations were then 

implemented in MATLAB
®
 in a general, incremental formulation that provides the 

ability to solve for the state of the material for steps in which either the displacement or 

the stress is provided.   

 The system of equations, including the kinematics and the compressible neo-

Hookean constitutive equations, required five calibration parameters – the rubbery and 

glassy phase shear moduli, the rubbery and glassy coefficients of thermal expansion 

(CTEs), and a function for the glassy volume fraction as a function of temperature. The 

results from the 10% extension free recovery experiment in Chapter II were used to 

calibrate the necessary parameters.  Specifically, the rubbery and glassy tensile moduli 

were calculated from the high temperature loading and low temperature unloading steps, 

respectively.  The shear moduli were then calculated from the tensile modulus and the 

assumption of incompressible material response (Poission’s ratios = 0.5).  In addition, 
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the coefficients of thermal expansion and the glassy volume fraction were calculated 

from 10% free recovery experiment.  The rubbery CTE was calculated from the strain-

temperature response during zero load heating, and the glassy CTE was calculated to 

match the stress-temperature increase observed during constrained cooling.  Finally, the 

glassy volume fraction was assumed to take the shape of the free recovery strain profile.  

As such, a hyperbolic tangent function was introduced, and the constants were calculated 

using a least squares method when compared to the normalized free recovery profile.  A 

piecewise hyperbolic tangent was necessary to precisely fit the onset of shape recovery, 

which is a key parameter affecting the stress predictions during constrained cooling.   

After calibrating the necessary parameters and observing good agreement of the 

model simulation with the experimental data, the model was then used to predict the 

15%, 20%, and 25% extension free recovery experiments as well as the 10%, 15%, 20%, 

and 25% extension constrained displacement recovery experiments.  The model 

predictions were observed to have good agreement with the experimental data, with 

minor differences likely due to variations in the material properties and phase 

transformation behavior between specimens. 
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CHAPTER IV  

NUMERICAL IMPLEMENTATION OF A THREE-DIMENSIONAL 

CONSTITUTIVE MODEL FOR SHAPE MEMORY POLYMERS 

 

 The previous two chapters presented uniaxial experiments and one-dimensional 

constitutive modeling of a polyurethane shape memory polymer.  A subset of 

experimental data was used to calibrate the material properties used in the model, and 

the model was then used to predict the response for the other uniaxial load paths.  This 

chapter expands on this framework and presents the three-dimensional modeling of 

shape memory polymers.  Using the kinematic framework established in the previous 

chapter, new constitutive equations are derived to provide a more general analysis tool 

for modeling the compressible behavior of SMPs.  The resulting equations are then 

numerically implemented in a user material subroutine (UMAT) in Abaqus, a 

commercially available finite element software.  Following the numerical 

implementation and calibration of material properties, example three-dimensional 

analyses – including the effects of the heat transfer on the shape recovery – are 

presented.   

 

IV.A.  Kinematics 

 The three-dimensional modeling efforts in this work build upon the kinematic 

framework established in Section A of Chapter III and in [122], in which a relationship 

between the average deformation gradient and the deformation gradient of the 

constituent rubbery and glassy phases is established.   
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IV.A.1.  Average Deformation Gradient 

In these kinematics, the shape memory polymer is assumed to have a rubbery, 

stress-free reference configuration (i.e., the temperature is sufficiently high that the 

material is in a pure rubbery state).  Upon cooling the material to below the glass 

transition temperature range, the material enters a pure glassy state.  At intermediate 

temperatures, the material is assumed to be a mixture of the rubbery and glassy phases 

with a spatially constant stress.  It is further assumed that the rubbery and glassy phases 

undergo only rate-independent elastic and thermal strains.  In other words, no 

dependence on the strain rate or temperature rate is considered, and no permanent, 

irrecoverable deformations are considered.  To model this behavior, the kinematics first 

considers individual material particles that undergo transformation from the rubbery 

phase to the glassy phase at a discrete temperature.  Then, the average deformation 

gradient is obtained through performing a volume average of all of the particles in the 

glassy and rubbery phases.  A glassy volume fraction is introduced and prescribed to 

represent the percentage of the material that has transformed, at a given temperature, to 

the glassy phase.  Equation (5), presented here as Equation (43), presents the equation 

for the average deformation gradient F   
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where  ,r
e F P  and  ,g

e F P  are the rubbery and glassy elastic deformation gradients, 

which are functions of stress P  and temperature   .  In addition, natF  represents the 
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deformation that is stored when cooling from the rubbery phase to the glassy phase, 

defined through Equation (2), and     is the glassy volume fraction as a function of 

temperature. 

 Using the polar decomposition and the assumption on the rotations of the 

individual phases presented in Chapter III, the average deformation gradient of Equation 

(43) was subsequently reduced to an expression for the average stretch of the SMP as a 

function of the stretches of the rubbery and glassy phases.  This expression, provided as 

Equation (8) in Chapter III, is recalled here as Equation (44). 

 

   

        
0

1 ,

, ( ), ( )

r
e

t
g
e nat d

  

         

   

  

U U P

U P U P
  (44) 

 

IV.A.2.  Heating Evolution Equation 

 The kinematic relationships of Equations (43) and (44) describes how the shape 

memory polymer responds to changes in stress and temperature, which are dependent 

variables in the rubbery and glassy deformation gradients as well as the glassy volume 

fraction.  The integral term represents the stored deformation at a current time t.  

Physically, this integral term indicates that deformation is stored when the material is 

being cooled from the rubbery phase to the glassy phase.  Specifically,   represents the 

last time the material was at the current temperature   t  and was being actively 

cooled   0   .  In other words, thermomechanical deformations in the pure rubbery 
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    0,  0      or pure glassy state     1,  0      do not contribute the 

stored deformation.  Similarly, isothermal deformations at an intermediate temperature 

      0 1,  0t          do not contribute to the stored deformation until 

cooling is resumed. 

 During heating, Equation (44) can be rewritten as Equation (45), in which 

( )s t t  such that     s t t  .  In other words, ( )s t  is the most recent time previous 

to the current time in which the SMP experienced the same temperature.  The 

consequence of this assumption is that, during heating, it is assumed that the material 

returns to exactly the same configuration as it experienced when it was cooled through 

the same temperature.  Practically, this assumption necessitates the storage of the state of 

the SMP during each cooling step and the subsequent lookup of these states during the 

heating procedure.  For large systems or complex analyses, a large number of values 

would need to be stored, which would adversely affect storage and run times. 
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 This work considers an alternative approach to calculating the shape recovery 

during heating.  In this approach, an evolution equation is introduced for the recovery of 

the stored deformation, where Equation (46) represents the average stored deformation 

during cooling. 
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 During the heating step, it is then assumed that the stored deformation recovers 

proportional to the glassy volume fraction, as shown in Equation  (47).  It is noted, 

however, that the material does not need to complete transformation to the glassy phase 

before recovery heating can initiate.  Thus, Equation  (47) is normalized through the use 

of stor
revU  and rev , which represent the value of the stored deformation and the glassy 

volume fraction, respectively, when the cooling ceased and the subsequent heating 

began.  It is observed that this form of an evolution equation has recently been used in 

the modeling of other shape memory materials [113]. 

             0
stor

stor rev

rev

   


 
U

U   (47) 

  

IV.B.  Constitutive Equations 

 Equations (43) and (44) present the average deformation gradient and average 

stretch, respectively, as a function of the rubbery and glassy elastic deformation 

gradients.  In addition to the kinematic description of the SMP behavior, constitutive 

equations must be defined for the shape memory polymer and the rubbery and glassy 

phases.  In this work, the stress in the SMP is assumed to be spatially homogenous.  As 

such, the stress of the SMP assumes the value of the stress in the pure rubbery or pure 

glassy phases when the glassy volume fraction equals 0 or 1, respectively.  At 

temperatures when both the rubbery and glassy phases are present, the stress of the SMP 

is equal to both the rubbery and glassy stresses, which are equal due to the spatially 

constant stress assumption.  Thus, through the above assumptions, the stress of the SMP 
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can be obtained through prescribing the constitutive equations for each the rubbery and 

the glassy phases. 

Chapter III, as well as the previous efforts in [123], modeled the rubbery and 

glassy phases as incompressible neo-Hookean materials.  Through the polar and spectral 

decompositions, the eigenvalues for the stress were reduced to functions for the 

eigenvalues of the stretch and the hydrostatic pressure required to maintain 

incompressibility (cf. Equation (19)).  It has been documented [69, 70, 115], however, 

that polymers in the glassy phase are generally compressible in nature, with Poisson’s 

ratios ranging from 0.33 to 0.46.  Further, while the hydrostatic pressure in Equation 

(19) could be eliminated for particular boundary value problems, the implementation of 

the incompressible constitutive equations in a general finite element subroutine presents 

additional challenges that often require the use of hybrid elements or enforcement of 

incompressibility through a Lagrange multiplier penalty method [11].   

Thus, in this chapter, compressible neo-Hookean constitutive equations are 

derived to address the glassy phase compressibility observations and the computational 

challenges associated with incompressibility.  Equation (48) presents the Helmholtz free 

energy, as a function of the right Cauchy-Green deformation tensor C and the 

temperature  , that is adopted in this work to for the compressible neo-Hookean 

response.   
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where the first line represents terms that are a function only of C, the second line 

captures the thermoelastic response and is a function of both C and  , and the third line 

is a function of only the temperature and reference material properties.  While the free 

energy previously presented in Equation (10) is formulated in terms of only the IC  (i.e., 

the first invariant of the right Cauchy-Green deformation tensor), the compressible free 

energy in this chapter also introduces J, which is the determinant of the deformation 

gradient  detJ  eF  and is a function of the third invariant of C   J III C  .  J 

physically represents the ratio of the current volume to that of the reference volume. This 

free energy has been previously adopted in describing the finite deformation response of 

shape memory alloys [121], and is assumed to be sufficient in this work for shape 

memory polymers undergoing moderate strains with relatively little nonlinearity in the 

stress-strain response.  This assumption is supported by the experimental observations in 

Chapter II, in which the stress-strain curve for the thermosetting polyurethane SMP is 

approximately linear during elongation to failure. 

The material properties in Equation (48) are the shear modulus  , the Lamé 

coefficient  , the coefficient of thermal expansion  , the heat capacity dc , and the 

reference internal energy and entropy - 0e  and 0 , respectively.  It is observed that the 
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term 2
3

   represents the bulk modulus K , which represents the change in the 

constitutive response due to volumetric changes.  It is observed that, for 

incompressibility  1J   and in the absence of temperature effects, the free energy of 

Equation (48) reduces to the Helmholtz free energy of Chapter III (cf. Equation (10)).  In 

addition, the Lamé coefficient can be expressed in terms of the shear modulus and the 

Poisson’s ratio  , as shown in Equation (49), where for an incompressible material 

 0.5  , the Lamé coefficient (and consequently, the bulk modulus) would tend to 

infinity as the denominator tends to zero.   
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 With the Helmholtz free energy defined, the second Piola-Kirchhoff stress and 

the Cauchy stress is derived through Equation (50) and Equation (51), respectively. 
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The partial derivative of the Helmholtz free energy in Equation (48) with respect 

to the right Cauchy-Green deformation tensor C is given in Equation (52). 
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where the partial derivatives of the first and second invariants are given [124] by 

Equation (53). 
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 Substituting the partial derivatives of Equation (52) and (53) into Equation (50) 

and performing simplifying operations, the resulting second Piola-Kirchhoff stress is 

presented in Equation (54). 
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where  
1

1 T 1 -T


  C F F F F .  Transforming Equation (54) via Equation (51) results 

in an expression for the Cauchy stress presented in Equation (55). 
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 Through assuming each phase behaves as a compressible neo-Hookean material, 

an equation of the form in Equation (55) is defined for each the rubbery and glassy 

phases.  These resulting constitutive equations are presented, in terms of the elastic 

deformation gradient for the rubbery and glassy phases, in Equations (56) and (57), 

respectively. 
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IV.C.  Thermoelastic Coupling 

In addition to the constitutive and kinematic equations, the balance of energy 

equations can be solved simultaneously for problems in which the displacements and the 

temperature are changing simultaneously.  As a result, this section derives the equations 

that relate the change in temperature to the change in strain, the components of which 

are coded into the Abaqus user material subroutine for coupled temperature-

displacement analyses.  Recall that the Helmholtz free energy per unit volume for the 

compressible neo-Hookean material that is being considered in this work (cf. Equation 

(48)) is a function only of the right Cauchy-Green deformation tensor C  and the 

temperature  ; thus, these thermomechanical coupling derivations are limited in scope 

to only thermoelastic coupling (i.e., no latent heat, etc.).   
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IV.C.1.  First Law of Thermodynamics 

The global form of the balance of energy (1
st
 law of thermodynamics) in the 

spatial description is written as Equation (58) [121]. 

    2D 1

D 2
c ne dv q ds r dv

t


  

 
       

 
  v t v b v   (58) 

where   is the mass density, v  is the spatial velocity field, ce  is the internal energy per 

unit volume, t  is the applied traction vector, nq  is the heat flux, b  is the body force 

vector, and r is heat sink/source per unit volume.  Equation (58) can then be written in a 

reduced global form as Equation (59). 

  
D

div
D

ce dv r dv
t
 

     σ D q   (59) 

where D  is the rate of deformation tensor.  Equation (59) is rewritten as Equation (60) 

with the internal energy and heat sink/source expressed as quantities per unit mass.   

  
D

div
D

udv r dv
t

 

 

     σ D q   (60) 

where u  is the internal energy per unit mass and r  is the heat sink/source per unit mass.  

The total time derivative in Equation (60) is then reduced using Reynolds’s Transport 

Theorem [121],which is presented in Equation (61). 

        
D

, , , ,
D

t t dv t t dv
t

 

 

   x x x x   (61) 

where   is used to represent an arbitrary scalar function.  Using Equation (61), 

Equation (60) is rewritten as Equation (62). 
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  divudv r dv 

 

     σ D q   (62) 

 Equation (62) is then written in the local form in Equation (63). 

 divu r    σ D q   (63) 

 The internal energy and its derivative with respect to time are then rewritten in 

Equations (64) and (65), respectively, using a Legendre transformation, in terms of the 

Helmholtz free energy   per unit mass, the entropy   per unit mass, and the 

temperature  .  

 u    (64) 

 u      (65) 

The Helmholtz free energy per unit mass  1


    is defined in Equation (66), 

where c   is the heat capacity of the material per unit mass and 0u  and 0   are the 

reference internal energy and entropy, respectively, per unit mass. 

 

   

 

2

0

0 0 0
0

( , ) 3 2ln 1 2ln
2 4

3 2 ln

3

1 ln

I J J J

J

J

c u

 


 


   




  



      

 
   

 

  
       

  

CC

  (66) 

 Substituting Equation (65) into Equation (63) results in the local form of the 1
st
 

Law of Thermodynamics written in terms of the time derivative of the Helmholtz free 

energy in Equation (67).  Note that the stress power term in the right hand side of 
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Equation (63) has also been rewritten in Equation (67) in terms of the second Piola-

Kirchhoff stress S  and the rate of the right Cauchy-Green deformation tensor C .  

 
1

div
2

r
J

        S C q   (67) 

 

IV.C.2.  Entropy Inequality Principle - Second Law of Thermodynamics 

 The second law of thermodynamics postulates that the total entropy production 

for all thermodynamic processes is non-negative.  Applying this principle to continuum 

mechanics, Equation (68) presents the global form of the second law of thermodynamics 

in the spatial description.   

 
D

0
D

c

r
dv ds dv

t



  

     h n   (68) 

where c  is the entropy in the spatial configuration per unit volume, h  is the entropy 

flux, and r


 is the entropy source.  Rewriting the entropy and entropy source per unit 

mass, Equation (68) becomes Equation (69).   

 
D

0
D

r
dv ds dv

t





  

     h n   (69) 

Using Reynolds’s Transport Theorem to simplify the time derivative in the first 

term, Equation (69) is reduced to Equation (70).  

 0
r

dv ds dv





  

     h n   (70) 
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 The divergence theorem is then introduced in Equation (71) to rewrite the second 

term of Equation (70), noting that the entropy vector h  is related to the heat flux vector 

q  through 



q

h  . 

 
2

1
div div divds dv dv dv

  
   

 
      

 
   

q q
h n h q   (71) 

 Substituting Equation (71) into Equation (70), the entropy inequality principle is 

then rewritten as Equation (72). 

 
2

1
div 0

r
dv dv dv


 

 
  

 
     

 
  

q
q   (72) 

 Equation (72) is then written in the local form as Equation (73). 

 
2

1
div 0

r
 

 
    

q
q   (73) 

 Through the assumption of Fourier’s Law and positive heat conductivity, the 

third term is realized to be always non-negative.  Thus, Equation (73) is rewritten as 

Equation (74), which is often referred to as the strong form of the entropy inequality 

principle. 

 div 0r   q   (74) 

IV.C.3.  Combining the 1
st
 and 2

nd
 Laws 

 The first of thermodynamics, as written in Equation (67), is then substituted into 

the entropy inequality principle established in Equation (74) to result in Equation (75). 

 
1

0
2J

    S C   (75) 
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 The time derivative of the Helmholtz free energy is then expanded using 

Equation (76), which is substituted into Equation (75), resulting in Equation (77). 

 


 
  

 
C

C
  (76) 

 
1

0
2J

  


  
     

  
S C C

C
  (77) 

 Thus, grouping terms related to the time derivative of the right Cauchy-Green 

deformation tensor and the temperature in Equation (77) results in Equation (78). 

 
1

0
2J

   


    
      

    
S C

C
  (78) 

 To consider all admissible processes, the inequality in Equation (78) is 

considered for processes in which either the deformation or the temperature is fixed.  

Considering first the case when the temperature is fixed, the second Piola-Kirchhoff 

stress is given through Equation (79). 

 2 J





S
C

  (79) 

 In addition, considering the case where there is no change in the deformation, the 

entropy per unit mass is given through Equation (80). 

 



 


  (80) 

 Further, the time derivative in Equation (76) are substituted into the local form of 

the first law in Equation (67), resulting in Equation (81).   

 
1

div
2

r
J

     


 
      

 
C S C q

C
  (81) 
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 The results in Equations (79) and (80) due to the enforcement of the entropy 

inequality principle are substituted into Equation (81), which is reduced to Equation (82)

. 

 div r   q   (82) 

 From Equation (80), the entropy is calculated as the partial derivative of the 

Helmholtz free energy with respect to mass and presented in Equation (83).   

 0
0

3 2 ln
ln

3

J
c

J

 
   

  

  
      

  
  (83) 

  The time derivative of the entropy in Equation (82) is performed by taking the 

chain rule, as shown in Equation (84), and substituting the density by 0
J


  , where 

0  is the density in the reference configuration.  Note that the time chain rule is 

expanded in terms of the logarithmic strain Tln ln ε V FF  to provide a form that 

will facilitate implementation into the Abaqus user material subroutine. 

 
0

3 2 ln

3

J c  
    

  

   
     
   
ε ε

ε ε
  (84) 

where the partial derivative in the first term of Equation (84) is reduced by recognizing 

expV ε  and that   det det expJ  V ε .  Using the identity [121]

     det exp exp trt tA A  with 1t    and lnA V , the first partial derivative shown 

on the right hand side of Equation (84) reduces to Equation (85). 

 
ln J




I
ε

  (85) 
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Further, substituting Equation (85) into Equation (84) and using the identity that 

 tr I A A  results in the final expression for the time derivative of the entropy in 

Equation (86). 

  
0

3 2
tr

3

c
   

 

 
   

 
ε   (86) 

 Substituting Equation (86) into Equation (82) provides an expression for the 

temperature balance, which is solved for in solving thermoelastic and/or heat transfer 

problems, in Equation (87). 

  
2 1

div 3 tr
3

c r
J

     
 

     
 

q ε   (87) 

 Examining Equation (87), it is observed that the second term on the right hand 

side represents the thermoelastic coupling and is a function of the rate of straining, 

temperature, bulk modulus, and the volume ratio.  This term is defined in Abaqus as plr   

– the volumetric heat generation per unit time at the end of the increment caused by 

mechanical working.  Thus, this term and its derivatives with respect to the increments 

in both temperature and the logarithmic strain are presented in Equation (88) and 

subsequently coded in the user material subroutine.  In Equation (88), the time derivative 

of the trace of the logarithmic strain tensor has been discretized using the Backward 

Euler method, where the superscripts ( )k  and ( 1)k   represent the current and previous 

time increments, respectively. 
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ε ε

  (88) 

 

IV.D.  Numerical Implementation  

The previous sections (A and B) derived the set of equations that describe both 

the kinematics and constitutive response of the shape memory polymer.  Specifically, 

Equations (43) and (44) present the equations for the average deformation gradient and 

average stretch, respectively, Equation (47) presents the new evolution equation for 

heating processes (in terms of known quantities), and Equations (56) and (57) present 

the constitutive equations for the rubbery and glassy phases, respectively.  This section 

focuses on the numerical implementation of this set of equations, including the 

discretized and reduced equations and the procedures for solving the nonlinear system of 

equations in a user material subroutine (UMAT) in Abaqus - a displacement driven finite 

element code.   

In a displacement driven finite element code, a guess to the displacement is 

provided and the resulting stress is calculated.  After solving for the stress across the 

entire discretized structure (mesh), equilibrium is checked.  If equilibrium is satisfied, 

then the program moves to the next increment; if not, new displacements are provided 

and the procedure is iterated until a solution is found.  Thus, the UMAT for the shape 
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memory polymers must return, for a given displacement input, the stress and the fourth 

order Jacobian tensor.  In solving the current system of equations (i.e. Equations (43)and 

(44), (56), and (57)), the deformation gradient F and temperature   is provided as input 

from Abaqus and the solution procedure calculates the new stress σ .  In this work, the 

temperature is first used to calculate the value of the glassy volume fraction, which 

depends only on temperature.  Dependent on the value of the glassy volume fraction, the 

procedure for solving the stress is then broken into three different cases: (i) the SMP is 

in the pure rubbery phase   0   , (ii) the material is in the pure glassy phase 

  1   , and (iii) the material is at a temperature such that it is a mixture of the 

rubbery and the glassy phases   0 1   .   

 

IV.D.1.  Pure Rubbery Phase  

 The first case considered is that when the temperature is sufficiently high enough 

to result in the glassy volume fraction being equal to zero.  In other words, the 

temperature is sufficiently high that the material is completely in the rubbery phase.  In 

this scenario, the kinematic equation presented in Equation (43)
4
 reduces to Equation 

                                                 

4
 Note that Equation (43) is used instead of Equation Error! Reference source not found..  Due to the 

constraint on the rotations described in Chapter III, either equation could be used equivalently.  However, 

because the full deformation gradient is provided by Abaqus and it is not necessary to solve a system of 

equations, the full deformation gradient is subsequently used here to increase efficiency and to avoid 

potential numerical round-off errors when performing the polar decompositions. 
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(89)
5
.  In this equation, the rubbery deformation gradient r

eF  is equal to the guess 

deformation gradient F that is provided as input in the current step.  The stress of the 

material is then calculated as the stress of the rubbery phase through Equation (90). 

 r
eF F   (89) 
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IV.D.2.  Pure Glassy Phase 

 The second phase considered is that in which the material has been cooled from 

the rubbery phase to a temperature in which the glassy volume fraction equals a value of 

one.  In other words, the material is completely in the pure glassy phase with no change 

in the glassy volume fraction.  In this scenario, the kinematic equation presented in 

Equation (43)
6
 reduces to Equation (91). 

       
0

( ), ( )

t
g
e d          F F F P   (91) 

                                                 

5
 The dependency of 

r
eF on P and   has been suppressed for visual simplification.  Unless noted 

otherwise, future instances of 
r
eF and 

g
eF without functional dependencies listed will be assumed to be 

functions of P and  . 
6
 Similar to the methodology for the pure rubbery phase, the full deformation gradient is used in the pure 

glassy scenario to improve computational efficiency and to avoid potential round-off errors in numerically 

performing the polar decomposition. 
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In Equation (92), the inverse of the glassy elastic deformation gradient is 

multiplied through on the left side of Equation (91).   

       
1

0

( ), ( )

t
g
e d        



  F F F P   (92) 

Further, Equation (93) presents the time derivative of Equation (92) 

 
1

0g
e





F F   (93) 

where the right hand side of the equation is equal to zero due to the fact that the integral 

term is a constant when cooling is complete and there is no current change in the glassy 

volume fraction.  Equation (94) expands the time derivative on the left hand side of 

Equation (93). 

  
1 1

0g g
e e

 

 F F F F   (94) 

 Equation (94) is then discretized using a Backward Euler difference scheme, 

resulting in Equation (95). 

 
   

 
1 1

1

( ) ( 1)

( ) ( 1)( )
( ) 0

k k
g g

k kke e
k g

e
t t

 








 
 

F F
F F

F F   (95) 

where the superscripts ( )k  and ( 1)k   represent the values at the current and the 

previous time steps, respectively, and t  is the time increment between the current and 

previous steps.  Equation (95) is then simplified by eliminating the t in both terms and 

multiplying through on the left by the glassy elastic deformation gradient at the current 

time 
( )kg

eF .  
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  
( ) 1 ( 1)

( ) ( ) ( 1)2 0
k k

k g g k k
e e

 
  F F F F F   (96) 

 Finally, Equation (96) is rearranged as Equation (97) to provide an explicit 

equation for the current glassy elastic deformation gradient in terms of input quantities 

(Fi) and quantities known from previous increments. 

  
( ) ( ) ( 1)( ) ( 1) 12
k k kg k k g

e e

  F F F F F   (97) 

 With the new glassy elastic deformation explicitly defined, the stress of the SMP 

is then calculated as the stress of the glassy phase through Equation (98). 
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  (98) 

 

IV.D.3.  Mixed Rubbery and Glassy Phases 

 The third consideration is when the temperature of the SMP is such that the 

glassy volume fraction is between 0 and 1.  In other words, the temperature of the shape 

memory polymer is such that both the glassy and the rubbery phases are present.   In this 

situation, the stress of the SMP is the unknown but is a dependent variable of the elastic 

deformation gradients for both the rubbery and the glassy phases.  Thus, to calculate the 

new stress, the equation for the average stretch, Equation (44), and the constitutive 

equations in Equations  (56) and (57) must be solved simultaneously to find the new 
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rubbery and glassy stretches while enforcing a spatially constant stress, as shown in 

Equation (99) .   

 r g σ σ σ   (99) 

 In considering Equation (44), it is recalled that the average stretch of the SMP is 

expressed in terms of the stretch of the rubbery and glassy phases.  In the finite element 

software, however, the total deformation gradient F  is provided as input.  As a result, 

the deformation gradient must then be decomposed into the rotational and stretch 

components.  In this work, this decomposition is performed using the algorithm of [120],  

which is also detailed in Appendix A.   

Using the kinematic assumption that the rotations in the rubbery and glassy 

phases are equal to the average rotation, the constitutive equations in Equations (56) and 

(57) are rewritten as Equations (100) and (101), where r
eF  and g

eF  have been expanded 

using the polar decompositions of Equation (6) with the rotations set equal to the 

rotation of the average deformation gradient as in Equation (7).  Note that, writing 

Equations (100) and (101), the symmetry of U has been used  TU U as well as the 

property that rigid body rotations do not result in volumetric changes such that 

det det det det F R U U . 
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IV.D.3.1.  Newton-Raphson Method 

 In the previous section, the equations were derived for solving for the state of the 

SMP when provided a deformation gradient and temperature input from the finite 

element software.  When the material is in the pure rubbery or pure glassy phases, the 

system of equations is solved in a straight-forward manner.  Specifically, an explicit 

equation is used to calculate the new rubbery and glassy deformation gradients (cf. 

Equations (89) and (97)) as a function of the deformation gradient passed into the 

UMAT.  These rubbery and glassy deformation gradients are then substituted into the 

respective constitutive equations (cf. Equations (90) and (98)), from which the stress is 

calculated and returned to the global finite element solver.  However, in the temperature 

range in which the rubbery and glassy phases coexist, Equations (44), (100), and (101) 
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must be solved simultaneously while invoking the assumption that the stress is spatially 

constant as shown in Equation (99). 

This section derives the equations, as reduced and discretized, that are necessary 

for the Newton-Raphson method that is invoked for solving the system of nonlinear 

equations.  The Newton-Raphson method, which is described in more detail in [125], 

provides a solution to the matrix equation in Equation (102)   

     J u R    (102) 

where J  is the Jacobian matrix and consists of the partial derivatives of the nonlinear 

equations with respect to the unknowns, u  is the vector that contains increments to the 

unknowns, and R  is the residual vector that is being minimized through an iterative 

solution procedure.  In this problem, Equation (102) is consists of 12 equations that are 

solved simultaneously.  Specifically, Equation (44) is solved in conjunction with the 

Equation (99) where r
ijU  and g

ijU are the unknown quantities
7
 when U  and   are 

provided as inputs.  In solving for the converged values of the unknowns, the stress in 

the SMP is automatically obtained through the constraint in Equation (99). 

Due to the introduction of the evolution equation for the stored deformation 

during heating in Equation (44), the resulting systems of kinematic equations differ for 

the cooling and heating processes.  The derivations for both processes are presented in 

the following subsections.  

                                                 

7
 The subscript ‘e’ has been suppressed on 

r
eU  and 

g
eU  for conciseness for the remainder of this chapter, 

and it is assumed that stretches, rotations, or deformation gradients written with the superscripts ‘r’ or ‘g’ 

are referring to the elastic response of the material. 
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IV.D.3.1.1.  Cooling Kinematics 

 First, the scenario in which the SMP is in the transformation temperature range 

and the temperature is being decreased is considered.  Starting first with the kinematic 

expression for the average stretch in the SMP, the inverse of the glassy elastic 

deformation gradient is multiplied through Equation (44) on the left to result in Equation 

(103). 

         
1 1

0

1 ( ), ( )

t
g g r

nat d          
 

      U U U U U S   (103) 

 Subsequently, the time derivative of Equation (103) is performed, resulting in 

Equation (104).  In performing the time derivative, the fundamental theorem of calculus 

is used on the integral term.  Recalling that   represents the most recent time the 

material was cooled through transformation, it is observed that  is equivalent to the 

current time t  and thus the integral can be expressed as a difference of the function 

evaluated at the integral limits.   
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 Expanding the time derivatives in the first line of Equation (104) results in 

Equation (105). 
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 Noting that the first and fourth terms on the right hand side are equal (cf. 

Equation (9)) cancel and the fifth term is equal to zero, Equation (105) reduces to 

Equation (106). 

    
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 Discretizing Equation (106) using the Backward Euler method results in 

Equation (107), where the superscripts  k  and  1k   represent the current and 

previous increments, respectively, and the time increment t  has been eliminated from 

the equation. 
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  (107) 

 Multiplying Equation (107) by the glassy elastic stretch 
( )kg

U  on the left side 

and consolidating terms results in Equation (108). 
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 Equation (109) then presents Equation (108) with all of the terms on one side, 

written in indicial notation, and set equal to ijR .  In other words, Equation (109) defines 

the residual equations for the six kinematic equations during the cooling process. 
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where the terms in the first line contain the unknowns in the rubbery and the glassy 

phases, the second line contains the unknown glassy stretches, and the third line consists 

of quantities that are all known either from previous increments or from input to the 

current step.  In addition, by taking the partial derivatives of Equation (109) with respect 

to the unknowns r
ijU  and g

ijU , Equations (110) and (111) present the contributions to the 

Jacobian matrix from the kinematic equations. 

 

   

   

( 1)( ) 1

( 1)( ) 1

2 1 1

2 1 1

kk

kk

ij g g
is jt ms jtil lmr

st

g g
is jt jtil ls

R
U U

U

U U

       

      






         



         

  (110) 

 

 

 

( 1) ( 1)1 1( )

( 1)1 ( )

( )

( )

1

1

k k
k

k k

ij g g kr
is lt mj is lt mjlm lmg

st

kg r
is tm mjmj

R
U U U U

U

U U U

     

  

  




     



       

  (111) 



 

132 

 

 

where ij  is the Kronecker delta and represents the components of the second order 

identity tensor (i.e., 1ij   when i j  and 0ij   when i j ). 

 In addition to solving for the updated values of 
rU  and 

gU , the stored 

deformation must also be calculated at each step.  Multiplying the kinematics in 

Equation (44) through by the inverse of the glassy elastic stretch  
1g

U  results in an 

explicit equation for the calculating the stored deformation, as presented in Equation 

(112). 
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IV.D.3.1.2. Heating Kinematics 

 The previous section derived the discretized equations for the kinematics when 

the SMP is being cooled.  This section focuses on the equations for the kinematics when 

the SMP is being heated or for isothermal processes when the SMP is in the 

transformation temperature range.  In both cases (i.e., heating or isothermal), there is no 

added stored deformation to the integral term of Equation (44).  As such, Equation (44) 

and Equation (46) are combined and rewritten as Equation (113). 

  1 r g stor     U U U U   (113) 
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where 
storU  is the stored deformation that is defined through Equation (114), which is 

the result of integrating Equation (47), and stor
revU  is the stored deformation at the last 

time the material was cooled, calculated during the cooling step using Equation (112). 
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 Writing Equation (113) in incremental and indicial form results in Equation (115)

, where  k  represents the current increment.  
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 Rewriting Equation (115) as Equation (116) by moving all terms to one side and 

setting it equation to ijR  defines the residual to be used in the Newton-Raphson matrix 

equation (cf. Equation (102)).   
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where the first term on the right hand side only contains the rubbery unknowns and the 

second term contains only the glassy unknowns.  Taking the partial derivative of 

Equation (116) with respect to the unknowns results in Equations (117) and (118), which 

define the terms that contribute to the Jacobian in Equation (102). 
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IV.D.3.1.3. Constitutive Equations 

 In addition to the kinematic equations, the constitutive equations must be 

considered and discretized for use in the Newton-Raphson method.  Begin first with the 

constitutive equations presented in Equations (100) and (101) for the rubbery and glassy 

phases, respectively.  Substituting these equations into the constraint on the stresses in 

Equation (99) results in Equation (119).   
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 To eliminate the rotational components of Equation (119), the transpose of the 

rotation is multiplied through on the left and the rotation is multiplied through on the 

right.  Using the identity that T T R R RR I , Equation (119) is equivalently rewritten, 

in indicial notation as Equation (120), which effectively defines the components to the 
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residual vector for use in the Newton-Raphson method (for 

, (1,1),(1,2),(1,3),(2,2),(2,3),(3,3)i j  with considering the symmetry of U ). 
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 Taking the partial derivative of Equation (120) with respect to the unknowns 

results in the contributions to the Newton-Raphson Jacobian matrix.  Using the identities 
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, the partial derivatives with respect to the 

rubbery and glassy phases are presented in Equations (121) and (122), respectively. 
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  (122) 

IV.D.3.1.4.  Line-Search Method 

 In solving the Newton-Raphson method, initial guesses must be provided for the 

unknowns in the first increment in the iterative procedure.  It is recalled that the 

procedure used in this work is to calculate the material is a pure rubbery material at high 

temperatures, a pure glassy material at low temperatures, and a mixed material at 

intermediate temperatures.  In the rubbery phase, for example, the input deformation is 

used to determine the new value of the rubbery deformation gradient and there is no 

consideration of the glassy phase deformation gradient.  Thus, special consideration 

must be taken when transitioning from a single phase material to a mixed phase material.  

In other words, proper guesses for both phases of the material must be provided to 

facilitate the convergence of the local Newton-Raphson method.  In this work, the initial 

guess for the newly created phase is taken to be the rotation of the previous phase.  That 

is, in the first step transitioning from the rubbery phase to the glassy phase, the initial 

guess for the deformation gradient of the glassy phase is set equal to the rotation of the 

rubbery phase.  This assumption maintains consistency with previous assumptions that 
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the rotations of the two phases remain equal without specifying the magnitude of the 

stretch in the initial guess.   

 For cases where large deformations and/or complex thermomechanical load paths 

are present, the convergence capability of the Newton-Raphson method is improved by 

the addition of the line search method.  This method, described in more detail in [122], 

allows for accepting a fraction of the increment that results from solving the Newton-

Raphson system of equations until a converged solution is obtained.     For the traditional 

Newton-Raphson method, the system of equations in Equation (102) is solved for the 

increment to the unknowns vector u , which is then used to modify the unknowns 

vector through Equation (123). 

 new old u u u   (123) 

In the line searching method, however, Equation (123) is modified to Equation 

(124) through the introduction of a backtracking parameter  . 

      0< 1new old     u u u   (124) 

 Thus, in this method, the system of equations is solved using the standard 

Newton-Raphson method and u  is obtained.  The backtrack parameter is set 1   such 

that the full increment is used in the next guess, as in the standard method.  Using this 

guess, the norm of the residual vector (i.e. 1
2

f  R R ) is checked, through Equation 

(125), to see if it has decreased sufficiently when compared to the initial rate of decrease. 

 ( ) ( ) ( )new old new oldf f f    u u u u   (125) 
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where   is a small parameter (
410  is used in this work, as recommended by [122]) 

used as comparison against the initial rate of decrease.  If the criteria in Equation (125) is 

met, the initial result from the Newton-Raphson method is used.  If not, the backtrack 

parameter is modified in the second step through Equation (126). 
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where g is defined in Equation (127) as the norm of the residual when the increment is 

added to the previous unknown vector. 

    oldg f   u u   (127) 

 In the third and subsequent iterations, g is expanded as a cubic function of   as 

in Equation (128).  Requiring Equation (128) to produce the values of g at the previous 

two iterations and solving the resulting system equations for a  and b , the backtrack 

parameter in the new iteration is determined through Equation (129). 

      3 2 0 0g a b g g         (128) 

 
2 3 (0)

3

b b ag

a


  
   (129) 

 

IV.D.4.  Continuum Tangent Modulus 

 In addition to providing the updated stress for a given deformation gradient and 

temperature, the UMAT is required to provide the local continuum tangent modulus.  

This fourth-order tensor, denoted in this work by  and often termed the Jacobian or 

elasticity tensor of the material, provides the relationship for the change in the stress 
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array given an infinitesimal perturbation of the strain increment array [122].  This 

elasticity tensor is then defined for total-form constitutive equations
8
 through Equation 

(130), which expresses the variational form for the Jaumann rate of the Kirchhoff stress 

with respect to the variations    in the deformation.  

      :J J         σ τ D W σ σ W   (130) 

where J σ τ , the Kirchhoff stress, D  is the variation in the virtual rate of deformation 

tensor, and W  is the variation in the virtual spin tensor.  D  and W  represent the 

symmetric and anti-symmetric components of the rate of deformation whose variations 

are related to the variation in the deformation gradient F through Equations (131) and 

(132).  

  1sym   D F F   (131) 

  1asym   W F F   (132) 

 To define the elasticity tensor in Equation (130), it is first noted that the Lie 

derivative of the Kirchhoff stress  vL τ  can be written in spatial rate-constitutive form in 

Equation (133) or in terms of the Jaumann rate 


τ  of the Kirchhoff stress in Equation 

(134) [126]. 

 :vL τ c D   (133) 

                                                 

8
 For constitutive equations written in a rate-form, such as in plasticity, the exact constitutive Jacobian is 

expressed by 
 1 J

J






σ

ε
.  
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 vL


  τ τ Dτ τD   (134) 

where c  is the fourth-order spatial (co-rotational) elasticity tensor and the Jaumann rate 

is an objective rate in terms of the spin tensor defined by Equation (135).   

 


  τ τ Wτ τW   (135) 

Combining Equations (133) and (134) results in Equation (136)., which is 

subsequently rewritten in constitutive form as Equation (137). 

 :


  c D τ Dτ τD   (136) 

 :


τ a D   (137) 

where a  is the fourth-order modulus whose components are defined by Equation (138).   

 ijkl ijkl ik jl jl ika c         (138) 

Combining Equations (135) and (137) results in an expression for the time 

derivative of the Kirchhoff stress in Equation (139). 

 :  τ a D Wτ τW   (139) 

Comparing Equation (130) to Equation (139), the desired Jacobian can be written 

in terms of a  as shown in Equation (140). 

 
1

J
 a   (140) 

 Thus, Equation (140) indicates the Jacobian required by Abaqus can be 

determined by determining the value of the determinant of the deformation gradient J  
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and the fourth order modulus tensor a , which is a function of the spatial elasticity tensor 

c .  The components of the spatial elasticity tensor can be expressed through Equation 

(141) as a function of the components of the deformation gradient and the material 

elasticity tensor [125].   

 mat
ijkl iI jJ kK lL IJKLc F F F F C   (141) 

  The material elasticity tensor is then a result of taking the second partial 

derivative of the Helmholtz free energy with respect to the right Cauchy-Green 

deformation tensor in Equation (142), which is also rewritten in terms of the second 

Piola-Kirchhoff stress. 

 
2

4 2mat   
 

  

S
C

C C C
  (142) 

 Thus, Equations (140), (138), (141), and (142) provide the necessary equations 

for determining the Jacobian of a material with a known Helmholtz free energy.  It is 

noted, however, that no single Helmholtz free energy in this work for the shape memory 

polymer that is assumed to be a mixture of the rubbery and glassy phases with a spatially 

constant stress.  As a result, it is assumed that the Jacobian can be approximated by a 

rule of mixtures between the Jacobian for a pure rubbery material and the Jacobian for a 

pure glassy material as shown in Equation (143).   

    1 r g          (143) 
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IV.D.4.1. Single Phase Neo-Hookean Spatial Elasticity Tensor 

 With the assumption of Equation (143), the Jacobians for the single phase neo-

Hookean materials (rubbery and glassy) need to be determined.  Due to the fact that this 

work assumes the same form of the Helmholtz free energy for each phase (with different 

material properties), the derivations will be presented in terms of a more general material 

(i.e. the superscripts ‘r’ and ‘g’ will be omitted).  First, recall the Helmholtz free energy 

and second Piola-Kirchhoff stress (cf. Equations (48) and (54)), which are presented 

again in Equations (144) and (145). 

 

   

 

2
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c e
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
  



      

 
   

 

  
       

  

CC

  (144) 

  2 1 12 1
3 1 ln

2 2 3
J J

J

  
        

          
   

S I C C   (145) 

 Written in indicial notation, the second Piola-Kirchhoff stress is given by 

Equation (146), and the derivative with respect to the right Cauchy-Green deformation 

tensor is given by Equation (147). 

 

 

2 1

1
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2 1
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J

 
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  





          

          

  (146) 
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   

           

                 
 

  (147) 

  

Using the partial derivatives of Equations (147) and (148), the material elasticity tensor 

is then presented through Equation (149). 

 

1

1 1ij

ik lj
kl

C

C C
C



 

 
 

    
   

  (148) 
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                     

                    

  (149) 

 Using the symmetry of the material elasticity tensor (i.e. mat mat
IJKL IJLKC C ), the 

second term is rewritten in Equation (150). 
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  (150) 
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Expressing the components of the inverse of the right Cauchy-Green deformation 

tensor in terms of the deformation gradient through Equation (151), the multiplied 

tensors in Equation (150) can be rewritten as Equation (152). 

 
1 1 1

IJ Ix Jx
C F F       
     

  (151) 
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1 1 1 1 1 1
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           

           
           

  (152) 

 Thus, substituting Equation (152) into Equation (150), which is then substituted 

into Equation (141), the resulting spatial elasticity tensor is given in Equation (153). 
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which can also be written in tensorial form, as shown in Equation (154). 
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  (154) 

where I  is used to denote the second order identity tensor, and I  is the fourth order 

symmetric identity tensor.  Note that, for an undeformed material  1, 1J F , the 

spatial elasticity tensor reduces to that of a linear elastic material 2   c I I I . 
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 Thus, by calculating the spatial elasticity tensor of the form in Equations (153) or 

(154) and the Kirchhoff stress for each the rubbery and glassy phases, the Jacobians for 

each phase are calculated through Equations (138) and (140).  These Jacobians are then 

substituted into Equation (143) to find the Jacobian for the material, as a mixture of the 

rubbery and glassy phases. 

 

IV.E.  Calibration of Material Properties and Uniaxial Model Predictions 

 The kinematic equations and compressible constitutive equations in Equations 

(44), (100), (101), and (99) form the system of equations that must be solved to predict 

the behavior of the shape memory polymer system.  Due to the assumption of isotropic 

material behavior in the rubbery and glassy phases, it is necessary to quantify seven 

calibration parameters,  , , , , , ,r g r g r g         , which respectively represent the 

shear moduli in the rubbery and glassy phases, the Lamé coefficients in the rubbery and 

glassy phases, the coefficients of thermal expansion in the rubbery and glassy phases, 

and the glassy volume fraction as a function of temperature.   

Similar to the 1D modeling in Chapter III, the 10% extension free recovery 

experiment is used to calibrate the shear moduli and the glassy volume fraction.  

Specifically, the rubbery and glassy tensile moduli are calibrated to the isothermal 

loading and unloading procedures at 90°C and 25°C, respectively.  The shear moduli and 

Lamé coefficients are then calculated using Equations (24) and (49), respectively.  The 

rubbery Poisson ratio is assumed to be 0.499 to capture the assumed nearly 

incompressible behavior of the rubbery phase while maintaining slight compressibility 
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for the chosen form of the constitutive equations and numerical implementation.  In 

addition, the Poisson ratio for the glassy phase is assumed to be 0.4, which is considered 

similar to other polymers in the glassy phase [125].   

The glassy volume fraction is assumed to take the shape of the free recovery 

extension profile, which is shown in Figure 14(b) to be independent of the value of 

applied deformation.  As a result, the glassy volume fraction is modeled using the 

hyperbolic tangent equation, the parameters of which are fit to the normalized 10% free 

recovery extension profile as shown in Figure 19. 

In addition, the coefficients of thermal expansion are calibrated from 

Thermomechanical Analysis (TMA) results that were conducted on cylindrical 

specimens approximately 4mm in diameter and 5-7mm in length (cf. Section A.2.1.3 of 

Chapter II). 

Finally, the material properties related to the heat transfer ability of the material 

were calculated using a HotDisk
®

 Thermal Conductivity Analyzer.  Two square 

specimens approximately 2cm x 2cm x 3mmwere machined from a cylindrical specimen 

that was fabricated using the protocol in Chapter II and cured in a 20mL syringe.  In this 

analysis, the two specimens were used to sandwich the sensor and the temperature 

increase of the sensor is used to determine the thermal conductivity and specific heat of 

the SMP specimen.    

Presented in Table 8 is the list of all of the material properties that are calibrated 

– using shape memory tensile tests, thermomechanical analyzer, and thermal 

conductivity analysis – on the polyurethane shape memory polymer that is described in 
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more detail in Chapter II.  The calibrated model is then used to predict the uniaxial 

experiments of Chapter II.  To perform this simulation, two first order elements were 

subjected to the uniaxial deformations and temperatures experienced by the dogbone 

specimens.  The resulting simulation for the 10% free recovery experiment, from which 

many of the material properties were calibrated, is shown in Figure 34(a) and (b), with 

the stress-temperature results in Figure 34(a) and the extension-temperature results 

shown in Figure 34(b).  

 

 

 (a)   (b) 

Figure 34 – Comparison of the (a) stress-temperature and (b) extension-

temperature modeling results (solid black line) compared to the experimental data 

(dotted red line) for the 10% extension free recovery case from which the shear 

modulus and glassy volume fraction are calibrated.  The modeling results are 

obtained through the Abaqus finite element analysis of a two element, three-

dimensional structure subjected to uniaxial tension. 
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Table 8 – Material properties – calculated from a 10% free recovery experiment, 

thermal mechanical analysis, and thermal conductivity analysis – used as input to 

the finite element model using isotropic, compressible neo-Hookean equations. 

Parameter Value 

Rubbery phase shear modulus
 
 8.5 MPar   

Glassy phase shear modulus
 
 648 MPag   

Rubbery phase Lamé coefficient
 
 4244 MPar 

 
 

Glassy phase Lamé coefficient 2596 MPag 
 
 

Rubbery phase  

coefficient of thermal expansion 
42.1*10  /Kr   

Glassy phase  

coefficient of thermal expansion 
57.8*10  /Kg   

Glassy volume fraction  

max

max min

min max

tanh tanh

( )

tanh tanh

323,  363

508.44, 18.71, 1.00          <341.1

347.25, 3.05, 0.94           341.1

A A

B B
C

A A

B B

A B C

A B C

 

 
 

 





    
   

  
    

   
  

 

  

   

 

Density 6 31*10  kg/mm 
  

Specific heat  1596 J/ kg Kc  
  

Thermal conductivity  42.946*10  W/ mm Kthk  
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In addition, the finite element subroutine was used to predict the other free 

recovery cases (15%, 20%, and 25% applied extension) and the constrained recovery 

cases (10%, 15%, 20%, and 25% applied extension).  The comparison of the model 

predictions to the free and constrained recovery data is shown in Figure 35(a) and (b), 

respectively. 

 

 

 (a)   (b) 

Figure 35 – Comparison of the model predictions versus experimental results for 

(a) free recovery and (b) constrained displacement recovery profiles.  The modeling 

results are obtained through the Abaqus finite element analysis of a two element, 

three-dimensional structure subjected to uniaxial tension.  Extensions of 15%, 

20%, and 25% are applied in the free recovery analyses, and extensions of 10%, 

15%, 20%, and 25% are applied in the constrained displacement recovery 

analyses. 
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IV.F.  Three-Dimensional Analyses 

 After calibrating the material properties, the implemented model is used to 

predict the response of systems undergoing various thermal and mechanical loads.  The 

analyses are performed in Abaqus
®
, using the user material subroutine described in this 

chapter.  In this work, four geometries are considered – a thin walled cylindrical section, 

a cylindrical compression sample, and two thrombectomy device designs.  

 

IV.F.1.  Thin-Walled Cylindrical Tube 

 Polymeric stents have been developed [11] with complex geometries that allow 

for sufficient radial recovery force while maintaining lateral flexibility through tortuous 

pathways.  An example of one such stent is shown in Figure 36, which is based off the 

work of [41, 58, 61], where the solid rings primarily provide the radial recovery and the 

‘S’ shaped struts provide flexibility for navigating narrow arteries.  The analyses in this 

section consider the expansion and the crimping of a simplified geometry as a first step 

toward modeling the complete stent with a complex geometry.  

 

 

Figure 36 – Prototype of a shape memory polymer neurovascular stent.  Courtesy 

of Landon Nash, Texas A&M University. 
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IV.F.1.1.  Expansion of a Thin-Walled Cylinder 

The first analysis considers a thin-walled cylinder that could be considered 

similar to one of the solid rings in the SMP stent.  In the analysis, a tube of length 10 

mm, inner diameter of 20mm, and thickness 0.5mm is considered.  For purposes of 

analysis, symmetry conditions are applied such that only 1/8
th

 of the tube is considered 

in the computational analysis.   

The tube begins at 90°C and is then expanded radially by 5mm, applied to the 

outer surface.  Maintaining this radial expansion, the temperature is decreased uniformly 

to 25°C.  After cooling to the glassy phase, the radial displacement boundary condition 

is released and the cylinder remains in its temporary shape.  The cylinder is then heated, 

under zero applied load, back to 90°C and full recovery is observed.  Figure 37(a) shows 

the boundary condition setup, with the radial expansion applied to the outer surface.  In 

addition, Figure 37(b) shows the expanded tube, with the contours representing the 

maximum principal logarithmic strain in the tube, as compared to the original tube. 

 

IV.F.1.2.  Crimping of a Thin-Walled Cylinder  

In inserting stent-like devices into the body, the device must first be crimped 

down before delivering through a catheter. As a first step toward modeling the crimping 

of a complex stent, this analysis considers a thin-walled cylinder that is crimped to a 4 

point star.  The geometry of the undeformed tube has a length of 20mm in length, an 

inner diameter of 10mm, and a thickness of 0.25mm.  For computational saving,.  
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 (a)   (b) 

Figure 37 – (a) Analysis setup showing the radial expansion of 1/8
th

 of a thin-walled 

cylinder, and (b) the expanded configuration compared to the original 

configuration of the tube. The tube was expanded radially by 5mm, applied to the 

outer surface.  The contours in (b) represent the maximum principal strain in the 

tube, with a uniform value of 0.41 mm/mm. 

 

 
 

Figure 38 - Change in diameter as a function of temperature for the thin-walled 

cylinder.  The cylinder, modeled as 1/8th of the full geometry, is expanded radially 

by 5mm at 90°C, cooled to 25°C maintaining a constant diameter, released, and 

then heated under zero applied load to 90°C. 
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symmetry conditions are enforced and 1/8th of the initial geometry is modeled in 

Abaqus 

In performing the crimping, the tube temperature is initially 90°C, at which the 

SMP is in the rubbery phase.  An inward radial displacement of 4.5mm is then applied to 

the nodes along the 45 degree line, as shown in Figure 39(a).  The comparison of the 

entire geometry before and after the crimping is shown in Figure 39(b).  After 

deforming, the tube is cooled – maintaining the applied displacement – to 25°C, at which 

the SMP is completely in the glassy phase.  The displacement boundary condition is then 

removed, and the tube is again heated to 90°C with zero applied load.  

 

  

 

 (a)   (b) 

 

Figure 39 – (a) Analysis setup showing the inward radial displacement of 1/8
th

 of a 

thin-walled cylinder along the 45° nodes, and (b) the crimped configuration 

compared to the original configuration of the tube. The tube was crimped by 

applying a radial displacement of 4.5mm to the nodes along the 45° line. 
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 (a)  (b) 

  

 (c)  (d) 

 

Figure 40 – (a) Radial displacement and temperature profile for one node on the 

45° line (i.e., where the radial displacement is applied) plotted as a function of the 

fictitious analysis time, and the glassy volume fraction (GVF) contours for (b) the 

beginning of the shape recovery (GVF = 1.0), (c) the middle of shape recovery 

(GVF = 0.5), and (d) the end of recovery (GVF = 0.0). 
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Figure 40(a) presents the temperature and radial displacement of a node along the 

45° line on the interior surface of the cylinder – the region in which the displacement 

boundary conditions were applied.  Figure 40(b) – (d) shows the contour plots and shape 

of the crimped tube as it is heated through recovery.  Specifically, Figure 40(b) shows 

the device at the beginning of the recovery heating (i.e., after crimping, cooling, and 

unloading) when the glassy volume fraction is equal to 1.0, Figure 40(c) shows the 

device once the glassy volume fraction has decreased to 0.5, and Figure 40(d) shows the 

device at the end of the recovery heating once the glassy volume fraction has reached 

0.0.   

 

IV.F.2.  Cylindrical Compression Sample 

 In these analyses, a cylindrical compression sample is modeled to predict the 

response of a cylindrical sample undergoing compressive loading and to show the effects 

of applying different temperature boundary conditions during the recovery process.  

Specifically, a cylindrical specimen with a diameter of 20mm and length of 20mm is 

subjected to the free recovery shape memory cycle.  The bottom of the specimen was not 

allowed to move vertically.  The top of the specimen was placed in contact with and 

deformed by a compression platen.  ‘Hard’ contact was used to prevent penetration of 

the top surface of the SMP into the compression platen, and the interaction between the 

SMP and the platen was assumed to be frictionless.  As shown in Figure 1(a), only ¼ of 

the SMP is modeled with symmetry conditions enforced. 

The initial temperature for the entire material was set to be 90°C so that the 

material was in equilibrium at the rubbery phase.  The compression platen was then 
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moved down to compress the sample by 10% extension.  The undeformed and deformed 

configurations are compared in Figure 41(b).  During cooling to 25°C, the platen is 

slowly moved up to reflect the thermal contraction of the platen and the connecting 

extension rods.  

 

 (a)  (b) 

Figure 41 – (a) Setup of the finite element assembly, modeling ¼ of the shape 

memory polymer cylinder and a rigid compression platen used to deform the SMP.  

(b) A comparison of the shape memory cylinder in the undeformed and deformed 

configurations at 90°C.  The SMP was compressed by 10%, and the compression 

platen is not shown for clarity. 

 

Preliminary experiments have shown the compression platen and attached 

extension rod move upward, after a delay of 11 minutes when heated/cooled at 1°C/min, 

by 0.39mm.  These experimental observations are incorporated into the finite element 

analyses by beginning to move the compression platen 11 minutes after the cooling is 

initiated (at a temperature rate of 1°C/min).  The associated displacement profile is such 

that the fixture moves up linearly by 0.39mm for the remainder of the cooling procedure. 
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 (a)  (b) 

Figure 42 – Comparison of the von Mises stress in the SMP at (a) the beginning of 

the constrained cooling procedure (temperature = 90°C, glassy volume fraction = 

0)and at (b) the end of the cooling procedure (temperature = 25°C, glassy volume 

fraction = 1).  The stress becomes zero as the SMP is locked in the temporary shape 

and the platen moves upward due to thermal contraction.   

 

The specimen is then reheated to observe the shape recovery.  In these analyses, 

the effects of the temperature boundary conditions are exploited.  In particular, four 

different temperature boundary conditions are considered, including: 

 

1. Cooling and heating the whole material uniformly – applying the temperature 

change to all of the nodes at the same time 

2. Cooling and heating only the top and bottom of the specimen with the lateral 

surface insulated 

3. Cooling and heating all exterior surfaces (top, bottom, and lateral surface) 
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4. Cooling and heating the lateral surface at a prescribed temperature rate with a 

slower temperature change on top and bottom (i.e., to model the effects that 

might be experienced due to the time necessary to heat/cool the compression 

platens that are in contact with the specimen) 

 

Case 1 is analyzed using standard three-dimensional continuum elements with a 

uniform temperature assigned to each node.  To model the cases 2-4, the transient heat 

transfer capability of Abaqus
®
 was used in conjunction with the coupled thermal-

displacement elements to allow for the simultaneous heat transfer and shape memory 

effect.  In the transient cases, the temperature rate (on the relevant boundaries) was 

increased at a rate of 1°C/min.  Pictorial results for each of the transient sections will 

first be presented, and then a comparison of the temperature of the center node versus 

time will be presented.  In addition, the model predictions in case 1 and 4 are compared 

to a preliminary experimental result on a SMP cylindrical sample exposed to a free 

recovery shape memory thermomechanical load path in Appendix B. 

 

IV.F.2.1.  Uniform Heating 

 In this first case, the temperature change required to induce the shape recovery 

during the final heating step was prescribed uniformly to each node.  In other words, this 

scenario represents the quasi-static heating case in which the temperature rate is assumed 

to be sufficiently slow to raise the temperature of the cylinder uniformly.  Figure 43 

shows the stress and strain response for the entire shape memory cycle.  In tracing the 
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path of the state of the material, the SMP first begins at 90°C.  The compression platen is 

then lowered along path (1) to induce a compressive strain and stress in the material.   

After loading, the material is cooled along path (2).  When cooling from 90°C to 

80°C, the strain remains nearly constant while the magnitude of the stress decreases 

slightly, which is due to thermal contraction of the rubbery phase and the onset of the 

glass transition.  At approximately 80°C, the compression platen begins to move up due 

to thermal contraction of the platen and the extension rod.  As the platen moves up, the 

SMP elastically recovers some of the applied strain.  At 65°C, the transition to the glass 

phase is complete, the applied deformation is stored, and the platen loses contact with 

the shape memory polymer causing the stress to go to zero.  From 65°C to 25°C, the 

thermal contraction of the material in the glassy phase is observed.   

 After the cooling step is complete, the platen is moved upward to not interfere 

with the specimen recovery, and the temperature is raised from 25°C to 90°C.  With no 

applied loads, the SMP undergoes free recovery.  From 25°C to 65°C, thermal expansion 

of the glassy phase is observed.  Starting at approximately 65°C, the transition from the 

glassy phase to the rubbery phase initiates, and the SMP recovers all of the applied 

deformation. 

 

IV.F.2.2.  Heating the Top and Bottom 

 The first coupled temperature-displacement analysis considers the behavior of 

the material if the top and bottom of the material were heated while the lateral surfaces 

were kept insulated.  In this simulation, the temperature is increased on the top and 
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bottom surfaces at a rate of 1°C/min.  Figure 44(a) and (b) show the response of the 

cylinder (cross-sectional view) when the applied temperature is approximately 66°C and 

 

 

Figure 43 – Simulation of a compression experiment performed on a cylindrical 

SMP sample.  10% compressive strain is applied along path (1).  The material is 

then cooled along path (2) and the magnitude of the stress decreases to 0 due to 

thermal contraction and the phase transition.  The SMP is subsequently heated 

along path (3) at zero applied load to induce shape recovery. 

 

76°C, respectively.  The temperature is observed to increase first on the vertical faces 

while there is a delay in heating the interior of the SMP.  In particular, due to the 

insulated boundary conditions, the temperature is observed to be constant for points 

sharing the same vertical coordinate.  Further, in Figure 44(b), the temperature gradient 

induces a curvature along the top and bottom of the horizontal surfaces, creating a 

barreling effect due to the faster recovery in these regions. 
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 (a)  (b) 

Figure 44 – Cross-sectional view of the shape memory polymer cylinder when the 

applied temperature is approximately (a) 66°C and (b) 76°C.  The temperature 

change is applied on the top and bottom surfaces, and the circumferential surface is 

kept insulated.   

 

 

IV.F.2.3.  Heating All Exterior Surfaces 

 In a variation to the coupled temperature-displacement analysis, this simulation 

now considers the scenario in which all exterior edges are heated uniformly.  

Specifically, the top, bottom, and circumferential surfaces are heated at a temperature 

rate of 1°C/min.  Figure 45(a) and (b) present the cross-sectional view of the cylinder 

when the external temperature is approximately 66°C and 76°C, respectively.   It is 

observed that the temperature increases near the edges while there is delay in the 

temperature increase in a concentric region on the interior of the SMP. 
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 (a)  (b) 

Figure 45 – Cross-sectional view of the shape memory polymer cylinder when the 

applied temperature is approximately (a) 66°C and (b) 76°C.  The temperature 

change is applied on the top, bottom, and circumferential surfaces.  

 

 

IV.F.2.4.  Heating All Exterior Surfaces with a Delay on Top and Bottom 

 The final variation to the transient coupled temperature-displacement analysis 

considers a scenario in which the circumferential surface is heated at the nominal 

temperature rate while the top and bottom surfaces are heated differently.  Specifically, 

the circumferential surface is heated from 25°C to 90°C at a temperature rate of 

1°C/min.  The top and bottom surfaces are held at 25°C for 11 minutes, and then heated 

to 90°C at a temperature rate of 1°C/min.  The delay in heating the top and bottom 

surfaces is intended to approximate the effects of these surfaces being in contact or near 

the compression platens.  Figure 46(a) and (b) present the temperature gradients in the 

cross-sectional view of the cylinder when the circumferential temperatures are 

approximately 66°C and 76°C, respectively.  It is observed that the temperature 

increases in a parabolic manner toward the center of the specimen. 
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IV.F.2.5.  Comparison of the Center Node Temperature as a Function of Time 

 Four analyses have been performed that consider the effects of different 

temperature boundary conditions during the free recovery heating of a shape memory 

polymer cylinder.  The first scenario assumed the cylinder was heated uniformly through 

the thickness, while the remaining scenarios applied the temperature gradients to 

combinations of the top, bottom, and circumferential surfaces. Figure 47 presents the 

temperature at the center of the specimen as a function of time.  The nominal applied 

temperature profile is shown in black.  It is observed that the center remains 

approximately 1-5°C cooler than the applied temperature, dependent on the temperature 

boundary conditions. Figure 48 presents the displacement of the node in the center of the 

top surface during the recovery heating.  It is observed that, compared to heating all 

exterior surfaces, the displacement recovery is delayed by 2 minutes when only the top 

and bottom surfaces are heated and by 4 minutes when the top and bottom surfaces are 

heated slower than the circumferential surface. 

 

IV.F.3.  Thrombectomy Device 

In the final set of analyses, the user material subroutine developed in this work is 

used to model the response of a thrombectomy device that has been proposed for the 

removal of blood clots.  The device, based on the work of  [41], is crimped down, and 

then deployed in a “net-like” manner to remove the clot.  A prototype of this device was 

demonstrated [42] to be capable of heating via magnetic induction and the incorporation 

of ferromagnetic particles.  The analysis performed in work considers only  
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 (a)  (b) 

Figure 46 – Cross-sectional view of the shape memory polymer cylinder when the 

applied circumferential temperature is approximately (a) 66°C and (b) 76°C.  A 

temperature change of 1°C/min is applied to the circumferential surface.  To 

approximate the effects of being near or in contact with the compression platens, 

the top and bottom surfaces are held at a constant temperature for 11 minutes 

before being heated at a temperature rate of 1°C/min. 

 

 

Figure 47 – Comparison of the temperature in the center of the specimen for the 

three simulations with transient boundary conditions.  The temperature for the 

three cases is compared to the nominal applied temperature, shown in black.  As all 

three transient cases were prescribed the same cooling boundary conditions, only 

the recovery heating portion of the temperature profile is pictured. 
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Figure 48 – Comparison of the displacement of the center node on the top surface 

as a function of time during the recovery heating for the three transient boundary 

conditions.  As compared to heating all external surfaces uniformly (red line), it is 

observed that the motion of the center node is delayed by approximately 5 minutes 

when the top and bottom surfaces are heated slower than the circumferential 

surface (green line). 

 

 

the neat shape memory polymer, without ferromagnetic particles, and the response of the 

device when subjected to temperature boundary conditions rather than magnetic.   

In this work, the effects of heating the core of the device at different temperature 

rates, up to 5°C/min, are studied.  In these preliminary analyses, potential external forces 

(e.g., fluid flow, contact with arterial walls, etc.) are not considered.  In other words, 

these analyses consider only the material response as a result only of the loads necessary 

to deform the device into its secondary shape.   
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IV.F.3.1.  Device Geometry 

The device in this work is composed of a thick walled cylinder that serves as the 

center plug that provides strength and a component to help with device delivery.  

Surrounding the center plug are two levels of patterned loops.  The first, inner level 

consists of eight loops that are almost diamond in shape.  The second, outer level 

consists of eight larger loops that have a curved outer region.  The outer diameter of the 

device is 12mm.  The thickness of the device, outside of the center core, is 0.5mm and 

the width of the struts is approximately 0.2mm.   

For computational purposes, the net-like device is modeled using 1/16
th

 

symmetry, and is crimped using an analytical rigid funnel.  The inner radius of the 

funnel is 6.5 mm, and the funnel has a curved leading edge to facilitate a smooth 

transition when crimping the device.  The hard contact feature in Abaqus is enforced 

such that there is no penetration between the device and the funnel.  In addition, the 

surface between the funnel and the device is modeled as frictionless.  The setup of the 

finite element geometry, with symmetry invoked on the thrombectomy device, is shown 

in Figure 49(a) and (b).  In addition, Figure 49(b) shows a top-view comparison of the 

diameter of the device compared to the inner diameter of the funnel. 
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 (a)  (b) 

Figure 49 – Setup of the finite element geometry for the net-like thrombectomy 

device, as viewed (a) from the side and (b) from the top.  The device, 12mm in outer 

diameter, is modeled using 1/16
th

 symmetry and is crimped using an analytical rigid 

funnel 6.5mm in inner diameter. 

 

IV.F.3.2.  Setting the Temporary Shape 

In this analysis, the device is set to an initial temperature of 90°C, at which the 

SMP is in the rubbery phase and above the transition temperature range.  To crimp the 

device, the bottom of the stem is held fixed and the funnel is slid over the device causing 

the ‘pedals’ of the device to bend away from the center stem.  Figure 50 shows the 

device as it is being crimped by the funnel.  The funnel in its initial, intermediate, and 

fully crimped states is shown in the first, second, and third rows, respectively.  The 

glassy volume fraction (SDV20) is shown in the left set of contours and the von Mises 

stress is shown in the right set of contours.  Due to the temperature being 90°C, the 

glassy volume fraction is observed to be equal to 0.0.  In addition, stress concentrations 

are observed in the struts of the inner loops that connect to the center plug – the region 

that experiences the highest degree of bending.   
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The device is then cooled uniformly to 25°C while constrained inside the funnel.  

Once completely locked in the glassy phase, the funnel is removed and the device is 

locked in its temporary shape.  This shape represents the configuration in which the 

device would be transported through the catheter.  Figure 51 shows the device at the end 

of the cooling step (top row) and after removing the funnel (bottom row).  It is observed 

that the glassy volume fraction is equal to 1.0 as the SMP has completely cooled to the 

glassy phase.  In addition, the cooling procedure decreased the stress concentrations in 

much of the device (cf. stress contours in the first row of Figure 51 to those in the last 

row of Figure 50).  This decrease is due to the thermal contraction, which relieves a 

portion of the stress due to the device shrinking and partially elastically unloading.  A 

further decrease in the stresses is observed in the bottom row of Figure 51 as the funnel 

is removed and no additional loads are applied to the device.   

 

IV.F.3.3.  Device Actuation 

Finally, the device is heated to 90°C, with zero applied loads, and recovery of the 

original shape is observed.  In this work, the recovery of the device is simulated under 

five temperature boundary conditions.  In the first case, the temperature change is 

assigned to all nodes such that the device heats uniformly.  In the remaining cases, the 

temperature gradient is applied only to the center stem region at rates of 1°C/min, 

2°C/min, 5°C/min, and 65°C/min respectively.   
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Figure 50 – Crimping of the net-like thrombectomy device, as shown from a side 

view (left) and a top view (right).  The initial state of the device is shown in the first 

row, the device in the middle of crimping is shown in the second row, and the 

device fully crimped is shown in the last row.  The contours indicate the glassy 

volume fraction (left) and the von Mises stress (right).   
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Figure 51 – Cooling and removal of the funnel in the shape setting process of the 

net-like thrombectomy device, as shown from a side view (left) and a top view 

(right).  The first row shows the device as cooled inside the funnel, and the second 

row shows the device with the funnel removed after cooling.  The contours indicate 

the glassy volume fraction (left) and the von Mises stress (right).   

 

 

IV.F.3.3.1.  Uniform Heating 

 In this simulation, the temperature gradient during recovery was applied to all 

nodes at the same time.  As such, the temperature increased uniformly throughout the 

device.  Figure 52 shows the progression of the device recovery at approximately 48°C, 

79°C, 83°C, and 90°C.  It is observed that nearly full actuation is observed once the 

temperature reaches 79°C. 
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Figure 52 – Recovery progression of the net-like thrombectomy device when the 

temperature increase is applied to all nodes uniformly.  Pictured, from left to right, 

is the device at approximately 48°C, 79°C, 83°C, and 90°C.  The device is observed 

to finish actuation at approximately 79°C. 

 

IV.F.3.3.2.  Heating Core at 1°C/min 

 In this simulation, the temperature gradient was applied only to the center core of 

the device at a rate of 1°C/min.  The surfaces on the remainder of the device are kept 

insulated.  Figure 53 shows the progression of the device recovery at approximately 

48°C, 79°C, 83°C, and 90°C.  It is observed that the temperature profile is nearly 

uniform; however, a slight temperature gradient is observed between the center core and 

the outer regions of the device.  It is observed that nearly full actuation is observed once 

the core temperature reaches 83°C. 

 

IV.F.3.3.3.  Heating Core at 2°C/min 

In this simulation, the temperature gradient was applied only to the center core of 

the device at a rate of 2°C/min, and the surfaces on the remainder of the device are kept 

insulated.  Figure 54 shows the progression of the device recovery at approximately 

48°C, 79°C, 83°C, and 90°C.  A larger temperature gradient is observed between the 
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center core and the outer regions of the device, and this temperature gradient begins to 

noticeably slow the early stages of the shape recovery (cf. Figure 53).  It is observed that 

nearly full actuation is observed once the core temperature reaches approximately 83°C. 

 

 

Figure 53 - Recovery progression of the net-like thrombectomy device when the 

temperature increase is applied to the center core at a temperature rate of 1°C/min.  

Pictured, from left to right, is the device at approximately 48°C, 79°C, 83°C, and 

90°C. The device is observed to finish actuation once the core temperature reaches 

approximately 83°C. 

 

 

 

Figure 54 - Recovery progression of the net-like thrombectomy device when the 

temperature increase is applied to the center core at a temperature rate of 2°C/min.  

Pictured, from left to right, is the device at approximately 48°C, 79°C, 83°C, and 

90°C. The device is observed to finish actuation once the core temperature reaches 

approximately 83°C. 
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IV.F.3.3.4.  Heating Core at 5°C/min 

In the third transient simulation, the temperature gradient was applied only to the 

center core of the device at a rate of 5°C/min, and the surfaces on the remainder of the 

device are kept insulated.  Figure 55 shows the progression of the device recovery at 

approximately 48°C, 79°C, 83°C, and 90°C.  A significant temperature gradient (~10°C) 

is observed between the center core and the outer regions of the device.  As such, a 

noticeable delay in the shape recovery is observed in each step of the recovery process.  

Full actuation is observed once the core temperature reaches approximately 90°C. 

 

 

Figure 55 - Recovery progression of the net-like thrombectomy device when the 

temperature increase is applied to the center core at a temperature rate of 5°C/min.  

Pictured, from left to right, is the device at approximately 48°C, 79°C, 83°C, and 

90°C. The device is observed to finish actuation once the core temperature reaches 

approximately 90°C. 

 

 

IV.F.3.3.5.  Heating Core at 65°C/min 

In the fourth transient simulation, the temperature gradient was applied only to 

the center core of the device at a rate of 65°C/min, and the surfaces on the remainder of 

the device are kept insulated.  This temperature rate is used to model a rate closer to a 
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rate that may be expected during practical device deployment.  It is noted, however, that 

the insulated boundary conditions on the remainder of the device are not representative 

of an actual deployment environment.  As such, the focus of this simulation is to 

demonstrate the capabilities for predicting the delay of device deployment due to much 

faster temperature rates.  Additional future work should consider the effects of natural 

and/or forced convection to provide a more accurate prediction for the time necessary to 

fully deploy the device.  Figure 56 shows the progression of the device recovery at 

approximately 48°C, 79°C, 83°C, and 90°C.  A significant temperature gradient is 

observed between the center core and the outer regions of the device, and actuation of 

the device is not observed even when the core of the device first reaches 90°C. 

 

 

Figure 56 - Recovery progression of the net-like thrombectomy device when the 

temperature increase is applied to the center core at a temperature rate of 5°C/min.  

Pictured, from left to right, is the device at approximately 48°C, 79°C, 83°C, and 

90°C. The device is observed to finish actuation once the core temperature reaches 

approximately 90°C. 
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IV.F.3.3.6.  Recovery Comparison 

 In this section, a quantitative comparison of the device recovery as a function of 

the temperature conditions is presented.  The previous sections showed pictorial 

evidence of the effects of the temperature boundary conditions on the device actuation.  

Recall that, in the cases where a temperature rate was prescribed, the temperature 

gradient was applied to the core of the device and the remainder of the device was 

treated as insulated.  Figure 57 presents the magnitude of the displacement of the tip of 

the device as a function of the temperature rate.  It is observed that the shift in the tip 

recovery temperature is approximately 1°C, 2°C, and 9°C for temperature rates of 

1°C/min, 2°C/min, and 5°C/min, respectively, as compared to the uniformly heated 

(quasi-static) device deployment.  In addition, Figure 58 presents the temperature at the 

outer edge (tip) as a function of time, which has been normalized by the time necessary 

to heat the core to 90°C.  A small delay is observed in heating the tip for temperature 

rates of 1°C/min, 2°C/min, and 5°C/min while it takes over 5 times the time to heat the 

tip when the core is heated at 65°C/min.   

 The effects of heating the core at 65°C/min can further be seen in Figure 59, in 

which the magnitude of the tip displacement is plotted as a function of heating time.  

Although the core of the device heats in 1 minute, it is observed that the device does not 

complete actuation until approximately 4 minutes after the start of heating.   
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Figure 57 – Comparison of the magnitude of the tip displacement as a function of 

the core temperature for uniform (quasi-static) heating as well as heating the core 

at temperature rates of 1°C/min, 2°C/min, and 5°C/min. 

 

 
 

Figure 58 – Comparison of the temperature of the edge of the device as a time for 

the increasing temperature rates.  The horizontal axis is normalized by the time it 

takes the core in each scenario to reach 90°C.   

 



 

177 

 

 
 

Figure 59 – Tip displacement as a function of the recovery heating time when 

heating the core at 65°C/min.  The heating profile of the core is shown for 

comparison.   

 

 

IV.G.  Summary and Conclusions 

 In this chapter, a large deformation model for shape memory polymer was 

implemented in a three-dimensional user material subroutine in Abaqus – a 

commercially available finite element software.  The kinematics were derived assuming 

the shape memory polymer consisted of a thermoelastic rubbery phase and a 

thermoelastic glassy phase, in which the deformation applied in the rubbery phase was 

stored during cooling.  The average deformation gradient was obtained through a volume 

average of the deformation gradient of the rubbery phase and the deformation gradient of 

the glassy phase.  An evolution equation was introduced for the recovery of the stored 

deformation during subsequent heating.  Specifically, the evolution equation assumed 
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the stored deformation was recovered proportional to the glassy volume fraction during 

heating.   

 The constitutive equations for the glassy and rubbery phases were assumed to 

take the form of a compressible neo-Hookean response, in which the Helmholtz free 

energy was derived in terms of the first and third invariants of the right Cauchy-Green 

deformation tensor.  These constitutive equations provided a more general framework 

than the incompressible neo-Hookean equations of the previous chapter, for which a 

specific boundary value problem must be solved or for which special considerations 

(e.g., penalty method) must be taken during the finite element implementation. 

 The numerical implementation was performed such that the system of equations 

to be solved was dependent on the temperature, and thus the glassy volume fraction, of 

the SMP.   In particular, for temperatures at which the glassy volume fraction is 0 or 1, 

the average deformation gradient was reduced to an explicit relationship in terms of the 

rubbery and glassy deformation gradients, respectively.  These deformation gradients 

were then substituted into the respective single phase constitutive equations to find the 

updated stress in the material.  For intermediate temperatures, the constitutive equations 

for both phases and the kinematics were solved simultaneously assuming the stress in the 

rubbery and glassy phases was equal.  The system of equations (i.e., kinematics and 

assumption that the rubbery stress was equal to the glassy stress) were solved using the 

Newton-Raphson method to find the updated stretches in the rubbery and glassy phase, 

which were then used to find the updated stress in the SMP. 



 

179 

 

 The Abaqus user material subroutine was then used to analyze a series of three-

dimensional boundary value problems.  The material properties were calibrated to the 

experiments performed in Chapter II, and the UMAT was used to predict the response of 

the remaining uniaxial free and constrained displacement recovery experiments.  The 

UMAT was then used to simulate the response of thin walled cylinders undergoing 

expansion and crimping procedures.  In the expansion procedure, a thin walled cylinder 

was expanded to twice the original diameter and allowed to recover to its original shape.  

In the crimping analyses, a longer thin walled cylinder was crimped to a four point star 

and then heated for free recovery. 

 In addition, heat transfer and thermoelastic coupling were used to analyze the 

effects of heating the SMP at faster temperature rates.  The balance of energy and 

entropy inequality equations were solved to find the relationship between the change in 

temperature and the change in the strain, and the thermoelastic coupling terms were 

coded in the user material subroutine for coupled thermomechanical analyses.  The 

associated material parameters, namely the specific heat and the thermal conductivity, 

were experimentally obtained via testing samples of the polyurethane SMP on a 

HotDisk
®
 Thermal Conductivity Analyzer.  Coupled thermal-displacement analyses 

were performed on more complex geometries and loading conditions.  In the first set of 

analyses, a compression cylinder 20mm in length and 20mm in diameter was loaded via 

a compression platen and subjected to the shape memory effect thermal cycle.  The 

effects of heating the SMP with different thermal boundary conditions on the exterior 

surfaces was analyzed, and it was observed that the effects of the realistic thermal 
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boundary conditions delayed the shape recovery up to 5 minutes  as compared to 

assuming the SMP is undergoing quasi-static (uniform heating).  Additionally, the 

crimping and actuation of a thrombectomy device was analyzed.  The thrombectomy 

device was first heated and crimped using an analytical funnel.  After cooling and 

removing the funnel, the core of the device was heated using temperature rates of 

1°C/min, 2°C/min, and 5°C/min while the remaining surfaces were kept insulated.  It 

was observed that the shift in the recovery temperature, as measured by the change in 

displacement of the outer region of the device, was up to 9°C for temperature rates up to 

5°C/min.   
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CHAPTER V  

CONCLUSIONS AND FUTURE WORK 

 

This dissertation focused on the experimental characterization and constitutive 

modeling of shape memory polymers.  These efforts focused on enhancing the 

understanding of a new shape memory polymer system and developing an 

experimentally calibrated and validated finite element tool that is capable of predicting 

the response of shape memory polymer devices.  

 

V.A.  Experimental Characterization  

Tests were performed on a polyurethane shape memory polymer that was 

previously untested in terms of its shape memory capability.  The material was 

fabricated in a custom mold and cut to dogbone specimens that were tested.  The SMP 

was tested under both free recovery and constrained displacement recovery conditions at 

applied extensions of 10%, 15%, 20%, and 25%.  In performing the experiments, 

modifications to the thermomechanical load path were introduced.  For free recovery 

experiments, the specimen was ungripped at the end of the cooling and unloading steps.  

As a result, it was ensured that no loads were applied to the material during the recovery 

heating process.  During the constrained displacement recovery heating, out-of-plane 

motion due to thermal loads was observed while the material was heated in the glassy 

phase.  To avoid this effect and better isolate the true material response, the bottom grip 

was released at the start of the recovery heating.  Thus, the SMP was allowed to hang 



 

182 

 

freely under zero applied load at the beginning of the heating step.  Before the material 

reached the temperature range at which recovery was expected, the bottom of the 

specimen was re-gripped and the displacement was held constant, which induced the 

desired tensile stress as the material attempted to return to its original, permanent shape.  

 In both recovery cases, the displacement of the material was measured using a 

laser extensometer.  The use of this non-contact measurement technique provided the 

capability to measure the strain of the material during the free recovery experiments (i.e., 

when the specimen was not gripped on bottom and the tensile tester crosshead was not 

moving).  In addition, the strain of the material was measured during the constrained 

cooling step.  Compared to using the crosshead of the tensile tester during the cooling 

step to calculate the strain, the laser extensometer revealed the deformation that was 

being imposed on the specimen due to the thermal contraction of the grips and the 

extension rods.  This deformation was subsequently minimized by utilizing the PID 

parameters of the tensile tester to move the crosshead as necessary to minimize the 

change in the strain the sample, as measured by the laser extensometer, during the 

constrained cooling process. 

In the initial loading path, the polyurethane shape memory polymer exhibited a 

stress-strain response that was approximately linear.  In addition, the SMP was observed 

to recover all of the applied deformation, for all values of extension, in the free recovery 

experiments.  For the constrained displacement recovery, the SMP was observed to 

recover up to 4.2MPa for an applied extension of 25%.  The recovery of the SMP 

occurred at the same temperature, regardless of the amount of applied deformation.  The 
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shape memory polymer, however, was able to withstand larger strains during isothermal 

strain-to-failure experiments (up to 55%) as compared to shape memory experiments (up 

to 25%) when in the rubbery phase.  This difference is believed to be a result of the time 

that the SMP is held at the large deformations.  In the isothermal experiments, the 

loading step is relatively rapid and there is no time for microscopic defects to propagate 

throughout the specimen.  In the shape memory experiment, the material is loaded and 

then held at constant displacement as cooling is initiated.  Thus, more time is allowed for 

the propagation of defects at the start of the constrained cooling, which is when failure 

of the SMP was usually observed. 

While this work further developed the experimental techniques for testing shape 

memory polymers and contributed to the understanding of a new shape memory polymer 

that is being considered for biomedical devices, additional studies should be performed 

to fully understand the effects of these materials.  For instance, additional focus should 

be devoted to understanding and optimizing the processing conditions, which nay help 

maximize the amount of deformation the SMPs can be subjected to for shape memory 

cycles.  In addition, experiments should be performed to evaluate the effects of strain 

rate and loading temperature on the elastic response as well as the strength and shape 

recovery ability of the material.   

 

V.B.  Constitutive Modeling 

In this dissertation, a finite deformation model was implemented in 1-D and 3-D 

to model the response of the shape memory polymers.  The model considered the 
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material as a mixture of the rubbery and glassy phases.  Specifically, the average 

deformation gradient was derived through a volume averaging technique that accounted 

for the deformation gradient of the material still in the rubbery phase and the 

deformation gradient of the material that had transformed from the rubbery phase to the 

glassy phase.  As part of this volume averaging, a glassy volume fraction was introduced 

to represent the fraction of the material that was in the glassy phase at a given 

temperature.  Motivated through experimental observations that the transformation was 

independent of the applied stress or strain, the glassy volume fraction was assumed to be 

a function of only temperature.  In performing the volume average, the stress was 

assumed to be spatially constant in the representative volume element.  Consistent with 

this assumption, it was further assumed that the rotations of the rubbery and glassy 

phases were equal to that of the average rotation of the SMP.  As a result, the expression 

for the average deformation gradient was reduced to an expression for the average 

stretch as a function of the stretches in the rubbery and glassy phases.  Further, an 

evolution equation was introduced that assumed the stored deformation was recovered 

proportional to the glassy volume fraction during the recovery heating process. 

Focusing on only the thermoelastic response and experimentally observing the 

stress-strain response of both phases were approximately linear for all values of applied 

deformation, this work assumed each phase behaved as a neo-Hookean material.  In the 

1-D modeling, incompressible neo-Hookean constitutive equations were used.  The 

hydrostatic pressure term required to maintain incompressibility was eliminated due to 

the consideration of uniaxial boundary value problems.  In the 3-D modeling, 
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compressible neo-Hookean constitutive equations were used for both the rubbery and the 

glassy phases.  These compressible constitutive equations provided more generality for 

shape memory polymers in which at least one of the phases does not exhibit 

incompressibility.  In addition, the compressible constitutive equations provided a more 

convenient means to three-dimensional numerical implementation by avoiding the need 

to invoke a penalty method to account for the indeterminate hydrostatic pressure term.   

In these modeling efforts, the material properties were calibrated from 

experimental results.  Specifically, the elastic properties of the rubbery phase and glassy 

phase were calibrated from the loading and unloading steps, respectively, in a shape 

memory experiment.  The coefficients of thermal expansion were calibrated in 1-D to fit 

the stress-temperature increase observed during constrained cooling and were 

subsequently calibrated using thermomechanical analysis results for the three-

dimensional implementation and analyses.  The glassy volume fraction was assumed to 

take the shape of the extension-temperature during free recovery heating.  As a result, a 

hyperbolic tangent function was introduced and the coefficients were calibrated, using a 

least squares method, to fit the function to a normalized 10% extension free recovery 

experiment.   

The model was then implemented in a three-dimensional user material subroutine 

in Abaqus and represented the first three-dimensional implementation using the 

kinematics proposed by [42].  In the pure rubbery and glassy phases, an explicit equation 

was obtained for the new deformation gradients and the stress was obtained through 

substitution into the constitutive equations.  When both the rubbery and glassy phases 
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coexisted, the system of equations was solved using a Newton-Raphson method 

assuming the stress in the rubbery phase was equal to that in the glassy phase.  The 

model predictions matched well with the uniaxial experimental results.   

In addition, heat transfer and thermoelastic coupling were introduced by 

considering the first and second laws of thermodynamics and Fourier’s law to result in 

an equation for the change in the material temperature as a function of the change in the 

strain of the material.  The heat transfer material properties were calibrated from 

experimental results obtained on a HotDisk Thermal Conductivity Analyzer and used as 

input to the user material subroutine. 

Upon implementing and calibrating the model, the subroutine was used to 

analyze a series of boundary value problems.  First, thin-walled cylinders were subjected 

to expansion or crimping deformations, cooled to lock in the permanent shape, and then 

heated under zero applied load to recover the original shape.  In addition, a compression 

test was simulated.  Specifically, a cylindrical SMP was deformed via a compression 

platen, cooled to its temporary shape, and then heated under different thermal boundary 

conditions under zero applied load.  Through these simulations, it is expected that the 

SMP cylinder would recover its permanent shape up to 5 minutes later (when heated at 

1°C/min) than if the material was undergoing quasi-static heating.  Finally, a net-like 

thrombectomy device was crimped using an analytical rigid funnel, cooled to its 

temporary shape, and then the core of the device is heated at temperature rates of 

1°C/min to 5°C/min.  It is predicted that the core of the device would need to be heated 

approximately 9°C hotter in the faster heating rate (5°C/min) case than in the slower 
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heating rate (1°C/min) case to achieve the same amount of shape recovery, as measured 

by the magnitude of the exterior edge tip displacement. 

These modeling efforts developed a tool that can is capable of predicting the 

response of shape memory polymers, in complex geometries, to complex loading and 

thermal boundary conditions.  While the introduction of the evolution equation for the 

strain recovery during heating improved the efficiency of the UMAT, future efforts 

should focus on better improving the run times and robustness of this finite element tool.  

One possible approach would be to optimize the numerical algorithms in the current 

subroutine.  As this model considers the relationship between two discrete phases with 

discrete thermodynamic potentials, another approach to improve the tool would be to 

develop an alternate formulation of the material response from a unified 

thermodynamics potential.  This alternate formulation may result in a more efficient 

method for solving the system of equations (i.e., as compared to the current Newton-

Raphson method) as well as a better defined tangent modulus (i.e., as compared to the 

current rule of mixtures approach between the rubbery and glassy phases).   

In addition to improving the computational aspects of the current subroutine, 

future efforts should consider expanding this model to include viscoelastic strain rate 

effects, options for different rubbery and glassy constitutive behavior (e.g. Mooney-

Rivlin, etc.), and validating the three-dimensional model predictions.  Ideally, multiaxial 

testing in conjunction with thermal imaging techniques should be performed to compare 

the displacements, forces and pressures, and temperatures to the finite element 

predictions for complex loading and thermal boundary conditions. 



 

188 

 

REFERENCES 

 

 

[1] A. Lendlein and S. Kelch, Shape Memory Polymers, Angew Andte Chemie-

International Edition 41 (2002) 2034-2057. 

[2] B. Dietsch and T. Tong, A Review - Features and Benefits of Shape Memory 

Polymers (SMPs), Journal of Advanced Materials 39 (2007) 3-12. 

[3] P. T. Mather, X. Luo, and I. A. Rousseau, Shape Memory Polymer Research, 

Annual Review of Materials Research 39 (2009) 445-471. 

[4] C. Liu, H. Qin, and P. Mather, Review of Progress in Shape Memory Polymers, 

Journal of Materials Chemistry 17 (2007) 1543-1558. 

[5] M. Behl and A. Lendlein, Shape Memory Polymers, Materials Today 10 (2007) 

20-28. 

[6] J. Hu, Y. Zhu, H. Huang, and J. Li, Recent Advances in Shape Memory 

Polymers: Structure, Mechanism, Functionality, Modeling, and Applications, 

Progress in Polymer Science (2012) 1-155. 

[7] J. Leng, X. Lan, Y. Liu, and S. Du, Electroactive Thermoset Shape Memory 

Polymer Nanocomposite Filled with Nanocarbon Powders, Smart Materials & 

Structures 18 (2009) 1-7. 

[8] L. Sun, W. M. Huang, Z. Ding, Y. Zhao, C. C. Wang, et al., Stimulus-

Responsive Shape Memory Materials: A Review, Materials and Design 33 

(2012) 577-640. 

[9] T. Xie, Recent Advances in Polymer Shape Memory Polymer 52 (2011) 4985-

5000. 

[10] Y. Liu, K. Gall, M. L. Dunn, A. R. Greenberg, and J. Diani, Thermomechanics of 

Shape Memory Polymers: Uniaxial Experiments and Constitutive Modeling, 

International Journal of Plasticity 22 (2006) 279-313. 



 

189 

 

[11] J. William D. Callister, Materials Science and Engineering: An Introduction, 6 

ed. New York, NY: John Wiley & Sons, Inc., 2003. 

[12] P. C. Hiemenz and T. P. Lodge, Polymer Chemistry, 2 ed. Boca Raton, FL: CRC 

Press, 2007. 

[13] G. Baer, T. S. Wilson, D. L. Matthews, and D. J. Maitland, Shape Memory 

Behavior of Thermally Stimulated Polyurethane for Medical Applications, 

Journal of Applied Polymer Science 103 (2006) 3882-3892. 

[14] B. L. Volk, D. C. Lagoudas, Y.-C. Chen, and K. S. Whitley, Analysis of the 

Finite Deformation Response of Shape Memory Polymers: I. Thermomechanical 

Characterization, Smart Materials and Structures 19 (2010) 1-10. 

[15] P. A. Toensmeir. (2005) Radical Departure. Aviation Week Space Technology. 

72-73.  

[16] J. Manzo and E. Garcia, Methodology for Design of an Active Rigidity Joint, 

Journal of Intelligent Material Systems and Structures 20 (2009) 311-327. 

[17] Y. Zhou, F. Guan, and L. Qian, The Application of Shape Memory Polymer 

Composite in Space Deployable Truss Structure, Advanced Materials Research 

287-290 (2011) 2756-2759. 

[18] Q. Meng and J. Hu, A Review of Shape Memory Polymer Composites and 

Blends, Composites: Part A 40 (2009) 1661-1672. 

[19] D. Ratna and J. Karger-Kocsis, Recent Advances in Shape Memory Polymers 

and Composites: A Review, Journal of Materials Science 43 (2008) 254-269. 

[20] Z. G. Wei, R. Sandstrom, and S. Miyazaki, Shape Memory Materials and Hybrid 

Composites for Smart Systems: Part I - Shape Memory Materials, Journal of 

Materials Science 33 (1998) 3743-3762. 



 

190 

 

[21] J. T. Choi, T. D. Dao, K. M. Oh, H.-i. Lee, H. M. Jeong, et al., Shape Memory 

Polyurethane Nanocomposites with Functionalized Graphene, Smart Materials & 

Structures 21 (2012) 1-9. 

[22] J. M. Cuevas, R. Rubio, J. M. Laza, J. L. Vilas, M. Rodriguez, et al., Shape 

Memory Composites Based on Glass-Fibre-Reinforced Poly(ethylene)-Like 

Polymers, Smart Materials & Structures 21 (2012). 

[23] K. Gall, M. L. Dunn, Y. Liu, D. Finch, M. Lake, et al., Shape Memory Polymer 

Nanocomposites, Acta Materialia 50 (2002) 5115-5126. 

[24] K. Gall, M. Mikulas, N. A. Munshi, F. Beavers, and M. Tupper, Carbon Fiber 

Reinforced Shape Memory Polymer Composites, Journal of Intelligent Material 

Systems and Structures 11 (2000) 877-886. 

[25] J. Leng, X. Lan, Y. Liu, and S. Du, Electroactive Thermoset Shape Memory 

Polymer Nanocomposite Filled with Nanocarbon Powders, Smart Materials & 

Structures 18 (2009). 

[26] J. S. Leng, W. M. Huang, X. Lan, Y. J. Liu, and S. Y. Du, Significantly 

Reducing Electrical Resistivity by Forming Conductive Ni Chains in a 

Polyurethane Shape Memory Polymer/Carbon-Black Composite, Applied 

Physics Letters 92 (2008) 1-3. 

[27] Y. Liu, K. Gall, M. L. Dunn, and P. McCluskey, Thermomechanics of Shape 

Memory Polymer Nanocomposites, Mechanics of Materials 36 (2004) 929-940. 

[28] Y. Liu, H. Lv, X. Lan, J. Leng, and S. Du, Review of Electroactive Shape 

Memory Polymer Composite, Composites Science and Technology 69 (2009) 

2064-2068. 

[29] S. A. Madbouly and A. Lendlein, Shape Memory Polymer Composites, 

Advanced Polymer Science 226 (2010) 41-95. 

[30] Q. Ni, C. Zhang, Y. Fu, G. Dai, and T. Kimura, Shape Memory Effect and 

Mechanical Properties of Carbon Nanotube/Shape Memory Polymer 

Nanocomposites, Composite Structures 81 (2007) 176-184. 



 

191 

 

[31] M. Nishikawa and M. Hojo, "Analysis of the Shape-Recovery Performance of 

Thermally-Activated Shape Memory Polymer Composite with Microstructural 

Heterogeneities," in Behavior and Mechanics of Multifunctional Materials and 

Composites, San Diego, CA, 2012, pp. 1-7. 

[32] M. Nishikawa, K. Wakatsuki, A. Yoshimura, and N. Takeda, Effect of Fiber 

Arrangement on Shape Fixity and Shape Recovery in Thermally Activated Shape 

Memory Polymer-Based Composites, Composites Part A: Applied Science and 

Manufacturing 43 (2011) 1-34. 

[33] J. Nji and G. Li, Damage Healing Ability of a Shape Memory Polymer-Based 

Particulate Composite with Small Thermoplsatic Contents, Smart Materials & 

Structures 21 (2012) 1-10. 

[34] N. G. Sahoo, Y. C. Jung, and J. W. Cho, Electroactive Shape Memory Effect of 

Polyurethane Composites Filled with Carbon Nanotubes and Conducting 

Polymer, Materials and Manufacturing Processes 22 (2007) 419-423. 

[35] N. G. Sahoo, Y. C. Jung, N. S. Goo, and J. W. Cho, Conducting Shape Memory 

Polyurethane-Polypyrrole Composites for an Electroactive Actuator, 

Macromolecular Materials and Engineering 290 (2005) 1049-1055. 

[36] H. Tobushi, S. Hayashi, K. Hoshio, Y. Makino, and N. Miwa, Bending Actuation 

Characteristics of Shape Memory Composite with SMA and SMP, Journal of 

Intelligent Material Systems and Structures 17 (2006) 1075-1081. 

[37] H. Tobushi, E. Pieczyska, Y. Ejiri, and T. Sakuragi, Thermomechanical 

Properties of Shape Memory Alloy and Polymer and Their Composites, 

Mechanics of Advanced Materials and Structures 16 (2009) 236-247. 

[38] H. Yang and L. Y. Wang, Thermomechanical Analysis of Shape Memory 

Composite Tape Spring, Applied Composite Materials (2012) 1-15. 

[39] D. M. Phillips and J. W. Baur, "Thermal Activation of Shape Memory Polymers 

Through Vascular Means," in ASME 2011 Conference on Smart Materials, 

Adaptive Structures, and Intelligent Systems, Scottsdale, AZ, 2011, pp. 135-140. 



 

192 

 

[40] J. Leng, D. Zhang, Y. Liu, K. Yu, and X. Lan, Study on the Activation of 

Styrene-Based Shape Memory Polymer by Medium-Infrared Laser Light, 

Applied Physics Letters 96 (2010) 1-3. 

[41] G. M. Baer, W. Small IV, T. S. Wilson, W. J. Benett, D. L. Matthews, et al., 

Fabrication and In Vitro Deployment of a Laser-Activated Shape Memory 

Polymer Vascular Stent, Biomedical Engineering Online 6 (2007) 1-8. 

[42] P. R. Buckley, G. H. McKinley, T. S. Wilson, W. Small IV, W. J. Benett, et al., 

Inductively Heated Shape Memory Polymer for the Magnetic Actuation of 

Medical Devices, IEEE Transactions on Biomedical Engineering 53 (2006) 

2075-2083. 

[43] D. J. Maitland, W. Small, J. M. Ortega, P. R. Buckley, J. Rodriguez, et al., 

Prototype Laser-Activated Shape Memory Polymer Foam Device for Embolic 

Treatment of Aneurysms. , Journal of Biomedical Optics 12 (2007) 1-3. 

[44] W. Small IV, P. R. Buckley, T. S. Wilson, J. M. Loge, K. D. Maitland, et al., 

Fabrication and Characterization of Cylindrical Light Diffusers Comprised of 

Shape Memory Polymer Journal of Biomedical Optics 13 (2008) 1-7. 

[45] W. Small IV, M. F. Metzger, T. S. Wilson, and D. J. Maitland, Laser-Activated 

Shape Memory Polymer Microactuator for Thrombus Removal Following 

Ischmeic Stroke: Preliminary In Vitro Analysis, IEEE Journal of Selected Topics 

in Quantum Electronics 11 (2005) 892-901. 

[46] R. Mohr, K. Kratz, T. Weigel, M. Lucka-Gabor, M. Moneke, et al., Initiation of 

Shape Memory Effect by Inductive Heating of Magnetic Nanoparticles in 

Thermoplastic Polymers, Proceedings of the National Academy of Sciences 103 

(2006) 3540-3545. 

[47] A. M. Schmidt, Electromagnetic Activation of Shape Memory Polymer 

Networks Containing Magnetic Nanoparticles, Macromolecular Rapid 

Communications 27 (2006) 1168-1172. 

[48] J. Leng, H. Lv, Y. Liu, and S. Du, Electroactive Shape Memory Polymer Filled 

with Nanocarbon Particles and Short Carbon Fibers, Applied Physics Letters 91 

(2007) 1-3. 



 

193 

 

[49] A. Lendlein, M. Behl, B. Hiebl, and C. Wischke, Shape Memory Polymers as a 

Platform for Biomedical Applications, Expert Reviews Medical Devices 7 (2010) 

357-379. 

[50] A. Lendlein and S. Kelch, Shape Memory Polymers as Stimuli-Sensitive Implant 

Materials Clinical Hemorheology and Microcirculation 32 (2005) 105-116. 

[51] A. Lendlein and R. Langer, Biodegradable, Elastic Shape Memory Polymers for 

Potential Biomedical Applications, Science 296 (2002) 1673-1676. 

[52] D. J. Maitland, W. Small IV, P. Singhal, W. Hwang, J. N. Rodriguez, et al., 

"Design and Realization of Biomedical Devices Based on Shape Memory 

Polymers," in Material Research Society San Francisco, CA, 2009, pp. NN06-01. 

[53] W. Small IV, T. S. Wilson, P. Singhal, and D. J. Maitland, Biomedical 

Applications of Thermally Actuated Shape Memory Polymers, Journal of 

Materials Chemistry 20 (2010) 3356-3366. 

[54] W. M. Huang, C. L. Song, Y. Q. Fu, C. C. Wang, Y. Zhao, et al., Shaping Tissue 

with Shape Memory Materials, Advanced Drug Delivery Reviews (2012) 1-21. 

[55] K. Takashima, T. Noritsugu, J. Rossiter, S. Guo, and T. Mukai, Curved Type 

Pneumatic Artificial Rubber Muscle Using Shape Memory Polymer, Journal of 

Robotics and Mechatronics 24 (2012) 472-479. 

[56] M. Ahmad, J. Luo, and M. Miraftab, Feasibility Study of Polyurethane Shape 

Memory Polymer Actuators for Pressure Bandage Application, Science and 

Technology of Advanced Materials 13 (2012) 1-7. 

[57] J. M. Ortega, W. Small, T. S. Wilson, W. J. Benett, J. M. Loge, et al., A Shape 

Memory Polymer Dialysis Needle Adapter for the Reduction of Hemodynamic 

Stress Within Arteriovenous Grafts IEEE Transactions on Biomedical 

Engineering 54 (2007) 1722-1724. 

[58] G. M. Baer, T. S. Wilson, W. Small IV, J. Hartman, W. J. Benett, et al., 

Thermomechanical Properties, Collapse Pressure, and Expansion of Shape 



 

194 

 

Memory Polymer Neurovascular Stent Prototypes, Journal of Biomedical 

Materials Research Part B: Applied Biomaterials 90B (2009) 421-429. 

[59] L. Xue, S. Dai, and Z. Li, Synthesis and Characterization of Elastic Star Shape 

Memory Polymers as Self-Expandable Drug-Eluting Stents, Journal of Materials 

Chemistry 22 (2012) 7403-7411. 

[60] X. Yu, L. Wang, M. Huang, T. Gong, W. Li, et al., A Shape Memory Stent of 

Poly(E-Caprolactone-Co-DL-Lactide) Copolymer for Potential Treatment of 

Esophageal Stenosis, Journal of Materials Science: Materials in Medicine 23 

(2011) 581-589. 

[61] W. Small IV, P. R. Buckley, T. S. Wilson, W. J. Benett, J. Hartman, et al., Shape 

Memory Polymer Stent with Expandable Foam: A New Concept for 

Endovascular Embolization of Fusiform Aneurysms, IEEE Transactions on 

Biomedical Engineering 54 (2007) 1157-1160. 

[62] W. Small IV, T. S. Wilson, P. R. Buckley, W. J. Benett, J. M. Loge, et al., 

Prototype Fabrication and Preliminary In Vitro Testing of a Shape Memory 

Endovascular Thrombectomy Device IEEE Transactions on Biomedical 

Engineering 54 (2007) 1657-1666. 

[63] H. Tobushi, T. Hashimoto, S. Hayashi, and E. Yamada, Thermomechanical 

Constitutive Modeling in Shape Memory Polymer of Polyurethane Series, 

Journal of Intelligent Material Systems and Structures 8 (1997) 711-718. 

[64] H. Tobushi, H. Hara, E. Yamada, and S. Hayashi, Thermomechanical Properties 

in a Thin Film of Shape Memory Polymer of Polyurethane Series, Smart 

Materials & Structures 5 (1996) 483-491. 

[65] H. Tobushi, T. Hashimoto, N. Ito, S. Hayashi, and E. Yamada, Shape Fixity and 

Shape Recovery in a Film of Shape Memory Polymer of Polyurethane Series, 

Journal of Intelligent Material Systems and Structures 9 (1998) 127-136. 

[66] J. R. Lin and L. W. Chen, Study on Shape Memory Behavior of Polyether-Based 

Polyurethanes.  I. Influence of the Hard-Segment Content, Journal of Applied 

Polymer Science 69 (1998) 1563-1574. 



 

195 

 

[67] C. Azra, C. J. G. Plummer, and J.-A. E. Manson, Isothermal Recovery Rates in 

Shape Memory Polyurethanes, Smart Materials & Structures 20 (2011) 1-10. 

[68] T. S. Wilson, J. P. Bearinger, J. L. Herberg, J. E. M. III, W. J. Wright, et al., 

Shape Memory Polymers Based on Uniform Aliphatic Urethane Networks, 

Journal of Applied Polymer Science 106 (2007) 540-551. 

[69] B. L. Volk, D. C. Lagoudas, and D. J. Maitland, "Characterizing and Modeling 

the Free Recovery and Constrained Recovery Behavior of a Polyurethane Shape 

Memory Polymer," presented at the ASME 2010 Conference on Smart Materials, 

Adaptive Structures, and Intelligent Systems, Philadelphia, PA, 2010. 

[70] B. L. Volk, D. C. Lagoudas, and D. J. Maitland, Characterizing and Modeling the 

Free Recovery and Constrained Recovery Behavior of a Polyurethane Shape 

Memory Polymer Smart Materials & Structures 20 (2011) 1-15. 

[71] B. Atli, F. Gandhi, and G. Karst, Thermomechanical Characterization of Shape 

Memory Polymers, Journal of Intelligent Material Systems and Structures 20 

(2009) 87-95. 

[72] B. L. Volk, D. C. Lagoudas, Y.-C. Chen, and K. S. Whitley, Analysis of the 

Finite Deformation Response of Shape Memory Polymers: I. Thermomechanical 

Characterization, Smart Materials and Structures 19 (2010) 075005. 

[73] C. Schmidt, A. M. S. Chowdhury, K. Neuking, and G. Eggeler, Stress-Strain 

Behavior of Shape Memory Polymers by 1WE Method: Application to Tecoflex, 

Journal of Macromolecular Science, Part A: Pure and Applied Chemistry 48 

(2011) 204-210. 

[74] A. M. S. Chowdhury, C. Schmidt, K. Neuking, and G. Eggeler, Comparative 

Studies on Thermomechanical Behavior of Veriflex, a Shape Memory Polymer, 

for a Low Strain (m=70%): Laser Experiments, Journal of Macromolecular 

Science, Part A: Pure and Applied Chemistry 48 (2011) 707-712. 

[75] C. M. Yakacki, R. Shandas, C. Lanning, B. Rech, A. Eckstein, et al., 

Unconstrained Recovery Characterization of Shape Memory Polymer Networks 

for Cardiovascular Applications., Biomaterials 28 (2007) 2255-2263. 



 

196 

 

[76] V. Srivastava, S. A. Chester, and L. Anand, Thermally Actuated Shape Memory 

Polymers: Experiments, Theory, and Numerical Simulations, Journal of the 

Mechanics and Physics of Solids 58 (2010) 1100-1124. 

[77] W. Voit, T. Ware, and K. Gall, Radiation Crosslinked Shape Memory Polymers, 

Polymer 51 (2010) 3551-3559. 

[78] W. Voit, T. Ware, R. R. Dasari, P. Smith, L. Danz, et al., High-Strain Shape 

Memory Polymers, Advanced functional materials 20 (2010) 162-171. 

[79] N. Lakhera, C. M. Yakacki, T. D. Nguyen, and C. P. Frick, Partially Constrained 

Recovery of (Meth)acrylate Shape Memory Polymer Networks, Journal of 

Applied Polymer Science 126 (2012) 72-82. 

[80] A. J. W. McClung, G. P. Tandon, and J. W. Baur, Deformation Rate-, Hold 

Time-, and Cycle-Dependent Shape Memory Performance of Veriflex-E Resin, 

Mechanics of Time Dependent Materials (2011) 1-14. 

[81] A. J. W. McClung, G. P. Tandon, and J. W. Baur, Strain Rate- and Temperature-

Dependent Tensile Properties of an Epoxy-based, Thermosetting, Shape Memory 

Polymer (Veriflex E), Mechanics of Time-Dependent Materials 16 (2012) 205-

221. 

[82] G. P. Tandon, K. Goecke, K. Cable, and J. Baur, Durability Assessment of 

Styrene- and Epoxy-Based Shape Memory Polymer Resins, Journal of Intelligent 

Material Systems and Structures 20 (2009) 2127-2143. 

[83] G. P. Tandon, K. Goecke, K. Cable, and J. Baur, Environmental Durability of 

Fabric-Reinforced Shape Memory Polymer Composites, Journal of Intelligent 

Material Systems and Structures 21 (2010) 1365-1381. 

[84] W. B. Song and Z. D. Wang, Characterization of Viscoelastic Behavior of Shape 

Memory Epoxy Systems, Journal of Applied Polymer Science (2012) 1-7. 

[85] A. J. W. McClung, G. P. Tandon, K. E. Goecke, and J. W. Baur, Non-Contact 

Technique for Characterizing Full-field Surface Deformation of Shape Memory 



 

197 

 

Polymers at Elevated and Room Temperatures, Polymer Testing 30 (2011) 140-

149. 

[86] J. Diani, C. Fredy, P. Gilormini, Y. Merckel, G. Regnier, et al., A Torsion Test 

for the Study of the Large Deformation Recovery of Shape Memory Polymers, 

Polymer Testing 30 (2011) 335-341. 

[87] S. J. Hong, W.-R. Yu, and J. H. Youk, Two-Way Shape Memory Behavior of 

Shape Memory Polyurethanes with a Bias Load, Smart Materials & Structures 19 

(2010) 1-9. 

[88] G. Li and W. Xu, Thermomechanical Behavior of Thermoset Shape Memory 

Polymer Programmed by Cold-Compression: Testing and Constitutive Modeling, 

Journal of the Mechanics and Physics of Solids 59 (2011) 1231-1250. 

[89] A. Bhattacharyya and H. Tobushi, Analysis of the Isothermal Mechanical 

Response of a Shape Memory Polymer Rheological Model, Polymer Engineering 

and Science 40 (2000) 2498-2510. 

[90] H. Tobushi, N. Ito, K. Takata, and S. Hayashi, Thermomechanical Constitutive 

Modeling of Polyurethane-Series Shape Memory Polymer, Materials Science 

Forum 327-328 (2000) 343-346. 

[91] H. Tobushi, K. Okumura, S. Hayashi, and N. Ito, Thermomechanical 

Constitutive Model of Shape Memory Polymer, Mechanics of Materials 33 

(2001) 545-554. 

[92] Z. Bailin, H. Xinming, H. Congcong, and Y. Qing, Numerical Verification of 

Constitutive Relationship for Mechanic Behavior of Shape Memory Polymer, 

Applied Mechanics and Materials 121-126 (2012) 3514-3519. 

[93] J. R. Lin and L. W. Chen, The Mechanical-Viscoelastic Model and WLF 

Relationship in Shape Memorized Linear Ether-Type Polyurethanes, Journal of 

Polymer Research 6 (1999) 35-40. 

[94] H. A. Khonakdar, S. H. Jafari, S. Rasouli, J. Morshedian, and H. Abedini, 

Investigation and Modeling of Temperature Dependence Recovery Behavior of 



 

198 

 

Shape Memory Crosslinked Polyethylene, Macromolecular Theory and 

Simulations 16 (2007) 43-52. 

[95] M. Bonner, H. M. d. Oca, M. Brown, and I. M. Ward, A Novel Approach to 

Predict the Recovery Time of Shape Memory Polymers, Polymer 51 (2010) 

1432-1436. 

[96] A. Srinivasa and P. Gosh, A Simple, Gibbs Potential Based Multinetwork Model 

for Shape Memory Polymers, Smart Devices: Modeling of Material Systems, An 

International Workshop 1029 (2008) 58-74. 

[97] P. Ghosh and A. R. Srinivasa, A Two-Network Thermomechanical Model of a 

Shape Memory Polymer, International Journal of Engineering Science 49 (2011) 

823-838. 

[98] Z. D. Wang, D. F. Li, Z. Y. Xiong, and R. N. Chang, Modeling 

Thermomechanical Behaviors of Shape Memory Polymer, Journal of Applied 

Polymer Science 113 (2009) 651-656. 

[99] B. Zhou, Y.-J. Liu, X. Lan, J.-S. Leng, and S.-H. Yoon, A Glass Transition 

Model for Shape Memory Polymer and its Composite, International Journal of 

Modern Physics B 23 (2009) 1248-1253. 

[100] B. Zhou, Y.-J. Liu, and J.-S. Leng, A Macro-Mechanical Constitutive Model for 

Shape Memory Polymer, Science China: Physics, Mechanics, and Astronomy 53 

(2010) 2266-2273. 

[101] J. M. Husson, F. Dubois, and N. Sauvat, A Finite Element Model for Shape 

Memory Behavior, Mechanics of Time-Dependent Materials 15 (2011) 213-237. 

[102] P. Gilormini and J. Diani, On Modeling Shape Memory Polymers as 

Thermoelastic Two-Phase Composite Materials, Comptes Rendus Mecanique 

340 (2012) 1-11. 

[103] J. H. Kim, T. J. Kang, and W.-R. Yu, Simulation of Mechanical Behavior of 

Temperature-Responsive Braided Stents Made of Shape Memory Polyurethanes, 

Journal of Biomechanics 43 (2010) 632-643. 



 

199 

 

[104] M. Baghani, R. Naghdabadi, J. Arghavani, and S. Sohrabpour, A Constitutive 

Model for Shape Memory Polymers with Application to Torsion of Prismatic 

Bars, Journal of Intelligent Material Systems and Structures 23 (2012) 107-116. 

[105] M. Baghani, R. Naghdabadi, J. Arghavani, and S. Sohrabpour, A 

Thermodynamically-Consistent 3D Constitutive Model for Shape Memory 

Polymers, International Journal of Plasticity 35 (2012) 1-18. 

[106] M. Baghani, R. Naghdabadi, and J. Arghavani, A Semi-Analytical Study on 

Helical Springs Made of Shape Memory Polymer, Smart Materials & Structures 

21 (2012) 1-11. 

[107] J. Diani, Y. Liu, and K. Gall, Finite Strain 3D Thermoviscoelastic Constitutive 

Model for Shape Memory Polymers, Polymer Engineering and Science 46 (2006) 

486-492. 

[108] X. Chen and T. D. Nguyen, Influence of Thermoviscoelastic Properties and 

Loading Conditions on the Recovery Performance of Shape Memory Polymers, 

Mechanics of Materials 43 (2011) 127-138. 

[109] T. D. Nguyen, H. J. Qi, F. Castro, and K. N. Long, A Thermoviscoelastic Model 

for Amorphous Shape Memory Polymers: Incorporating Structural and Stress 

Relaxation, Journal of the Mechanics and Physics of Solids 56 (2008) 2792-

2814. 

[110] T. D. Nguyen, C. M. Yakacki, P. D. Brahmbhatt, and M. L. Chambers, Modeling 

the Relaxation Mechanisms of Amorphous Shape Memory Polymers, Advanced 

Materials 22 (2010) 3411-3423. 

[111] K. K. Westbrook, P. H. Kao, F. Castro, Y. Ding, and H. J. Qi, A 3D Finite 

Deformation Constitutive Model for Amorphous Shape Memory Polymers: A 

Multi-Branch Modeling Approach for Nonequilibrium Relaxation Processes, 

Mechanics of Materials 43 (2011) 853-869. 

[112] K. K. Westbrook, V. Parakh, T. Chung, P. T. Mather, L. C. Wan, et al., 

Constitutive Modeling of Shape Memory Effects in Semicrystalline Polymers 

with Stretch Induced Crystallization, Journal of Engineering Materials and 

Technology 132 (2010) 1-9. 



 

200 

 

[113] Y.-C. Chen and D. C. Lagoudas, A Constitutive Theory for Shape Memory 

Polymers.  Part I: Large Deformations, Journal of the Mechanics and Physics of 

Solids 56 (2008) 1752-1765. 

[114] Y.-C. Chen and D. C. Lagoudas, A Constitutive Theory for Shape Memory 

Polymers.  Part II: A Linearized Model for Small Deformations, Journal of the 

Mechanics and Physics of Solids 56 (2008) 1766-1778. 

[115] B. L. Volk, D. C. Lagoudas, and Y.-C. Chen, Analysis of the Finite Deformation 

Response of Shape Memory Polymers: II. 1D Calibration and Numerical 

Implementation of a Finite Deformation, Thermoelastic Model, Smart Materials 

and Structures 19 (2010) 1-11. 

[116] H. J. Qi, T. D. Nguyen, F. Castroa, C. M. Yakacki, and R. Shandas, Finite 

Deformation Thermo-Mechanical Behavior of Thermally Induced Shape 

Memory Polymers, Journal of the Mechanics and Physics of Solids 56 (2008) 

1730-1751. 

[117] S. Reese, M. Bol, and D. Christ, Finite Element Based Multi-Phase Modelling of 

Shape Memory Polymer Stents, Computer Methods in Applied Mechanics and 

Engineering 199 (2010) 1276-1286. 

[118] ASTM International, D638-08: Standard Test Method for Tensile Properties of 

Plastics, ed, 2003, pp. 1-16. 

[119] D. L. Safranski and K. Gall, Effect of Chemical Structure and Crosslinking 

Density on the Thermo-Mechanical Properties and Toughness of (Meth)acrylate 

Shape Memory Polymer Networks, Polymer 49 (2008) 4446-4455. 

[120] M. E. Gurtin, An Introduction to Continuum Mechanics. San Diego: Academic 

Press, 1981. 

[121] G. A. Holzapfel, Nonlinear Solid Mechanics: A Continuum Approach for 

Engineering. West Sussex: John Wiley & Sons Ltd., 2000. 



 

201 

 

[122] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical 

Recipes: The Art of Scientific Computing. New York: Cambridge University 

Press, 2007. 

[123] D. Lagoudas, D. Hartl, Y. Chemisky, L. Machado, and P. Popov, Constitutive 

Model for the Numerical Analysis of Phase Transformation in Polycrystalline 

Shape Memory Alloys, International Journal of Plasticity 32-33 (2012) 155-183. 

[124] D. Christ and S. Reese, A Finite Element Model for Shape Memory Alloys 

Considering Thermomechanical Couplings at Large Strains, International Journal 

of Solids and Structures 46 (2009) 3694-3709. 

[125] J. C. Simo and T. J. R. Hughes, Computational Inelasticity. New York: Springer-

Verlag, 1998. 

[126] Simulia, Abaqus User's Manual, ed: Dassault Systemes, 2012. 

 

 

  



 

202 

 

APPENDIX A  

POLAR DECOMPOSITION ALGORITHM 

 

In this appendix, the polar decomposition algorithm is presented that was used in 

the three-dimensional numerical implementation of the constitutive model in Chapter IV.  

This algorithm is shown in the Simo and Hughes book [113] as Box 7.1.  This algorithm 

is used in the current work to take the polar decomposition of the deformation gradient 

F , which is provided as input from Abaqus, to obtain the rotational and stretch 

components ( R  and U ).  The stretch tensor is then used as input to the system of 

equations that are solved using the Newton-Raphson method.  After the unknown 

stretches in the rubbery and glassy phases ( r
eU  and g

eU ) are solved for using the 

Newton-Raphson method, the total elastic deformation gradients for the rubbery and 

glassy phases are obtained by multiplying the stretches by the rotation R  (recall the 

assumption that the rotations in each phase are considered equal to the rotation of the 

average deformation gradient). 

The first step to the algorithm is to obtain the squares of the principal stretches, 

which are the eigenvalues of the right Cauchy-Green deformation tensor C .  As C  is 

the square of the stretch tensor U   2C U , the eigenvalues of C  are the square of the 

eigenvalues of U .  The first step in the algorithm is to calculate the quantities in 

Equation (155).  
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where 1I , 2I , and 3I  are the first, second, and third invariants of C , respectively.  The 

absolute values of b  are then checked to see if they are smaller than the tolerance value.  

If b is sufficiently small to cause numerical problems, the squares of the eigenvalues are 

calculated through Equation (156), where the quantities are calculated for 1,2,3A   
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 On the other hand, if  the absolute value of b  is greater than the tolerance value, 

then the squares of the eigenvalues are calculated through Equation (157). 
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 After calculating the eigenvalues of U  (through taking the square root of the 

eigenvalues of C ), the invariants of U  are calculated through Equation (158). 
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 Using these invariants, the stretch tensor U  and its inverse 1U  are calculated 

through Equation (159). 
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 Finally, the rotation tensor R  is calculated through Equation (160). 

 1R FU   (160) 
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APPENDIX B 

COMPRESSION SHAPE MEMORY TEST 

 

 In this appendix, the results to a preliminary free recovery compression 

experiment on a cylindrical shape memory polymer are presented.  The experiment is 

performed on the same polyurethane shape memory polymer discussed in Chapter II.  

Instead of injecting the polymer resin into an aluminum mold for curing, the resin was 

injected into a 20mL syringe.  A needle tip was placed on the end of the syringe to allow 

air to escape, and the syringe was cured upside down (with the needle pointing up).  

After curing, the cylinder was cut using a lathe into cylindrical samples approximately 

17mm in diameter and 17mm in length.  A picture of one of the final samples, prepared 

for testing with the laser extensometer, is presented in Figure 60. 

 

 

Figure 60 – Cylindrical shape memory polymer sample ready that has been cut 

with a lathe and has reflective strips attached to the surface for use with the laser 

extensometer.   
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In performing the experiment, the shape memory polymer was first heated to 

90°C and then the upper compression platen was lowered to compress the sample by 

10% extension.  The crosshead was then held constant and the temperature was lowered 

to 25°C.  During this cooling procedure, the extension rods, compression platen, and 

shape memory polymer all undergo thermal contraction.  As a result of this thermal 

contraction and the transformation from the rubbery phase to the glassy phase, the SMP 

loses contact with the compression platen during the cooling process and the stress drops 

to zero.  Consequently, there is no need for an unloading step (as performed in the 

tension experiments) after the end of cooling; however the upper compression platen is 

moved up to avoid interference with the sample during the free recovery heating. 

The displacement of the upper compression platen as a function of temperature is 

presented in Figure 61.  This result was obtained by cycling the temperature from 25°C 

to 90°C and back to 25°C at 1°C/min with no sample present.  The displacement of the 

grip was measured by attaching laser extensometer tapes to the edge of the compression 

platen.  From this figure, it is observed that there is approximately an 11°C delay before 

noticeable displacement is observed in the compression platen, and then the 

displacement of the platen is approximately linear with respect to temperature.   
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Figure 61 – Displacement of the compression platen as a function of temperature 

when cycled from 25°C to 90°C and back to 25°C at 1°C/min.   

 

 With the thermal contraction of the compression platen used as an input to the 

constitutive model in Chapter IV, the results of the model predictions to the 

experimental results are shown in Figure 62.  In this figure, two modeling results are 

shown.  The first is the prediction if the temperature of the material is assumed to 

increase uniformly throughout the sample.  The second prediction is assuming the top 

and bottom of the sample are heated 11 minutes slower than the outside of the sample, to 

model the effects of the delay in the change of temperature in the grips observed in 

Figure 61.  Good agreement is observed between the model predictions and the 

experimental data through the deforming and cooling step.  However, Figure 62 

indicates the assumption of uniform heating during recovery underpredicts the effective 

transformation temperature of the SMP by about 7°C.  On the other hand, by using the 

simplified thermal boundary conditions that the nominal temperature change is applied 
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to the lateral surface of the SMP and that the top and bottom of the material are heated 

11°C slower, the model predictions are much closer to the experimental data with a 

deviation of only 2°C.  These results further highlight the necessity to consider the 

coupled temperature-displacement behavior of SMPs when attempting to predict the 

material response for thicker specimens undergoing complex thermal boundary 

conditions. 

 

 

Figure 62 – Comparison of experimental results to model predictions for the 10% 

free recovery compression experiment.  The model prediction assuming uniform 

heating of the SMP is shown as well as the prediction assuming the top and bottom 

are heated slower due to effects of the compression platen heating/cooling slower. 
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APPENDIX C 

RECOMMENDED PROTOCOL FOR CALIBRATING  

THE CONSTITUTIVE MODEL PARAMETERS 

 

 In Chapter IV, the kinematics and constitutive equations were presented that 

describe the response of thermosetting shape memory polymers.  In the development of 

this model, only the thermoelastic responses of the rubbery and glassy phases were 

considered.  As a result, the following calibration parameters were introduced in the 

system of equations:   

 Shear modulus of the rubbery and glassy phases 

 Lamé constants of the rubbery and glassy phases 

 Coefficients of thermal expansion of the rubbery and glassy phases 

 Glassy volume fraction 

And, for cases in which the coupled thermomechanical analysis is considered, the 

following additional parameters are necessary: 

 Density 

 Specific heat 

 Thermal conductivity 

In calibrating these parameters, it is first recommended to perform dynamic 

mechanical analysis (DMA) and differential scanning calorimetry (DSC) on the 

specimen.  The DSC will provide an indication of the glass transition temperature and 

the DMA will provide an indication of the elastic and viscoelastic response of the 
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material as a function of temperature.  In these results, it is recommended to consider the 

plateau regions in both the glassy and the rubbery phases.   

To obtain both the shear moduli and the Lamé constants in each phase, it is 

necessary to perform experiments that will provide information on at least two elastic 

constants of the material.  Such experiments may include (i) isothermal 

loading/unloading experiments with digital image correlation or strain gauges to obtain 

both the tensile modulus and the Poisson’s ratio or (ii) isothermal loading/unloading in 

addition to a shear/torsion test to obtain the tensile modulus and the shear modulus.  

Strain-to-failure experiments in the rubbery and glassy phases will provide information 

regarding the maximum expected strain during a strain recovery profile as well as the 

degree of nonlinearity of the stress-strain curve during loading.  These experiments 

should be performed at multiple orientations to confirm the isotropy of the material 

response.    

To obtain the coefficients of thermal expansion, it is recommended to perform 

thermomechanical analysis (TMA) on cylindrical samples of the SMP.  The TMA 

provides a direct mechanism for obtaining the displacement as a function of temperature 

while maintaining approximately zero applied load.  From the slope of the displacement 

vs. temperature data and knowledge of the initial length of the specimen, the coefficients 

of thermal expansion for both phases can be calculated.  In cases where TMA is not 

available or to aid in evaluating the isotropy of the coefficients of thermal expansion 

tensor, it is recommended to use a noncontact measurement technique with a 

temperature chamber and tensile tester.  By hanging the sample from the top grip (in 
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different orientations) and changing the temperature, the coefficients of thermal 

expansion can be derived from the change in the specimen length as a function of 

temperature.  

To obtain the glassy volume fraction, it is recommended to perform a free 

recovery (zero load) experiment and measuring the strain recovery as a function of 

temperature.  It is recommended to load the specimen at temperatures well above the 

glass transition temperature (in the rubbery phase plateau of the DMA) and cooling to 

well below the glass transition temperature (in the glassy phase plateau of the DMA).  

During the free recovery heating, a plateau at the beginning and end of the strain 

recovery will be observed.  The functional form for the glassy volume fraction in 

Chapters III and IV can then be obtained by normalizing this strain recovery profile and 

fitting the calibration constants A and B (and C, when a piecewise hyperbolic tangent is 

used) using a least squares method.   

Finally, to obtain the thermal material properties, namely the specific heat and 

thermal conductivity, it is recommended to use a piece of equipment such as a thermal 

conductivity analyzer.  Such equipment will obtain these material properties by applying 

stimulus and measuring the change in temperature. 

 


