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ABSTRACT 

 

Nonlinear control is an important subject drawing much attention.  When a 

nonlinear system undergoes route-to-chaos, its response is naturally bounded in the time-

domain while in the meantime becoming unstably broadband in the frequency-domain.  

Control scheme facilitated either in the time- or frequency-domain alone is insufficient in 

controlling route-to-chaos, where the corresponding response deteriorates in the time and 

frequency domains simultaneously.  It is necessary to facilitate nonlinear control in both 

the time and frequency domains without obscuring or misinterpreting the true dynamics.  

The objective of the dissertation is to formulate a novel nonlinear control theory that 

addresses the fundamental characteristics inherent of all nonlinear systems undergoing 

route-to-chaos, one that requires no linearization or closed-form solution so that the 

genuine underlying features of the system being considered are preserved.  The theory 

developed herein is able to identify the dynamic state of the system in real-time and 

restrain time-varying spectrum from becoming broadband.  Applications of the theory 

are demonstrated using several engineering examples including the control of a non-

stationary Duffing oscillator, a 1-DOF time-delayed milling model, a 2-DOF micro-

milling system, unsynchronized chaotic circuits, and a friction-excited vibrating disk. 

Not subject to all the mathematical constraint conditions and assumptions upon 

which common nonlinear control theories are based and derived, the novel theory has its 

philosophical basis established in the simultaneous time-frequency control, on-line 

system identification, and feedforward adaptive control.  It adopts multi-rate control, 



 

iii 

 

hence enabling control over nonstationary, nonlinear response with increasing bandwidth 

– a physical condition oftentimes fails the contemporary control theories.  The 

applicability of the theory to complex multi-input-multi-output (MIMO) systems without 

resorting to mathematical manipulation and extensive computation is demonstrated 

through the multi-variable control of a micro-milling system.  The research is of a broad 

impact on the control of a wide range of nonlinear and chaotic systems.  The implications 

of the nonlinear time-frequency control theory in cutting, micro-machining, 

communication security, and the mitigation of friction-induced vibrations are both 

significant and immediate.  
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1. INTRODUCTION AND LITERATURE REVIEW* 

 

1.1 Overview and Literature Review 

Research on chaos control has drawn much attention over several decades.  

Open-loop control and closed-loop control are the two major categories.  Open-loop 

control, which alters the behavior of a nonlinear system by applying a properly chosen 

input function or external excitation, is simple and requires no sensors.  However, open-

loop control is in general limited by the fact that its action is not goal oriented [1].  

Closed-loop control, on the other hand, feedbacks a perturbation selected based upon the 

state of the system to control a prescribed dynamics.  Of the many closed-loop chaos 

control theories formulated over the years, the OGY method, delayed feedback control, 

Lyapunov-based control and adaptive control are considered prominent.  The OGY 

method [2] uses small discontinuous parameter perturbation to stabilize a chaotic orbit 

and forces the trajectory to follow a target UPO (unstable periodic orbit) in a chaotic 

attractor.  It uses the eigenvalues of the system’s Jacobian at fixed point(s) to establish 

stability.  But for chaotic systems of higher dimensions, there are complex eigenvalues 

or multiple unstable eigenvalues, making it difficult to control such systems by the OGY 

method [3]. Several revisions have been made to control chaos in higher-order dynamic- 

 

_____________________ 

*Part of this chapter is reprinted with permission from “Simultaneous Time-Frequency 

Control of Bifurcation and Chaos” by Liu, M. K. and Suh, C. S., 2012, Communications 

in Nonlinear Science and Numerical Simulations, 17(6), pp. 2539-2550, Copyright 2012 

by Elsevier 
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al systems [3-6].  Another disadvantage is that the available adjustable range of the 

controlling parameter is limited by the distance between the system state variable and 

UPO.  Because the initiation of OGY control requires that the state variable approaches 

the proximity of the target UPO, the waiting time can be shortened by applying the 

reconstruction of phase plane [7].  Nonetheless, it is very difficult to obtain an exact, 

analytic formula for an UPO.  It is even more so to physically implement UPOs due to 

the instability nature of such orbits [8].  Since the corrections of the parameter are 

discrete, rare and small, presence of noise can lead to occasional bursts of the system 

into regions far from the desired periodic orbit [9].  These difficulties limit the OGY 

method to only a few applications such as the control of robot arms [10], forced 

pendulum [11, 12] and power systems [13].   

Another widely accepted chaos control theory is the delayed feedback control 

(DFC) [9]. The stabilization of UPO of a chaotic system can be achieved either by 

combined feedback with the use of a specially designed external oscillator, or by delayed 

self-controlling feedback. The feedback is a small continuous perturbation that is less 

vulnerable to noises.  Unlike the OGY method, it doesn’t need a priori analytical 

knowledge of the system dynamic, except for the period of the target UPO, and it can be 

applied to high-dimensional system.  Recent efforts include the stability analysis [14] 

and the stabilization of UPO with arbitrarily large period [15].  A comprehensive review 

of the delayed feedback control method is found in [16].  The drawback of the delayed 

feedback control is that it is hard to conduct linear stability analysis of the delayed 

feedback system [16] and that its performance is very sensitive to the choice of the delay 
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[17].  If the control goal is to stabilize a forced T-periodic solution, the delay will 

mandatorily be set to T.  Alternatively, a heuristic method is used to estimate the delay 

time, but it is still difficult to find the smallest period. 

Lyapunov’s direct method allows the stability of a system to be determined 

without explicitly integrating the dynamic equation.  It relies on the physical property 

that the system, whose total energy is continuously being dissipated, must eventually end 

up at an equilibrium point [18].  Suppose a continuously differentiable positive definite 

(Lyapunov) function V(x) can be derived from the system.  The system is stable if the 

derivative of V(x) is negative semi-definite, and asymptotically stable if the derivative of 

V(x) is negative definite.  This concept can be integrated into controller design.  As long 

as the derivative of Lyapunov function of the system is confined to negative semi-

definite or definite along the closed-loop system trajectory, the system is guaranteed 

stable or asymptotically stable.  Lyapunov-based controller has been applied to the 

synchronization of chaos [19-21], Duffing oscillators [22, 23], chaotic pendulum [24] 

and robotics [18].  Its drawback is that the Lyapunov function cannot necessarily be 

asserted from some particular models, and the chosen parameters may be too 

conservative, thereby compromising the transient response of the system [18].  

An identification algorithm usually is coupled with the control algorithm to 

facilitate adaptive control over the dynamical system that has unknown parameters in its 

governing equation.  In adaptive control, parameter estimation and control are performed 

simultaneously.  When the system parameters are estimated and control action is 

calculated based on the estimated parameters, the adaptive control scheme is called 
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indirect adaptive control.  In direct adaptive control, on the other hand, controller 

parameters are directly updated using an adaptive law.  Adaptive control theory modifies 

the control law to cope with the time-varying parameters of the system.  Even though 

adaptive control describes a nonlinear system by a linear model, the feedback tuning of 

its parameters renders the overall system response nonlinear.  Hence, adaptive control is 

widely adopted for the control of chaotic systems, such as Hénon map [25], nonlinear 

pendulum [26], chaos synchronization [27], and hyper-chaos system [28].  A priori 

knowledge of the system is required for model-based adaptive control, which focuses 

exclusively on time-domain performance.  

Although all demonstrated capability in controlling chaos, however, the 

applicability of the chaos control theories reviewed above is limited to autonomous, 

stationary systems.  They are all developed assuming chaotic system to be autonomous 

even though nonlinear dynamics concerns predominantly with non-autonomous systems.  

These controllers are good at handling “static chaos,” meaning the state of chaos doesn’t 

change.  “Static chaos” doesn’t transition from bifurcation to chaos as is explicit in a 

bifurcation diagram.  The spectral bandwidth of its response doesn’t change either.  For 

non-autonomous, non-stationary systems whose chaotic responses are “dynamic,” these 

chaos control theories would fail.  Two examples on chaos control are studied in the 

followings.  

1.1.1 OGY Control of Hénon Maps 

Consider the two-dimensional iterative (Hénon) map function below with α > 0, 

|β| < 1, and    
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  (1.1) 

 
Fig. 1.1 Bifurcation diagram of Hénon map 

 

When parameter α is increasing, the system undergoes bifurcation, as depicted in 

Fig. 1.1.  Because α varies in time, the nonlinear dynamics shown in Fig. 1.1 is one of 

non-autonomous and time-variant.  If β = 0.4 and α is set at 1.2, the response is a chaotic 

attractor.  But this time it is a case of “static chaos.”  The range of its time response and 

frequency spectrum remains unchanging.  Fig. 1.2 shows the corresponding time 

response and instantaneous frequency (IF) [29] of the Hénon map when the OGY 

method [30] is applied.  With the controller being turned on at the 300
th

-time step (see 

Fig. 1.2(a)), the chaotic response is stabilized to a fixed point.  The response is examined 

by IF in Fig. 1.2(b) using an integration time step ∆t = 0.1s.  The IF plot shows a 

transient between t = 30sec and t = 62sec, followed by a null region devoid of any time-
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frequency activity.  Both the time response and IF signify that the OGY method is able 

to stabilize the chaotic attractor generated by a stationary Hénon Map. 

 

 
(a) 

 
(b) 

Fig. 1.2 (a) time response (b) instantaneous frequency of the Hénon Map controlled 

by OGY method  
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Fig. 1.3 shows the bifurcation diagram of a non-stationary Hénon Map controlled 

by the same OGY method, in which the controlling parameter α is increasing in time.  

The OGY method fails for such a non-autonomous, nonstationary system. 

 

 
Fig. 1.3 Bifurcation diagram of a non-autonomous Hénon map controlled by OGY 

method 

 

 

 

In Fig. 1.3, the controller is activated when α = 1.2.  For a stationary system,   
  

would be fixed when the controller is turned on, which means that it has only one 

frequency when the system is under control.  But in Fig. 1.3 it shows that the trajectory 

in the bifurcation diagram is no longer a straight line.  It means that the frequency is 

changing and that chaos abruptly emerges when α is increased to around 2.3.  The result 

is not surprising because the concept of the OGY method is based on the linearization of 

the Poincaré map.  Hence its stability region is inevitably limited to the vicinity of the 

equilibrium point. 
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1.1.2 Lyapunov-based Control of Duffing Oscillators 

Consider 2 Duffing oscillators  

                        (1.2) 

                                (1.3) 

with p = 0.4, p1 = -1.1, q = 2.1 and ω = 1.8.  Note that the excitation amplitude is a time 

function in Eq. (1.3).  The Lyapunov-based controller designed in [23] is applied to both 

cases and a reference (target) response is set to be sin(t).  Fig. 1.4 compares the 

responses of the stationary and nonstationary Duffing oscillators controlled by the 

Lyapunov-based controller.  The amplitudes of the external excitation in Fig. 1.4(a-c) are 

held constant.  Fig. 1.4(a) shows that when the controller is turned on at t = 500sec, the 

controller stabilizes the system and mitigates the chaotic response to a periodic motion.  

This result agrees with its time-domain error between the system response and the 

reference trajectory as shown in Fig. 1.4(b).  The instantaneous frequency in Fig. 1.4(c) 

shows that the controller also has a good performance in the IF domain.  There’s only 

one frequency left after t = 500sec.  A second frequency is also seen emerging at t = 

700sec.  On the contrary, the Lyapunov-based controller loses control when the 

amplitude of the external excitation is increasing in time in Fig. 1.4(d-f).  In Fig. 1.4(d) 

the response is no longer a periodic motion and in Fig. 1.4(e) the time-domain error 

increases in time.  Further, from the IF plot in Fig. 1.4(f), the frequency remains 

oscillating in time after the controller is engaged, indicative of the presence of 

nonlinearity [31]. 
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(a) (d) 

  
(b) (e) 

  
(c) (f) 

Fig. 1.4 (a) Time response, (b) time-domain error, and (c) IF of a stationary Duffing 

oscillator, and (d) time response, (e) time-domain error, and (f) IF of a nonstationary 

Duffing oscillator, all controlled by Lyapunov-based controller 
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In summary, the Lyapunov-based controller was able to deny the progression of 

chaos in the stationary Duffing oscillator, but for the nonstationary oscillator, it lost 

control in both the time and frequency domains.  The review performed above can be 

summarized using the following observations: 

1. All reviewed chaos control theories failed to mitigate “dynamic chaos.”  The OGY 

method is based on the linearization of the Poincaré map.  It discards nonlinear terms 

and uses Jacobian matrix to determine the stability of the equilibrium point around 

its vicinity.  The method worked for the autonomous, stationary system but failed for 

the non-autonomous, nonstatioary system for the reason that in the latter its 

trajectories in the Poincaré map were subject to change in time.  They ran away from 

the equilibrium point and the stability established by the Jacobian matrix at 

equilibrium point was no longer valid.  The Lyapunov-based controller also failed 

for the non-autonomous, nonstationary system because the variation of the system 

parameter directly affected the derivation of the Lyapunov function.  

2. A priori knowledge of the system must be available for the control theories to be 

effective.  For the OGY method, the period of unstable periodic orbits (UPOs) must 

be known and the system state on the Poincaré map must be observed.  But it is very 

difficult to obtain exact analytic formulation for an UPO [8].  Lyapunov-based 

controller uses energy-like concept to define Lyapunov function, and by examining 

its derivative, to determine the stability of the equilibrium point.  But there is no 

systematic way for finding the Lyapunov function and in some cases it’s basically a 

matter of trial-and-error.  Even if a Lyapunov function could be found, it is only for 
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an autonomous, nonstationary system.  For delayed feedback control, the delayed 

time is set to the period of the desired orbit, and a heuristic method is then used to 

estimate the delay time.  But it is still difficult to find the smallest period. 

3. None of the theories control both time and frequency responses simultaneously.  

Except for the OGY method, all are formulated in the time-domain.  However, as 

seen previously, the instantaneous frequency of a nonlinear, nonstationary system 

undergoing route-to-chaos is characteristically time-modulated and broad spectral 

bandwidth with emerging new frequency components.  This was further asserted in 

the nonstationary Duffing oscillator where both time and frequency responses 

deteriorated at the same time.  A controller designed to control time-domain error 

would not be able to negate the increasing of the spectrum.  On the other hand, a 

controller designed in the frequency-domain would confine the expansion of the 

bandwidth while losing control over time-domain error.  Neither frequency-domain 

nor time-domain based controllers are effective in mitigating bifurcation and chaotic 

response. 

1.1.3 Property of Chaos Control 

The review on the chaos control of non-autonomous, nonstationary systems 

provides several hints essential to the development of a viable control solution.  The 

solution can be formulated by recognizing the various attributes inherent of a chaotic 

system, including the simultaneous deterioration of dynamics in both the time and 

frequency domains when bifurcates, nonstationarity, and sensitivity to initial conditions.  
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For a linear time-invariant system, only the amplitude and the phase angle of the 

excitation input vary.  The response frequency remains the same with respect to the input 

frequency, and the system can be stabilized by applying a proper feedback gain.  Both 

time- and frequency-domain responses are bounded.  However, this is not the case for 

the chaotic response generated by a nonlinear system, which contains an infinite number 

of unstable periodic orbits of all periods called strange attractors.  Chaotic response 

doesn’t remain following one periodic orbit but switching rapidly between many 

unstable periodic orbits.  If the chaotic response is projected into a Poincaré section, a 

lower dimensional subspace transversal to the trajectory of the response, it can be shown 

that the intersection points congregate densely and are confined within a finite area.  It 

indicates that the chaotic response is bounded in the time-domain while simultaneously 

becoming unstably broadband in the frequency-domain due to the rapid switching 

between infinite numbers of UPOs.  Hence, for a chaos control algorithm to be effective, 

control has to be performed in the time and frequency domains simultaneously.  

The second property universal of chaotic systems is nonstationarity.  Route-to-

chaos is a temporal, transient process.  The location and the stability of the equilibrium 

point therefore also vary in time.  For high dimensional system, a priori knowledge of 

the system is often hard to come by.  It is thus necessary for a viable chaos control 

scheme to conduct on-line identification and control at the same time in order to cope 

with the time varying parameters of the system.  The third property is the sensitivity of a 

chaotic system to initial conditions.  A minor deviation between two closed initial 

trajectories might diverge exponentially with the increase of time, thus implying that a 
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small perturbation could render the system unstable.  Reversely, a nonlinear system can 

also be stabilized by a small perturbation, as implied by open-loop chaos control theories 

of early days that it is possible to stabilize a chaotic system by giving small perturbations 

to its input or system parameters. 

1.2 Research Objectives 

The objective of the dissertation is to formulate a novel nonlinear control theory 

that addresses and retains the fundamental characteristic inherent of all nonlinear 

systems undergoing route-to-chaos; that is, one that requires no linearization or closed 

form solution so that the genuine underlying features of the system being considered are 

preserved.  The theory is also required to be able to (1) restrain time-varying frequency 

spectrum from becoming broadband and (2) identify the dynamic state of the system in 

real-time.  In other words, the theory is to enable the facilitation of control in the time 

and frequency domain simultaneously without distorting or misinterpreting the true 

dynamics.  

To address the stated objective, the following research tasks are defined, 

including investigating the temporal and spectral behaviors of the route-to-chaos process 

and conducting an extensive review on the contemporary chaos control theories so as to 

identify the discrepancy that is fundamental to their being invalid and ineffective in 

controlling nonlinear responses. 

 Investigate route-to-chaos in the time and frequency domain concurrently. 

 Identify the essential elements of nonlinear control through studying the innate 

properties of bifurcation and chaos.  
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 Develop a novel nonlinear control theory that mandates no linearization and 

closed form solution.  

 Adopt time domain discrete wavelet transform and adaptive filters to facilitate 

simultaneous time-frequency control.  

 Optimize the selection of mother wavelet and decomposition level.  

 Design target signal using Fourier expansion.  

 Test to validate the nonlinear control theory using nonstationary Duffing 

oscillators that display route-to-chaos dynamic deterioration.  

Apply the nonlinear control theory to explore viable control solutions for complex 

engineering systems, including milling, micro-machining, synchronization of chaos, and 

friction-induced vibration. 
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2. TEMPORAL AND SPECTRAL RESPONSES OF A SOFTENING DUFFING 

OSCILLATOR UNDERGOING ROUTE-TO-CHAOS* 

 

2.1 Introduction 

One of the essential objectives in studying a nonlinear system is to obtain the 

condition that guarantees the existence of periodic solutions so that their stabilities can 

be subsequently determined [32].  Steady-state solution is obtained for small but finite 

amplitude oscillations around the equilibrium point to estimate the threshold value of the 

excitation amplitude, stability region, and number of limit cycles.  Linearization is 

performed under the assumption that if the operation range is in the immediate proximity 

of the equilibrium point of the nonlinear system, the response of the linearized model 

would approximate the nonlinear one with accuracy.  However, there are cases that, 

although giving correct time profile of the nonlinear response, the inherent components 

resolved using perturbation methods neither collectively nor individually provide any 

physically meaningful representation of the nonlinear system [33].  Applying 

linearization to investigate nonlinear system without exercising proper discretions would 

obscure the underlying nonlinear characteristics and risk misinterpreting the stability 

bound.  

 

_____________________ 

*Part of this chapter is reprinted with permission from “Temporal and Spectral 

Responses of A Softening Duffing Oscillator Undergoing Route-To-Chaos” by Liu, M. 

K. and Suh, C. S., 2012, Communications in Nonlinear Science and Numerical 

Simulations, 17(12), pp. 5217-5228, Copyright 2012 by Elsevier 
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Fourier-based analyses have been widely accepted as a tool for exploring 

nonlinear system.  Because stationary sinusoids are employed in representing time-

varying signals of inherent nonlinearity, the use of Fourier domain methodologies would 

also risk misrepresenting the underlying physics of the nonlinear system being 

investigated [34].  As most methods employed to process nonstationary signals are 

Fourier-based, they also suffer from the shortcomings associated with Fourier transform 

[35].  The fact that nonlinear responses including route-to-chaos are intrinsically 

transient, nonstationary with coupled amplitude-frequency modulation implies that, if a 

nonlinear response is to be fully characterized, the inherent amplitude modulation (AM) 

and frequency modulation (FM) need to be temporally decoupled [35].  The concept of 

Instantaneous Frequency (IF) is adopted in this study to resolve the dependency of 

frequency on time.  Growing attention is focused on the Hilbert-Huang Transform 

(HHT), which has been used to investigate the response of quadratic and cubic 

nonlinearities [36], Duffing oscillators [37], dynamic systems with slowly-varying 

amplitudes and phases [38], and fault induced nonlinear rotary [39].  Because HHT does 

not use predetermined basis functions and their orthogonality for component extraction, 

it provides instantaneous amplitude and frequency of the extracted components for the 

accurate estimation of system characteristics and nonlinearities [40].  It is shown that 

HHT is better appropriate than sinusoidal harmonics for characterizing nonstationary and 

transient responses.  The interpretation of nonlinearity using IF is found to be both 

intuitively rigorous and physically valid. 
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Various Duffing oscillators have been explored to help elucidate a wide range of 

physical applications in the real-world.  In Ref. [41] the response of a damped Duffing 

oscillator with harmonic excitation is analyzed by second-order perturbation solutions 

along with Floquet analysis to predict symmetry-breaking and period-doubling 

bifurcation.  Duffing oscillators under nonstationary excitations are also considered by 

many, where linear and cyclic variations of frequencies and amplitudes are applied and 

nonstationary bifurcation is studied.  It is shown that nonstationary process is distinct 

from stationary process with different characteristics [42, 43].  Nonetheless, these 

perturbation method based studies on nonlinear systems generate nonphysical results 

that are bound to be misinterpreted.  The presentation that follows reviews the 

nonlinearity and nonstationary bifurcation of a softening Duffing oscillator from the 

time-frequency perspective established using IF.  It is noted that although IF is 

considered a viable tool for exploring nonlinear dynamic response, little effort has been 

made to study the generation and evolution of bifurcation to ultimate chaotic response, a 

process that is inherently nonstationary and transient.  A Duffing oscillator and its 

linearized counterpart are studied first by fast Fourier transform (FFT), short time 

Fourier transform (STFT), Gabor transform, and instantaneous frequency (IF).  The 

second part of the paper presents an in-depth investigation into the rout-to-chaos 

generated by the Duffing oscillator under nonstationary excitation using conventional 

nonlinear dynamic analysis tools and IF. 
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2.2 Instantaneous Frequency and Intrinsic Mode Function 

The concept of instantaneous frequency was introduced to resolve the time 

evolution of the spectral response of a nonstationary signal [44] – a task of which 

Fourier-based analyses fall short.  IF is defined as the time derivative of the phase of a 

complex signal.  Such a definition was shown to work well with signals of 

monocomponent.  In the followings the definition of instantaneous frequency is briefly 

reviewed.  A time-varying signal ( )x t  having both amplitude modulated (AM) and 

frequency modulated (FM) components can be represented as ( ) ( )cos( ( ))x t c t t .  Its 

corresponding analytic signal can be defined as 

 ( ) ( ) ( ) ( ) [ ( )] ( )exp( ( ))s t x t iy t x t iH x t c t i t      (2.1) 

where ( )s t  is the analytic signal, ( )c t  is the instantaneous amplitude, ( )t  is the 

instantaneous phase, and ( )y t  is the imaginary part of ( )s t .  Defining [ ( )]H x t  as the 

Hilbert Transform of the time varying signal x(t) 

 

( )
( ) [ ( )] ( ) ( / )

p x
y t H x t d x t p t

t


 

 




   


 

(2.2) 

with p being the Cauchy principle value.  In theory ( )x t  and ( )y t  are out of phase by 

/ 2 .  The instantaneous amplitude and phase are defined as 2 2
( ) ( ) ( )c t x t y t   and 

1
( ) tan ( ( ) / ( ))t y t x t


 , respectively.  By Ville’s definition [44] the derivative of the 

instantaneous phase is the instantaneous frequency, thus, ( ) (1/ 2 )( ( ) / )f t d t dt  .  Such 

a definition agrees with our intuition for instantaneous frequency and captures the 

concept of instantaneity in nature.  However, the definition fails when applied to 
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multicomponent signals for the reason that it adversely averages all the individual IFs 

associated with each individual monocomponent and interprets them as single 

instantaneous frequency.  In addition to falling short on providing a unified interpretation 

for signals of multicomponent, the definition also allows infinite and negative 

frequencies to be induced.  The Empirical Mode Decomposition (EMD) scheme 

proposed by Huang et al. [33] effectively decomposes a time series into its several 

inherent physical modes of motion called the Intrinsic Mode Functions (IMF).  Each 

IMF is an orthogonal set of intrinsic monocomponent from the response and retains the 

inherent physical features.  By definition, every mode has the same numbers of extrema 

and zero crossings and the inherent oscillation is symmetric with respect to a local mean 

defined by the average of the maximum envelope and minimum envelop without 

resorting to any time scale.  All the inherent IMFs, 1
( )C t , 2

( )C t , 3
( )C t …, and m

C of the 

dynamic response x(t) can be extracted using a shifting algorithm that resolves a residual 

term R(t) that carries no frequency component.  It can be shown that the summation of 

all the IMFs and the residual term restores back to the response, 
1

( ) ( ) ( )
m

jj
x t C t R t


  .  

From the decomposition process, it is understood that the first mode 1
( )C  has the 

smallest time scale, indicating that it includes the highest frequency components.  As the 

decomposition continues, the frequency components included in IMF become lower.  

The decomposition is based on the local characteristic time scale of the data to produce 

an adaptive basis and does not employ a set of fixed time scales. 
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Marginal spectrum, defined below in Eq. (2.3), provides a quantitative 

measurement of the cumulated weight of all the instantaneous frequency components 

over a specific time period, 

 

1

01
0

( ) ( , )
t

t
f F t dt    (2.3) 

where 
01

( )f 
 
is the cumulated weight of the frequency ω between times 

0
t

 
and 

1
t .  It 

should be noted that the marginal spectrum defined in Eq. (2.3) describes and interprets 

the meaning of the frequency differently from Fourier spectrum does.  In Fourier 

spectrum, presence of energy at a harmonic is interpreted as if the specific sinusoidal 

component is present throughout the entire duration of the time history.  On the other 

hand, the marginal spectrum gives the cumulated weights of all instantaneous frequency 

components over a selected time span in the probabilistic sense, thus indicating the 

occurrence probability of the frequency components being considered [34]. 

2.3 Implication of Linearization in Time-Frequency Domain 

To examine the impact of linearization, the responses of a nonlinear Duffing 

oscillator and its linearized version under stationary excitation are investigated by FFT, 

time-frequency analysis tools and IF.  Analogous to complex nonlinear systems 

including the rolling motion of a ship, Duffing oscillators have the advantage of 

simplicity and can be investigated in sufficient detail.  Of interest is the response of a 

particular Duffing oscillator subject to a harmonic excitation with viscous damping, 

which has been found to exhibit hysteretic and chaotic behaviors [40].  The general form 

of the non-dimensional Duffing oscillator is 
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32 cos( )x x x x a t        (2.4) 

where  ,  , , a, and  are constants.  When the motion is small, the cubic term can be 

linearized with respect to the equilibrium point zero and be ignored as 

 2 cos( )x x x a t      (2.5) 

If
2

0   , the general solution can be simplified as 

                                         
         

 
 

              
          

                   
            

 (2.6) 

When 1  , it is an underdamped system and the damped natural frequency is 2
  .  

The frequency of the steady state response   is the same as the excitation frequency.  In 

the followings the single-well Duffing oscillator investigated in [41] is adopted, with 

1   , 1  , 0.2  , and the stationary excitation amplitude, a , being kept at 0.32 and 

excitation frequency at 0.78 rad/s.  Fig. 2.1 shows the FFT of the linearized and 

nonlinear Duffing oscillators.  It is hard to distinguish one from the other at first glimpse, 

and most would think both hold only one frequency at 0.12Hz.  
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(a) (b) 

Fig. 2.1 Fast Fourier transform of (a) linearized (b) nonlinear Duffing oscillator 

 

Two time-frequency analysis methods, Short time Fourier transform (STFT) and 

Gabor wavelet transform are applied to investigate nonlinear and linearized responses as 

follows.  Neither the dominant frequency nor the nonlinear effect is precisely resolved 

by STFT in Fig. 2.2.  To improve the frequency resolution, one has to increase the width 

of the time window, thus inevitably resulting in poor time resolution.  This dilemma is 

inherent of all Fourier-based time-frequency distribution.  The Gabor wavelet transform 

[45] in Fig. 2.3 shows a better time-frequency resolution, however, it is still unable to 

differentiate the nonlinear response from the linearized one.  As the only difference 

between these two spectra is the tiny irregular frequencies near the dominant frequency, 

which would be taken by most as the noise to be filtered, linearization would be adopted 

in a heartbeat.  But the careless assumption that the response of the nonlinear system can 

be linearized, and afterwards be controlled, without further investigation could expose 

the system to the potential risk of abrupt break-down.  Linearization, an approach 

generally accepted as the premise to dealing with nonlinear problems without caveat, in 
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fact distorts the inherent underlying physical characteristics.  A system could be falsely 

characterized, thus risking becoming unstable as a result. 

IF provides an alternative look at the response in the simultaneous time-

frequency domain.  Fig. 2.4(a) shows the selected time history (top) of the linearized 

Duffing oscillator along with its extracted IMF C1 (middle) and residual R(t) (bottom).  

IMF C1, the mode containing the highest frequency components, is characteristically 

similar to the original time response that is a harmonic oscillation.  The response of the 

linearized Duffing oscillator has only one frequency, thus resulting in only one IMF.  

According to the study in [34], the IF is exactly the reciprocal of the period in the IMF 

mode.  Hence the steady-state IF of the C1 mode indicates a constant frequency at 

0.124Hz as seen in Fig. 2.4(b), which coincides with the frequency 0.78 / 2   Hz 

from the linearized model described in Eq. (2.5). 
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(a) (b) 

Fig. 2.2 Short time Fourier transforms of (a) linearized and (b) nonlinear Duffing 

oscillators under stationary excitation (Sampling frequency = 2Hz) 

 

 

  

(a) (b) 

Fig. 2.3 Gabor transforms of (a) linearized and (b) nonlinear Duffing oscillators under 

stationary excitation (Sampling frequency = 2Hz) 

  



 

25 

 

 
(a) 

 
(b) 

Fig. 2.4 (a) Time response and its IMFs and (b) IF of the linearized Duffing oscillator 
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The following analysis retains the cubic nonlinear term of the Duffing oscillator.  

The IMFs and IFs of the nonlinear Duffing oscillator in Eq. (2.4) are shown in Fig. 2.5.  

Although the IMF C1 waveform in Fig. 2.5(a) seems harmonic, the IF in Fig. 2.5(b) 

shows that it is not a harmonic, but rather displaying a simultaneously temporal-modal 

behavior oscillating periodically between 0.11 and 0.14 Hz with the mean value at 0.124 

Hz, which happens to be the frequency of the linearized system.  The IF points out that 

the frequency of the nonlinear response is not static but rather varying within a certain 

range.  This is further asserted by reviewing the marginal spectrum which shows 

frequency distribution in the probabilistic sense.  The marginal spectrum in Fig. 2.6(a) 

shows that there is a single frequency associated with the linearized Duffing oscillator.  

But for the nonlinear case in Fig. 2.6(b) there are multiple frequencies distributed 

between 0.11 and 0.14 Hz.  Since a marginal spectrum is the occurrence probability of 

frequency components over a selected time span, it is evident that there are multiple 

frequency components in the response rather than a single frequency. 
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(a) 

 
(b) 

Fig. 2.5 (a) Time response and its IMFs (b) IF of the nonlinear Duffing oscillator 
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(a) (b) 

Fig. 2.6 Marginal spectrum of (a) linearized and (b) nonlinear Duffing oscillator 

 

Two observations can be made.  First, the Fourier spectrum is unable to reveal 

the true characteristic of the nonlinear response.  Second, by comparing the marginal 

spectra of the nonlinear and linearized responses, it is observed that linearization in fact 

misinterprets nonlinear features, replacing multiple frequencies with a single frequency.  

The false representation of spectral characteristics implies that the common frequency-

domain-based controllers designed using linearization would misinterpret the frequency 

response, thus incapable of realizing the ongoing evolution of bifurcation.  Since route-

to-chaos is a transient progress in which spectral response deteriorates from being 

periodic to aperiodic and broadband, linearization and Fourier based controller design 

would most certainly fail to identify the inception of bifurcation and chaos, and the 

stability bound of the system.  
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2.4 Route-to-Chaos in Time-Frequency Domain 

Unlike the nonlinear response due to stationary excitation, the one induced by 

nonstationary excitation is a temporal transition from bifurcation to chaos with a time-

varying spectrum.  Conventional tools including bifurcation diagram, phase portrait and 

Poincaré section are used to investigate the route-to-chaos in contrast to the result 

obtained by IF.  The Duffing oscillator of single potential well in Eq. (2.4) is again 

considered, but with a time-increasing excitation amplitude.  When the amplitude is 

small, the response is bounded and remains in the valley of the potential well.  When the 

external excitation gradually increases, the response, whose amplitude may still be 

bounded, could jump to an unbounded solution after it passes a critical limit – a 

phenomenon similar to the catastrophic capsizing of a marine vessel.  The excitation 

amplitude in Eq. (2.4) is considered as the control parameters, with all other coefficients 

(          and      ) follow from Ref. [43], where a stationary bifurcation 

diagram of a Duffing oscillator was generated using multiple scales and Floquet theory.  

Again the excitation frequency is held at 0.78 rad/s.  The excitation amplitude is a linear 

time function, 70.32 10a t  .  Thus the response is bounded within the potential well, 

and the slow increasing of the amplitude ensures that the bifurcation process can be 

clearly observed.  By making the amplitude a function of time, a nonstationary 

bifurcation diagram is constructed in Fig. 2.7.  While agreeing with the result in [38], the 

figure also indicates the penetration effect and the elimination of the stationary 

discontinuities.  
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Fig. 2.7 Nonstationary bifurcation diagram with increasing excitation amplitude 

 

 

In general the bifurcation depicted in Fig. 2.7 can be divided into three stages 

before becoming unbounded.  The stage of singular frequency is the first stage which 

existed when the excitation was first applied.  At this stage each value of the excitation 

amplitude refers to only one point in the bifurcation diagram, meaning that there is only 

one frequency at any time instance, though this frequency may not be static.  When 

excitation amplitude increases, period-doubling is observed.  When multiple periods 

show up, it is the third, fractal stage.  Within this stage spectral bandwidth increases, but 

remains bounded.  When excitation amplitude exceeds 0.3725, the response becomes 

unbounded.  In addition to the bifurcation diagram, phase portraits and Poincaré sections 

are plotted to help resolve the bifurcation-to-chaos progression in time.  Fig. 2.8(a) 

shows a close-trajectory phase portrait and a corresponding single-dot Poincaré section, 
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representing a periodic response with single frequency.  A 2T period doubling 

bifurcation and a 4T period doubling bifurcation are seen in Fig. 2.8(b) and (c), 

respectively.  Fractal structures emerge from Fig. 2.8(d) and deteriorate in Fig. 2.8(e) 

before the response becomes unbounded.  However, it is difficult to make out the motion 

states due to the overlapping of the trajectories, thus highlighting the inability of phase 

portraits and Poincaré sections in capturing the transient phenomena of the route-to-

chaos process.  Other than showing the qualitative transition from bifurcation to chaos, 

the bifurcation diagram does not provide any further information. 

 

 
Fig. 2.8 Phase portrait and Poincaré section for (a) periodic motion (b) 2T period 

doubling bifurcation (c) 4T period doubling bifurcation (d) fractal (e) fractal before 

unbounded 
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Responses in Fig. 2.8 are further evaluated using FFT and marginal spectrum.  

The FFT of the periodic motion in Fig. 2.9(a) indicates a frequency component at 0.142 

Hz, while the marginal spectrum shows that the frequency is not static but rather 

oscillates between 0.11 and 0.14 Hz, which is a primary characteristic of a nonlinear 

response.  As the excitation amplitude increases, a second cluster of frequencies appears 

in the marginal spectrum in Fig. 2.9(b), while the FFT still shows a single frequency.  

The same observation is made to the 4T period doubling bifurcation in Fig. 2.9(c). 

Furthermore, the marginal spectra in Figs. 2.9(d) and (e) indicate a high probability of 

frequency occurrence between 0 and 0.05 Hz.  It indicates that the response frequency 

proliferates to be broadband and undergoes a route-to-chaos process, while the 

corresponding FFT is incapable of resolving the changing process.  In addition, 

noticeable fictitious high frequencies emerge in Figs. 2.9(b), (d), and (e).  These artificial 

high frequencies stem from using superharmonic components to fit the dynamic 

response in FFT – a result of averaging and eliminating the subharmonic frequencies of 

the real signal.  The result shows that FFT could be non-physical and misinterpreting the 

true response.  Instantaneous frequency is then applied to the selected time segments to 

scrutinize the three stages that are characterized, respectively, by a singular frequency, 

period doubling bifurcation, and fractal.  A fixed time window of 200sec is applied to 

ensure a better resolution.  Several figures are followed to illustrate the time-progression 

of the periodic motion, 2T period doubling bifurcation, 4T period doubling bifurcation, 

and route-to-chaos.  Fig. 2.10 shows the IFs along with its corresponding IMFs of the 

singular frequency stage.  It is found that this stage, previously considered as a periodic 
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motion by phase portrait and Poincaré section, actually has oscillating frequencies 

indicative of nonlinearity.  It is surprising to compare the IF of the one under 

nonstationary excitation with the one under stationary excitation.  Although the 

nonstationary excitation amplitude is increased slowly with a rate of only 7
10

 per second 

(whose time responses/waveforms are similar to those in Fig. 2.5), their IFs show 

differences.  Comparing the IFs in Fig. 2.10(b) with the one in Fig. 2.5(b), it is clear that 

IF is capable of resolving even the slightest shift of the system that was not revealed 

using all previous methods.  

 

 
Fig. 2.9 FFT and marginal spectrum for (a) periodic motion (b) 2T period doubling 

bifurcation (c) 4T period doubling bifurcation (d) fractal (e) fractal before unbounded 
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(a) 

 
(b) 

Fig. 2.10 (a) Time response and its IMFs, (b) Instantaneous frequencies of the stage 

of singular frequency (single frequency for each time point) 
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As the excitation amplitude increases further, the response undergoes a 2T period 

doubling bifurcation.  The first IMF mode, C1, is similar to the time response, and the 

corresponding IF looks identical to the IF associated with the singular frequency stage.  

The C2 mode emerges with increasing amplitude.  Its IF in Fig. 2.11 indicates a second 

frequency oscillating about 0.06 Hz, which is half of the frequency of the first mode, 

thus a period doubling bifurcation.  However, both frequencies are not static, but 

displaying a temporal-modal structure oscillating periodically and showing rich 

nonlinearities.  Fig. 2.12 shows a 4T period doubling bifurcation.  Two more IMF 

modes, C3 and C4, emerge.  All of them look like harmonic oscillations, but none 

possesses constant periodicity.  In Fig. 2.12(b), two new frequencies are generated with a 

less vigorous oscillation comparing to the first two instantaneous frequencies. 

The instantaneous frequency of the fractal structure is illustrated in Fig. 2.13(b).  

Unlike the IFs in the 4T period-doubling bifurcation where relatively regular temporal-

modal oscillations were observed, all IFs follow no well-defined pattern or structure.  All 

IMF modes, C1, C2, C3, and C4, lose their previous characteristics and show varying 

amplitude and period.  The corresponding IFs exhibit highly irregular temporal-modal 

oscillations with large amplitude, especially for the high frequencies generated from the 

first two IMFs.  These IFs oscillate with significant mutual-crossings, rendering a broad 

spectrum of a larger number of frequencies.  
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(a) 

 
(b) 

Fig. 2.11 (a) Time response and its IMFs, (b) Instantaneous frequencies of the 2T 

period doubling bifurcation 
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(a) 

 
(b) 

Fig. 2.12 (a) Time response and its IMFs, (b) Instantaneous frequencies of the stage of 

4T period doubling bifurcation 
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(a) 

 
(b) 

Fig. 2.13 (a) Time waveform and its IMFs, (b) Instantaneous Frequencies of the stage of 

fractal 
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2.5 Summary 

A softening Duffing oscillator was investigated for its intrinsic time-frequency 

characteristics.  It was shown that linearization disregarded the inherent nonlinear 

attributes, hence inevitably misjudging the underlying physics of the nonlinear response.  

In addition, as it employs static sinusoids as the fundamental constituents, FFT generated 

fictitious frequencies in the process of attempting to approximate the nonlinear response 

mathematically.  Both methods inexorably misinterpreted and obscured the genuine 

characteristic of the responses that were transient, nonlinear, and full of modulated 

amplitude and frequency.  Instantaneous frequency was then applied to investigate the 

responses of a softening Duffing oscillator undergoing nonstationary excitation.  The 

temporal progression of route-to-chaos was interpreted with vigorous physical intuition 

using the fundamental concept of instantaneous frequency.  It was shown that the 

frequency of the nonlinear Duffing oscillator was a temporal-modal oscillation and that 

the inception of period-doubling bifurcation and the deterioration of route-to-chaos were 

precisely identified.  Instantaneous frequency was shown to provide intuitively vigorous 

and physically valid interpretation of the nonlinear response, implying that time-varying, 

transient processes fundamental of bifurcation and chaotic response need to be 

established in the simultaneous time-frequency domain. 
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3. SIMULTANEOUS TIME-FREQUENCY CONTROL 

OF BIFURCATION AND CHAOS* 

 

3.1 Introduction 

The review on the chaos control of non-autonomous, nonstationary systems in 

Section 1 provides several hints essential to the development of a viable control solution.  

The solution can be formulated by recognizing the various attributes inherent of a 

chaotic system, including the simultaneous deterioration of dynamics in both the time 

and frequency domains when bifurcates, nonstationarity, and sensitivity to initial 

conditions.  For a linear time-invariant system, only the amplitude and the phase angle of 

the excitation input vary.  The response frequency remains the same with respect to the 

input frequency, and the system can be stabilized by applying a proper feedback gain.  

Both time- and frequency-domain responses are bounded.  However, this is not the case 

for the chaotic response generated by a chaotic system, which contains an infinite 

number of unstable periodic orbits of all periods called strange attractors.  Chaotic 

response doesn’t remain following one periodic orbit but switching rapidly between 

many unstable periodic orbits.  If the chaotic response is projected into a Poincaré 

section, a lower dimensional subspace transversal to the trajectory of the response, it can  

 

_____________________ 

*Part of this chapter is reprinted with permission from “Simultaneous Time-Frequency 

Control of Bifurcation and Chaos” by Liu, M. K. and Suh, C. S., 2012, Communications 

in Nonlinear Science and Numerical Simulations, 17(6), pp. 2539-2550, Copyright 2012 

by Elsevier 
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be shown that the intersection points congregate densely and are confined within a finite 

area.  It indicates that the chaotic response is bounded in the time-domain while 

simultaneously becoming unstably broadband in the frequency-domain due to the rapid 

switching between infinite numbers of UPOs.  Hence, for a chaos control algorithm to be 

effective, control has to be performed in the time and frequency domains 

simultaneously.  

The second property universal of chaotic systems is nonstationarity.  Route-to-

chaos is a temporal, transient process.  The location and the stability of the equilibrium 

point therefore also vary in time.  For high dimensional system, a priori knowledge of 

the system is often hard to come by.  It is thus necessary for a viable chaos control 

scheme to conduct on-line identification and control at the same time in order to cope 

with the time varying parameters of the system.  The third property is the sensitivity of a 

chaotic system to initial conditions.  A minor deviation between two closed initial 

trajectories might diverge exponentially with the increase of time, thus implying that a 

small perturbation could render the system unstable.  Reversely, a nonlinear system can 

also be stabilized by a small perturbation, as implied by open-loop chaos control theories 

of early days that it is possible to stabilize a chaotic system by giving small perturbations 

to its input or system parameters. 

A solution with physical features effective in addressing the identified properties 

is described below.  To address the need for providing simultaneous time and frequency 

resolution, Parseval’s theorem is turned to for inspirations, which states that the total 

energy computed in the time-domain equals the total energy computed in the frequency-
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domain, thus implying that it’s possible to incorporate time-domain control with 

frequency-domain control together.  Wavelet transform (WT) localizes a time event and 

detects the ensued changes in the wavelet domain, which is essentially a simultaneous 

time-frequency domain.  Unlike Fourier analysis that approximates signals using 

sinusoids, WT uses finite, compact-supported orthogonal functions and provides 

localized time and frequency resolution through the translation and dilation of a base 

wavelet function.  Efforts have been reported on incorporating discrete WT in control 

theory that explored (wavelet) multiresolution through employing iterative filter banks.  

A wavelet filter bank runs a signal through two parallel channels, filtering one channel 

with a high-pass filter and the other with a low-pass filter, and then down-samples the 

signal by two.  Control algorithms presented in Refs [46-49] were all constructed using 

wavelet coefficients by multiresolution analysis.  They all reported improved transient 

performance.  Discrete wavelet transform (DWT) was incorporated with neural network 

to indentify unknown systems in real-time [50-55], where adaptive control rules were 

applied.  Relieved computational load and higher accuracy for system identification 

were among the benefits.  Ref [56] applied DWT to replace the long-standing higher-

order Taylor series approach.  Such a method reduces complexity and increases 

efficiency, but it is only applicable for linear models.  In general, the coefficients of 

multiresolution analysis inherently carry simultaneous time-frequency information.  

Additionally, down-sampling in filter banks operation greatly reduces the amount of data 

and thus shortens the computation time. 
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3.2 Simultaneous Time-Frequency Control 

To address the nonstationary nature of a chaotic system the concept of active 

noise control [57] is adopted.  Active noise control puts a control algorithm driven 

loudspeaker near the sound source to attenuate the sound.  The sound source is cancelled 

by the sound emitted by the loudspeaker which has the same amplitude as the source but 

of an opposite phase.  The most commonly used algorithm is the filter-x lease mean 

square (FXLMS) algorithm, whose block diagram is shown in Fig. 3.1. 

 

x’(n)

y(n) y’(n)
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W(z)

x(n)

Ŝ(z)

LMS
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Σ e(n)

d(n)

+

_

 

Fig. 3.1 FXLMS algorithm 

 

The primary path P(z) defines the path from the reference source x(n) to the error 

sensor where the noise attenuation is to be realized.  The adaptive filter W(z) provides an 

adaptive method to simultaneously model the primary plant P(z) and the secondary path 

S(z) with a given input source to minimize the residual noise e(n).  To ensure the 

convergence of the LMS algorithm, an identical filter       is positioned in the reference 

source path to the weight update of the LMS algorithm.  In addition to noise control, 
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FXLMS has been used to suppress the vibration of composite structure [58], gear pairs 

[59], building [60], and machine tool [61].  FXLMS could also be combined with other 

controllers, such as    feedback robust controller [62] and LQR controller [63], to 

promote convergence speed and increase robust performance.  Even though FXLMS 

uses a feedforward adaptive filter to change the input according to the error, it still needs 

off-line identification of a system as a priori information.  However it can be modified 

by adding another adaptive FIR filter to identify the system in real-time.  Multiresolution 

analysis can be integrated into the on-line FXLMS structure by putting analysis filter 

banks in front of the adaptive filters to manipulate wavelet coefficients, and then use 

synthesis filter banks to reconstruct the control signal.  Scheme of such a construct that 

possesses joint time-frequency resolution and follows the on-line FXLMS algorithm is 

able to control non-autonomous, nonstationary systems. 

3.2.1 Time Domain Discrete Wavelet Transformation  

Simultaneous time-frequency control can be realized through manipulating the 

discrete wavelet coefficients in the time domain [64, 65].  Implementation of such a 

novel control idea includes incorporating discrete wavelet transform (DWT) with Least 

Mean Square (LMS) adaptive filters to perform feedforward control, on-line 

identification [66], and adopting Filter-x Least Mean Square (FXLMS) algorithm [67] to 

construct a parallel adaptive filterbank.  DWT in time domain can be realized by passing 

the signal through a two-channel filter bank iteratively, as the one shown in Fig. 3.2. 
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Fig. 3.2 Two-channel filter bank in time domain 

 

Assume that the infinite input signal x[n] is of real numbers. The decomposition process 

in Fig. 3.2 convolutes the input x[n] with a high-pass filter    and a low-pass filter   , 

followed by down-sample by two.  The approximation coefficient a[n] and detail 

coefficients d[n] it received are calculated in the time domain as follows 

                                    (3.1) 

                                    (3.2) 

where integer n = 0, … , ∞.  Orthogonal filter sets with equal, even length are used and 

the lengths of the high-pass filter    and low-pass filter    are both 4.   

3.2.2 Integration of DWT Transform and LMS Adaptive Filter 

Fig. 3.3 gives the schematics of one of the most widely used finite impulse 

response (FIR) filters is briefly reviewed in the followings.  Given a set of N filter 

coefficients,                  , and a data sequence,                    

 +1), the output signal is computed using 

                      
    (3.3) 



 

46 

 

Z-1 Z-1 Z-1

Σ Σ

x(n)

y(n)

x(n-1) x(n-L+1)

w0(n) w1(n) wL-1(n)

+
+ +

+

 

Fig. 3.3 Block diagram of digital FIR filter 

 

The input vector and weight vector at time n can be defined as X(n) and W(n), 

respectively.  

                                   (3.4)

                                           (3.5) 

Consider an     DWT transformation matrix, T.  The output signal y(n) can be 

calculated and then compared with the desired response to determine the error signal 

through the following operations 

                 (3.6) 

                (3.7) 

The steepest-descent method is used to minimize the mean-square-error of the error 

signal.  The least-mean-square (LMS) algorithm is used to update the weight vector as 

follows 

                       (3.8) 

where μ is the step size for the control of stability and convergence speed.  A linear 

dispersive channel described in [68] that produces unknown distortion with a random 

sequence input {xn} is used to compare the performance of the wavelet-based LMS with 
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LMS, normalized LMS (NLMS), and recursive least squares (RLS) [68].  The impulse 

response of the channel is described by the raised cosine as follows 

 

1 2
{1 cos[ ( 2)]}, 1, 2, 3

2

0,


  

 



n

n n
h W

otherwise  

(3.9) 

where parameter W = 3.7 controls the amount of amplitude distortion produced by the 

channel.  The signal-to-noise ratio is about 30dB and the filter tap is 32.  The Level-1 

Daubechies D4 wavelet is employed to show in Fig. 3.4 that the wavelet-based LMS is 

of a better convergence performance. 

 

 

Fig. 3.4 Performances of LMS, NLMS, RLS and wavelet-based LMS 
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3.2.3 Simultaneous Time-Frequency Control Scheme 

The FXLMS algorithm is a modification to the LMS algorithm [57].  Fig. 3.5 is 

an example of how FXLMS is applied to neutralize the noise inside a signal-channel 

duct-acoustic system.  The noise source (reference input) is picked up by the reference 

microphone in the upstream, and an error microphone placed in the downstream is used 

to monitor the noise in the output.  The reference signal x(n) and error signal e(n) are 

processed by active noise controller implemented by the FXLMX algorithm.  It 

generates a control signal y(n) to drive a loudspeaker in order to cancel the noise. 
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Fig. 3.5 Signal channel broadband feedforward active noise control system in a duct [57] 

 

The concept of FXLMS is adopted and modified though with a different 

objective.  FXLMS is based on the principle of superposition.  Its adaptive filter uses the 

noise acquired near the source as a reference to generate a compensating signal that 

cancels the noise.  The residual error is then exploited to adapt the coefficients of active 

filter to minimize the mean-square-error.  This concept is followed to construct a 

wavelet-based time-frequency controller with parallel on-line modeling technique.  The 
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wavelet transformation matrix T is placed in front of two FIR adaptive filters to convert 

the time domain discrete signal into wavelet coefficient array.  The wavelet coefficients 

are multiplied by the weights of the FIR filter and then summed up to reconstruct the 

time domain signals.  

To incorporate the     transformation matrix T and the length-N adaptive 

filters, signal vectors are defined as  

                             (3.10) 

                             (3.11) 

                                 (3.12) 

                             (3.13) 

                             (3.14) 

These signal vectors are updated by adding the incoming data and dropping the Nth data 

in the array at each iteration.   

3.2.4 Optimization of Parameters 

Performance of the wavelet-based active controller depends on the selection of 

parameters such as the mother wavelet and the decomposition level.  Two time domain 

indicators, kurtosis and crest factor, are optimized to identify the parameters that best 

represent the characteristics of the driving signal [69].   

          
 

 
            

   

 
 

 
            

     
 (3.15) 
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where x(n) is the signal, N is the number of the samples, and    is the sample mean.  The 

values of these two indicators that correspond to the Daubechies wavelet family [70] and 

decomposition level are shown in Fig. 3.6, which indicates that the Daubechies D6 (db3) 

wavelet best characterizes the signal given that it has the highest kurtosis and crest 

factors.  Even though the decomposition level 5 has the highest Kurtosis value, 

decomposition level one is selected to ease the computational load.  

 

  

(a) (b) 

Fig. 3.6 Selection of (a) mother wavelet and (b) decomposition level 

 

 

 

When the wavelet-based active controller is applied to a system undergoing 

bifurcation, it is able to restrain both the time and frequency domain responses and keep 

the system in periodic motion.  Hence the mitigation imposed by the controller 

effectively stabilizes the dynamics before it deteriorates dynamically to eventual chaos.  

Having the concepts of adaptive control, active noise control and wavelet-based FIR 

filters all integrated, the wavelet-based active controller exerts control in the joint time-
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frequency domain and therefore differentiates itself from all published controllers in 

philosophy, architecture, and performance in mitigating nonlinear non-stationary 

responses such as bifurcation and route-to-chaos. 

3.3 Numerical Experiment 

The philosophy of the proposed control scheme is that the controller must be able 

to inhibit the deterioration of time and frequency responses simultaneously before the 

frequency response is too broadband to be controlled.  It employs adaptive filters for 

real-time system identification to cope with the nonstationary nature of the system 

during route-to-chaos.  Additional adaptive filters are placed to adjust the input signal, 

compensate the emerging frequency during bifurcation and track the reference signal.  

As such, the proposed control scheme is able to regulate a chaotic system in both the 

time- and frequency-domain simultaneously.  The architecture of the proposed controller 

adopts the active noise control algorithm (Filtered-x Least Mean Square) that uses one 

auto-adjustable Finite Impulse Response (FIR) filter to identify the system and another 

auto-adjustable FIR filter to eliminate the uncontrollable input.  Analysis/synthesis 

wavelet filter banks are also incorporated.  Analysis filter banks are used to decompose 

both input and reference signals before entering the controller and synthesis filter banks 

to combine the control input.  By projecting input signal onto orthogonal subspaces 

spanned by the wavelet filter banks, the convergence performance of the least mean 

square algorithm is improved.  In addition, the signal is resolved by DWT into 

components at various scales corresponding to successive octave frequencies, and 

moving wavelet filters are applied to extract temporal contents of the signal.  The 
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Daubechies orthogonal D4 wavelet is employed in the study to control the period-

doubling bifurcation generated by two types of Duffing oscillators.  As Daubechies 

wavelet functions of higher order do not provide improved time and frequency 

resolutions or better performance of control for the particular Duffing oscillators, the D4 

wavelet is chosen for its short filter length [71].  The control law incorporating the D4 

wavelet is inherently constructed in the simultaneous time-frequency space. 

A double-well Duffing oscillator with nonstationary external excitation is 

investigated using the following system parameters:  μ = 0.4, β = 1, α = -0.8, a = 0.32, b 

= 3×10
-5

 and ω = 0.78. 

                              (3.17) 

The Duffing oscillator is selected for demonstrating the proposed control methodology 

for the reason that it exhibits period-doubling bifurcation undergoing route-to-chaos - a 

property shared by a broad set of nonlinear systems.  An example of a periodically 

forced oscillator with a nonlinear elasticity, Duffing is among the most widely 

investigated equations.  Time-frequency control of the Duffing oscillator, as established 

and reported in the followings, provides an alternative to all the control methodologies 

ever documented and available in the literature. 

The time response and bifurcation diagram given in Figs. 3.7(a) and 3.7(b) show 

that the motion is initially periodic.  When the excitation amplitude is increased in time, 

the motion becomes a period-doubling bifurcation.  When multiple periods show up, the 

system becomes chaotic.  Bifurcation becomes prominent at this stage with an increasing 

but bounded frequency bandwidth.  When the excitation amplitude exceeds 0.42, the 

http://www.scholarpedia.org/article/Periodic_Orbit
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response becomes unbounded.  The IF in Fig. 3.7(c) shows a dominant frequency 

oscillating between 0.1 and 0.15Hz, a second frequency between 0.05 and 0.1Hz, and a 

third frequency at around 0.03Hz.  They all display temporal-modal behaviors and 

singularities signified by spectra of infinite bandwidth.  The period-doubling bifurcation 

initiates at t = 2700s when the dominant frequency loses its characteristics and a second 

component shows up with a frequency half of the dominant one.  With increasing 

excitation amplitude, the system undergoes route-to-chaos, in which all the frequencies 

are seen to engage in different patterns of temporal-modal oscillations indicative of 

dynamic deterioration.  At t=3300s this state of instability reaches a point that renders 

the system no longer bounded.  This phenomenon is analogous to many real-world 

complex nonlinear systems including the capsizing of a ship. 
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(a) 

 
(b) 

Fig. 3.7 (a) Time response, (b) bifurcation diagram, and (c) instantaneous frequency of 

the Duffing oscillator with nonstationary external excitation 
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(c) 

Fig. 3.7 Continued 

 

To demonstrate the performance of the proposed controller in controlling route-

to-chaos, two scenarios are considered against the baseline case in Fig. 3.7.  First, the 

controller is turned on at the beginning of the bifurcation when the corresponding 

spectrum is still narrowband with a finite number of temporal-modal oscillations.  

Second, the controller is activated in the midst of chaos when the corresponding 

spectrum is already broadband.   The result of the first scenario is shown in Fig. 3.8.  

Fig. 3.8(a) gives the time response of the controlled signal.  The controller is turned on at 

t = 3000s, and the amplitude of the response is fast contained, thus a contrast to Fig. 

3.7(a) when no controller is applied to negate the state of route-to-chaos.  The desired 
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to the linearized Duffing oscillator.  The error between the output and the desired signal 

is shown in Fig. 3.8(b).  The error before the onset of the controller is trivial and remains 

zero.  The time domain error is bounded within a small range after the controller is 

turned on.  Fig. 3.9(a) and 3.9(b) give the bifurcation diagram and instantaneous 

frequency, respectively, of the controlled response.  Fig. 3.9(a) indicates that when the 

excitation amplitude is small the response is of a single, slow-changing frequency.  The 

controller is activated when period-doubling bifurcation just initiates.  After a short 

period of transient the bifurcation diagram shows a rapid restoration of dynamic 

stability.  The instantaneous frequency in Fig. 3.9(b) shows that, after the transient 

response is stabilized, the characteristic of the dominant frequency is restored back to its 

status before bifurcation.  At the same time the singularities of infinite bandwidth are 

eliminated and all frequencies are now of a well-defined temporal-modal structure.  Figs. 

3.8 and 3.9 together demonstrate that the proposed controller is able to mitigate a 

bifurcating system from deteriorating further in both the time- and frequency-domain.  

The second scenario, in which the controller is turned on at the state of chaos, is 

presented in Fig. 3.10.  Fig. 3.10(a) is similar to but different from Fig. 3.8(a) in that the 

onset of the controller is postponed until t = 3200s when the system is in the state of 

chaos and on the verge of sudden divergence as seen in Fig. 3.7.  The time response after 

the controller is engaged displays a steady amplitude.  The response error in Fig. 3.10(b) 

is bounded within a small range after a short period of transient. 
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(a) 

 
(b) 

Fig. 3.8 (a) Time response (b) error response when the controller is turned on at the 

initial state of period-doubling bifurcation 
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(a) 

 
(b) 

Fig. 3.9 (a) Bifurcation diagram (b) instantaneous frequency when the controller is 

turned on at the initial state of period-doubling bifurcation 
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(a) 

 
(b) 

Fig. 3.10 (a) Time response and (b) response error when the controller is turned on at 

state of chaos 
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The bifurcation diagram and instantaneous frequency of the controlled response 

in Fig. 3.11 corroborate the same observation that the controller is both effective and 

robust.  The bifurcation in Fig. 3.11(a) is a state of plethora of periods and 

indistinguishable trajectories, and also of an increasing but finite spectrum.  The 

proposed controller is activated at this particular moment and state of dynamic 

instability.  After a brief transient, the trajectory in the bifurcation diagram is stabilized 

and becomes a well-behaving line indicative of a state of single frequency.  The 

corresponding IF is shown in Fig. 3.11(b), where multiple modes of frequencies coexist 

and temporal-modal aberration abounds.  Upon controller turn-on at t = 3200s, the mode 

that the dominant frequency was in before bifurcation is seen restored and superfluous 

frequencies eliminated.  Figs. 3.10 and 3.11 together conclude that the controller is able 

to negate dynamic instability and mitigate in both the time- and frequency-domain for 

chaos control.  
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(a) 

 
(b) 

Fig. 3.11 (a) Bifurcation diagram and (b) instantaneous frequency when the controller is 

turned on at state of chaos 
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3.4 Summary 

While most chaos control theories focus on controlling “static chaos,” the route-

to-chaos is in fact “dynamic,” a transient, non-stationary process.  A chaotic response is 

naturally bounded in the time-domain while in the mean time becoming unstably 

broadband in the frequency-domain.  All control theories reviewed, either designed in 

the time-domain or frequency-domain, were insufficient to deal with the route-to-chaos 

process.  A priori knowledge of the system must be available for them to work properly.  

They were shown to fail when the system state underwent severe changes.  Hence it was 

necessary for the controller to be adaptive and able to identify the system and facilitate 

proper control in real-time.  Two control theories, the OGY method and Lyapunov-based 

controller, were applied to stationary\nonstationary Hénon map and Duffing equation, 

respectively.  It was shown that they were successful in controlling autonomous, 

stationary systems but failed when the systems were non-autonomous and nonstationary.  

Therefore a novel chaos control scheme was developed, having features that addressed 

the fundamental characteristics common of chaotic systems.  Multiresolution analysis 

realized by filter banks that decomposed a signal into its high frequency and low 

frequency components was incorporated.  Built in the wavelet domain, the presented 

controller was shown to render simultaneous manipulation in both the time and 

frequency domains.  On-line identification and feedforward control were implemented 

via a revised version of the FXLMS algorithm.  The proposed control scheme was able 

to suppress dynamical deterioration in both the time and frequency domains and 

properly regulated the response with the desired reference signal.  The result implies that 
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a chaos controller must be adaptive and developed in the joint time- frequency domain to 

be viable. 
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4. ON CONTROLLING MILLING INSTABILITY AND 

CHATTER AT HIGH SPEED* 

 

4.1 Introduction 

Milling is a machining operation whose high cutting efficiency is facilitated 

through the simple deployment of small tools of finite number of cutting edges at high 

spindle speed.  When immersion rate is low and the time spent cutting is only a small 

fraction of the spindle period, interrupted cutting would ensure as a result.  The 

regenerative effect could also be prominent, where the cutting force depends on the 

current as well as the delayed tool positions.  In the stability analysis performed using a 

linear high speed milling model, Davies et al [72] showed that the fixed point of the 

model can lose its stability through either Neimar-Sacker bifurcation or period-doubling 

bifurcation.  Szalai et al [73] further established that both bifurcations were subcritical 

using a nonlinear discrete model.  They also demonstrated that a stable cutting can 

suddenly turn into chatter – a pronounced dynamic effect characterized by large tool 

vibration amplitude or frequency oscillation different from the spindle speed.  Such a 

negative effect induces detrimental aperiodic errors such as waviness on the workpiece 

surface, inaccurate dimensions and excessive tool wear, among others [74]. 

 

_____________________ 

*Part of this chapter is reprinted with permission from “On Controlling Milling 

Instability and Chatter at High Speed” by Liu, M. K. and Suh, C. S., 2012, Journal of 

Applied Nonlinear Dynamics, 1(1), pp. 59-72, Copyright 2012 by L&H Scientific 

Publishing 
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The onset of chatter has been investigated both analytically and numerically.  

Dynamic milling equations were transformed into linear maps and the eigenvalues of the 

transition matrix on the complex plane were used to predict stability [72,73].  Using 

numerical integration, stability was predicted by gradually increasing the axial depth-of-

cut until instability occurred [74].  However, each method has its own shortcoming.  

Established methodologies use eigenvalues of the approximated transition matrix to 

determine the stability bound of the system.  In route-to-chaos process, the way these 

eigenvalues leaves the unit circle on the complex plane is used to identify the type of 

bifurcation.  But as long as the high order nonlinear terms are omitted and the solution is 

projected into orthogonal eigenvectors, the response is obscured and cannot be 

considered as a genuine representation of the nonlinear system.  In numerical study, the 

stability of the system is decided by the emergence of additional frequencies in the 

corresponding Fourier spectrum.  As a mathematical averaging scheme in the infinite 

integral sense, Fourier transform generates spectra that are misinterpreted and fictitious 

frequency components that are non-physical [31].  Thus, stability determined by Fourier 

spectrum would necessarily be erroneous.  It has been demonstrated that to characterize 

route-to-chaos process, both time and frequency responses need be considered [75].  The 

concept of instantaneous frequency (IF) [33] is adopted in this section to help manifest 

the dependency of frequency on time – an attribute common of all nonlinear responses 

including milling chatter. 

In general, contemporary control theories are developed either in the frequency 

domain or time domain alone.  When a controller is designed in the frequency domain, 
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the equation of motion is converted into a transfer function.  Frequency response design 

methods, such as Bode plot and root locus, can be used to help developed frequency 

domain based controllers [76].  When a controller is designed in the time domain, the 

differential equations of the system are described as a state space model by state 

variables.  Once controllability and observability are established, time domain control 

laws can then be applied.  Controllers of either construct can only be applied exclusively 

either in the frequency or time domain, and they have been shown to be suitable for 

linear, stationary systems.  However, for a nonlinear, nonstationary system, when 

undergoing bifurcation to eventual chaos, its time response is no longer periodic and 

broadband frequency spectrum emerges.  Controllers designed in the time domain 

confine the time error while unable to suppress the expanding spectrum.  On the other 

hand, controllers designed in the frequency domain constrain the frequency bandwidth 

while losing control over time domain error.  Neither frequency domain nor time domain 

based controllers are sufficient to deal with bifurcation and chaotic response.  This is 

also ascertained by the Uncertainty Principle, which states that time and frequency 

resolutions cannot be simultaneously achieved. 

In sections that follow, a high-speed, low immersion milling model is explored 

without linearization so as to retain the inherent physical attributes of the nonlinear 

system.  Because neither linearization nor eigenvectors are attempted, tools commonly 

adopted for identifying various types of bifurcations are no longer applicable.  As an 

alternative, instantaneous frequency is deployed to characterize the route-to-chaos 

process in the simultaneous time-frequency domain.  The novel wavelet-based active 
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controller first introduced in Ref. [75] along with its fundamental features that enable 

simultaneous time-frequency control is also utilized.  The wavelet-based active 

controller owes its inspiration to active noise control [57], though of a different 

objective.  While active noise controls serve to minimize acoustic noise, the wavelet-

based active controller is configured to mitigate the deterioration of the aperiodic 

response in both time and frequency domains when the system undergoes dynamic 

instability including bifurcation to chaos.  The most prominent property of the controller 

is its applicability to nonlinear systems whose responses are non-autonomous and non-

stationary.  Such a powerful attribute is made possible by incorporating adaptive filters, 

so that system identification can be executed in real-time and control law can be timely 

modified according to the changing circumstances.  Components of the wavelet-based 

active controller, including discrete wavelet transform (DWT) in the time domain, 

wavelet-based finite impulse response (FIR) filter, and filtered-x least mean square 

(FXLMS) algorithm, will be considered later in the presentation.  

4.2 High Speed Low Immersion Milling Model 

The one-degree-of-freedom milling model found in Ref. [73] that governs the 

tool motion of the cutting operation at high speed is adopted, as shown in Fig. 4.1.  The 

tool has even number of edges and operates at a constant angular velocity, Ω.  Its mass, 

damping coefficient and spring coefficient are denoted as m, c, and k, respectively.  The 

feed rate is provided by the workpiece velocity V0.  The dynamic equation of milling 

motion that corresponds to Fig. 4.1(b) is 

 

2 ( )
( ) 2 ( ) ( ) ( ( ))   n n c

d t
x t x t x t F h t

m  
(4.1) 
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where x(t) is the tool tip vertical position,         is the undamped natural 

frequency, and            is the relative damping factor.   

 

v0

Ω

kc

m

 

x

ck

x(tj+1)

x(tj+1) x(tj)

h0+x(t-τ)

h0

x(t)

m

 

(a) (b) 

Fig. 4.1 (a) Configuration and (b) mechanical model of high speed milling [73] 

 

 

 

Fc , the nonlinear cutting force, is derived from the empirical three-quarter rule [73] as a 

function of the workpiece thickness, h(t),  

 
3/4( ( )) [ ( )]cF h t Kw h t  (4.2) 

where K is an empirical parameter and w is chip width.  h(t) equals the feed per cutting 

period h0 plus the previous tool tip position, x(t-τ), and minus the current tool tip 

position, x(t), 

 0( ) ( ) ( )   h t h x t x t  (4.3) 

with d(t) being a delta function defined as 
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(4.4)

 

The cutting force is applied to the system only when the tool edge physically engages the 

workpiece ( 1 1



  j jt t t ).  After the tool edge disengages the workpiece, the tool starts 

free vibration until the next edge arrives ( 1



 j jt t t ).  As is noted in [73], the time spent 

on cutting is relatively small compared to the time spent on free vibration. 

4.3 Route-to-Chaos and Milling Instability 

Following Ref. [72], the mass of the tool m is 0.0431kg, stiffness coefficient k is 

1.4 MN/m and damping coefficient c is 8.2 Ns/m.  Time delay τ is defined by 

considering the number of cutting edges deployed (N) and the spindle speed (Ω) as 

2
 

N
, where N = 2 in the study.  In investigating the route-to-chaos displayed by Eq. 

(4.1), the axial depth-of-cut (ADOC) is kept at 1.0 mm while the spindle speed is 

stepped down from 15,000rpm to 12,000rpm.  Fig. 4.2(a) shows the milling response at 

15,000 rpm.  It is a stable cutting condition having a time response that oscillates with an 

amplitude smaller than 0.1mm.  Its Fourier spectrum in Fig. 4.2(b), however, is one of 

relatively broad bandwidth having multiple high frequency components, thus indicating 

dynamic instability.  With a major frequency oscillating between 1000Hz and 1300Hz 

and a second frequency oscillating about 500Hz, the instantaneous frequency in Fig. 

4.2(c) further asserts that the motion as a period-doubling bifurcation.  As oppose to the 

Fourier spectrum in Fig. 4.2(b), the corresponding marginal spectrum in Fig. 4.2(d) 

shows that the bandwidth is confined and narrow, thus signifying the response as 
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dynamically stable.  With the decrease of the spindle speed, the milling response 

undergoes a route-to-chaos process. 

 

  

(a) (b) 

  

(c) (d) 

Fig. 4.2 (a) Time response (b) Fourier Spectrum (c) Instantaneous frequency (d) 

marginal spectrum when Ω = 15000 rpm and ADOC = 1.0mm (stable cutting condition) 
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When the spindle speed is at 14,000 rpm, new frequencies that are ½  and ¼  of 

the 500Hz component are registered in Figs. 4.3(c) and 4.3(d), meaning that the response 

is bifurcating towards chaos.  This 4T period-doubling bifurcation state of instability is 

not resolved in the Fourier spectrum in Fig. 4.3(b).  Fig. 4.3(b) literally misinterprets the 

response as one that is not experiencing bifurcation.  When the spindle speed is further 

reduced to 13000rpm, the Fourier spectrum in Fig. 4.4(b) remains almost unchanged 

from the previous one with an unmistakably lower time response amplitude.  The 

corresponding instantaneous frequency and marginal spectrum in Figs. 4.4(c) and 4.4(d), 

however, depict a scenario in which the system response is engaging in a state of very 

different temporal-spectral structure.  With the expanding frequency bandwidth, the 

system is on the verge to becoming chaotic. 

The Fourier spectrum in Fig. 4.5(b) that corresponds to a lower spindle speed at 

12000rpm is neither intuitively nor physically correct.  The instantaneous frequency in 

Fig. 4.5(c) shows that the major frequency oscillates between 1000Hz and 3000Hz, a 

character of a chaotic motion.  This is further confirmed by the marginal spectrum in 

Fig. 4.5(d) where a plethora of frequency components constitute a broadband spectrum.  

The lesson learned from Figs. 4.2-4.5 is that, while Fourier spectrum misinterprets the 

state of the response, instantaneous frequency along with the marginal spectrum is 

preferred for resolving route-to-chaos process and deterioration of stability. 
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(a) (b) 

  

(c) (d) 

Fig. 4.3 (a) Time response (b) Fourier Spectrum (c) Instantaneous frequency (d) 

marginal spectrum when Ω = 14000 rpm and ADOC = 1.0mm (4T period-doubling 

bifurcation) 
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(a) (b) 

  

(c) (d) 

Fig. 4.4 (a) Time response (b) Fourier Spectrum (c) Instantaneous frequency (d) 

marginal spectrum when Ω = 13000 rpm and ADOC = 1.0mm (unstable cutting 

condition) 
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(a) (b) 

  

(c) (d) 

Fig. 4.5 (a) Time response (b) Fourier Spectrum (c) Instantaneous frequency (d) 

marginal spectrum when Ω = 12000 rpm and ADOC = 1.0mm (chaotic motion) 
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4.4 Numerical Experiment 

When milling at high speed, the corresponding time response would become 

aperiodic and the frequency response would deviate away from well-defined harmonics 

and become unstably broadband.  Such responses are highly nonlinear and could lead to 

tool chatter if unattended.  In this section the milling model in Eq. (4.1) is again 

investigated in response to a 50,000 rpm spindle speed and 2 different ADOCs at 

0.003m and 0.001m.  Given that Fourier spectra were shown to obscure the genuine 

characteristics of all the responses considered in the previous sections, instantaneous 

frequency and marginal spectrum are adopted instead.  The orthogonal Daubechies D4 

wavelet is once again selected as the mother wavelet in the wavelet-based active 

controller.  The filter length of the identifying filter and the controlling filter are both 

256.  At ADOC = 0.003m the wavelet-based controller is turned on at t = 0.2s to align 

the response with zero, the target trajectory.  When t ≤ 0.2s, the vibration amplitude in 

Fig. 4.6(a) is aberrational.  There are four distinct frequencies in the instantaneous 

frequency in Fig. 4.6(c), each oscillating with the temporal-modal structure typical of a 

highly bifurcated response.  Before controller is applied, the marginal spectrum in Fig. 

4.6(b) sees a spectrum with frequencies ranging from 0 to 1500 Hz.  When the controller 

is online at t = 0.2s, the time response is greatly reduced and the frequency response is a 

well-behaved temporal-modal narrowband structure confined between 1400Hz and 

2200Hz.  As a further verification, the phase plots for the before and after scenarios are 

compared in Fig. 4.7.  The response is seen in the state space to reduce to a manifold 

after the controller is applied, thus explaining the restraining of bandwidth and 
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frequencies.  It can be concluded from the fact that these two phase plots belong to 

different basins and have fundamentally different geometric structures that the controller 

alters the underlying signature of the system, effectively negates further deterioration, 

and ensures dynamic stability at 50,000 rpm. 

 

  
(a) 

 

(b) 

  
(c) (d) 

 

Fig. 4.6 (a) Time response (b) marginal spectrum (before controlled) (c) instantaneous 

frequency (d) marginal spectrum (after controlled) when controller applied at t = 0.2s 

with Ω = 50,000 rpm and ADOC = 0.003m 
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(a) (b) 

Fig. 4.7 Phase plots of (a) uncontrolled and (b) controlled responses 

 

 

 

The next case studied is with a smaller milling ADOC set at 0.001m.  Because 

the amplitude of the time response remains small, the motion as seen in Fig. 4.8 seems 

suggest a stable cutting operation.  However the instantaneous frequency shows that 

there are prominent temporal-modal oscillations, indicative of a complex nonlinearity 

that is the precursor of tool chatter.  After controller is turned on at t = 0.2s, both the 

time response and marginal spectrum are effectively restrained.  The phase plots of the 

controlled and uncontrolled responses are placed next to each other for comparison in 

Fig. 4.9.  The 2 manifolds are indications that the motions, both before and after the 

controller is activated, are stable. However, while it remains in the same basin after the 

controller is on, the scale and magnitude of the trajectory are significantly reduced by a 

factor of 100 in Fig. 4.9(b). 
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(a) (b) 

  

(c) (d) 

Fig. 4.8 (a) Time response (b) marginal spectrum (before controlled) (c) instantaneous 

frequency (d) marginal spectrum (after controlled) when controller applied at t = 0.2s 

with Ω = 50,000 rpm and ADOC = 0.001m 
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(a) (b) 

Fig. 4.9 Phase plots of (a) uncontrolled and (b) controlled responses 
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4.5 Summary 

Milling tool dynamics was shown using instantaneous frequency, in lieu of 

Fourier spectra, to be transient and nonlinear due to the regenerative effect.  Milling 

response was seen to be highly sensitive to machining condition and external 

perturbation, easily deteriorating from bifurcation to chaos.  When losing stability, 

milling time response was no longer periodic and the frequency response became 

broadband, rendering tool chatter and probable tool damage.  The marginal spectrum 

derived from instantaneous frequency was considered to be more suitable than Fourier 

spectrum to define the stability boundary for high speed milling operation.  For the 

route-to-chaos process in which both time and frequency responses deteriorate at the 

same time, it is necessary to control them simultaneously.  The wavelet-based active 

controller having DWT, wavelet-based adaptive FIR filter, and FXLMS algorithm as its 

physical features was demonstrated to successfully negate bifurcations and chaotic 

responses by adjusting the input.  Integration of DWT in the controller effectively 

manipulated the wavelet coefficients, hence facilitating the control of milling tool 

response in both the time and frequency domains simultaneously.  The concept adopted 

from the FXLMS algorithm enabled the identification and control of the system in real-

time.  Unlike conventional control law design approach that always requires the system 

to be controlled be mathematically explicit, the construction of the wavelet-based 

controller has no such a requirement.  Since no mathematical linearization is needed, the 

inherent characteristics of the system to be controlled are faithfully retained and its 

underlying dynamics can be resolved without distortion.  The several cases of milling 
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instability investigated using the wavelet-based active controller together indicate that to 

properly control a nonlinear system whose responses are transient and nonstationary, it is 

necessary for the control law to have certain properties including being able to identify 

the system in real-time and apply mitigation in both the time and frequency domain 

simultaneously. 
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5. MULTI-DIMENSIONAL TIME-FREQUENCY CONTROL OF 

MICRO-MILLING INSTABILITY* 

 

5.1 Introduction 

Essential to producing complex three-dimensional products out of a wide range 

of materials, micro-milling is critical to the advancement of technology for many 

industries as components are continuously being reduced in size and require increased 

functionality.  However, micro-milling is subject to unpredictable tool life and premature 

tool failure which can ruin a workpiece and instigate costly and inefficient product 

inspection and resetting [77, 78].  Thus it would be of direct impact to improve the 

efficiency of the process.  Chip clogging, fatigue, and excessive stress related failure are 

identified as the three common micro-mill breakage mechanisms [77].  When the stress 

is below the endurance limit but above the normal operation level the tool will not fail 

immediately [77].  However, the stress on the shaft will change repeatedly while the tool 

is rotating causing the strain distribution to change repeatedly at the tool shaft, thus 

inducing fatigue.  Vibrations with high or multiple frequency components increase the 

speed at which the strain distribution changes, inevitably resulting in fatigue failure 

occurring at an accelerated rate. The excessive stress related breakage occurs when there 

 

_____________________ 

*Part of this chapter is reprinted with permission from “Multi-Dimensional Time-

Frequency Control of Micro-Milling Instability” by Liu, M. K., Halfmann, E. B., and 

Suh, C. S., 2012, Journal of Vibration and Control, Manuscript ID: JVC-12-0264, 

Copyright 2012 by SAGE Publications Ltd. 
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is a sudden increase in the cutting forces indicative of dynamically unstable cutting due 

to excessive vibration magnitudes.  Also, excessive machining vibrations (chatter) affect 

the workpiece surface finish and tolerances, and result in larger cutting forces which are 

key indicators of tool performance [79].  Thus, micro-milling performance and failure 

are directly affected by the dynamic response of the tool, rendering controlling dynamic 

instability fundamental to improving micro-milling efficiency. 

 Physical models are important for the characterization of dynamic instability, 

development and testing of control algorithms, and providing insight needed to 

designing empirical research.  Micro-milling cannot directly adopt the methods used for 

modeling macro-milling due to different cutting force mechanisms at work such as the 

increased impact of material plowing.  When the chip thickness is too small a chip will 

not form and the material will be plowed under the tool [80].  This phenomenon is more 

prominent in micro-milling due to the increased feed-rate to tool nose radius ratio.  

Micro-milling is a highly nonlinear process due to these additional nonlinear 

characteristics and the high spindle speeds which are commonly employed.  To address 

the issue of micro-milling chatter an uncut chip thickness model is coupled with a finite 

element orthogonal cutting model in [81].  Stability lobes are generated using statistical 

variances and chatter is defined as a statistical variance larger than 1 μm.  However, the 

uncut chip thickness model reported in [81] fails to consider the elastic recovery of the 

material due to the plowing mechanism, thus hindering its veracity.  Micro-milling 

stability lobes are produced in [82, 83] but the stability lobes have limited accuracy 

when compared with the experimental data, and it is shown that the dynamic properties 
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of the system have a substantial impact on the resulting stability.  These stability lobes 

are generated through linearization which obscures the nonlinear characteristics of the 

process that are prominent in micro-milling.  The experimental data in [82, 83] shows 

high frequency components and multiple chatter frequencies that are characteristics of a 

nonlinear process.  The modeling and control analysis of the process should retain the 

inherent nonlinearities to effectively address dynamic instability.  An effective method 

for modeling the nonlinear forcing mechanism of the micro-milling process is through 

slip-line field models.   It is shown in [84] that the comprehensive slip-line field model 

developed in [85] outperforms the finite element model when predicting the magnitude 

of the cutting forces.  A comprehensive slip-line model is developed in [86] for 

modeling the cutting process near the tool edge.  Earlier slip-line models in [87, 88] 

predicted the shearing and plowing forces, and the force mechanism equations were 

improved upon in [89].  The research reviewed above focuses on the development of 

force mechanisms for predicting cutting forces and does not investigate dynamic 

instability.  Ref. [90] adopts the slip-line field force mechanism presented in [89] and 

accounts for material elastic recovery in the chip thickness calculation, the effective rake 

angle, and the helical angle of the tool for numerically studying the dynamic response.  

This model captures all the prominent nonlinear characteristics of micro-milling and will 

be adopted in this investigation to explore nonlinear micro-milling control. 

 There are several challenges in controlling micro-machining.  In addition to the 

distinct cutting dynamics which differentiates micro-machining from macro-machining, 

the performance of miniaturized end-mill is greatly affected by the vibrations and 
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excessive force.  The influence of noise and the inadequate bandwidth of force sensors 

due to high rotational speeds make it difficult to measure cutting forces [84].  Unlike 

macro-machining, impulse hammer tests for investigating tool tip dynamics are not 

practical in microstructure due to the fatigue nature of miniature tools, and the 

accelerometers cannot be effectively attached due to their size and weight, which 

influence the overall dynamics [91].  To estimate the microstructure tool dynamics, 

Receptance Coupling (RC) was implemented to mathematically couple the tool tip and 

the remainder of the tool using non-contact sensors [92].  However, the development of 

micro-machining controllers still suffers from the challenges of miniature micro-

structure.  There are only a few research papers related to the control of micro-

machining.  Commend shaping method was followed to reduce the tracking error of the 

micro-mills in [93].  It properly chose the acceleration profile of the DC motors on the 

precision linear stage to counteract the vibration caused by the internal force from high 

speed motion of the tool.  The contour error was reduced by cross-coupling, which 

established the real-time contour error model and returned error correction signal to the 

motor of each axis [94].  Piezoelectric stack actuators were mounted to directly control 

the relative motion between the tool-spindle and the workpiece of a micro-milling 

machine, and Active Vibration Control (AVC) was used to suppress the vibration of the 

tool tip point [95].  As the response time of piezoelectric actuators cannot catch up with 

the high rotating speed of the spindle, the method can only apply to low-speed micro-

machining. 
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From the literature review, it is concluded that there are no effective solutions for 

controlling chatter in micro-machining.  One crucial factor is to regulate the highly 

nonlinear cutting forces.  The cutting forces cannot exceed the critical limit of the tool in 

which sudden tool failure would occur.  This limits the chip load and thus the material 

removal rate that can be achieved.  Higher spindle speeds are then desired to increase the 

material removal rates of the process without increasing the chip load.  However, the 

nonlinearities of the force mechanism become more prominent at higher spindle speeds 

causing the increased excitation frequencies to result in dynamic instability.  Another 

factor is that the control method has to adapt to the uncertainties of the cutting process as 

well as the changing dynamics.  However, cutting instability in fact consists of the 

deterioration in both time and frequency domains due to the highly nonlinear nature of 

micro-milling process.  A simultaneous time-frequency control scheme was developed to 

restrain the deterioration of time and frequency responses in the instability states of 

bifurcation and chaos [96].  It has been demonstrated to effectively deny milling chatter 

at high speed and restore milling stability as a limit cycle of extremely low tool 

vibrations [97].  The following sections together present a nonlinear micro-milling 

model that captures the intrinsic characteristics of the cutting process.  Deriving from the 

simultaneous time-frequency controller design in [96], a multi-variable nonlinear control 

scheme is then developed to facilitate the proper mitigation of micro-milling instability. 

5.2 Nonlinear Micro-Milling Model 

The micro-milling model to be controlled is the one presented in [90] accounts 

for the prominent nonlinear characteristics of the process.  The forcing mechanism for 



 

87 

 

the model adopts the slip-line force model developed in [89] which expanded upon the 

model in [88] by accounting for the dead metal cap and adding an additional slip-line on 

the clearance face of the tool.  The model in [90] neglects this additional slip-line 

assuming that, since the material takes time to recover and the feed rates used are larger 

than the tool nose radius, this additional slip-line will have negligible effect on the 

cutting forces.  When the chip thickness is greater than the critical chip thickness, it is 

assumed that both shearing and plowing forces are present.  The shearing and plowing 

forces in the cutting and thrust directions as given in [88 - 90] are provided in Eqs. (5.1) 

‒ (5.4), 

 2 2[(cos sin ) (cos(2 )sin cos ) ]sc S S S e e bdF da a l a l        
 

(5.1) 

 2 2[( cos sin ) (cos(2 )cos sin ) ]st S S S e e bdF da a l a l          (5.2) 

 1 1[ (cos(2 )cos sin ) ]pc bdF da a l      (5.3) 

 1 1[ ( cos cos(2 )sin ) ]pt bdF da a l      (5.4) 

where, referring also to Fig. 5.1,   is the material shear flow stress, da is the axially 

depth of cut, s is the chip flow angle, e  is the effective rake angle, and sl , bl , a , 1a , 

2a , 1 , 2 , and   are the slip-line field variables as defined in [89, 98].  The force 

equations and associated variables in Eqs. (5.1) – (5.4) are all functions of the 

instantaneous chip thickness, ( )tc t .  In micro-milling, when ( )tc t  is less than the 

minimum chip thickness, mintc , then only plowing forces are present, and when the tool 

jumps out of the cut, there are no forces acting on the system.  Thus, the three force 

cases considered in [90] are: 
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Case I: 
min( ) {

t st pt

c sc pc

dF dF dF
tc t tc

dF dF dF

 


 
 

Case II: 
min0 ( ) {

t pt

c pc

dF dF
tc t tc

dF dF


 


  

Case III: 
0

( ) 0 {
0

t

c

dF
tc t

dF





  

 These three cases indicate that accurately determining ( )tc t  is important to 

faithfully realizing the forces acting on the system and thus the resulting dynamics.  The 

model utilizes a method which accounts for the elastic recovery of the plowing 

phenomenon and the tool jumping out of the cut.  Eqs. (5.5) – (5.7) are utilized for 

determining ( )tc t  where subscript, j, refers to the tooth 1 and 2 of the micro-mill, fc  is 

the feed rate, N is the number of teeth,   is the spindle speed, ( ) ( )x x t x t     , 

( ) ( )y y t y t     , and time delay 60
( )N

 


.  

 

min( ) : ( ) sin ( ) sin ( ) cos ( )j j j j jtc t tc tc t fc t x t y t            (5.5) 

min0 ( ) : ( ) sin ( ) sin ( ) cos ( ) ( )j j j j j e jtc t tc tc t fc t x t y t p tc t                 

 (5.6) 

( ) 0 : ( ) sin ( ) sin ( ) cos ( ) ( )j j j j j jtc t tc t fc t x t y t tc t               (5.7) 

 

The model also accounts for the effective rake angle and the helical angle.  The 

derivation for the helical angle results in the following equations of force components, 
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 sin ( ) cos ( )x t j c jF F t F t     (5.8) 

 cos ( ) sin ( )y t j c jF F t F t     (5.9) 

 sinz c hF F   (5.10) 

where h is the helical angle and cosc c hF F   . 

 To account for the helical angle, it is also assumed that the tool can be broken up 

into axial elements.  Thus, the immersion angle ( )j t  shown in Fig. 5.1 for each tooth 

and axial element must be determined to know if that tooth and axial element is engaged 

in the workpiece and thus contributing to the overall force of the system.  The equation 

to find the immersion angle   for each tooth, j, and axial element, k, is given in Eq. 

(5.11) 

 
tan 2

( ) [ ( ) ]
2 60

h
jk ij

da t
t k da

R

 
 


     (5.11) 

 

 

Fig. 5.1 The 2D lumped mass, spring, damper model of the micro-tool 
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It is assumed that the tool can be modeled as the lumped mass-spring-damper 

system seen in Fig. 5.1.  It is also assumed that because of the very high stiffness in the 

Z-direction, tool vibrations along the spindle axis are negligible.  This results in two 

coupled equations of motion governing the X- and Y-direction motions of the tool as 

follows  

 ( , , )x x xmx c x k x F t x y      (5.12) 

 ( , , )y y ymy c y k y F t x y      (5.13) 

5.3 Multi-Variable Simultaneous Time-Frequency Control 

The novel nonlinear control law presented in [96] was formulated to address the 

fundamental characteristics inherent of dynamic instability including bifurcation and 

chaos.  Unlike modern control theories which focus on eliminating time domain errors, 

the control law restrains the deterioration of the time and frequency responses 

concurrently.  The system response to be controlled is adjusted by Least Mean Square 

(LMS) adaptive filters to force the system to follow a target signal, which is the response 

of a stable state before dynamic deterioration.  Because neither linearization nor closed-

form solution is required, all the genuine features of the nonlinear response are retained.  

The control scheme manipulates the corresponding discrete wavelet transform (DWT) 

coefficients of the system response to realize control in the joint time-frequency domain.  

The control scheme has been demonstrated to successfully negate the rich set of 

bifurcated and chaotic responses of a time-delayed milling model in [97].  The control 

theory is applied to the multi-dimensional micro-milling model described in Eqs. (5.12) 

– (5.13).  By following the multi-variable control architecture shown in Fig. 5.2, X- and 
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Y-direction motions are determined using the force components that are defined by the 

feed and the instantaneous chip thickness in Eqs. (5.5) – (5.7).  To achieve multi-

variable control, two independent nonlinear controllers are placed in front of the micro-

milling model of each direction to mitigate the excitation force components.  These two 

controllers operate in parallel and use different parameters. 

 

EOMx

EOMy

Controller 1

Controller 2

Δx = x(t)-x(t-τ) 

X motion

Y motion

Feed x

Feed y

Δy = y(t)-y(t-τ) 

Force x

Force y

 
Fig. 5.2 Configuration of multi-variable micro-milling control 

 

The target signal is formulated using the truncated Fourier series of a desired 

micro-milling state of response.  The desired state is defined by a stable vibration 

amplitude and a bounded frequency response containing the elementary modes that 

differentiate itself from the instability states of bifurcation and chaos.  When the 

controller is turned on, the system will be restored back to the desired stable state 

defined by the target signal.  The construction of the target signal is briefly reviewed in 

the followings, followed by an illustrative example in the next section.  Fourier series 

provides an alternate way of presenting a time signal by using harmonic functions of 
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different frequencies.  Suppose f is a T-periodic function defined within [ , ]
2 2

T T , 

then its Fourier series is 

 2( ) ~ in T

nn
f x c e 

  (5.14) 

where 

 

/2

21

/2

( )

T

in T

n T

T

c f x e dx



   (5.15) 

Assume that f(k) is the discrete form of f(x) having N points within[ , ]
2 2

T T .  The 

values of f(k) outside the interval are assumed to be zeros.  Then nc  can be represented 

as 

    
 

 

 

 
       

     

 

 

 

   
 

 
  

 
 

 
         

 

 
    

 

 
   (5.16) 

where nF  is the Discrete Fourier Transform (DFT) of f(k).  A target signal can be 

reconstructed using Eq. (5.14) by retaining only the frequency components in Eq. (5.16) 

that represent the fundamental modes of a desired dynamic state that is physically stable. 

5.3.1 Control Procedure 

The model is simulated at a constant feed rate of 5μm/tooth for different spindle 

speeds and axial depth-of-cuts (ADOC).  The micro–dimensions used in [89] are 

adopted along with the pearlite material parameters found in [98].  The modal 

parameters for the tool are assumed to be equal in the X- and Y-direction, and are 

adopted from [99] since this research utilized a similar 500μm micro-mill.  These 

simulation parameters are summarized in Table 5.1. 
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Table 5.1: Simulation parameters utilized 

Tool Properties from [98] 

Number of Teeth 2 

Tool Diameter 500 μm 

Tool Nose Radius, Re 2 μm 

Rake Angle 8° 

Helical Angle 30° 

  

Modal Paramters from [99] 

Tool Natural Frequency 4035 Hz 

Stiffness 2142500 N/m 

Damping Ratio 0.016 

 

 

An unstable response is observed for a spindle speed of 63,000 rpm and 100 μm 

ADOC.  Under these cutting conditions, irregularity is observed in both the time and 

frequency responses using instantaneous frequency (IF) [100].  The time response and IF 

of the X- and Y-motion are shown in Fig. 5.3.  A tool natural frequency at 4,035 Hz and 

tooth passing frequency at 2,100 Hz are observed.  The tooth passing frequency is highly 

bifurcated as seen in the IF plots of Fig. 5.3 which contain multiple frequency modes 

below the tooth passing frequency.  When the spindle speed is reduced to 60,000 rpm 

and the ADOC is maintained at 100 μm, the tool response is one of stability (Fig. 5.4).  

The vibration response has improved with lower vibration amplitude and the IF plot now 

shows a stable dynamic response containing the 4,035 Hz tool natural frequency and the 

2,000 Hz tooth passing frequency.  The goal of the research is to improve the dynamic 

stability of the process.  Thus, it is desirable for the unstable response at 63,000 rpm and 
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100 μm axial DOC (Fig. 5.3) to better compare to the stable response at 60,000 rpm and 

100 μm axial DOC (Fig. 5.4).  The target signal for the controller is then developed 

based on the characteristics of the particular stable cutting.  The target signal must 

contain the physically meaningful modes of the process as well as have acceptable 

vibration amplitudes.  Then, the physically meaningful frequencies are retained while the 

undesirable frequency components are discarded.  For the 63,000 rpm case, the target 

signal contains vibration amplitudes similar to the 60,000 rpm stable response and 

consists of only the tool natural frequency and tooth passing frequency modes.  The 

reconstructed signal and the reconstruction error of the signal can be seen in Fig. 5.5.  

The reconstructed signal is fed into the controller as a reference signal.  Fig. 5.6 shows 

that unstable cutting at 63,000 rpm now has a controlled vibration and frequency 

response when the controller is turned on at 0.2 seconds.  The vibration amplitude is 

reduced to a level similar to that of the stable cutting which will significantly improve 

the workpiece tolerance and surface quality.  The IF plot in Fig. 5.6 also demonstrates an 

improved frequency response in which the individual modes are now bounded and range 

over a narrow bandwidth.  The phase diagrams and Poincaré sections in Fig. 5.7 indicate 

that the dynamic state of motion has improved once the controller is initiated.  The 

uncontrolled phase plot and Poincaré section indicate a fractal-like limit cycle while the 

controlled phase plot and Poincaré section demonstrate quasi-periodic motion with 

reduced amplitudes and a finite number of well-behaved frequency components. 
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(a) (c) 

  

(b) (d) 

Fig. 5.3 (a) Time response and (b) instantaneous frequency of x motion, and (c) time 

response and (b) instantaneous frequency of y motion when spindle speed = 63,000 rpm 

and ADOC = 100 μm 
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(a) (c) 

  

(b) (d) 

Fig. 5.4 (a) Time response and (b) instantaneous frequency of x motion, and (c) time 

response and (b) instantaneous frequency of y motion when spindle speed = 60,000 rpm 

and ADOC = 100 μm 
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(a) (c) 

  

(b) (d) 

Fig. 5.5 (a) Reconstructed target of x motion and (b) reconstruction error of x motion, 

and (c) reconstructed target of y motion and (d) reconstruction error of y motion 
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(a) (c) 

  

(b) (d) 

Fig. 5.6 (a) Time response and (b) IF of x motion, and (c) time response and (b) IF of y 

motion when spindle speed = 63,000 rpm and ADOC = 100 μm.  The controller is turned 

on at 0.2 second 
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(a) (b) 

  

(c) (d) 

Fig. 5.7 (a) Phase plot of x-y and (b) Poincaré section of x-y before controlled, and (c) 

phase plot of x-y and (b) Poincaré section of x-y after controlled when spindle speed = 

63,000 rpm and ADOC = 100 μm 
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5.4 Numerical Experiment 

Control of the micro-milling model for different spindle speed and ADOC are 

investigated with the assistance of phase portrait, Poincaré section, time response, IF, 

and cutting forces.  Fig. 5.8 shows the phase diagram and Poincaré section when the 

spindle speed is at 75,000 rpm with an ADOC of 40μm.  Before the controller is 

activated, scattering on the Poincaré section in Fig. 5.8(b) suggests that it is a broadband, 

chaotic response even though the time response is bounded.  After controlled, the phase 

plot in Fig. 5.8(c) becomes a limit cycle with an amplitude that is 4 times smaller and the 

Poincaré section in Fig. 5.8(d) shows a periodic motion of a finite number of 

commensurate frequencies.  Fig. 5.9 shows the time response and IF for controlling the 

milling process.  The controller is turned on at 0.1 second and the target signal is 

designed using the response under the same spindle speed but a smaller ADOC of 30μm.  

Before 0.1 seconds, the uncontrolled response has an irregular time response amplitude 

and broadband unstable frequency in both the x- and y-direction.  After the controller is 

on line at 0.1 seconds, the time response amplitude is reduced and the IF is restrained to 

a narrowband spectrum with a finite number of spectral components.  The amplitude of 

cutting force in both directions is slightly reduced after controlled as shown in Fig. 5.10.  

The controller maintains the force amplitude around the stable cutting force limit for this 

particular chip load effectively offsetting the negative impact of increased cutting forces 

due to dynamic instability. 
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(a) (b) 

  

(c) (d) 

Fig. 5.8 (a) Phase plot of x-y and (b) Poincaré section of x-y before controlled, and (c) 

phase plot of x-y and (b) Poincaré section of x-y after controlled when spindle speed = 

75,000 rpm and ADOC = 40 μm 
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(a) (b) 

  

(c) (d) 

Fig. 5.9 (a) Time response and (b) IF of x motion, and (c) time response and (b) IF of y 

motion when spindle speed = 75,000 rpm and ADOC = 40 μm.  The controller is turned 

on at 0.2 second 
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(a) (b) 

Fig. 5.10 (a) Force in x-direction (b) force in y-direction when spindle speed = 75,000 

rpm and ADOC = 40 μm.  The controller is turned on at 0.1 second 

 

 

 

When the spindle speed is increased to 90,000rpm with 85μm ADOC, its phase 

plot represents an unstable limit cycle in Fig. 5.11(a) and the corresponding Poincaré 

section in Fig. 5.11(b) shows a fractal structure.  While not chaotic, it is of a broadband, 

varying spectrum and thus difficult to control.  The target signal is composed from the 

same spindle speed with a 50μm ADOC.  When the controller is on, the response on the 

phase plot becomes one order-of-magnitude smaller and the Poincaré section becomes 

localized as shown in Figs. 5.11(c) and 5.11(d), which means that the motion is now an 

attracting manifold having a frequency response whose bandwidth is significantly 

reduced.   The time response and IF for controlling the milling process are shown in Fig. 

5.12.  After the controller is applied at 0.1 second, the time response amplitude in both 
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regularized and becomes steady oscillation with limited bandwidth, as shown in Fig. 

5.12 (c) and (d).  The cutting force on both directions is effectively mitigated and 

restrained after controlled (Fig. 5.13), thus improving the tool life of the process under 

these cutting conditions. 

 

  

(a) (b) 

  

(c) (d) 

Fig. 5.11 (a) Phase plot of x-y and (b) Poincaré section of x-y before controlled, and (c) 

phase plot of x-y and (b) Poincaré section of x-y after controlled when spindle speed = 

90,000 rpm and ADOC = 85 μm 
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(a) (b) 

  

(c) (d) 

Fig. 5.12 (a) time response and (b) IF of x-motion, and (c) time response and (b) IF of y-

motion when spindle speed = 90,000 rpm and ADOC = 85 μm.  The controller is turned 

on at 0.1 second 
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(a) (b) 

Fig. 5.13 (a) Force in x-direction (b) force in y-direction when spindle speed = 90,000 

rpm and ADOC = 85 μm.  The controller is turned on at 0.1 second 
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in narrowband frequency components.  The cutting force is also reduced as shown in 

Fig. 5.16 and maintains the stable cutting force limit. 
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(a) (b) 

  

(c) (d) 

Fig. 5.14 (a) Phase plot of x-y and (b) Poincaré section of x-y before controlled, and (c) 

phase plot of x-y and (b) Poincaré section of x-y after controlled when spindle speed = 

180,000 rpm and ADOC = 50 μm 
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(a) (b) 

  

(c) (d) 

Fig. 5.15 (a) time response and (b) IF of x motion, and (c) time response and (b) IF of y 

motion when spindle speed = 180,000 rpm and ADOC = 50 μm.  The controller is turned 

on at 0.1 second 
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(a) (b) 

Fig. 5.16 (a) Force in x direction (b) force in y direction when spindle speed = 180,000 

rpm and ADOC = 50 μm.  The controller is turned on at 0.1 second 
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periodic motion with a single frequency.  After the controller is turned on, it indicates a 

reduction of amplitude in Fig. 5.17(c).  The time response and instantaneous frequency 

in Fig. 5.18 show resonance amplitude and a signal frequency at 4,000Hz.  The target 

signal is designed from the same spindle speed with 30 μm ADOC.  The time response 

amplitude is reduced and its frequency response remains the same after the controller is 

applied.  The amplitude of cutting force on both directions remains the same after 

controlled (Fig. 5.19).  The reduction of the vibration amplitude is significant for 

improving product quality for high speed cutting. 
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(a) (b) 

  

(c) (d) 

Fig. 5.17 (a) Phase plot of x-y and (b) Poincaré section of x-y before controlled, and (c) 

phase plot of x-y and (b) Poincaré section of x-y after controlled when spindle speed = 

120,000 rpm and ADOC = 50 μm 
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(a) (b) 

  

(c) (d) 

Fig. 5.18 (a) Time response and (b) IF of x motion, and (c) time response and (b) IF of y 

motion when spindle speed = 120,000 rpm and ADOC = 50 μm.  The controller is turned 

on at 0.1 second 
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Fig. 5.19 (a) Force in x direction (b) force in y direction when spindle speed = 120,000 

rpm and ADOC = 50 μm. The controller is turned on at 0.1 second 

 

 

 

5.5 Summary 
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high spindle speeds are desired in micro-milling.  This high frequency excitation of the 

system increases the effect of nonlinearity on the dynamic response negatively impacting 

cutting performance by introducing increasingly broad frequency spectra as instability 
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to effectively control micro-milling, and a micro-milling model capable of capturing the 

high frequency signature of the process is required for testing control algorithm.  A 
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micro-milling model in order to control and improve the dynamic response under 

various spindle speed and ADOC conditions which resulted in an unstable dynamic state 

0 0.1 0.2 0.3 0.4 0.5
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2
X Motion Force

Time(sec)

F
o

rc
e

(N
)

0 0.1 0.2 0.3 0.4 0.5
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2
X Motion Force

Time(sec)

F
o

rc
e

(N
)



 

113 

 

of motion.  To control the process, two independent nonlinear controllers were placed in 

front of the model to regulate the cutting force excitation, and a target signal having all 

the physically meaningful frequency modes and acceptable amplitudes was utilized.  The 

controller was applied to unstable cutting for spindle speed excitations ranging from 

63,000 rpm to 180,000 rpm.  For each case, the controller demonstrated the ability to 

reduce the vibration amplitude of the system, which is important for improving process 

efficiency and achieving and maintaining high precision cutting at a wide range of 

spindle speeds.  The cutting forces were also observed to be properly mitigated and 

controlled to the stable cutting force values for that particular feed rate and ADOC.  The 

controller prevented the negative effect of increasing cutting forces due to dynamic 

instability, thus simultaneously improving the life of the tool and negating immediate 

tool failure for unstable high speed excitation.  The instantaneous frequency plots, phase 

portraits, and Poincaré plots illustrated the improved dynamic state of motion in the 

time-frequency domain after the controller was applied.  This was observed by a 

reduction in the bandwidth of the frequency response, ultimately improving tool life and 

the wear rate.  The application of the simultaneous time-frequency controller to the 

highly nonlinear micro-milling process at high speed excitation demonstrated the 

capability of mitigating the process in both the time and frequency domains with 

significantly improved tool performance and workpiece quality. 

  



 

114 

 

6. SYNCHRONIZATION OF CHAOS IN SIMULTANEOUS  

TIME AND FREQUENCY DOMAIN 

 

6.1 Introduction 

Chaos synchronization can be categorized into complete, practical, partial, and 

almost synchronization [101, 102].  The simplest synchronization method is complete 

replacement, which substitutes the variable in the response system with the 

corresponding variable being passed from the drive system [101].  The stable 

synchronization can also be achieved by replacing the variable only in certain locations, 

called partial replacement.  The drive and response systems can also be coupled by 

adding a damping term that consists of a difference between the drive and the response 

variables.  However, most studies have the configuration of the synchronization scheme 

determined through trial by error.   

Lyapunov stability theory is often adopted when formulating chaos 

synchronization methods.  Proper rule of update for unknown parameters and control 

law for compensating the external excitation are designed to make the Lyapunov 

function candidate compatible with the stability requirement [103].  Synchronization can 

be robustly achieved for identical or dissimilar chaotic systems without the calculation 

of the conditional Lyapunov exponents.  Adaptive backstepping control law is applied to 

ensure that the error between the drive and response system is asymptotically stable 

[104, 105].  It derives Lyapunov function candidate in sequence for each variable, 

progressively stepping back from the overall system and securing the stability for each 
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variable.  To identify the chaotic system simultaneously, adaptive control law is derived 

from Lyapunov theory to define the convergence and stability of the error dynamic 

equation [106-108].  It is able to accommodate the unknown parameters and system 

uncertainty.  An adaptive sliding mode controller is used to synchronize non-

autonomous system with a sinusoid driving term [109, 110].  Designed to make the 

derivative of the Lyapunov function negative, the switching control law is formulated 

from Lyapunov theory to guarantee the asymptotical stability and convergence on the 

sliding surface of the error state space equation.  The continuous input thus obtained can 

withstand uncertainties and disturbances.  This is a quality common of all 

synchronization methods.  Control laws thus formulated, nevertheless, are neither 

intuitive nor lending themselves to sound physical interpretation.  In addition, they 

require that the system structure and parameters be explicitly known.  This requirement 

is even more mandatory for non-autonomous and nonstationary systems, so that the 

control law can be properly designed to cancel out the external forcing term.  The 

Lyapunov function needs to be found based on heuristic methods and can only be 

applied to relatively simple systems.  Thus, methods based on the Lyapunov stability 

theory are not viable for complex, nonstationary systems of unknown or unspecified 

nature. 

Linear control theories are also applied to synchronization of chaos.  Two 

different chaotic systems are synchronized by assigning proper control law to make the 

error dynamic equation linear [111, 112].  Linear stability theory, such as calculating the 

eigenvalues of the state matrix, is used to define stability.  Linear feedback control is 
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applied to synchronize two identical chaotic systems [113].  The system is linearized by 

Jacobin and the Routh-Hurwitz stability criterion is followed to identify the feedback 

gain to suppress chaos to unstable equilibria.  Two linearly coupled chaotic systems are 

synchronized by assigning the proper parameters to satisfy the Routh-Hurwitz stability 

criterion [114].  Synchronization method of the particular construct either designs a 

linear error dynamic equation by choosing a specific drive-response chaotic system pair 

or adopts Jacobin to the state matrix.  However, linear error dynamic equation can only 

be acquired for limited drive-response pair and uncertainties of the system are not 

allowed.  Such is basically a trial-and-error method with limited applicability.  Jacobin is 

in fact a linearization method that can only be applied to the adjacent area of the pre-

determined fixed point.  Its sensitivity to disturbances renders its suitability only for 

stationary systems.  For nonstationary systems, once the trajectory deviates away from 

the fixed point, the stability is no longer valid. 

Synchronization of delayed differential equations is also reported, including 

identical dissipative chaotic systems with nonlinear time-delayed feedback that are 

unidirectionally coupled and synchronized [115].  The synchronization threshold of the 

coupled time-delay chaotic system is analytically estimated by calculating the Lyapunov 

exponents [116].  Time-delayed feedback term is added into the control law to 

synchronize two identical Lur’s systems by using the Lyapunov stability theory to 

ensure stability [117-119].  The delay time is often heuristically decided, however.  If 

more than one variable needs to be passed to the response system, synchronous 

substitution is used to define a new variable as a function of multiple variables [120].  
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This new variable is transmitted to the response system and recovered by inverting the 

transformation.  The synchronization of a non-autonomous chaotic system in [121] 

specifies an identical sinusoidal forcing term of different phases to both the drive and 

response systems.  A strobe signal is used to form a feedback loop and modulate the 

frequency of the function generator to provide the sinusoidal excitation for the response 

circuit.  In general, chaos synchronization methods of late, though functional, are with 

limited applications only for the well-defined situations.  The chaos control concept in 

[96] that demonstrates feasibility in dealing with chaotic systems whose responses 

deteriorate in the time and frequency domains concurrently will be applied in the 

following sections to synchronize the non-autonomous chaotic system discussed in [121] 

with different external excitations.  Instantaneous frequency (IF) along with marginal 

spectrum will also be employed to resolve the nonlinearity of the response as well as 

evaluate the performance of the presented synchronization scheme. 

6.2 Dynamics of a Non-autonomous Chaotic Circuit 

A non-autonomous chaotic circuit with a sinusoidal forcing term [121] is 

explored for the study.  The circuit, which is a periodically forced chaotic system 

preferred for its superior insensitivity to noise than the autonomous systems, is as 

follows 

  



 

118 

 

 
  

  
        (6.1) 

 
  

  
                       (6.2) 

 
  

  
             (6.3) 

 

where                                                 and 

     
 

 
             .  g(x) and f(x) are piecewise linear functions based on a 

diode function generator.  Parameters                                

follow from [121] and ω =      has the linear forcing frequency    = 769Hz.  The 

circuit configuration described by Eq. (6.1)-(6.3) is illustrated in [121].  The circuit is 

numerically time-integrated using a      s time step subject to the [x y z] = [0 0 0] initial 

conditions.  Fig. 6.1 shows the phase diagram and Poincaré section of the chaotic 

responses in the x-y, x-z, and y-z planes.  The phase portraits in Fig. 6.1(a)-(c) have limit 

cycle-like trajectories overlapping each other, representing a nonstationary frequency 

oscillation with a limited spectral bandwidth; while the Poincaré sections in Fig. 6.1(d)-

(f) demonstrate fractal structures in each dimension.  To resolve the hidden nonlinearity 

indicated in Fig. 6.1 for the non-autonomous chaotic circuit, instantaneous frequency 

(IF) along with marginal spectrum [96]
 
is applied in the following sections. 

  



 

119 

 

  

(a) (d) 

  

(b) (e) 

  

(c) (f) 

Fig. 6.1 Phase diagram and Poincaré section 
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(a) (d) 

  

(b) (e) 

  

(c) (f) 

Fig. 6.2 Instantaneous frequency (IF) and marginal spectrum 
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The IF of the x-motion in Fig. 6.2(a) shows prominent temporal oscillations of 

the first frequency mode along with other aberrational irregular modes.  The 

corresponding marginal spectrum in Fig. 6.2(d) indicates a broad bandwidth response up 

to 2500 Hz and a frequency cluster at 500-1000Hz.  The IF and marginal spectrum of the 

y-motion in Figs. 6.2(b) and 6.2(e) are similar to those of the x-motion, both 

demonstrating temporal oscillations of the IF and broad marginal spectra.  Showing also 

oscillating broadband frequencies at 500-1000Hz, Figs. 6.2(c) and 6.2(f) likewise 

indicate that the non-autonomous circuit generates chaotic responses subject to certain 

parameters.  

6.2.1 Synchronization Scheme 

The scheme of cascaded drive-response in [122] is adopted to synchronize the 

drive and the response circuits.  As shown in Fig. 6.3, the variable   of the drive system 

in Eq. (6.1), completely replaces the corresponding variable    in the subsystem in Eq. 

(6.4) to determine the secondary driving variable   .  Then    is used to substitute the 

corresponding variable    in Eq. (6.5) to solve for    and the variable    in Eq. (6.6), the 

response system.  Thus when synchronized, all the variables in the driving system 

(      ) equal to the corresponding variables (           ).  The objective of the 

synchronization is to reproduce the chaotic response of the driving system.  In Fig. 6.3, a 

sinusoidal forcing term,             , which has the same frequency as the forcing 

term in the driving system but different amplitude and phase shift, is used in the 

response system.  The chaotic controller is used to eliminate the difference between the 

chaotic signal x and the corresponding signal    by adjusting the sinusoidal forcing term.  



 

122 

 

A high frequency noise during the transmission is infused as d(t).  The dynamic equation 

of the response system is as follows, 

 

 
   

  
               (6.4) 

 
   

  
          (6.5) 

 
   

  
                             (6.6) 

 

+

αcos(ωt)

x (1)

y (2)

z (3)

z1 (4)

x2 (5)

y2 (6)

Chaotic 

Controller

αrcos(ωt+θ)
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+
+

 

Fig. 6.3 Synchronization scheme 
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6.3 Synchronization of Chaos 

6.3.1 Scenario I  

The drive and response systems are subject to different initial conditions and 

driving forces of dissimilar amplitudes and phases.  The chaotic circuit in Eqs. (6.1) ‒ 

(6.3) is the drive system and the variable   is transmitted to the response system defined 

in Eqs. (6.4) – (6.6). The initial conditions specified for the response system are 

                and the driving term is set as                 , with    

                    .  To observe the difference between the drive and the 

response systems, their phase portrait are drawn on the same scale and compared in Fig. 

6.4.  Their output trajectories locate at the same basin in the state space.  It is shown that 

the output of the drive and the response systems share the same traits but are of different 

magnitudes, indicating that they are unsynchronized and of different chaotic responses.  
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Fig. 6.4 Phase diagrams of the output of the drive (left) and response (right) systems 
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Fig. 6.5 Response when controller is applied at 1 second (left); Error between drive and 

response signals (right)  
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Daubechies D6 wavelet with 1
st
 decomposition level is deployed to construct the 

transformation matrix T.  The left column in Fig. 6.5 shows the output of the response 

system.  When the controller is turned on at 1 second mark, the output of the response 

system is converged to match the output of the drive system after a short transient.  The 

3 plots on the right indicate that the error between the drive and the response systems is 

reduced to almost zero after the controller is brought online.  To observe the influence 

on the frequency response by the controller, the instantaneous frequency (IF) of the 

controlled response signal in Figs. 6.6(d-f) is compared with the driving signal in Figs. 

6.6(a-c).  For clarity, only the first one or two frequency modes are illustrated.  It is seen 

that the IF of the response signal is restored to follow the driving signal with great 

fidelity after the controller is activated at 1 second.  That the two oscillators share the 

same IF characteristics is a strong indication that the wavelet-based controller is highly 

effective in synchronizing the drive-response system with conspicuous correspondence 

and accuracy in both the time and frequency domains. 
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(a) (d) 

  

(b) (e) 

  

(c) (f) 

 

Fig. 6.6 IF of driving signal (left); IF of response signal (right) 
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6.3.2 Scenario II  

Synchronization of the first scenario is re-considered with a high frequency noise 

d(t) being added to variable x during the transmission from the drive to the response 

system in Fig. 6.3.  The noise, which is a random signal of -0.5 to 0.5 volts in amplitude, 

is passed through a high-pass filter with a cut-off frequency at 4800Hz.  The x signal of 

the drive system is compared with the noise-scrambled signal received by the response 

system (xd) in Fig. 6.7.  Figs. 6.8(a-c) give the differences between variables in the drive 

system and those recovered in the response system.  Even though the driving signal x is 

corrupted with the high frequency noise during transmission, the time-domain error 

between the driving and the response signals remains adequately constrained within a 

negligible range, a phenomenon understood as practical synchronization [101].  The 

frequency spectra in Figs. 6.8(d-f) are restored to be of the same bandwidth as the 

driving system’s (Fig. 6.6(a-c)), though not of the exact spectral characteristics of the 

driving signals.  The result of synchronization not being affected by the transmitted 

noise indicates the level of robustness of the scheme of chaos synchronization.  

  



 

129 

 

 

 

 

 

Fig. 6.7 Signal x in the drive system and signal xd received by the response system 
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(a) (d) 

  

(b) (e) 

  

(c) (f) 

Fig. 6.8 Difference between drive and response signals (left); IF of response signal 

(right)  
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6.4 Summary 

Unlike other controllers, which focus mainly on the reduction of time domain 

error, the objective of the wavelet-based active control scheme is to mitigate the aberrant 

frequencies when the system undergoes nonstationary route-to-chaos process.  The 

parallel adaptive filters configuration allows on-line identification of unknown 

parameters without resorting to closed-form linearization, hence preserving the inherent 

characteristics of a chaotic system and minimizing the impact of external disturbance as 

well as internal perturbation.  As oppose to contemporary control practices in which 

feedback loop is predominantly favored, the feedforward configuration prohibits the 

error from re-entering the control loop, thus reducing the risk of unintentionally exciting 

the sensitive chaotic system with adverse outcome.  The fundamental making of the 

controller dictates that, through manipulating wavelet coefficients, control is 

simultaneously exerted and achieved in the joint time-frequency domain.  It is able to 

mitigate and properly restrain time and frequency responses of the chaotic system at the 

same time, regardless of the increasing spectral bandwidth that necessarily serves to 

invalidate and render ineffective common time- or frequency-domain based controller 

design.  This is also attested by the robustness demonstrated in effectively moderating 

the impact of high frequency noise.  Time-domain wavelet transform greatly reduces the 

computational load of the controller.  As convergence time and time-delay are expedited, 

the nonlinear effect of the controller itself is also minimized.  The numerical study 

indicates that the proposed controller not only synchronizes the non-autonomous chaotic 

systems in the time domain.  It also recovers the underlying features of the driving signal 
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in the frequency domain without the complete knowledge of the system parameters 

being available.  The on-line identification feature of the controller allows the response 

system to start at arbitrary initial conditions and to be driven by sinusoidal forcing terms 

of different amplitudes and phases.  
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7. SIMULTANEOUS TIME-FREQUENCY CONTROL OF 

FRICTION-INDUCED INSTABILITY 

 

7.1 Introduction 

 Friction consists of two different states.  In the state of “stick”, the two 

contacting bodies are at rest and the static friction force acts against the start of the 

relative motion.  Once there is relative motion, the state of “slip” characterized by a 

force-velocity curve having negative slopes at low relative velocities would ensue.  The 

friction is reduced when the two contacting bodies start to move but it is increased again 

at high relative velocity.  Friction-induced oscillations switch between these two states 

intermittently and display stick-slip motion [123].  The stick-slip motion can be treated 

as the limit cycle of a self-excited vibration system where its stability is determined by 

the energy flowing into and dissipating from the system [124].  If the energy from the 

energy source flowing into the system is greater than the dissipated energy, the vibration 

amplitude increases.  Otherwise the vibration amplitude decreases.  A limit cycle is 

formed when the energy input and dissipated energy during each period are in balance 

[125]. Few studies show that friction-induced oscillations could undergo subcritical 

bifurcation and a slight intrusion into the unstable regime could result in large amplitude 

vibrations [126].  Friction-induced vibrations are the reason for brake squeal, excessive 

wear, fatigue, position inaccuracy, and oftentimes physical damage.  

 The mechanism for the generation of friction-induced vibration has been 

investigated experimentally [125].  It was shown that self-excited friction-induced 
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vibrations could be caused by decreasing friction characteristic, fluctuating normal force, 

geometrical effect and non-conservative restoring force.  When the dependence of 

kinetic friction coefficient on relative velocity is negative, the steady sliding at 

equilibrium point becomes unstable and the instability leads to the generation of 

vibration [127].  Stick-slip vibrations induced by alternate friction models have also been 

researched numerically [128].  Shooting method was applied as a periodic solution 

finder in combination with the alternate friction model to find periodic stick-slip 

solutions.  Stick-slip motion and quasi-harmonic vibration were observed in phase 

portraits.  Several methods to control friction induced vibrations are proposed in the 

literature.  Time-delayed displacement feedback control force is applied to a mass-on-

moving belt model in directions parallel and normal to the friction force, respectively 

[126].  It is shown to change the nature of the bifurcation from subcritical to supercritical 

that is globally stable in the linearly stable regime.  The friction induced vibration on a 

disc brake is controlled by a time-delayed displacement feedback force [129].  It is able 

to reduce the vibration amplitude to nearly zero.  A recursive time-delayed acceleration 

feedback control is applied to a mass-on-moving belt model in [130].  The control signal 

is determined recursively by an infinite weighted sum of the acceleration of the vibrating 

system measured at regular time intervals in the past. 

 High frequency oscillations with small amplitudes are applied to a mass-on-

moving belt model parallel to the friction force in [123].  Adding high frequency 

harmonic excitation prevents self-excited oscillations from occurring.  In addition to 

reducing self-excited oscillations to an absolute rest, the approach also transforms 
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oscillations into small amplitude vibrations at very high frequency.  The dynamics of a 

Coulomb friction oscillator subjected to two harmonic excitations on a moving belt is 

investigated in [131].  The system dynamics is affected by the value of frequency ratio 

and the amplitude of excitation.  With high frequency ratio and large amplitude, it is able 

to restore chaotic motions back to periodic.  A fluctuating normal force consisting of a 

constant force and a superimposed sinusoidal force is applied to a moving belt model in 

[132].  It is able to suppress stick-slip motion and reduce the vibration amplitude. 

 A modulated normal load in an on-off fashion depending upon the state of the 

system is applied to a single DOF oscillator model on a moving belt in [133].  The 

primary form of the control law is derived from Lyapunov’s second method to ensure 

dissipating energy.  It is able to quench the unstable limit cycle and transform it to a 

stable stick-slip limit cycle.  Active control law is used to vary the normal contact force 

in a joint by a piezoelectric actuator in [134].  The Lyapunov’s function-based control 

law is designed similar to a bang-bang controller to maximize energy dissipation 

instantaneously.  The controller is shown to substantially reduce the vibration compared 

to joints with constant normal force.  Active control techniques are adopted to improve 

the performance in eliminating the limit cycle and the steady-state error caused by 

unknown friction and external disturbance [135].  Adaptive fuzzy inference system is 

employed to model the unknown friction dynamics and a proportional-derivative (PD) 

compensation controller is applied.  Lyapunov stability criterion is used to guarantee the 

convergence of the adaptive fuzzy model with PD controller. 
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 However, all control methods reviewed previously have certain drawbacks.  For 

time-delayed feedback control methods, the way to synthesize the control force and the 

amount of delayed time interval can only be determined heuristically.  The same 

disadvantage is shared by applying high frequency oscillation and fluctuating normal 

force.  They lack a systematic way to design the controller and predict performance.  

Because linear approximation is adopted to determine controller parameters for stability 

study, they all are unable to precisely determine the stability boundary of the friction-

induced dynamics.  Lyapunov stability criterion is commonly applied to design the 

active control law.  But the Lyapunov function candidate is difficult to retrieve for a 

complex system.  Therefore controller design based on Lyapunov stability criterion is 

only applicable to simple systems or models that are significantly simplified through 

linear approximation.  Linear approximation methods are unable to realize the genuine 

characteristics of a route-to-chaos process [75].  Because both time and frequency 

responses deteriorate simultaneously in route-to-chaos, it is crucial to design a nonlinear 

controller in the time and frequency domains concurrently.  This is especially so for the 

highly nonlinear, intermittent friction-induced vibration system.  A simultaneous time-

frequency control scheme was developed in [96] to restrain the concurrent time-

frequency deterioration associated with the instability states of bifurcation and chaos.  

The controller is effective in denying milling chatter at high speed and restoring milling 

stability back to a state of limit cycle of extremely low tool vibrations [97].  In this 

research, finite element method along with finite difference method is used to simulate 

the friction-induced vibration caused by pressing a flexible cantilever beam against a 
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rigid rotating disc.  Because no approximation method is adopted, the model genuinely 

preserves the underlying features of the friction induced route-to-chaos.  Then the time-

frequency control scheme proposed in [96] is directly applied to the numerical model 

without resorting to closed-form solution. 

7.2 Continuous Rotating Disk Model [129] 

A simplified friction-induced vibration model from [129] is considered for the 

investigation.  The model includes the discontinuity between static and kinetic frictions 

and the dependence of the kinetic friction on the relative velocity.  It consists of a 

cantilever beam with an end mass that is in frictional contact with a rigid rotating disc, as 

shown in Fig. 7.1.  The disc rotates at a constant angular velocity,   .  The disc is 

assumed to be rigid displaying no bending vibration or wobbling motion.  A 

concentrated mass is attached to the end of the cantilever beam and a constant normal 

force F is used to push the mass against the rigid disk, thus generating a frictional force, 

    in the X-Y plane, that is also a function of the relative velocity,   . 
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Fig. 7.1 (a) Disc brake model (b) the flexible beam with end mass [129] 

 

The continuous rotating disk model is governed by 
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and subject to the following boundary conditions 
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where the non-dimensional variables are defined as  
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in which 

  
  is the externally applied normal load 

L is the length of the beam 

M is the mass of the end mass 

E is the modulus of elasticity  

ρ is the mass density of the beam material 

         is the area moment of inertia of the beam cross section 

     is the cross section area 

Vd is the disc velocity, and 

   is the normalized relative velocity between the disc and tip mass 

 

 The coefficient of friction for the stick-slip motion follows the one formulated in 

[123] to prevent problems of slow convergence and numerical instability caused by the 

discontinuity attributable to zero relative velocity. 
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where 

   is the non-dimensional relative velocity between the mass and the disc 

   is the maximum coefficient of static friction 

   is the minimum coefficient of kinetic friction 

   is the velocity corresponding to the maximum coefficient of static friction    

   is the velocity corresponding to the minimum coefficient of kinetic friction    

 

    is set to a very small number such as     .  When the relative velocity      is 

smaller than   , the model describes the state of sticking where the mass is at rest with 

respect to the moving belt.  In contrast, when        , the state of slipping is described 

where the coefficient of friction is a polynomial function.  The sign function,        , 

can be replaced by                .  The friction function plotted using    

                          , is as follows: 

 

 

Fig. 7.2 Friction coefficient as a function of relative velocity 
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 To solve Eq. (7.1) numerically, Galerkin’s method is applied to the normalized 

beam equation to develop the finite element formulation and the corresponding matrix 

equations [136].  The average weighted residual of Eq. (7.1) is 

 
2 4

1

2 40
( ) 0
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y y

wdx
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 (7.5) 

where the length of the normalized beam is 1 and w is a weight function.  The beam is 

discretized into a number of finite elements in Fig. 7.3.  
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Fig. 7.3 Discretization of the disc brake model 

 

With e  defining the element domain and n the number of elements for the beam, Eq. 

(7.5) becomes 
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Eqn. (7.6) can be rewritten as  
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Subject to the boundary conditions 
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are the shear force and the bending moment of the normalized beam 

at the fixed end, respectively.  The Hermitian shape functions are used to interpolate the 

transverse deflection v in terms of nodal variables v1, θ1, v2, and θ2, shown using a two-

node element in Fig. 7.4.  

Ωe
v1 v2θ1 θ2

x1 x2
l

 

Fig. 7.4 A two-node element 

 

The transverse deflection v is therefore 
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The dynamic equation of the two-node element is retrieved by applying the Hermitian 

shape function and Galerkin’s method to the left side of Eq. (7.7). 
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 The internal force between the adjacent elements is cancelled out and only the 

external force is left to construct        .  Only the boundary conditions need to be 

considered as the external force in this model.  The global matrix equation (M, K, and F) 

for a dynamic beam analysis is assembled by summing up element matrices and vectors 

(        ).  The overall equation of motion at time t becomes 

        
t t t

M d K d F   (7.14) 

Finite difference scheme similar to [137] is used to conduct transient analysis.  Assume 

that the initial position and velocity are available.  The initial acceleration can be 

calculated as  

          
0 1 0 0

d M F K d


   (7.15) 

The velocity, displacement, and acceleration of Eq. (7.1) at each time instance are 

approximated by calculating Eq. (7.16)-(7.18) iteratively. 
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7.3 Dynamics of Friction-Induced Vibration 

To investigate the dynamics of friction-induced vibration, the following non-

dimensional parameters are considered:                             

          .  The disc velocity,   , is the control parameter.  Fig. 7.2 is followed that 

correlates the friction coefficient with relative velocity.  The dynamics of the tip mass 

corresponding to        is shown in Fig. 7.5.  After the response stabilizes, the 

velocity profile in Fig. 7.5(a) conveys a clear stick-slip motion.  The static friction 

dominates at certain periodic time periods when the tip mass moves at the same pace 

with the disc.  Referring to Fig. 7.2, it is seen that the friction coefficient is negatively 

proportional to the relative velocity in Fig. 7.5(b).  The self-excited oscillation forms a 

stable limit cycle as shown in Fig. 7.5(c).  A static friction value at 0.8 is indicated in 

Fig. 7.5(d) where the dynamic friction, whose value is smaller than the static friction, 

occurs intermittently throughout the time window.  A dominant frequency of 0.1Hz is 

observed in Fig. 7.5(e).  However, the instantaneous frequency in Fig. 7.5(f) shows the 

frequency oscillates severely, an indication of nonlinear response [75]. 

Chaotic response is observed when    is increased to 0.35.  High frequency 

modulation is found in both tip displacement and tip velocity in Fig. 7.6(a).  The relative 

velocity in Fig. 7.6(b) demonstrates a stick-slip motion that is nonstationary and full of 

transient oscillations.  The phase plot in Fig. 7.6(c) indicates multiple tori interweaving 

with each other, implying a chaotic response with broadband frequencies.  The 

amplitude of the relative velocity in Fig. 7.6(b) falls between -0.2 and 1.0, thus 

corresponding the region of positive slop in Fig. 7.2 where the friction coefficient is 
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positively proportional to the relative velocity.  The highly nonlinear, intermittent 

friction force is generated by high relative velocity as shown in Fig. 7.6(d).  The Fourier 

spectrum in Fig. 7.6(e) shows a dominant frequency at 0.1Hz and a cluster of 

frequencies around 0.5 Hz.  The instantaneous frequency in Fig. 7.6(f) reflects the 

genuine characteristics of the frequency response, where the 0.5Hz component is a 

prominent temporal-spectral oscillation mode of chaotic type. 

The phase portraits in Fig. 7.7 are to illustrate the evolution of friction-induced 

dynamics by increasing disc velocities    from 0.1 to 0.35.  The structure of tori Fig. 

7.7(a) represents a chaotic response that emerges at low speed.  With the increase of disc 

velocity in Fig. 7.7(c), the tip dynamic is recovered to a relatively stable limit cycle at 

      .  Nevertheless, it starts to deteriorate when the disc velocity is increased in 

Figs. 7.7(d)–(f).  Multiple tori occur again and the response becomes unstable and 

diverges when the disc velocity is greater than 0.35.  The result coincides with both 

physical intuition and Fig. 7.2, where the friction force decreases at slow relative 

velocity and increases at high relative speed.  Stick-slip motions are observed 

throughout.  The instantaneous frequency in Fig. 7.8 indicates the time-frequency 

response with the increasing disc velocity.  Comparing Figs. 7.8(a), (e), and (f) to the 

corresponding phase plots in Fig. 7.7, it is observed that all interweaving tori structures 

have an oscillating frequency at 0.5 Hz.  The more irregular the phase plot is, the more 

severely the instantaneous frequency oscillates.  As shown in Fig. 7.8(b)-(d), all stable 

limit cycles are of narrow bandwidth.  
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Fig. 7.5 (a) Tip displacement and velocity (b) relative velocity between tip mass and disc 

(c) phase plot (d) friction force in y-direction (e) Fourier spectrum (f) Instantaneous 

frequency of tip displacement when        
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Fig. 7.6 (a) Tip displacement and velocity (b) relative velocity between tip mass and disc 

(c) phase plot (d) friction force in y-direction (e) Fourier spectrum (f) Instantaneous 

frequency of tip displacement when         
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Fig. 7.7 Phase plot of friction-induced dynamics with increasing disc velocity: (a) 
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Fig. 7.8 Instantaneous frequency of friction-induced dynamics with increasing disc 

velocity: (a)        (b)         (c)        (d)         (e)        (f) 
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7.4 Nonlinear Time-Frequency Control 

The novel nonlinear control scheme reported in [96] was formulated to address 

the fundamental characteristics inherent of bifurcation and chaos.  The controller doesn’t 

adopt any linearization or method of approximation and it is applied to the nonlinear 

system directly, thus allowing the genuine dynamic response to be preserved and 

properly controlled.  The normal force F applied to the tip mass in Fig. 7.1. is adjusted 

by Least Mean Square (LMS) adaptive filters to suppress the tip vibration amplitude.  

The control scheme manipulates the corresponding Discrete Wavelet Transform (DWT) 

coefficients of the system response to realize control in the joint time-frequency domain.  

The control scheme has been demonstrated to successfully negate the rich set of 

bifurcated and chaotic responses of a time-delayed milling model [97].  The time-

frequency control scheme is applied to the disc brake model as shown in Fig. 7.9. 

 

Disk brake model
Time-frequency 

controller

Normal 
force F

Tip 
displacement

 

Fig. 7.9 Time-frequency control scheme of the disk brake model 

 

The control of two chaotic conditions when    is 0.3 and 0.35 are considered.  

Chaotic vibration was observed in Fig. 7.7(e) when the disc velocity was 0.3.  When the 

controller is turned on at 50 seconds, the severe oscillations in tip displacement and 
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velocity are restored to a more stable vibration, as shown in Fig. 7.10(a).  The applied 

controller affects the system dynamics and inhibits the inception of stick-slip motion.  

The relative velocity in Fig. 7.10(b) no longer stops at zero, the state of static friction, 

and remains mostly in the state of dynamic friction.  The dominant frequency at 0.5Hz in 

Fig. 7.10(c) is eliminated after the controller is brought online.  However, it still shows 

discontinuity in the frequency, where high frequency erupts at certain time.  The friction 

force in Fig. 7.10(d) becomes smaller after controlled, indicating that the stick-slip 

phenomenon becomes opaque.  The phase plots of the tip movement before and after 

controlled are compared in Fig. 7.11.  The trajectory after controlled (Fig. 7.11(b)) 

shows a more stable limit cycle than Fig. 7.11(a).  It has a narrower bandwidth when the 

controller is applied, hence restraining the system dynamics from further breakdown.  

Fig. 7.12 and Fig. 7.13 show the same control strategy when    is increased to 0.35.  

They all show the similar result that the controller is able to affect the system dynamics 

and restore chaotic responses back to a more stable state of motion.  
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(a) (b) 

  
(c) (d) 

Fig. 7.10 (a) Tip displacement and velocity (b) relative velocity between tip mass and 

disc (c) instantaneous frequency (d) friction force in y-direction when        and 

controller is turned on at 50 seconds 

  
(a) (b) 

Fig. 7.11 (a) Phase plot of tip movement before controlled (b) after controlled when 
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(a) (b) 

  
(c) (d) 

Fig. 7.12 (a) Tip displacement and velocity (b) relative velocity between tip mass and 

disc (c) instantaneous frequency (d) friction force in y-direction when         and the 

controller is turned on at 50 seconds 

 

  
(a) (b) 

Fig. 7.13 (a) Phase plot of the tip movement before controlled (b) after controlled when 
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7.5 Summary 

Unlike previous studies on friction-induced dynamics which adopt either 

linearization method or simplified model in order to conduct analytical calculation, the 

numerical study using the finite element method along with the finite difference time 

integration scheme provided genuine insight of the friction-induced vibration.  The result 

clearly showed stick-slip phenomenon and an unstable limit cycle in the state space.  

Because no approximation approach was used, responses modulated with high frequency 

components indicated rich nonlinearity.  With the increase of the disc angular velocity, 

the modulated frequency became irregular and broadband in the simultaneous time-

frequency domain.  The system lost its stability and the oscillation diverged when the 

disc angular velocity exceeded certain critical value.  The result coincides with the 

physical interpretation of friction-induced vibrations, which is highly nonlinear due to 

the discontinuity of the moving surfaces of contact.  When the friction coefficient was 

negatively proportional to the relative velocity, the self-excited vibration generated a 

limit cycle.  The system became unstable at high relative velocity when the friction 

coefficient was positively proportional to the relative velocity.  A simultaneous time-

frequency controller was deployed to control the disc break model.  It was applied to the 

finite element model directly without resorting to linearization or closed-form solution.  

Therefore it was able to capture and control the genuine features of the friction-induced 

dynamics.  The controller effectively inhibited the inauguration of chaotic response at 

high relative velocity and restored the system back to a relatively stable limit cycle.  

Because the controller was designed in the time-frequency domain, it restrained the 
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diverging vibration amplitude and increasing bandwidth concurrently.  The result 

indicates that the time-frequency control is a viable solution to mitigating friction-

induced dynamic instabilities including route-to-chaos and discontinuity. 
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8. CONCLUSIONS AND RECOMMENDATIONS 

 

8.1 Conclusions 

The objective of this research was to formulate a novel nonlinear control theory 

that addresses and retains the fundamental characteristics inherent of all nonlinear 

systems undergoing route-to-chaos - one that restrains time-varying frequency spectrum 

from becoming broadband and also identifies the dynamic state of the system in real-

time.  The control scheme was demonstrated using a broad set of nonlinear systems 

including a nonstationary Duffin oscillator, a time-delayed milling model, a high speed 

micro-milling example, a synchronized chaotic circuitry, and a mass-on-a-spinning disk 

problem.  

The research started with the investigation of a nonstationary softening Duffing 

oscillator, a typical example for illustrating bifurcation-to-chaos deterioration.  Because 

nonlinear responses are oftentimes transient and consist of complex amplitude and 

frequency modulations, linearization would inevitably obscure the temporal transition 

attributable to the nonlinear terms, thus also making all inherent nonlinear effects 

inconspicuous.  The linearization of softening Duffing oscillator underestimates the 

variation of the frequency response, thereby concealing the underlying evolution from 

bifurcation to chaos.  In addition, Fourier analysis falls short of capturing the time 

evolution of the route-to-chaos and also misinterprets the corresponding response with 

fictitious frequencies.  Instantaneous Frequency (IF) along with the Empirical Mode 

Decomposition (EMD) was adopted to unravel the multi-components that underlie the 
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bifurcation-to-chaos transition, while retaining physical features of each component.  

Through considering time and frequency responses simultaneously, it was shown that 

the frequency of the nonlinear Duffing oscillator was a temporal-modal oscillation and 

that the inception of period-doubling bifurcation and the deterioration of route-to-chaos 

were precisely identified, implying that time-varying, transient processes fundamental of 

bifurcation and chaotic response need to be established in the simultaneous time-

frequency domain. 

Control scheme facilitated either in the time- or frequency- domain alone is 

insufficient in controlling route-to-chaos, where the corresponding response deteriorates 

in the time and frequency domain simultaneously.  The nonlinear time-frequency control 

theory was conceived through recognizing the basic attributes inherent of all chaotic 

systems, including the simultaneous deterioration of dynamics in both the time and 

frequency domains when bifurcates, nonstationarity, and sensitivity to initial conditions.  

The theory has its philosophical basis established in simultaneous time-frequency 

control, on-line system identification and adaptive control.  Physical features that 

embody the theory included multiresolution analysis, adaptive Finite Impulse Response 

(FIR) filter, and Filtered-x Least Mean Square (FXLMS) algorithm.  Unlike other 

control theories, which focus mainly on the reduction of time domain error, the objective 

of the nonlinear time-frequency control theory was to mitigate the aberrant frequencies 

when the system underwent nonstationary route-to-chaos.  The parallel adaptive filters 

configuration allowed on-line identification of unknown parameters without resorting to 

closed-form linearization, hence preserving the inherent characteristics of a chaotic 
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system and minimizing the impact of external disturbance as well as internal 

perturbation.  The feedforward configuration prohibited the error from re-entering the 

control loop, thus reducing the risk of unintentionally exciting the sensitive chaotic 

system with adverse outcome.  Through manipulating wavelet coefficients, control was 

simultaneously exerted and achieved in the joint time-frequency domain.  It was able to 

mitigate and properly restrain time and frequency responses of the chaotic system at the 

same time, regardless of the increasing spectral bandwidth.  The control of the 

nonstationary softening Duffing oscillator demonstrated the effectiveness of the control 

methodology.  Results indicated that for the control of dynamic instability including 

chaos to be deemed viable, mitigation had to be adaptive and engaged in the time and 

frequency domains at the same time.  

A highly interrupted machining process, milling at high speed can be 

dynamically unstable and chattering with aberrational tool vibration.  While its 

associated response is still bounded in the time domain, however, milling could become 

unstably broadband and chaotic in the frequency domain, inadvertently causing poor 

tolerance, substandard surface finish and tool damage.  IF along with marginal spectrum 

was employed to investigate the route-to-chaos of a single-dimensional, time-delayed 

milling model.  It was shown that marginal spectra were the tool of choice over Fourier 

spectra in identifying milling stability boundary.  The nonlinear time-frequency control 

theory was explored to stabilize the nonlinear response of the milling tool in the time and 

frequency domains simultaneously.  By exerting proper mitigation schemes to both the 
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time and frequency responses, the controller was demonstrated to effectively deny 

milling chatter and restore milling stability as a limit cycle of extremely low vibrations. 

The nonlinear time-frequency control theory was also demonstrated to negate the 

various nonlinear dynamic instabilities including tool chatter and tool resonance 

displayed by a multi-dimensional, time-delayed micro-milling model.  Multi-variable 

control scheme was realized by implementing two independent controllers in parallel to 

follow a target signal representing the desired micro-milling state of stability.  The 

control of unstable cutting at high spindle speeds ranging from 63,000 to 180,000 rpm 

and different axial depth-of-cuts were investigated using phase portrait, Poincaré section, 

and instantaneous frequency.  The time-frequency control scheme effectively restored 

dynamic instabilities including repelling manifold and chaotic response back to an 

attracting limit cycle or periodic motion of reduced vibration amplitude and frequency 

response.  The force magnitude of the dynamically unstable cutting process was also 

reduced to the range of stable cutting.  The application of nonlinear time-frequency 

control theory to the highly nonlinear micro-milling process at high speed excitation 

demonstrated the capability of mitigating the process in both the time and frequency 

domains with significantly improved tool performance and workpiece quality. 

The nonlinear time-frequency control theory was applied to synchronize two 

non-autonomous chaotic circuits driven by sinusoidal excitations.  The driving and 

response circuits were subject to different initial conditions and driving forces of 

dissimilar amplitudes and phases, hence generating unsynchronized chaotic responses.  

The nonlinear controller was used to eliminate time domain as well as frequency domain 
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difference between the driving and the response signal.  The selection of controller’s 

parameters, including mother wavelet and decomposition level, was optimized by 

statistics indicators, aiming to decompose the signal with the best resolution in the time-

frequency domain.  After the controller was activated, the instantaneous frequency of the 

response signal was restored to follow the driving signal with great fidelity even if the 

driving signal was scrambled with a high frequency noise during transmission.  The 

result strongly indicated that the proposed nonlinear time-frequency control theory was 

highly effective in synchronizing the drive-response system with conspicuous 

correspondence and accuracy in both the time and frequency domains. 

A flexible cantilever beam pressed against a rigid rotating disk was explored for 

studying self-excited friction-induced vibrations that are inherently unstable due to 

alternating friction conditions and decreasing dynamic friction characteristics.  Because 

no linearization or approximation scheme was followed, the genuine characteristics of 

the discontinuous system including the route-to-chaos process were fully disclosed 

without any distortion.  It was shown that the system dynamics was stable only within 

certain ranges of the relative velocity.  With increasing relative velocity, the response 

lost its stability with diverging amplitude and broadening spectrum.  The time-frequency 

controller was subsequently applied to negate the chaotic vibrations at high relative 

velocity by adjusting the applied normal force.  The controller design required no 

closed-form solution or transfer function, hence allowing the underlying features of the 

discontinuous system to be fully established and controlled.  The inauguration of chaotic 
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response at high relative velocity was effectively denied to result in a restoration of the 

system back to a relatively stable limit cycle. 

8.2 Contributions 

This research has generated a nonlinear control theory that controlled nonlinear 

responses including chaos in both the time and frequency domains.  A broad impact on 

the control of a wide set of nonlinear and chaotic systems is expected along with 

significant implications in cutting, micro machining, communication security, and the 

mitigation of friction-induced vibration, just to name a few.  Specifically the research 

has achieved the followings to realize substantial contributions to the theoretical 

development and technical application of nonlinear control:  

1. Presented a novel nonlinear time-frequency control theory 

With feedforward control, on-line identification, and time-frequency control as its 

salient features, a chaotic system of transient, nonstationary in nature can be identified 

using the new nonlinear control theory without having to resort to closed-form 

configurations.  By controlling both time and frequency domains simultaneously, 

nonlinear systems undergoing route-to-chaos with increasing bandwidth can be 

properly regulated. 

2. Redefined the objective and implementation of nonlinear control 

Unlike control theories of nowadays that focus on eliminating the time-domain error, 

the developed theory mainly focuses on restraining the frequency response from 

deteriorating, a phenomenon typical of all route-to-chaos.  
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3. Demonstrated time-frequency control of nonstationary oscillators undergoing 

transient route-to-chaos instability  

The nonlinear control theory was demonstrated to control nonstationary oscillators 

whose responses are aperiodic and chaotic and achieve periodic solutions. 

4. Established robust control of intermittent, interruptive milling operation 

The nonlinear control theory was applied to deny the milling chatter and restore the 

milling stability as a limit cycle of extremely low vibrations.  The feasibility of 

developing a chatter-free milling controller using the control theory is implied.  

5. Enabled multi-variable control of high-speed micro-milling process 

The various nonlinear instabilities including tool chatter and tool resonance displayed 

by a multi-dimensional, time-delayed micro-milling model were controlled by a multi-

variable control scheme of the theory.  The capability of the theory in mitigating the 

process in both the time and frequency domains to realize significantly improved tool 

performance and workpiece quality is demonstrated.  

6. Provided as a viable alternative to synchronization of non-autonomous chaotic system 

The nonlinear controller effectively synchronized two chaotic circuits in the time 

domain and at the same time restores the characteristics of the driving response in the 

frequency domain without complete knowledge of the system being available. 

7. Controlled friction-induced, discontinuous nonlinear response 

The nonlinear controller effectively inhibited the chaotic response of a rotating disk 

model system at high relative velocity and restored the response back to a relatively 

stable limit cycle.  
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8.3 Impact of the Research 

The novel theory is not subject to all the mathematical constraint conditions and 

assumptions upon which common nonlinear control theories are based and derived.  In 

addition, the multi-rate control realized by manipulating discrete wavelet coefficients 

enables control over nonstationary nonlinear response with increasing bandwidth - a 

physical condition oftentimes fails the contemporary control theories.  Impact also goes 

to the following areas. 

1. Development of a novel nonlinear control theory 

The wavelet-based control theory creates a new paradigm which draws its roots 

from a paradigm shift in nonlinear control.  It can control nonlinear responses including 

bifurcation and chaos without having to submit to the constraints that come with 

mathematical manipulation. 

2. Realization of multi-rate and multi-variable nonlinear control 

The multi-rate control realized by manipulating discrete wavelet coefficients 

enables control over nonstationary response with increasing bandwidth.  The 

implementation of multi-variable control greatly extends the scope of application. 

3. High speed and micro milling process 

Current high speed and micro-milling process suffer from chatter and premature 

tool damage.  The setting of cutting parameter depends on the stability lobe derived from 

linearized approximation.  Hence it cannot estimate the stability boundary precisely and 

is subject to sudden eruption of chatter.  The time-frequency control theory has been 

shown to effectively restrain the inauguration of chatter.  The multi-variable control 
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scheme of micro-milling instability discussed in Section 5 provides the foundation for 

high speed micro-milling and macro-milling controller designs.  The cutting tool can be 

mounted on a 3-axis positioning stage driven by actuators, and tool vibrations can be 

measured by optical sensors.  Control algorithm can be incorporated into a digital signal 

processor and controls the actuators.  Thus the control of cutting force can be achieved 

by controlling the relative position between the tool and the workpiece.  

4. Communication 

The control theory is proved to be a promising decipher for nonautonomous 

chaos circuits, which is more similar to the type of synchronizing systems that are 

already used in communications and control.  The theory has the advantage of being less 

sensitive to noise and requiring no prior knowledge of the circuit. 

5. Active magnetic bearing system 

Active magnetic bearings (AMBs) have been used as an alternative to traditional 

rolling or fluid film bearings for reduced friction and vibration, hence less power lost.  

One obstacle to the application of magnetic bearings is the high sensitivity of the control 

system to parametric uncertainties and bearing nonlinearities.  Methods for feedback 

control design typically require the use of a linearized model of the system.  But the 

highly nonlinear properties of the bearings can limit the performance of the overall 

system [138].  The nonlinear theory is deal for controlling magnetic bearings in that the 

function of on-line identification can overcome the parametric uncertainties, while the 

feedforward configuration can prevent the disturbance from re-entering the system.  The 

adaptive filter along with discrete wavelet transform can be used to directly control the 
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coil current of the electromagnet.  A preliminary multi-variable control of a nonlinear 

AMB system is realized by using a sub-control scheme, in which two variables are 

wrapped up as a pseudo-input for the controller. 

6. Robotics 

Most bipedal robots are controlled by analytical approaches based on multi-body 

dynamics, pre-calculated joint trajectories, and zero-moment point considerations to 

ensure stability.  However, these methods have several drawbacks such as strong model 

dependency, high power consumption, and vulnerability to external excitation.  The 

simplest form of bipedal robotics is an inverted double-pendulum [139].  The proposed 

control theory can be integrated with sliding mode control concept to control the stability 

of an inverted double-pendulum.  Preliminary results show that the controller can 

tolerate sudden impulse excitation due to feedforward configuration and short response 

time. 

8.4 Recommendations for Future Work 

1. Development of the stability boundary 

The research is the first attempt to controlling nonlinear systems in both time and 

frequency domains.  The control theory has been successfully applied to several models 

of physical systems.  It is found in the course of this research that there are several 

factors that affect the performance and the stability of the controller including the 

selection of mother wavelet, decomposition level of discrete wavelet transform, length of 

the adaptive filter, step size of least mean square algorithm, and sampling rate.  In 

Section 3, two time domain probability indicators, kurtosis and crest factors, were used 
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to optimize the selection of mother wavelet and decomposition level that best represent 

the characteristics of the nonlinear response to be controlled.  However, the stability 

bounds of the control theory are yet to be established mathematically.  The nonlinear 

time-frequency controller consists of multiple sub-band filters and least mean square 

algorithm.  Since the controller has a complete mathematical description, it could further 

develop to define the stability bounds similar to the performance analysis of LMS 

algorithm based on probability theory. 

2. Formulation of the target signal 

In this research, the target signal was composed from the truncated Fourier series 

of the dynamic response when the system was in an un-bifurcated, stable state.  A 

mathematical, quantifiable guideline for the construction of the target signal that would 

guarantee unconditional and optimal control should be developed. 

3. Implementation of the controller 

The components of the discrete wavelet transform and adaptive filters can be 

implemented in a digital signal processor.  It has the advantages of low power 

consumption, fast computational speed and short time delay.  Hence it is suitable for 

applications requiring robust control of nonlinear, nonstationary responses in real-time.  
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