
ASPECTS OF INTERFACE BETWEEN INFORMATION THEORY AND

SIGNAL PROCESSING WITH APPLICATIONS TO WIRELESS

COMMUNICATIONS

A Dissertation

by

SANG WOO PARK

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Approved by:

Co-Chairs of Committee, Erchin Serpedin
Khalid Qaraqe

Committee Members, Tie Liu
Aydin Karsilayan
Anxiao Jiang

Department Head, Chanan Singh

December 2012

Major Subject: Electrical Engineering

Copyright 2012 Sang Woo Park

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&amp;M Repository

https://core.ac.uk/display/13642809?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


ABSTRACT

This dissertation studies several aspects of the interface between information

theory and signal processing. Several new and existing results in information theory

are researched from the perspective of signal processing. Similarly, some fundamental

results in signal processing and statistics are studied from the information theoretic

viewpoint.

The first part of this dissertation focuses on illustrating the equivalence between

Stein’s identity and De Bruijn’s identity, and providing two extensions of De Bruijn’s

identity. First, it is shown that Stein’s identity is equivalent to De Bruijn’s identity in

additive noise channels with specific conditions. Second, for arbitrary but fixed input

and noise distributions, and an additive noise channel model, the first derivative of

the differential entropy is expressed as a function of the posterior mean, and the

second derivative of the differential entropy is expressed in terms of a function of

Fisher information. Several applications over a number of fields, such as statistical

estimation theory, signal processing and information theory, are presented to support

the usefulness of the results developed in Section 2.

The second part of this dissertation focuses on three contributions. First, a con-

nection between the result, proposed by Stoica and Babu, and the recent information

theoretic results, the worst additive noise lemma and the isoperimetric inequality for

entropies, is illustrated. Second, information theoretic and estimation theoretic jus-

tifications for the fact that the Gaussian assumption leads to the largest Cramér-Rao

lower bound (CRLB) is presented. Third, a slight extension of this result to the more

general framework of correlated observations is shown.
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The third part of this dissertation concentrates on deriving an alternative proof

for an extremal entropy inequality (EEI), originally proposed by Liu and Viswanath.

Compared with the proofs, presented by Liu and Viswanath, the proposed alternative

proof is simpler, more direct, and more information-theoretic. An additional appli-

cation for the extremal inequality is also provided. Moreover, this section illustrates

not only the usefulness of the EEI but also a novel method to approach applications

such as the capacity of the vector Gaussian broadcast channel, the lower bound of

the achievable rate for distributed source coding with a single quadratic distortion

constraint, and the secrecy capacity of the Gaussian wire-tap channel.

Finally, a unifying variational and novel approach for proving fundamental infor-

mation theoretic inequalities is proposed. Fundamental information theory results

such as the maximization of differential entropy, minimization of Fisher informa-

tion (Cramér-Rao inequality), worst additive noise lemma, entropy power inequality

(EPI), and EEI are interpreted as functional problems and proved within the frame-

work of calculus of variations. Several extensions and applications of the proposed

results are briefly mentioned.
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1. INTRODUCTION

A prominent recent trend in the information technology (IT) industry is the

convergence of technologies from different fields. A smart phone, for example, func-

tioning as voice and data call, video camera, wireless internet access device, and

game console, cannot be solely regarded as a calling device, since it is rather an inte-

grated entity where various technologies are confluent through innovation. From this

perspective, the convergence of the technologies and knowledge from various fields

has drawn the attention of researchers from academia and industry. As an additional

illustration, recent genomic studies have saliently displayed the convergence trend of

different technologies and expertise, in which knowledge from computational biology,

computer science, machine learning, electrical engineering, statistics, and medical

sciences are nicely intertwined together to yield outstanding results. Therefore, it

appears that without exploiting the tools and knowledge from a wide range of fields,

the secret of deciphering the interactions between genes cannot be revealed.

Similar to the smart phones and genomic studies, the convergence and integra-

tion of results and knowledge from fields as diverse as wireless communications,

information theory, estimation theory, and signal processing have been advocated

and studied. For instance, De Bruijn’s identity [46], a mathematical equation that

expresses the relationship between differential entropy and Fisher information, two

fundamental concepts in information theory and signal processing, has been exploited

for proving the entropy power inequality (EPI) and establishing channel capacity un-

der several different scenarios [43], [53], [32], [31], [52], [13], [12]. I-MMSE identity

[18] is another example of application of De Bruijn’s identity. I-MMSE identity

is equivalent to De Bruijn’s identity. In addition, I-MMSE illustrates an interesting
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connection between the input-output mutual information and minimum mean square

error. This identity has been also widely used by many researchers [18], [42], [42],

[20], [39], [19]. An important common feature of these two identities is that they es-

tablish a relationship between entropy and Fisher information, a relationship which

helped to solve several important problems, e.g., EPI was established by Rioul in

2011 using De Bruijn’s identity and I-MMSE identity.

This dissertation focuses on the connections among fundamental concepts, meth-

ods, and inequalities proposed in the fields of information theory, signal processing,

optimization theory, and statistics. The focus is not only on establishing theoretic re-

sults and proofs but also on finding practical applications of the proposed theoretical

results. The summary of the main contributions of this research is as follows.

In Section 2, Stein and De Bruijn identities are studied. Stein’s identity (or

lemma) was first established in 1956 [47], and it has attracted a lot of interest due to

its applications in the James-Stein estimation technique, empirical Bayes methods,

and numerous other fields, see e.g., [6], [26], [22], [35], [34], [15]. De Bruijn’s identity

has recently attracted increased interest due to its applications in statistical estima-

tion theory and turbo (iterative) decoding schemes. De Bruijn’s identity shows a

link between two fundamental concepts in information theory: entropy and Fisher

information [1], [24], [9], [18], [40], [42].

The first major result of Section 2 is the fact that De Bruijn’s identity and

Stein’s identity are equivalent, in the sense that each identity implies the other one.

The important fact of this result is that the whole set of applications established

via Stein’s identity could be transferred and proved into the realm of De Bruijn’s

identity and vice versa. The second major result of this section are two extensions

of De Bruijn identity to non-Gaussian random variables. The third major result

deals with establishing two fundamental lower bounds in statistical signal processing,
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the Bayesian Cramér-Rao lower bound (BCRLB) and the Cramér-Rao lower bound

(CRLB), and a novel lower bound, which is tighter than BCRLB. Finally, several

additional applications of the developed results are presented.

Section 3 studies the usage of Gaussian assumption in linear regression prob-

lems when the actual distribution of additive noise does not obey the Gaussian

distribution. Gaussian distribution is one of the most well-known and widely used

distributions in engineering, statistics, and physics. There are several reasons for

this widespread usage of Gaussian distribution, such as the Central Limit Theorem

(CLT), analytical tractability, easy generation of normal random variables, etc., and

this explains why the normal distribution is usually assumed. However, very little

information is available in the literature concerning the properties of the resulting

estimator which assumes a Gaussian distribution of the observations instead of the

actual (true) distribution of the observations. Without information about the actual

distribution of observations, Gaussian assumption appears as the most conservative

choice due to the fact that the Gaussian distribution minimizes the Fisher infor-

mation, i.e., the inverse of the Cramér-Rao lower bound (CRLB). Therefore, any

optimization of the training data based on the CRLB under the Gaussian assump-

tion can be considered to be min-max optimal in the sense of minimizing the largest

CRLB, see e.g., [48], [10], [49], [4].

The main theme of Section 3 is to investigate a relationship between the result

reported in [48] and the recent information theoretic results presented in [8], [43], to

study from an information and estimation theoretic perspective why the Gaussian

assumption leads to the largest CRLB, and to slightly extend this result to the more

general framework of correlated observations.

In Section 4, the extremal (entropy) inequality (EEI) is studied. The extremal

entropy inequality, a generalized version of EPI, was proposed by Liu and Viswanath
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[32], and it was further researched by several authors [30], [41]. The extremal en-

tropy inequality was motivated by the question: “What is the optimal solution for

the classical entropy power inequality (EPI) under a covariance matrix constraint?”

Even though the expected solution is a Gaussian random vector, it is difficult to

come up with the solution based on the classical EPI due to the covariance matrix

constraint. Therefore, a novel method, called the channel enhancement technique

[53] was adopted in the proofs provided in [32].

The main goal of Section 4 is to prove the EEI without using the channel en-

hancement technique. Our proof is mainly based on four techniques: data process-

ing inequality, moment generating function (MGF), worst additive noise lemma, and

classical EPI. The proposed novel proof brings the following significant contribu-

tions. First, our proof is simpler and more direct, compared with the proofs in [32].

Second, a more information-theoretic approach is developed. In our proof, the data

processing inequality and MGF enable to not only circumvent the step of using the

KKT conditions but also to omit the step of proving the existence of the optimal

solution which satisfies the KKT conditions, a step which is very complicated to

accomplish. Finally, the proposed novel method in our proof can be adapted for

applications such as establishing the Gaussian broadcast channel capacity, secrecy

capacity of Gaussian wiretap channel, etc., as well as for establishing EEI. These

considerations support the versatility of EEI.

Section 5 provides a unifying variational calculus framework for establishing a

large class of fundamental information theoretic inequalities. These inequalities pro-

vide a useful theoretical basis for the field of information theory as well as other fields.

The proposed innovative variational approach not only offers alternative proofs for

information theoretic inequalities, but also enables the existing results to be ex-

tended in other directions. Furthermore, it is important to remark that the pro-
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posed functional approach represents a potential powerful tool for finding guidelines

to determine the optimal solution for many other open problems.

The main contributions of Section 5 are enumerated next. First, using calculus

of variations, the maximizing differential entropy and minimizing Fisher information

theorems are proved under different sets of assumptions, the classical assumptions

found in the literature as well as a different set of assumptions. Second, an alter-

native proof of the worst additive noise lemma [11], [23] is proposed based on the

proposed functional analysis framework. Third, a novel proof of EPI is provided in

the proposed functional framework. Finally, EEI is studied and justified again from

the perspective of a functional problem.

Finally, Section 6 summarizes the results and the main contributions of this

dissertation. Concluding remarks and future research directions are also proposed.

Future research directions include solving currently open (unsolved) problems and

developing new extensions for the results presented in this dissertation.

1.1 Notations

Throughout this dissertation, unless otherwise mentioned, the following notation

rules are adopted: a lower case plain-text alphabet (e.g., x or λ) denotes a scalar

deterministic variable or a constant, a lower case bold alphabet (e.g., x or λ) rep-

resents a deterministic vector, an upper case plain-text English alphabet (e.g., X)

is a random variable, an upper case bold English alphabet (e.g., X) stands for a

random vector or a matrix, and an upper case bold Greek alphabet (e.g., Σ) denotes

a matrix. The dimensions (sizes) of a vector and a matrix are denoted as n and

n-by-n, respectively. All information theoretic quantities are represented by conven-

tional notations. For example, h(X) and I(X; Y) stand for differential entropy of a

random vector X and mutual information between a random vector X and a random
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vector Y, respectively. Conditional entropy and conditional mutual information are

denoted as h(X|Y) and I(X; Y|Z), respectively. The notation � or � stands for pos-

itive (semi)definite partial ordering between matrices, i.e., Σ1 � Σ2 means Σ2−Σ1 is

a positive semi-definite matrix [21], [33]. A positive definite matrix means a strictly

positive definite matrix, and ∇Σ stands for the Jacobian matrix with respect to Σ.

The matrix I denotes an n-by-n identity matrix, and the matrix 0 stands for an

n-by-n zero matrix. Notation E[·] denotes an expectation with respect to all random

vectors inside [·], and MX(S) and MX|Y (S) are moment generating functions of a

random vector X, and a random vector X given (conditioned on) random variable

Y, respectively. For simplicity, log denotes the natural logarithm.

6



2. STEIN’S IDENTITY AND DE BRUIJN’S IDENTITY∗

2.1 Introduction

Stein’s identity (or lemma) was first established in 1956 [47], and since then it has

been widely used by many researchers (e.g., [6], [26], [22]). Due to its applications

in the James-Stein estimation technique, empirical Bayes methods, and numerous

other fields, Stein’s identity has attracted a lot of interest (see e.g., [35], [34], [15]).

Recently, another identity, De Bruijn’s identity, has attracted increased interest

due to its applications in estimation and turbo (iterative) decoding schemes. De

Bruijn’s identity shows a link between two fundamental concepts in information

theory: entropy and Fisher information [1], [24], [9]. Verdú and his collaborators

conducted a series of studies [18], [40], [42] to analyze the relationship between the

input-output mutual information and the minimum mean-square error (MMSE),

a result referred to as the I-MMSE identity for additive Gaussian noise channels,

studies which were later extended to non-Gaussian channels in [20], [39]. Also, the

equivalence between De Bruijn’s identity and I-MMSE identity was shown in [18].

The main theme of this section is to study how Stein’s identity (Theorem 2.2) is

related to De Bruijn’s identity (Theorem 2.1). To compare Stein’s identity with De

Bruijn’s identity, additive noise channels of the following form are considered in this

section:

Y = X +
√
aW, (2.1)

∗Reprinted with permission from “On the equivalence between Stein and de Bruijn identities,”
Sangwoo Park, Erchin Serpedin, and Khalid Qaraqe, 2012, IEEE Transactions on Information
Theory, vol. 58, no. 12, Copyright 2012 by IEEE.
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where input signal X and additive noise W are arbitrary random variables, X and W

are independent of each other, and parameter a is assumed nonnegative. First, when

additive noise W is Gaussian with zero mean and unit variance, the equivalence

between the generalized Stein’s identity (Theorem 2.2) and De Bruijn’s identity

(Theorem 2.1) is proved. Since the standard-form Stein’s identity in (2.13) requires

both random variables X and W to be Gaussian, instead of the standard-form Stein’s

identity, the generalized version of Stein’s identity in (2.12) is used. If we further

assume that input signal X is also Gaussian, then both random variables X and W

are Gaussian, and the output signal Y is Gaussian. In this case, not only Stein’s

and De Bruijn’s identities are equivalent, but also they are equivalent to the heat

equation identity, proposed in [6].

The second major question that we will address in this section is how De Bruijn’s

identity could be extended. De Bruijn’s identity shows the relationship between the

differential entropy and the Fisher information of the output signal Y under additive

Gaussian noise channels. Therefore, under additive non-Gaussian noise channels, we

cannot use De Bruijn’s identity. However, we will derive a similar form of De Bruijn’s

identity for additive non-Gaussian noise channels. Considering additive arbitrary

noise channels, the first derivative of the differential entropy of output signal Y will

be expressed by the posterior mean, while the second derivative of the differential

entropy of output signal Y will be represented by a function of Fisher information.

Even though some of these relationships do not include the Fisher information, they

still show relationships among basic concepts in information theory and estimation

theory, and these relationships hold for arbitrary noise channels.

Based on the results mentioned above, we introduce several applications dealing

with both estimation theoretic and information theoretic aspects. In the estimation

theory field, the Fisher information inequality, the Bayesian Cramér-Rao lower bound
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(BCRLB), and a new lower bound for the mean square error (MSE) in Bayesian es-

timation are derived. The surprising result is that the newly derived lower bound for

MSE is tighter than the BCRLB. The proposed new bound overcomes the main draw-

back of BCRLB, i.e., its looseness in the low Signal-to-Noise Ratio (SNR) regime,

since it provides a tighter bound than BCRLB especially at low SNRs. Even though

some of the proposed applications have already been proved before, in this section

we show not only alternative ways to prove them, but also new relationships among

them. In the information theory realm, Costa’s entropy power inequality - previously

proved in [7] - is derived in two different ways based on our results. Both proposed

methods show novel, simple, and alternative ways to prove Costa’s entropy power

inequality. Finally, applications in other areas are briefly mentioned.

The rest of this section is organized as follows. Various relationships between

Stein’s identity and De Bruijn’s identity are established in Section 2.3. Some ex-

tensions of De Bruijn’s identity are provided in Section 2.4. In Section 2.5, several

applications based on the proposed novel results are supplied. Finally, conclusions

are mentioned in Section 2.6. All the detailed mathematical derivations for the

proposed results are given in appendices.

2.2 Preliminary Results

In this section, several definitions and preliminary theorems are provided. First,

the concept of Fisher information is defined as follows.

Fisher information of a deterministic parameter θ is defined as

Jθ(Y ) =

∫ ∞
−∞

fY (y; θ)

(
d

dθ
log fY (y; θ)

)2

dy

= EY
[
SYθ(Y )2

]
, (2.2)
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where SYθ(Y ) denotes a score function and is defined as (d/dθ) log fY (y; θ). Under a

regularity condition,

EY [SYθ(Y )] =

∫ ∞
−∞

d

dθ
fY (y; θ)dy

= 0,

the Fisher information in (2.2) is equivalently expressed as

Jθ(Y ) = −
∫ ∞
−∞

fY (y; θ)
d2

dθ2
log fY (y; θ)dy

= −EY
[
d

dθ
SYθ(Y )

]
. (2.3)

This is a general definition of Fisher information in signal processing, and Fisher

information provides a lower bound, called the Cramér-Rao lower bound, for the

mean square error of any unbiased estimator. Like other concepts, such as entropy

and mutual information, in information theory, Fisher information also shows infor-

mation about uncertainty. However, it is difficult to directly adopt the definition

of Fisher information in information theory despite the fact that it has been com-

monly used in statistics. Instead, a more specific definition of Fisher information is

proposed as follows.

If θ is assumed to be a location parameter, then

d

dθ
fY (y; θ) = − d

dy
fY (y − θ; θ). (2.4)

10



Therefore, the definition of Fisher information in (2.2) is changed as follows:

Jθ(Y ) =

∫ ∞
−∞

fY (y; θ)

(
d

dθ
log fY (y; θ)

)2

dy

=

∫ ∞
−∞

fY (y − θ; θ)
(
− d

dy
log fY (y − θ; θ)

)2

dy

=

∫ ∞
−∞

fỸ (ỹ; θ)

(
− d

dỹ
log fỸ (ỹ; θ)

)2

dỹ

= EỸ
[
S(Ỹ )2

]
, (2.5)

where S(Ỹ ) denotes a score function, and it is defined as (d/dỹ) log fỸ (ỹ; θ). In equa-

tion (2.5), since we only consider a location parameter, we refer to Fisher information

in (2.5) as Fisher information with respect to a location (or translation) parameter,

and it is denoted as J(Ỹ ) (even though the definition of Fisher information with

respect to a location parameter in (2.5) is derived from the definition of Fisher infor-

mation in (2.2), the definition in (2.5) is more commonly used in information theory,

and we do not distinguish random variable Ỹ = Y − θ from random variable Y ).

Given the channel model in (2.1), by substituting the parameter a for the un-

known parameter θ, the expressions of Fisher information in (2.2) and (2.5) are

respectively given by

J(Y ) =

∫ ∞
−∞

fY (y; a)

(
d

dy
log fY (y; a)

)2

dy

= EY
[
SY (Y )2

]
, (2.6)

and

Ja(Y ) =

∫ ∞
−∞

fY (y; a)

(
d

da
log fY (y; a)

)2

dy

= EY
[
SYa(Y )2

]
. (2.7)
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Second, two fundamental concepts, differential entropy and entropy power, are

defined as follows. Differential entropy of random variable Y , h(Y ), is defined as

h(Y ) = −
∫ ∞
−∞

fY (y; a) log fY (y; a)dy, (2.8)

where fY (y; a) denotes the probability density function (pdf) of random variable Y ,

log denotes the natural logarithm, and a is a deterministic parameter in the pdf.

Similarly, the conditional entropy of random variable Y given random variable X,

h(Y |X) is defined as

h(Y |X) = −
∫ ∞

−∞

∫ ∞

−∞

fX,Y (x, y; a) logfY |X(y|x; a)dxdy, (2.9)

where fX,Y (x, y; a) denotes the joint pdf of random variables X and Y , fY |X(y|x; a)

is the conditional pdf of random variable Y given random variable X.

Entropy power of random variable Y , N(Y ), and (conditional) entropy power of

random variable Y given random variable X, N(Y |X) are respectively defined as

N(Y ) =
1

2πe
exp(2h(Y )),

N(Y |X) =
1

2πe
exp(2h(Y |X)). (2.10)

Based on the definitions mentioned above, three preliminary theorems- De Bruijn’s,

Stein’s, and heat equation identities- are introduced next.

Theorem 2.1 (De Bruijn’s Identity [9], [46]). Given the additive noise channel Y =

X+
√
aW , let X be an arbitrary random variable with a finite second-order moment,

12



and W be independent normally distributed with zero mean and unit variance. Then,

d

da
h(Y ) =

1

2
J(Y ). (2.11)

Proof. See [9].

Theorem 2.2 (Generalized Stein’s Identity [26]). Let Y be an absolutely continu-

ous random variable. If the probability density function fY (y) satisfies the following

equations,

lim
y→±∞

k(y)fY (y) = 0,

and

d
dy
fY (y)

fY (y)
= −

d
dy
k(y)

k(y)
+

(ν − t(y))

k(y)

for some function k(y), then

EY [r(Y ) (t(Y )− ν)] = EY
[
d
dY
r(Y )k(Y )

]
, (2.12)

for any function r(Y ) which satisfies EY [|r(Y )t(Y )|] < ∞, EY [r(Y )2] < ∞, and

EY
[∣∣k(Y ) d

dY
r(Y )

∣∣] < ∞. EY [·] denotes the expectation with respect to the pdf of

random variable Y . In particular, when random variable Y is normally distributed

with mean µy and variance σ2
y, equation (2.12) simplifies to

EY [r(Y ) (Y − µy)] = σ2
yEY

[
d
dY
r(Y )

]
. (2.13)

Equation (2.13) is the well-known classic Stein’s identity.
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Proof. See [26].

Theorem 2.3 (Heat Equation Identity [6]). Let Y be normally distributed with mean

µ and variance 1 + a. Assume g(y) is a twice continuously differentiable function,

and both g(y) and | d
dy
g(y)| are∗ O(ec|y|) for some 0 ≤ c <∞. Then,

d

da
EY [g(Y )] =

1

2
EY
[
d2

dY 2
g(Y )

]
. (2.14)

Proof. See [6].

2.3 Relationships between Stein’s Identity and De Bruijn’s Identity

In Section 2.2, Theorems 2.1, 2.2, and 2.3 share an analogy: an identity between

expectations of functions, which include derivatives. Especially, the heat equation

identity admits the same form as De Bruijn’s identity by choosing function g(y) as

− log fY (y; a). If De Bruijn’s identity is equivalent to the heat equation identity, it

is also equivalent to Stein’s identity, since the equivalence between the heat equation

identity and Stein’s identity was proved in [6]. However, there are two critical issues

that stand in the way of the equivalence between Stein’s and De Bruijn’s identities:

first, the function g(y) in Theorem 2.3 must be independent of the parameter a,

which is not true when g(y) = − log fY (y; a). Second, in the heat equation identity,

random variable Y must be Gaussian, which may not be true in De Bruijn’s identity.

Due to the difficulties mentioned above, we will directly compare De Bruijn’s

identity (Theorem 2.1) with the generalized Stein’s identity (Theorem 2.2).

Theorem 2.4. Given the channel model (2.1), let X be an arbitrary random variable

with a finite second-order moment, and let W be normally distributed with zero mean

∗O(·) denotes the limiting behavior of the function, i.e., g(y) = O(q(y)) if and only if there exist
positive real numbers K and y∗ such that g(y) ≤ K|q(y)| for any y which is greater than y∗.
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and unit variance. Independence between random variables X and W is also assumed.

Then, De Bruijn’s identity (2.11) is equivalent to the generalized Stein’s identity in

(2.12) under specific conditions, i.e.,

d

da
h(Y ) =

1

2
J(Y )

⇐⇒ EY [r(Y ; a) (t(Y ; a)− ν)] = EY
[
d
dY
r(Y ; a)k(Y ; a)

]
,

with

r(y; a) = − d

dy
log fY (y; a), k(y) = 1, t(y; a) = −

d
dy
fY (y; a)

fY (y; a)
, and ν = 0, (2.15)

where ⇐⇒ denotes the equivalence between before and after the notation.

Proof. See Appendix A.1.

Now, when random variable Y is Gaussian, i.e., both random variables X and W

are Gaussian, we can derive relationships among three identities, De Bruijn, Stein,

and heat equation, as a special case of Theorem 2.4.

Theorem 2.5. Given the channel model (2.1), let random variable X be normally

distributed with mean µ and unit variance. Assume W is independent normally

distributed with zero mean and unit variance. If we define the functions in (2.12) as

follows:

r(y; a) = − d

dy
log fY (y; a), k(y; a) =

1

a
, t(y; a) = y, and ν = µ,

then Stein’s identity is equivalent to De Bruijn’s identity. Moreover, if we define
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g(y; a) as

g(y; a) = − log fY (y; a)

in (2.14), then De Bruijn’s identity is also equivalent to the heat equation identity.

Proof. In Theorem 2.4, given the channel model (2.1) with an arbitrary but fixed

random variable X and a Gaussian random variable W , the equivalence between

De Bruijn’s identity and the generalized Stein’s identity was proved (cf. Appendix

A.1). Here, by choosing random variable X as Gaussian, this is a special case of

Theorem 2.4. Therefore, the equivalence between the two identities is trivial, and

the details of the proof are omitted in this section. The only thing to prove is the

second part of this theorem, namely, the equivalence between De Bruijn’s identity

and the heat equation identity. Since the equivalence between Stein’s identity and

the heat equation identity is proved in [6], this also proves the second part of the

theorem, and the proof is completed.

The functions k(y; a), r(y; a), t(y; a), and g(y; a) are the same as k(y), r(y), and

t(y) in Theorem 2.2 and g(y) in Theorem 2.3, respectively. To show the dependence

on parameter a, the functions k(y; a), r(y; a), t(y; a), and g(y; a) are used instead of

k(y), r(y), t(y), and g(y), respectively.

2.4 Extension of De Bruijn’s Identity

De Bruijn’s identity is derived from the attribute of Gaussian density functions,

which satisfy the heat equation. However, in general, probability density functions

do not satisfy the heat equation. Therefore, to extend De Bruijn’s identity to ad-

ditive non-Gaussian noise channels, a general relationship between differentials of a
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probability density function with respect to y and a of the form:

d

da
fY |X(y|x; a) = − 1

2a

d

dy

(
(y − x)fY |X(y|x; a)

)
, (2.16)

is required, a result that it is obtained in Appendix A.8 by exploiting the assumptions

(2.17). The relationship (2.16) represents the key ingredient in establishing the link

between the derivative of differential entropy and posterior mean, as described by

the following theorem.

Theorem 2.6. Consider the channel model (2.1), where X and W are arbitrary

random variables independent of each other. Given the following assumptions:

d

dy
EX
[
fY |X(y|X; a)

]
= EX

[
d

dy
fY |X(y|X; a)

]
,

d

da
EX
[
fY |X(y|X; a)

]
= EX

[
d

da
fY |X(y|X; a)

]
, (2.17a)

d

da

∫ ∞
−∞

fY (y; a) log fY (y; a)dy =

∫ ∞
−∞

d

da

(
fY (y; a) log fY (y; a)

)
dy, (2.17b)

lim
y→±∞

EX
[
XfY |X(y|X; a)

]
= EX

[
lim
y→±∞

XfY |X(y|X; a)

]
,

lim
y→±∞

EX
[
fY |X(y|X; a)

]
= EX

[
lim
y→±∞

fY |X(y|X; a)

]
,

lim
y→±∞

y2fY (y; a) = 0, (2.17c)∣∣∣∣∣EX
[
XfY |X(y|X; a)

]√
fY (y; a)

∣∣∣∣∣ <∞, (2.17d)

where EX|Y [·|·] denotes the posterior mean, the first derivative of the differential

entropy is expressed as

d

da
h(Y ) =

1

2a

{
1− EY

[
d

dY
EX|Y [X|Y ]

]}
. (2.18)
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Proof. See Appendix A.2.

Remark 2.1. This is equivalent to the results in [20].

It can be observed that the conditions (2.17) are required in the dominated conver-

gence theorem and Fubini’s theorem to ensure the interchangeability between a limit

and an integral, and are not that restrictive. Also, the condition limy→±∞ y
2fY (y; a) =

0 is not restrictive at all, and it is satisfied by all noise distributions of interest in

practice.

Corollary 2.1 (De Bruijn’s identity). Given the channel model in (2.1) with an

arbitrary but fixed random variable X with a finite second moment and a Gaussian

random variable W with zero mean and unit variance,

d

da
h(Y ) =

1

2
J(Y ).

Remark 2.2. This is the well-known De Bruijn’s identity [46]. Therefore, De

Bruijn’s identity is a special case of Theorem 2.6 when random variable W is nor-

mally distributed. When random variable W is Gaussian, assumptions in (2.17) are

simplified to the existence of a finite second-order moment.

Corollary 2.2. Given the channel model in (2.1) with an arbitrary but fixed non-

negative random variable X whose moment generating function exists and its pdf is

bounded, and an exponential random variable W with unit value of the parameter

(i.e., fW (w) = exp(−w)U(w), where U(·) denotes the unit step function),

d

da
h(Y ) =

1

2a
√
a

{√
a− EX[X] + EX

[
EX|Y [X|Y ] |Y =X

]}
.
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When the random variable W is exponentially distributed, assumptions in (2.17)

are reduced to the existence of the moment generating function of X, as explained

in Appendix A.9. Therefore, the assumptions in (2.17) for an exponential random

variable are as simple as the assumptions (2.17) for a Gaussian random variable.

Corollary 2.3. Given the channel model in (2.1) with an arbitrary but fixed non-

negative random variable X whose moment generating function exists and a gamma

random variable W with a shape parameter α (α ≥ 2) and an inverse scale parameter

β (β = 1),

d

da
h(Y ) =

1

2a
√
a

{√
a− EX [X] + EYα−1

[
EX|Y [X|Y ] |Y = Yα−1

] }
,

where Yk = X+
√
aWk, and Wk denotes a gamma random variable with shape param-

eter k. Notation Yα stands for Y . As explained in Appendix A.9, the assumptions

(2.17) are quite simplified in the presence of the moment generating function of ran-

dom variable X.

For additive non-Gaussian noise channels, the differential entropy cannot be ex-

pressed in terms of the Fisher information. Instead, the differential entropy is ex-

pressed by the posterior mean as shown in Theorem 2.6. Fortunately, several noise

distributions of interest in communication problems satisfy the required assumptions

(2.17) in Theorem 2.6 (e.g., Gaussian, gamma, exponential, chi-square with restric-

tions on parameters, Rayleigh, etc.). Therefore, Theorem 2.6 is quite powerful. If

the posterior mean EX|Y [X|Y ] is expressed by a polynomial function of Y , e.g., X

and W are independent Gaussian random variables in equation (2.1) or random vari-

ables belonging to the natural exponential family of distributions [36], then equation

(2.18) can be expressed in simpler forms.
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Example 2.1. Consider an additive white Gaussian noise (AWGN) channel. Given

the channel model (2.1), let X and W be normally distributed with zero mean and

unit variance. Assume X and W are independent of each other. Then, the posterior

mean is expressed as

EX|Y [X|Y = y] =
1

1 + a
y,

which is linear to y. Therefore, equation (2.18) is expressed as

d

da
h(Y ) =

1

2a

{
1− EY

[
d

dY
EX|Y [X|Y ]

]}
=

1

2(1 + a)
.

Now, we consider the second derivative of the differential entropy. One interesting

property of the second derivative of the differential entropy is that it can always be

expressed as a function of the Fisher information (2.7).

Theorem 2.7. Given the channel model (2.1), let X and W be arbitrary random
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variables, independent of each other. Given the following assumptions:

d2

dy2
EX
[
fY |X(y|X; a)

]
=EX

[
d2

dy2
fY |X(y|X; a)

]
,

d2

da2
EX
[
fY |X(y|X; a)

]
=EX

[
d2

da2
fY |X(y|X; a)

]
, (2.19a)

d2

da2

∫ ∞
−∞

fY (y; a) log fY (y; a)dy =

∫ ∞
−∞

d2

da2

(
fY (y; a) log fY (y; a)

)
dy, (2.19b)

lim
y→±∞

EX

[
X2

d
dy
fY |X(y|X; a)√
fY (y; a)

]
= EX

[
lim
y→±∞

X2

d
dy
fY |X(y|X; a)√
fY (y; a)

]
,

lim
y→±∞

EX
[
XfY |X(y|X; a)

]
= EX

[
lim
y→±∞

XfY |X(y|X; a)

]
, (2.19c)

lim
y→±∞

EX
[
fY |X(y|X; a)

]
= EX

[
lim
y→±∞

fY |X(y|X; a)

]
,

lim
y→±∞

y8fY (y; a) = 0, (2.19d)∣∣∣∣∣EX
[
X2fY |X(y|X; a)

]
(fY (y; a))3/4

∣∣∣∣∣ <∞, (2.19e)

where EX|Y [·|·] denotes the posterior mean, the following identity holds:

d2

da2
h(Y ) = −Ja(Y )− 1

2a

d

da
h(Y )− 1

4a2
EY
[
d

dY
SY (Y )EX|Y

[
(Y −X)2|Y

]]
,

or equivalently,

d2

da2
h(Y )= −Ja(Y )− 1

4a2
EY
[
d

dY
EX|Y [(Y −X)|Y ]

]
− 1

4a2
EY
[
d

dY
S(Y )EX|Y

[
(Y −X)2|Y

]]
. (2.20)

Proof. See Appendix A.3.

Similar to the corollaries of Theorem 2.6, by specifying a noise distribution and

manipulating equation (2.20) in Theorem 2.7, we derive the following corollaries.
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Corollary 2.4. Given the channel (2.1), let X be an arbitrary but fixed random

variable with a finite second-order moment, and let W be independent normally dis-

tributed with zero mean and unit variance. Then,

d2

da2
h(Y ) = −Ja(Y )− 1

4a
J(Y )− 1

4a2
EY
[
d

dY
SY (Y )EX|Y

[
(Y −X)2|Y

]]
= −1

2
EY

[(
d

dY
SY (Y )

)2
]
.

Remark 2.3. This result is a scalar version of the result reported in [42]. At the

same time, this result is a special case, when X is a Gaussian random variable, of

the general result in Theorem 2.7.

Corollary 2.5. Under the channel (2.1), let X be an arbitrary but fixed non-negative

random variable with a finite moment generating function, and its pdf is bounded.

Let W be independent exponentially distributed with unit value as the parameter (λ)

of the distribution. Namely, fW (w) = exp(−w)U(w), where U(·) denotes the unit

step function. Then,

d2

da2
h(Y )=−Ja(Y ) +

3

4a2
√
a
EX
[
EX|Y [Y −X|Y ] |Y =X

]
+

1

4a2
− 1

4a3
EX
[
EX|Y

[
(Y −X)2|Y

]
|Y =X

]
.

Corollary 2.6. Under the channel (2.1), let X be an arbitrary but fixed non-negative

random variable with a finite moment generating function, and W be an independent

gamma random variable with parameters α (α ≥ 3) and β (β = 1), i.e., fW (w) =

βαwα−1 exp(−βw)U(w)/Γ(α), where U(·) denotes the unit step function and Γ(·)
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stands for the gamma function. Then,

d2

da2
h(Y ) = − 1

4a3
EYα−2

[
EX|Y

[
(Y −X)2|Y

]
|Y = Yα−2

]
− 1

4a2
√
a
EYα−1

[EX|Y [X|Y ] |Y = Yα−1]

+
(α− 1)

4a2
√
a
EYα−1

[
EX|Y [(Y −X)2|Y ]

EX|Yα−1
[Yα−1 −X|Yα−1]

∣∣∣∣∣Y = Yα−1

]
−Ja(Y )− 1

4a2
√
a

(√
a− EX [X]

)
,

where Yα = X +
√
aWα, and Wα denotes a gamma random variable with a shape

parameter α.

Like Corollaries 2.1, 2.2, and 2.3, the assumptions (2.19) reduce to simplified

forms in Corollaries 2.4, 2.5, and 2.6. Even though we have not enumerated all pos-

sible probability density functions for Theorem 2.6 and Theorem 2.7, many of the

probability density functions that present an exponential term satisfy the assump-

tions (2.17) and (2.19), since such a condition proves to be sufficient for the required

interchange between a limit and a integral.

2.5 Applications

As mentioned in [18] and [43], De Bruijn’s identity has been widely used in a

variety of areas such as information theory, estimation theory, and so on. Similarly,

De Bruijn-type identities mentioned in this section can be adopted in many applica-

tions. Here, we introduce several applications from the estimation theory realm as

well as from the information theory field.

2.5.1 Applications in Estimation Theory

In estimation theory, there exist two fundamental lower bounds: Cramér-Rao

lower bound (CRLB) and Bayesian Cramér-Rao lower bound (BCRLB). CRLB is

23



a lower bound for the estimation error of any unbiased estimator, and it is derived

from a frequentist perspective. This lower bound is tight when the output distri-

bution of the channel is Gaussian. CRLB and its tightness can be justified using

Cauchy-Schwarz inequality [27]. On the other hand, BCRLB is a lower bound for

the estimation error of any estimator, and it is calculated from a Bayesian perspec-

tive. BCRLB does not require unbiasedness of estimators unlike CRLB; however,

BCRLB requires prior knowledge (i.e., distribution) of random parameters. BCRLB

is also tight when all random variables are Gaussian [50].

Surprisingly, assuming a Gaussian additive noise channel, both of these lower

bounds can be derived using De Bruijn-type identities, and there exist counterparts

both in information theory and estimation theory. Since CRLB and its counterpart,

the worst additive noise lemma, are derived in [43], we will only show the derivation

of BCRLB and its counterpart in this section.

Lemma 2.1 (Bayesian Cramér-Rao Lower Bound). Given the channel (2.1), let X̂

be an arbitrary estimator of X in a Bayesian estimation framework. Then, the mean

square error (MSE) of X̂ is lower bounded as follows:

MSE(X̂) ≥ 1

EX [J(Y |X)] + J(X)
,

where X is an arbitrary but fixed random variable with a finite second-order moment,

W is a Gaussian random variable with zero mean and unit variance, and

J(Y |X) =

∫ ∞
−∞

(
d

dx
log fY |X(y|x)

)2

fY |X(y|x)dy. (2.21)

Proof. See Appendix A.4.

Interestingly, there exists a counterpart, based on differential entropies, of BCRLB
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in information theory, and this counterpart is a tighter lower bound than BCRLB.

Lemma 2.2. Under the same conditions as in Lemma 2.1,

MSE(X̂) ≥ N(X|Y ), (2.22)

where N(X|Y ) = (1/2πe) exp(2h(X|Y )), Y = X +
√
aW , a ≥ 0, and X and W are

independent of each other.

Proof. See Appendix A.5.

Remark 2.4. Lemma 2.2 seems to be similar to the estimation counterpart of Fano’s

inequality [9, p. 255, Theorem 8.6.6]. However, the current result is completely

different than [9, p. 255, Theorem 8.6.6]. In [9], to satisfy the inequality (2.22), the

hidden assumption is

V ar(X|Y ) = V ar(XG|YG), (2.23)

where V ar(X|Y ) and V ar(XG|YG) denote posterior variances for random variables

X and Y , and Gaussian random variables XG and YG, respectively. With the as-

sumption (2.23), the following relations hold:

EX,Y
[(
X − EX|Y [X|Y ]

)2
]

= V ar(X|Y )

= V ar(XG|YG)

=
1

2πe
exp(2h(XG|YG))

≥ 1

2πe
exp(2h(X|Y ))

= N(X|Y ).
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This is nothing but the entropy maximizing theorem, i.e., the Gaussian random vari-

able being the one that maximizes the entropy among all real-valued distributions with

fixed mean and variance.

However, under the assumptions V ar(X) = V ar(XG) and V ar(Y ) = V ar(YG),

which are common assumptions in signal processing problems, (2.23) may not be

always true due to the following fact. Given the additive Gaussian noise channel,

Y = X +
√
aWG, where X is an arbitrary non-Gaussian random variable whose

variance is identical to that of Gaussian random variable XG, and WG is a Gaussian

random variable with zero mean and unit variance,

V ar(X|Y ) < V ar(XG|YG), (2.24)

where YG is a Gaussian random variable whose variance is identical to that of Y .

Equation (2.24) violates the assumption (2.23). Therefore, the result in [9, p. 255,

Theorem 8.6.6] cannot be adopted under the assumptions, V ar(X) = V ar(XG) and

V ar(Y ) = V ar(YG), which are common in signal processing problems.

On the other hand, the inequality in Lemma 2.2 is obtained not by imposing

identical posterior variances but by assuming identical second-order moments. Thus,

(2.22) represents a lower bound on the mean square error similar to BCRLB. There-

fore, Lemma 2.2 illustrates a novel lower bound on the mean square error from an

information theoretic perspective.

Surprisingly, this lower bound is tighter than BCRLB as the following lemma

indicates.

Lemma 2.3. Under the same conditions as in Lemma 2.2,

N(X|Y ) ≥ 1

EX [J(Y |X)] + J(X)
, (2.25)
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where Y = X +
√
aW , a is nonnegative, X is an arbitrary but fixed random variable

with a finite second-order moment, W is a Gaussian random variable with zero mean

and unit variance, and J(Y |X) is defined as equation (2.21). The equality holds if

the random variable X is Gaussian.

Proof. See Appendix A.6.

Figure 2.1 illustrates how tighter the new lower bound (2.22) is compared to

BCRLB when X is a student-t random variable, and W is a Gaussian random vari-

able. The degrees of freedom of X is 3, and the variance of W is 1. As shown in

Figure 2.1, the new lower bound is much tighter than BCRLB especially in low SNRs

where the BCRLB is generally loose. Also, Figure 2.1 shows how tight the new lower

bound is with respect to the minimum mean square error.
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Figure 2.1: Comparison of MMSE, BCRLB, and new lower bound (New LB) in
(2.22) with respect to SNR.
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2.5.2 Applications in Information Theory

In information theory, the entropy power inequality (EPI) is one of the most

important inequalities since it is helps to prove the channel capacity under several

different circumstances, e.g., the capacity of scalar Gaussian broadcast channel [3],

the capacity of Gaussian MIMO broadcast channel [53], [32], the secrecy capacity of

Gaussian wire-tap channel [31], [41] and so on. The channel capacity can be proved

not by EPI alone but by EPI in conjunction with Fano’s inequality. Depending on

the channel model, an additional technique, channel enhancement technique [53], is

required. Therefore, various versions of the EPI such as a classical EPI [46], [45], [5],

Costa’s EPI [7], and an extremal inequality [32] were proposed by several different

authors. In this section, we will prove Costa’s entropy power inequality, a stronger

version of a classical EPI using Theorem 2.7.

Lemma 2.4 (Costa’s EPI). For a Gaussian random variable W with zero mean and

unit variance,

N(X +
√
aW ) ≥ (1− a)N(X) + aN(X +W ), (2.26)

where 0 ≤ a ≤ 1, X and W are independent of each other, and the entropy power

N(X) is defined as N(X) = (1/2πe) exp(2h(X)). Alternatively, the inequality (2.26)

is expressed as

d2

da2
N(X +

√
aW ) ≤ 0, (2.27)

i.e., N(X +
√
aW ) is a concave function of a [7].

Proof. See Appendix A.7.
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2.5.3 Applications in Other Areas

There are many other applications of the proposed results. First, since Theorem

2.6 is equivalent to Theorem 1 in [20], Theorem 2.6 can be used for applications

such as generalized EXIT charts and power allocation in systems with parallel non-

Gaussian noise channels as mentioned in [20]. Second, by Theorem 2.4, we showed

the equivalence among Stein, De Bruijn, and heat equation identities. Therefore, a

broad range of problems (in probability, decision theory, Bayesian statistics and graph

theory) as described in [6] could be considered as additional potential applications

of Theorems 2.4 and 2.6.

2.6 Conclusions

This section mainly disclosed three information-estimation relationships. First,

the equivalence between Stein identity and De Bruijn identity was proved. Second,

it was proved that the first derivative of the differential entropy with respect to

the parameter a can be expressed in terms of the posterior mean. Second, this

section showed that the second derivative of the differential entropy with respect

to the parameter a can be expressed in terms of the Fisher information. Finally,

several applications based on the three main results listed above were provided. The

suggested applications illustrate that the proposed results are useful not only in

information theory but also in the estimation theory field and other fields.
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3. GAUSSIAN ASSUMPTION: OPTIMAL ESTIMATION∗

3.1 Introduction

Gaussian assumption is the most well-known and widely used distribution in

many fields such as engineering, statistics and physics. One of the major reasons why

the Gaussian distribution has become so prominent is because of the Central Limit

Theorem (CLT) and the fact that the distribution of noise in numerous engineering

systems is well captured by the Gaussian distribution. Moreover, features such as

analytical tractability and easy generation of other distributions from the Gaussian

distribution contributed further to the popularity of Gaussian distribution. Espe-

cially, when there is no information about the distribution of observations, Gaussian

assumption appears as the most conservative choice. This follows from the fact that

the Gaussian distribution minimizes the Fisher information, which is the inverse of

the Cramér-Rao lower bound (CRLB) (or equivalently stated, the Gaussian distribu-

tion maximizes the CRLB). Therefore, any optimization based on the CRLB under

the Gaussian assumption can be considered to be min-max optimal in the sense of

minimizing the largest CRLB (see [48] and the references cited therein).

Inspired by the early isoperimetric inequality for entropy introduced by Costa and

Cover [8] and the more recent results of Rioul [43], Stoica and Babu [48], the goals

of this section are threefold: i) to illustrate a connection between [48] and the recent

information theoretic results reported in [8], [43], ii) to present information theoretic

and estimation theoretic justifications for the fact that the Gaussian assumption

∗Reprinted with permission from “Gaussian Assumption: the Least Favorable but the Most
Useful,” Sangwoo Park, Erchin Serpedin, and Khalid Qaraqe, accepted for the publication in IEEE
Signal Processing Magazine, Copyright by IEEE.
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leads to the largest CRLB, iii) to show a slight extension of this result to the more

general framework of correlated observations. Even though Stoica and Babu provided

a simple and quite general proof of result that the largest CRLB is achievable by the

Gaussian distribution, the proposed proof is only applicable to the situation when the

observations are independent, i.e., the observation noise is white [48]. However, this

result can be generalized to arbitrary correlations among samples. In many practical

circumstances, the correlation of the noise is inevitable since the observed data comes

from a filter, and the filter introduces correlation. Therefore, the importance of this

generalization cannot be ignored. This result is also closely related to two well-known

results in information theory: first, the fact that a Gaussian random vector maximizes

a differential entropy, and second, the worst additive noise lemma (see [43], [11],

and the references cited therein). Several researchers have investigated relationships

between estimation theoretic (statistical) concepts such as mean-square error and

Fisher information and information theoretic concepts such as entropy and mutual

information (see e.g., [8], [43] and the references cited therein). However, most of

these results are inclined to be rather theoretical than practical. In this section,

we show how some of these results can be adopted to a more practical application

involving the estimation of a communication channel via a training sequence.

The approach introduced herein section can be adapted to optimally estimate

unknown (deterministic or random) parameters in additive noise channels. As pre-

sented in the channel model (3.1), the additive noise channel is very general in the

sense that the only assumption is the independence between data xθ and noise w.

Namely, the channel model does not require the Gaussian noise assumption, it ad-

mits correlation among noise terms, and it also allows for correlation among data

terms. Therefore, the proposed approach can be generally used in signal process-

ing applications involving parameter estimation, spectrum estimation, optimization,
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wireless communications and information theory.

3.2 Problem Statement

Consider a random vector Y which is generated by the following system of equa-

tions:

Y = Xθ + W, (3.1)

where Y is an n× 1 observed random vector, Xθ denotes an n× 1 signal (random)

vector which depends on a k× 1 unknown deterministic parameter vector θ, and W

stands for the n×1 zero-mean noise vector whose covariance matrix is Σw. Random

vectors Xθ and W are assumed independent of each other. The systems represented

by the channel model (3.1) are quite numerous. In particular, the channel model

(3.1) might consist of the samples of an arbitrary stochastic process such as ARMA

(autoregressive moving average) or ARMAX (ARMA with eXogenous inputs), as

mentioned in [48].

Based on the channel model (3.1), we define the score function:

s(θ) = ∇θ log fY|Xθ
(y|xθ), (3.2)

where ∇θ denotes the gradient with respect to θ, and fY|Xθ
(y|xθ) is the conditional

density function of Y given Xθ. The Cramér-Rao lower bound (CRLB) is expressed

by the diagonal elements of the inverse of the Fisher information matrix (FIM), and

the FIM is represented as:

Jθ(Y) = EY[s(θ)s(θ)T ], (3.3)
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where the notation EY[·] stands for the expectation with respect to a random vector

Y, and superscript T denotes the operation of transposition for a vector or matrix.

Our goal is to find an optimal estimator for the parameter θ in the sense that

the estimated parameter minimizes the lower bound of the mean square error of the

estimator in the worst case scenario.

3.3 Minium Fisher Information-A Statistical Viewpoint

One of the common approaches to estimate unknown parameters is to build esti-

mators that minimize the Cramer-Rao lower bound. Since CRLB is expressed as the

inverse of FIM, minimizing the Cramér-Rao lower bound is equivalent to maximizing

FIM. Given the channel model (3.1), the score function in (3.2) and the FIM in (3.3)

can be re-expressed by the following procedure.

Since fY|Xθ
(y|xθ) = fW(w)

∣∣
w=y−xθ

= fW(y − xθ), where fW(·) denotes the

density function of the noise W, and Xθ and W are independent of each other,

using the chain rule for computing the derivative of a function, the score function

s(θ) is re-written as:

s(θ) = ∇θ log fY|Xθ
(y|xθ)

= ∇θ log fW(y − xθ)

= −∇θxθ∇w log fW(w), (3.4)

where the gradient (Jacobian) of the vector xθ is defined as the k × n matrix ∇θxθ

with its (i, j)th entry equal to
∂xθ,j
∂θi

. Now it turns out that the FIM (3.3) can be
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expressed as:

Jθ(Y) = EXθ ,W

[
(∇θXθ∇W log fW(W)) (∇θXθ∇W log fW(W))T

]
= EXθ ,W

[
∇θXθ

(
∇W log fW(W)∇W log fW(W)T

)
∇θX

T
θ

]
(3.5)

= EXθ

[
∇θXθJ(W)∇θX

T
θ

]
, (3.6)

where the FIM with respect to W is defined as

J(W) = EW

[
∇W log fW(W)∇W log fW(W)T

]
. (3.7)

In equation (3.5), the expectation with respect to both Xθ and W can be separated

into the outer expectation with respect to Xθ and the inner expectation with respect

to W since Xθ and W are independent of each other. When the vector Xθ is

deterministic, the outer expectation is not required. Therefore, the term related to

the random vector W becomes the FIM, J(W), defined in equation (3.7), and it is

not affected by the outer expectation EXθ
[·] in equation (3.6).

The following result states that the FIM J(W), which is a positive semi-definite

matrix, is lower-bounded by the FIM J(WG) of a normally distributed random vector

(WG).

Lemma 3.1 (Cramér-Rao Inequality). For a random vector W and a Gaussian

random vector WG whose covariance matrix ΣW is identical to the covariance matrix

of W, the following inequality is satisfied:

J(W) � J(WG),

where notation � stands for “greater than or equal to”, in the sense of the partial
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ordering of positive semi-definite matrices.

Proof. The proof follows essentially [43]. First, we define the following two score

functions:

sW(w) = ∇w log fW(w),

sWG
(w) = ∇w log fWG

(w). (3.8)

The covariance matrix of the difference of the two score functions (3.8) is expressed

as

EW

[
(sW(W)− sWG

(W)) (sW(W)− sWG
(W))T

]
, (3.9)

and it is always greater than or equal to the zero matrix 0 in terms of the positive

semi-definite partial ordering. Notice further that (3.9) can be simplified to

EW

[
(sW(W)− sWG

(W)) (sW(W)− sWG
(W))T

]
= J(W)− EW

[
sW(W)sWG

(W)T
]
− EW [sWG

(W)sW(W)] + J(WG)

= J(W)− J(WG). (3.10)

Since WG is a Gaussian random vector, sWG
(w) = −Σ−1

Ww. EW

[
sW(W)sWG

(W)T
]
=

−
∫

(∇wfW(w)) wTdwΣ−1
W =

∫
fW(w)dwΣ−1

W = Σ−1
W by Green’s identity (see e.g.,

[8] and the references cited therein). Here, Green’s identity plays the role of the

integration by parts for a vector. Since J(WG) = Σ−1
W , the last equality in equation

(3.10) is verified. Since the covariance matrix is always positive semi-definite, from
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equation (3.10),

EW

[
(sW(W)− sWG

(W)) (sW(W)− sWG
(W))T

]
= J(W)− J(WG) � 0. (3.11)

Therefore, the proof is completed.

Due to Lemma 3.1, when W is a Gaussian random vector, the FIM J(W) is

minimized, and consequently the FIM Jθ(Y) is also minimized:

Jθ(Y) = EXθ

[
∇θXθJ(W)∇θX

T
θ

]
� EXθ

[
∇θXθJ(WG)∇θX

T
θ

]
= Jθ(Ȳ), (3.12)

where Ȳ = Xθ +WG, and the equality holds if and only if W is normally distributed.

The inequality in equation (3.12) is due to the fact that for an arbitrary matrix C,

the inequality CACT � CBCT holds whenever positive semi-definite matrices A

and B satisfy A � B.

From equations (3.6) and (3.12), we know that the CRLB depends on the pa-

rameter θ only through the FIM, J(W). In other words, the CRLB only depends

on J(W) when Xθ is fixed. Therefore, the Gaussian random vector WG maximizes

the CRLB (or, equivalently minimizes the FIM, Jθ(Y)), when Xθ is fixed. There-

fore, any design which optimizes the FIM (3.6) (or equivalently the CRLB) when

the random vector W is Gaussian, can be considered min-max optimal in the light

of generating the smallest FIM (or the largest CRLB) in the worst situation.

36



3.4 Minimum Mutual Information–An Information Theoretic Viewpoint

It is well-known that, given the covariance matrix, a Gaussian random vector

minimizes the FIM, a result referred to as the Cramér-Rao inequality (see [48], [43],

and the references cited therein). On the other hand, a Gaussian random vector

maximizes a differential entropy when the covariance matrix is given (see [43], [9],

and the references cited therein). These two results are closely related to each other.

First, consider this relationship for random variables. Given a random variable W

and a Gaussian random variable WG, the following inequalities are satisfied:

• J(W ) ≥ J(WG) when N(W ) = N(WG),

• N(W ) ≥ N(WG) when J(W ) = J(WG),

where N(·) denotes the entropy power of a random variable, and J(·) stands for the

Fisher information of a random variable. The above inequalities are easily derived

from this general inequality

N(W )J(W ) ≥ 1, (3.13)

where the equality holds if and only ifW is Gaussian. The inequality (3.13) is referred

to as the isoperimetric inequality for entropies (see [8], [10], and the references cited

therein).

When the variance of W is equal to the variance of WG, the inequality J(W ) ≥

J(WG) can be derived from N(W ) ≤ N(WG) using the isoperimetric inequality

for entropies. However, we cannot derive the inequality N(W ) ≤ N(WG) from

J(W ) ≥ J(WG) using the isoperimetric inequality. Instead, the worst additive noise

lemma (see e.g., [43], [11], [23] and the references cited therein) can be derived from

the inequality J(W ) ≥ J(WG) when the variances of W and WG are identical. All
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the relationships mentioned above are also valid for random vectors if we substitute

either |J(·)| 1n or Tr{J(·)} for J(·). The trace and the determinant of a matrix are

represented by the notations Tr{·} and | · |, respectively. Since the vector gener-

alization is quite direct, these results are not mentioned here except the following

lemma.

Lemma 3.2 (Worst Additive Noise Lemma [11], [23]). For a random vector W and

a Gaussian random vector WG whose covariance matrices are identical to each other,

I(W + ZG; ZG) ≥ I(WG + ZG; ZG), (3.14)

where I(·; ·) stands for mutual information, ZG is a Gaussian random vector with

zero mean and covariance matrix ΣZ, and all random vectors are independent of one

another.

Similar to Cramér-Rao inequality (see [48], [43], and the Lemma 3.1), the worst

additive noise lemma shows that the mutual information I(W+ZG; ZG) is minimized

when W is Gaussian. Consider that notation h(·) stands for differential entropy, and

define the function:

g(ΣZ) = h(W + ZG)− h(WG + ZG)− h(W) + h(WG). (3.15)

The function g(·) is non-decreasing with respect to the covariance matrix ΣZ near the

zero matrix 0. This is because, due to Lemma 3.2, g(ΣZ) is always non-negative for a

covariance matrix ΣZ which is arbitrarily close to the zero matrix 0. Therefore, near

the zero matrix, the first derivative of g(ΣZ) with respect to ΣZ is always positive

semi-definite, and using a vector version of De Bruijn’s identity [40], the Cramér-Rao
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inequality is derived from the Lemma 3.2 as follows:

∇ΣZ
g(ΣZ)

∣∣∣
ΣZ=0

� 0

⇐⇒ ∇ΣZ
I(W + ZG; ZG)

∣∣∣
ΣZ=0

−∇ΣZ
I(WG + ZG; ZG)

∣∣∣
ΣZ=0

� 0

⇐⇒ J(W)− J(WG) � 0, (3.16)

where ⇐⇒ stands for equivalence.

Therefore, in equation (3.6), the FIM, Jθ(Y), is expressed as

Jθ(Y) = EXθ

[
∇θXθJ(W)∇θX

T
θ

]
= 2EXθ

[
∇θXθ

(
∇ΣZ

I(W + ZG; ZG)
∣∣∣
ΣZ=0

)
∇θX

T
θ

]
, (3.17)

the smallest FIM, Jθ(Ȳ), in (3.12) is expressed as

Jθ(Ȳ) = 2EXθ

[
∇θXθ

(
∇ΣZ

I(WG + ZG; ZG)
∣∣∣
ΣZ=0

)
∇θX

T
θ

]
, (3.18)

and

EXθ

[
∇θXθ

(
∇ΣZ

I(W + ZG; ZG)
∣∣∣
ΣZ=0

)
∇θX

T
θ

]
� EXθ

[
∇θXθ

(
∇ΣZ

I(WG + ZG; ZG)
∣∣∣
ΣZ=0

)
∇θX

T
θ

]
. (3.19)

Therefore, one can do the min-max optimal design based on equations (3.17),

(3.18), and (3.19).

3.5 Practical Applications

The min-max approach can be adopted to many applications. One of the typical

examples is the optimal training sequence design for estimating frequency-selective
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fading channels [49], [4]. As a distinctive feature to what was shown in [49], [4], the

proposed approach does not require neither the assumption of Gaussian noise nor

the white noise assumption.

Assume that a linearly modulated signal filtered through a frequency-selective

channel is modeled as follows:

Y = Xω0Sh + W, (3.20)

where Y = [Y0, · · · , Yn−1]T , W = [W0, · · · ,Wn−1]T , h = [h0, · · · , hm−1]T ,

Xω0 =



1 0 · · · 0

0 eiω0 · · · 0

... · · · . . .
...

0 · · · 0 ei(n−1)ω0


, S =



s0 s−1 · · · s1−m

s1 s0 · · · s2−m

... · · · . . .
...

sn−1 sn−2 · · · sn−m


, (3.21)

ω0 = 2πf0 is the frequency offset, {s1−m, . . . , sn−1} stands for the training sequence

samples, and {h0, . . . , hm−1} denote the taps of the channel impulse response, as-

sumed of finite length m. The noise W is an arbitrary random vector with zero

mean and noise covariance matrix ΣW.

Since we want to find the optimal training sequences to estimate the channel

impulse response and the frequency offset, we first define the unknown parameter

vector θ as [ω0,hR,hI ]
T , where hR and hI denote the real and the imaginary parts

of the channel h.
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Based on equation (3.6),

Jθ(Y) = Re
[
∇θξθJ(W)∇θξ

H
θ

]
(3.22)

� Re
[
∇θξθJ(WG)∇θξ

H
θ

]
(3.23)

� Re
[
∇θξθ(λminI)∇θξ

H
θ

]
(3.24)

= λminRe
[
∇θξθ∇θξ

H
θ

]
, (3.25)

where ξθ = Xω0Sh, λmin represents the minimum eigenvalue of the FIM, J(WG),

Re[·] denotes the real part of a vector or matrix, and superscript H stands for

Hermitian transposition. Since ξθ is a complex-valued function which only depends

on the unknown deterministic real parameters, in equation (3.22), the equality holds

with Re[·] and without the expectation. Due to the Lemma 3.1, equation (3.23) is

verified, and equation (3.24) is satisfied due to the eigenvalue decomposition.

Equation (3.25) reveals the smallest FIM. It generates the worst CRLB, and it

is exactly of the same form as the one shown in [49]. Using the same argument as

in [49], the white training sequence is min-max optimal in this case. This min-max

approach heavily depends on how much information we have about the unknown

parameters. If we know the distribution of the noise vector W, then the min-max

approach will be adopted based on equation (3.22), while equation (3.23) will be

used when we only know the covariance matrix of the noise vector W. In both cases,

the white training sequences are not optimal since the optimal design is affected by

the FIM, J(W), which is related to the correlation of W. The optimal sequences

may depend on either the noise distribution or, at least, the noise covariance matrix.

However, without any information about the noise vector W, the white training

sequences are optimal in the sense of minimizing the worst CRLB.

The presented result, i.e., for a colored noise W with given correlation matrix,
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its FIM Jθ(Y) is minimized when the random vector W is Gaussian, can be also

interpreted from a different standpoint as follows. In equation (3.1), assume Y is

passed through a whitening filter, and a new signal Ỹ is obtained. The noise present

in the new output Ỹ is white since the correlation of the noise is eliminated by

the whitening filter. Therefore, we can directly adopt the method proposed in [49].

However, the design of the whitening filter requires the covariance matrix of the noise

W. If we have information about the covariance matrix of W, we can construct the

optimal training sequences; if we do not have information about W, we have to

follow the method proposed in equations (3.24) and (3.25), and use the fact that the

covariance matrix is lower-bounded by the minimum eigenvalue of the covariance

matrix multiplied by the identity matrix.

3.6 Conclusions

The results provided in previous sections show that, given the covariance matrix

ΣW, the FIM Jθ(Y), (CRLB) is minimized (respectively maximized) by adopting

the Gaussian assumption. This fact leads to the min-max optimal approach in the

following sense: the FIM Jθ(Y) (CRLB) depends on the unknown parameters only

through the FIM J(W). Since the Gaussian noise (not necessarily white) minimizes

the FIM J(W), it also minimizes the FIM Jθ(Y) (or equivalently, it maximizes the

CRLB). Therefore, the optimal design under the Gaussian assumption yields the best

CRLB in the worst case. The CRLB is also expressed using the mutual information.

In the information theoretic viewpoint, the fact that a Gaussian random vector

minimizes the FIM given the covariance matrix is related to the worst additive noise

lemma and the fact that a Gaussian random vector maximizes the differential entropy

given the covariance matrix.
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4. EXTREMAL ENTROPY INEQUALITY

4.1 Introduction

The classical entropy power inequality (EPI) was first established by Shannon

[45]. Due to its importance and usefulness, EPI was proved by several different

authors using distinct methods. In [46], Stam provided the first rigorous proof,

and Stam’s proof was further simplified by Blachman [5] and Dembo et al. [10],

respectively. Verdú and Guo proposed a new proof of the EPI based on the I-MMSE

concept [51]. Most recently, Rioul proved the EPI based only on information theoretic

quantities [43]. Before Rioul’s proof, most of the reported proofs were based on De

Bruijn-type identities and Fisher information inequality, i.e., the previous proofs were

performed mainly based on estimation-theoretic techniques rather than information-

theoretic techniques.

Due to the significance of the EPI, numerous versions of EPIs such as Costa’s EPI

[7], the EPI for dependent random variables [25], the extremal entropy inequality

[32], etc., have been proposed. Among the EPIs, the extremal entropy inequality

is especially prominent since it can be adapted to several important applications

investigated recently in the wireless communications area. In [32], Liu and Viswanath

proposed the extremal entropy inequality, motivated by multi-terminal information

theoretic problems such as the vector Gaussian broadcast channel and the distributed

source coding with a single quadratic distortion constraint, and suggested several

applications for the extremal entropy inequality. The extremal entropy inequality is

an entropy power inequality which includes a covariance constraint. Because of the

covariance constraint, the extremal inequality could not be proved directly by using

the classical EPI. Therefore, a new technique, referred to as the channel enhancement
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technique [53], was adopted in the proofs reported in [32].

The proofs proposed in [32] proceed as follows. First, the extremal entropy in-

equality is cast as an optimization problem. Using the channel enhancement tech-

nique, which relies mainly on Karush-Kuhn-Tucker (KKT) conditions, an alternative

optimization problem, whose maximum value is larger than the maximum value of

the original problem, is proposed, and the alternative problem is solved using the

EPI. Finally, the proof is completed by showing that the maximum value of the alter-

native problem is equal to the maximum value of the original problem. Even though

Liu and Viswanath proposed two kinds of proofs, a direct proof and a perturba-

tion proof, both proofs are commonly based on the channel enhancement technique,

and they are derived in a similar way except De Bruijn’s identity is adapted in the

perturbation proof.

The main theme of this section is how to prove the extremal entropy inequality

without using the channel enhancement technique. Since the channel enhancement

technique is adapted to prove not only the extremal entropy inequality but also

the capacity of several different kinds of Gaussian channels, e.g., the capacity of

the Gaussian broadcast channel and the secrecy capacity of the Gaussian wire-tap

channel, by finding an alternative proof for the extremal entropy inequality, we can

also find novel techniques to calculate the capacity of Gaussian broadcast channel,

the secrecy capacity of Gaussian wire-tap channel, and so on.

Our proof is mainly based on four techniques: the data processing inequality,

the moment generating function, the worst additive noise lemma, and the classical

EPI. By using the data processing inequality, the worst additive noise lemma, and the

classical EPI, we calculate an upper bound. Then, by applying the equality condition

of the data processing inequality, we prove that the upper bound can be achieved.

The moment generating functions are implemented to prove the achievement of the
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equality condition in the data processing inequality.

The contribution of our proof can be summarized as follows. First, our proof

is simpler and more direct compared with the proofs in [32]. Second, we adapt

a more information-theoretic approach without using the KKT conditions. The

method based on the data processing inequality and the moment generating function

enables us to circumvent the step of using the KKT conditions. Moreover, by simply

analyzing some properties of positive semi-definite matrices, we can omit the step

of proving the existence of the optimal solution which satisfies the KKT conditions,

a step which is very complicated to accomplish. In addition, the structure of the

covariance matrix of the optimal solution is mentioned in detail by using properties

of positive semi-definite matrices. Third, our proof presents a novel investigation

method not only for the extremal entropy inequality but also for applications such

as the capacity of Gaussian broadcast channel, the secrecy capacity of Gaussian wire-

tap channel, and so on. Finally, we show that the extremal entropy inequality can

be used for the proof of the secrecy capacity of the Gaussian wire-tap channel. This

application supports the versatility of the extremal entropy inequality.

The rest of this section is organized as follows. The extremal entropy inequality

without a covariance constraint and its alternative proof are shown in Section 4.2.

The extremal entropy inequality and its alternative proof, which are the main results

of this section, are provided in Section 4.3. In Section 4.4, an additional application

of extremal entropy inequality is introduced, and the importance of our proof is

explained. Finally, Section 4.5 concludes this section.

4.2 Entropy Power Inequality

Since the extremal entropy inequality is similar to the classical entropy power

inequality (EPI), we first investigate a relationship between the extremal entropy
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inequality and the EPI. Without a covariance constraint, the extremal entropy in-

equality is equivalent to the EPI as shown in Theorem 4.1.

Theorem 4.1. For an arbitrary random vector X with a covariance matrix ΣX and

a Gaussian random vector WG with a covariance matrix ΣW , there exists a Gaussian

random vector X̃G which satisfies the following inequality:

h(X)− µh(X + WG) ≤ h(X̃G)− µh(X̃G + WG), (4.1)

where the constant µ ≥ 1, all random vectors are independent of each other, ΣW is

a positive definite matrix, and X̃G is a Gaussian random vector which satisfies the

following:

1. The covariance matrix of X̃G is represented by ΣX̃ , and it is proportional to

ΣW .

2. The differential entropy of X̃G, h(X̃G), is equal to the differential entropy of

X, h(X).

In addition, the inequality (4.1) is equivalent to the EPI.

Proof.

Lemma 4.1 (Entropy Power Inequality [43], [9]). For independent random vectors

X1 and X2,

h(X1 + X2) ≥ h(X̃G1 + X̃G2), (4.2)

where X̃G1 and X̃G2 are independent Gaussian random vectors, h(X̃G1) = h(X1) and

h(X̃G2) = h(X2), and the covariance matrices of X̃G1 and X̃G2 are proportional.
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Using Lemma 4.1, the following relations are obtained:

h(X) = h(X̃G),

h(X + WG) ≥ h(X̃G + WG), (4.3)

where ΣX̃ is proportional to ΣW , i.e., ΣX̃ = αΣW , and α is an appropriate constant

which satisfies h(X) = h(X̃G). Therefore, the inequality (4.1) is derived from Lemma

1, the EPI, and the proof of the inequality (4.1) is completed.

If the inequality (4.1) holds, h(X + WG) ≥ h(X̃G + WG) since h(X) = h(X̃G),

and ΣX̃ is proportional to ΣW . This is exactly the same as the EPI in Lemma 4.1.

Therefore, the inequality (4.1) is equivalent to the EPI.

While Theorem 4.1 shows a local upper bound, i.e., the upper bound is dependent

on a random vector X, since α depends on the random vector X, we can also find a

global upper bound as shown in Theorem 4.2 and the reference [32].

Theorem 4.2. For an arbitrary random vector X with a covariance matrix ΣX and

a Gaussian random vector WG with a covariance matrix ΣW , there exists a Gaussian

random vector X∗G which satisfies the following inequalities:

h(X)− µh(X + WG) ≤ h(X∗G)− µh(X∗G + WG), (4.4)

h(X̃G)− µh(X̃G + WG) ≤ h(X∗G)− µh(X∗G + WG), (4.5)

where the constant µ > 1, all random vectors are independent of each other, ΣW

is a positive definite matrix, X̃G stands for the Gaussian random vector defined in

Theorem 4.1, and X∗G is a Gaussian random vector whose covariance matrix ΣX∗ is

represented by (µ− 1)−1ΣW .
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Proof. The proof, here, is a little different from the proof in [32]. In our proof, we

deal with both a local upper bound and a global upper bound while a global upper

bound is directly calculated in [32].

Define the function f(α) as follows:

f(α) = h(X̃G)− µh(X̃G + WG)

=
n

2
log 2πe |αΣW |

1
n − µn

2
log 2πe |αΣW + ΣW |

1
n , (4.6)

where n denotes the dimension of a random vector, and |·| stands for the determinant

of a matrix.

Since

d

dα
f(α)

∣∣∣∣
α=(µ−1)−1

=
n

2(µ− 1)−1
− µn

2((µ− 1)−1 + 1)

= 0,

d2

d2α
f(α)

∣∣∣∣
α=(µ−1)−1

= − n

2(µ− 1)−2
+

µn

2((µ− 1)−1 + 1)2

< 0, (4.7)

f(α) is maximized when α = (µ− 1)−1.

Therefore, from Theorem 4.1, the following inequality is derived as

h(X)− µh(X + WG) ≤ h(X̃G)− µh(X̃G + WG)

= f(α)

≤ f((µ− 1)−1)

= h(X∗G)− µh(X∗G + WG). (4.8)

The inequalities (4.8) include inequalities (4.4) and (4.5), and the validity of
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inequalities (4.4) and (4.5) is proved. The upper bound in (4.8) is a global maximum

while the upper bound derived in Theorem 4.1 is a local maximum.

Remark 4.1. When µ = 1, the inequalities (4.4) and (4.5) are also satisfied. How-

ever, we cannot specify the covariance matrix of X∗G since h(X∗G) − µh(X∗G + WG)

is increasing with respect to ΣX∗ and it can be infinitely large as ΣX∗ is increased.

Therefore, we omit the case when µ = 1 in Theorem 4.2.

As shown in Theorem 4.1 and 4.2, for µ ≥ 1, h(X)− µh(X + WG) is maximized

when random vector X is Gaussian. However, when a covariance constraint is added

in the inequalities (4.1), (4.4) and (4.5), we cannot prove whether a Gaussian random

vector still maximizes h(X) − µh(X + WG) or not, based on the same methods as

described in the proofs of Theorems 4.1 and 4.2, since the covariance constraint may

alter the proportionality relationship between the covariance matrices ΣX∗ and ΣW .

4.3 The Extremal Inequality

In [32], Liu and Viswanath proved that a Gaussian random vector still maximizes

h(X)−µh(X+WG) even when a covariance constraint is considered. The inequality

(4.4) was formulated as an optimization problem with a covariance constraint as

follows:

max
p(X)

h(X + WG)− µh(X + VG),

s.t. ΣX � R, (4.9)

where WG and VG are independent Gaussian random vectors with positive definite

covariance matrices ΣW and ΣV , respectively, all random vectors are independent

of each other, and the maximization is done over the distribution of random vector
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X. Two proofs, a direct proof and a perturbation proof, are provided in [32]. Each

proof approaches the problem in a different way but both proofs share an important

common approach, namely the channel enhancement technique based on the KKT

conditions and proposed originally in [53].

Unlike the original proofs in [32], we will prove Theorems 4.3 and 4.4 without

using the channel enhancement technique. Before we deal with the problem (4.9),

we first consider a simpler case of it in Theorem 4.3.

Theorem 4.3. For an arbitrary random vector X with a covariance matrix ΣX and

a Gaussian random vector WG with a covariance matrix ΣW , there exists a Gaus-

sian random vector X∗G with a covariance matrix ΣX∗ which satisfies the following

inequality:

h(X)− µh(X + WG) ≤ h(X∗G)− µh(X∗G + WG), (4.10)

where the constant µ ≥ 1, all random vectors are independent of each other, ΣW

is a positive definite matrix, ΣX � R, ΣX∗ � R, and R is a positive semi-definite

matrix.

Proof. When R is a positive definite but singular matrix, i.e., |R| = 0, the inequality

(4.10) and its covariance constraints are equivalently changed into

h(X̄)− µh(X̄ + W̄G) ≤ h(X̄∗G)− µh(X̄∗G + W̄G), (4.11)

where X̄ is such that ΣX̄ � R̄, ΣX̄∗ � R̄, and R̄ is a positive definite matrix, as

mentioned in [32]. When µ = 1, the inequality (4.10) is easily proved by the Lemma

4.2, which will be presented later.

Therefore, without loss of generality, we assume that µ > 1 and R is a positive
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definite matrix. Then, the right-hand side (RHS) of the equation (4.10) is upper-

bounded by means of the following lemma.

Lemma 4.2 (Worst Additive Noise [43], [32], [11]). For random vectors X, XG,

W̃G, and W′
G,

I(X + W̃G + W′
G; W′

G) ≥ I(XG + W̃G + W′
G; W′

G), (4.12)

where X is an arbitrary random vector, XG is a Gaussian random vector with the

covariance matrix identical to that of X, W̃G and W′
G are Gaussian random vectors,

and all random vectors are independent.

Based on Lemma 4.2, the following inequalities hold:

h(X + W̃G + W′
G)− h(X + W̃G + W′

G|W′
G)

≥ h(XG + W̃G + W′
G)− h(XG + W̃G + W′

G|W′
G)

⇐⇒h(X + W̃G + W′
G)− h(X + W̃G) ≥ h(XG + W̃G + W′

G)−h(XG + W̃G) (4.13)

⇐⇒h(X + W̃G + W′
G) ≥ h(X + W̃G) + h(XG + W̃G + W′

G)−h(XG + W̃G),(4.14)

where ⇐⇒ denotes equivalence. Notice that the Gaussian random vector WG can

be expressed as the sum of two independent Gaussian random vectors W̃G and W′
G

whose covariance matrices satisfy:

ΣW = ΣW̃ + ΣW ′ , (4.15)

where ΣW , ΣW̃ , and ΣW ′ are the covariance matrices of WG, W̃G, and W′
G, re-

spectively. Henceforth, the Gaussian random vector WG is represented as WG =

W̃G + W′
G.
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Based on (4.14) and (4.15), the left-hand side (LHS) of the equation (4.10) is

upper-bounded as

h(X)− µh(X + WG)

= h(X)− µh(X + W̃G + W′
G) (4.16)

≤ h(X)− µ
(
h(X + W̃G) + h(XG + W̃G + W′

G)− h(XG + W̃G)
)

(4.17)

= h(X)− µh(X + W̃G) + µ
(
h(XG + W̃G)− h(XG + W̃G + W′

G)
)
.(4.18)

Using Theorem 4.2, if (µ − 1)−1ΣW̃ � R, the RHS of equation (4.18) is upper-

bounded as

h(X)− µh(X + W̃G) + µ
(
h(XG + W̃G)− h(XG + W̃G + W′

G)
)

(4.19)

≤ h(X∗G)− µh(X∗G + W̃G) + µ
(
h(XG + W̃G)− h(XG + W̃G + W′

G)
)
,(4.20)

where X∗G is a Gaussian random vector whose covariance matrix ΣX∗ is defined as

(µ− 1)−1ΣW̃ . Unlike Theorem 4.2, we additionally have to prove that there exists a

random vector X∗G whose covariance matrix ΣX∗ satisfies

ΣX∗ = (µ− 1)−1ΣW̃ (4.21)

� R, (4.22)

due to the covariance constraint. Since ΣX � R, we will prove there exists a random

vector X∗G whose covariance matrix ΣX∗ satisfies

ΣX∗ = (µ− 1)−1ΣW̃ (4.23)

� ΣX , (4.24)
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instead of proving (4.22).

The equation (4.20) is further proceeded by the following lemma.

Lemma 4.3 (Data Processing Inequality [9]). When three random vectors Y1, Y2,

and Y3 represent a Markov chain Y1 → Y2 → Y3, the following inequality is satis-

fied:

I(Y1; Y3) ≤ I(Y1; Y2). (4.25)

The equality holds if and only if random vectors Y1, Y2, and Y3 form the Markov

chain: Y1 → Y3 → Y2.

If the inequality (4.24) is satisfied, then we can form a Markov chain such as

X′G → X′G + X∗G + W̃G → X′G + X∗G + W̃G + W′
G, (4.26)

where all random vectors are independent. Since a Gaussian random vector XG can

be expressed as the summation of two independent Gaussian random vectors X′G

and X∗G whose covariance matrices satisfy

ΣX = ΣX′ + ΣX∗ , (4.27)

where ΣX , ΣX′ , and ΣX∗ stand for covariance matrices of XG, X′G, and X∗G, respec-

tively, the Gaussian random vector XG will be represented as XG = X′G + X∗G.
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Based on Lemma 4.3, we obtain

I(X′G; X′G + X∗G + W̃G + W′
G) ≤ I(X′G; X′G + X∗G + W̃G) (4.28)

⇐⇒ h(X′G + X∗G + W̃G + W′
G)− h(X∗G + W̃G + W′

G)

≤ h(X′G + X∗G + W̃G)− h(X∗G + W̃G) (4.29)

⇐⇒ h(XG + W̃G + W′
G)− h(X∗G + W̃G + W′

G)

≤ h(XG + W̃G)− h(X∗G + W̃G) (4.30)

⇐⇒ h(X∗G + W̃G)− h(XG + W̃G) + h(XG + W̃G + W′
G)

≤ h(X∗G + W̃G + W′
G). (4.31)

The equivalence in (4.30) is due to XG = X′G + X∗G.

Even though we need an upper bound of the RHS term in equation (4.20), the

equation (4.31) generates a lower bound of the equation (4.20) as follows:

h(X∗G)− µh(X∗G + W̃G) + µ
(
h(XG + W̃G)− h(XG + W̃G + W′

G)
)

(4.32)

≥ h(X∗G)− µh(X∗G + W̃G + W′
G) (4.33)

≥ h(X∗G)− µh(X∗G + WG). (4.34)

However, if we can construct the following Markov chain:

X′G → X′G + X∗G + W̃G + W′
G → X′G + X∗G + W̃G, (4.35)

and using Lemma 4.3 again, it turns out that

I(X′G; X′G + X∗G + W̃G + W′
G) ≥ I(X′G; X′G + X∗G + W̃G), (4.36)
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and this inequality leads us to a tight upper bound. Indeed,

I(X′G; X′G + X∗G + W̃G + W′
G) ≥ I(X′G; X′G + X∗G + W̃G) (4.37)

⇐⇒ h(X′G + X∗G + W̃G + W′
G)− h(X∗G + W̃G + W′

G)

≥ h(X′G + X∗G + W̃G)− h(X∗G + W̃G) (4.38)

⇐⇒ h(XG + W̃G + W′
G)− h(X∗G + W̃G + W′

G)

≥ h(XG + W̃G)− h(X∗G + W̃G) (4.39)

⇐⇒ h(X∗G + W̃G)− h(XG + W̃G) + h(XG + W̃G + W′
G)

≥ h(X∗G + W̃G + W′
G). (4.40)

The equivalence in (4.39) is due to XG = X′G + X∗G.

Now using (4.40), the equations (4.19) and (4.20) are upper-bounded as follows:

h(X)− µh(X + W̃G) + µ
(
h(XG + W̃G)− h(XG + W̃G + W′

G)
)

(4.41)

≤ h(X∗G)− µh(X∗G + W̃G) + µ
(
h(XG + W̃G)− h(XG + W̃G + W′

G)
)

(4.42)

≤ h(X∗G)− µh(X∗G + W̃G + W′
G) (4.43)

= h(X∗G)− µh(X∗G + WG), (4.44)

and this is exactly the same as the equation (4.34). Therefore, the following equality

is satisfied:

h(X∗G)− µh(X∗G + W̃G) + µ
(
h(XG + W̃G)− h(XG + W̃G + W′

G)
)

(4.45)

= h(X∗G)− µh(X∗G + W̃G + W′
G), (4.46)

due to (4.34) and (4.44). Now, we will prove that we can actually construct the
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Markov chain (4.35) using the following lemmas.

Lemma 4.4. For independent random vectors Y1 and Y2, the following equality

between moment generating functions (MGFs) is satisfied:

MY1+Y2(S) = MY1(S)MY2(S), (4.47)

where MY (S) = E[eYTS], E[·] is an expectation, and superscript T denotes the

transpose of a vector. For jointly Gaussian random vectors Y1 and Y2, this equality

is a necessary and sufficient condition for the independence between Y1 and Y2.

Lemma 4.5. For independent random vectors Y1 and Y2 given a random vector

Y3, the following equality is satisfied:

MY1+Y2|Y3(S) = MY1|Y3(S)MY2|Y3(S). (4.48)

Lemma 4.6. For a Gaussian random vector X with a mean UX and a covariance

matrix ΣX , the MGF is expressed as

MX(S) = exp

{
STUX +

1

2
STΣXS

}
. (4.49)

In the Markov chain (4.35), since all random vectors are Gaussian (without loss

of generality, they are assumed to have zero means), using Lemma 4.6, the following

moment generating functions are presented in closed-form expression:

MY1|Y3(S) = exp

{
STΣY1Σ

−1
Y3
Y3 +

1

2
ST
(
ΣY1 −ΣY1Σ

−1
Y3

ΣY1

)
S

}
,

MY2|Y3(S) = exp

{
STΣY2Σ

−1
Y3
Y3 +

1

2
ST
(
ΣY2 −ΣY2Σ

−1
Y3

ΣY2

)
S

}
, (4.50)
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where Y1 = X′G, Y2 = X′G + X∗G + W̃G, Y3 = X′G + X∗G + W̃G + W′
G, and

their covariance matrices are represented by ΣY1 , ΣY2 , and ΣY3 , respectively. Since

ΣW̃ + ΣW ′ is a positive definite matrix, there exists the inverse of ΣY3 .

On the other hand, the MGF of Y1 + Y2 given Y3 is represented as

MY1+Y2|Y3(S)

=exp

{
ST (ΣY1 + ΣY2) Σ−1

Y3
Y3 +

1

2
ST
(
ΣY1 −ΣY1Σ

−1
Y3

ΣY1 + ΣY2 −ΣY2Σ
−1
Y3

ΣY2

)
S

}
× exp

{
ST
(
ΣY1 −ΣY2Σ

−1
Y3

ΣY1 + ΣY1 −ΣY1Σ
−1
Y3

ΣY2

)
S
}

=MY1|Y3(S)MY2|Y3(S) exp
{
ST
(
ΣY1 −ΣY2Σ

−1
Y3

ΣY1 + ΣY1 −ΣY1Σ
−1
Y3

ΣY2

)
S
}︸ ︷︷ ︸

(A)

. (4.51)

If (A) in the equation (4.51) is vanished, Y1 and Y2 are independent given Y3, and

the Markov chain (4.35) is obtained. Using Lemma 11, (1) in [53], we define the

covariance matrix ΣW̃ as

ΣW̃ =
(
(ΣX + ΣW )−1 + L

)−1 −ΣX , (4.52)

where L � 0, and 0 denotes an n-by-n zero matrix. The positive semi-definite matrix

L must be chosen to satisfy

ΣX∗ � ΣX , (4.53)

LΣX′ = ΣX′L = 0, (4.54)

where ΣX∗ = (µ − 1)−1ΣW̃ , ΣX′ = ΣX − ΣX∗ , L � 0. Lemma 4.7 will prove that

such a positive semi-definite matrix L exists.
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Lemma 4.7. There exists a positive semi-definite matrix L which satisfies

ΣX∗ � ΣX , LΣX′ = 0, (4.55)

where ΣW̃ =
(
(ΣX + ΣW )−1 + L

)−1−ΣX , ΣX∗ = (µ− 1)−1ΣW̃ , ΣX′ = ΣX −ΣX∗,

and ΣX and ΣW stand for a positive semi-definite matrix and a positive definite

matrix, respectively.

Proof. See Appendix B.1.

The equation (4.52) can be re-written as

ΣX + ΣW̃ =
(
(ΣX + ΣW )−1 + L

)−1
(4.56)

⇐⇒ (ΣX + ΣW̃ )−1 = (ΣX + ΣW )−1 + L. (4.57)

Since LΣX′ = ΣX′L = 0, by multiplying ΣX′ to both sides of the equation (4.57),

(ΣX + ΣW̃ )−1 ΣX′ = (ΣX + ΣW )−1 ΣX′ + LΣX′

= (ΣX + ΣW )−1 ΣX′ , (4.58)

and

ΣX′ (ΣX + ΣW̃ )−1 = ΣX′ (ΣX + ΣW )−1 + ΣX′L

= ΣX′ (ΣX + ΣW )−1 . (4.59)

Since random vectors Y1, Y2, and Y3 are defined as Y1 = X′G, Y2 = X′G+X∗G+W̃G,

and Y3 = X′G + X∗G + W̃G + W′
G, respectively, and they are independent of each

other, their covariance matrices are represented as
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ΣY1 = ΣX′ ,

ΣY2 = ΣX′ + ΣX∗ + ΣW̃ ,

= ΣX + ΣW̃ ,

ΣY3 = ΣX′ + ΣX∗ + ΣW̃ + ΣW ′

= ΣX′ + ΣX∗ + ΣW

= ΣX + ΣW . (4.60)

From the equations (4.58) and (4.60),

ΣY1 −ΣY2Σ
−1
Y3

ΣY1

= ΣX′ − (ΣX′ + ΣX∗ + ΣW̃ ) (ΣX′ + ΣX∗ + ΣW )−1 ΣX′

= (ΣX′ + ΣX∗ + ΣW̃ )
(
(ΣX′ + ΣX∗ + ΣW̃ )−1 ΣX′ − (ΣX′ + ΣX∗ + ΣW )−1 ΣX′

)
= 0, (4.61)

and from the equations (4.59) and (4.60),

ΣY1 −ΣY1Σ
−1
Y3

ΣY2

= ΣX′ −ΣX′ (ΣX′ + ΣX∗ + ΣW )−1 (ΣX′ + ΣX∗ + ΣW̃ )

=
(
ΣX′ (ΣX′ + ΣX∗ + ΣW̃ )−1 −ΣX′ (ΣX′ + ΣX∗ + ΣW )−1) (ΣX′ + ΣX∗ + ΣW̃ )

= 0. (4.62)

The more general problem, originally proved in [32], is now considered in Theorem
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4.4.

Theorem 4.4. For an arbitrary random vector X with a covariance matrix ΣX and

two independent random vectors WG and VG with covariance matrices ΣW and ΣV ,

respectively, there exists a Gaussian random vector X∗G with a covariance matrix ΣX∗

which satisfies the following inequality:

h(X + WG)− µh(X + VG) ≤ h(X∗G + WG)− µh(X∗G + VG), (4.63)

where the constant µ ≥ 1, all random vectors are independent of each other, ΣW

is a positive definite matrix, ΣX � R, ΣX∗ � R, and R is a positive semi-definite

matrix.

Proof. Due to the same reason mentioned in the proof of Theorem 4.3, without loss

of generality, we assume µ > 1 and R is a positive definite matrix. The proof is

generally similar to the proof of Theorem 4.3. Using Lemma 4.3, the inequality

(4.63) can be expressed as

h(X + WG)− µh(X + VG)

≤ h(X + W̃G)− µh(X + VG) + h(WG)− h(W̃G) (4.64)

≤ h(X∗G + W̃G)− µh(X∗G + VG) + h(WG)− h(W̃G) (4.65)

= h(X∗G + WG)− µh(X∗G + VG), (4.66)

where W̃G is chosen to be a Gaussian random vector whose covariance matrix, ΣW̃ ,

satisfies

ΣW̃ � ΣW , (4.67)

ΣW̃ � µ−1ΣV . (4.68)
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The inequality in (4.64) is due to Lemma 4.3, the inequality (4.65) is due to

Theorem 4.3, and the equality (4.66) will be proved using the equality condition in

Lemma 4.3. We will also prove that there exists a Gaussian random vector W̃G

which satisfies the equations (4.67) and (4.68) by proving later Lemma 4.8.

To satisfy the equality in the equation (4.66), the equality condition in Lemma

4.3 must be satisfied, and the following two Markov chains are formed:

1.

X∗G → X∗G + W̃G → X∗G + W̃G + W′
G, (4.69)

2.

X∗G → X∗G + W̃G + W′
G → X∗G + W̃G, (4.70)

where all random vectors are normally distributed, W̃G and W′
G are independent of

each other, WG = W̃G + W′
G, and X∗G is independent of other random vectors.

The Markov chain (4.69) is naturally formed since X∗G, W̃G, and W′
G are inde-

pendent Gaussian random vectors. The validity of the Markov chain (4.70) is proved

using the concept of moment generating function. In the Markov chain (4.70), since

all random vectors are Gaussian (without loss of generality, they are assumed to

have zero means), using Lemma 4.6, the following moment generating functions are

expressed in closed-form:

MY1|Y3(S) = exp

{
STΣY1Σ

−1
Y3

Y3 +
1

2
ST
(
ΣY1 −ΣY1Σ

−1
Y3

ΣY1

)
S

}
,

MY2|Y3(S) = exp

{
STΣY2Σ

−1
Y3
Y3 +

1

2
ST
(
ΣY2 −ΣY2Σ

−1
Y3

ΣY2

)
S

}
, (4.71)
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where Y1 = X∗G, Y2 = X∗G + W̃G, Y3 = X∗G + W̃G + W′
G, and their covariance

matrices are represented by ΣY1 , ΣY2 , and ΣY3 , respectively. Since ΣW is a positive

definite matrix, there always exists the inverse of ΣY3 .

On the other hand, the MGF of Y1 + Y2 given Y3 is represented as

MY1+Y2|Y3(S)

= exp

{
ST (ΣY1 + ΣY2) Σ−1

Y3
Y3

+
1

2
ST
(
ΣY1 −ΣY1Σ

−1
Y3

ΣY1 + ΣY2 −ΣY2Σ
−1
Y3

ΣY2

)
S

}
× exp

{
ST
(
ΣY1 −ΣY2Σ

−1
Y3

ΣY1 + ΣY1 −ΣY1Σ
−1
Y3

ΣY2

)
S
}

= MY1|Y3(S)MY2|Y3(S)

× exp
{
ST
(
ΣY1 −ΣY2Σ

−1
Y3

ΣY1 + ΣY1 −ΣY1Σ
−1
Y3

ΣY2

)
S
}︸ ︷︷ ︸

(B)

. (4.72)

If (B) in the equation (4.72) is vanished, Y1 and Y2 are independent given Y3,

and the Markov chain (4.70) is obtained. Using Lemma 11, (1) in [53], we define a

covariance matrix ΣW̃ as follows:

ΣW̃ =
(
Σ−1
W + K

)−1
, (4.73)

where K � 0, KΣX∗ = ΣX∗K = 0, and 0 denotes an n-by-n zero matrix. Then,

there exists a positive semi-definite matrix K which satisfies

ΣW̃ � µ−1ΣV , (4.74)

KΣX∗ = 0, (4.75)

where ΣX∗ = (µ − 1)−1(ΣV − µΣW̃ ). The existence of matrix K is proved by the
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following lemma.

Lemma 4.8. There always exists a positive semi-definite matrix K which satisfies

ΣW̃ � µ−1ΣV , (4.76)

KΣX∗ = ΣX∗K = 0, (4.77)

where ΣX∗ = (µ− 1)−1(ΣV − µΣW̃ ), and ΣW̃ =
(
Σ−1
W + K

)−1
.

Since ΣW̃ is defined as
(
Σ−1
W + K

)−1
in (4.73), ΣW̃ satisfies

(ΣX∗ + ΣW̃ )−1 = (ΣX∗ + ΣW )−1 + K, (4.78)

based on Lemma 11, (1) in [53].

Since KΣX∗ = ΣX∗K = 0, multiplying ΣX∗ to both sides of the equation (4.78),

the equation (4.78) is expressed as

(ΣX∗ + ΣW̃ )−1 ΣX∗ = (ΣX∗ + ΣW )−1 ΣX∗ + KΣX∗

= (ΣX∗ + ΣW )−1 ΣX∗ , (4.79)

and

ΣX∗ (ΣX∗ + ΣW̃ )−1 = ΣX∗ (ΣX∗ + ΣW )−1 + ΣX∗K

= ΣX∗ (ΣX∗ + ΣW )−1 . (4.80)

Random vectors Y1, Y2, and Y3 are defined as Y1 = X∗G, Y2 = X∗G + W̃G, and

Y3 = X∗G +W̃G +W′
G, respectively, and X∗G, W̃G, and W′

G are independent of each
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other. Therefore, their covariance matrices are represented as

ΣY1 = ΣX∗ ,

ΣY2 = ΣX∗ + ΣW̃ ,

ΣY3 = ΣX∗ + ΣW̃ + ΣW ′

= ΣX∗ + ΣW . (4.81)

From the equations (4.79) and (4.81),

ΣY1 −ΣY2Σ
−1
Y3

ΣY1 = ΣX∗ − (ΣX∗ + ΣW̃ ) (ΣX∗ + ΣW )−1 ΣX∗

= (ΣX∗ + ΣW̃ )
(
(ΣX∗ + ΣW̃ )−1 ΣX∗ − (ΣX∗ + ΣW )−1 ΣX∗

)
= 0, (4.82)

and from the equations (4.80) and (4.81),

ΣY1 −ΣY1Σ
−1
Y3

ΣY2 = ΣX∗ −ΣX∗ (ΣX∗ + ΣW )−1 (ΣX∗ + ΣW̃ )

=
(
ΣX∗ (ΣX∗ + ΣW̃ )−1 −ΣX∗ (ΣX∗ + ΣW )−1) (ΣX∗ + ΣW̃ )

= 0. (4.83)

Since the inverse matrix of ΣW̃ exists, (ΣX∗ + ΣW̃ )−1 also exists.

Therefore, (B) in the equation (4.72) is zero, andMY1+Y2|Y3
(S)=MY1|Y3

(S)MY2|Y3
(S).

It means Y1 and Y3 are independent given Y2, i.e., X∗G and X∗G + W̃G are indepen-

dent given X∗G+W̃G+W′
G, and the Markov chain (4.70) is valid. The equality in the

equation (4.66) is achieved by the above procedure, and the proof is completed.
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4.4 Applications

Since the versatility of the extremal entropy inequality was already proved by

several applications in [32]. However, the original proofs of the extremal entropy

inequality [32] were based on the channel enhancement technique while one of those

applications, the capacity of the vector Gaussian broadcast channel, had been already

proved by the channel enhancement technique in [53]. Even though the extremal en-

tropy inequality was adapted to prove the capacity of the vector Gaussian broadcast

channel in [32], it failed to show a novel perspective since the proof of the extremal

entropy inequality was based on the channel enhancement technique, which was al-

ready used in [53]. On the other hand, based on our proof, the extremal entropy

inequality shows not only its usefulness but also a novel perspective to prove the

capacity of the vector Gaussian broadcast channel.

In this section, we propose an additional application for the extremal entropy

inequality: the secrecy capacity of the Gaussian wire-tap channel, which was derived

by several authors [31], [14], [28], [37], [29]. By adopting the proposed proof of the

extremal entropy inequality, we will show a novel simplified proof of the secrecy

capacity of the Gaussian wire-tap channel.

We consider the channel defined as

YR[t] = X[t] + ZR[t],

YE[t] = X[t] + ZE[t], (4.84)

where ZR[t] and ZE[t] are additive Gaussian noise vectors with zero means and

covariance matrices ΣZR and ΣZE , respectively. The covariance matrices, ΣZR and

ΣZE , are assumed to be positive definite, and random vectors, X[t], ZR[t], and ZE[t],
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are independent of each other.

First, we consider a degraded case, i.e., the covariance matrices ΣZR and ΣZE

present the following partial ordering: ΣZR � ΣZE . According to [54], the secrecy

capacity of the degraded case, CD, is expressed as

CD = max
ΣX�R

{I(X; YR)− I(X; YE)} , (4.85)

The difference between the two mutual information is upper bounded as follows:

I(X; YR)− I(X; YE)

= h(X + ZR)− h(X + ZE)︸ ︷︷ ︸
(C1)

−h(ZR) + h(ZE)

≤ h(X∗G + ZR)− h(X∗G + ZE)︸ ︷︷ ︸
(C2)

−h(ZR) + h(ZE) (4.86)

≤ h(X
(R)
G + ZR)− h(X

(R)
G + ZE)− h(ZR) + h(ZE), (4.87)

where X∗G is a Gaussian random vector with a covariance matrix ΣX∗ which is

obtained in Theorem 4.4, and X
(R)
G denotes a Gaussian random vector with zero

mean and covariance matrix R.

Since the inequality between (C1) and (C2) is a special case of Theorem 4.4 when

µ = 1 and ΣZR � ΣZE , the inequality (4.86) is satisfied. The inequality (4.87) also

holds because the right-hand side of the inequality (4.87) is an increasing function

with respect to a covariance matrix of XG. Therefore, the secrecy capacity of a

degraded vector Gaussian wire-tap channel is expressed as

CD = h(X
(R)
G + ZR)− h(X

(R)
G + ZE)− h(ZR) + h(ZE)

=
1

2
log
|R + ΣZR |
|ΣZR |

− 1

2
log
|R + ΣZE |
|ΣZE |

. (4.88)
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In a general case, i.e., not necessarily a degraded case, the secrecy capacity is

more difficult to be calculated since the secrecy capacity cannot be expressed as in

the equation (4.85). However, as shown in [31], since the secrecy capacity of a general

wire-tap channel can be upper-bounded by the secrecy capacity of a degraded wire-

tap channel, the secrecy capacity of a general wire-tap channel is calculated based

on the channel enhancement technique. In this section, we will also show that the

secrecy capacity of a general wire-tap channel can be upper-bounded by the secrecy

capacity of a degraded wire-tap channel by using the following procedure, which is

completely different from that of reference [31].

Using Theorem 4.4,

I(X; X + ZR)− I(X; X + ZE) = h(X + ZR)− h(X + ZE)− h(ZR) + h(ZE)

≤ h(X∗G + ZR)− h(X∗G + ZE)− h(ZR) + h(ZE)

= I(X∗G; X∗G + ZR)− I(X∗G; X∗G + ZE), (4.89)

where µ = 1. Even though a Gaussian random vector X∗G maximizes the difference of

two mutual information, I(X; X+ZR)−I(X; X+ZE), we cannot consider I(X∗G; X∗G+

ZR)−I(X∗G; X∗G+ZE) as the secrecy capacity. Now, we are going to prove the upper

bound in (4.89) is actually the secrecy capacity of a general case.

Based on the equations (4.64)-(4.66) in the proof of Theorem 4.4, we know

h(X + Z̃R)− h(X + ZE)− h(Z̃R) + h(ZE)

≤ h(X∗G + Z̃R)− h(X∗G + ZE)− h(Z̃R) + h(ZE) (4.90)

= h(X∗G + Z̃R)− h(X∗G + ZE) + h(ZR)− h(Z̃R)− h(ZR) + h(ZE) (4.91)

= h(X∗G + ZR)− h(X∗G + ZE)− h(ZR) + h(ZE), (4.92)
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where Z̃R is a Gaussian random vector with a covariance matrix ΣZ̃R
which satisfies

ΣZ̃R
� ΣZR and ΣZ̃R

� ΣZE . The equation (4.90) denotes the secrecy capacity of a

degraded case with noise Z̃R and ZE, and this secrecy capacity of the degraded case

upper-bounds the secrecy capacity of a general case since decreasing the covariance

matrix of the noise ZR always increases the secrecy capacity. Therefore, the secrecy

capacity of a general Gaussian wire-tap channel is upper-bounded as

CG ≤ CD

= h(X∗G + Z̃R)− h(X∗G + ZE)− h(Z̃R) + h(ZE)

= h(X∗G + ZR)− h(X∗G + ZE)− h(ZR) + h(ZE), (4.93)

where CG denotes the secrecy capacity of a general case.

Since we already know that a general case includes a degraded case and CD ≤ CG,

using the equations (4.90)-(4.92), we conclude

CG = h(X∗G + Z̃R)− h(X∗G + ZE)− h(Z̃R) + h(ZE)

= h(X∗G + ZR)− h(X∗G + ZE)− h(ZR) + h(ZE)

= max
0�ΣX�R

{
1

2
log
|ΣX + ΣZR |
|ΣZR |

− 1

2
log
|ΣX + ΣZE |
|ΣZE |

}
. (4.94)

4.5 Conclusions

The main contributions of this section are summarized as follows. First, an

alternative proof of the extremal entropy inequality was provided. The alternative

proof is simpler, more direct, and more information-theoretic than the original proofs.

The alternative proof is mainly based on the data processing inequality which enables

to by-pass the KKT conditions. Moreover, using properties of positive semi-definite
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matrices, one can skip the step of proving the existence of the optimal solution

which satisfies the KKT conditions, a step which is quite complicated to justify.

Second, an additional important application for the extremal entropy inequality was

suggested. By showing an additional application, we support how useful the extremal

entropy inequality is. Finally, this section proposed a novel method to investigate

several applications such as the capacity of the vector Gaussian broadcast channel,

the secrecy capacity of the Gaussian wire-tap channel, etc. This novel technique is

based on a data processing inequality, and it is very unique and creative in respect

that it presents a novel paradigm for lots of applications such as the capacity of the

vector Gaussian broadcast channel and the secrecy capacity of the Gaussian wire-tap

channel, which were proved commonly based on the channel enhancement technique

[32], [53], [31], and [14].
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5. INFORMATION THEORETIC INEQUALITIES

5.1 Introduction

In the information theory realm, it is well-known that, given the second-order

moment (or variance), a Gaussian density function maximizes the differential entropy.

Similarly, given the second-order moment, the Gaussian density function minimizes

the Fisher information, a result which is referred to as the Cramér-Rao inequality in

the signal processing literature. Surprisingly, the proofs proposed in the literature for

these fundamental results are relatively quite diverse. Since differential entropy or

Fisher information is a functional with respect to a probability density function, the

most natural way to prove these results is by approaching them from the perspective

of functional analysis. However, none of these results have been dealt with fully

within the framework of calculus of variations. In addition, a number of challenging

information theoretic inequalities such as the entropy power inequality (EPI) and

the extremal entropy inequality (EEI) can be dealt with in the proposed framework

of functional analysis. We believe that the proposed variational calculus perspective

presents usefulness for establishing other novel results and extensions for the existing

information theoretic inequalities.

The main theme of this section is to illustrate how some of the tools from calculus

of variations can be used successfully to prove some of the fundamental information

theoretic inequalities, which have been widely used in information theory and other

fields. This novel approach provides alternative proofs for some of the fundamental

information theoretic inequalities and enables establishing extensions of the existing

results. However, more importantly is the fact that the proposed approach suggests

a potential guideline for finding the optimal solution for many other open problems.
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The major results of this section are enumerated as follows. First, using calculus

of variations, the maximizing differential entropy and minimizing Fisher information

theorems are proved under the classical (standard) assumptions found in the liter-

ature as well as under a different set of assumptions. It is shown that a Gaussian

density function maximizes the differential entropy but it minimizes the Fisher infor-

mation, given the second-order moment. It is also shown that a half normal density

function maximizes the differential entropy over the set of non-negative random vari-

ables, given the second-order moment. Furthermore, it is shown that a half normal

density function minimizes the Fisher information over the set of non-negative ran-

dom variables, provided that the regularity condition is ignored and the second-order

moment is given. It is also shown that a chi density function minimizes the Fisher

information over the set of non-negative random variables, under the assumption

that the regularity condition is considered and the second-order moment is given.

Second, a novel proof of the worst additive noise lemma [11] is provided in the

proposed functional framework. Previous proofs of the worst additive noise lemma

were based on Jensen’s inequality or data processing inequality [11], [43]. Unlike the

previous proofs, our approach is purely based on calculus of variations, and both the

scalar and vector versions of the lemma are treated.

Third, EPI is proved based on calculus of variations. We first re-cast EPI into a

functional problem. Then, the necessary optimal solutions for the functional problem

are found using Euler’s equation, which is one of the necessary conditions for the

functional problem. In a scalar version of EPI, the necessary optimal solution, which

is the Gaussian density function, is actually sufficient since only the Gaussian density

function satisfies the Euler’s equation. This is one of the main benefits using calculus

of variations. In a vector version of EPI, Euler’s equation only shows that the

Gaussian density functions are necessarily optimal, since the covariance matrices of
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the optimal solutions are not determined. However, this information alone–i.e., the

optimal solutions are Gaussian–is enough to prove EPI.

Finally, EEI is studied from the perspective of a functional problem. The main

advantage of our proof is that neither the channel enhancement technique and EPI,

used in [32], nor the equality condition of data processing inequality and the technique

based on the moment generating functions, adopted in [41], are required. Using the

unified argument based on calculus of variations, EEI is simply proved.

The rest of this section is organized as follows. Some variational calculus pre-

liminary results and their corollaries are first reviewed in Section 5.2. Maximizing

differential entropy theorem and minimizing Fisher information theorem (Cramér-

Rao inequality) are proved in Section 5.3. In Section 5.4, the worst additive noise

lemma is introduced and proved based on calculus of variations. EPI and EEI are

proved in Sections 5.5 and 5.6, respectively. In Section 5.7, some applications of

addressed information theoretic inequalities are briefly mentioned. Finally, Section

5.8 concludes this section.

5.2 Some Preliminary Calculus of Variations Results

In this section, we will review some of the fundamental results from variational

calculus, and establish the concepts, notations and results that will be used con-

stantly throughout the rest of the section. These results are standard and therefore

will be described briefly without further details. For additional details, the readers

are suggested to consult any book on calculus of variations such as [16], [17], [44].

Definition 5.1. A functional U [fX] is defined as

U [fX] =

∫ b

a

K(x, fX, f
′
X)dx, (5.1)
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which is defined on the set of continuous functions. The function fX is assumed to

have continuous first-order derivative in [a, b] and to satisfy the boundary conditions

fX(a) = AX and fX(b) = BX. The functional K(·, ·, ·) is also assumed to have

continuous first-order and second-order (partial) derivatives with respect to (wrt) all

of its arguments. Also, notation f ′X denotes the first-order derivative wrt x.

Definition 5.2. The increment of a functional U [fX] is defined as

∆U [hX] = U [fX + hX]− U [fX], (5.2)

where the function hX is the increment, and it is independent of the function fX.

Definition 5.3. Suppose that, given fX,

∆U [hX] = ϕ [hX] + ε‖hX‖, (5.3)

where ϕ [hX] is a linear functional, ε goes zero as ‖hX‖ goes zero, and ‖ · ‖ denotes

a norm and it is defined as

‖fX‖ =
n∑
i=0

max
a≤x≤b

∣∣∣f (i)
X (x)

∣∣∣ , (5.4)

where f
(i)
X (x) = (di/dxi)fX(x), and summation upper index n varies depending on

the normed linear space considered (e.g., if the normed linear space consists of all

continuous functions fX(x)–which have continuous first-order derivative–defined on

an interval [a, b], ‖fX‖ = maxa≤x≤b |fX(x)|+ maxa≤x≤b |f ′X(x)|, and in this case n =

1). Then, the functional U [fX] is said to be differentiable, and the major part of the

increment ϕ [hX] is called the (first-order) variation of the functional U [fX] and it is

expressed as δU [fX].
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Based on Definitions 5.1, 5.2, 5.3 and Taylor’s theorem (see [16]), the first-order

and the second-order variations of a functional U [fX] are expressed as

δU [fX] =

∫ [
K ′fX (x, fX, f

′
X)hX(x) +K ′f ′X (x, fX, f

′
X)h′X(x)

]
dx, (5.5)

δ2U [fX] =
1

2

∫ [
K ′′fXfX (x, fX, f

′
X)hX(x)2 + 2K ′′fXf ′X (x, fX, f

′
X)hX(x)h′X(x)

+K ′′f ′Xf ′X (x, fX, f
′
X)h′X(x)

2
]
dx

=
1

2

∫ [
K ′′f ′Xf ′Xh

′
X

2
+

(
K ′′fXfX −

d

dx
K ′′fXf ′X

)
hX

2

]
dx, (5.6)

where K ′fX and K ′f ′X
are the first-order partial derivatives wrt fX and f ′X, respectively,

K ′′fXf ′X
is the second-order partial derivative wrt fX and f ′X, K ′′fXfX is the second-order

partial derivative wrt fX, and K ′′f ′Xf ′X
is the second-order partial derivative wrt f ′X.∗

Theorem 5.1 ([16]). A necessary condition for the functional U [fX] in (5.1) to have

an extremum (or, local optimum) for a given function fX∗ is the following:

δU [fX∗ ] = 0, (5.7)

for all admissible hX. This implies

K ′fX∗ −
d

dx
K ′f ′

X∗
= 0, (5.8)

a result which is known as Euler’s equation. When the functional in (5.1) includes

multiple functions (e.g., fX1
, . . . , fXn) and multiple integrals wrt x1, . . . , xn, then Eu-

∗Throughout the section, the arguments of functionals or functions are omitted unless the
arguments are ambiguous or confusing.
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ler’s equation in (5.8) is changed to

K ′fX∗i
−

n∑
j=1

d

dxj
K ′f ′

X∗i
= 0, i = 1, . . . , n. (5.9)

In particular, when the functional does not depend on the first-order derivative of the

functions fX1
, . . . , fXn, the equation in (5.9) is simplified as

K ′fX∗i
= 0, i = 1, . . . , n. (5.10)

Proof. Details of the proof of this theorem can be found e.g., in [16].

Theorem 5.2 ([16]). A necessary condition for the functional U [fX] in (5.1) to have

a minimum for a given fX∗ is the following:

δ2U [fX∗ ] ≥ 0, (5.11)

for all admissible hX. This implies

K ′′f ′
X∗f

′
X∗
≥ 0. (5.12)

In particular, when the functional in (5.1) does not depend on the first-order deriva-

tive of the function fX, the equation in (5.12) changes into

K ′′fX∗fX∗ ≥ 0. (5.13)

When the functional in (5.1) includes multiple functions (e.g., fX1
, . . . , fXn) and

multiple integrals wrt x1, . . . , xn, then the equation in (5.13) is changed into the
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positive semi-definiteness of the following matrix:


K ′′fX1

fX1
· · · K ′′fX1

fXn

...
. . .

...

K ′′fXnfX1
· · · K ′′fXnfXn

 . (5.14)

Proof. The inequality in (5.13) is easily derived from the inequality in (5.12) since

K ′′f ′Xf ′X
and K ′′fXf ′X

are vanishing in (5.6) when the functional in (5.1) does not depend

on the first-order derivative of the function fX. Additional details of the proof can

be found in [16].

Theorem 5.3 ([16]). Given the functional

U [fX, fY ] =

∫ b

a

K(x, fX, fY , f
′
X, f

′
Y )dx, (5.15)

assume that the admissible functions satisfy the following conditions:

fX(a) = AX, fX(b) = BX, fY (a) = AY , fY (b) = BY ,

k(x, fX, fY ) = 0, (5.16)

L[fX, fY ] =

∫ b

a

L̃(x, fX, fY , f
′
X, f

′
Y )dx = l, (5.17)

where a, b, AX, BX, AY , BY , and l are constants, and U [fX, fY ] is assumed to have

an extremum for fX = fX∗ and fY = fY ∗.

If fX∗ and fY ∗ are not extremals of L[fX, fY ], or k′f
X∗

and k′f
Y ∗

do not vanish

simultaneously at any point in (5.16), there exists a constant λ or a function λ(x)

such that fX∗ and fY ∗ are extremals of the functional

∫ b

a

(
K(x, fX, fY , f

′
X, f

′
Y ) + λL̃(x, fX, fY , f

′
X, f

′
Y ) + λ(x)k(x, fX, fY )

)
dx. (5.18)
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Based on Theorem 5.3, the following corollary is derived.

Corollary 5.1. Given the functional

U [fX, fY ] =

∫ b

a

∫ b

a

K(x, y, fX, fY )dxdy, (5.19)

assume that the admissible functions satisfy the following conditions:

fX(a, a) = AX, fX(b, b) = BX, fY (a) = AY , fY (b) = BY , k(x, y, fX, fY ) = 0,

L[fX, fY ] =

∫ b

a

∫ b

a

L̃(x, y, fX, fY )dxdy = l, (5.20)

where a, b, AX, BX, AY , and BY are constants, fX is a function of both x and y, fY is

a function of y. The functional k(y, fX, fY ) is defined as g(y, fY )−
∫ b
a
k̃(x, y, fX)dx,

where g(y, fY ) is a functional of fY and k̃(x, y, fX) is a functional of fX. And,

U [fX, fY ] is assumed to have an extremum for fX = fX∗ and fY = fY ∗.

Unless fX∗ and fY ∗ are extremals of L[fX, fY ], or k′fX and k′fY simultaneously

vanish at any point of k(x, y, fX, fY ), there exists a constant λ or a function λ(y)

such that fX = fX∗ and fY = fY ∗ is an extremal of the functional

∫ b

a

{(∫ b

a

[
K(x, y, fX, fY )+λL̃(x, y, fX, fY )−λ(y)k(x, y, fX)

]
dx

)
+λ(y)g(y, fY )

}
dy

(5.21)

Proof. This corollary is a simple extension of Theorem 5.3 for multiple integrals.

Therefore, the detailed proof is omitted.

Based on Theorems 5.1, 5.2 and Corollary 5.1, we can derive the following corol-

lary, which will be mainly used throughout this section.
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Corollary 5.2. Based on the functional defined in (5.21), the following necessary

conditions are derived for the optimal solutions fX∗ and fY ∗:

K ′fX∗ (x, y, fX
∗ , fY ∗)− λL̃′fX∗ (x, y, fX∗ , fY ∗)− λ(y)k′fX∗ (x, y, fX

∗) = 0, (5.22)∫
K ′fY ∗ (x, y, fX

∗ , fY ∗)− λL̃′fY ∗ (x, y, fX∗ , fY ∗)dx+ λ(y)g′fY ∗ (y, fY
∗) = 0, (5.23)

and the matrix  G′′fX∗ ,fX∗ G′′fX∗ ,fY ∗

G′′fY ∗ ,fX∗ G′′fY ∗ ,fY ∗

 , (5.24)

where the functional G is defined as

G(x, y, fX∗ , fY ∗) = K(x, y, fX∗ , fY ∗)− λL̃(x, y, fX∗ , fY ∗)− λ(y)k(x, y, fX∗)

+λ(y)g(y, fY ∗)q(x),

and q(x) is a function which satisfies
∫ b
a
q(x)dx = 1, is positive definite.

Proof. The equations in (5.22) and (5.23) are derived from the first-order variation

condition in Theorem 5.1. Namely, the equations in (5.22) and (5.23) are Euler’s

equations for multiple integrals. The positive definiteness of the matrix in (5.24) is

derived from the second-order variation condition in Theorem 5.2. Namely, this is

the same as the one in (5.14). Since the proof is straightforward, the details of the

proof are omitted here.

5.3 MAX Entropy and MIN Fisher Information

This simple but significant result–given the second-order moment (or variance)

of a random variable, a Gaussian density function maximizes the differential entropy
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while it minimizes the Fisher information–is well-known. However, its complete

rigorous proof can hardly be found. In this section, using calculus of variations,

complete rigorous proofs will be provided.

Theorem 5.4 ([9]). Given (the first-order) and the second-order moments of a ran-

dom variable X, differential entropy of the random variable X is maximized when X

is Gaussian, i.e.,

h(X) ≤ h(XG), (5.25)

where h(·) denotes differential entropy, and XG is a Gaussian random variable whose

(first-order) and second-order moments are identical to the one of X.

Proof. In [9], the proof relies on calculus of variations to find the first-order neces-

sary condition, which confirms necessary optimal solutions. However, the first-order

necessary condition shows neither whether the solutions are local minimal or local

maximal nor whether the solutions are locally optimal or globally optimal. There-

fore, an additional technique, the Kullback-Leibler divergence, was used to prove

that the necessary solution globally maximizes the differential entropy. Unlike this

proof, by confirming both the first-order and the second-order necessary conditions,

we show that the optimal solution is a local maximal. Then, we prove that the local

maximal is an actual global maximum achieving solution by showing that the local

maximal is the only solution in the feasible set. Therefore, we can prove Theorem

5.4 purely based on calculus of variations. See Appendix C.1 for the details of the

proof.

Remark 5.1. Even though our proof is performed assuming constraints on the first-

order and the second-order moments, the constraint of the first-order moment is not
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necessary. This will be shown in the proof of Theorem 5.5, which is the vector version

of this theorem.

Similar to Theorem 5.4, given a correlation matrix (or a covariance matrix), a

multi-variate Gaussian density function maximizes the differential entropy as shown

by the following theorem.

Theorem 5.5 ([9], [43]). Given (a mean vector µX) and a correlation matrix ΩX,

a Gaussian random vector maximizes the differential entropy, i.e.,

h(X) ≤ h(XG), (5.26)

where h(·) denotes differential entropy, X is an arbitrary but fixed random vector with

the correlation matrix ΩX, and XG is a Gaussian random vector whose correlation

matrix is identical to the one of X.

Proof. See Appendix C.2.

Remark 5.2. Our proof is different from the ones in [9], [43] in the sense that the

proposed proof relies solely on variational calculus tools. Moreover, we show that the

constraint related to the first-order moment is not necessary.

Remark 5.3. Depending on the existence of the constraint related to the mean vec-

tor, the mean of the optimal Gaussian density function is changed. However, the

constraint on the mean vector is not necessarily required. Details of the proof are

presented in Appendix C.2.
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If we only consider non-negative random variables, a Gaussian random variable

is not the solution which maximizes the differential entropy. The following theorem

shows that a half-normal random variable maximizes the differential entropy over

the set of non-negative random variables.

Theorem 5.6. Given an arbitrary but fixed non-negative random variable X and a

half-normal random variable XHN , whose second moments are identical to those of

X, then the following relationship holds:

h(X) ≤ h(XHN), (5.27)

where h(·) denotes differential entropy.

Proof. See Appendix C.3.

Similar to Theorems 5.4, 5.5, and 5.6, we can find a probability density function,

which minimizes the Fisher information.

Theorem 5.7 (Cramér-Rao Inequality). Given (the first-order moment µX) and

the second-order moment m2
X, a Gaussian random variable XG minimizes Fisher

information, i.e.,

J(X) ≥ J(XG), (5.28)

where X is an arbitrary but fixed random variable with the first-order moment µX and

the second-order moment m2
X. Notation J(·) denotes the Fisher information, and it

is defined as

J(X) =

∫ ( d
dx
fX(x)

fX(x)

)2

fX(x)dx.
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Proof. See Appendix C.4.

Remark 5.4. Even though several versions of the proof of this theorem have been

studied, this is the first rigorous proof of this theorem based on calculus of variations.

Theorem 5.7 can be generalized for random vectors as shown in the following

theorem.

Theorem 5.8 (Cramér-Rao Inequality (a vector version)). Given an arbitrary but

fixed random vector X and a Gaussian random vector XG, whose mean vectors and

correlation matrices are identical, respectively,

J(X) � J(XG), (5.29)

where J(·) denotes Fisher information matrix, and it is defined as

J(X) =


s11 · · · s1n

...
. . .

...

sn1 · · · snn

 , (5.30)

sij =

∫ ( d
dxi
fX(x)

fX(x)

)(
d
dxj
fX(x)

fX(x)

)
fX(x)dx.

Proof. See Appendix C.5.

Similar to Theorem 5.7, a half-normal and a chi density function minimize the

Fisher information over the set of non-negative random variables as shown in the

following two theorems.
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Theorem 5.9. Assume that the regularity condition for Fisher information is ig-

nored. Given an arbitrary but fixed non-negative random variable X and a half-

normal random variable XHN , whose second order moments are identical to those of

X, then the following inequality holds:

J(X) ≥ J(XHN), (5.31)

where J(·) denotes Fisher information. The regularity condition is the following

relationship:

∫
d

dx
f(x)dx = 0. (5.32)

Proof. See Appendix C.6.

Theorem 5.10 ([2]). Assume next that random variables, which satisfy the regularity

condition in (5.32), are considered. Given an arbitrary but fixed non-negative random

variable X and a chi-distributed random variable XC, whose second-order moments

are identical to those of X, then the following inequality holds:

J(X) ≥ J(XC), (5.33)

where J(·) stands for the Fisher information.

Proof. Unlike the proof in [2], by considering the first-order and the second-order

moments instead of variance, we obtain the convex constraint sets. Since Fisher

information is a strictly convex functional with respect to a probability density func-

tion, the variational problem is convex, and hence has an unique solution. The details

of the proof are deferred to Appendix C.7.
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5.4 Worst Additive Noise Lemma

Worst additive noise lemma was introduced and exploited in several references

[11], [43], [23], and it has been widely used in numerous applications. One of the

main applications of the worst additive noise lemma pertains to the calculation of

channel capacity under several different wireless communications scenarios such as

the Gaussian MIMO broadcasting channel, Gaussian MIMO wire-tap channel, etc.

In this section, the worst additive noise lemma for both random variables and random

vectors will be proved solely based on calculus of variations.

Theorem 5.11. Assume X is an arbitrary but fixed random variable and XG is a

Gaussian random variable, whose second-order moment is identical to the one of X,

and it is denoted as m2
X. Given a Gaussian random variable WG, which is independent

of both X and XG, with the second-order moment m2
W , then the following relationship

holds:

I(X +WG;WG) ≥ I(XG +WG;WG), (5.34)

where I(·; ·) denotes mutual information.

Proof. The details of the proof are deferred to Appendix C.8.

Similarly, Theorem 5.11 can be generalized to random vectors as shown in the

following theorem.

Theorem 5.12. Assume X is an arbitrary but fixed random vector and XG is a

Gaussian random vector, whose correlation matrix is identical to the one of X, and

it is denoted as ΩX. Given a Gaussian random vector WG, which is independent of
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both X and XG, with the correlation matrix ΩW , then the following relation holds:

I(X + WG; WG) ≥ I(XG + WG; WG). (5.35)

Proof. Our novel proof is wholly based on calculus of variations arguments. The

summary of our proof is the following. First, we construct a variational problem,

which represents the inequality in (5.35) and required constraints. Second, using

the first-order variation condition, we find necessary optimal solutions, which satisfy

Euler’s equation. Third, using the second-order variation condition, we show that

the optimal solutions are necessarily local minima. Finally, we prove that the local

minimum is also global. The details of the proof are presented to Appendix C.9.

5.5 Entropy Power Inequality

Entropy power inequality (EPI) is a powerful result that found applicability in

determining the capacity of scalar Gaussian broadcast channel [3], the capacity of

Gaussian MIMO broadcast channel [32], [53], the secrecy capacity of Gaussian wire-

tap channel [31], [41], etc., in conjunction with Fano’s inequality and additional

techniques such as the ones proposed in [53], [41]. In this section, we will prove

several versions of EPI using calculus of variations techniques.

Theorem 5.13 (Entropy Power Inequality). For two independent random variables

X and W , whose entropies and second-order moments are finite,

h(aXX + aWW ) ≥ a2
Xh(X) + a2

Wh(W ), (5.36)

where a2
X +a2

W = 1. The equality holds if and only if X and W are Gaussian random

variables.
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Proof. See Appendix C.10.

Theorem 5.14 (Entropy Power Inequality). For two independent random vectors X

and W, with finite entropies and correlation matrices, the following relation holds:

h(aXX + aWW) ≥ a2
Xh(X) + a2

Wh(W), (5.37)

where a2
X +a2

W = 1. The equality holds if and only if X and W are Gaussian random

vectors and their covariance matrices ΣX and ΣW are identical.

Proof. See Appendix C.11.

5.6 Extremal Entropy Inequality

Extremal entropy inequality, motivated by multi-terminal information theoretic

problems such as the vector Gaussian broadcast channel and the distributed source

coding with a single quadratic distortion constraint, was proposed by Liu and Viswanath

[32]. It is an entropy power inequality which includes a covariance constraint. Be-

cause of the covariance constraint, the extremal entropy inequality could not be

proved directly by using the classical EPI. Therefore, new techniques ([53], [41]) were

adopted in the proofs reported in [32], [41]. In this section, the extremal entropy

inequality will be proved using calculus of variations.

Theorem 5.15. Assume that µ is an arbitrary but fixed constant, where µ ≥ 1,

and r2 is a positive constant. A Gaussian random variable WG with variance σ2
W is

assumed to be independent of an arbitrary random variable X, with variance σ2
X ≤ r2.

Then, there exists a Gaussian random variable X∗G with variance σ2
X∗ which satisfies

the following inequality:

h(X)− µh(X +WG) ≤ h(X∗G)− µh(X∗G +WG), (5.38)
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where σ2
X∗ ≤ r2.

Proof. See Appendix C.12.

Theorem 5.15 can be generalized for random vectors as shown in the following

two theorems.

Theorem 5.16. Assume that µ is an arbitrary but fixed constant, where µ ≥ 1, and

Σ is a positive semi-definite matrix. A Gaussian random vector WG with positive

definite covariance matrix ΣW is assumed to be independent of an arbitrary ran-

dom vector X whose covariance matrix ΣX satisfies ΣX � Σ. Then, there exists a

Gaussian random vector X∗G with covariance matrix ΣX∗ which satisfies the following

inequality:

h(X)− µh(X + WG) ≤ h(X∗G)− µh(X∗G + WG), (5.39)

where ΣX∗ � Σ.

Proof. See Appendix C.13.

Remark 5.5. As the extremal entropy inequality only shows the existence of neces-

sary optimal solutions in [32] and [41], the current proof also shows the existence of

necessary optimal solutions. In addition, the proposed proof only exploits calculus of

variations tools. Namely, this proof does not adopt neither the channel enhancement

technique and EPI in [32] nor the EPI and data processing inequality in [41].

Theorem 5.17. Assume that µ is an arbitrary but fixed constant, with µ ≥ 1, and

Σ is a positive semi-definite matrix. Independent Gaussian random vectors WG

with covariance matrix ΣW and VG with covariance matrix ΣV are assumed to be

independent of an arbitrary random vector X with covariance matrix ΣX � Σ. Both
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covariance matrices ΣW and ΣV are assumed to be positive definite. Then, there

exists a Gaussian random vector X∗G with covariance matrix ΣX∗ which satisfies the

following inequality:

h(X + WG)− µh(X + VG) ≤ h(X∗G + WG)− µh(X∗G + VG), (5.40)

where ΣX∗ � Σ.

Proof. See Appendix C.14.

Remark 5.6. The proposed proof does not borrow any techniques from [32]. Even

though the proposed proof adopts the equality condition for the data processing in-

equality, a result which was also exploited in [41], the proposed proof is different from

the one in [41] in the following sense. First, the proposed proof uses the equality

condition of the data processing inequality only once while the proof in [41] used it

twice. The proof in [32] exploited the channel enhancement technique twice, which is

equivalent to using the equality condition in the data processing inequality. Second,

the proposed proof does not use the moment generating function technique unlike the

proof proposed in [41]; instead the current proof directly exploits a property of the

conditional mutual information pertaining to a Markov chain.

5.7 Applications

The importance of information theoretic inequalities such as EPI, extremal en-

tropy inequality, etc., were already proved by several applications. For example,

minimum Fisher information theorem (Cramér-Rao inequality) and maximum en-

tropy theorem were used for developing min-max robust estimation techniques [49],

[4], [48]. EPI was first adapted to prove a lower bound on the capacity of additive

noise channels by Shannon [45]. Also, EPI was exploited for the scalar Gaussian
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broadcast channel [3], the scalar quadratic Gaussian CEO problem [38], etc. The ex-

tremal entropy inequality can be used in the vector Gaussian broadcast channel [32],

the distributed source coding with a single quadratic distortion constraint problem

[32], and the Gaussian wire-tap channel [41], and so on. Even though these applica-

tions were traditionally addressed using the above mentioned information theoretic

inequalities, we can directly approach these applications by means of variational

calculus techniques.

5.8 Conclusions

In this section, we derived several fundamental information theoretic inequalities

using a functional analysis framework. The main benefit for employing calculus of

variations for proving information theoretic inequalities is the fact that the global

optimal solution is obtained from the necessary conditions for optimality without

additional calculations. The summary of our contributions is the following. First,

the entropy maximizing theorem and Fisher information minimizing theorem were

derived under different assumptions. Second, the worst additive noise lemma was

proved from the perspective of a functional problem. Third, the entropy power

inequality and the extremal entropy inequality were derived using calculus of vari-

ations. Finally, applications that could be addressed based on the proposed results

were briefly mentioned.
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6. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

In this dissertation, three major topics were studied. First, three relationships be-

tween information theory and statistical estimation theory–the equivalence between

Stein’s identity and De Bruijn’s identity and two different extensions of De Bruijn’s

identity–were disclosed. Several applications based on the proposed relationships

support the importance of the proposed results. Second, the Gaussian assumption

was researched. This assumption was studied from two different perspectives: infor-

mation theory and estimation theory. Based on these results, the min-max optimal

approach was researched, and optimal training sequences for the channel and the

frequency offset were proposed as an application of these results. Third, extremal

entropy inequality was studied. By by-passing major techniques, the channel en-

hancement and KKT conditions, which were used in the previous proofs [32], this

thesis presented a novel paradigm not only for the extremal entropy inequality but

also for other applications such as the capacity of the vector Gaussian broadcast chan-

nel and the secrecy capacity of the Gaussian wire-tap channel, which were proved

commonly established based on the channel enhancement technique. Finally, several

fundamental information theoretic inequalities were proved using a functional anal-

ysis framework. The entropy maximizing theorem, Fisher information minimizing

theorem, entropy power inequality, and extremal entropy inequality were established

in the unified framework offered by calculus of variations. The major advantage for

using calculus of variations for proving the information theoretic inequalities is the

fact that the sufficient optimal solution is obtained from the necessary conditions for

optimality without performing additional calculations.

Numerous possible future research directions could be considered. Many results
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introduced in Sections 2 and 4 are mainly theoretical. There are many areas where

the proposed results could be further adopted. Numerous applications of Stein’s

identity could be translated into the realm of De Bruijn identity. In particular,

the proposed results may be useful for developing robust estimation and detection

schemes in the presence of uncertainties in the distribution of observations. In ad-

dition, the novel approaches, proposed in Sections 4 and 5, can be adapted to many

other open problems in information theory. For example, extending EPI or EEI to

the case of positive-valued random variables or random variables whose values are re-

stricted to an interval represent very challenging problems that could be successfully

attacked within the proposed functional analysis framework by taking advantage of

calculus of variations techniques. Similar extensions might be developed for the worst

additive noise lemma.
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APPENDIX A

STEIN’S IDENTITY AND DE BRUIJN’S IDENTITY

A.1 A Proof of Theorem 2.4

Since Theorem 2.5 is considered as a special case of Theorem 2.4, we only show

the proof of Theorem 2.4 in this section.

Proof. [Theorem 2.4]

Prior to proving Theorem 2.4, we first introduce the following relationships in

Lemma A.1, which are required for the proof.

Lemma A.1. For random variables W , X and Y defined in equation (2.1) when

Gaussian random variable W has zero mean and unit variance and random variable

X has finite second-order moment, the following identities are satisfied:

i)
d

da
log fY (y; a)

∣∣∣∣∣
y=u+

√
aw

=
1

2a2

(
EX [(y −X)2fY |X(y|X; a)]

fY (y; a)
− a
) ∣∣∣∣∣

y=u+
√
aw

,

ii)
d

da
log fY (u+

√
aw; a) =

1

2a2

(
EX[(u−X)(y−X)fY |X(y|X; a)]

fY (y; a)
− a
)∣∣∣∣∣

y=u+
√
aw

,

iii)
d

dy
log fY (y; a)

∣∣∣∣∣
y=u+

√
aw

= −EX [(y −X)fY |X(y|X; a)]

afY (y; a)

∣∣∣∣∣
y=u+

√
aw

,

iv)
w

2
√
a

d

dy
log fY (y; a)

∣∣∣∣∣
y=u+

√
aw

=
d

da
log fY (u+

√
aw; a)−

[
d

da
log fY (y; a)

]
y=u+

√
aw

,

where f(y)|y=a denotes limy→a f(y). In some cases, to avoid confusion, [f(y)]y=a is

used instead of f(y)|y=a.

Proof. Since fY |X(y|x; a) is normally distributed with mean x and variance a, the
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following relationships hold:

fY |X(y|x; a) =
1√
2πa

exp

(
−(y − x)2

2a

)
, (A.1)

d

dy
fY |X(y|x; a) = −1

a
(y − x)fY |X(y|x; a), (A.2)

d

da
fY |X(y|x; a) =

(
− 1

2a
+

1

2a2
(y − x)2

)
fY |X(y|x; a), (A.3)

d

da
fY |X(u+

√
aw|x; a) = fY |X(u+

√
aw|x; a)

×
(
− 1

2a
+

1

2a2
(u+

√
aw − x)(u− x)

)
. (A.4)

Equation (A.4) is true since

d

da
fY |X(u+

√
aw|x; a)

=
d

da

[
1√
2πa

exp

(
− 1

2a
(u+

√
aw − x)2

)]
=− 1

2a

(
1√
2πa

exp

(
− 1

2a
(u+

√
aw − x)2

))
+

(
1√
2πa

exp

(
− 1

2a
(u+

√
aw − x)2

))
×

(
−

2(u+
√
aw − x)( w

2
√
a
)a− (u+

√
aw − x)2

2a2

)
=− 1

2a
fY |X(u+

√
aw|x; a)

+fY |X(u+
√
aw|x; a)

(
−(u+

√
aw − x)(u− x)

2a2

)
.

Based on equation (A.3), i) is proved by following these calculations:

d

da
log fY (y; a)

∣∣∣∣∣
y=u+

√
aw

=
EX
[
d
da
fY |X(y|X; a)

]
fY (y; a)

∣∣∣∣∣
y=u+

√
aw

=
1

2a2

(
EX
[
(y −X)2fY |X(y|X; a)

]
fY (y; a)

− a

)∣∣∣∣∣
y=u+

√
aw

.(A.5)
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Second, equation ii) is proved by the following calculations:

d

da
log fY (u+

√
aw; a)

=
EX

[
d
da
fY |X(u+

√
aw|X; a)

]
fY (u+

√
aw; a)

=
EX

[
− 1

2a
fY |X(u+

√
aw|X; a)

]
fY (u+

√
aw; a)

+
EX

[
1

2a2 (u+
√
aw−X)(u−X)fY |X(u+

√
aw|X; a)

]
fY (u+

√
aw; a)

(A.6)

=
−afY (u+

√
aw; a)

2a2fY (u+
√
aw; a)

+
EX [(u+

√
aw−X)(u−X)fY |X(u+

√
aw|X; a)]

2a2fY (u+
√
aw; a)

=
1

2a2

(
EX[(u+

√
aw−X)(u−X)fY |X(u+

√
aw|X; a)]

fY (u+
√
aw; a)

−a
)

=
1

2a2

(
EX[(y−X)(u−X)fY |X(y|X; a)]

fY (y; a)
− a
)∣∣∣∣∣

y=u+
√
aw

. (A.7)

The equality in (A.6) is due to equation (A.4).

Third, equation iii) is proved based on equation (A.2) as follows:

d

dy
log fY (y; a)

∣∣∣∣∣
y=u+

√
aw

=
EX
[
d
dy
fY |X(y|X; a)

]
fY (y; a)

∣∣∣∣∣
y=u+

√
aw

=
−EX

[
(y −X)fY |X(y|X; a)

]
afY (y; a)

∣∣∣∣∣
y=u+

√
aw

. (A.8)

The equality in (A.8) is due to equation (A.2).

Equation iv) is trivial since equation (A.8) multiplied by w/2
√
a is equal to

equation (A.7) minus equation (A.5), and the proof is completed.
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Like the proof of Theorem 2.3 in [6], the equivalence is proved by showing that

each identity is derived from the other one, using Lemma A.1.

First, in the generalized Stein’s identity, all necessary functions are defined as

follows:

r(y; a) = − d

dy
log fY (y; a), k(y) = 1, t(y; a) = −

d
dy
fY (y; a)

fY (y; a)
, and ν = 0.(A.9)

Then, De Bruijn’s identity is derived from the generalized Stein’s identity as

follows.

1

2
EY
[
d

dY
r(Y ; a)

]
=

1

2
EY [r(Y ; a)t(Y ; a)] (generalized Stein’s identity) (A.10)

=−1

2

∫ ∞
−∞

d

dy
EX
[
fY |X(y|X; a)

]
r(y; a)dy

=−EX
[∫ ∞
−∞

(y −X)

2a
fY |X(y|X; a)

d

dy
log fY (y; a)dy

]
=−

∫ ∞

−∞

fX(u)

∫ ∞

−∞

(y−u)

2a
fY |X(y|u; a)

d

dy
log fY (y; a)dy︸ ︷︷ ︸

(A)

du. (A.11)

The interchangeability among integrals and derivatives are due to the dominated

convergence theorem and Fubini’s theorem.
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Changing the variable as y = u+
√
aw, equation (A) is expressed as

∫ ∞

−∞

(y − u)

2a
fY |X(y|u; a)

d

dy
log fY (y; a)dy

=

∫ ∞

−∞

√
aw

2a
fY |X(u+

√
aw|u; a)

[
d

dy
logfY (y; a)

]
y=u+

√
aw

√
adw

=

∫ ∞

−∞

fY |X(u+
√
aw|u; a)

(
d

da
log fY (u+

√
aw; a)

−
[
d

da
log fY (y; a)

]
y=u+

√
aw

)
√
adw (A.12)

=

∫ ∞

−∞

1√
2π

exp

(
−1

2
w2

)
d

da
log fY (u+

√
aw; a)dw

−
∫ ∞

−∞

1√
2π

exp

(
−1

2
w2

)[
d

da
log fY (y; a)

]
y=u+

√
aw

dw

=
d

da

∫ ∞

−∞

1√
2π

exp

(
−w

2

2

)
log fY (u+

√
aw; a)dw

−
∫ ∞

−∞

1√
2π

exp

(
−w

2

2

)[
d

da
log fY (y; a)

]
y=u+

√
aw

dw. (A.13)

The equality in equation (A.12) is due to Lemma A.1, iv).
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Re-defining the variable w = (y − u)/
√
a, equation (A.11) is expressed as

−
∫ ∞

−∞

fX(u)

(∫ ∞

−∞

(y−u)

2a
fY |X(y|u; a)

d

dy
logfY(y; a)dy

)
du

=

∫ ∞

−∞

fX(u)

(∫ ∞

−∞

fY |X(y|u; a)
d

da
log fY (y; a)dy

− d

da

∫ ∞

−∞

fY |X(y|u; a) log fY (y; a)dy

)
du (A.14)

=

∫ ∞

−∞

fY (y; a)
d

da
log fY (y; a)dy

− d

da

∫ ∞
−∞

fY (y; a) log fY (y; a)dy (A.15)

=

∫ ∞

−∞

d

da
fY (y; a)dy − d

da

∫ ∞

−∞

fY (y; a) log fY (y; a)dy

=
d

da

∫ ∞

−∞

fY (y; a)dy − d

da

∫ ∞

−∞

fY (y; a) log fY (y; a)dy

=− d

da

∫ ∞

−∞

fY (y; a) log fY (y; a)dy

=
d

da
h(Y ).

The equality in (A.14) is due to the change of variable, and the equality in (A.15) is

because of the independence of fX(u) with respect to a.

Since the left-hand side of equation (A.10) is equal to J(Y )/2, we obtain De

Bruijn’s identity:

1

2
J(Y ) =

d

da
h(Y ),

from the generalized Stein’s identity.

Second, the generalized Stein’s identity is derived from De Bruijn’s identity. We
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define the function

g(y; a) =

∫ y

0

r(u; a)du+ q(a), (A.16)

where q(a) = − log fY (y; a)|y=0. Here, q(a) is always real-valued due to the following:

fY (y; a)
∣∣∣
y=0

= lim
y→0

EX [fY |X(y|X; a)]

= EX
[

lim
y→0

1√
2πa

exp

(
− 1

2a
(y −X)2

)]
= EX

[
1√
2πa

exp

(
− 1

2a
X2

)]
≤ 1√

2πa
. (A.17)

The last inequality is due to exp(− 1
2a
X2) ≤ 1. In addition, equation (A.17) is always

greater than zero unless fX(x) is identical to zero or a is infinite. However, neither

case holds. Therefore, q(a) is always mapping to a real-valued number.

104



Then, the expectation of g(y; a) is expressed as

EY [g(Y ; a)]

=

∫ ∞
−∞

fY (y; a)

(∫ y

0

r(u; a)du+ q(a)

)
dy

=

∫ ∞
0

∫ y

0

fY (y; a)r(u; a)dudy

+

∫ 0

−∞

∫ y

0

fY (y; a)r(u; a)dudy + q(a)

=

∫ ∞
0

∫ y

0

fY (y; a)r(u; a)dudy

−
∫ 0

−∞

∫ 0

y

fY (y; a)r(u; a)dudy + q(a)

=

∫ ∞
0

(∫ ∞
u

fY (y; a)dy

)
r(u; a)du

−
∫ 0

−∞

(∫ u

−∞
fY (y; a)dy

)
r(u; a)du+ q(a)

= EX
[∫ ∞

0

(∫ ∞
u

fY |X(y|X; a)dy

)
r(u; a)du

]
−EX

[∫ 0

−∞

(∫ u

−∞
fY |X(y|X; a)dy

)
r(u; a)du

]
+ q(a)

= EX
[∫ ∞

0

(
1− Φ

(
u−X√

a

))
r(u; a)du

]
−EX

[∫ 0

−∞
Φ

(
u−X√

a

)
r(u; a)du

]
+ q(a), (A.18)

where Φ(·) denotes the standard normal cumulative density function.

We differentiate both sides of equation (A.18) with respect to parameter a as
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follows.

d

da
EY [g(Y ; a)] =

d

da
EX
[∫ ∞

0

(
1− Φ

(
u−X√

a

))
r(u; a)du

]
−EX

[∫ 0

−∞
Φ

(
u−X√

a

)
r(u; a)du

]
+

d

da
q(a)

= −EX
[∫ ∞

0

(
d

da
Φ

(
u−X√

a

))
r(u; a)du

]
+EX

[∫ ∞
0

(
1− Φ

(
u−X√

a

))
d

da
r(u; a)du

]
−EX

[∫ 0

−∞

(
d

da
Φ

(
u−X√

a

))
r(u; a)du

]
−EX

[∫ 0

−∞
Φ

(
u−X√

a

)
d

da
r(u; a)du

]
+

d

da
q(a)

= −EX
[∫ ∞
−∞

d

da
Φ

(
u−X√

a

)
r(u; a)du

]
+EX

[∫ ∞
0

(
1− Φ

(
u−X√

a

))
d

da
r(u; a)du

]
︸ ︷︷ ︸

(B)

−EX
[∫ 0

−∞
Φ

(
u−X√

a

)
d

da
r(u; a)du

]
︸ ︷︷ ︸

(C)

+
d

da
q(a). (A.19)
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Equations (B) and (C) are further processed as

EX
[∫ ∞

0

(
1− Φ

(
u−X√

a

))
d

da
r(u; a)du

]
−EX

[∫ 0

−∞
Φ

(
u−X√

a

)
d

da
r(u; a)du

]
= EX

[∫ ∞
0

∫ ∞
u

fY |X(y|X; a)dy
d

da
r(u; a)du

]
−EX

[∫ 0

−∞

∫ u

−∞
fY |X(y|X; a)dy

d

da
r(u; a)du

]
= EX

[∫ ∞
0

∫ y

0

d

da
r(u; a)dufY |X(y|X; a)dy

]
−EX

[∫ 0

−∞

∫ 0

y

d

da
r(u; a)dufY |X(y|X; a)dy

]
= EX

[∫ ∞
0

∫ y

0

d

da
r(u; a)dufY |X(y|X; a)dy

]
+EX

[∫ 0

−∞

∫ y

0

d

da
r(u; a)dufY |X(y|X; a)dy

]
= EX

[∫ ∞
−∞

∫ y

0

d

da
r(u; a)dufY |X(y|X; a)dy

]
. (A.20)

The interchangeability among integrals is due to Fubini’s theorem and dominated

convergence theorem.

Due to equation (A.16),

d

da
g(y; a) =

d

da

∫ y

0

r(u; a)du+
d

da
q(a),
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equation (A.20) is further simplified as follows:

EX
[∫ ∞
−∞

∫ y

0

d

da
r(u; a)dufY |X(y|X; a)dy

]
=

∫ ∞
−∞

(
d

da

∫ y

0

r(u; a)du

)
fY (y; a)dy

=

∫ ∞
−∞

fY (y; a)
d

da
g(y; a)dy − d

da
q(a)

= −
∫ ∞
−∞

fY (y; a)
d

da
log fY (y; a)dy − d

da
q(a) (A.21)

= − d

da
q(a).

The equality in (A.21) holds because g(y; a) = − log fY (y; a).

Therefore, the last three terms in equation (A.19) vanish, and equation (A.19) is

expressed as

−EX
[∫ ∞
−∞

d

da
Φ

(
u−X√

a

)
r(u; a)du

]
=EX

[∫ ∞
−∞

(u−X)

2a
√
a

[
d

dy
Φ (y)

]
y=u−X√

a

r(u; a)du

]

=EX
[∫ ∞
−∞

(u−X)

2a
√
a
φ

(
u−X√

a

)
r(u; a)du

]
=

1

2

∫ ∞
−∞
EX
[

(u−X)

a

1√
2πa

exp

(
−(u−X)2

2a

)]
r(u; a)du

=−1

2

∫ ∞
−∞
EX
[
d

dy
fY |X(y|X; a)

]
r(u; a)du

=−1

2

∫ ∞
−∞

d
du
fY (u; a)

fY (u; a)
r(u; a)fY (u; a)du

=
1

2
EY [t(Y ; a)r(Y ; a)] ,

where φ(·) denotes the standard normal probability density function, and t(y; a) =

−( d
dy
fY (y; a))/fY (y; a).
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Since

d

da
h(Y ) =

d

da
EY [g(Y ; a)]

=
1

2
EY [t(Y ; a)r(Y ; a)] ,

and

1

2
J(Y ) =

1

2
EY
[
d

dY
r(Y ; a)

]
,

from De Bruijn’s identity, we derive the generalized Stein’s identity:

d

da
h(Y ) =

1

2
J(Y )

⇐⇒ EY [t(Y ; a)r(Y ; a)] = EY
[
d

dY
r(Y ; a)

]
,

where ⇐⇒ denotes equivalence between before and after the notation.

A.2 A Proof of Theorem 2.6

Based on equation (2.16), Theorem 2.6 is proved next using integration by parts

and the dominated convergence theorem.

Proof. [Theorem 2.6]

d

da
h(Y ) =−

∫ ∞

−∞

(1 + log fY (y; a))
d

da
fY (y; a)dy

=−
∫ ∞

−∞

d

da
fY (y; a)dy −

∫ ∞

−∞

log fY (y; a)
d

da
fY (y; a)dy (A.22)

=−
∫ ∞

−∞

log fY (y; a)
d

da
EX [fY |X(y|X; a)] dy

=−
∫ ∞

−∞

log fY (y; a)EX

[
d

da
fY |X(y|X; a)

]
dy. (A.23)
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The interchangeability between integral and derivative is due to assumptions (2.17a)

and (2.17b).

Using equation (2.16), equation (A.23) is expressed as

−
∫ ∞

−∞

log fY (y; a)EX

[
d

da
fY |X(y|X; a)

]
dy

=
1

2a

∫ ∞

−∞

log fY (y; a)EX

[
d

dy
((y −X)fY |X(y|X; a))

]
dy

=
1

2a

∫ ∞

−∞

log fY (y; a)
d

dy
EX [(y −X)fY |X(y|X; a)] dy (A.24)

=
1

2a
log fY (y; a)EX [(y −X)fY |X(y|X; a)]

∣∣∣∣∣
∞

y=−∞

− 1

2a

∫ ∞

−∞

d

dy
log fY (y; a)EX [(y −X)fY |X(y|X; a)] dy (A.25)

=− 1

2a

∫ ∞

−∞

d

dy
log fY (y; a)EX [(y −X)fY |X(y|X; a)] dy (A.26)

=− 1

2a

∫ ∞

−∞

d

dy
fY (y; a)EX

[
(y −X)

fY |X(y|X; a)

fY (y; a)

]
dy, (A.27)

where f(y)|a2
y=a1

denotes lim
y→a2

f(y)− lim
y→a1

f(y).

The first term in equation (A.25) vanishes due to the following relationship:

log fY (y; a)EX
[
(y −X)fY |X(y|X; a)

] ∣∣∣∞
y=−∞

= yfY (y; a) log fY (y; a)
∣∣∣∞
y=−∞

−EX
[
XfY |X(y|X; a)

]
log fY (y; a)

∣∣∣∞
y=−∞

. (A.28)

The first term in (A.28) is expressed as

yfY (y; a) log fY (y; a)
∣∣∣∞
y=−∞

= 2y
√
fY (y; a)

√
fY (y; a) log

√
fY (y; a)

∣∣∣∞
y=−∞

. (A.29)
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Due to assumptions (2.17d), y
√
fY (y; a) converges to zero as y goes to ±∞. Since

x log x becomes zero as x goes to zero and fY (y; a) converges to zero as y goes to

±∞,
√
fY (y; a) log

√
fY (y; a) in (A.29) also becomes zero as y approaches ±∞.

Similarly, the second term in (A.28) is re-written as

EX [XfY |X(y|X; a)] log fY (y; a)
∣∣∣∞
y=−∞

=
EX [XfY |X(y|X; a)]√

fY (y; a)︸ ︷︷ ︸
(a1)

2
√
fY (y; a) log

√
fY (y; a)︸ ︷︷ ︸

(a2)

∣∣∣∣∣
∞

y=−∞

. (A.30)

Since factor (a2) tends to zero as y approaches ±∞, and factor (a1) is bounded due

to assumption (2.17d), the right-hand side of equation (A.30) approaches zero as y

goes to ±∞. Therefore, the first term in equation (A.25) is zero, and the equality in

(A.26) is verified.

Again, using integration by parts, equation (A.27) is expressed as

− 1

2a

∫ ∞
−∞

d

dy
fY (y; a)EX

[
(y −X)

fY |X(y|X; a)

fY (y; a)

]
dy

=− 1

2a
fY (y; a)EX

[
(y −X)

fY |X(y|X; a)

fY (y; a)

] ∣∣∣∣∣
∞

y=−∞

+
1

2a

∫ ∞
−∞

fY (y; a)
d

dy
EX
[
(y −X)

fY |X(y|X; a)

fY (y; a)

]
dy (A.31)

=
1

2a

∫ ∞
−∞

fY (y; a)
d

dy
EX
[
(y −X)

fY |X(y|X; a)

fY (y; a)

]
dy (A.32)

=
1

2a

∫ ∞
−∞

fY (y; a)
d

dy

(
y − EX

[
X
fY |X(y|X; a)

fY (y; a)

])
dy

=
1

2a

{
1− EY

[
d

dY
EX|Y [X|Y ]

]}
. (A.33)

The equality in (A.32) is verified by the following procedure: the first part of
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equation (A.31) is re-written as

− 1

2a
fY (y; a)EX

[
(y −X)

fY |X(y|X; a)

fY (y; a)

] ∣∣∣∣∣
∞

y=−∞

= − 1

2a

(
yfY (y; a)− EX

[
XfY |X(y|X; a)

]) ∣∣∣∣∣
∞

y=−∞

(A.34)

= 0.

Due to assumptions (2.17c) and (2.17d), both terms yfY (y; a) and EX [XfY |X(y|X; a)]

become zero as y goes to ±∞, and equation (A.34) is zero.

Therefore,

d

da
h(Y ) =

1

2a

{
1− EY

[
d

dY
EX|Y [X|Y ]

]}
,

and the proof is completed.

A.3 A Proof of Theorem 2.7

Proof. [Theorem 2.7]

From equation (A.22), we know

d

da
h(Y )

=−
∫ ∞

−∞

d

da
fY (y; a)dy −

∫ ∞

−∞

log fY (y; a)
d

da
fY (y; a)dy

=−
∫ ∞

−∞

log fY (y; a)
d

da
fY (y; a)dy.
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Therefore, the second derivative of differential entropy is expressed as

d2

da2
h(Y )=−

∫ ∞

−∞

d

da
log fY (y; a)

d

da
fY (y; a)dy −

∫ ∞

−∞

log fY (y; a)
d2

da2
fY (y; a)dy,

=−Ja(Y )−
∫ ∞

−∞

log fY (y; a)
d2

da2
fY (y; a)dy. (A.35)

The last equality is due to the definition of Fisher information with respect to pa-

rameter a in (2.7).

From equation (2.16), we derive an additional relationship between the second

order differentials with respect to y and a:

d2

da2
fY |X(y|x; a) =

d

da

(
− 1

2a

d

dy

(
(y − x)fY |X(y|x; a)

))
=

1

2a2

d

dy

(
(y − x)fY |X(y|x; a)

)
+

1

4a2

d

dy

(
(y − x)

(
d

dy

(
(y − x)fY |X(y|x; a)

)))
.

Since

d2

dy2

(
(y − x)2fY |X(y|x; a)

)
=
d2

dy2
[(y − x) ((y − x)fY |X(y|x; a))]

=
d

dy
((y−x)fY|X(y|x; a))+

d

dy

(
(y−x)

d

dy
((y−x)fY|X(y|x; a))

)
,

we obtain the following relationship:

d2

da2
fY |X(y|x; a) =

1

4a2

d2

dy2

(
(y − x)2fY |X(y|x; a)

)
+

1

4a2

d

dy

(
(y − x)fY |X(y|x; a)

)
. (A.36)
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Taking the expected value of both sides of (A.36),

d2

da2
fY (y; a)=

1

4a2

{
d2

dy2
EX
[
(y −X)2fY |X(y|X; a)

]
+
d

dy
EX
[
(y −X)fY |X(y|X; a)

]}
. (A.37)

After substituting (d2fY (y; a)/da2), from equation (A.37), into equation (A.35),

the second term of (A.35) takes the expression:

−
∫ ∞

−∞

log fY (y; a)
d2

da2
fY (y; a)dy

=− 1

4a2

∫ ∞

−∞

log fY (y; a)
d2

dy2
EX

[
(y −X)2fY |X(y|X; a)

]
dy︸ ︷︷ ︸

(D)

− 1

4a2

∫ ∞

−∞

log fY (y; a)
d

dy
EX[(y −X)fY |X(y|X; a)] dy︸ ︷︷ ︸
(E)

.

Term (E) is exactly of the same form as (A.24), and therefore,

− 1

4a2

∫ ∞

−∞

log fY (y; a)
d

dy
EX [(y −X)fY |X(y|X; a)] dy

=− 1

4a2
EY

[
d

dY
EX|Y [Y −X|Y ]

]
=− 1

2a

d

da
h(Y ). (A.38)
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Term (D) is further simplified by the following procedures:

− 1

4a2

∫ ∞

−∞

log fY (y; a)
d2

dy2
EX[(y−X)2fY |X(y|X; a)] dy

=− 1

4a2
log fY (y; a)

d

dy
EX[(y −X)2fY |X(y|X; a)]

∣∣∣∣∣
∞

y=−∞

+
1

4a2

∫ ∞

−∞

d

dy
logfY (y; a)

d

dy
EX[(y−X)2fY|X(y|X; a)] dy.

(A.39)
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The first part of (A.39) is expressed as

− 1

4a2
log fY (y; a)

d

dy
EX

[
(y−X)2fY |X(y|X; a)

]∣∣∣∣∣
∞

y=−∞

=− 1

4a2
log fY (y; a)

(
EX[2(y −X)fY |X(y|X; a)]

+EX

[
(y2 − 2Xy +X2)

d

dy
fY |X(y|X; a)

])∣∣∣∣∣
∞

y=−∞

=− 1

4a2
log fY (y; a)

(
2yfY (y; a)− 2EX[XfY |X(y|X; a)]

+y2 d

dy
fY (y; a)− 2yEX

[
X
d

dy
fY |X(y|X; a)

]
+EX

[
X2 d

dy
fY |X(y|X; a)

])∣∣∣∣∣
∞

y=−∞

=− 1

2a2

√
fY (y; a) log

√
fY (y; a)︸ ︷︷ ︸

(b1)

(
2 y
√
fY (y; a)︸ ︷︷ ︸
(b2)

+EX

[
X2

d
dy
fY |X(y|X; a)√
fY (y; a)︸ ︷︷ ︸
(b3)

])

− 1

a2

4
√
fY (y; a) log 4

√
fY (y; a)︸ ︷︷ ︸

(b1)

×

(
y2 4
√
fY (y; a)︸ ︷︷ ︸
(b2)

EX

[
d
dy
fY |X(y|X; a)√
fY (y; a)

]
︸ ︷︷ ︸

(b3)

−2 y 4
√
fY (y; a)︸ ︷︷ ︸
(b2)

EX

[
X

d
dy
fY |X(y|X; a)√
fY (y; a)︸ ︷︷ ︸
(b3)

])

+
1

a2

√
fY (y; a) log

√
fY (y; a)︸ ︷︷ ︸

(b1)

EX[XfY |X(y|X; a)]√
fY (y; a)︸ ︷︷ ︸

(b4)

∣∣∣∣∣
∞

y=−∞

.

Since x log x becomes zero as x approaches zero and fY (y; a) converges to zero as y

goes to ±∞, factor (b1) is zero as y → ±∞. Due to assumptions (2.19c) and (2.19d),

term (b2) becomes zero as y → ±∞ and term (b3) is bounded. Also, factor (b4) must

be bounded due to assumption (2.19e). Therefore, as y → ±∞, the first part of
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equation (A.39) vanishes.

Then, equation (A.39) is further processed using integration by parts as follows:

1

4a2

∫ ∞

−∞

d

dy
logfY(y; a)

d

dy
EX[(y−X)2fY |X(y|X; a)] dy

=
1

4a2

d

dy
logfY(y; a)EX[(y−X)2fY |X(y|X; a)]

∣∣∣∞
y=−∞

− 1

4a2

∫ ∞

−∞

d2

dy2
logfY(y; a)EX[(y−X)2fY |X(y|X; a)] dy. (A.40)

Again, the first part of equation (A.40) is re-written as

1

4a2

d

dy
log fY (y; a)EX[(y−X)2fY |X(y|X; a)]

∣∣∣∞
y=−∞

=
1

4a2
EX

[
d
dy
fY |X(y|X; a)√
fY (y; a)

]
EX

[
(y−X)2

fY |X(y|X; a)√
fY (y; a)

]∣∣∣∣∣
∞

y=−∞

=
1

4a2
EX

[
d
dy
fY |X(y|X; a)√
fY (y; a)

]
︸ ︷︷ ︸

(c1)

y2
√
fY (y; a)︸ ︷︷ ︸
(c2)

−2
1

4a2
EX

[
d
dy
fY |X(y|X; a)√
fY (y; a)

]
︸ ︷︷ ︸

(c1)

y 4
√
fY (y; a)︸ ︷︷ ︸
(c2)

EX

[
X
fY |X(y|X; a)

(fY (y; a))3/4

]
︸ ︷︷ ︸

(c3)

+
1

4a2
EX

[
d
dy
fY |X(y|X; a)√
fY (y; a)

]
︸ ︷︷ ︸

(c1)

4
√
fY (y; a)︸ ︷︷ ︸

(c2)

EX

[
X2fY |X(y|X; a)

(fY (y; a))3/4

]
︸ ︷︷ ︸

(c3)

∣∣∣∣∣
∞

y=−∞

. (A.41)

Factors (c1) and (c3) are bounded due to assumptions (2.19c) and (2.19e), and, by

assumption (2.19d), factor (c2) approaches zero as y → ±∞. Then, equation (A.40)
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is expressed as

1

4a2

∫ ∞

−∞

d

dy
log fY (y; a)

d

dy
EX

[
(y−X)2fY |X(y|X; a)

]
dy

=− 1

4a2

∫ ∞

−∞

d2

dy2
log fY (y; a)EX

[
(y−X)2fY |X(y|X; a)

]
dy. (A.42)

Using equations (A.38) and (A.42), equation (A.35) is expressed as

d2

da2
h(Y ) =−Ja(Y )−

∫ ∞
−∞

log fY (y; a)
d2

da2
fY (y; a)dy

=−Ja(Y )− 1

2a

d

da
h(Y )− 1

4a2
EY
[
d

dY
SY (Y )EX|Y

[
(Y −X)2|Y

]]
=−Ja(Y )− 1

4a2
EY
[
d

dY
EX|Y [(Y −X)|Y ]

]
− 1

4a2
EY
[
d

dY
SY (Y )EX|Y

[
(Y −X)2|Y

]]
,

and the proof is completed.

A.4 A proof of Lemma 2.1

Proof. [Lemma 2.1]

Before we prove this lemma, we first introduce two lemmas which are necessary

to prove Lemma 2.1.

Lemma A.2. Given the channel Y = X +
√
aW in (2.1), the following identity

holds:

d

da
J(Y ) = −EY

[(
d

dY
SY (Y )

)2
]
, (A.43)

where X is an arbitrary but fixed random variable with a finite second-order moment,

and W is a Gaussian random variable with zero mean and unit variance.
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Proof. In Theorems 2.4, 2.5, we showed the equivalence among De Bruijn, generalized

Stein, and heat equation identities for specific conditions. Therefore, using one of the

identities, this lemma can be proved. In this proof, Theorem 2.3 (the heat equation

identity) will be used with g(y) = SY (y)2. Unlike the definition of g(y) in Theorem

2.3, g(y) is dependent on the parameter a. Therefore, we use the notation g(y; a)

instead of g(y). Since J(Y ) = E[SY (Y )2], the right-hand side of (A.43) is expressed

as

d

da
J(Y )=

d

da
EY

[
SY (Y )2

]
=

∫ ∞

−∞

d

da
fY (y; a)g(y; a)dy + EY

[
d

da
g(Y ; a)

]
. (A.44)

By the heat equation identity, the first term in equation (A.44) is expressed as

∫ ∞
−∞

d

da
fY (y; a)g(y; a)dy =

1

2
EY
[
d2

dY 2
g(Y ; a)

]
.

Using integration by parts, the second term in equation (A.44) is expressed as

EY

[
d

da
g(Y ; a)

]
=
1

2
EY

[
d2

dY 2
g(Y ; a)

]
−EY

[(
d

dY
SY (Y )

)2
]

+ 2EY

[
SY (Y )2 d

dY
SY (Y )

]
.

Therefore, equation (A.44) takes the form:

∫ ∞
−∞

d

da
fY (y; a)g(y; a)dy + EY

[
d

da
g(Y ; a)

]
= −EY

[(
d

dY
SY (Y )

)2
]

+ EY
[
d2

dY 2
g(Y ; a)

]
+ 2EY

[
SY (Y )2 d

dY
SY (Y )

]
︸ ︷︷ ︸

(F )

.

Performing an integration by parts, the term (F ) is shown to be equal to zero, and
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the proof is completed.

Remark A.1. A vector version of this lemma was reported in [42]. The reasons why

we introduce both this lemma and its proof are not only to present alternative proofs,

but also to explain the usefulness of our novel results. For example, Lemma A.2 was

proved based on the heat equation identity, which is a novel approach to prove this

lemma. At the same time, this lemma can also be alternatively proved using Theorem

2.7 or Corollary 2.4.

Lemma A.3 (Fisher Information Inequality). Consider the channel Y = X +
√
aW

in (2.1), where the random variable X is assumed to have an arbitrary distribution

but a fixed second-order moment and W is normally distributed with zero mean and

unit variance. Then, the following inequality is always satisfied:

1

J(Y )
≥ 1

J(X)
+

1

J(
√
aW )

,

where the equality holds if and only if X is normally distributed.

Proof. Using Lemma A.2 (equivalently, Theorem 2.7 or Corollary 2.4 can be used),

− d

da
J(Y ) = EY

[(
d

dY
SY (Y )

)2
]

≥ EY
[(

d

dY
SY (Y )

)]2

= J(Y )2. (A.45)

Equation (A.45) is expressed as

− d

da
J(Y ) ≥ J(Y )2,
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and it is equivalent to

−
d
da
J(Y )

J(Y )2
≥ 1 ⇐⇒ d

da

(
1

J(Y )

)
≥ 1. (A.46)

Since inequality (A.46) is satisfied for any a,

∫ a

0

d

dt

(
1

J(Y )

)
dt ≥

∫ a

0

1dt,

⇐⇒ 1

J(Y )
− 1

J(X)
≥ a,

⇐⇒ 1

J(Y )
≥ 1

J(X)
+

1

J(
√
aW )

. (A.47)

Since W is normally distributed with unit variance, a = 1/J(
√
aW ), and the last

equivalence holds. The last equation in (A.47) denotes the Fisher information in-

equality, and the proof is completed.

Remark A.2. This proof uses neither the convolutional inequality, the data pro-

cessing inequality, nor the EPI, unlike previous proofs. The proof only relies on De

Bruijn’s identity, Stein’s identity, or the heat equation identity. Namely, Theorem

2.1, 2.2, 2.3, or 2.7 is the only adopted result, and Theorems 2.4, 2.5 ensure Theorem

2.1, 2.2, 2.3, or 2.7 can be equivalently adopted to the proof. Even though Lemma

A.2 was used in this proof, Lemma A.2 itself was also proved using one of the above

identities. Therefore, this proof only uses our results.

Now, based on Lemma A.3, the proof of Lemma 2.1 is straightforward. From
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Lemma A.3,

1

J(Y )
≥ 1

J(X)
+

1

J(
√
aW )

⇐⇒ J(Y ) ≤ J(X)J(
√
aW )

J(X) + J(
√
aW )

. (A.48)

Since X and W are independent, and W is normally distributed,

EX [J(Y |X)] =

∫ ∞

−∞

fX(x)

∫ ∞

−∞

(
d

dx
log fY |X(y|x; a)

)2

fY |X(y|x; a)dydx

=

∫ ∞

−∞

fX(x)

∫ ∞

−∞

1

a2
(y − x)2 fY |X(y|x; a)dydx

=
1

a
(A.49)

=J(
√
aW ).

The equality in (A.49) is due to EY |X [(Y −X)2|X = x] = a.

For a Gaussian random variable W ,

J(Y ) =
1

a
− 1

a2
V ar(X|Y ), (A.50)

where V ar(X|Y ) stands for EX,Y [(X − EX|Y [X|Y ])2] ([18], [43]).

Substituting V ar(X|Y ) and EX [J(Y |X)] for J(Y ) and J(
√
aW ), respectively,
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equation (A.48) is expressed as

J(Y ) ≤ J(X)J(
√
aW )

J(X) + J(
√
aW )

,

⇐⇒ 1

a
− 1

a2
V ar(X|Y ) ≤ J(X)J(

√
aW )

J(X) + J(
√
aW )

,

⇐⇒ V ar(X|Y ) ≥ 1

J(X) + J(
√
aW )

,

⇐⇒ V ar(X|Y ) ≥ 1

J(X) + EX [J(Y |X)]
.

Since V ar(X|Y ) is equal to the minimum mean square error,

MSE(X̂) ≥ MMSE(X̂)

= V ar(X|Y )

≥ 1

J(X) + EX [J(Y |X)]
,

where X̂ denotes a Bayesian estimator, and the obtained inequality is the Bayesian

Cramér-Rao lower bound (BCRLB).

A.5 A Proof of Lemma 2.2

Proof. [Lemma 2.2]

When a is zero, the right-hand side of (2.22) is zero due to the following relations:

N(X|Y ) =
1

2πe
exp(2h(X|Y ))

=
1

2πe
exp(2(h(X) + h(Y |X)− h(Y )))

=
1

2πe
exp(2(h(X) + h(

√
aW )− h(Y )))

=
N(X)N(

√
aW )

N(Y )

=
aN(X)N(W )

N(X +
√
aW )

.
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Therefore, when a goes to zero,

lim
a→0

N(X|Y ) = lim
a→0

aN(X)N(W )

N(X +
√
aW )

= 0. (A.51)

The equality is due to the fact that lim
a→0

N(X +
√
aW ) = N(X). Since the left-hand

side of (2.22) is always greater than or equal to zero, the inequality in (2.22) is

satisfied when a is zero.

Without loss of generality, from now on, we assume that a > 0.

Since h(X|Y ) = h(X) + h(Y |X)− h(Y ), by Theorem 2.1 (De Bruijn’s identity),

d

da
N(X|Y ) =

d

da

(
1

2πe
exp (2h(X|Y ))

)
= 2N(X|Y )

{
d

da
h(X) +

d

da
h(Y |X)− d

da
h(Y )

}
= 2N(X|Y )

{
1

2a
− 1

2
J(Y )

}
(A.52)

= N(X|Y )
1

a2
V ar(X|Y ). (A.53)

Since h(X) is independent of a and h(Y |X) = h(
√
aW ), (d/da)h(X) is zero, and

(d/da)h(Y |X) = 1/2a. Therefore, the equality in (A.52) is satisfied. The equality in

(A.53) is due to equation (A.50).

Based on equation (A.50),

d

da
V ar(X|Y ) =

d

da

[
a− a2J(Y )

]
=

d

da

[
a− a2

(
2
d

da
h(Y )

)]
. (A.54)

The equality in (A.54) is due to Theorem 2.1.
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Using Corollary 2.4 and equation (A.50), equation (A.54) is further processed as

d

da

[
a− a2

(
2
d

da
h(Y )

)]
= 1− 2a

(
2
d

da
h(Y )

)
+ a2

(
−2

d2

da2
h(Y )

)
= 1− 2aJ(Y ) + a2EY

[(
d

dY
SY (Y )

)2
]

(A.55)

≥ 1− 2aJ(Y ) + a2J(Y )2 (A.56)

= (1− aJ(Y ))2

=
1

a2
V ar(X|Y )2.

The equality in (A.55) is due to Theorem 2.1 and Corollary 2.4, and the inequality

in (A.56) holds because

EY

[(
d

dY
SY (Y )

)2
]
≥

(
EY
[
d

dY
SY (Y )

])2

= J(Y )2.

Therefore,

d

da
V ar(X|Y ) ≥ 1

a2
V ar(X|Y )2. (A.57)

Using equations (A.53) and (A.57), we obtain the following inequality:

d

da
logN(X|Y ) ≤ d

da
log V ar(X|Y ).

Since N(XG|YG) = V ar(XG|YG), where XG and YG denote Gaussian random vari-

ables whose variances are equal to X and Y , respectively, the following inequality
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also holds:

d

da
(logN(XG|YG)− logN(X|Y )) ≥ d

da
(log V ar(XG|YG)− log V ar(X|Y )) .(A.58)

By performing an integration, from 0 to a, of both sides in (A.58), equation

(A.58) is expressed as

∫ a

0

d

dt
(logNt(XG|YG)− logNt(X|Y )) dt

≥
∫ a

0

d

dt
(log V art(XG|YG)− log V art(X|Y )) dt

⇔ logNt(XG|YG)− logNt(X|Y )

∣∣∣∣∣
a

t=0

≥ log V art(XG|YG)− log V art(X|Y )

∣∣∣∣∣
a

t=0

⇔ logNa(XG|YG)− logNa(X|Y )

− lim
t→0

(logNt(XG|YG)− logNt(X|Y ))

≥ log V ara(XG|YG)− log V ara(X|Y )

− lim
t→0

(log V art(X|Y )− log V art(XG|YG)) (A.59)

⇔ logNa(X|Y ) ≤ log V ara(X|Y ), (A.60)

where⇔ stands for equivalence between before and after the notation, subscript t or

a denotes that a function depends on a parameter t or a, respectively (the subscript

is only used when there may be a confusion between an actual parameter variable

and a dummy variable).
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The equivalence in (A.60) is due to the following: Na(XG|YG) = V ara(XG|YG),

lim
t→0

(logNt(XG|YG)− logNt(X|Y ))

= lim
t→0

log
Nt(XG|YG)

Nt(X|Y )

= lim
t→0

log

(
N(XG)Nt(YG|XG)

Nt(YG)

/
N(X)Nt(Y |X)

Nt(Y )

)

= lim
t→0

log

(
N(XG)N(

√
tW )

N(XG +
√
tW )

/
N(X)N(

√
tW )

N(X +
√
tW )

)

= lim
t→0

log

(
N(XG)N(X +

√
tW )

N(X)N(XG +
√
tW )

)
= log

(
N(XG)N(X)

N(X)N(XG)

)
= 0, (A.61)

and

lim
t→0

(log V art(XG|YG)− log V art(X|Y ))

=lim
t→0

(
log
(
t−t2J(XG+

√
tW )

)
−log

(
t−t2J(X+

√
tW )

))
(A.62)

=lim
t→0

(
log
(

1−tJ(XG+
√
tW )

)
−log

(
1−tJ(X+

√
tW )

))
=log(1)− log(1)

=0,

where W is a Gaussian random variable. The equality in (A.62) is due to equation

(A.50).

Since log x is an increasing function with respect to x, equation (A.60) is equiv-
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alent to

N(X|Y ) ≤ V ar(X|Y ),

and the proof is completed.

A.6 A Proof of Lemma 2.3

Proof. [Lemma 2.3]

When a = 0, both sides of the inequality in (2.25) are zero, and the inequality in

(2.25) is satisfied. Therefore, without loss of generality, we assume that a > 0.

d

da
logN(X|Y ) =

1

N(X|Y )

d

da
N(X|Y )

=
1

a2
V ar(X|Y ) (A.63)

≥ 1

a2

1

J(X) + J(
√
aW )

(A.64)

=
d

da
log

(
1

J(X) + J(
√
aW )

)
,

where W is a Gaussian random variable with zero mean and unit variance. The

equality in (A.63) is due to equation (A.53), the inequality in (A.64) is because of

BCRLB.

Since N(XG|YG) is equal to 1/(J(XG)+J(
√
aW )), where XG and YG are Gaussian

random variables whose variances are equal to X and Y , respectively, the following

inequality is satisfied:

d

da
(logN(XG|YG)− logN(X|Y )))

≤ d

da

(
log

1

J(XG) + J(
√
aW )

− log
1

J(X) + J(
√
aW )

)
. (A.65)
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By integrating both sides in (A.65), equation (A.65) is equivalent to the following:

∫
a

0

d

dt
(logNt(XG|YG)− logNt(X|Y ))) dt

≤
∫

a

0

d

dt

(
log

1

J(XG)+J(
√
tW)
−log

1

J(X)+J(
√
tW)

)
dt

⇔ logNa(XG|YG)− logNa(X|Y )− lim
t→0

(logNt(XG|YG)− logNt(X|Y ))

≤ log
1

J(XG) + J(
√
aW )

− log
1

J(X) + J(
√
aW )

− lim
t→0

(
log

1

J(XG)+J(
√
tW )

− log
1

J(X)+J(
√
tW )

)
⇔ logN(X|Y ) ≥ log

1

J(X) + J(
√
aW )

, (A.66)

where ⇔ denotes the equivalence between before and after the notation, and sub-

script a or t of a function means dependency of the function with respect to a or t,

respectively. The equivalence in (A.66) is due to the following: N(XG|YG) is equal

to 1/(J(XG) + J(
√
aW )), and

lim
t→0

(
log

1

J(XG) + J(
√
tW )

− log
1

J(X) + J(
√
tW )

)
= lim

t→0

(
log

t

tJ(XG) + J(W )
− log

t

tJ(X) + J(W )

)
= lim

t→0
log

tJ(X) + J(W )

tJ(XG) + J(W )

= log
J(W )

J(W )

= 0, (A.67)

and

lim
t→0

(logNt(XG|YG)− logNt(X|Y )) = 0
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due to equation (A.61).

Since log x is a increasing function with respect to x, the inequality in (A.66) is

equivalent to

N(X|Y ) ≥ 1

J(X) + J(
√
aW )

. (A.68)

Since we have already proved that N(X|Y ) is a lower bound for any Bayesian estima-

tor in Lemma 2.2, the inequality in (A.68) means that the lower bound N(X|Y ), the

left-hand side of (A.68), is tighter than BCRLB, the right-hand side of (A.68).

A.7 A Proof of Lemma 2.4 (Costa’s EPI)

Proof. [Lemma 2.4]

The proof will be conducted in two different ways.

1. Instead of proving equation (2.26), we are going to prove the inequality in

(2.27).

Using De Bruijn’s identity,

d2

da2
N(Y ) = 2

d

da
N(Y )

d

da
h(Y ) + 2N(Y )

d2

da2
h(Y ),

= N(Y )

(
J(Y )2 + 2

d2

da2
h(Y )

)
,

where Y = X +
√
aW . Since N(Y ) ≥ 0, proving the inequality in (2.27) is

equivalent to proving the following inequality:

J(Y )2 + 2
d2

da2
h(Y ) ≤ 0. (A.69)
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Using Theorem 2.7, the inequality in (A.69) is expressed as

J(Y )2 − 2Ja(Y )− 1

2a2
EY

[
d

dY
EX|Y [Y −X|Y ]

]
− 1

2a2
EY

[
d

dY
SY (Y )EX|Y

[
(Y −X)2|Y

]]
≤ 0. (A.70)

By Corollary 2.4, equation (A.70) is equivalent to

J(Y )2−2Ja(Y )− 1

2a2
EY

[
d

dY
EX|Y [Y −X|Y ]

]
− 1

2a2
EY

[
d

dY
SY (Y )EX|Y

[
(Y −X)2|Y

]]
=J(Y )2 − EY

[(
d

dY
SY (Y )

)2
]

=−EY

[(
J(Y ) +

d

dY
SY (Y )

)2
]

(A.71)

≤0.

Since J(Y ) = −E[(d/dY )SY (Y )] and E[SY (Y )] = 0, the equality holds in

(A.71). Therefore,

d2

da2
N(Y ) = −EY

[(
J(Y ) +

d

dY
SY (Y )

)2
]
,

≤ 0,

and the proof is completed.

Remark A.3. This proof mostly follows the proof in [52]. However, by using

Theorem 2.7 to prove Costa’s EPI, we show that Costa’s EPI can be proved by

De Bruijn-like identity without using the Fisher information inequality.

2. In the second proof, the inequality (2.27) is proved by a slightly different
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method.

First, define a function l(a) as follows:

l(a) = − J(X)

1 + aJ(X)
+ J(Y ), (A.72)

where Y = X +
√
aW , X is an arbitrary but fixed random variable, W is a

Gaussian random variable, and X and W are independent of each other.

For arbitrary non-negative real-valued a, l(a) ≤ 0, and it is proved by the

following procedure; using Lemma A.2 (Theorem 2.7 or Corollary 2.4 can be

used instead of Lemma A.2),

− d

da
J(Y ) = EY

[(
d

dY
SY (Y )

)2
]

≥ EY
[(

d

dY
SY (Y )

)]2

= J(Y )2. (A.73)

Equation (A.73) is equivalent to the following inequalities:

−
d
da
J(Y )

J(Y )2
≥ 1

⇐⇒ d

da

(
1

J(Y )

)
≥ 1. (A.74)
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Since inequality (A.74) is satisfied for arbitrary non-negative real-valued a,

∫ a

0

d

dt

(
1

J(Y )

)
dt ≥

∫ a

0

1dt

⇐⇒ 1

J(Y )
− 1

J(X)
≥ a

⇐⇒ J(Y ) ≤ J(X)

1 + aJ(X)
, (A.75)

and therefore, equation (A.72) is always non-positive.

Since J(Y ) converges to J(X) as a approaches zero, l(0) = 0, and the following

inequality holds for an arbitrary but fixed random variable X and arbitrary

small non-negative real-valued ε:

l(ε)− l(0) = − J(X)

1 + εJ(X)
+ J(X +

√
εW ) (A.76)

≤ 0. (A.77)

Therefore,

d

dε
l(ε)
∣∣∣
ε=0

≤ 0, (A.78)

for an arbitrary but fixed random variable X.

Since the inequality in (A.78) holds for an arbitrary random variable X, we

define X as X̃ +
√
aW̃ , where X̃ is an arbitrary but fixed random variable, W̃

is a Gaussian random variable whose variance is identical to the variance of

W , and X̃, W̃ , and W are independent of one another. Then, the inequality
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in (A.78) is equivalent to the following inequalities:

0 ≥

(
J(X̃ +

√
aW̃ )

1 + εJ(X̃ +
√
aW̃ )

)2 ∣∣∣∣∣
ε=0

+
d

dε
J(X̃ +

√
aW̃ +

√
εW )

∣∣∣∣∣
ε=0

⇔ 0 ≥

(
J(X̃ +

√
aW̃ )

1 + εJ(X̃ +
√
aW̃ )

)2 ∣∣∣∣∣
ε=0

+
d

dε
J(X̃ +

√
a+ εW̃ )

∣∣∣∣∣
ε=0

(A.79)

⇔ 0 ≥

(
J(X̃ +

√
aW̃ )

1 + εJ(X̃ +
√
aW̃ )

)2 ∣∣∣∣∣
ε=0

+
d

da
J(X̃ +

√
a+ εW̃ )

∣∣∣∣∣
ε=0

(A.80)

⇔ 0 ≥ J(X̃ +
√
aW̃ )2 +

d

da
J(X̃ +

√
aW̃ ), (A.81)

where ⇔ denotes the equivalence between before and after the notation. The

equivalence in (A.79) is due to the fact that J(X̃ +
√
aW̃ +

√
εW ) = J(X̃ +

√
a+ εW̃ ) for independent Gaussian random variables W and W̃ whose vari-

ances are identical to each other. The inequality in (A.80) holds due to the

following procedure: first, the Fisher information J(X̃+
√
a+ εW̃ ) is expressed

as

J(X̃ +
√
a+ εW̃ )

=

∫ ∞

−∞

d

dy
fY (y; a, ε)

d

dy
log fY (y; a, ε)dy

=

∫ ∞

−∞

d

dy
EX̃

[
fY|X̃(y|X̃;a,ε)

] d
dy

logEX̃

[
fY|X̃(y|X̃;a,ε)

]
dy

=

∫ ∞

−∞

d

dy
EX̃

[
1√

2π(a+ε)
exp

(
− 1

2(a+ε)
(y−X̃)2

)]

× d

dy
logEX̃

[
1√

2π(a+ε)
exp

(
− 1

2(a+ε)
(y−X̃)2

)]
dy, (A.82)

where Y = X̃ +
√
a+ εW̃ . Since fY |X̃(y|x̃; a, ε) is a Gaussian density function

with mean x̃ and variance a + ε, the equality in (A.82) holds. In equation
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(A.82), a and ε are symmetrically included in the equation, and therefore,

d

dε
J(X̃ +

√
a+ εW̃ ) =

d

da
J(X̃ +

√
a+ εW̃ ).

Since random variable X̃ is arbitrary and a is an arbitrary non-negative real-

valued number in equation (A.81), the proof is completed.

A.8 Derivation of Equation (2.16)

Given the channel model (2.1), random variables X and W are independent of

each other, a is a deterministic parameter, and random variable Y is the summation of

X and
√
aW . Therefore, between the two probability density functions fY |X(y|x; a)

and fW (w), there exists a relationship that can be established as follows.

fY |X(y|x; a) =
1√
a
fW (w)

∣∣∣∣∣
w= y−x√

a

=
1√
a
fW

(
y − x√

a

)
.

Therefore,

d

dy
fY |X(y|x; a) =

1√
a

(
d

dy
fW

(
y − x√

a

))
=

1√
a

(
1√
a

d

dw
fW (w)

) ∣∣∣∣∣
w= y−x√

a

,
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and

d

da
fY |X(y|x; a)

=
d

da

(
1√
a
fW

(
y − x√

a

))
= − 1

2a
√
a
fW

(
y − x√

a

)
+

1√
a

d

da
fW

(
y − x√

a

)

= − 1

2a
√
a
fW

(
y − x√

a

)
+

1√
a

− 1

2a
√
a

(y − x)
d

dw
fW (w)

∣∣∣∣∣
w= y−x√

a

 . (A.83)

Equation (A.83) is further processed as

− 1

2a
√
a
fW

(
y−x√
a

)
+

1√
a

− 1

2a
√
a

(y−x)
d

dw
fW(w)

∣∣∣∣∣
w=

y−x√
a


=− 1

2a

 1√
a
fW

(
y−x√
a

)
+
y−x√
a

 1√
a

d

dw
fW(w)

∣∣∣∣∣
w=

y−x√
a


=− 1

2a

[(
d

dy
(y−x)

)
fY |X(y|x; a)+(y−x)

d

dy
fY |X(y|x; a)

]
=− 1

2a

d

dy
[(y − x)fY |X(y|x; a)] ,

and therefore,

d

da
fY |X(y|x; a) = − 1

2a

d

dy

[
(y − x)fY |X(y|x; a)

]
.

A.9 Explanation of Assumptions (2.17) in Corollaries 2.2, 2.3

1. Corollary 2.2

Given the channel Y = X +
√
aW in (2.1), W is assumed to be exponentially

distributed with unit parameter, i.e., its pdf fW (w) is defined as exp(−w)U(w),
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where U(·) denotes a unit step function. Since random variables X and W are

independent of each other, conditional density function fY |X(y|x; a) is expressed

as

fY |X(y|x; a) =
1√
a

exp

(
y − x√

a

)
U(y − x), (A.84)

and its derivatives with respect to y and a are respectively denoted as

d

dy
fY |X(y|x; a) =− 1√

a
fY |X(y|x; a)+

1√
a

exp

(
y − x√

a

)
δ(y − x), (A.85)

d

da
fY |X(y|x; a) =− 1

2a
fY |X(y|x; a) +

(y − x)

2a
√
a
fY |X(y|x; a), (A.86)

where δ(·) is a Dirac delta function.

The absolute values of equations (A.85), (A.86) are bounded as

∣∣∣∣ ddyfY |X(y|x; a)

∣∣∣∣ =

∣∣∣∣− 1√
a
fY |X(y|x; a) +

1√
a

exp

(
y − x√

a

)
δ(y − x)

∣∣∣∣
≤

∣∣∣∣ 1√
a
fY |X(y|x; a)

∣∣∣∣+

∣∣∣∣ 1√
a

exp

(
y − x√

a

)
δ(y − x)

∣∣∣∣
≤ 1

a
+

1√
a

exp

(
y − x√

a

)
δ(y − x), (A.87)

and

∣∣∣∣ ddafY |X(y|x; a)

∣∣∣∣ =

∣∣∣∣− 1

2a
fY |X(y|x; a) +

(y − x)

2a
√
a
fY |X(y|x; a)

∣∣∣∣
≤

∣∣∣∣ 1

2a
fY |X(y|x; a)

∣∣∣∣+

∣∣∣∣(y − x)

2a
√
a
fY |X(y|x; a)

∣∣∣∣ (A.88)

≤ 1

2a
√
a

+ E, (A.89)

where E = maxy[(y − x)fY |X(y|x; a)]. Since fY |X(y|x; a) is exponentially de-
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creasing as y approaches ∞, the real valued E always exists. In addition,

maxy f(Y |X)(y|x; a) = 1/
√
a, and therefore, the inequalities in (A.87) and

(A.89) are satisfied.

The right-hand side of (A.87) and (A.89) are now integrable as follows:

EX

[
1

a
+

1√
a

exp

(
y −X√

a

)
δ(y −X)

]
=

1

a
+ fX(y),

EX

[
1

2a
√
a

+ E

]
=

1

2a
√
a

+ E. (A.90)

If a function fX(x) is bounded, by dominated convergence theorem, assumption

(2.17a) is verified.
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Second, assumption (2.17b) is verified as follows.

∣∣∣∣ dda (fY (y; a) log fY (y; a))

∣∣∣∣ (A.91)

≤
∣∣∣∣log fY (y; a)

d

da
fY (y; a)

∣∣∣∣+

∣∣∣∣ ddafY (y; a)

∣∣∣∣
=

∣∣∣∣∣ log fY (y; a)EX

[
− 1

2a
fY |X(y|X; a) +

(y −X)

2a
√
a
fY |X(y|X; a)

]∣∣∣∣∣+

∣∣∣∣ ddafY (y; a)

∣∣∣∣
=

∣∣∣∣∣√fY (y; a) log fY (y; a)

(
− 1

2a

√
fY (y; a)

+
y

2a
√
a

√
fY (y; a)− EX [XfY |X(y|X; a)]

2a
√
a
√
fY (y; a)

)∣∣∣∣∣+

∣∣∣∣ ddafY (y; a)

∣∣∣∣
=
∣∣∣2√fY (y; a) log

√
fY (y; a)

∣∣∣︸ ︷︷ ︸
(d1)

×

∣∣∣∣∣− 1

2a

√
fY (y; a)+

y

2a
√
a

√
fY (y; a)− EX[XfY |X(y|X; a)]

2a
√
a
√
fY (y; a)

∣∣∣∣∣︸ ︷︷ ︸
(d2)

+

∣∣∣∣ ddafY (y; a)

∣∣∣∣︸ ︷︷ ︸
(d3)

(A.92)

≤K
∣∣∣2√fY (y; a) log

√
fY (y; a)

∣∣∣+

∣∣∣∣ ddafY (y; a)

∣∣∣∣ .
The term (d3) is bounded by an integrable function due to equation (A.88),

factor (d2) is bounded by a constant K due to assumptions (2.17c) and (2.17d),
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which will be proved later, and factor (d1) is bounded, and it is integrable:

∫ ∞

0

∣∣∣√fY (y; a) log
√
fY (y; a)

∣∣∣ dy
=

1

2

∫ ∞

0

∣∣∣√fY (y; a) log fY (y; a)
∣∣∣ dy

=
1

2

∫ ∞

0

(
EX

[
1√
a

exp

(
− 1√

a
(y −X)

)
U(y −X)

]) 1
2

× logEX

[
1√
a

exp

(
− 1√

a
(y −X)

)
U(y −X)

]
dy

=
1

2

∫ ∞

0

1
4
√
a

exp

(
− 1

2
√
a
y

)(
EX

[
exp

(
1√
a
X

)
U(y −X)

]) 1
2

×

∣∣∣∣∣ log

(
1√
a

exp

(
− 1√

a
y

)
EX

[
exp

(
1√
a
X

)
U(y −X)

])∣∣∣∣∣dy
≤ 1

2

∫ ∞

0

1
4
√
a

exp

(
− 1

2
√
a
y

)(
EX

[
exp

(
1√
a
X

)]) 1
2

×
∣∣∣∣log

(
1√
a

exp

(
− 1√

a
y

)
EX

[
exp

(
1√
a
X

)])∣∣∣∣ dy
≤ 1

2

∫ ∞

0

1
4
√
a

exp

(
− 1

2
√
a
y

)(
MX

(
1√
a

)) 1
2

×
∣∣∣∣log

(
1√
a

exp

(
− 1√

a
y

)
MX

(
1√
a

))∣∣∣∣ dy, (A.93)

where MX(·) denotes the moment generating function of X. If the moment gen-

erating function of X exists, then equation (A.93) is bounded and integrable,

and so does the term (d1). Therefore, term (d1) is integrable with respect to

y, and assumption (2.17b) is verified by dominated convergence theorem.
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Similarly, assumption (2.17c) is verified as follows.

∣∣fY |X(y|x; a)
∣∣ =

∣∣∣∣ 1√
a

exp

(
y − x√

a

)
U(y − x)

∣∣∣∣
≤ 1√

a
, (A.94)∣∣xfY |X(y|x; a)

∣∣ =

∣∣∣∣x 1√
a

exp

(
y − x√

a

)
U(y − x)

∣∣∣∣
≤ 1√

a
x, (A.95)

and the right hand-side terms of (A.94) and (A.95) are integrable as

EX
[

1√
a

]
=

1√
a
,

EX
[

1√
a
X

]
=

1√
a
EX [X], (A.96)

and if EX [X] exists, assumption (2.17c) is satisfied.

Since fY |X(y|x; a) is exponentially decreasing, lim
y→∞

y2fY (y; a) is zero. In addi-

tion,

lim
y→0

y2fY (y; a)

= lim
y→0

EX
[
y2fY |X(y|X; a)

]
= lim

y→0
EX
[
y2 1√

a
exp

(
y − x√

a

)
U(y − x)

]
= EX

[
0× 1√

a
exp

(
−x√
a

)
U(−x)

]
= 0. (A.97)
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Assumption (2.17d) is expressed as

EX [XfY |X(y|X; a)]√
fY (y; a)

=
EX [XfY |X(y|X; a)]

fY (y; a)

√
fY (y; a)

=

∫ ∞
0
xfX(x) 1√

a
exp
(
y−x√
a

)
U(y−x)dx∫ ∞

0
fX(x) 1√

a
exp
(
y−x√
a

)
U(y−x)dx

√
fY (y; a) (A.98)

≤
y
∫ y

0
fX(x) 1√

a
exp

(
y−x√
a

)
dx∫

y

0
fX(x) 1√

a
exp

(
y−x√
a

)
dx

√
fY (y; a) (A.99)

= y
√
fY (y; a).

The inequality in (A.99) is due to the fact that, in (A.98), the term inside

integral is non-negative, x is increasing, and integration is performed from 0 to

y.

Therefore, the assumptions in (2.17) require the following conditions: 1) exis-

tence of EX [X], 2) existence of MX(·), 3) bounded pdf fX(x), and these are

further simplified into the existence of the moment generating function of X

and bounded pdf fX(x).

2. Corollary 2.3

Given the channel Y = X +
√
aW in (2.1), W is assumed to be a gamma

random variable, and its pdf is expressed as

fW (w) =
1

Γ(α)
wα−1 exp(−w)U(w),

where Γ(·) is a gamma function, U(·) denotes a unit step function, and α ≥ 2.

Since random variables X and W are independent of each other, the conditional
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density function fY |X(y|x; a) is expressed as

fY |X(y|x; a) =
1√
aΓ(α)

(
y − x√

a

)α−1

exp

(
−y − x√

a

)
U(y − x), (A.100)

and its derivatives are denoted as

d

dy
fY |X(y|x; a)

=− 1√
a
fY |X(y|x; a) +

1

aΓ(α−1)

(
y−x√
a

)α−2

exp

(
−y−x√

a

)
U(y−x), (A.101)

d

da
fY |X(y|x; a)

=− α

2a
fY |X(y|x; a) +

α

2a

(
1√

aΓ(α+1)

(
y−x√
a

)α
exp

(
−y−x√

a

)
U(y−x)

)
. (A.102)

The absolute values of equations (A.101), (A.102) are bounded as

∣∣∣∣ ddyfY |X(y|x; a)

∣∣∣∣
=

∣∣∣∣∣− 1√
a
fY |X(y|x; a) +

1

aΓ(α− 1)

(
y − x√

a

)α−2

exp

(
−y − x√

a

)
U(y − x)

∣∣∣∣∣
≤
∣∣∣∣ 1√
a
fY |X(y|x; a)

∣∣∣∣+

∣∣∣∣∣ 1

aΓ(α− 1)

(
y − x√

a

)α−2

exp

(
−y − x√

a

)
U(y − x)

∣∣∣∣∣
=

∣∣∣∣ 1√
a
fY |X(y|x; a)

∣∣∣∣+

∣∣∣∣ 1√
a
fYα−1|X(y|x; a)

∣∣∣∣
=

1√
a
fY |X(y|x; a) +

1√
a
fYα−1|X(y|x; a), (A.103)

where

fYα−1|X(y|x; a) =
1√

aΓ(α−1)

(
y−x√
a

)α−2

exp

(
−y−x√

a

)
U(y−x), (A.104)

i.e., this is a gamma density function with two parameters defined as α−1 and
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1, and

∣∣∣∣ ddafY |X(y|x; a)

∣∣∣∣
=

∣∣∣∣∣− α

2a
fY |X(y|x; a) +

α

2a

(
1√

aΓ(α + 1)

(
y − x√

a

)α
exp

(
−y − x√

a

)) ∣∣∣∣∣
≤
∣∣∣ α
2a
fY |X(y|x; a)

∣∣∣+

∣∣∣∣ α2a
(

1√
aΓ(α + 1)

(
y − x√

a

)α
exp

(
−y − x√

a

))∣∣∣∣
=
∣∣∣ α
2a
fY |X(y|x; a)

∣∣∣+
∣∣∣ α
2a
fYα+1|X(y|x; a)

∣∣∣
=
α

2a
fY |X(y|x; a) +

α

2a
fYα+1|X(y|x; a), (A.105)

where

fYα+1|X(y|x; a) =
1√

aΓ(α+1)

(
y−x√
a

)α
exp

(
−y−x√

a

)
U(y−x), (A.106)

i.e., this is a gamma density function with two parameters defined as α+1 and

1.

Since fYα−1|X(y|x; a), fY |X(y|x; a), and fYα+1|X(y|x; a) are all integrable, the

right-hand side of (A.103) and (A.105) are integrable as

EX
[

1√
a
fY |X(y|X; a) +

1√
a
fYα−1|X(y|X; a)

]
=

1√
a
fY (y; a) +

1√
a
fYα−1(y; a), (A.107)

EX
[ α

2a
fY |X(y|X; a) +

α

2a
fYα+1|X(y|X; a)

]
=

α

2a
fY (y; a) +

α

2a
fYα+1(y; a), (A.108)

where fYα−1
(y; a) = EX[fYα−1|X(y|X; a)], and fYα+1

(y; a) = EX[fYα+1|X(y|X; a)].

Therefore, assumption (2.17a) is verified by dominated convergence theorem.
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Second, assumption (2.17b) is verified as follows.

∣∣∣∣ dda (fY (y; a) log fY (y;x))

∣∣∣∣ (A.109)

≤
∣∣∣∣log fY (y;x)

d

da
fY (y; a)

∣∣∣∣+

∣∣∣∣ ddafY (y; a)

∣∣∣∣
=

∣∣∣∣∣ log fY (y;x)EX

[
− 1

2a
fY |X(y|X; a) +

(y −X)

2a
√
a
fY |X(y|X; a)

]∣∣∣∣∣
+

∣∣∣∣ ddafY (y; a)

∣∣∣∣
=

∣∣∣∣∣2√fY (y;x) log
√
fY (y;x)

(
− 1

2a

√
fY (y;x)

+
y

2a
√
a

√
fY (y;x)−

EX
[
XfY |X(y|X; a)

]
2a
√
a
√
fY (y;x)

)∣∣∣∣∣+

∣∣∣∣ ddafY (y; a)

∣∣∣∣
=
∣∣∣2√fY (y;x) log

√
fY (y;x)

∣∣∣︸ ︷︷ ︸
(e1)

×

∣∣∣∣∣− 1

2a

√
fY (y;x) +

y

2a
√
a

√
fY (y;x)−

EX
[
XfY |X(y|X; a)

]
2a
√
a
√
fY (y;x)

∣∣∣∣∣︸ ︷︷ ︸
(e2)

+

∣∣∣∣ ddafY (y; a)

∣∣∣∣︸ ︷︷ ︸
(e3)

. (A.110)

The factors (e1), (e2), and (e3) can be verified using exactly the same reasons as the

factors (d1), (d2), and (d3), in (A.92), respectively. Therefore, like equation (A.93),

the existence of moment generating function of X is required.

Assumption (2.17c) is confirmed by the following procedures.

Since fY |X(y|x; a) is exponentially decreasing, lim
y→∞

y2fY (y; a) is zero. By the

same procedure as equation (A.97), y2fY (y; a) becomes zero as y approaches zero.
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In addition,

∣∣fY |X(y|x; a)
∣∣ ≤ fY |X(y|x; a)

∣∣∣
y=x+

√
a(α−1)

, (A.111)∣∣xfY |X(y|x; a)
∣∣ ≤ xfY |X(y|x; a)

∣∣∣
y=x+

√
a(α−1)

. (A.112)

The inequalities above are due to the fact that the function fY |X(y|x; a) is always

nonnegative, and it is maximized at y = x +
√
a(α − 1). Therefore, the right-hand

sides of (A.111) and (A.112) are integrable as

EX
[

1√
aΓ(α)

(α− 1)α−1 exp(−(α− 1))

]
=

1√
aΓ(α)

(α− 1)α−1 exp(−(α− 1)),

EX
[
X

1√
aΓ(α)

(α− 1)α−1 exp(−(α− 1))

]
=

1√
aΓ(α)

(α− 1)α−1 exp(−(α− 1))EX [X], (A.113)

and, if EX [X] exits, by dominated convergence theorem, assumption (2.17c) is veri-

fied.

Finally, assumption (2.17d) is expressed as

EX [XfY |X(y|X; a)]√
fY (y; a)

=
EX [XfY |X(y|X; a)]

fY (y; a)

√
fY (y; a)

=

∫ ∞
0
xfX(x) 1√

aΓ(α)

(
y−x√
a

)α−1

exp
(
−y−x√

a

)
U(y−x)dx∫ ∞

0
fX(x) 1√

aΓ(α)

(
y−x√
a

)α−1

exp
(
−y−x√

a

)
U(y−x)dx

√
fY(y; a)

(A.114)

≤
y
∫
y

0
fX(x) 1√

aΓ(α)

(
y−x√
a

)α−1

exp
(
−y−x√

a

)
dx∫

y

0
fX(x) 1√

aΓ(α)

(
y−x√
a

)α−1

exp
(
−y−x√

a

)
dx

√
fY(y; a) (A.115)

=y
√
fY (y; a).

146



The inequality in (A.115) is due to the fact that, in (A.114), the term inside integral

is non-negative, x is increasing, and the integration with respect to x is performed

from 0 to y.

Therefore, in this case, the assumptions in (2.17) require the existence of the

mean and moment generating function of X, and these are further simplified to the

existence of the moment generating function of X.
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APPENDIX B

EXTREMAL ENTROPY INEQUALITY

B.1 Proof of Lemma 4.7

Proving ΣX∗ � ΣX is equivalent to proving the following:

ΣX∗ � ΣX (B.1)

⇐⇒ ΣW̃ � (µ− 1) ΣX (B.2)

⇐⇒
(
(ΣX + ΣW )−1 + L

)−1 −ΣX � (µ− 1) ΣX (B.3)

⇐⇒ (ΣX + ΣW )−1 + L � µ−1Σ−1
X (B.4)

Since there always exists a non-singular matrix which simultaneously diagonalizes

two positive semi-definite matrices [21], there exists a non-singular matrix Q which

simultaneously diagonalize both ΣX and ΣW as follows:

QTΣXQ = I, (B.5)

QTΣWQ = DW , (B.6)

where I is an identity matrix, and DW is a diagonal matrix. Since Q is a non-singular

matrix, the inverse of Q always exists, and ΣX and ΣW are expressed as

ΣX = Q−TQ−1, (B.7)

ΣW = Q−TDWQ−1. (B.8)
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If we define DL as a diagonal matrix whose ith diagonal element is represented as

dLi , and which it is defined as

dLi =


0 if dWi

≤ µ− 1

dWi−(µ−1)

µ(1+dWi)
if dWi

> µ− 1
(B.9)

where dWi
denotes the ith diagonal element of DW , and define L as

L = QDLQT , (B.10)

the equation (B.4) is equivalent to

(ΣX + ΣW )−1 + L � µ−1Σ−1
X (B.11)

⇐⇒
(
Q−TQ−1 + Q−TDWQ−1

)−1
+ QDLQT � µ−1QQT (B.12)

⇐⇒ (I + DW )−1 + DL � µ−1I. (B.13)

The equation (B.13) always holds since DL is defined as in (B.9) and (B.10) to satisfy

(B.13). Therefore, the inequality (B.1) is also satisfied.

We know that ΣX′ is ΣX − ΣX∗ . Since ΣX∗ = (µ − 1)−1ΣW̃ , ΣX′ is expressed

as ΣX − (µ− 1)−1ΣW̃ , and

ΣX′L =
(
ΣX − (µ− 1)−1 ΣW̃

)
L, (B.14)
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and the equation (B.14) is re-written as

ΣX′L

=
(
ΣX − (µ− 1)−1 ΣW̃

)
L, (B.15)

=

{
Q−TQ−1 − (µ− 1)−1

×
(((

Q−TQ−1 + Q−TDWQ−1
)−1

+ QDLQT
)−1

−Q−TQ−1

)}
×QDLQT

= (µ− 1)−1 Q−T
(
µI−

(
(I + DW )−1 + DL

)−1
)

DLQT (B.16)

= 0. (B.17)

The equality (B.16) is due to the equations (B.7), (B.8), and (B.10), and the equality

(B.17) is due to (B.9). Therefore, by defining ΣW̃ = ((ΣX + ΣW )−1 + L)−1 −ΣX ,

we can make ΣW̃ satisfy

ΣW̃ � (µ− 1) ΣX , ΣX′L = 0, (B.18)

and the proof is completed.

Remark B.1. Since the optimization problem in [32] is generally nonconvex, the

existence of optimal solution must be proved [32], [53], and this step is very compli-

cated. However, in our proof, Lemmas 4.7 and 4.8 serve as a substitute for this step

since we by-pass KKT-condition related parts using the data processing inequality.

This makes the proposed proof much simpler.
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B.2 Proof of Lemma 4.8

Proving ΣW̃ � µ−1ΣV is equivalent to proving the following:

ΣW̃ � µ−1ΣV (B.19)

⇐⇒ Σ−1
W + K � µΣ−1

V (B.20)

Since there always exists a non-singular matrix which simultaneously diagonalizes

two positive semi-definite matrices [21], there exists a non-singular matrix Q which

simultaneously diagonalize both Σ−1
W and Σ−1

W as follows:

QTΣWQ = DW (B.21)

QTΣV Q = I, (B.22)

where I is an identity matrix, and DW is a diagonal matrix. Since Q is a non-singular

matrix, the inverse of Q always exists, and ΣW and ΣV are expressed as

ΣW = Q−TDWQ−1, (B.23)

ΣV = Q−TQ−1. (B.24)

If we define DK as a diagonal matrix whose ith diagonal element is represented

as dKi , and which it is defined as

dKi =

 0 if dWi
≤ µ−1

µ− 1
dWi

if dWi
> µ−1

(B.25)
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where dWi
denotes the ith diagonal element of DW , and define K as

K = QDKQT , (B.26)

then the equation (B.20) is equivalent to

Σ−1
W + K � µΣ−1

V (B.27)

⇐⇒
(
Q−TDWQ−1

)−1
+ QDKQ−1 � µ

(
Q−TQ−1

)−1
(B.28)

⇐⇒ D−1
W + DK � µI. (B.29)

The equation (B.29) always holds since DK is defined in (B.25). Therefore, the

inequality (B.19) is also satisfied.

We know that ΣX∗ is (µ− 1)−1(ΣV − µΣW̃ ). Therefore,

ΣX∗K = (µ− 1)−1 (ΣV − µΣW̃ ) K, (B.30)

and the equation (B.30) is re-written as

ΣX∗K = (µ− 1)−1 (ΣV − µΣW̃ ) K (B.31)

= (µ− 1)−1

(
Q−TQ−1 − µ

((
Q−TDWQ−1

)−1
+ QDKQT

)−1
)

×QDKQT (B.32)

= (µ− 1)−1 Q−1
(
I− µ

(
D−1
W + DK

)−1
)

DKQT (B.33)

= (µ− 1)−1 µQ−T
(
µ−1I−

(
D−1
W + DK

)−1
)

DKQT (B.34)

= 0. (B.35)

The equality (B.32) is due to the equations (B.23), (B.24), and (B.26), and the
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equality (B.35) is due to (B.25). Therefore, by defining ΣW̃ = (Σ−1
W + K)−1, we can

make ΣW̃ satisfy

ΣW̃ � µ−1ΣV , ΣX∗K = 0, (B.36)

and the proof is completed.

Remark B.2. In Lemmas 4.7 and 4.8, we specify the structure of positive semi-

definite matrices L and K, and this gives more details on the structure of the covari-

ance matrix of the optimal solution.
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APPENDIX C

INFORMATION THEORETIC INEQUALITIES

C.1 Proof of Theorem 5.4

Proof. To prove the inequality in (5.25), we first construct a functional problem as

follows.

min
fX

∫
fX(x) log fX(x)dx, (C.1)

s. t.

∫
fX(x)dx = 1, (C.2)∫
xfX(x)dx = µX,∫
x2fX(x)dx = m2

X, (C.3)

where µX is the first-order moment of X, and mX represents the second-order moment

of X.

Using Theorem 5.3, the functional problem in (C.1) is expressed as

min
fX

U [fX], (C.4)

where U [fX] =
∫
K(x, fX)dx, K(x, fX) = fX(x) (log fX(x) + α0 + α1x+ α2x

2), α0,

α1, and α2 are Lagrange multipliers.

The optimal density function fX∗ must satisfy the first-order variation condition

as follows:

K ′fX −
d

dx
K ′f ′X

∣∣∣
fX=fX∗

= 1 + log fX∗(x) + α0 + α1x+ α2x
2 = 0. (C.5)
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Considering the constraints in (C.2)-(C.3) and the equation in (C.5), it follows

that

fX∗(x) =
1√

2π 1
2α2

exp

{
− 1

2 1
2α2

(
x+

α1

2α2

)2
}√

2π
1

2α2

exp

{
−α0 − 1 +

α2
1

4α2

}

=
1√

2π(m2
X − µ2

X)
exp

{
− 1

2(m2
X − µ2

X)
(x− µX)2

}
, (C.6)

where

α0 = −1 +
µ2
X

2(m2
X − µ2

X)
+

1

2
log 2π(m2

X − µ2
X),

α1 = − µX
m2

X − µ2
X

,

α2 =
1

2(m2
X − µ2

X)
. (C.7)

Since the second-order variation of U [fX] is expressed as

K ′′fXfX

∣∣∣
fX=fX∗

=
1

fX∗(x)
, (C.8)

and it is positive, the optimal solution fX∗ minimizes the variational problem in

(C.1).

These first-order and second-order conditions are not sufficient but necessary for

the optimal solution. However, as shown in (C.5) and (C.6), there exists only one

solution, the Gaussian density function, in the feasible set. Therefore, the Gaussian

density function is also sufficient in this case.

Therefore, a negative differential entropy −h(X) is minimized (or, equivalently

h(X) is maximized) when fX(x) is Gaussian, and the proof is completed.
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C.2 Proof of Theorem 5.5

Proof. We first construct a functional problem, which represents the inequality in

(5.26) and required constraints, as follows:

min
fX

∫
fX(x) log fX(x)dx, (C.9)

s. t.

∫
fX(x)dx = 1, (C.10)∫

xxTfX(x)dx = ΩX. (C.11)

Using Theorem 5.3, the functional problem in (C.9) is expressed as

min
fX

U [fX], (C.12)

where U [fX] =
∫
K(x, fX)dx =

∫
fX(x)

(
log fX(x) + α +

∑n
i=1

∑n
j=1 λijxixj

)
dx,

and α and λij are Lagrange multipliers.

Based on Theorem 5.1 or Corollary 5.2, by checking the first-order variation

condition, we can find the optimal solution fX∗(x) as follows.

K ′fX −
d

dx
K ′f ′X

∣∣∣
fX=fX∗

= 1 + log fX∗(x) + α + xTΛx = 0, (C.13)

(C.14)

Considering the constraints in (C.10) and (C.11),

fX∗(x) = exp {−xTΛx− α− 1}

= (2π)−
n
2

∣∣∣∣12Λ−1

∣∣∣∣− 1
2

exp

{
−1

2
xT

(
1

2
Λ−1

)−1

x

}
(2π)

n
2

∣∣∣∣12Λ−1

∣∣∣∣ 1
2

exp {−1− α}

= (2π)−
n
2 |ΩX|−

1
2 exp

{
−1

2
xTΩ−1

X x

}
, (C.15)
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where

α = −1 +
1

2
log (2π)n |ΩX| ,

Λ =
1

2
Ω−1
X . (C.16)

Here, two remarks are in order. First, the correlation matrix ΩX is assumed to

be invertible. When the correlation matrix is non-invertible, similar to the method

shown in [32], we can equivalently re-write the functional problem in (C.9) and its

constraints in (C.11) as

min
fX̄

∫
fX̄(x) log fX̄(x)dx, (C.17)

s. t.

∫
fX̄(x)dx = 1,∫

xxTfX̄(x)dx = ΩX̄, (C.18)

where X̄ is a random vector with correlation matrix ΩX̄, and ΩX̄ is a positive definite

matrix. Therefore, without loss of generality, we assume the correlation matrix ΩX

is invertible. Second, if an additional constraint, related to the mean vector of X,

µX, is given, the optimal solution is a multi-variate Gaussian density function, whose

mean is µX, instead of the multi-variate Gaussian density function, which has zero

mean, in (C.15) (cf. Appendix C.1).

Since

K ′′fXfX

∣∣∣
fX=fX∗

=
1

fX∗(x)
> 0,

the second-order variation δ2U [fX∗ ] is positive, and the optimal solution fX∗ is a

minimal solution for the variational problem in (C.9).
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Therefore, a differential entropy −h(X) is minimized (or, equivalently h(X) is

maximized) when X is a multi-variate Gaussian random vector with zero mean and

a covariance matrix ΣX. Even though Theorems 5.1, 5.2 are necessary conditions

for the minimum, in this case, a multi-variate Gaussian density function is an actual

solution since there is only one solution, a multi-variate Gaussian density function,

in the feasible set.

C.3 Proof of Theorem 5.6

Proof. We first construct a functional problem, which represents the inequality in

(5.27) and required constraints, as follows:

min
fX

∫ ∞
0

fX(x) log fX(x)dx, (C.19)

s. t.

∫ ∞
0

fX(x)dx = 1,∫ ∞
0

x2fX(x)dx = m2
X. (C.20)

Using Theorem 5.3, the functional problem in (C.19) is expressed as

min
fX

U [fX], (C.21)

where U [fX] =
∫
K(x, fX)dx, K(x, fX) = fX(x) (log fX(x) + α0 + α1x

2), and α0 and

α1 are Lagrange multipliers.∗

Based on Theorem 5.1 or Corollary 5.2, the first-order variation condition of U [fX]

∗For the simplicity of notations, the range of integration will not be explicitly expressed in the
rest of this proof. Throughout the section, the range of integration will not be explicitly denoted
unless the range is ambiguous.

158



is considered as follows.

K ′fX −
d

dx
K ′f ′X

∣∣∣
fX=fX∗

= 1 + log fX∗(x) + α0 + α1x
2 = 0. (C.22)

Considering the constraints in (C.20) and the equation in (C.22),

fX∗(x) =
1√
π 1

4α1

exp

{
− 1

2 1
2α1

x2

}√
π

1

4α1

exp {−α0 − 1}

=
1√
πm2

X

2

exp

{
− 1

2m2
X

x2

}
, x ≥ 0, (C.23)

where

α0 = −1 +
1

2
log

πm2
X

2
,

α1 =
1

2m2
X

.

Since

K ′′fXfX

∣∣∣
fX=fX∗

=
1

fX∗(x)
> 0,

and the second-order variation δ2U [fX∗ ] > 0, the optimal solution fX∗ is a minimal

solution for the variational problem in (C.19).

These first-order and second-order conditions are not sufficient but necessary for

the optimal. However, as shown in (C.22) and (C.23), there exists only one solution,

a half-normal density function, in the feasible set. Therefore, a half-normal density

function is also sufficient in this problem.

Therefore, given the second-order moment, the negative differential entropy−h(X)

is minimized (or, equivalently h(X) is maximized) over the set of non-negative ran-
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dom variables when fX(x) is a half-normal density function.

Remark C.1. Since a half-normal random variable has a fixed mean, if we add a

constraint of the mean such as EX[X] = µX in (C.20), the inequality in (5.27) is not

true except µX =
√

2m2
X/π, where µX and m2

X are the first-order moment and the

second-order moment of X, respectively.

C.4 Proof of Theorem 5.7

Proof. We first construct a functional problem, which represents the inequality in

(5.28) and required constraints, as follows:

min
fX

∫
f ′X(x)2

fX(x)
dx, (C.24)

s. t.

∫
fX(x)dx = 1,∫
xfX(x)dx = µX,∫
x2fX(x)dx = m2

X. (C.25)

Using Theorem 5.3, the functional problem in (C.24) is expressed as

min
fX

U [fX], (C.26)

where U [fX] =
∫
K(x, fX, f

′
X)dx, K(x, fX, f

′
X) = (f ′X(x)2/fX(x))+α0fX(x)+α1xfX(x)+

α2x
2fX(x), and α0, α1, and α2 are the Lagrange multipliers.

Based on Theorem 5.1 or Corollary 5.2, the first-order variation is investigated
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as follows.

K ′fX −
d

dx
K ′f ′X

∣∣∣
fX=fX∗

=

(
f ′X∗(x)

fX∗(x)

)2

− 2
fX∗

′′(x)

fX∗(x)
+ α0 + α1x+ α2x

2 = 0, (C.27)

Unlike Theorem 5.4, we cannot directly calculate fX∗(x) from the equation in

(C.27). Fortunately, when fX∗(x) is a Gaussian density function, (f ′X∗(x)/fX∗(x))2−

2(f ′′X∗(x)/fX∗(x)) in (C.27) is expressed as a quadratic function, which is similar to

the quadratic parts in (C.27).

Due to the constraints in (C.25), a Gaussian density function fX∗(x) is defined as

fX∗(x) =
1√

2π(m2
X − µ2

X)
exp

{
− 1

2 (m2
X − µ2

X)
(x− µX)2

}
. (C.28)

By substituting fX∗(x) in (C.28) for the equation in (C.27),

(
− 1

m2
X − µ2

X

(x− µX)

)2

− 2

{(
− 1

m2
X − µ2

X

(x− µX)

)2

− 1

m2
X − µ2

X

}
+α0 + α1x+ α2x

2

= − 1

(m2
X − µ2

X)2x
2 +

2µX

(m2
X − µ2

X)2x+

(
− µ2

X

(m2
X − µ2

X)2 +
2

m2
X − µ2

X

)
+α0 + α1x+ α2x

2

= 0. (C.29)

Since the equations in (C.29) must be satisfied for any x,

α0 =
µ2
X

(m2
X − µ2

X)2 −
2

m2
X − µ2

X

,

α1 = − 2µX

(m2
X − µ2

X)2 ,

α2 =
1

(m2
X − µ2

X)2 . (C.30)
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Since

K ′′f ′
X∗f

′
X∗

= 2
1

fX∗(x)
> 0 (C.31)

and the second-order variation δ2U [fX∗ ] is positive, the optimal solution fX∗ mini-

mizes the variational problem in (C.24).

Therefore, Fisher information J(X) is minimized when fX(x) is Gaussian. Even

though Theorems 5.1, 5.2 are necessary conditions for the minimum, in this case,

a Gaussian density function is sufficiently optimal due to the following fact: the

objective function is strictly convex and the constraint sets are convex. Therefore,

the proof is completed.

Remark C.2. Even though this result is well-known in the literature (e.g., [2], [43]),

this is the first rigorous proof based on calculus of variations.

Remark C.3. The constraint related to the first-order moment in (C.25), is not

required in this case. Without the constraint, the optimal solution is a Gaussian

density function, which has zero mean.
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C.5 Proof of Theorem 5.8

Proof. We first construct a functional problem, which represents the inequality in

(5.29) and the required constraints as follows:

min
fX

∫
ξT∇fX(x)∇fX(x)Tξ

1

fX(x)
dx, (C.32)

s. t.

∫
fX(x)dx = 1,∫

xfX(x)dx = µX,∫
xxTfX(x)dx = ΩX, (C.33)

where ξ is an arbitrary but fixed non-zero vector, and it is defined as ξ = [ξ1, . . . , ξn]T .

Using Theorem 5.3, the functional problem in (C.32) is expressed as

min
fX

U [fX], (C.34)

where U [fX] =
∫
K(x, fX,∇fX)dx, K(x, fX,∇fX) = (ξT∇fX(x)∇fX(x)Tξ/fX(x)) +

fX(x)
∑n

i=1 ζixi+αfX(x)+fX(x)
∑n

i=1

∑n
j=1 λijxixj, and α, ζi, and λij are Lagrange

multipliers.

Based on Theorem 5.1 or 5.2, by confirming the first-order variation condition,

i.e., δU [fX∗ ] = 0, we can find the optimal solution fX∗(x) as follows.

K ′fX −
n∑
i=1

∂

∂xi
K ′f ′Xi

∣∣∣∣∣
fX=fX∗

= 0, (C.35)
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where

K ′fX = −ξT∇fX(x)∇fX(x)Tξ

fX(x)2
+ α + ζTx + xTΛx,

∂

∂xi
K ′f ′Xi

=
∂

∂xi


2

n∑
j=1

∂
∂xj
fX(x)ξiξj

fX(x)



=

2
n∑
j=1

∂
∂xi

∂
∂xj
fX(x)ξiξj

fX(x)
−

2
n∑
j=1

∂
∂xj
fX(x)ξiξj

∂
∂xi
fX(x)

fX(x)2
. (C.36)

Therefore, the left-hand side of the equation in (C.35) is expressed as

K ′fX −
n∑
i=1

∂

∂xi
K ′f ′Xi

=

n∑
i=1

n∑
j=1

∂
∂xi
fX(x) ∂

∂xj
fX(x)ξiξj

fX(x)2
−

2
n∑
i=1

n∑
j=1

∂
∂xi

∂
∂xj
fX(x)ξiξj

fX(x)
+ α +

n∑
i=1

ζixi

+
n∑
i=1

n∑
j=1

λijxixj (C.37)

= 0. (C.38)

Unlike Theorem 5.5, we cannot directly calculate fX∗(x) from the equation in

(C.35). Fortunately, the first two parts in equation (C.37) are expressed as a quadratic

function when fX∗(x) is a multi-variate Gaussian density function, and therefore, the

multi-variate Gaussian density function satisfies the equality in (C.38). When fX∗(x)

is a multi-variate Gaussian density function:

fX∗(x) = (2π)−
n
2 |ΣX|−

1
2 exp

{
−1

2
(x− µX)T Σ−1

X (x− µX)

}
,
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where ΣX = ΩX − µXµ
T
X,

Σ−1
X =


σ2
X11

· · · σ2
X1n

...
. . .

...

σ2
Xn1

· · · σ2
Xnn

 , (C.39)

its partial derivative is expressed as

∂

∂xi
fX∗(x) = −1

2

(
n∑
l=1

σ2
Xil

(
xl − µXl

)
+

n∑
m=1

σ2
Xmi

(xm − µXm)

)
fX∗(x)

∂

∂xj

∂

∂xi
fX∗(x) = −1

2

(
σ2
Xij

+ σ2
Xji

)
fX∗(x)

+
1

4

(
n∑
l=1

σ2
Xil

(
xl − µXl

)
+

n∑
m=1

σ2
Xmi

(xm − µXm)

)

×

(
n∑
l=1

σ2
Xjl

(
xl − µXl

)
+

n∑
m=1

σ2
Xmj

(xm − µXm)

)
fX∗(x).

(C.40)

Without loss of generality, the covariance matrix ΣX is assumed to be invertible due

to the same reason mentioned in Appendix C.2.

By substituting the equations in (C.40) into the equations (C.37), it turns out
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that

K ′fX∗ −
n∑
i=1

∂

∂xi
K ′f ′

X∗i

=
1

4

n∑
i=1

n∑
j=1

ξiξj

(
n∑
l=1

(
σ2
Xil

+ σ2
Xli

) (
xl − µXl

))( n∑
m=1

(
σ2
Xjm

+ σ2
Xmj

)
(xm − µXm)

)

+
n∑
i=1

n∑
j=1

(
σ2
Xij

+ σ2
Xji

)
ξiξj + α +

n∑
i=1

ζixi +
n∑
i=1

n∑
j=1

λijxixj

=
n∑
l=1

n∑
m=1

[(
xl − µXl

)
(xm − µXm)

(
1

4

n∑
i=1

n∑
j=1

ξiξj

(
σ2
Xil

+ σ2
Xli

)(
σ2
Xjm

+ σ2
Xmj

))]

+
n∑
i=1

n∑
j=1

(
σ2
Xij

+ σ2
Xji

)
ξiξj + α +

n∑
i=1

ζixi +
n∑
i=1

n∑
j=1

λijxixj

=
n∑
l=1

n∑
m=1

[(
xl − µXl

)
(xm − µXm) ξTΣXlm

ξ
]

+
n∑
i=1

n∑
j=1

(
σ2
Xij

+ σ2
Xji

)
ξiξj

+α +
n∑
i=1

ζixi +
n∑
i=1

n∑
j=1

λijxixj

=
n∑
l=1

n∑
m=1

ωlm
(
xl − µXl

)
(xm − µXm) +

n∑
i=1

n∑
j=1

(
σ2
Xij

+ σ2
Xji

)
ξiξj + α

+
n∑
i=1

ζixi +
n∑
i=1

n∑
j=1

λijxixj

= (x− µX)T Ω (x− µX) + ξTΨξ + α + ζTx + xTΛx

= (xTΩx + xTΛx) + (ζTx− 2µT

XΩx) + µT

XΩµX + ξTΨξ + α

= 0, (C.41)
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where

ΣXlm
=


Σlm
X11

· · · Σlm
X1n

...
. . .

...

Σlm
Xn1

· · · Σlm
Xnn

 , Λ =


λ11 · · · λ1n

...
. . .

...

λn1 · · · λnn

 ,

Ψ =


ψ11 · · · ψ1n

...
. . .

...

ψn1 · · · ψnn

 , Ω =


ω11 · · · ω1n

...
. . .

...

ωn1 · · · ωnn

 ,
Σlm

Xij
=

1

4

(
σ2
Xil

+ σ2
Xli

)(
σ2
Xjm

+ σ2
Xmj

)
= σ2

Xli
σ2
Xjm

, i = 1, . . . , n, j = 1, . . . , n,

l = 1, . . . , n, m = 1, . . . , n,

ψij = 2σ2
Xij
, i = 1, . . . , n, j = 1, . . . , n,

ωlm = ξTΣXlm
ξ, l = 1, . . . , n, m = 1, . . . , n. (C.42)

Therefore, the Lagrange multipliers α and λij are defined as

α = −µT

XΩµX − ξTΨξ,

ζ = 2ΩµX,

Λ = −Ω. (C.43)

Since the second-order variation condition is positive

K ′′f ′Xf ′X = 2
1

fX∗(x)
> 0, (C.44)

the optimal solution fX∗(x) minimizes the variational problem in (C.32). There-

fore, the Fisher information matrix J(X) is minimized when fX∗(x) is a multi-variate
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Gaussian, i.e., J(X) � J(XG). Even though Theorems 5.1, 5.2 are necessary condi-

tions for the minimum, in this case, the multi-variate Gaussian density function is

sufficiently minimum since the objective function is strictly convex and its constraint

sets are convex.

C.6 Proof of Theorem 5.9

Proof. We first construct a functional problem, which represents the inequality in

(5.31) and required constraints, as follows:

min
fX

∫ ∞
0

f ′X(x)2

fX(x)
dx, (C.45)

s. t.

∫ ∞
0

fX(x)dx = 1,∫ ∞
0

x2fX(x)dx = m2
X. (C.46)

Using Theorem 5.3, the functional problem in (C.45) is expressed as

min
fX

U [fX], (C.47)

where U [fX] =
∫
K(x, fX, f

′
X)dx, K(x, fX, f

′
X) = (f ′X(x)2/fX(x))+fX(x) (α0 + α1x

2),

and α0 and α1 are the Lagrange multipliers.

Based on Theorem 5.1 or 5.2, the first-order and the second-order variation con-

ditions of U [fX] will be considered as follows. First, the optimal solution fX∗(x) must

satisfy the following first-order variation condition:

K ′fX −
d

dx
K ′f ′X

∣∣∣
fX=fX∗

=

(
f ′X∗(x)

fX∗(x)

)2

− 2
f ′′X∗(x)

fX∗(x)
+ α0 + α1x

2 = 0. (C.48)

When fX∗(x) is a half-normal density function, (f ′X∗(x)/fX∗(x))2− 2(f ′′X∗(x)/fX∗(x))
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in (C.48) is expressed as a quadratic function, and therefore the equation in (C.48)

can be satisfied.

Considering the constraints in (C.46) and fX∗(x) = (1/
√
πm2

X/2) exp(−x2/(2m2
X)),

where x > 0,

(
− 1

m2
X

x

)2

− 2

{(
− 1

m2
X

x

)2

− 1

m2
X

}
+ α0 + α1x

2

= − 1

m4
X

x2 +
2

m2
X

+ α0 + α1x
2

= 0. (C.49)

Since the equation in (C.49) is satisfied for any x,

α0 = − 2

m2
X

,

α1 =
1

m4
X

. (C.50)

Now, the second-order variation condition is considered as follows. Since

K ′′f ′Xf ′X

∣∣∣
fX=fX∗

= 2
1

fX∗(x)
> 0, (C.51)

the second-order variation of δ2U [fX∗ ] > 0, and therefore fX∗ minimizes the varia-

tional problem in (5.33). Therefore, the Fisher information J(X) is minimized when

fX(x) is half normal. Even though Theorems 5.1, 5.2 are necessary conditions for

the minimum, in this case, a half normal density function is sufficiently optimal due

to the strict convexity of the objective function and the convexity of the constraint

set in (C.45) and (C.46). Therefore, the proof is completed.
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C.7 Proof of Theorem 5.10

Proof. We first construct a functional problem, which represents the inequality in

(5.33) and required constraints, as follows:

min
fX

∫
f ′X(x)2

fX(x)
dx, (C.52)

s. t.

∫
fX(x)dx = 1,∫
x2fX(x)dx = m2

X. (C.53)

Using Theorem 5.3, the functional problem in (C.52) is expressed as

min
fX

U [fX], (C.54)

where U [fX] =
∫
K(x, fX, f

′
X)dx, K(x, fX, f

′
X) = (f ′X(x)2/fX(x))+fX(x) (α0 + α1x

2),

and α0 and α1 are the Lagrange multipliers.

Based on Theorem 5.1 or Corollary 5.2, by confirming the first-order variation

condition, the optimal solution fX∗(x) can be found as follows:

K ′fX −
d

dx
K ′f ′X

∣∣∣
fX=fX∗

=

(
f ′X∗(x)

fX∗(x)

)2

− 2
f ′′X∗(x)

fX∗(x)
+ α0 + α1x

2 = 0. (C.55)

Unfortunately, we cannot directly calculate fX∗(x) from the equation in (C.55).

Instead, we try to search density functions which satisfy the equation in (C.55). The

first two parts, (f ′X∗(x)/fX∗(x))2−2(f ′′X∗(x)/fX∗(x)), in equation (C.55) are expressed

as a quadratic function when fX∗(x) is a chi density function with 3 degrees of

freedom. Therefore, the chi density function satisfies the equation in (C.55).
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Considering the constraints in (C.53) and defining fX∗(x) as

fX∗(x) =

√
2

π

x2

a3
exp

(
− x2

2a2

)
,

where a =
√
m2

X/3, the equation in (C.55) is expressed as

(
2

x
− x

a2

)2

− 2

(
x2

a4
+

2

x2
− 5

a2

)
+ α0 + α1x

2

= − 1

a4
x2 +

6

a2
+ α0 + α1x

2

= 0. (C.56)

Since the equation in (C.56) must be satisfied for any x,

α0 = − 6

a2
= − 18

m2
X

,

α1 =
1

a4
=

(
3

m2
X

)2

. (C.57)

Now, using the second-order variation condition, we will confirm that the optimal

solution fX∗ actually minimizes the variational problem in (C.52) as shown in the

following equation:

K ′′f ′Xf ′X

∣∣∣
fX=fX∗

= 2
1

fX∗(x)
> 0. (C.58)

Therefore, the Fisher information J(X) is minimized when fX(x) is a chi density

function with 3 degrees of freedom and the second-order moment m2
X. Even though

Theorems 5.1, 5.2 are necessary conditions for the minimum, in this case, the chi

density function is sufficiently minimum since the variational problem in (C.52) is

strictly convex and the constraint set in (C.53) is convex. Therefore, the proof is

171



completed.

Remark C.4. Both a half normal density function and a chi-density function satisfy

Euler’s equation. Therefore, these two functions are the optimal solutions which

minimize Fisher information for non-negative random variables. However, a half

normal density function does not obey the regularity condition for Fisher information

while a chi density function satisfies the regularity condition.

C.8 Proof of Theorem 5.11

Proof. To prove the inequality in (5.34), the following functional problem is con-

structed:

min
fX

∫ ∫
fX(x)fY |X(y|x)

[
− log

(∫
fX(x)fY |X(y|x)dx

)
+ log fX(x)

]
dxdy (C.59)

s. t.

∫
fX(x)dx = 1,∫
x2fX(x)dx = m2

X. (C.60)

After substituting the random variable Y for X +WG, its density function fY (y)

is expressed as

fY (y) =

∫
fX(x)fY |X(y|x)dx

=

∫
fX(x)fW (y − x)dx. (C.61)
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Then, the problem in (C.59) and its constraints in (C.60) are expressed as

min
fX ,fY

∫ ∫
fX(x)fW (y − x) [− log fY (y) + log fX(x)] dxdy (C.62)

s. t.

∫ ∫
fX(x)fW (y − x)dxdy = 1,∫ ∫
x2fX(x)fW (y − x)dxdy = m2

X,∫
y2fY (x)dy = m2

Y ,

fY (y) =

∫
fX(x)fW (y − x)dx. (C.63)

Using Lagrange multipliers, the functional problem in (C.62) is denoted as

min
fX ,fY

∫ (∫
fX(x)fW (y − x)

[
− log fY (y) + log fX(x) + α0 + α1x

2 − λ(y)
]
dx

+fY (y)
[
α2y

2 + λ(y)
])

dy. (C.64)

Define a functional U as

U [fX, fY ] =

∫ (∫
K(x, y, fX, fY )dx

)
+ K̃(y, fY )dy, (C.65)

where∗ K(x, y, fX, fY ) = fX(x)fW (y− x)[− log fY (y) + log fX(x) +α0 +α1x
2− λ(y)],

and K̃(y, fY ) = fY (y) [α2y
2 + λ(y)].

Now, we have to find fX∗ and fY ∗ which satisfy the first-order variation condition,

∗The equation in (C.65) is denoted as
∫
(
∫
Kdx) + K̃dy for the simplicity of notation.
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δU = 0.

K ′fX

∣∣∣
fX=fX∗ ,fY =fY ∗

= fW (y − x)
(
− log fY ∗(y) + log fX∗(x) + α0 + α1x

2 + 1− λ(y)
)

= 0 (C.66)∫
K ′fY dx+ K̃ ′fY

∣∣∣∣∣
fX=fX∗ ,fY =fY ∗

= −
∫
fX∗(x)fW (y − x)dx

1

fY ∗(y)
+ α2y

2 + λ(y)

= 0. (C.67)

Since the equations in (C.66) and (C.67) are satisfied for any x and y,

− log fY ∗(y) + cY − λ(y) = 0,

log fX∗(x) + α0 + α1x
2 + 1− cY ∗ = 0,

λ(y) = 1− α2y
2, (C.68)

where cY is a constant.

Therefore,

fX∗(x) = exp
(
−α0 − α1x

2 − 1 + cY
)
,

fY ∗(y) = exp
(
cY − 1 + α2y

2
)
,
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and fX∗(x) and fY ∗(x) are re-written as

fX(x) = exp
(
−α0 − α1x

2 − 1 + cY
)

=
1√

2π 1
2α1

exp

{
− 1

2 1
2α1

x2

}√
2π

1

2α1

exp {−α0 − 1 + cY } , (C.69)

fY (y) = exp
(
cY − 1 + α2y

2
)

=
1√

2π
(
− 1

2α2

) exp

− 1

2
(
− 1

2α2

)y2


√

2π

(
− 1

2α2

)
exp {cY − 1} .(C.70)

Considering the constraints in (C.63), the Lagrange multipliers in (C.69) and

(C.70) are expressed as

α0 = −1 + cY +
1

2
log 2πm2

X

=
1

2
log

m2
X

m2
Y

,

α1 =
1

2m2
X

,

α2 = − 1

2m2
Y

,

cY = 1− 1

2
log 2πm2

Y . (C.71)

Therefore, Gaussian density functions fX∗ and fY ∗ satisfy the first-order variation

condition, δU = 0.

Now, the second-order variation condition must be considered, and, for the min-

imum, it requires the positive definiteness of the matrix,

 K ′′fXfX K ′′fXfY

K ′′fY fX K ′′fY fY

 ∣∣∣∣∣
fX=fX∗ ,fY =fY ∗

. (C.72)
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The elements of the matrix in (C.72) are calculated as

K ′′fXfX

∣∣∣
fX=fX∗ ,fY =fY ∗

=
fW (y − x)

fX∗(x)
,

K ′′fY fX

∣∣∣
fX=fX∗ ,fY =fY ∗

= −fW (y − x)

fY ∗(x)
,

K ′′fXfY

∣∣∣
fX=fX∗ ,fY =fY ∗

= −fW (y − x)

fY ∗(x)
,

K ′′fY fY

∣∣∣
fX=fX∗ ,fY =fY ∗

=
fW (y − x)fX∗(x)

fY ∗(y)2
, (C.73)

and the matrix in (C.72) is positive definite. Therefore, δ2U > 0, the optimal

solutions fX∗ and fY ∗ minimize the variational problem in (C.62). Even though the

optimal solutions are necessarily optimal, there are only Gaussian density functions

fX∗ and fY ∗ in the feasible set, i.e., Gaussian density functions fX∗ and fY ∗ are the

only ones which satisfy the equations in (C.66) and (C.67). Therefore, these optimal

solutions are actually sufficient.

In conclusion, given the second-order moment, a Gaussian random variable XG

minimizes the mutual information I(X +WG;WG), and the proof is completed.
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C.9 Proof of Theorem 5.12

Proof. To prove the inequality in (5.35), we first construct a functional problem as

follows:

min
fX

−
∫ ∫

fX(x)fY |X(y|x) log

(∫
fX(x)fY |X(y|x)dx

)
dxdy (C.74)

+

∫ ∫
fX(x)fY |X(y|x) log fX(x)dxdy

s. t.

∫
fX(x)dx = 1,∫

xfX(x)dx = µX,∫
xxTfX(x)dx = ΩX. (C.75)

By substituting the random vector Y for X + WG, where X and WG are inde-

pendent of each other, in (5.35), its density function fY (y) and conditional density

function fY |X(y|x) are expressed as

fY (y) =

∫
fX(x)fY |X(y|x)dx, (C.76)

fY |X(y|x) = fW (y − x), (C.77)

respectively. Therefore, by substituting fY (y) for
∫
fX(x)fY |X(y|x)dx and fW (y−x)

for fY |X(y|x), and appropriately changing the constrains in (C.75), the variational
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problem in (C.74) can be expressed as

min
fX ,fY

∫ ∫
fX(x)fW (y − x) [− log fY (y) + log fX(x)] dxdy (C.78)

s. t.

∫ ∫
fX(x)fW (y − x)dxdy = 1,∫ ∫

xfX(x)fW (y − x)dxdy = µX,∫ ∫
xxTfX(x)fW (y − x)dxdy = ΩX,∫

fY (y)dy = 1,∫
yfY (y)dy = µY ,∫
yyTfY (x)dy = ΩY ,

fY (y) =

∫
fX(x)fW (y − x)dx. (C.79)

The functional problem in (C.78) is changed into the following equivalent problem:

min
fX ,fY

∫ (∫
fX(x)fW (y − x)

[
− log fY (y) + log fX(x) + α0 +

n∑
i=1

ζixi

+
n∑
i=1

n∑
j=1

γijxixj − λ(y)

]
dx

)

+fY (y)

[
α1 +

n∑
i=1

ηiyi +
n∑
i=1

n∑
j=1

θijyiyj + λ(y)

]
dy, (C.80)

where xT = [x1, . . . , xn], yT = [y1, . . . , yn], and α0, α1, ζi, γij, ηi, θij, and λ(y) are

Lagrange multipliers.

Let’s define the functional U as

U [fX, fY ] =

∫ (∫
K(x,y, fX, fY )dx

)
+ K̃(y, fY )dy,
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where

K(x,y, fX, fY ) = fX(x)fW (y − x)[− log fY (y) + log fX(x) + α0 +
n∑
i=1

ζixi

+
n∑
i=1

n∑
j=1

γijxixj − λ(y)],

K̃(y, fY ) = fY (y)

[
α1 +

n∑
i=1

ηiyi +
n∑
i=1

n∑
j=1

θijyiyj + λ(y)

]
. (C.81)

Based on the first-order variation condition, we can find the optimal solution, fX∗

and fY ∗ , as follows.

K ′fX

∣∣∣
fX=fX∗ ,fY =fY ∗

= fW (y − x)

(
− log fY ∗(y) + log fX∗(x) + α0 +

n∑
i=1

ζixi

+
n∑
i=1

n∑
j=1

γijxixj + 1− λ(y)

)
= fW (y − x) (− log fY ∗(y) + log fX∗(x) + α0 + ζxT + xTΓx + 1− λ(y))

= 0 (C.82)∫
K ′fY dx + K̃ ′fY

∣∣∣∣∣
fX=fX∗ ,fY =fY ∗

= −
∫
fX∗(x)fW (y − x)dx

1

fY ∗(y)
+ α1 +

n∑
i=1

ηiyi +
n∑
i=1

n∑
j=1

θijyiyj + λ(y)

= −
∫
fX∗(x)fW (y − x)dx

1

fY ∗(y)
+ α1 + ηTy + yTΘy + λ(y)

= 0, (C.83)
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where

Γ =


γ11 · · · γ1n

...
. . .

...

γn1 · · · γnn

 , Θ =


θ11 · · · θ1n

...
. . .

...

θn1 · · · θnn

 , (C.84)

ζ = [ζ1, . . . , ζn]T , and η = [η1, . . . , ηn]T .

Since the equalities in (C.82) and (C.83) must be satisfied for any x and y,

0 = − log fY ∗(y)− λ(y),

0 = log fX∗(x) + α0 + ζxT + xTΓx + 1,

λ(y) = 1− α1 − ηTy − yTΘy, (C.85)

and

fX∗(x) = exp (−α0 − ζTx− xTΓx− 1) ,

fY ∗(y) = exp (−1 + α1 + ηTy + yTΘy) . (C.86)

Considering the constraints in (C.79), fX∗(x) and fY ∗(x) in (C.86) are expressed as

fX∗(x) = (2π)−
n
2 |ΣX|−

1
2 exp

{
−1

2
(x− µX)T Σ−1

X (x− µX)

}
,

= exp

{
−1

2
log (2π)n |ΣX| −

1

2
xTΣ−1

X x + µT

XΣ−1
X x− 1

2
µT

XΣ−1
X µX

}
= exp (−α0 − ζTx− xTΓx− 1) ,

fY ∗(y) = (2π)−
n
2 |ΣY |−

1
2 exp

{
−1

2
(y − µY )T Σ−1

Y (y − µY )

}
= exp

{
−1

2
log (2π)n |ΣY | −

1

2
yTΣ−1

Y y + µT

YΣ−1
Y y − 1

2
µT

YΣ−1
Y µY

}
= exp (−1 + α1 + ηTy + yTΘy) , (C.87)
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where ΣX = ΩX − µXµ
T
X, ΣY = ΣX + ΣW , and ΣW is a covariance matrix of WG.

Based on the equations in (C.87),

α0 = −1 +
1

2
log (2π)n |ΣX|+

1

2
µT

XΣ−1
X µX,

α1 = 1− 1

2
log (2π)n |ΣY | −

1

2
µT

YΣ−1
Y µY ,

Γ =
1

2
Σ−1
X ,

ζ = −µT

XΣ−1
X ,

Θ =
1

2
Σ−1
Y ,

η = −µT

YΣ−1
Y . (C.88)

Therefore, the optimal solutions fX∗ and fY ∗ are multi-variate Gaussian density func-

tions (without loss of generality, we assume that the covariance matrix ΣX is invert-

ible due to the reason mentioned in Appendix C.2).

Now, by confirming the second-order variation condition, we will show that the

optimal solutions fX∗ and fY ∗ minimize the variational functional in (C.78). Based

on Theorem 5.2, we will show that the following matrix is positive definite:

 K ′′fXfX K ′′fXfY

K ′′fY fX K ′′fY fY

 � 0. (C.89)
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Since the elements of the matrix in (C.89) are defined as

K ′′fXfX

∣∣∣
fX=fX∗ ,fY =fY ∗

=
fW (y − x)

fX∗(x)
,

K ′′fY fY

∣∣∣
fX=fX∗ ,fY =fY ∗

=
fX∗(x)fW (y − x)

fY ∗(y)2
,

K ′′fXfY

∣∣∣
fX=fX∗ ,fY =fY ∗

= −fW (y − x)

fY ∗(y)
,

K ′′fY fX

∣∣∣
fX=fX∗ ,fY =fY ∗

= −fW (y − x)

fY ∗(y)
, (C.90)

the matrix is a positive definite matrix, and therefore δ2U > 0. Therefore, the

optimal solutions fX∗ and fY ∗ actually minimize the variational functional in (C.78).

Even though these optimal solutions are necessarily optimal, there exists only one

solution, which is a multi-variate Gaussian density function, which satisfies Euler’s

equation in (C.82) and (C.83). Therefore, fX∗ and fY ∗ are also sufficient in this case.

Remark C.5. The constraints related to the mean vectors in (C.79) are unneces-

sary. Without these constraints, the optimal solutions are still multi-variate Gaussian

density functions but the mean vectors are changed into zero.

C.10 Proof of Theorem 5.13

Proof. To prove the entropy power inequality, we slightly change the inequality in

(5.36) into the following relationship:

h(X̃ + W̃ ) ≥ a2
Xh(X̃) + a2

Wh(W̃ )− log aX − log aW , (C.91)

where X̃ = aXX and X̃ = aWW . Since aX and aW are constants, they do not affect

the optimization, and we can ignore these two terms.
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Based on the inequality in (C.91) and required constraints, construct the following

functional problem (for the simplicity of the notation, we simply denote X̃ and W̃

as X and W ):

min
fX ,fW ,fY

∫ ∫
fX(x)fW (y − x)

(
− log fY (y) + a2

X log fX(x) + a2
W log fW (y − x)

)
dxdy

(C.92)

s.t.

∫ ∫
fX(x)fW (y − x) dxdy = 1,∫ ∫
y2fX(x)fW (y − x) dxdy = m2

Y ∗ ,∫ ∫
x2fX(x)fW (y − x)dxdy = m2

X∗ ,∫ ∫
(y − x)2fX(x)fW (y − x)dxdy = m2

W∗ ,

−
∫ ∫

fX(x)fW (y − x) log fX(x)dxdy = pX,

−
∫ ∫

fX(x)fW (y − x) log fW (y − x)dxdy = pW ,

fY (y) =

∫
fX(x)fW (y − x) dx, (C.93)

where m2
X∗ , m

2
W∗ , and m2

Y ∗ denote the second-order moments of the optimal solu-

tions of X, W , and Y , respectively. The constraints related to the second-order

moments mean that all random variables have finite second-order moments. Also,

the constraints related to pX and pW mean that random variables X and W have

finite entropies, respectively, where pX and pW are constants. Without loss of gen-

erality, the zero mean condition is assumed for all random variables (in the case of

non-zero mean, all constraints related to the second-order moments are changed into

constraints related to the covariance matrices).

Using Lagrange multipliers, the problem in (C.92) and the constraints in (C.93)
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are reformulated as the following equivalent problem:

min
fX ,fW ,fY

∫ (∫
K(x, y, fX, fW , fY )dx

)
+ K̃(y, fY )dy, (C.94)

where

K(x, y, fX, fW , fY ) = fX(x)fW (y − x)
(
− log fY (y) + (a2

X − λX) log fX(x)

+(a2
W − λW ) log fW (y − x) + α0 + α1y

2 + α2x
2

+α3 (y − x)2 − λ(y)
)
,

K̃(y, fY ) = λ(y)fY (y). (C.95)

The first-order partial derivative is expressed as

K ′fX

∣∣∣
fX=fX∗ ,fW=fW∗ ,fY =fY ∗

= fW∗ (y − x)
(
− log fY ∗(y) + (a2

X − λX) log fX∗(x) + (a2
W − λW ) log fW∗ (y − x)

+α0 + α1y
2 + α2x

2 + α3 (y − x)2 − λ(y) + a2
X − λX

)
,

K ′fW

∣∣∣
fX=fX∗ ,fW=fW∗ ,fY =fY ∗

= fX∗(x)
(
− log fY ∗(y) + (a2

X − λX) log fX∗(x) + (a2
W − λW ) log fW∗ (y − x)

+α0 + α1y
2 + α2x

2 + α3 (y − x)2 − λ(y) + a2
W − λW

)
,(∫

Kdx+ K̃

)′
fY

∣∣∣
fX=fX∗ ,fW=fW∗ ,fY =fY ∗

= −
∫
fX∗(x)fW∗ (y − x) dx

1

fY ∗(y)
+ λ(y). (C.96)

Due to the first-order variation condition, δU [fX∗ , fW∗ , fY ∗ ] = 0, the optimal
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solutions fX∗ , fW∗ , and fY ∗ , must satisfy the following relationships:

− log fY ∗(y) + α1y
2 − λ(y) + cY = 0,

(a2
X − λX) log fX∗(x) + α2x

2 + cX = 0,

(a2
W − λW ) log fW∗ (y − x) + α3 (y − x)2 + α0 + a2

W − λW − cX − cY = 0,

−1 + λ(y) = 0,

a2
W − λW − a2

X + λX = 0, (C.97)

and therefore,

fY ∗(y) = exp
{
α1y

2 − λ(y) + cY
}
,

fX∗(x) = exp

{
1

a2
X − λX

(
−α2x

2 − cX
)}

,

fW∗ (y − x) = exp

{
1

a2
W − λW

(
−α3 (y − x)2 − α0 − a2

W + λW + cX + cY
)}

,

λ(y) = 1. (C.98)
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Considering the constraints in (C.93), the equations in (C.98) are expressed as

fY ∗(y)=
1√

2π
(
− 1

2α1

) exp

− 1

2
(
− 1

2α1

)y2


√

2π

(
− 1

2α1

)
exp {−λ(y) + cY }

=
1√

2πm2
Y ∗

exp

{
− 1

2m2
Y ∗
y2

}
,

fX∗(x)=
1√

2π
(
a2
X−λX
2α2

) exp

− 1

2
(
a2
X−λX
2α2

)x2


×

√
2π

(
a2
X − λX
2α2

)
exp

{
− cX
a2
X − λX

}
=

1√
2πm2

X∗

exp

{
− 1

2m2
X∗
x2

}
,

fW∗(y − x)=
1√

2π
(
a2
W−λW

2α3

) exp

− 1

2
(
a2
W−λW

2α3

) (y − x)2


×

√
2π

(
a2
W − λW

2α3

)
exp

{
−α0 − a2

W + λW + cX + cY
a2
W − λW

}
=

1√
2πm2

W∗

exp

{
− 1

2m2
W∗

(y − x)2

}
, (C.99)
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where

α0 = −(a2
W − λW ) + cX + cY +

a2
W − λW

2
log 2πm2

W∗

α1 = − 1

2m2
Y ∗
,

α2 =
a2
X − λX
2m2

X∗
, (C.100)

α3 =
a2
W − λW
2m2

W∗
, (C.101)

cX =
a2
X − λX

2
log 2πm2

X∗

cY = 1− 1

2
log 2πm2

Y ∗ ,

a2
X − λX = a2

W − λW ≥ 1, (C.102)

m2
X∗ =

1

2πe
exp {2pX} ,

m2
W∗ =

1

2πe
exp {2pW} ,

m2
Y ∗ = m2

X∗ +m2
W∗

=
1

2πe
exp {2pX}+

1

2πe
exp {2pW} .

The inequality in (C.102) is due to the second-order variation condition, which will

be justified next.
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Consider now the conditions for the second variation of the functional problem:

K ′′fXfX

∣∣∣
fX=fX∗ ,fW=fW∗ ,fY =fY ∗

=
(a2

X − λX)fW∗ (y − x)

fX∗(x)
,

K ′′fW fW

∣∣∣
fX=fX∗ ,fW=fW∗ ,fY =fY ∗

=
(a2

W − λW )fX∗(x)

fW∗ (y − x)
,(∫

Kdx+ K̃

)′′
fY fY

∣∣∣
fX=fX∗ ,fW=fW∗ ,fY =fY ∗

=
fX∗(x)fW∗ (y − x)

fY ∗(y)2
,

K ′′fXfW

∣∣∣
fX=fX∗ ,fW=fW∗ ,fY =fY ∗

= a2
W − λW ,

K ′′fW fX

∣∣∣
fX=fX∗ ,fW=fW∗ ,fY =fY ∗

= a2
X − λX,

K ′′fXfY

∣∣∣
fX=fX∗ ,fW=fW∗ ,fY =fY ∗

= −fW
∗ (y − x)

fY ∗(y)
,

K ′′fY fX

∣∣∣
fX=fX∗ ,fW=fW∗ ,fY =fY ∗

= −fW
∗ (y − x)

fY ∗(y)
,

K ′′fW fY

∣∣∣
fX=fX∗ ,fW=fW∗ ,fY =fY ∗

= −fX
∗(x)

fY ∗(y)
,

K ′′fY fW

∣∣∣
fX=fX∗ ,fW=fW∗ ,fY =fY ∗

= −fX
∗(x)

fY ∗(y)
. (C.103)

To satisfy δ2J ≥ 0, the following condition must hold:

[
hX hW hY

]
K ′′fXfX K ′′fXfW K ′′fXfY

K ′′fW fX
K ′′fW fW

K ′′fW fY

K ′′fY fX K ′′fY fW K ′′fY fY



hX

hW

hY


∣∣∣∣∣
fX=fX∗ ,fW=fW∗ ,fY =fY ∗

= K ′′fXfXh
2
X +K ′′fW fW

h2
W +K ′′fY fY h

2
Y + (K ′′fXfW +K ′′fW fX

)hXhW

+(K ′′fW fY
+K ′′fY fW )hWhY + (K ′′fXfY +K ′′fY fX )hY hX

∣∣∣
fX=fX∗ ,fW=fW∗ ,fY =fY ∗

(C.104)

≥ 0.

Using the defined quantities in (C.103), the equation in (C.104) is expressed as
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follows:

K ′′fX∗fX∗h
2
X +K ′′fW∗fW∗h

2
W +K ′′fY ∗fY ∗h

2
Y + (K ′′fX∗fW∗ +K ′′fW∗fX∗ )hXhW

+(K ′′fW∗fY ∗ +K ′′fY ∗fW∗ )hWhY + (K ′′fX∗fY ∗ +K ′′fY ∗fX∗ )hY hX

=
(a2

X − λX)fW∗ (y − x)

fX∗(x)
hX(x)2 +

(a2
W − λW )fX∗(x)

fW∗ (y − x)
hW (y − x)2

+
fX∗(x)fW∗ (y − x)

fY ∗(y)2
hY (y)2 + 2(a2

W − λW )hX(x)hW (y − x)

−2
fX∗(x)

fY ∗(y)
hW (y − x)hY (y)− 2

fW∗ (y − x)

fY ∗(y)
hX(x)hY (y)

=
fW∗ (y − x)

fX∗(x)

(
(a2

W − λW )hX(x)2 + (a2
W − λW )

fX∗(x)2

fW∗ (y − x)2hW (y − x)2

+
fX∗(x)2

fY ∗(y)2
hY (y)2 + 2(a2

W − λW )
fX∗(x)

fW∗ (y − x)
hX(x)hW (y − x)

−2
fX∗(x)2

fW∗ (y − x) fY ∗(y)
hW (y − x)hY (y)− 2

fX∗(x)

fY ∗(y)
hX(x)hY (y)

)

=
fW∗(y − x)

fX∗(x)

(
hX(x) +

fX∗(x)

fW∗ (y − x)
hW (y − x)− fX∗(x)

fY ∗(y)
hY (y)

)2

≥ 0, (C.105)

where a2
W − λW = a2

X − λX ≥ 1.

Therefore, the optimal solutions, fX∗ , fW∗ , and fY ∗ , minimize the variational

problem in (C.92). Even though fX∗ , fW∗ , and fY ∗ are necessarily optimal, they

are sufficiently optimal since only Gaussian density functions are in the feasible

constraints set.
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C.11 Proof of Theorem 5.14

Proof. Similar to the proof shown in Appendix C.10, we first construct the following

functional problem:

min
fX ,fW ,fY

∫ ∫
fX(x)fW (y − x)

(
− log fY (y) + a2

X log fX(x) + a2
W log fW (y − x)

)
dxdy

s.t.

∫ ∫
fX(x)fW (y − x) dxdy = 1,∫ ∫
yyTfX(x)fW (y − x) dxdy = ΩX∗ + ΩW∗ ,∫ ∫
xxTfX(x)fW (y − x) dxdy = ΩX∗ ,∫ ∫
(y − x) (y − x)T fX(x)fW (y − x) dxdy = ΩW∗ ,

−
∫ ∫

fX(x)fW (y − x) log fX(x)dxdy = pX,

−
∫ ∫

fX(x)fW (y − x) log fW (y − x) dxdy = pW ,

fY (y) =

∫
fX(x)fW (y − x) dx, (C.106)

where pX and pW are constants, and the constraints related to these constants mean

the entropies of X and W are finite. The matrices ΩX∗ and ΩW∗ denote the cor-

relation matrices of the optimal random vectors X∗ and W∗, respectively. The

constraints related to these correlation matrices mean that the correlation matrices

of random vectors X and W exist. Without loss of generality, the mean vectors of

X and W are assumed to be zero (If X and W have non-zero mean vectors, the

constraints related to the correlation matrices are changed into the ones related to

the covariance matrices.).

Using Lagrange multipliers, the problem in (C.106) is changed into the following
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optimization problem:

min
fX ,fW ,fY

∫ (∫
K(x,y, fX, fW , fY )dx

)
+ K̃(y, fY )dy,

where

K(x,y, fX, fW , fY ) = fX(x)fW (y − x)
(
− log fY (y) + (a2

X − λX) log fX(x)

+(a2
W − λW ) log fW (y − x) + α +

n∑
i=1

n∑
j=1

γijyiyj

+
n∑
i=1

n∑
j=1

φijxixj +
n∑
i=1

n∑
j=1

θij (yi − xi) (yj − xj)− λ(y)
)
,

K̃(y, fY ) = λ(y)fY (y). (C.107)

Then,

K ′fX = fW (y − x)
(
− log fY (y) + (a2

X − λX) log fX(x) + (a2
W − λW ) log fW (y − x)

+α +
n∑
i=1

n∑
j=1

γijyiyj +
n∑
i=1

n∑
j=1

φijxixj +
n∑
i=1

n∑
j=1

θij (yi − xi) (yj − xj)

−λ(y) + a2
X − λX

)
,

K ′fW = fX(x)
(
− log fY (y) + (a2

X − λX) log fX(x) + (a2
W − λW ) log fW (y − x) + α

+
n∑
i=1

n∑
j=1

γijyiyj +
n∑
i=1

n∑
j=1

φijxixj +
n∑
i=1

n∑
j=1

θij (yi − xi) (yj − xj)

−λ(y) + a2
W − λW

)
,(∫

Kdx + K̃

)′
fY

= −
∫
fX(x)fW (y − x) dx

1

fY (y)
+ λ(y). (C.108)
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To satisfy δU [fX∗ , fW∗ , fY ∗ ] = 0,

− log fY ∗(y) +
n∑
i=1

n∑
j=1

γijyiyj − λ(y) + cY = 0,

(a2
X − λX) log fX∗(x) +

n∑
i=1

n∑
j=1

φijxixj + cX = 0,

(a2
W − λW ) log fW∗ (y − x) +

n∑
i=1

n∑
j=1

θij (yi − xi) (yj − xj) + α

+a2
W − λW − cX − cY = 0,

−1 + λ(y) = 0,

a2
W − λW − a2

X + λX = 0. (C.109)

Since the equations in (C.109) must be satisfied for any x and y, the optimal solution

fX∗ , fW∗ , and fW∗ are expressed as

fY ∗(y)=exp

{
n∑
i=1

n∑
j=1

γijyiyj − λ(y) + cY

}
=exp {yTΓy − 1 + cY } ,

fX∗(x)=exp

{
1

a2
X − λX

(
−

n∑
i=1

n∑
j=1

φijxixj − cX

)}

=exp

{
− 1

a2
X − λX

(xTΦx + cX)

}
,

fW∗ (y − x)=exp

{
1

a2
W − λW

(
−

n∑
i=1

n∑
j=1

θij (yi − xi) (yj − xj)

−α− a2
W + λW + cX + cY

)}

=exp

{
− 1

a2
W − λW

(
(y − x)T Θ (y − x) + α + a2

W − λW − cX − cY

)}
λ(y)=1. (C.110)
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Considering the constraints in (C.106), the equations in (C.110) are further pro-

cessed as

fY ∗(y) =
1

(2π)
n
2

∣∣−1
2
Γ−1

∣∣ 1
2

exp

{
−1

2
yT

(
−1

2
Γ−1

)−1

y

}

×(2π)
n
2

∣∣∣∣−1

2
Γ−1

∣∣∣∣ 1
2

exp {−λ(y) + cY }

=
1

(2π)
n
2 |ΩX∗ + ΩW∗ |

1
2

exp

{
−1

2
yT (ΩX∗ + ΩW∗)

−1 y

}
,

fX∗(x) =
1

(2π)
n
2

∣∣∣a2
X−λX

2
Φ−1

∣∣∣ 1
2

exp

{
−1

2
xT

(
a2
X − λX

2
Φ−1

)−1

x

}

×(2π)
n
2

∣∣∣∣a2
X − λX

2
Φ−1

∣∣∣∣ 1
2

exp

{
− cX
a2
X − λX

}
=

1

(2π)
n
2 |ΩX∗|

1
2

exp

{
−1

2
xTΩ−1

X∗x

}
,

fW∗ (y − x) =
1

(2π)
n
2

∣∣∣a2
W−λW

2
Θ−1

∣∣∣ 1
2

exp

{
−1

2
(y − x)T

(
a2
W − λW

2
Θ−1

)−1

(y − x)

}

×(2π)
n
2

∣∣∣∣a2
W − λW

2
Θ−1

∣∣∣∣ 1
2

exp

{
−α− a2

W + λW + cX + cY
a2
W − λW

}
=

1

(2π)
n
2 |ΩW∗|

1
2

exp

{
−1

2
(y − x)T Ω−1

W∗ (y − x)

}
, (C.111)
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where

α = −(a2
W − λW ) + cX + cY +

a2
W − λW

2
log ((2π)n |ΩW∗|)

Γ = −1

2
(ΩX∗ + ΩW∗)

−1 ,

Φ =
a2
X − λX

2
Ω−1
X∗ , (C.112)

Θ =
a2
W − λW

2
Ω−1
W∗ , (C.113)

cX =
a2
X − λX

2
log ((2π)n |ΩX∗|)

cY = 1− 1

2
log ((2π)n |ΩX∗ + ΩW∗|) ,

a2
W − λW = a2

X − λX ≥ 1, (C.114)

|ΩX∗| =

(
1

2πe
exp

{
2

n
pX

})n
, (C.115)

|ΩW∗ | =

(
1

2πe
exp

{
2

n
pW

})n
. (C.116)

Without loss of generality, the matrices ΩX∗ and ΩW∗ are assumed to be invertible

due to the same reasons mentioned in Appendix C.2. The relationships in (C.114)

are obtained based on the second-order variation condition, which will be shown later

in this proof.

Therefore, we can always find the Lagrange multipliers.
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Now, consider the conditions for the second-order variation condition:

K ′′fXfX

∣∣∣
fX=fX∗ ,fW=fW∗ ,fY =fY ∗

=
(a2

X − λX)fW∗ (y − x)

fX∗(x)
,

K ′′fW fW

∣∣∣
fX=fX∗ ,fW=fW∗ ,fY =fY ∗

=
(a2

W − λW )fX∗(x)

fW∗ (y − x)
,(∫

Kdx + K̃

)′′
fY fY

∣∣∣
fX=fX∗ ,fW=fW∗ ,fY =fY ∗

=
fX∗(x)fW∗ (y − x)

fY ∗(y)2
,

K ′′fXfW

∣∣∣
fX=fX∗ ,fW=fW∗ ,fY =fY ∗

= a2
W − λW ,

K ′′fW fX

∣∣∣
fX=fX∗ ,fW=fW∗ ,fY =fY ∗

= a2
X − λX,

K ′′fXfY

∣∣∣
fX=fX∗ ,fW=fW∗ ,fY =fY ∗

= −fW
∗ (y − x)

fY ∗(y)
,

K ′′fY fX

∣∣∣
fX=fX∗ ,fW=fW∗ ,fY =fY ∗

= −fW
∗ (y − x)

fY ∗(y)
,

K ′′fW fY

∣∣∣
fX=fX∗ ,fW=fW∗ ,fY =fY ∗

= −fX
∗(x)

fY ∗(y)
,

K ′′fY fW

∣∣∣
fX=fX∗ ,fW=fW∗ ,fY =fY ∗

= −fX
∗(x)

fY ∗(y)
. (C.117)

To satisfy δ2U [fX∗ , fW∗ , fY ∗ ] ≥ 0, the following must hold:

[
hX hW hY

]
K ′′fX∗fX∗ K ′′fX∗fW∗ K ′′fX∗fY ∗

K ′′fW∗fX∗ K ′′fW∗fW∗ K ′′fW∗fY ∗

K ′′fY ∗fX∗ K ′′fY ∗fW∗ K ′′fY ∗fY ∗



hX

hW

hY


= K ′′fX∗fX∗h

2
X +K ′′fW∗fW∗h

2
W +K ′′fY ∗fY ∗h

2
Y + (K ′′fX∗fW∗ +K ′′fW∗fX∗ )hXhW

+(K ′′fW∗fY ∗ +K ′′fY ∗fW∗ )hWhY + (K ′′fX∗fY ∗ +K ′′fY ∗fX∗ )hY hX (C.118)

≥ 0.

Using the defined quantities in (C.117), the equation in (C.118) is expressed as
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follows:

K ′′fX∗fX∗h
2
X +K ′′fW∗fW∗h

2
W +K ′′fY ∗fY ∗h

2
Y + (K ′′fX∗fW∗ +K ′′fW∗fX∗ )hXhW

+(K ′′fW∗fY ∗ +K ′′fY ∗fW∗ )hWhY + (K ′′fX∗fY ∗ +K ′′fY ∗fX∗ )hY hX

=
(a2

X − λX)fW∗ (y − x)

fX∗(x)
hX(x)2 +

(a2
W − λW )fX∗(x)

fW∗(y−x)

hW (y − x)2

+
fX∗(x)fW∗ (y − x)

fY ∗(y)2
hY (y)2 + 2

(a2
W − λW )

aW
hX(x)hW (y − x)

−2
fX∗(x)

fY ∗(y)
hW (y − x)hY (y)− 2

fW∗ (y − x)

fY ∗(y)
hX(x)hY (y)

=
fW∗ (y − x)

fX∗(x)

(
(a2

W − λW )hX(x)2 + (a2
W − λW )

fX∗(x)2

fW∗ (y − x)2hW (y − x)2

+
fX∗(x)2

fY ∗(y)2
hY (y)2 + 2(a2

W − λW )
fX∗(x)

fW∗ (y − x)
hX(x)hW (y − x)

−2
fX∗(x)2

fW∗ (y − x) fY ∗(y)
hW (y − x)hY (y)− 2

fX∗(x)

fY ∗(y)
hX(x)hY (y)

)

≥ fW∗(y − x)

fX∗(x)

(
hX(x) +

fX∗(x)

fW∗ (y − x)
hW (y − x)− fX∗(x)

fY ∗(y)
hY (y)

)2

≥ 0, (C.119)

where a2
W − λW = a2

X − λX ≥ 1.

Therefore, the optimal solutions, fX∗ , fW∗ , and fY ∗ , minimize the variational

problem in (C.106). Even though fX∗ , fW∗ , and fY ∗ are necessarily minimum solu-

tions, multi-variate Gaussian density functions are the only ones in the feasible set.

However, unlike Theorem 5.13, the correlation matrices are not explicitly defined

as shown in (C.115) and (C.116), and there are more than one Gaussian density

functions which satisfy the first-order and the second-order variation conditions.

Therefore, we need an additional step to determine the correlation matrices ΩX∗ and

ΩW∗ as follows.

Based on the first-order and the second-order variation conditions, we know the
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optimal solutions of the functional problem in (C.106) are multi-variate Gaussian

density functions fX∗ and fW∗ whose correlation matrices are ΩX∗ and ΩW∗ , respec-

tively. Therefore, the inequality in (5.37) is expressed as

h(aXX + aWW)− a2
Xh(X)− a2

Wh(W)

≥ h(aXX∗ + aWW∗)− a2
Xh(X∗)− a2

Wh(W∗)

=
1

2
log (2πe)n

∣∣a2
XΩX∗ + a2

WΩW∗
∣∣− a2

X

2
log (2πe)n |ΩX∗| −

a2
W

2
log (2πe)n |ΩW∗|

≥ 0. (C.120)

Since log | · | is a concave function and a2
X + a2

W = 1, the inequality in (C.120) is

proved using Jensen’s inequality. Therefore,

h(aXX + aWW) ≥ a2
Xh(X) + a2

Wh(W), (C.121)

and the proof is completed.

Remark C.6. In (C.120), equality holds if and only if ΩX∗ = ΩW∗. Since the optimal

multi-variate Gaussian density functions have zero mean vectors, in this case, the

correlation matrices are equal to the covariance matrices. Therefore, the equality

condition requires identical covariance matrices. However, the equality condition is

not required in the proof of EPI.
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C.12 Proof of Theorem 5.15

Proof. Now, construct the following variational problem, which represents the in-

equality in (5.38) and required constraints:

min
fX ,fY

∫ ∫
fX(x)fW (y − x) (−µ log fY (y) + log fX(x) + µ (µ− 1) log fW (y − x)) dxdy

(C.122)

s.t.

∫ ∫
fX(x)fW (y − x)dxdy = 1,∫ ∫
(y − µY )2 fX(x)fW (y − x)dxdy = σ2

Y ∗ ,∫ ∫
(y − µY )2 fX(x)fW (y − x)dxdy =

∫ ∫
(x− µX)2 fX(x)fW (y − x)dxdy

+

∫ ∫
(y − x− µW )2 fX(x)fW (y − x)dxdy,∫ ∫

(x− µX)2 fX(x)fW (y − x)dxdy ≤ r2,

−
∫ ∫

fX(x)fW (y − x) log fX(x)dxdy = p,

fY (y) =

∫ ∫
fX(x)fW (y − x)dxdy, (C.123)

where p and r are constants, and σ2
Y ∗ stands for the variance of the optimal solution

Y .

Using Lagrange multipliers, the functional problem in (C.122) is expressed as

min
fX ,fY

∫ (∫
K(x, y, fX, fY )dx

)
+ K̃(y, fY )dy, (C.124)
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where

K(x, y, fX, fY )=fX(x)fW (y − x)
(
− µ log fY (y) + log fX(x) + µ (µ− 1) log fW (y − x)

+α0 + β1 (y − µY )2 + β2 (y − µY )2 − β2 (x− µX)2

−β2 (y − x− µW )2 + β3 (x− µX)2 − γ1 log fX(x)− λ(y)
)
,

K̃(y, fY ) = λ(y)fY (y). (C.125)

Due to the first-order variation condition,

K ′fX

∣∣∣
fX=fX∗ ,fY =fY ∗

= fW (y − x)
(
− µ log fY ∗(y) + log fX∗(x) + µ (µ− 1) log fW (y − x) + α0

+β1 (y − µY )2 + β2 (y − µY )2 − β2 (x− µX)2 − β2 (y − x− µW )2

+β3 (x− µX)2 − γ1 log fX∗(x)− λ(y) + 1− γ1

)
= 0, (C.126)∫

K ′fY dx+ K̃ ′fY

∣∣∣
fX=fX∗ ,fY =fY ∗

= −µ
∫
fX∗(x)fW (y − x)dx

fY ∗(y)
+ λ(y)

= 0. (C.127)
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Since the equations in (C.126) and (C.127) must be satisfied for any x and y,

λ(y) = µ,

fY ∗(y)=exp

{
1

µ

(
(β1 + β2) (y − µY ∗)2 + cY

)}

=
1√

2π
(
− µ

2(β1+β2)

) exp

− 1

2
(
− µ

2(β1+β2)

) (y − µY ∗)2


×

√
2π

(
− µ

2 (β1 + β2)

)
exp

{
cY
µ

}
fW (y − x)=exp

{
β2

µ (µ− 1)
(y − x− µW )2 − cW

µ (µ− 1)

}

=
1√

2π
(
−µ(µ−1)

2(β2)

) exp

− 1

2
(
−µ(µ−1)

2(β2)

) (y − x− µW )2


×

√
2π

(
−µ (µ− 1)

2 (β2)

)
exp

{
− cW
µ (µ− 1)

}
,

fX∗(x)=exp

{
1

1− γ1

(
(β2 − β3) (x− µX∗)2 − α0 + µ− 1 + γ1 + cW + cY

)}

=
1√

2π
(
− 1−γ1

2(β2−β3)

) exp

− 1

2
(
− 1−γ1

2(β2−β3)

) (x− µX∗)2


×

√
2π

(
− 1− γ1

2 (β2 − β3)

)
exp

{
−α0 + µ− 1 + γ1 + cW + cY

1− γ1

}
. (C.128)

Considering the constraints in (C.123), the equations in (C.128) are further pro-
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cessed as follows:

fY ∗(y) =
1√

2π
(
− µ

2(β1+β2)

) exp

− 1

2
(
− µ

2(β1+β2)

) (y − µY ∗)2


×

√
2π

(
− µ

2 (β1 + β2)

)
exp

{
cY
µ

}
=

1√
2πσ2

Y ∗

exp

{
− 1

2σ2
Y ∗

(y − µY ∗)2

}
,

fW (y − x) =
1√

2π
(
−µ(µ−1)

2(β2)

) exp

− 1

2
(
−µ(µ−1)

2(β2)

) (y − x− µW )2


×

√
2π

(
−µ (µ− 1)

2 (β2)

)
exp

{
− cW
µ (µ− 1)

}
=

1√
2πσ2

W

exp

{
− 1

2σ2
W

(y − x− µW )2

}
,

fX∗(x) =
1√

2π
(
− 1−γ1

2(β2−β3)

) exp

− 1

2
(
− 1−γ1

2(β2−β3)

) (x− µX∗)2


×

√
2π

(
− 1− γ1

2 (β2 − β3)

)
exp

{
−α0 + µ− 1 + γ1 + cW + cY

1− γ1

}
=

1√
2πσ2

X∗

exp

{
− 1

2σ2
X∗

(x− µX∗)2

}
, (C.129)
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where

α0 = µ− (1− γ1) + cW + cY +
1− γ1

2
log
(
2πσ2

X∗
)

=
µ (µ− 1)

2
log
(
2πm2

W

)
− µ

2
log
(
2πm2

Y

)
+
µ

2
log
(
2πm2

X

)
,

β1 = −β2 −
µ

2σ2
Y ∗

=
µ (µ− 1)

2σ2
W

− µ

2σ2
Y ∗

β2 = −µ (µ− 1)

2σ2
W

,

β3 = β2 +
(1− γ1)

2σ2
X∗

= −µ (µ− 1)

2σ2
W

+
(1− γ1)

2σ2
X∗

(C.130)

≥ 0,

cW =
µ (µ− 1)

2
log
(
2πσ2

W

)
,

cY = −µ
2

log
(
2πσ2

Y ∗
)
,

σ2
X∗ =

1

2πe
exp {2p} ≤ r2, (C.131)

σ2
Y ∗ = σ2

X∗ + σ2
W ,

γ1 ≤ 1− µ. (C.132)

The constant p must be chosen to satisfy the inequality in (C.131) due to Theorem

5.4. The inequality in (C.132) is due to the second-order variation condition, which

will be presented later in this proof. Therefore, by appropriately choosing p, the

Lagrange multipliers always exist, and therefore, the necessary optimal solutions,

which are Gaussian, exist.

To make the second variation positive, we need the positive-definiteness of the

202



following matrix:

 K ′′fXfX K ′′fXfY

K ′′fY fX K ′′fY fY

 ∣∣∣∣∣
fX=fX∗ ,fY =fY ∗

(C.133)

and it requires the following:

[
hX hY

] K ′′fXfX K ′′fXfY

K ′′fY fX K ′′fY fY


 hX

hY

 ∣∣∣∣∣
fX=fX∗ ,fY =fY ∗

= K ′′fXfXh
2
X +K ′′fY fY h

2
Y + (K ′′fXfY +K ′′fY fX )hY hX

∣∣∣
fX=fX∗ ,fY =fY ∗

(C.134)

> 0,

where hX and hY are arbitrary admissible functions.

Since K ′′fXfX , K ′′fXfY , K ′′fY fX , and K ′′fY fY are defined as

K ′′fXfX =
(1− γ1)fW (y − x)

fX(x)
,

K ′′fXfY = −µfW (y − x)

fY (y)
,

K ′′fY fX = −µfW (y − x)

fY (y)
,

K ′′fY fY =
µfX(x)fW (y − x)

fY (y)2
, (C.135)

the equation in (C.134) requires the following:

(1− γ1)fW (y − x)

fX∗(x)
hX(x)2 − 2

µfW (y − x)

fY ∗(y)
hX(x)hY (y) +

µfX∗(x)fW (y − x)

fY ∗(y)2
hY (y)2

≥ µfW (y − x)

fX∗(x)

(
hX(x)− fX∗(x)

fY ∗(y)
hY (y)

)2

, (C.136)

where γ1 ≤ 1−µ. Similar to the complementary slackness in KKT conditions, when
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β3 = 0 in (C.130), σ2
X∗ = (1− γ1)µ−1(µ− 1)−1σ2

W∗ , and it requires (1− γ1)µ−1(µ−

1)−1σ2
W∗ < r2 (If γ1 = 1 − µ, then σ2

X∗ = (µ − 1)−1σ2
W∗). Otherwise, σ2

X∗ = r2 ≤

(1− γ1)µ−1(µ− 1)−1σ2
W∗ .

In conclusion, the Gaussian density function, whose variance is σ2
X∗ , minimizes

the variational problem in (C.122), and the proof is completed.

Remark C.7. Unlike other theorems shown in this section, Theorem 5.15 only re-

quires to find necessarily optimal solutions, which is the same as Theorem in [32].

C.13 Proof of Theorem 5.16

Proof. We first construct the following variational problem (without loss of general-

ity, we assume the mean vectors of X, W, and Y are zeros. (cf. Appendix C.12)):

min
fX ,fY

∫∫
fX(x)fW (y−x) (−µ log fY (y) + log fX(x) + µ (µ− 1) log fW (y − x)) dxdy

(C.137)

s.t.

∫∫
fX(x)fW (y − x)dxdy = 1,∫∫
yyTfX(x)fW (y − x)dxdy =

∫∫
xxTfX(x)fW (y − x)dxdy,

+

∫∫
(y − x) (y − x)T fX(x)fW (y − x)dxdy,∫∫

xxTfX(x)fW (y − x)dxdy � Σ,∫∫
yyTfX(x)fW (y − x)dxdy = ΣY ∗ ,

−
∫∫

fX(x)fW (y − x) log fX(x)dxdy = pX,

fY (y) =

∫∫
fX(x)fW (y − x)dxdy, (C.138)

204



where pX is a constant, and ΣY ∗ is the covariance matrix of the optimal solution

of Y. Without loss of generality, the matrix Σ is assumed to be a positive definite

matrix due to the same reason mentioned in [32].

This problem is more appropriately changed as follows:

min
fX ,fY

∫∫
fX(x)fW (y − x) (−µ log fY (y) + log fX(x) + µ (µ− 1) log fW (y − x)) dxdy

(C.139)

s.t.

∫∫
fX(x)fW (y − x)dxdy = 1,∫∫ (
yiyj − xixj − (y − x)i (y − x)j

)
fX(x)fW (y − x)dxdy = 0,

n∑
i=1

n∑
j=1

(∫ ∫
xixjξiξjfX(x)fW (y − x)dxdy

)
≤

n∑
i=1

n∑
j=1

σ2
ijξiξj,∫∫

yiyjfX(x)fW (y − x)dxdy = σ2
Y ∗ij
,

−
∫∫

fX(x)fW (y − x) log fX(x)dxdy = pX,

fY (y) =

∫∫
fX(x)fW (y − x)dxdy, (C.140)

where the arbitrary deterministic non-zero vector ξ is defined as [ξ1, . . . , ξn]T , σ2
Y ∗ij

denotes the ith row and jth column element of ΣY ∗ , i = 1, . . . , n, and j = 1, . . . , n.

Using Lagrange multipliers, the functional problem in (C.139) and the constraints

in (C.140) are expressed as

min
fX ,fY

∫ (∫
K(x,y, fX, fY )dx

)
+ K̃(y, fY )dy, (C.141)
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where

K(x,y, fX, fY )=fX(x)fW (y−x)
(
− µ log fY (y) + log fX(x) + µ (µ− 1) log fW (y − x)

+α0 +
n∑
i=1

n∑
j=1

(
γijyiyj − γijxixj − γij (y − x)i (y − x)j + θxixjξiξj

+φijyiyj

)
− α1 log fX(x)− λ(y)

)
,

K̃(y, fY )=λ(y)fY (y). (C.142)

Then, the first-order variation condition is checked as follows.

K ′fX

∣∣∣
fX=fX∗ ,fY =fY ∗

= fW (y − x)
(
− µ log fY ∗(y) + (1− α1) log fX∗(x)

+µ (µ− 1) log fW (y − x) + α0 +
n∑
i=1

n∑
j=1

(
γijyiyj − γijxixj

−γij (y − x)i (y − x)j + θxixjξiξj + φijyiyj +
)
− λ(y) + 1− α1

)
= 0. (C.143)

K ′fX

∣∣∣
fY =fX∗ ,fY =fY ∗

= −
µ
∫
fX(x)fW (y − x)dx

fY (y)
+ λ(y)

= 0. (C.144)
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Since the equalities in (C.143) and (C.144) must be satisfied for any x and y,

λ(y) = µ,

fY ∗(y) = exp

{
1

µ
(yT (Γ + Φ) y + cY )

}
= (2π)−

n
2

∣∣∣−µ
2

(Γ + Φ)−1
∣∣∣− 1

2
exp

{
−1

2
yT

(
−µ

2
(Γ + Φ)−1

)−1

y

}
× (2π)

n
2

∣∣∣−µ
2

(Γ + Φ)−1
∣∣∣ 1

2
exp

{
cY
µ

}
fW (y − x) = exp

{
1

µ (µ− 1)

(
(y − x)T Γ (y − x)− cW

)}
= (2π)−

n
2

∣∣∣∣−µ (µ− 1)

2
Γ−1

∣∣∣∣− 1
2

× exp

{
−1

2
(y − x)T

(
−µ (µ− 1)

2
Γ−1

)−1

(y − x)

}

× (2π)
n
2

∣∣∣∣−µ (µ− 1)

2
Γ−1

∣∣∣∣ 1
2

exp

{
− cW
µ (µ− 1)

}
,

fX∗(x) = exp

{
1

1− α1

(xT (Γ− θΞ) x− α0 + µ− 1 + α1 + cW + cY )

}
= (2π)−

n
2

∣∣∣∣−1− α1

2
(Γ− θΞ)−1

∣∣∣∣− 1
2

× exp

{
−1

2
xT

(
−1− α1

2
(Γ− θΞ)−1

)−1

x

}

× (2π)
n
2

∣∣∣∣−1− α1

2
(Γ− θΞ)−1

∣∣∣∣ 1
2

× exp

{
−α0 + µ− 1 + α1 + cW + cY

1− α1

}
, (C.145)
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where

Φ =


φ11 · · · φ1n

...
. . .

...

φn1 · · · φnn

 , Γ =


γ11 · · · γ1n

...
. . .

...

γn1 · · · γnn

 , Ξ =


ξ1ξ1 · · · ξ1ξn

...
. . .

...

ξnξ1 · · · ξnξn

 ,
x = [x1, · · · , xn]T ,

y = [y1, · · · , yn]T ,

θ ≥ 0. (C.146)

Considering the constraints in (C.140), the equations in (C.145) are further processed
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as follows.

fY ∗(y) = (2π)−
n
2

∣∣∣−µ
2

(Γ + Φ)−1
∣∣∣− 1

2
exp

{
−1

2
yT

(
−µ

2
(Γ + Φ)−1

)−1

y

}
× (2π)

n
2

∣∣∣−µ
2

(Γ + Φ)−1
∣∣∣ 1

2
exp

{
cY
µ

}
= (2π)−

n
2 |ΣY ∗|−

1
2 exp

{
−1

2
yTΣ−1

Y ∗y

}
,

fW (y − x) = (2π)−
n
2

∣∣∣∣−µ (µ− 1)

2
Γ−1

∣∣∣∣− 1
2

× exp

{
−1

2
(y − x)T

(
−µ (µ− 1)

2
Γ−1

)−1

(y − x)

}

× (2π)
n
2

∣∣∣∣−µ (µ− 1)

2
Γ−1

∣∣∣∣ 1
2

exp

{
− cW
µ (µ− 1)

}
= (2π)−

n
2 |ΣW |−

1
2 exp

{
−1

2
(y − x)T Σ−1

W (y − x)

}
,

fX∗(x) = (2π)−
n
2

∣∣∣∣−1− α1

2
(Γ− θΞ)−1

∣∣∣∣− 1
2

× exp

{
−1

2
xT

(
−1− α1

2
(Γ− θΞ)−1

)−1

x

}

× (2π)
n
2

∣∣∣∣−1− α1

2
(Γ− θΞ)−1

∣∣∣∣ 1
2

× exp

{
−α0 + µ− 1 + α1 + cW + cY

1− α1

}
= (2π)−

n
2 |ΣX∗|−

1
2 exp

{
−1

2
xTΣ−1

X∗x

}
, (C.147)
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where

α0 = µ− (1− α1) + cW + cY +
1− α1

2
log (2π)n |ΣX∗|

= µ− (1− α1) +
µ (µ− 1)

2
log (2π)n |ΣW |

−µ
2

log (2π)n |ΣY ∗|+
1− α1

2
log (2π)n |ΣX∗| ,

Γ = −µ (µ− 1)

2
Σ−1
W ,

Φ = −Γ− µ

2
Σ−1
Y ∗

=
µ (µ− 1)

2
Σ−1
W −

µ

2
(ΣX∗ + ΣW )−1 ,

ΣX∗ = −1− α1

2
(Γ− θΞ)−1

=
1− α1

2

(
µ (µ− 1)

2
Σ−1
W + θΞ

)−1

(C.148)

� 0, (C.149)

θ ≥ 0,

α1 ≤ 1− µ, (C.150)

cW =
µ (µ− 1)

2
log (2π)n |ΣW | ,

cY = −µ
2

log (2π)n |ΣY ∗| ,

|ΣX∗| =

(
1

2πe
exp

{
2

n
pX

})n
≤ |Σ| . (C.151)

The inequality in (C.149) is always satisfied since the matrix Ξ is non-zero positive

semi-definite and θ is non-negative. The inequality in (C.151) will be proved later

in this proof. The constant pX must be chosen to satisfy the inequality in (C.151).

Then, the Lagrange multipliers always exist, and necessary optimal solutions exist.

Interestingly, similar to the complementary slackness in KKT conditions, when

θ = 0 in (C.148), ΣX∗ = (1− α1)µ−1(µ− 1)−1ΣW , and it requires (1− α1)µ−1(µ−

1)−1ΣW � Σ. When θ is non-zero, the equation in (C.148) is positive semi-definite,
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and it means ΣX∗ = (1− α1)µ−1 (µ− 1)−1 ΣW̃ , where ΣW̃ = ΣW − ΣŴ , where

ΣŴ and ΣW̃ are positive semi-definite matrices. When 1 − α1 = µ, then ΣX∗ =

(µ− 1)−1 ΣW̃ , which is exactly the same as the one in [32] and [41].

To make the second variation positive, we need the positive-definiteness of the

following matrix:

 K ′′fX∗fX∗ K ′′fX∗fY ∗

K ′′fY ∗fX∗ K ′′fY ∗fY ∗

 , (C.152)

and it requires the following condition to hold:

[
hX hY

] K ′′fX∗fX∗ K ′′fX∗fY ∗

K ′′fY ∗fX∗ K ′′fY ∗fY ∗


 hX

hY


= K ′′fX∗fX∗h

2
X +K ′′fY ∗fY ∗h

2
Y + (K ′′fX∗fY ∗ +K ′′fY ∗fX∗ )hY hX

≥ 0, (C.153)

where hX and hY are arbitrary admissible functions.

Since K ′′fX∗fX∗ , K
′′
fX∗fY ∗

, K ′′fY ∗fX∗ , and K ′′fY ∗fY ∗ are defined as

K ′′fX∗fX∗ =
(1− α1)fW (y − x)

fX∗(x)
,

K ′′fX∗fY ∗ = −µfW (y − x)

fY ∗(y)
,

K ′′fY ∗fX∗ = −µfW (y − x)

fY ∗(y)
,

K ′′fY ∗fY ∗ =
µfX∗(x)fW (y − x)

fY ∗(y)2
, (C.154)
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the equation in (C.153) requires

(1− α1)fW (y − x)

fX∗(x)
hX(x)2 − 2

µfW (y − x)

fY ∗(y)
hX(x)hY (y) +

µfX∗(x)fW (y − x)

fY ∗(y)2
hY (y)2

≥ µfW (y − x)

fX∗(x)

(
hX(x)− fX∗(x)

fY ∗(y)
hY (y)

)2

, (C.155)

where α1 ≥ 1− µ.

Therefore, the optimal solutions fX∗ and fY ∗ minimize the functional problem in

(C.139), and the proof is completed.

C.14 Proof of Theorem 5.17

Proof. First, choose a Gaussian random vector W̃G whose covariance matrix ΣW̃ sat-

isfies ΣW̃ � ΣW and ΣW̃ � ΣV . Since the Gaussian random vectors VG and WG can

be represented as the summation of two independent random vectors W̃G and V̂G,

and the summation of two independent random vectors W̃G and ŴG, respectively,

the left-hand side of the equation in (5.40) is written as follows:

µh(X + VG)− h(X + WG)

≥ µh(X + VG)− h(X + W̃G)− h(WG) + h(W̃G)

= µh(X + W̃G + V̂G)− h(X + W̃G)− h(W̃G + ŴG) + h(W̃G). (C.156)

Since the equation will be minimized over fX(x), the last two terms in (C.156) are

ignored, and by substituting Y and X̂ for X + W̃G + V̂G and X + W̃G, respectively,
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the inequality in (5.40) is equivalently expressed as the following variational problem:

min
fX̂ ,fY

µh(Y)− h(X̂)− µ (µ− 1)h(V̂G)

s. t.

∫ ∫
fX̂(x)fV̂ (y − x)dxdy − 1 = 0,∫ ∫
fX̂(x)fV̂ (y − x)xxTdxdy −ΣX̂ � 0,∫ ∫
fX̂(x)fV̂ (y − x)yyTdxdy −ΣY ∗ = 0,∫ ∫
fX̂(x)fV̂ (y − x)

(
yyT − xxT − (y − x) (y − x)T

)
dxdy = 0,

−
∫ ∫

fX̂(x)fV̂ (y − x) log fX̂(x)dxdy = pX̂, (C.157)

fY (y) =

∫
fX̂(x)fV̂ (y − x)dx,

where X̂ = X+W̃G, Y = X̂+V̂G, WG = W̃G+ŴG, VG = W̃G+V̂G, ΣX̂ = Σ+ΣW̃ ,

ΣY ∗ = ΣX∗ + ΣV , and ΣX∗ is the covariance matrix of the optimal solution X∗.

The variational problem in (C.157) is exactly the same as the one in (C.139).

Therefore, using the same method in the proof of Theorem 5.16, we obtain the

following inequality (see the details of the proof in Appendix C.13).

µh(X + W̃G + V̂G)− h(X + W̃G)− h(W̃G + ŴG) + h(W̃G)

≥ µh(X∗G + W̃G + V̂G)− h(X∗G + W̃G)− h(W̃G + ŴG) + h(W̃G). (C.158)

By appropriately choosing X∗G and W̃G, the right-hand side of the equation in

(C.158) is expressed as

µh(X∗G + W̃G + V̂G)− h(X∗G + W̃G)− h(W̃G + ŴG) + h(W̃G)

= µh(X∗G + W̃G + V̂G)− h(X∗G + WG). (C.159)
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The equality in (C.159) is due to the equality condition of data processing inequality

in [41]. For the completeness of the proof, we introduce a technique, which is slightly

different from the one in [41].

To satisfy the equality in the equation (C.159), the equality condition in the

following lemma must be satisfied.

Lemma C.1 (Data Processing Inequality [9]). When three random vectors Y1, Y2,

and Y3 represent a Markov chain Y1 → Y2 → Y3, the following inequality is satis-

fied:

I(Y1; Y3) ≤ I(Y1; Y2). (C.160)

The equality holds if and only if I(Y1; Y2|Y3) = 0.

In Lemma C.1, Y1, Y2, and Y3 are defined as X∗G, X∗G+W̃G, and X∗G+W̃G+ŴG,
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respectively. Therefore, the equality condition, I(Y1; Y2|Y3) = 0 is expressed as

I(Y1; Y2|Y3)=h(Y1|Y3)− h(Y1|Y2,Y3)

=
1

2
log (2πe)n |ΣY1|Y3

| − 1

2
log (2πe)n |ΣY1|Y2

|

=
1

2
log (2πe)n

∣∣ΣY1
−ΣY1

Σ−1
Y3

ΣY1

∣∣− 1

2
log (2πe)n

∣∣ΣY1
−ΣY1

Σ−1
Y2

ΣY1

∣∣
=

1

2
log (2πe)n

∣∣ΣX∗ −ΣX∗ (ΣX∗ + ΣW̃ + ΣŴ )−1 ΣX∗
∣∣

−1

2
log (2πe)n

∣∣ΣX∗ −ΣX∗ (ΣX∗ + ΣW̃ )−1 ΣX∗
∣∣

=
1

2
log (2πe)n |ΣX∗|

∣∣I − (ΣX∗ + ΣW̃ + ΣŴ )−1 ΣX∗
∣∣

−1

2
log (2πe)n |ΣX∗|

∣∣I − (ΣX∗ + ΣW̃ )−1 ΣX∗
∣∣

=
1

2
log (2πe)n

∣∣I − (ΣX∗ + ΣW̃ + ΣŴ )−1 ΣX∗
∣∣

−1

2
log (2πe)n

∣∣I − (ΣX∗ + ΣW̃ )−1 ΣX∗
∣∣

=
1

2
log (2πe)n

∣∣I − (ΣX∗ + ΣW )−1 ΣX∗
∣∣

−1

2
log (2πe)n

∣∣I − (ΣX∗ + ΣW̃ )−1 ΣX∗
∣∣

=0. (C.161)

If (ΣX∗ + ΣW )−1 ΣX∗ = (ΣX∗ + ΣW̃ )−1 ΣX∗ , the equality in (C.161) is satisfied,

the equality condition in Lemma C.1 holds, and therefore, the equality in (C.159)

is proved. The validity of (ΣX∗ + ΣW )−1 ΣX∗ = (ΣX∗ + ΣW̃ )−1 ΣX∗ is proved by

Lemma 8 in [41].

Therefore, I(Y1; Y2|Y3) = 0, and, from the equations in (C.156), (C.158), and
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(C.159), we obtain the following extremal entropy inequality;

µh(X + VG)− h(X + WG)

≥ µh(X + VG)− h(X + W̃G)− h(WG) + h(W̃G)

= µh(X + W̃G + V̂G)− h(X + W̃G)− h(W̃G + ŴG) + h(W̃G)

≥ µh(X∗G + W̃G + V̂G)− h(X∗G + W̃G)− h(W̃G + ŴG) + h(W̃G)

= µh(X∗G + W̃G + V̂G)− h(X∗G + W̃G)− h(W̃G + ŴG) + h(W̃G)

= µh(X∗G + VG)− h(X∗G + WG),

and the proof is completed.
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