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ABSTRACT

Stochastic Weather Generators (SWG) try to reproduce the stochasiiopat
climatological variables characterized by high dimensionality, non-norrobapility
density functions and non-linear dependence relationships. However, conventional
SWGs usually typify weather variables with unjustified probability distrimsti
assuming linear dependence between variables. This research proposesaivalte
SWG that introduces the advantages of the Copula modeling into the reproduction of
stochastic weather patterns. The Copula based SWG introduces more flexdibiliiyng
researcher to model non-linear dependence structures independently of tinalsarg
involved, also it is able to model tail dependence, which results in a more accurate
reproduction of extreme weather events.

Statistical tests on weather series simulated by the Copula based SW@sshow i
capacity to replicate the statistical properties of the observed weatlzaesralong
with a good performance in the reproduction of the extreme weather events.

In terms of its use in crop growth models for the ratemaking process of new
insurance schemes with no available historical yield data, the Copula based!IBW&S
one to more accurately evaluate the risk. The use of the Copula based SWG for the
simulation of yields results in higher crop insurance premiums from more frequent
extreme weather events, while the use of the conventional SWG for the Vildties

could lead to an underestimation of risks.
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CHAPTERI

INTRODUCTION

Stochastic Weather Generators (SWG) are numerical models that tpydduee
the statistical properties from observed historical climate serigsatological variables
are complex systems, characterized by high dimensionality, non-normabititgba
density functions and non-linear dependence relationships.

In the last decade copula methods and their applications have experienced a
significant progress. In particular, the desire of reproducing more éelgustochastic
patterns has conducted the application of copula procedures in the modeling of natural
hazards.

In this research, copula approach is used to develop a SWG where the modeling
of the joint distribution of weather variables satisfies two objectives, Ergstodel the
non-linear dependence structures within weather variables. Second, to reprodeice mor
accurately extreme weather patterns through the use of copula fdikdi€imbel and
Clayton, or even through copula mixtures which introduce more flexibility. Iniaddi
Copula based SWG considers Brownian motion process to emulate the daily time
stochastic dynamics of the weather variables.

An evaluation on the performance of the Copula based SWG is carried out in
terms of its use in crop growth simulation models and the modeling of insurancegolici
where no historical yield data is available.

For the sake of simplicity, this research is structured as follows:



Chapter Il discusses the foundations, functioning and characteristics of the
SWGs. Also, this chapter describes in detail the motivation, the methodology and
the structure of the Copula based SWG.

Chapter 1l presents a statistical validation on the Copula based SWG digainst
observed data and against Richardson’s (1981) SWG, one of the most broadly
used SWG. Basic statistics, quantile analysis and non-parametric tests of
goodness of fit are estimated for both simulated weather series.

Chapter IV depicts the parametric calibration process for the Camesimanc

the Environmental/Policy Integrated Climate Model (WInEPIC). Nextdgiare
simulated using both SWGs and the resulting series are comparativelyeyalua
in terms of their distributions. The estimation of insurance premiums for both
yield-series is carried out.

Chapter V summarizes the most important findings, discuss some results and

suggest some opportunity areas for future research.



CHAPTERIII

THE MODELING OF WEATHER VARIABLESWITH COPULA APPROACH

Introduction

SWGs are a fundamental input for crop simulation models. These statistical
models are able to produce long synthetic weather series, while they affeti@nsfor
missing data by simulating key properties of the observed weather recovasvet,
because climatological and meteorological phenomena are complex, cliweeddigr
non-normal probability density functions, such models have not attained a satysfactor
quantification of uncertainty.

This study proposes an alternative SWG, based on copula methodology, to
simulate the climate variables: precipitation, maximum temperature iantum
temperature, required by the WIinEPIC to simulate crop yields. The mainiobjeict
this research is to apply the copula technique for the simulation of multivariate
climatological variables capturing more accurately their nonlidependence structure
and the occurrence of extreme events.

The Copula approach has several advantages; however, the most important for
this research is its flexibility that allows researchers to model depeadéructures
between random variables independently of the marginal involved. Also, the copula
technique offers different treatments on dependence structures for extame e
common in weather variables. In fact, the initial hypothesis of this stubstis

multivariate probability distribution resulting from the copula approach mightieapt
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more accurately long-term changes in the hydrologic cycle and weeiitems of a
specific region because it can model different patterns of dependency andceextrem
events.

The proposed SWG's specification is a hybrid copula, which incorporates
different families of multivariate distributions using the conditional meduapproach.
This technique allows additional flexibility because it can interpolate perfect
conditional negative dependence to perfect conditional positive dependence, with
conditional independence in between (Salvadori et al. 2007). In some cases, marginal
distributions are specified under nonparametric specifications becauseparam
distributions are a poor description of the climatological process under thesassitoc
variables.

This research proposes the selection of particular observations for solving the
dimensionality problem. The selected dates consider the observations withhibst hi
average anomalies per month. Copula estimation is applied for the selected mivservat
and simulated, while the daily dynamic of weather series is emulatethhg@m walk
described by a geometric Brownian motion.

Model estimation is carried out by Maximum Likelihood (ML) methods. Also,
ML is used to determine the best specification for copula family becauseamati
goodness of fit tests (GOF) do not lead to an unique, or even conclusive criterion
(Genest and Favre 2007a). Data from three weather stations located im&/onta

Washington and Texas are used for this research.



Background and Motivation

Climatological and meteorological phenomena are complex and characterized by
non-normal probability density functions. Temperature belongs to bounded and skewed
distributions usually parameterized by the gamma distribution. Pre@piiata central
issue in the climate modeling because it is ruled by nonlinear physical ggsasich
are highly variable in space and time (Schélzel and Friederich 2008). However, it is
known that traditional models have not attained an adequate quantification of uncertaint
for climate (Wilks and Wilby 1999).

SWGs are numerical models that try to reproduce the statistical profenties
observed historical climate series, mainly maximum temperature, onmiemperature
and precipitation. In theory, these models are able to generate long syntater
series that preserve the statistical properties of the original datas SH¥isfy the
random number generator conditions: efficiency (fast and small use of memory
repeatability (exactly reproduction of sequences) and portability (&@004). With
these characteristics, SWGs are able to reproduce sequences of datzhdrose
behavior is very close to the “truly random” observed weather patterns in a briedg var
of climates and regions. SWGs are not weather forecasting algorithmb, avlic
deterministic weather models that typically operate by numericallgratiag partial
differential equations. SWGs behave statistically as weather datdh miiweather
sequence can be duplicated at a given time in either the past or future (WiliN&lay

1999).



SWG parameters comprise a concise summary of climate behavior and use Monte
Carlo methods as a random number generator for simulation whose output statistically
resembles daily weather data at a location, where any particulaatachuleather
sequence will be duplicated (Wilks and Wilby 1999).

Typically, SWGs award a determinant role to the precipitation process.
Precipitation is a complex stochastic process whose occurrence givesmseerous
physical processes in nature affecting the statistics of many nop#atan variables
(Wilks and Wilby 1999). Precipitation has a high zeros rate which introduce a
discontinuity in its probability distribution between zero and nonzero observations. In
terms of temporal correlations, precipitation owns a mixed character cétdiserd
continuous variable.

Because of these features, precipitation is modeled in two treatments, moeurre
and intensity processes. Some authors combine the use of first-order Markovtmodels
characterize occurrence and pseudo-random number generators to descriibg ligtens
the generation of independent and identically distributed (i.i.d.) draws.

SWGs have numerous applications; their parameters can be interpolated to
generate synthetic daily data for unobserved locations. Also, they are frggissatlin
climate change studies for impact evaluation by using modifications iatdimeans
and variabilities, predicted by the Global Climate Models (GCM) (Semeraly E398).

In particular, SWGs have been widely used as input in crop simulation models because

YIn computational statistics, random variate gememancludes two steps. First, the generationid.i.
random variables with Uniform(0, 1); second, thplegation of transformation on these random i.Ugo,
1) to imitate random variates and random vectansifarbitrary distributions.
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of their ability to generate missing data with only monthly or seasaatatids.
Additionally, they are able to produce long enough series to allow good estimttes of
probability of extreme events that affect crop yield.

This research will focus on the construction of a SWG, based on copula
methodology, as a component in WIinEPIC, originally developed in the early 1980's, to
assess the effect of erosion on productivity (Williams et al. 1984). WIinEPIC is a
comprehensive crop simulation model to analyze cultural practices and croygigms
on production, soil quality, water quality, water and wind erosion, and pfofits.
WInEPIC’s components include weather simulation, hydrology, erosion, sediinentat
nutrient cycling, pesticide fate, crop growth, soil temperature, tillageosaics, and
plant environment control (Williams et al. 1984). Crop growth is one of the most
important simulated processes because soil productivity is expressed in teroys of
yield. Thus, the model is sensitive to crop characteristics (weather, sodréhty¥ and
to other properties. Potential plant growth is simulated on daily basis and cousraine
three stress factors: soil, strength, temperature and aeration ifWitiaal. 1989).

WInEPIC includes the SWG developed for Richardson (1981) for simulating
precipitation, radiation, maximum and minimum temperature. The model catfaur
awards a primary role to precipitation, preserving the dependence in tingerrdlation
between variables, and the seasonal characteristics in actual wetdtfer tize
location. Precipitation is characterized in two stages. First, a Markov chponetial

model — with two states, wet and dry— describes the occurrence processhehere t

2 WInEPIC considers homogeneous weather, soilspamhgement systems in field-size area up to 100
ha and operates on a daily basis.
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probability of rain is conditioned on the wet or dry status of the previous day, which
exhibit persistence or positive serial autocorrelafi@®o, wet and dry runs tend to clump
together in volume more strongly than could be expected by chance. Second, daily
precipitation amount, given a wet day, is supposed to be independently determined by an
exponential distribution (Richardson 1981). The inputs for the model are monthly means
and coefficients of variation for each variable.

Richardson’s SWG considers that for each variable the dependence structure
(serial correlation) is characterized by a first order linear agtessive model. Although
this model operates on a daily time step, their simulations do not show longer-term
variations (Wilks and Wilby 1999). The random values for the current SWG show a
lower monthly mean temperature and monthly accumulated precipitation withtrespec
the observed weather data. The SWG currently cannot capture the variability yea
year, as their statistics vary only through a fixed annual cycle.

Authors such as Semenov et al. (1998) and Wilks (1990) have pointed out that
sensivity analysis in crop simulation models have shown that stochastic somsFati
weather variables based on mean temperatures values produce overestopatedds:.

Semenov et al. (1998) showed that changes in climate variability and extreme
weather events can have a major effect on crop growth simulation and thatassoci
agricultural risk. In particular, because the occurrence of extreme wesatrgs are

better correlated with changes in the variability of climate vasatiblegn with changes in

® The behavior of the Markov chain is ruled by thensition probabilities that specify the conditibna
probabilities for the system to be in each of ibsgible states during the next time period. Inst firder
Markov chain, the transition probabilities contiredj for the next stage of the system depend onlthen
current state of the system (Wilks, 2011).
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the mean values. As a consequence, a SWG modeled by copulas with more accurate
properties could have multiple implications in WIinEPIC use because copukdate
model tail dependence, which relates to dependencies of extreme events. Copula
estimation of anomalies on climatic variables could produce more accugia® vyi
simulation because crop simulation models incorporate a mixture of non-linear esspons
of the crop to its environment (Semenov et al. 1998). Thus, more precise simulations
could result in the estimation of more accurate yields generated by thencubgtion
model because crop simulation models incorporate a mixture of nonlinear responses of
the crop to its environment components.
A Copula Based Stochastic Weather Generator

Traditional modeling of climate variables relies on a multivariateibligton,
which is usually characterized jointly under the same parametric fandlyhair pattern
of dependence is assumed to be linear. Any kind of high dimensional multivariate
distribution is either limited in covariance structure or comes with a high muwhbe
parameters (Scholzel and Friederichs 2008).

According to Genest and Favre (2007a), the traditional multivariate approach has
disadvantages because it dismisses additional information from their indivehalior.
The implicit rigidity in the dependence pattern might avoid the incorporation of
variability and, also it would prevent capturing the long term changes in the
climatological process.

In contrast, the copula approach might incorporate additional information into the

climate simulation providing important insights to give a more accuratesespiagion of
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the underlying processes of climatological variables. Besides, thimdubgy allows a
multivariate dimension analysis for climatological variables, while tbdeting of
dependence structures between random variables can be far from linearity and
independent of the marginal laws involved. In addition, the copula technique offers
different treatments on dependence structure for extreme events, commaonatrccli
variables. These properties jointly might help to detect long-term chanties
hydrologic cycle of a specific location (Genest et al. 2007b).

In recent years, the applications of copulas in simulation of multivariate data,
extreme value analysis and modeling dependence structure has increased in
climatological phenomena analysis. Favre et al. (2004) used copulas to analyze t
multivariate hydrological frequency. Schélzel and Friederichs (2008) dittitke
appropriateness of the application of copulas to meteorological and climeablogi
phenomena summarizing the problem of goodness of fit for copulas and analyzing the
connection with multivariate extremes. More recently, in the planning and nmaeage
of water resources Wong et al. (2010) modeled droughts using copulas to simulate
duration, peak, intensity and average intensity.

However, no application in climate analysis that involves copula methods in the
design of a SWG has been developed, and this is precisely the objective of thehresear
the use of copula methodology in the development of a SWG for precipitation,
maximum temperature and minimum temperature.

Basically the idea of modeling climatic variables using copula methads oel

the dynamics of these variables. Every year weather observations dotletermined
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cycle: high temperature realizations in summers and low temperatupatieal during
winters. Although weather realizations are stochastic, their differéretegen one day
and the next one are not far. For example, usually the temperature ori' liaerhost
two or three degrees different from Jufi& @r even on Jund's There exist evident
dependence patterns which might not be adequately modeled assuming linear
dependence, for example: maximum temperature realizations have acstinoegtion
with minimum temperature realizations, lower realizations in minimum tehpe are
associated with rainfall occurrence.

Furthermore, the copula approach provides additional flexibility because the true
probability distribution of the weather variables is unknown. Copula methods allow
researcher to fit individually the probability distribution for every variailé then to
model the dependence relationship between the variables with different coplya fami
specifications.

However, the copula estimation in daily basis implies a dimensionality problem.
In a high-dimensional distribution model, where the whole surface is edlinsitey a
set of observations, the more points are considered in the estimation, more addurate
be the surface estimations; but the cost for on higher dimensionality is thdi&iwitg
of the estimation. The solution that this research proposes is the selection af specif

dates to perform the copula estimation. For such purpose 12 dates per yeategtzd s
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— one per month — where the dates are determined by the maximum monthly average
historical anomalie$.

The parameters of the probability distribution for the marginals are individually
estimated, while the trivariate copula parameters are jointly estiniat the selected
dates. The simulation of the weather variables implies the description obiheir |
probability distribution at the selected time which is the bordering conditions of the
climate stochastic dynamic simulation, while the Brownian Bridge tsftbe
intertemporal dynamic of weather variables evolving on a path forward through tim

Basically the SWG structure would impose anything but a joint dependence
structure and the Brownian motion process between the simulated structuresate emul
their daily time stochastic dynamits.

The strong connection between random weather variables and their daily
sequence validate the assumption of the Brownian Bridge stochastic poocess t
interpolate the copula realizatich3urvey (2005) used a similar idea to daily pricing of
weather insurance for ice wine in the Niagara Peninsula of southern Ontario. The
Brownian Bridge results from conditioning of the Brownian motion on its endpoints and

its behavior depends on its parametric space. The potential advantage of Brownian

4 Anomalies measure deviations over a certain paridiine (month, season or year) from the long-term
climate statistics, relating to their calendar péri
® The Brownian motion is the most known form of Weener-Levy process, which has been adopted as
the probabilistic model for numerous natural pheapa Brownian motion describes the random
movement of particles in multidimensional spacehsas the stochastic process in weather and hygirolo
® The Brownian Bridge conserves the Brownian mofiooperties: Gaussian, centered, with independent
increments and diffusion Markovian or Martingaleperty, that is:

E[W(E)IW (tn-1), W (tn—2), .., WD = W(ty-1), &1 <t <<ty

12



Bridge relays in its use with variance reduction techniques and low discrepancy methods

(Glasserman 2010).

Dependence Patterns of Weather Variables

Although weather generation was performed for three locations — one in Montana,
one in Texas and one in Washington — figure 1, in appendix A, just describe climate
patterns on one weather station, Conrad in Pondera County, Montana.

Figure 1, in appendix A, depicts the relations between the multiple pairs of
intersections for weather variables and provide some insight about the form of the
dependence between weather variables. The scalar plots show asymmetric distributions,
the key is the difference in the ends of the distributions which describe tail dependence
and, in turn, extreme weather events. Maximum temperature corresponds to lower bound
precipitation while minimum temperature corresponds to upper bound precipitation. On
the other hand, maximum temperature and minimum temperature show a positive
dependence in the right corner suggesting a positive concordance between these two
variables’

Figure 2, in appendix A, shows positive concordance between minimum

temperature and precipitation with more weight in just one tail of these multivariate

" Concordance refers to the probability of having large (or small) values of both variables X and Y is high,
while the probability of having “large” values of X together with small values of Y (or vice versa) is low
(Cherubini et al. 2004).
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distributions. Asymmetric copulas — such as Clayton, Gumbel or Frank — are able to
model multidimensional movement only in one corner.
Methods and General Theory About Copulas

Copulas are joint cumulative distribution functions that describe dependencies
among variables independent of their marginals (Joe 1997). In other words, the copula is
a multivariate distribution with all univariate margins being U(0,1) thatssnt
dependencies between variables (Cherubini et al. 2004).

According to Nelsen (2006) copulas satisfy mainly four conditions:

Hndue€[o,1], C(1,...,2,u,1,....1) = u;

i 0y € [0,1], C(w,...,u) = 0 if at least one of the aquals zero;

ii)C™ is grounded and m-increasifig.

In terms of an m-dimensional distribution F with marginal cumulative distribution
functions (Fv,...,Fy), and ay univariate margin jFthe copula associated with F is a
distribution function C:[0,1]=> [0,1] that satisfies

F(x) = C (F;(Xy), ..., En (X)), X €ER™ (2)

Besides, if F is a continuous m-variate distribution function with univariate

margins F,...,Fn, and quantile functions;¥,...,Fn*, then
Cw) = F(FT (W), -, F 5 (Um)) )
This is because if X~F and F is continuous thefx{l...,Fn(xm))~C and if U ~

C, then (FY(Uy),...,Fn'(Um) ~ F. Copulais the distribution of a random vector,

8Let A and A non-empty subsets of R and a function @A%—>R and denote; éhe least element of A
i=1,2. The function G is grounded if for every (vaf A;xA,, G(a,z) = 0 = G(v,d), (Cherubini et al.
2004).

14



U= (Uy,...,Un), where each |4 U(0,1), C is a continuous function and
increasing, which guarantees that right derivatives exist.
In terms of multivariate weather data simulation, copula representatioorés
than convenient because of their probabilistic interpretation. The Sklar theatem st
that if all ..., Ry are continuous, then copuld' & uniquely determined on the range
of F4,..., Fn. As a consequence, the joint probability density of multivariate distributions
can be presented as the product of the marginal probability densities and the copula

density, which is the canonical representation (Cherubini et al. 2004).

o 3
fr(x) = Cx(F1(x1)’Fz(x2): ---:Fm(xm)) . l_lf](x]) )
j=1
where
S(C(Fy(x1), F3(x3), o, B (X)) 4)

Cx(F1(x1), Fa(x3), oo, En () = 8F,(x1), 6F,(xy), ..., SE, (%)

Two important implications are derived from Sklar theorem. First, the
independent representation from marginals of the copula defines the dependence
structure in the multivariate structure (Nelsen 2006). This separation betvazginal
distributions and dependence creates the flexibility to use marginals fifeneil types
of distributions that describe better the multivariate phenomena. The seconatimmplic
is the possibility for simulating random variables with the same probadbisitsibutions
as original data and preserving the dependence structure through the copula.
Copula Families

Each copula family or class is represented by its density and conditional

distribution function and the parameter or a vector of parameters. Familiastehae
15



dependence functional forms related to properties that include reflectiometyy,
extreme value copula, multivariate extendibility, as well as dependencet@®pdoe
1997).

Some families such as Gaussian and t-student (copulas of elliptical distré)uti
are frequently used in all areas of study because of their advantage inoextensi
arbitrary dimensions. However, they are restricted to radial symmaetryhey do not
have a close form expression, which could imply a high cost in high-dimensional
estimation. An exhaustive list of copula families can be found in Nelsen (2006).

Archimedean copula is another class, particularly used in the modeling ofeclimat
and hydrological phenomenahese copulas specifications are easy to construct and
they allow a broader variety in dependence structures, such as tail dejgefidelisen
2006). Archimedian copulas can be constructed by a generator fupcti®®R’, which
defines a subcall or family of Archimedean copulas. Generator fundijos (
continuous, decreasing and convex witth)=0 (Cherubini et al. 2004). Given a
generator and its pseudo-inverse, the next equation states the generation of an
Archimedean copula’c'®

CAMXyy s Xm) = @ 1@ (xy) + -+ 9 () )
The generator function must be strict (strictly monotonic, continuous and strictly

increasing) to allow multivariate extension of the copula. Archimedeanacppaperties

® Salvadori et al. 2007; Schélzel and Friederi@@®8.
19 The pseudo-inverse function g% [0,inf] =1, continuous and non-increasing on [0,inf] amdcty
decreasing on [Gp(0)] and by composition with the generator givesitdentity,¢(¢(x))=x .
-1
“1(y) = () 0=x<¢(0)
¢ (x)—{ 0 ¢(0) <x<+
16



are: symmetry, associativity and easy identification of their levekesuny the following
condition?*
{(xq, e, x) ET™: C(xq, oo, X)) = K} (6)

The most frequent source of generators for m-dimensional Archimedean copulas
are the Laplace inverse transformations for distribution functions, whicleesésts
guaranteed only when functignis completely monotonic (Cherubini et al. 2004).
Copulas describe naturally the dependence between multivariate extfémésil
dependence concept in a bivariate distribution rates the amount of dependence in the
upper-quadrant tail or lower-quadrant (Salvadori et al. 2007).

The three copulas used in this research are Gumbel, Clayton and¥@amkbel
m-copula belongs to the Gumbel-Hougaard family, which is the only extremeofalue
the Archimedean family. Gumbel is completely monotonic, has upper tail dependence,

extreme value copula and partial multivariate extenSion.

Generator ¢@(u) = (—In(u))* (7
9@ = exp ~ta) (8)
m 1
C(uy, uy, ..., upy) =expy—| ) (= lnul-)“] for a>1 ©)
1 U ;

Clayton m-copula, belongs to Clayton family, is completely monotonic and owns

lower and upper tail dependence.

' Generator is strict if it satisfieg0)=+inf, (Cherubini et al. 2004)

12 An exhaustive list of Archimedean copulas or ottlasses, see Nelsen (2006); Salvadori et al. (2007
13 Extreme value distributions and their three tyf@smbel, Frétchet and the Weibull) provide the only
non-degenerated limit laws for adequate transformagima of identical and independently distributed

random variables. For a detailed reference iniflsise, consult Embrechts et al. (2001).
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Generator ¢@(u)=u%-1 (20)

PO =+ 1) )
C(uq, Uyp, ey Upy) = [Z(u{“ —-n+1) for a >0 (12)

Frank m-copula, belongs to Frank family, is completely monotonic, it owns
reflection symmetry, partial multivariate extension and extension tdinega

dependence.

exp(—au) — 1 (13)
exp(—a) — 1 )

Generator ¢@(u) = ln<

PO = —— In(1+ (e~ ~ 1)) w4

=7 —1)
(e—a — 1)m—1

1
C(ul,uz,...,um)z—aln{1+ } for 0 <a<oowhenn=3 (15)

Mixtures of Conditional Distributions

The conditional mixture method allows extending bivariate copulas to an
arbitrary dimension, at the same time that introduces additional flexibilibe model.
By this technique, the construction of an m-multivariate family starts fwon
dimensional marginals. Salvadori et al. (2007) mentions that “these families of
multivariate distributions can be made to interpolate from perfect conditional/@os

dependence with conditional independence in between.”

Copula family can depict a range of dependence structure. Furthermore, copula

mixture is able to model different dependence patterns in multivariatdodigins.

Thus, this method allows one to model the dependence pattern by pairs of variables
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capturing the best dependence structure in each pair of variables usiogdhieal
sampling method. For example, the trivariate Frank copula is symmedriaanot
admit tail dependence, while the mixture Frank-Clayton-Gumbel admits asigraiiot
dependence and asymmetry.

The conditional approach, used here, is a unifying method for constructing
multivariate distributions with a given family copula for each bivariategma
However, the conditional mixture effectively enhances flexibility when tiseaegain
constructed in a common base measure for all component mixtures: the likelihood
function. This model is especially effective with large sample sizéga@ai et al.

2007).

M-variate distributions can be constructed based on (m-1) dimensional margins,
which must have m-2 variables in common. If one is giveRn Mg, ...,Fnam M>3, itis
possible to build a m-variate distribution starting with the trivariate digtiibut
Fiissi+2 € F(Fij+1 , F+1+2), next the four-variate distributions from F,. .gF€ F(F is1i+2,
Fi+1,+2,+3), @and so on. There exist a bivariate copujassociated with the (i, j) bivariate
margin of the m-variate distribution. For (i, j) Wltﬁ— i| > 1, Gj measures the amount
of conditional dependence in tHand |" variables, given those variables with indices
in between (Joe 1997). Following Joe (1997), the next equation shows the construction
of a trivariate copula family.

2 16
Fi23(x) =J- 613(F1|2(x1| xz)F3|2(x3|x2)F2(dx2), (16)
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The arguments of the integrand are conditional cumulative distribution functions
(F1|2 and k)2 ) obtained from i and k3. They can be written in terms of copulas
because by construction, equation (16) is a trivariate distribution with univaréaggns
F1, 2, Fs and bivariate margins; f-and k3. C;3 can be interpreted as a copula
representing the amount of conditional dependence between the first and third enivariat
margins given the behavior of the second (Joe 1997). This method can be extended
recursively to an m-dimensional copula.

Fi . m (x)

x Xm—-1 (17)
_J- 2 f Clm(F1|2__m_1(x1| xz,...,xm_l).F2|2_.m_1(xm|xz,...,xm_l).

Fy m-1(dxy, ..., dxy,_1)

Where F|2..m1 and F|2..m1 are conditional distributions functions obtained
from R _miand k. q.1(Joe 1997). Copulas can be derived directly by using the
integral representation in equation (17) and Sklar’'s theorem.

This research applies the conditional mixture method for the estimation of a
trivariate copula. This approach includes not only diverse marginal distribubiainglso
different copula family specifications. The trivariate copula is expdessequation

(18).

12 <aC12 (ug,x) 9Cy3(x, u3)> (18)
Cis dx

C ) ) = )
123 (U, Up, U3) f o, o,

0

In general terms, the estimation and simulation of copulas is possible by the

calculation of partial derivatives, as the following equations show.
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63C(u1,u2,u3)

C123(Ug, Uy, Uuz) =

Ju,0u,0u,
92C <6C12(u1,x) 8C23(x,u3)> 5
_ 13 du, ’ ou, % 0%C12(uq,uy)
B ou,0us ou,0u, (19)
% 82C23(u2,u3)
du,0u,
0C,(uqy,uy) 0C,3(uy, ug)
=C13( 12611; 2 ) 2361; & X €12 (U, Up) X Ca3(Up, Uz)
with
aCi]-(ui,uj,Hi]-) (20)
Oui
azc.. u.’u.le..
Cl_j(ui,uj): l]( ] l]) (21)

du;0u;

Thus, different specification families can be used to give more flexilolitiyet
specification. Three different parameters substituting equation (20), anat@{)9)
result in a three-variable-three parameter copula deaﬁg(/ul,uz,u?,; 01, 02,03,). This
expression can be used to estimate the parameter values by Maximum Likelibood. A
Cherubini et al. (2004) mentions, this approach is elegant but the calculation of the
inverse function analytically could be challenging.

Archimedean copulas provide advantages in estimation because they can be
rewritten in their Laplace transformation representation and then esdimmatre easily.
If C(ug,up, .o, Um) = @ o) + @uy) + ...+ @(u,,)]is an Archimedian m-

variate copula with generater(.). For a k=2,...,m,
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o Vo) + o) + o+ e ] (22)
e Vo) + u) + ot (ug-1) |

Ck(uk | Uq, ...,uk_l) =

k-1
0% 1C,_1(uy, ... up,)
el b e = o kD) + @(uy) + ot (p(uk—l)]'l_[(p(l)(uf) @3)
OUy o, OU_q j=1

Thus, the parameter estimation in the case of the copulas would result more
straightforward.
Copula Based Simulation

Simulation of multivariate vectors with given m-distributions can be carried out
by calculating partial derivatives of the copulas because the integralapenamoved
from equation 18 when the copulas of interest are differentiated. Eventually only
composite functions of partial derivatives for bivariate copulas are eval{®aésadori
et al. 2007).

The algorithm to simulate multivariate copula distribution has a nested sgéructur
Salvadori et al. (2007) provides a straightforward method based on Sklar Theorem.
Assume thaF is a multivariate distribution with continuous marginails.FF, that can
be represented by a m-copuld. Then, the generation of a vector(X.,Xn) ~ F can
be done by simulating a vectory(U.,Uy) ~ C, where the random variablegdJare
Uniform [0,1].

Because copulas are invariant to transformations, the simulated randomXvector
has the same dependence structure as vector U. The following equation shjows the

application of the Sklar theorem and the Probability Integral Transform.

Ui = F(X) e X =F W) (24)

22



Where i=1,...,m, the ¥ random variables have marginal distributions;&, F
(which do not necessarily belong to the same distribution) and a joint distribution F. The
whole simulation process for k variables is described by the following steps.
First, let y to be the random realization of the random variallaibiform on
[0,1]. The simulated variable is.UFor the sake of the simulation of X, set
X, = F7(Uy) (26)
The next step is to simulate and y based on the joint distribution function F.

For this purpose,isampled from &l must be conditioned on the event;fu,}
uz S Fz_l (uz |u1) = P(Uz S uz | Ul = ul) (27)
Where the conditional functions can be expressed as

8y, C(uq,uy ) (28)
W = 6,,C(uq,uy )

Where u’ is the realization of a random variablg’ Uniform on [0,1] and
independent of Y

Thus, successively for example to simulatesampled from Wand consistent
with the joint distribution function F or previously sampled .u,u.1; Ux must be

conditioned to the events {Bu;, U=Uy,...,Uk.1=Ux.1}
Up = Fk_l (uk |u1, ...,uk_l) = P{Uk < Uy | Ul = Uq, ., Uk—l = uk—l} (29)

S, CQthy, oy (30)

6u1,...,uk_1 C(ull e uk—l)

Pt (|, oo s) =
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Where y’ is the realization of the random variablg Uniform on [0,1], and
independent of Y,..., Uy.1. Finally, by the probability integral transform it is possible to
generate the sampley(X.,Xm).

(g s X)) = (FT (W), ooy B (U)) (31)
Estimation Methods

The canonical representation for the multivariate density function in equation
(23), allows decomposing the statistical modeling of copulas in two steps: first the
identification and modeling of the marginal distributions; and second, the estimation of
the suitable copula function. This procedure can be generalized to mainly three methods:
the Exact Maximum Likelihood (EML) method, the inference for the marginal (IFM)
method and the canonical maximum likelihood (CML) method.

EML method assumes a parametric family of the copula and parametrimaharg
distribution, and it simultaneously estimates both sets of parameters lf©het.al.

2004). However, its efficiency depends on the numerical complexity of the optonizat
problem which increases with the dimensionality of the random vectors (Schiizel a
Friederichs 2008).

IFM is a two stage estimation process based on maximum likelihood. The first
stage consists of the estimation for the univariate marginal distriljpdi@meters and
the second stage estimates the copula parameters. This procedure ist@mslste
asymptotically normal under regularity conditions (Cherubini et al. 2004).

Finally, CML is also a two-step method based on maximum likelihood. The first

step involves the estimation of the marginals using the empirical distributions and
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second, the estimation of the copula density by using maximum likelihood estimation
method. This method produces consistent estimates of the copula parameters and their
standard errors.

This research carries out the estimation in two steps. First, the estirobthe
univariate marginal distributions parameters, assuming parametriticgieams was
carried out. Second, the kernel smoothing technique was applied to compare, or even, to
attain a better fit of the distributions, with emphasis on precipitation.

Dependence Measures

Pearson correlation and linear dependence concepts do not capture the complete
dependence dimensions of non-normal distributions. Linear correlation is notpdeser
when nonlinear transformations are applied to random variables. Multivariate models,
such as copulas, require dependence measures that can be able to capture and identify
their dependence properties.

Kendall’s tau t) is used for compatibility conditions. Thus, Kendall's tau and
Spearman’s rh@) are multidimensional measures of monotone dependence for
continuous variables that are invariant respect to strictly increasimgjdrenations,
which is mainly the characteristic of copulas and non-normal distributions. Other
important property of andp is that are increasing with respect to the concordance

ordering (Joe 1997

Yconcordance means the degree to which large of sadakes of one random variable associate with
large or small values of another and as a rankelaion. Concordance measure satisfies properties:
completeness; normalized measure, symmetry, cattirand concordance zero when variables are
independent. These properties imply invariance eeisfo increasing transformations (Cherubini et al.
2004).
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Other measures such as tail dependence, positive quadrant dependence and the
concordance ordering are also basic in the analysis of multivariate extedue
distributions and copulas.

F be a continuous multivariate cumulative distribution function (c.d.f.) and let
(X1,X2,...,Xp) and (X'1,X’,,...,X" ) be independent random vectors with distribution F
(Joe 1997). Kendall's tau'fs

T=Pr{(X; —X')Xz = X'3) .. (Xn — X'n) > 0] (32)
= Pri(X; = X'D&X = X'2) . (Xn — X'n) < 0]

T=2Pr(Pr[(X; = X' DXy = X'5) . (X —X') >0l —1 =4 fF ar—1 3

F be a continuous multivariate c.d.f. with univariate margifs:F..,F, and let
(X1,X2,...,Xp)~F; then the Spearman’s rho is the correlation,0X, F(X2),...,F(Xn).
As F and K are U(0,1) random variables under the continuity assumption, their
expectations are Y2, their variances are ¥2 and Spearman’s rho is in the following

equation.

p=12 ff F, (X)) Fy(X,) oo Ey (X,)dF (X, Xy ) X)) — 3 (34)

=12 ijdFlsz ..dE, =3

' The condition(X; — X'))(X; — X'3) ... (X, — X') > 0 denoteXy, X,, .. X,), (X'1, X'5, ..., X', are
two concordant vectors where one of the vectordhmtarger value for both components. The corndlitio
(X1, Xp, o X)), (X'1, X5, o, X'n) < O refers(Xy, Xy, o, Xp), (X'1, X5, ..., X'y) are two discordant pairs
where for each pair one component is larger tharctiresponding to the other component and one is
smaller (Joe 1997).
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Because Kendall's tau and Spearman rho are invariant to strictly imgeasi
transformations, they can be expressed in terms of a copula withaessociated with F
(Joe 1997).

T= J-4 cdc -1

(35)
p= 12] ...ful Uy . Uy dC(Uyq, ... uy) — 3

=12 jf C(uy ...uy)duy du, ...du, — 3

Tail dependence captures the dependence in extreme values measured in the
upper-quadrant or lower quadrant and it is also invariant to increasing trangfosnat

Tail dependence is defined for a multivariate copula C in the following equations.

) E(u, U, ..., U) (36)
lim —=1,
u-1 u
C(u,u,..,
fim £0 ) _ (37)
u—-0 u

There exist upper tail dependencg,je(0,1] and no upper tail dependence if
Ay = 0. On the other hand, C has lower tail dependentg:(f0,1] and no lower tail
dependence i, = 0.
Copula Methods Applied to a Stochastic Weather Gener ator

The application of the copula technique for modeling climatological variables
implies overcoming some challenges. First, no general criterion for sgléloé copula
family has been established because there is not a generalized Gétbtestology for

multivariate copula. Second, the marginal distributions are unknown; however, marginal
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distributions determine the copula of a distribution and the rate of convergence ih the ta
dependence. Third, copula does not solve the problem of dimensionality, but allows
several kinds of dependence structures redirecting the problem toward finding
parametric distributions for high dimensional random vectors (Scholzel andriafisde
2008).

Data

The SWG methodology is applied to simulate climate for three weather stations:
one in Montana, one in Washington and one in Texas. The weather stations are Pondera
County, Conrad-MT1974, Spokane, Spokane County, Washington and Temple, Bell
County, Texas.

All of these climatological stations provide daily information about maximum
temperature, minimum temperature and precipitation. The information was dbtaine
from the National Oceanic and Atmospheric Administration (NOAA) websie) fr
January T 1960 to December 32010%°

Based on daily historical average temperatures for 50 years (1960-2010}ethe da
selection criterion for the copula estimation is focused on the dates with tlesthigh
absolute deviations from mean with respect to the average monthly observation.
Variable Detrending

The modeling of the weather variables requires the decomposition of the series
when some sequential or cyclical patterns are observed. Temperature canribt be we

modeled using random walks because these variables include seasonal variations,

18 http://gis.ncdc.noaa.gov/map/cdo/?thm=themeDaily
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cyclical patterns and high autocorrelation, which explains that its short-téamibe
differs from the long-term behavior (London 2007).

In general terms the standard methodology consists of decomposing the series in
long-term trend, seasonal behavior and white noise. In particular, for the case of
temperature, given the seasonal and cyclical nature of the temperatuedtidan
detrending the series could incorporate mean reversion in the process because the
temperature seems to vary between (London 2007).

Harmonic analysis is useful to extract the fluctuations and variations ieribs,s
using sin and cosine functiohs.Application of harmonic series requires three
adjustments (Wilks 2011). First, the fundamental frequency tefms 2I1/n rescales
proportionally time to angular measure, i.e. specifies the fraction of the él#i ayer
the whole data series (given n, the length of the data is considered as a dulif S0
or 2r radians in angular measure). Second, the amplitugeg @e determination of the
stretching or compressing of the cosine or sine into the range of the data. Third, the

phase angle or phase sh@i {hat makes the lateral adjustment of the harmonic function.

211t 211t
Yt=)7+Clcos<——¢>+ Clsin(——gb) (38)
n n
211t 211t 211t
C; cos (T — qb) = A, cos (T) + B;sin (T) (39)

" These periodic functions have repetitive pattewery 2r radians or 360and they oscillate around
their average value of zero and attain maximumesbf +1 and minimum of -1. The cosine function is
maximized at & 360 and so on, the sine function is maximized & 860 and so on.
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WhereA, = C; cos(¢p) and B; = C; sin(¢) are the amplitudes of an upshifted
cosine and sine waves. The parameters Al and Bl are calculated by using standard
regression methods.

This detrending technique was applied to daily observations of the three variables
for all of the weather stations, considering a cycle of 365 days. The coeffiofehe
regressions were significant for minimum and maximum temperatures ti@ntend
was removed from these data series, from the detrended data some dasetevtsd
for the copula parameter estimation. However, any trend specificat®sigvaficant for
precipitation. Figure 3, in appendix A, shows the application of this method for the
maximum temperature monthly anomalies with data from Conrad, Montana weather
station. Trend was highly significant: in Conrad weather station, trend exp&#hsn
maximum and minimum temperature behavior; in Spokane weather station, trend
explains 80% and 70% respectively, and in Temple weather station, the trend explains
69% and 75% respectively (see tables 1.A 1.B, and 1.C, in appendix B).

Thus, the estimated trend was taken away from the original daily observations
and hence, all estimation processes were carried out using detrended data serie
Selection Process for Marginal Distributions

Parametric distributions have been widely used to model climate variables. |
parametric density fitting, the criterion of selection for the best fitibigton relay on
Maximum Likelihood as a competitive indicator of goodness of fit, especidh if

parametric densities have the same number of parameters. However, when theohumbe
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parameters differs, the Akaike Information Criterion (AIC) and Baydsifanmation
Criterion (BIC) are able to derive a conclusion about fitting the distributions

Even when the assumption is not justified, frequently Gaussian distributions are
assumed for modeling temperature using the Box-Cox transformation (Wilks 2811
contrast, although it is mathematically possible to fit precipitation intous<kan
distribution, the adjustment is not good because of its asymmetry and right skewenes
(Wilks 2011), see figure 4.C. in appendix A. Also, its mixed character (disoette a
continuous) and its discontinuity in probability distribution between zero and non-zero
observations increases the difficulty of its estimation. On the other hand, thgliaers
of the gamma distribution for modeling precipitation is suitable, but the estintdtiba
two parameters for a gamma is complex because they do not exactlpoodés the
moments of the distribution (Wilks 201

The pitfall of the parametric approach is the a priori assumption of the paametr
functional form of the variable to be estimated. Misspecification often obegesise
restrictive assumptions can result in a misrepresentative charatberiaf the true
density, thus producing erroneous estimates that lead to unsound inference.
Nonparametric characterization of the marginal distribution is a poteptiah because
of its flexibility. Instead of assuming a functional form, nonparametgoesentation
requires some regularity conditions such as smoothness and differentiblailitgver,

non-parametric approach requires more data to achieve the same gradesminpasca

'8 The gamma probability distribution function cafeaa broad range of shapes depending on its shape
parametera and the scale parametBrwhich stretch or squeeze the function to the righthe left
depending on data. The mean is the product ofweparameterso(®) and variance imp? and draws
simulated from estimators show that the medianelow the real median because the distribution is
positively skewed (Wilks 2011).
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parametric model, which is not a problem for the case of weather data (Wand and Jones
1995).
The nonparametric density estimator assumes no pre-specified functiomal fo

Kernel.

fsh) = %Z ( (T2 (40)

Where K is a function that satisfie& (x)dx = 1, which is the kernel and h is
bandwidth or window width and is a positive number. K is chosen to be a unimodal
probability density function that is symmetric about zero ensuringfthah) is a
density (Wand and Jones 1995). For a given sample size n, if h is small, the resulting
estimator will have a small bias but a large variance. Conversely, if h is laege, t
resulting estimator will have a small variance but large bias. Mintraizaf the Mean
Square Error (MSE) — which is the error measure of the estimation of theyderssit
single point of the density kernel function — is a consequence of the bandwidth optimal
selection, which requires the balance of the bias squared and the variance terms.

There are numerous kernel functions: uniform, triangular, biweight, triweight,
Epanechnikov, normal. However, as Wand and Jones (1995) pointed out, the choice of
the shape of the kernel function is not a particular important, but the choice of the
bandwidth value is the big issue.

Table 2 shows, in appendix B, the results of the parametric estimation for the

marginals. The AIC and the BIC show that for maximum temperature and minimum
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temperature the best parametric specification is the normal distridttiooontrast, the
AIC and the BIC pointed out that the best specification for the precipitation is the
extreme value distribution; however, this distribution hardly provides a good descript
of the data distribution. Thus, parametric specification shows a poor fit for patoipi
because of the high rate of zero rainfall.

In general terms, the graphs of the adjusted probability distribution function
(p.d.f.) show a good kernel fit and also a good parametric fit under the normal
distribution of the maximum temperature. In the case of precipitation and minimum
temperature, kernel clearly attains a better fit. Although the patiardetiribution could
result more efficient, the large volume of weather data provides reliadmlibyon-
parametric estimations that usually captures more accurately the fitplabbhe tails
of the distribution.

For these reasons, this research adopts the kernel specification of thelipyobabi
distribution for the three weather variables originated in all weathevrstgsee figures
4,5, and 6, in appendix A).

Copula Estimation

The goodness of fit test (GOF) helps to determine if the observed datdlare we
modeled by the specified dependence structure of the multivariate distmibartithe
specific family of parametric copuld$However, the development of a GOF test for the

mixture copula exceeds the primary objective of this research.

' The most negative AIC and BIC indicates the bdgisiment.
0 There are three groups of methodologies. The sishplpproach assumes dependence structures. The
second kind uses statistical tests of the arbifparameters such as the rank-based statisticslkern
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Although important advances have been attained in GOF test, the formal
methodology to test the GOF for a copula is just recently emerging (Geraés2009).

Most of the progress has been done for a one-dimensional test, while in the mugtivariat
case, there is no consensus. Although recent advances in copulas GOF have centered in
“blanket test type”, in the multivariate case the advances are not robust encagbebe

the value of the statistics depends on the order in which the variables are conditioned.
So, different conditioning decisions could lead to different results (Gends6089).

Because of the inconclusive information that GOF can provide in multivariate
analysis, the selection of the appropriate copula family was based on a rankirg copul
criterion that measures the likeness of that sample coming from a gitrdoudisn.

Although maximum likelihood criterion cannot be properly the criterion for the smlect

of the copula family because parametric distributions are unknown, it is possible to use
maximum likelihood as a common base measure for all component mixtures that
indicates if the conditional mixture effectively enhances flexibility.

It is impossible to prove all copula mixtures; however, in this context the
maximum likelihood provides some discernment about the applicability of ayairtic
distribution to every sample. Table 3, in appendix B, shows AIC and the BIC statistics
for the considered weather stations, where the three best specificatiatiaiass by

the one-parameter-Gumbel copula family.

weight functions and associated smoothing ad htegoazation of the data. Finally, the “Blankett&ss
can be applied to any specification and do notirecaelection for kernel and optimal bandwidth (€&n
et al. 2009).
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Brownian Bridge Treatment and Construction

In general terms, Brownian motion describes the random movement of particles
in multidimensional space. By definition, the Brownian Motion on [0,T] is the stochastic
process{W (t), 0 <t < T} which satisfy the following properties (Glasserman 2010):

i) Centered, W(0)=0;

i) The Mapping £ W(t) is, with probability 1, a continuous function on
[0,T];

iii) The increments {WQ-W(to), W(t2)-W(ty),...,W(t)-W(tk-1)} are
independent for any k and afy< t, <t; < - <t, < T;

iv) W(t)-W(s) ~N(O, t-s) foranp < s <t <T

V) As a consequence of (i) and (iv) it can be inferred that

W(t) ~N@O,t)for 0<t<T.

As a stochastic process, Brownian motion has the property of scaling invariance
property, which identifies a transformation on the space of functions which chtheges
individual Brownian random functions but leaves their distribution unchanged
(Glasserman 2010).

The Brownian Bridge has stationary increments but non-independent, in contrast
with Brownian motion that has independent increments. Dependent increments in
Brownian Bridge are the result of conditioning the final value to be canceled in the
considered interval. Let;Z..,Z, be independent standard normal random variables. For
a standard Brownian motion sgt® and W(0)=0. The subsequent values can be

generated as
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W(tiy) = W)+ Jtizs— t; Ziyy, i=0,..,n—1 (41)

For X~ BM(u, 0®) with constant m and s, given X(0), set

X(tip) = X&) +ultivr — t) +tigs — t; Zipq, i=0,..,n—1 (42)

These methods are exact in the sense that the joint distribution of the simulated
values [W(1),...,W(t,)] or [X(t1),...,X(tn)] are the same for the joint distribution of the
corresponding Brownian motion a,[t.,t,]. The vector [W(Q),...,W(t,)] is a linear
transformation of the vector of increments [W(WV(t) — W(t), ..., W(t) — W(t-1)]
because these increments are independent and normally distributed, then
[W(ty),...,W(t))] has a multivariate normal distribution (Glasserman 2010).

For a standard Brownian Motion, the mean E[))& 0, so for the covariate
matrix and0 < s < t < T; using the independence of the increments,

Cov[W(s),W(t)] = Cov[W(s),W(s) + (W(t) — W(s))]
= Cov[W(s), W(s)] + Cov[W(s),(W(t) —W(s))]|=s+0=s (43)
If Cov denotes the covariance matrix of [\t .,W(t,)], then
Cov;j = min(t;, t;) (44)
Given the Brownian motion {W(t)>0}, T>0, then

BO=W® - WD),  te[0T) (45)

Is a stochastic process of Brownian Bridge independent of W(T). However, when the
Brownian bridge realizations satisBy(t) = x andB(T) = y they are the initial and

final points, respectively, and the Brownian Bridge can be expressed as
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BYY(6) = x + WD) — - (W(T) — y + ) (46)

In fact, the Brownian Bridge Matlab program generates the underlymgrifan
motion process by successive increments. The Brownian Bridge constructioresaol
process that begins with the generation of the final valug) \iifen filling in the
intermediate values amounts to simulating a Brownian Bridge from 0=W(0) tp W(t
Next, W(tn2) is sampled, and valued between timgg and t, are filled in to simulate
the Brownian Bridge from W) to W(t,) and so on.

A Brownian bridge constructed from a Brownian motion with grjfts the same
as the one constructed from a standard Brownian motion, only the first step iigampli
the rightmost point) would change. Instead of sampling)Vif@im N(O, t,), it would be
sampled from N{tn, t,). The conditional distribution of Wft..., W(t,.1) given W(}) is
the same for all values gf (Glasserman 2010).

The d-dimensional Brownian Bridge construction implies the application of
independent one-dimensional constructions to each one of the coordinates. To include a
drift vector for BM{u,l) process, it must be addpd, to Wi(t,) at the first step of the
construction of the'i coordinate, the remaining parts of the construction are the same
(Glasserman 2010).

To construct X~BM|,X), X can be can be represented as X{f)t=BW(t) with
B as a dxk matrix, %d, satisfying BB== and W a standard k-dimensional Brownian
motion. Then a Brownian Bridge construction can be applied t9 W(W(t,) and

recover X(1),...,X(t,) through a linear transformation.
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X~ BM(l,2) means that the process X is a Brownian motion with driftwvith p
being a vector in RandZ a nxn matrix, positive definite or semidefinite —. X is a
continuous sample paths, with initial value X(0) = 0 and independent increments with
X(@®) — X(s)~N((t — s)w, (t — 5)Z) (47)
Let B a dxk matrix satisfying BB=% and W is a standard Brownian motion on
R¥, then the process BM() is defined by
X@t)=ut+BW(t) (48)
In particular the law of X depends on B only through'BfBen the process in equation
48 solves the stochastic differential equation
dX(t) = pdt+ BdW(t) (49)
So, extending the definition to a d-dimensional Brownian motion to deterministic, time
varyingu(t), andz(t) through the solution to
dX(t) = u(t) dt + B(t) dW (t) (50)
Where B(t)B(t] = Z(t). this process has continuous sample paths, independent

increments and

X(t)—X(s)~N (ftu(u)du,ftZ(u)du> (1)
In this terms, if X~ BM(1,Z) then
Cov (Xl-(s),X]-(t)) = min(s, t)X;; (52)

Let Z1,Z,,...be independent N(0,1) random vectors fnFhe standard d-dimensional

Brownian motion at times 0 s<t;<...<t, by setting W(0) = 0 and
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W(tis) = W)+ Jtiss — t; Ziy, i=0,..,n—1 (53)
Equivalent to applying the one-dimensional random walk construction separatetito ea
coordinate of W. To simulate X~ BM(), first matrix B is found for which BB=Z. If
B is dxk, let Z, Z,,... be independent standard normal random vector.iSé X(0)=0
and
X(tig1) = X&)+ p(tyr —t) +tigr — t; BZiyy, 1=0,..,n—1 (54)
The simulation of BM{,2) is simple onc& has been factored (Glasserman 2010).
However, in the particular case of the Brownian Bridge construction for the
SWG, in the construction of the tridimensional Brownian motion one of the variates (Z
Z,...) is truncated to emulate the precipitation behavior. As a consequemc2 have
to reflect such circumstance. The coefficients of the multivariate n@amaaletermined
by fitting the historical weather variables (maximum temperataneimum temperature
and precipitation) using the maximum likelihood estimation method. The parameters
estimation is from a population with single truncated sample, normal p.d.f. and the
truncation point of zero. Cohen (1991) shows the analytical solutiofrsgiodo,
derived using maximum likelihood estimation.
When restriction occurs only in one of the variates of the multivariate
distribution, such as in the case of precipitation; say Xx4{Xs), is the trivariate
distribution with the following p.d.f. equation.

F(X) = 2m3/2| 2V | T2 axp -1/ myET - (55)
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For left truncated samples, the analytical solutions for the estimatesio;
have close form solutions. As Cohen (1991) shows solutiong ftnurcated variate)

can be calculated only from marginal data pfwithout consider for any of the other

variates.
_ N Xi (56)
X = ;z
o Z": (x; ; x)? (57)
C) (58)
=00-¢
()
Q) = 1— ) ® (%) (59)
p=x— 0O &E-T) (60)
o= s>+ 0(&)(x—-T) (61)

Where n is the number of truncated rain-rate samlés) is the auxiliary
estimation function, ang(¢) and®(¢) are probability distribution function and
cumulative distribution function of the standard normal distribution, respectively.

Estimation of parameters of the remaining two variates and their camnelat
coefficients show the following pattern.

. — Sj

iy =% =1 — (1 — ),
S1

A___jl—i(l—%) (63)

(62)




A~

Ty — ARy —Tuty)

Pij = \/[1_,1(1_@] [1-1(1-73)] (64)

Fori=1,2,...,p-1, |=2,3,...,p,i<|.

52 (65)

2
1

%5}

I=1-

Q

Since by definitionj=1, the last equation for i=1 becomes
Ty (66)
Jt=2(1-7))

For more details on this issue, consult Cohen (1991).

A

p1j =

Brownian Bridge is useful in the context of this application because it is able to
generate high quality sequences to outline the paths of the Brownian motion drgcess
sampling the weather generated by copulas acting as milestones (or borderline
conditions), the sequence can be filled using Monte Carlo methods. The Brownian
Bridge could represent an advantage when it is used with variance reductiogueshni
and low-discrepancy methods.

Summary of the Applied Methods for the Copula Based SWG

The applied methods that compose the Copula Based SWG are briefly detailed. First,
the selection of the dates for the estimation of the Copula parametersed ocat based
on the criterion of the highest average monthly anomaly. Second, the original daily
weather observations are detrended to extract the cyclical patternseni¢ise Bhird,
the detrended selected dates are used to estimate the parameters éremt didpula

mixture specifications and the best specification is determined. Four, paraimethe
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trivariate normal with one truncated variate are obtained from the detreedduew
variables using daily observations, one set of parameters per month. Five,isimuilat
the weather variables is carried out using the Copula parameters previoasigabt
Six, Brownian Bridge generation is carried out to emulate daily dysaofithe weather
variables using the Copula simulations as the borderline of the Copula based SWG and
the trivariate normal simulations. Seven, trend is incorporated into the dailyatchul
variables.
Summary

The proposed technique considers the application of the copula methods for the
stochastic generation of daily values for the weather variables: maxiemypetature,
minimum temperature and precipitation. This methodology solves three important
issues. First, the selection of the marginal distributions which was deésrmi
individually based on the best fit for every variable including parametric and non-
parametric approach. Second, the solution of the dimensionality problem thatmelays i
the reduction of the sample for the copula estimation. This principle selects the date
with the highest average monthly anomalies in the sample. Third, the copula family
selection criterion for the final representation of the multivariate modhetivwvas
established on a common base measure for all component mixtures: the likelihood
function. Under this measure the best specification for the three models was the one-

parameter Gumbel.
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CHAPTERI 11
STATISTICAL VALIDATION FOR THE COPULA BASED STOCHASTIC

WEATHER GENERATOR

Introduction

The statistical validation of the Copula based SWG represents a key issue in the
generation of weather series for crop simulation models such as the WiAtRIC.
copula based SWG was tested in nine locations with two different climatic cosditi
Weather stations are located in Conrad, Montana; Spokane, Washington and Temple,
Texas.

An evaluation of the Copula based SWG performance versus the Richardson’s
SWG performance, currently used in the WInEPIC, is carried out to learn about their
strengths and limitations. Copula based SWG does not assume parametricasioesfi
instead, Copula based SWG was designed on non-parametric modeling using kernel
smoothing and copula methods to capture jointly the adjacent weather patterns in the
series. Also, Copula based SWG relies on Brownian Motion to emulate the daily
behavior of the weather series and used Monte Carlo methods to replicate the behavior
of the observed weather series.

First, because any parametric functional form is being used, a non-padmetr
sample Kolmogorov-Smirnov test can be used to evaluate the performance of the Copula

method to replicate the distribution for the weather series.
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Next, a deeper analysis by periods is applied to get more detailed information on
the Copula based SWG'’s performance in contrast to the Richardson’s SWG
performance.

In general terms, although the Copula based SWG provides a good representation
and an acceptable replication of the observed weather patterns from histoactietat
is no a conclusive evidence on which SWG has the best performance. However, one
remarkable characteristic of the Copula based SWG is that | t provideatacc
representations on magnitudes of extreme weather events in temperatures.

Monte Carlo Methods

Weather models are stochastic representations that replicate daitypaaran
weather. The parameters of such models represent specific chstiastef the local
climate that the Monte Carlo simulation technique reproduces by random number
generators which resembles daily weather. Thus, the weather seeestge cannot be
duplicated at any time. Monte Carlo methods are a fundamental component of the SWG
and the laws that govern the samples generated by this method are also apgplicable
those daily weather series generated by SWG.

Monte Carlo simulation method is a numerical calculation method that performs
numerical computations of random variables. Basically Monte Carlo is a methdd whic
simulates independent realizations of the stochastic event z as an esiimiate f
probability or expectation of the phenomenon via an appropriate estimator obtained from
independent samples (Asmussen and Glynn 2007). The probab#i®y(#,, > x) can

be calculated as the sample proportion of thetiét is greater than x. The estimator
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of z = [EZ is developed by an algorithm that generates independent and identical
distributed (i.i.d.) random variables,Z.,Zz and estimates z from the sample by the
expectation estimator.

1 R 67
P= == RUTAES) 67
r=

Wherel is the indicator function and the Law of Large Numbers (LLN)
guarantees that the algorithm converges to as the number of independent replications
goes to infinite (Asmussen and Glynn 2007). Monte Carlo method is able to generate
independent sequences under the distributional assumptions defined.

Precision or the number of simulation required for attaining convergence under
the LLN can be improved using the central Limit Theorem (CLT). Thus, assurhi&g

Var Z < o

VR(2 — 7) 2 N(0,02) asR —» o (68)
This can be expressed as

oV

VR

When R is large€ converges in distribution with a convergence rate of the

(69)

Z=z+ where V~N(0,1)

order R However, because the error for large R is asymptotically normally
distributed, the error for large R depends on the standard dewadiod it is possible to
assess accuracy by the confidence intervals derived from the normal dastribut
(Asmussen and Glynn 2007). Because of the CL TOenotes the-quantile of the

normal distribution® (z,) = a with the asymptotic probability of the event
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<Zga\/§ < z2-z< zl_ga\/ﬁ) (70)
2 2
So, the interval is
(z” —z, ad/VR,z — ZgG/\/ﬁ) (71)
2 2

Because in practice,? is unknown, it can be estimated by its sample estimator
1< 2 (72)
S =g D
r=1
In general terms, precision @} is complex to obtain; however, because z is

Gaussian thefi,* tends towards2 for every large N (Huynh et al. 2008).

(2 —Zl_gS/\/ﬁ,ZA — ZZS/\/E> o2+ Zl_gs/\/ﬁ (73)
2 2 2

Where le is the asymptotic confidence interval for z. The speed of convergence
is measured by the size of the confidence interval. The standard chdiee=&@5%

=1.96, so the confidence intervabig- 1.96 s/VR.

There are several methods for increasing the efficiency of Monte Carlo
simulation by reducing the variance of simulation estimates. However, the
implementation of a reduced-variance estimator with a valid confidence intequales
sacrificing some potential variance reduction.

Methods such as antithetic sampling, control variates, conditional sampling,
stratified sampling or importance samplings are common. However, they vary in
effectiveness and complexity (Asmussen and Glynn 2007). While the antitmeptren

is easier to be implemented because it does not require specific informatioa about
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simulated model, their efficiency is minor. In contrast, importance samiplthg most
complex method because it has the capacity to exploit detailed knowledge about a model
(often in the form of asymptotic approximations) to produce orders of magnitude
variance reduction (Glasserman 2010). The adequate application of importanéegampl
method can attain an effective reduction in variance.
Monte Carlo Method in the Copula Based Stochastic Weather Generator

Monte Carlo methods are a fundamental component of the Copula based SWG.
They get involved in two different stages of the climate generation. First, theicoali
Monte Carlo method provides variance reduction in the simulation of Copula draws.
This three-step process for the multivariate copula simulation is broadhybeelsin
Chapter 11, which basically follows Cherubini et al. (2004) and Salvadori et al. (2007).

Second, Monte Carlo method is involved in the simulation of the Brownian
Bridge to emulate the daily dynamic of the weather series. Brownidgeuses high
quality sequences to outline the paths of the Wiener process, by sampling pagts acti
as the milestones; they can fill the trajectory Monte Carlo sampling orbetter quasi-
Monte Carlo Methods (Brandimonte 2006). The property of stationary independent
increments of the Brownian Bridge makes the simulation process equivalent to the
random variable generation from a specific infinitely divisible distributidag§&rman
2010). Because Brownian Bridge relies on Brownian Mation, it exhibits Markovian

property that aggregates more persistence in the simulated weatler serie
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Statistical Testson Simulated Weather Data

Daily weather data for three locations with highly differentiated exgtatterns
across the United States were generated by the Copula based SWG. Following
Richardson’s (1981) research, observations from three Weather stations in Conrad,
Montana; Spokane, Washington and Temple, Texas were used to test their accuracy
properties.

Parameters were estimated with data from Conrad and Spokane weather stations
using 50 years of daily observations (1960-2010); for Temple the estimation weg carr
out with 42 years of daily data. Year data were partitioned into 12 observatioreaper y
(one per month) according to the highest average anomalies recorded and whose
distributions are replicated by Copula methods. The complete methodology of the SWG
based in copulas is accurately described in the previous chapter.

Two-Sample Kolmogorov-Smirnov Test

The two-sample Kolmogorov-Smirnov test (KS) is applied to Copula simulations
to compare the c.d.f. of the generated weather series vs. the c.d.f. of original observed
weather data at each one of the three locations in Montana, Washington andnTexas
this context, this non-parametric test compares two unknown c.d.f.s: F for the observed
data and G for the simulation, quantifying the distance between the empirical
distribution functions of the two samples through the test statistic in the following
expression

Dy, = sup |Fpy — Gzl (74)
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Where F_nis the empirical c.d.f. from a sample gfdata values (observed weather
data) and G_nis the empirical cdf from a sample gfdaata values (simulated data),
beingF,,, G,» continuous distributions.

The null hypothesis is §1F,,; = G,,. The fit is measured by the statistigwith
its asymptotic distribution and the limiting distributi¢hnD,, is distribution free, in
consequence, the reasonable criterion is to rejedtBy, is large. (Mood et al. 1974).

A sample of 120-year draws for every one of the three locations was generated
using both SWGs and the two-sample Kolmogorov-Smirnov test was applied.

Table 4.A and 4.B, in appendix B, show the p-values for the selected dates
generated. Simulated dates that reject tharkel marked with asterisks, in these cases the
probability distribution of the simulated weather data does not correspond to the
probability distribution of the observed data. In the case of the Copula based SWG
simulations the blis rejected in 37% of the cases, while in the case of Richardson SWG
is 27%; however the cases of rejection are concentrated in the simulation for the
Spokane weather station.

However, this rate of rejection in the case of the Copula based SWG can be
attributed to the fact that the KS test is more sensitive to median values thdretne
values of the distribution, and Copulas precisely tend to capture more information from
the tails of the observed distributions (or extremes of the distribution). lowartithis
result makes sense because the Gumbel Copula family used to model weahés seri

characterized by upper tail dependence.
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Quantile Analysis

Quantiles of the distributions are calculated to analyze in detail the diféeyén
the distributions for the simulated weather series versus the observedrsesatse A
120-year simulation was performed to carry out the quantile analysis.

The quantiles of a distribution are points taken at regular intervals c.d.f. function
that provides nonparametric estimators of their population counterparts based on a set of
independent observations {Xo,..,X,} from the distribution F. Quantile of the
distribution F is define by the following expression.

Q(p) = F~'(p) = inf{x: F(x) = p}, 0<p<l1 (75)

Let {X 1), X2),...Xm} denote the order statistics of {}X»,..,X.} and letQ,(p)
denotes thé'i sample quantile.

Table 5, in appendix B, shows values of the weather variables for different
quantiles of the distribution. The Copula based SWG generates weather series
significantly closer to the original observed data. Although the reproduction of the
weather patterns is consistent, the replication of the climate is corupbraietter for
the station of Spokane, Washington and Temple, Texas than for Conrad, Montana. The
values of the lower percentiles are more accurate in the case of theisimsuj@nerated
by the Copula based SWG. This result could be attributed to the property of copulas to
capture more information in the tails of the distribution.

Statistical Analysis of the Simulated Weather Series
The validation of a weather generator based only on the analysis of their moment

distribution (mean, standard deviation, skewness and kurtosis) is insufficient. A more
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accurate description of the occurrence of precipitation by season provides key
information to evaluate the performance of the Copula based SWG. For such purpose
28-day period indicators were calculated for both, the generated and the observed
weather data series. Next, mean values of accumulated precipitation amoyntagan
number of rainy days, mean minimum temperature and mean maximum tempernature pe
period were calculated.

Table 6, in appendix B, shows that the simulated mean precipitation amounts do
not differ significantly from the values obtained from the observed data. However, the
replication of the amount of water from precipitation is more accuratedatibns with
higher amounts of water such as Temple, Texas than in locations with low levels of
rainfall during the year. The average number of days per period geneyatexiCopula
based SWG was in general terms close to the observed data. However, the Copula based
SWG shows certain inflexibility in replicating the amounts of water andettigrence
of rain periods in highly variable precipitation patterns.

The same analysis is applied for the daily simulated temperatures. Table 7, in
appendix B, shows the mean maximum temperature and the mean minimum temperature
for 120-years of generated series and for the observed weather series. i éomide
maximum and minimum temperature in the three weather stations ar¢octbhse
observed data. The differences in averages can be mainly attributed to thdidgtre

technigue by harmonic analysis described in detail, in Chapter II.
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Both SWGs reproduce significantly close weather patterns in the thrésewea
stations. However, there is no conclusive evidence about how to rank the accurateness of
these models.

Table 8, in appendix B, summarizes the capacity of the Copula based SWG to
reproduce the distribution of the annual extreme temperatures in minimum tengeratur
and maximum temperature series. The comparative analysis of thetgersera the
observed data in Table 8, in appendix B, confirms that Copula based SWG reproduces
much closer the patterns of extreme events in weather series. Both, Copul&W4s
and Richardson’s SWG, show about the same number of days with extreme
temperatures; however, the Copula based SWG shows a better replication in magnitude
of the temperature extreme events of the observed data for the three weadimsr. sta
Summary

Tests on copula based SWG showed that the model is able to represent the main
features for the distributions of the observed weather variables. For the thtberwe
stations, the Gumbel with a single parameter was the best specificattbough there
is no a clear insight about which SWG has the best performance, the copula based SWG

shows a better performance in the reproduction of the extreme weather events.
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CHAPTER IV
COMPARATIVE EVALUATION OF THE COPULA BASED STOCHASTIC
WEATHER GENERATOR: AN APPLICATION FOR CROP GROWTH

MODELSAND CROP INSURANCE

Introduction

The performance of the SWG is evaluated in terms of the Camelina yields
produced by two different weather generators — Copula based SWG versus Richardson’s
SWG, currently used in WIinEPIC — and in terms of Average Production History (APH)
insurance schemes for Camelina.

Camelina is an oilseed crop recently growed in some North areas in thé Unite
States. Because no historical data on Camelina yields are availalaerfgrof the new
insurance scheme, the alternative solution is to obtain these data from evtip gro
models like the Environmental Policy Integrated Climate model (WinERPiGudh
models, weather is one of the main determinants of crop yields. Given that the Copula
based SWG more accurately reproduces the observed extreme weathertasents, i
expected that the yields generated using this weather generator It nebre
accurately the effect of extreme weather events on insurance premiumex@tuise is
applied in the specific location of Conrad, Pondera County, Montana. For the sake of
this research, some issues and results from the Risk Management Agency Btady (R

2011) are considered.
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Energy Crops

The global crisis triggered by the rise of the world food prices during 2007 and
2008 caused a renewed interest for oilseed crops as a feedstock for renegiable f
particular, part of increase in food prices was attributed to the diversion of fousl cr
(maize in particular) for producing first-generation biofuels in coinsdewith weather-
related cereal production shortfalls in Australia, U.S., EU, Canada, Russia amide&kr

The Energy Independence and Security Act of 2007 had a considerable impact on
U.S. energy policy, making the production of corn more profitable than other crops
which lead to significant increasing of corn acreage and reduction in soyibaheat
acreages. In this circumstance, non-food crops like Camelina, Jatropha, Crartdoe, Cas
bean, safflower, switch grass, seashore mallow and mustard are being ednsider
biofuel production. These crops can prosper on marginal agricultural land where edible
crops do not.

This research will focus the analysis on the crofarnelina sativ§Camelina).
This is a spring annual oilseed plant of the mustard (Brassicaceae) fgemlys (
Cruciferae), a distant relative to canola. This crop, originally from Geks$ia and
traditionally cultivated in Europe, has shown some advantages over other oilseed plants
it matures earlier than other oilseed crops, it is more drought tolerangrggpang
freezing tolerant, and more resistant than canola to flea beetles. sdlfdaures imply
greater economic advantages from reduced production costs in some climategdompar

to other oil crops such as canola or oilseed rape (Johnson 2007).

L From 2004 to 2007 the use of maize for ethanolgneponentially, using about 70% of the increase in
global maize production for such purposes (Don20f3).
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Camelina is adequate for the same growing areas as canola, flax, aaimust
such as Idaho, Montana, Minnesota, Oregon, North Dakota, South Dakota, and
Washington. However, agronomical trials on Camelina in Texas have not shown a
favorable experience on yield and quafftyspecialists pointed out that until additional
equipment and/or genetic improvements take place, Camelina yields will not be
competitive with other cool-season, oil-seed crops. The two major limitations to
Camelina are establishment of very small seed and shattering prior ésth&towever,
this result could be inconclusive because of limited experience with Camelina in
Texas?®

At present, contract farming is used as the predominant method for producing
Camelina in states with acceptable performance (Montana, North Dakota, Oregjon, a
Washington). Processors and first handlers contract growers and set up production
conditions under fixed price terms (RMA 2011).

Mainly the demand for Camelina comes from the U.S. Navy for its biodiesel jet
fuel and other companies such as Great Plains Oil & Exploration-The Camelina
Company, Sustainable Oils, and Willamette Biomass Processors (RMA 2011).

In Montana Camelina has been grown since 2004. In 2010 crop year 9,900 acres
of Camelina were planted, of which 9,400 acres were harvested. In 2009 20,800 acres
were planted of which 19,500 acres harvested (NASS website, last accessed 5/5/2012

http://quickstats.nass.usda.gowWontana farmers consider that Camelina is a low input,

2 camelina trials were conducted in the AgricultiEaperimental Stations of Texas A&M University for
between 5-7 locations across Texas for 3 years3(2000).

3 personal Communication with Dr. Gaylon D. MorgAssociate Professor and Cotton Specialist, Texas
AgriLife Extension Service - Texas A&M University.
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low risk, and high efficiency crop (RMA 2011). Table 9, in appendix B, shows the
economic advantages of growing Camelina in Montana instead of other crops such as
canola or spring wheat. Camelina production requires 33% less fertilizasio canola

and has additional properties that implicitly reduce its production risk.

RMA (2011) evaluated energy crops that are commercially grown and dedicate
to energy production in terms of their insurance feasibility. RMA (2011) founddheg s
of these energy crops like Camelina in Montana, Oregon and Washington defeasi
because its characteristics are similar to other insured crops indhaseris. In
addition, higher premium estimates in Montana point out a greater demand for iesuranc
in this Stat&*

The purpose of this research is not to design of a new insurance scheme per se,
but the comparison of the performance of two weather generators in terms ofeheir us
crop growth models as an instrument for the rating of new insurance schapresw
historical data on yields is available.

It is a priori known that the copula based SWG reproduces more accurately the
extreme weather event patterns than Richardson’s SWG, currently used inl@/asEP
the weather generator. For this reason, some of the issues and results oAt(l2ORM)
feasibility study are considered.

Furthermore, this research incorporates new dimensions to the problem initially
formulated by RMA (2011). The proposed analysis evaluates the implications of using

the copula based SWG in terms of fair premiums in insurance schemes fom@amel

24 There exists a precedent of Camelina insuran&agkatchewan, Canada (Canada, Saskatchewan
Government, 2012).
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Physiology and Cultural Practicesfor Camelina

Camelina can be grown in semi-arid regions on dryland or with minimum
rainfall, where other crops cannot be grown. In Montana, Camelina’s advantage lies in
better management of moisture and cold tolerance (Johnson 2007). Camelina grows up
to 90 centimeters tall and has branched smooth or hairy woody stems. Camelina seed
contains 29-41% oil compared to 20% in soybeans and the remaining 60-70%
germplasm can be used as livestock feeding as a potential soybean meal replacement in
finishing beef cattle. (Ehrensing and Guy 2008).

To simulate Camelina with WIinEPIC is necessary to specify the biological
parameters for the crop. Camelina is on 85-100 day lifetime-crop with a physiological
cycle of six stages: seedling (0-14 days), leafing (15-45 days), blossom (46-58 days),
green boll (59-77 days), boll ripening (78-100 days) and maturity"(@8g) (RMA
2011). Planting dates are variable across regions. In North Central Montana, spring
planting dates are from late March to late April; in Eastern Montana dates range from
late April to early Juné&

In Montana, Camelina is planted no deeper than % to % inch using 3 to 5 Ibs of
seed per acre. Seedbed preparation is done by drilling the seed very shallow using packer
wheels to ensure good seed to soil contact and a firm seedbed. Other cultural practices

suggest the distribution of the seed onto a clean seed bed followed by a harrow or rollers.

% A difference of one month between planting and harvesting occurs between western Montana and
Southeastern Montana (Billings), USDA website.
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Seed to soil contact and soil compaction is vital and planting too deep will cause poor or
no establishment (McVay and Lamb 2063).

Different rotation patterns are possible for Camelina. In Montana, producers
replace their fallow land with Camelina between wheat crops in a wheali@a/wheat
rotation pattern (RMA 2011). Better results for Camelina yields have beervedse
Montana and Oregon when Camelina was planted in fields with a previously fallow or
growing wheat, barley, peas or lentils. Poor performance is shown when ttescpla
consecutively or following canola or another Brassica such as brown mustard,aranola
rapeseed. Farmers use Camelina to replace fallow in their crop rotation bgsi@use
Camelina can stabilize exposed soils for erosion control.

Camelina responds to nitrogen, sulphur and phosphorus fertilizer application.
Sustainable production suggests an application of nitrogen lower than 90 pounds per acre
and no than less than 32 pounds of phosphorous. Areas with higher yield potential (more
available moisture) may experience response to increased fertlies(Ehrensing and
Guy 2008).

Camelina should be planted in fields with limited weed pressure to reduce
competition. A burn down of broadleaves and grassy weeds utilizing Round Up
(glyphosate) is recommended prior to planting to lessen weed competition during
establishment. Like canola, no herbicides are necessary becausen@araaluces a
natural exudate from its roots (alleopathy) and it is highly sensitive to lomg-te

herbicide residuals (McVay and Lamb 2008).

“Authors suggest a minimum tillage or no-tilled (May 2008; Ehrending and Guy 2008).
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Camelina is alternaria blackspot resistant and is highly resistant tteaavige
of blackleg isolates (Leptosphaeria maculans), which are major diseaseslaf @r
Brassica crops. It exhibits variation for resistance to sclerotimarste brown girdling
root rot, and downy mildew, suggesting that disease resistant cultivars carelope€le
(Ehnrensing and Guy 2008). Other diseases such as clubroot, white rust, and aster
yellows limit its adaptation. Camelina is also susceptible to viral disdiisgurnip
crinkle virus and turnip rosette virus that are transmitted by flea beeNés 2R11).

Camelina must be harvested within a few days of maturity because pods mature,
the seed easily falls from the pod. The seed moisture content must be less than eight
percent to ensure proper storage quality (RMA 2011).

Several agronomical trials have been performed on Camelina by the Montana
Agricultural Experiment Stations of the Montana State University. Since 2004. Br. K
McVay has led a broad research program at seven agronomical experitiemns sta
the Montana State University to determine the best management practicagiclrig,
McVay and Khan (2011) conducted a two-year study to evaluate the effectsdf sta
reduction on Camelina at different growth stages; his results suggest thair@a
exhibits plasticity to maintained grain yield across a wide range of stdndtions
under dryland conditions. Yield plasticity is higher at the rosette compardtketotive
stand was reduced at bolting stage (McVay and Khan 2011).

Although agronomic trials provide useful information about productive practices,
their results in terms of yields depend on the particular production practices that

agronomists are evaluating. For this reason, the yields on agriculturainespei

59



stations could be different from actual farmers. As a consequence, informegarding
cultural practices for the calibration of the Camelina yields was obt&iom farmers in
Pondera County, Montana. RMA gathered information on management practices and
yields from producers consistently growing Camelina for 4 years undemtge sa
management practices (RMA 2011).
WInEPIC Crop Calibration

Farmers cultivating new crops experience higher uncertainty abouspienee
of the plant to cultural practices, weather, and natural disasters. For this, ngakl
simulation can be effective for the risk analysis and the development of instsuiment
allow coping with such risks, such as the insurance.

Plant growth simulation models represent a feasible option for this purpose. In
particular the WIinEPIC evaluates production strategies consideringsumiiay,
erosion (wind, sheet, and channel), economics, water supply and quality, soil quality,
plant competition, weather and peStélso, WIinEPIC is able to simulate hundreds of
years of daily potential plant grow constrained by the minimum of five staieks'$
(water, nitrogen, phosphorus, temperature and aluminium toxicity). WinEPIC ntbéels
phenological development of the crop based on a wide set of equations that capture the
processes of daily growth from emergence to harvest (Williams et al. 1989).

Farming practices are set up for WinEPIC in the form of crop production
schedules. Such plans specify application rates, dates of operations prior to and during

the growing season for tillage, planting, pesticides, irrigations,izersl, and harvesting.

“AWInEPIC was developed in the early 1980's by R.\Williams, Blacklands Research and Extension
Center, Texas AgriLife Research, Texas A&M Univigrsiemple, Texas,
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In addition, management information such as rates and dates of crop production inputs
facilitates the simulations for tillage, irrigation, and fertilizer gaheres (RMA 2011).

Based on the cultural practices documented in Montana region where Camaiina is a
important crop, parameters on leaf area development, temperature responses,
development-rate, radiation-use efficiency, nitrogren and phosphorous concentrations in
plant biomass and plant growth process of the crop are adjusted to calibrate éli@e&€am
growth model.

This research considers the information and the calibration parameters from the
RMA'’s (2011) research as a base to simulate Camelina yields. Accordingfo RM
(2011), a local Conrad producer provided his best estimates of 2007-2010 non-irrigated
yields. The 2008 yield was reduced significantly by shattering and the 2009 yields
suffered from harvesting loss@$e farmer’s rotation was wheat-fallow-Camelina, so
Camelina production followed a summer fallow period for each specific fiblas, Ta
rotation of minimume-till winter wheat/no-till fallow/direct-seededisgrseeded
Camelina was utilized for calibrating the WinEPIC model and to simulatgelus as
closely as possible.

The farming practices, in table 10 in appendix B, detail the production schedules
about the cultural practices, schedules for tillage, planting, fertilizatishicioe
applications, and harvesting operations along with management decisions affiordates
each operation, seeding rates, and application rates of fertilizers, andlpsstithe
daily weather information used for the simulation was obtained from the closatster

station to the farm, Conrad MT1974.
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The usual way to evaluate the robustness of the crop growth model calibration is
a graph with the simulated output by the model on the “x” axis versus yield observations
on the “y” axis. This graph highlights the comparison of model predictions and system
measurements, a 45° line or 1:1 line would indicate a perfect adjustment of simulated
data respect to the observed data. In general terms every generatitimefrodel is
accompanied by an error, even for robust models data are scattered around thé®1:1 line.

Divergence lines, usually of +15%, could be determined by the observed
coefficient of variation (CV) for the variable under consideration. If the modebisst,
data should be located between these divergence lines, 80 or 90% of the points (Soltani
and Sinclair 2012).

As table 11, in appendix B, shows the yield series simulated for a 300-acres
Camelina farm that has an average of 1,576.5 Ibs/acre versus 1,489.5 |bs/acre for the
observed data. Figure 7, in appendix A, depicts the relationship of simulated to producer
yields year-by-year in table 11, in appendix B. The regression line with a 1.001 slope
and R-squared of 0.81 indicate a satisfactory adjustment.

An APH Insurance Scheme for Camelina

This research uses the Average Production History (APH) insuranceesthhem
carry out the comparative insurance analysis on yields generated by the lGasaaa
Stochastic Weather Generator vs. yields generated by Richardson (1981) SWG

This insurance scheme was evaluated by the RMA (2011) as a feasible

application for energy crops. In particular for the case of Camelina, Riiéluded that

8 This graph is common for output variables withrayk value for each situation, e.g. days to matyri
crop yield, crop mass at maturity, and so forthtg8m and Sinclair 2012).
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the reasons for the pertinence of the APH insurance are mainly two. First|iGadoes

not trade on a commodity exchange. Instead, in regular basis the priceslalishest a
priori in the farming contract as a result of a private negotiation betweésrther and

the processor or first handler. Second, although the lack of clear price methanis
prevents the design of a revenue protection insurance program, in the other hand the
specific contract conditions on production conditions and delivery process reduces the
risk of revenue variability (RMA 2011).

APH is based on historical loss experience data and it has been broadly applied
by the RMA for insuring crops in the United States. The APH provides a yield risk
protection guarantee for the producer against shortfalls in yield as a fuatagroven
yields and its selected level, which trigger the indemnity payment (Coble2€t10).

The ratemaking procedure deals strictly with the derivation of the exfdested
component, represented by the Loss Cost Ratio (FERMA establishes rates for
every crop separately and at any level of coverage, expected losses aegataggr
geographically for a group of similar risks, typically by county. Furtheenitiere are
other tailoring criteria for adjusting the rate to an individual producer. &stbe
ratemaking procedure has five steps: one, adjusting the loss (indemnity) and exposur
(liability) to a common coverage level; two, derivation of county unloaded rhtes; t
base rate loading; fourth, capping rate changes; five, updating of practccgsoup

factors (Milliman and Robertson Inc. 2000).

29 LCR measures the loss per unit of exposure, wisiobtained by dividing indemnity by liability.
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When historical losses are available, rating methodologies are based dodtistor
loss costs ratios. Historical indemnity and liability are used to evaluafaéimium rate
through the LCR. The incorporation of this information guarantees that moral hazard or
changes in production practices as a famer reacts to insuranceetedefh the
expected value of future costs.

When historical data is not available like in the case of a new insurance scheme
like Camelina, the ratemaking procedure relies on the yield data agaalathlon
simulated losses (Goodwin and Mahul 2004). In this context simulation can be helpful
for rating this scheme because the observed experience could not refecthetfull
range of potential outcomes or the current distribution of exposures (Coble et al. 2010).

This rating method could have the required flexibility to reflect the
heterogeneous risk characteristics, such as Coble et al. (2010) recommentgiddim
based rating is able to consider the effects on yield of: different varietyilsnweather,
topography and cultural practices within a country.

Unfortunately there are two weaknesses in the yield simulation based approach
for insurance ratemaking purposes. First, insurance parameters such as pedesare
sensitive to the assumptions made in modeling yield distributions. Second, this
procedure does not capture the impact of insurance on farming practices. The wields us
to build the insurance parameters are not from insured farmers, so it couldtheflect
behavior of the uninsured farmer, which naturally affects the perception and how he
copes with risk. In contrast historical indemnity data reflect the impa&asming

practices on yields.
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Coble et al. (2010) affirm that loss experience base rating has an advantage with
respect to a yield simulation based approach because crop insurance indeossi#gs |
that are not normally reflected in planted acre yields mainly from threeesour
preventing planting provisions, replant payment provisions, and quantifying quality loss.
A valid insurance rating system requires a procedure to evaluate thegamoeof the
rates and the observed experience (Coble et al. 2010).
Yield Modeling and Rating of a New I nsurance Contract

The Camelina APH insurance schemes developed in this research use as a base
the simulation base rating and, by construction, embraces mainly three implicit
assumptions. First, yields stochasticity is entirely originated in tm&ERIC model by
weather. Second, yields simulation is produced under the same technological conditions,
no technological improvement is considered. Third, patterns of physiological
development in the crop, erosion in soils and the general conditions of the environment
are considered without alteration and climate change issues are not i@mhside

By its nature, crop yield risk is mainly driven by climate. Thus, crop yield loss
events and consequently yield risk are determined by the extreme but infregemrist
So, the analysis of the APH insurance schemes for Camelina capture ¢hefdife/ing
a more accurate replication of the extreme weather patterns observed.

Crop yields are the result of the interactions among several factors mebatéd
to environmental conditions, which implies that the evaluation of their risk probabilities
is determined by the accurate assessment of the probability of these(€odtset al.

2010). Thus, simulated yields provide details on the frequency of occurrence ofeextre
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events such as floods, droughts, etc. at the same time that reflect the deticaadéthe
present production systems and cultural practices. In contrast, the obsexwachhist
yield series could reflect loss experiences from crop production systems and
technologies no longer in use, which might create distortions in the effeckve ris
valuation.

In a new insurance scheme the rating procedure heavily relies on yield data
available and on simulated losses. Thus, Camelina indemnity payments can bedimulat
from the yield data (Goodwin and Mahul 2004). In this context, the weather generators
have important implications for yield probability distribution functions; in paldr
regarding the tails of the probability distribution. Thus, weather geneiatdr y
distribution will directly impact expected insurance payouts and the premias rat
derived from the estimated yield densities.

For the sake of simplicity, assume a yield insurance contract at a pneidetkr
fixed price that pays indemnities if the actual yields fall below somehtbickslefined
by the guarantee (liability). In this scheme, the two parameters arenioéd by the
underlying yield distribution. Yield guarantee determines the total lialitithe
maximum possible indemnity paid in the event of total loss and it reflectgpketed
yield and establishes the conditions in which the indemnity disbursements arehgaid. T
premium or price of the insurance reflects the likelihood and the expected leves of |
that corresponds to the coverage level specified in the contract. An actuairally

premium equals the expected insurance loss (expected indemnities). The premism ra
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expressed as the ratio of expected loss to total liability, it means thesg@ldrin
premium for each dollar of liability.

Assuming that there is an adequate representation of the yield dgnsityhe
contract with level of coveragke and the expected insurance yigld

o 76
Expected Yield = n=E(y) =y J- f(y)dy (70)

The Expected Insured Loss (EIL) is the product of the probability of a loss time

the expected loss, given that a loss occurs.

EIL(y) = E{max(Au —y,0) } = (77)
= Prob(y < A)[Ap —E(yly < Ap)] (78)
in 79

=" Fo) dy {w - —f-ayfﬁy)ﬁy} .

Actuarially Fair Premium = Expected Indemnity = EIL (80)

In this simple scheme, the insurance premium is the expected LCR. The reserve
load is the cost of reserves the insurer must set to pay unexpected losses with a
determined degree of confidence (Goodwin and Mahul 2004).

In general terms, crop yields are negatively skewed because they show more
frequent yields near the maximum than yields near the minimum. Becausasoesur
issues occur toward the tail of the distribution rather than near its median, {garante
model error in the estimation of the yield distribution are compounded when the yield
distribution is translated into insured losses (Goodwin and Mahul 2004). Thus, the

selection of the appropriate specification of the yield distribution is priarastyno
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consensus exists because observed yield distributions tend to be inconsistent across
region, production potential and soils.

Modeling of the yield probability distribution includes basically two approaches:
parametric and non-parametric. Parametric methods use available dataxamadim
likelihood method or moment estimation procedures to obtain the parameters of the
distribution. Under this approach the fundamental assumption is that the true distributi
of the data is a priori known (Goodwin and Mahul 2004).

Usually beta, Weibull, gamma log-normal and normal distributions are
considered for modeling crop yield distributions. However, a normal distribution could
not be suitable because the systemic risk (covariate component) violatesuthptamns
of the central limit theorem about i.i.d. Yields reflect agricultural risk tvisccomposed
of systemic and non-systematic risk. Systemic risk is caused by wegahkgror natural
phenomena that uniformly affect entire geographical areas (Goodwin and Mahul 2004)

The alternative approach to model the yield distribution is the non-parametric
distribution; however, the weakness of this approach is the bin width and placements of
bins. The non-parametric kernel approach provides additional flexibility be¢ause i
imposes a minimal structure on the estimated distribution. The only requirement is
enough observations to estimate reliable probabilistic estimates.

There exists a tradeoff between efficiency and bias in the selectionelpetwe
parametric versus non-parametric probability distributions. The incortectiea of a
parametric distribution can create bias in estimates of the distributionis keBidgts in

inaccurate insurance premiums rates. However, when the parametric destribut
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known the resulting estimates are the most efficient because theyladt@rdmer-Rao
lower bound.

So, the best strategy consists in estimating the yield probability digiritftthe
parametric type when the distribution is a priory known. As a consequence, non-
parametric distribution only could represent an improvement in distribution modeling
under two conditions: when there is enough data to attain a reliable estimate and the
functional form of the distribution of the observed data is unknown.

Camelina Yield Distribution

By construction Camelina simulated yields are not subject to technological
change or differentiated cultural practices. Instead, they are geshésathe same data-
generating process in the WIinEPIC. As expected, trend is not significdttfor
Camelina yield series, see table 12, in appendix B.

Camelina simulated yields from both SWGs have important differences is term
of standard deviation. Table 13, in appendix B, shows higher standard deviations on
simulated data by the copula based SWG which could reflect the effestamta
accurate description of the observed data.

Yields were modeled using mainly three parametric distributions beta, gamma
and Weibull. The selection criterion for the probability distribution relays on tte be
representation of the left tail of the yield probability distribution. The praibabi
associated with the left tail of the distribution mostly determine the expmsered
loss. Thus, based on this criterion and the AIC and BIC criterion showed in table 14, in

appendix B, the Weibull probability distribution attained the best fit for the Camneli
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yields in both cases, when Copula based SWG is used and also when Richardson SWG
is applied.

Figures 8 and 9, in appendix A, show that Weibull distribution attains a better fit
for the Camelina yield simulated using Richardson SWG and for the yieldatgher
using the Copula Based SWG.

Also, the yield simulated using the Copula based SWG has fatter tails (&kurtosi
3.85), and it is more positive skewed (1.26). In contrast, distribution generated by the
yields from Richardson SWG are less positive skewness (0.90) and has a more
peakedness distribution with kurtosis of 4.37, bigger than yields generated by tha Copul
based SWG.
APH Insurance Scheme for Camelina

In the insurance scheme the guarantee considered equals the APH multiplied by
the selected coverage level. Following RMA (2011), additional consideratiatedréo
loss adjustment procedures or insured causes of loss for Camelina are thoskelepplica
small grains like canola and rapeseed because growth stages and losselRare s

The comparison of the yields series generated by the two SWG is madesn ter
of the insurance results. Seven yield insurance policies entail the differeenhtages
of the coverage of the APH (50%, 60%, 65%, 70%, 75%, 80% and 85%). The unloaded
premiums were calculated under three different parametric probabiltypdi®ons and
the non-parametric kernel smoothing. Insurance analysis is done under the assumption
that the APH vyield equals the average simulated yield and the consideratialh rils&

contained in these series is entirely generated by the stochastic weather
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The examination of the unloaded fair premiums for both Camelina yields shows
substantial difference8.Table 15, in appendix B, shows that the premiums from the
yields generated using Copula based SWG are significantly higher than prefinoiomms
almost two fold when the coverage increases at 70% and higher. The premium for the
yield simulated with yieldcop is $7.92 per acre in comparison with $2.59 per acre for the
yieldRich. At 70% coverage level the unloaded premium for the yieldcop is $20.3 per
acre, while for the yieldRich the unloaded premium is $9.06 per acre. At the 85% of
coverage the unloaded premium is $34.55 per acre for yieldcop, while for yieldRich is
$18.19 per acre. The fully loaded base premium at 85% APH coverage is $56.71 per acre
for the yieldcop, while for the yieldRich is $29.86 per acre.

Following RMA (2011), the fully loaded premium is calculated by dividing the
unloaded fair premium by 0.90 that corresponds to the unit division load factor and then
again dividing by the 0.88 that corresponds to the Federal Crop Insurance Corporation
(FCIC) disaster reserve factor and finally multiplying by 1.3 which is tiaditqtive load
factor that adjust for taking in account the additional risk different from tdima the
regression equation for physical relationships and production functions in the ®inEP
model (RMA 2011). The loss cost ratio for all the insurance policies is the ratio of the
expected loss and the liability.

The difference between the APH insurance schemes generated by the two

weather simulators is significant. The loss cost for the yield generatgpaggnla

% The amounts mentioned here consider the Weibabatility distributions for both Camelina yield
series.
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approach at an 85% level of coverage attains the 28.02%, while the loss cost fodthe yiel
generated by Richardson approach at the same coverage level is 15%.

These differences indicate the underestimation of the agricultural ridkes in t
ratemaking process of a new insurance scheme based on the use of SWG that does not
accurately reproduce extreme weather event patterns. In particulareidés in
insurance premiums can be attributed to probability distributions with fatenthere
the extreme weather events are reflected.

Summary

The results of this analysis strength the evidence of the RMA (2011) fegsibilit
study for the development of an APH insurance scheme for Camelina in conditions of
farming contract with prices pre-established.

A new insurance scheme with no historical data available requires, for the
ratemaking process, the yield generation from a crop growth model such as the
WINEPIC. The generated yields are proxies of the real Camelina foeldgecific
locations and under particular production practices; in consequence it is possible to
obtain tailored approximations of unsubsidiazed unloaded and loaded fair premium
estimates.

Under this approach, weather is the only source of uncertainty in the crop growth
model. This condition allowed a deeper analysis of the use of the SWG in crop growth
models for yield simulation. In particular, the use of the Copula based SWG, which
reproduces more accurately the extreme weather events, showed itnghiéfdeances in

the generated yields and the APH insurance schemes.
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A comparative analysis found evidence of the underestimation of risks on
Camelina yields when Richardson’s SWG is used. The copula based SWG generated
more positively skewed and fatter tails in Camelina yield distribution thayetus
distribution generated by the Richardson SWG. As a consequence, when Copula based
SWG is used in the WINnEPIC, the generated yields reflect higher presmaisianresult of
more risk from more frequent extreme weather.

Furthermore, another advantage in the use of crop growth models in the
ratemaking process of new insurance schemes reside is the possibildydéin
additional heterogeneity through the incorporation of differentiated sitaatbéstics
involved in production, such as soils, topography, cultural practices and weather. Also,
the simulation of yields could be an effective tool to incorporate the analysis of t

effects of climate change in insurance policies.
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CHAPTER YV

SUMMARY, CONCLUSIONSAND FUTURE RESEARCH

Stochastic Weather Generators represent a key issue in the generatiathef we
series for multiple applications in agriculture, such as in crop growth sionulaidels
like the WIinEPIC. However, conventional SWGs have many shortcomings. Climate
variables are complex and characterized by non-normal probability densitipfisnc
while usually SWG assumes parametric probability distributions that actoget
enough to the observed data. Also, SWGs assume linear dependence between variables
which lead to the simulation of inaccurate climatic variables. Likewise, Sl to
under-estimate the occurrence of extreme weather events from obseaved dat

The main objective of this research is to design a SWG based on copula
methodology that more accurately models the nonlinear dependence structine and t
occurrence of extreme events between precipitation, maximum tempegatdr
minimum temperature. An additional objective of this research is to provide a clear
insight of the advantages of the use of this SWG in the crop growth models for its
applicability in insurance.

The idea of modeling climatic variables using copula methods relies on the
behavior and structure of these variables. The copula modeling of the weatheesariabl
depicts their joint probability distribution considering their dependence patianich
are far from linear dependence. The dimensionality problem in copula estimeats

solved by the selection of 12 dates with the highest average monthly anomalies. Thus,
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the weather series simulated by copula methods are the bordering conditions of the
weather stochastic simulator, while the Brownian Bridge uses Monte @athods to
replicate the daily dynamic of weather variables evolving on a path foriwaragh

time.

Copula methods provide the flexibility to model dependence structures between
random variables independent of the marginal distributions involved. The selection of
the marginal distributions was between the normal distribution and the non-parametric
kernel smoothing specification. Although the copula based SWG can incorporate a
hybrid specification on copula families — that describe different dependenaapatte
and numerous specifications were tested, the final specification was the ame{gar
Gumbel family.

Statistical tests on simulated weather showed that Copula based SWGas able t
represent the main features for the distributions of the observed weather variables
Although the comparative analysis of the copula based SWG versus Richardson SWG
did not provide a clear insight about which SWG has the best performance in terms of
their simulations, there is evidence that indicates the copula based SWG has bette
performance in the reproduction of the extreme weather events.

For a comprehensive evaluation on the SWG, this research considers a
comparative analysis of two SWGs in the generation of yields using the V@irfEPte
simulated yields are proxies of real Camelina yields for specifititosaand under

particular production practices. Assuming that the only source of uncertayigdn

31|t refers a comparison of the yield generatedHeycopula based SWG versus the yields generated by
Richardson SWG.
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simulation is the weather, insurance estimation provides some insights of theagdsant
for the use of a copula based SWG in the generation of yields and the risk modeling of
insurance policies where no historical yield data is available.

Non-parametric statistical tests were applied to the simulated sédlmate
variables because the true probability distribution for these weather valisbiat
known. These tests showed that copula based SWG had an acceptable replication of the
observed weather patterns. In particular, the SWG simulated seriegishiowecurate
reproduction of the extreme weather event patterns. Although in generdbthera
conclusive evidence about if the copula based SWG has a better performance than
Richardson’s SWG, in terms of extreme weather events the reproduction of the
simulations derived from the copula based SWG showed to be more accurate.

In terms of the yields generated and insurance analysis, there is evaflence
significant differences in the yields generated by the two SWGs. Theadogpstd SWG
generated Camelina yields with a distribution that was more positikelyesl and with
fatter tails. Furthermore, there is evidence of underestimation of riskarogli@a yields
derived from Richardson’s SWG. As a consequence, when Copula based SWG is used in
the WINnEPIC, the yields generated reflect higher crop insurance premsimresult of
greater risk from more frequent extreme weather.

This research can be extended in multiple ways:

* More advances can be attained in terms of the copula specification to more

accurately capture the dependence patterns between weather variables.
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Multiple criteria for the selection of the dates estimated by copula methads

be development for the SWG.

Higher climate variability could be incorporated into the SWG by the
incorporation of changes in means and variances in Brownian Motion that
resembles the daily changes in the climate variables.

Climate change analysis could be included by adding changes in parameters for
the Brownian Motion by decades, emulating recent research which hasdfocuse
on the study of the patterns of decadal variability in precipitation and
temperature.

There are additional advantages in the use of crop growth models in the
ratemaking process for new insurance schemes.

o The possibility of adding heterogeneity into the yields simulation through
the incorporation of differentiated site characteristics involved in
production, such as soils, topography, cultural practices and weather.

o Crop growth models for the yield simulation could be an effective tool to

incorporate in the analysis the effects of climate change on crop insurance

policy.
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APPENDIX A

FIGURES

Scatter Matrix for Maximum temperature, Precipitation and Minimum Temperature
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Figure 1. Bidimensional Scatter Matrix for Weather Variables, Conrad, Pondera
County, Montana: Selected Datesfor Estimation
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Figure2. Tridimensional Scatter Plot for Climate Variables:



w
o

. —
e

Centigrades Degrees
= N
o o
)
1
i-
s

0 00 | mwmoh 0| o © mip < wn OIM O N = 00 Y N O O N ;om'NE\ mohwr‘wm.N O monN < oo
ARRRYRE TR SR E 2 Sk 5 SRAMWIIIGRAR ﬁ&h ZRAIAPFIDAINASRERIL T N
-10
! l It 1 .
2 ——Maximum Temperature
—=—Trend Estimated by Harmonic Analysis
-30
30
20
%10 0[ . f]!l L] P B ¢ P ) l ] “]
()
)
8
w 0T
) R 3 g ]
o — I — Bl ~ 2}
g
9-10 LJ I AJ d LN
: | | l I
© 20
-30 .
—e—Detrended Maximum
Temperature
-40

Figure 3. Detrend Technique Based in Harmonic Analysis Applied to Maximum
Temperature Anomalies, Conrad-M T 1974, Pondera County, M ontana (1960-2010)

85



Maximum Temperature Distribution
250 T T T T

I Histogram

= Normal Fit

200

Frequency
—
wu
o

=
o
=]

50

-20 -10 0 10 20 30 40
Celsius Degrees

Maximum Temperature Distribution

250 T T T T
I Histogram

= Extreme Value Fit

200

Frequency
N
w
o

[N
o
=3

50

10 20 40

Celsius Degrees

Maximum Temperature Distribution
250 T T T T T

200

Frequency
N
(42
o
T

.
Q
=]

50

20 30 40

10
Celsius Degrees

Figure4.A. Probability Distribution Fit: Conrad, Pondera County, Montana:
Maximum Temperature

86



Minimum Temperature Distribution

Frequency

-20 -15 -10 -5 0
Celsius Degrees

Minimum Temperature Distribution
180 T T T T

I Histogram

160 = Extreme Value Fit

Frequency
= = =
o] o N B
o o o o
T T T T

@
=]

40

20

0
Celsius Degrees

20

Minimum Temperature Distribution
200 T T T T T

I Histogram

1801 Kernel Fit []

Frequency
= = = =
o] o N £y (=2}
o o o o o
T T T T T

@
=]

40

20

-5 0
Celsius Degrees

20

Figure4.B. Probability Distribution Fit: Conrad, Pondera County, M ontana:
Minimum Temperature

87



Precipitation Distribution
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Camelina Yield Distribution: Richardson (1981) SWG
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APPENDIX B

TABLES

Table 1.A. Detrending Regression for Conrad, Pondera County, Montana

Maximum Temperature

Observations 18250.00
F(2, 18250) 17992.50
Prob > F 0.00
R-squared 0.66
Adj R-squared 0.66
Variable Coefficient Std Error t- Statistic P>t
Cost -13.04 0.07 -181.25 0.00
Sint -4.02 0.07 -55.97 0.00
Const 14.02 0.05 275.55 0.00

M inimum Temperature

Observations 18250.00
F(2, 18250) 17788.95
Prob > F 0.00
R-squared 0.66
Adj R-squared 0.66
Variable Coefficient Std Error t- Statistic P>t
Cost -11.10 0.06 -181.68 0.00
Sint -3.10 0.06 -50.70 0.00
Const -1.49 0.04 -34.60 0.00
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Table 1.B. Detrending Regression for Spokane, Spokane County, Washington

Maximum Temperature
Observations 18250.00
F(2, 18250) 36107.00

Prob > F 0.00
R-squared 0.80
Adj R-squared 0.80

Variable Coefficient Std Error t- Statistic P>t
Cost -13.37 0.05 -258.81 0.00
Sint -3.79 0.05 -72.34 0.00
Const 14.23 0.04  389.23 0.00

M inimum Temperature
Observations 18250.00
F(2, 18250) 21437.75

Prob > F 0.00
R-squared 0.70
Adj R-squared 0.70

Variable Coefficient Std Error t- Statistic P>t
Cost -8.66 0.47 -198.06 0.00
Sint -2.64 0.47 -60.39 0.00
Const 3.05 0.03 98.59 0.00
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Table 1.C. Detrending Regression for Temple, Bell County, Texas

Maximum Temperature

Observations 15330.00
F(2, 15330) 16884.71
Prob > F 0.00
R-squared 0.69
Adj R-squared 0.69

Variable Coefficient Std Error t- Statistic P>t
Cost -9.91 0.06 -174.56 0.00
Sint -3.26 0.06 -57.43 0.00
Const 25.18 0.04 627.19 0.00

M inimum Temperature

Observations 15330.00
F(2, 15330) 22778.32
Prob > F 0.00
R-squared 0.75
Adj R-squared 0.75

Variable Coefficient Std Error t- Statistic P>t
Cost -9.95 0.05 -203.89 0.00
Sint -3.08 0.05 -63.12 0.00
Const 12.82 0.34 37154 0.00
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Table 2. Parametric Distributions Fit for Weather Variables,
Three Weather Stations

Distribution a B - logL AlIC BIC
Conrad M T1974, Pondera County, M ontana
Normal
Maximum Temperatu 0.40 5.16 1,835.79 -3,667.58 -3,658.79
Precipitation 0.06 0.22 -64.48 132.95 141.75

Minimum Temperature -0.57 590 1916.06 -3,828.12 -39
Extremevalue (Gumbel)
Maximum Temperatu 3.05 7.64  2,028.13 99,999.00 99,999.00

Precipitation 0.21 0.53 387.32 -770.64 -761.84
Minimum Temperature 2.22 5.38 1,920.69 3,986.14 3,994.93
Exponential
Precipitation 0.06 -1,071.89  2,145.79  2,150.18
Spokane WA, Spokane County, Washington
Normal
Maximum Temperatu 0.29 3.62 162286 -3,241.72 -3,232.93
Precipitation 0.12 0.30 128.04 -252.08 -243.29

Minimum Temperature -0.09 416  1,705.92 -3407.85 -3(E®9
Extremevalue (Gumbel)
Maximum Temperatu 2.08 342 165193 3,467.29  3,476.08

Precipitation 0.30 0.52 421.92 -839.85 -831.05
Minimum Temperature 1.88 3.68 1,703.00  3,551.3B.56E+03
Exponential
Precipitation 0.12 -685.35 1,372.70  1,377.10
Temple TX, Bell County, Texas
Normal
Maximum Temperatu 0.36 3.90 1,398.35 -2,792.71 -2,784.27
Precipitation 0.24 0.89 656.70 -2,928.01 -1,300.95

Minimum Temperature -0.40 447  1466.00 -2,928.01 -25H9
Extremevalue (Gumbel)
Maximum Temperatu 2.30 4.20 1,456.83 3,102.95  3,111.39

Precipitation 0.86 2.08 1,019.89 -2,035.78 -2,027.34

Minimum Temperature 1.84 4.66 1,519.48 3,213.06 3,221.50
Exponential

Precipitation 0.24 -205.38 412.76 416.98
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Table3. CopulaMixture Estimation for Climatic Variablesby Weather Stations

CopulaMi ixture Param.1 Param.2 Param.3 -3 loglL AlIC BIC
Conrad M T1974, Pondera County, M ontana
Clayton 0.001000 0.041399 1.917202 6.314132
Frank 0.001000 0.025487 1.949025 6.345955
Gumbel 1.100000 5.732520 -5.244449 -9.465039

Clayton, Clayton,Clayton ~ 0.001000  0.077741  -0.0484851*.036122 8.072244 21.263033
Clayton, Clayton,Gumbel  1.022122 -0.164136 0.8461589:985389 45.970779 59.161568

Frank, Frank, Frank 0.001000 -1.099259  -1.418806 -18&H 33.703739 46.894528
Frank, Frank, Clayton 0.001000  0.862911  -0.044400 * 09269 8.210538 21.401327
Frank, Frank, Gumbel 1.000204 -1.297100 0.832434 -Z648B 47.775289 60.966078

Gumbel,Gumbel, Gumbel =~ 1.513458  0.952485* 0.751978 *8@®54 57.735909 70.926698

Gumbel, Frank, Clayton 0.813972 * 0.925946  -0.043871 338R17 14.676433 27.867222

Gumbel, Frank, Gumbel 0.995191  1.000036 0.842727 * 2201 56.122402 69.313191
Temple TX, Bell County, Texas

Clayton 0.00100 0.05886 6.10288  1.88229
Frank 0.00100 0.02635 6.16790 1.94731
Gumbel 1.10000 -41.69724 -29.63757 -25.41698

Clayton, Clayton,Clayton 0.00100 0.14990 -0.07667 * 1328  25.69033 13.02856
Clayton, Clayton,Gumbel 0.00100 0.04713 0.77590 * -3W036 83.78380 71.12203

Frank, Frank, Frank 0.00100 1.21032 -2.14424 * -29.123806.90940 64.24763
Frank, Frank, Clayton 0.00100 1.73605 -0.07553 *  -5.271129.20411 16.54234
Frank, Frank, Gumbel 0.00100 1.61078 0.79008 * -34.172%%7.00695 74.34518

Gumbel,Gumbel, Gumbel 0.90662 *  1.11905 0.77290 * -412897102.05625 89.39448
Gumbel, Frank, Clayton 0.87410 1.75801 -0.07423 *  -7/300 33.26324 20.60147

Gumbel, Frank, Gumbel 0.90662 *  1.11897 0.77243 * -406B346 99.75512 87.09335
Spokane WA, Spokane County, Washington

Clayton 0.00100 0.11772 1.76457  6.16150

Frank 0.00100 0.02776 1.94448  6.34141

Gumbel 1.10000 -32.98232 -37.37925 -32.98232

Clayton, Clayton,Clayton 0.00100 0.21398 -0.12842 3180 28.26361 41.45439
Clayton, Clayton,Gumbel 0.00100 1.13314 0.89037 * -19696 31.93935 45.13014

Frank, Frank, Frank 0.00100 0.19995 0.87737  -16.54238.083896 52.27555
Frank, Frank, Clayton 0.00100 1.77027 -0.10693 * -130)876 33.55209 46.74288
Frank, Frank, Gumbel 0.00100 1.72906 -1.00565 * -16.804238.60849 51.79928

Gumbel,Gumbel, Gumbel 0.00100 *  1.85597 0.89791 * -34141 74.28315 87.47394
Gumbel, Frank, Clayton 0.73401 * 1.83158 -0.13861  -3|YZ22 75.45285 88.64364
Gumbel, Frank, Gumbel 0.81940 * 2.74101 0.86815 * -33PB51 72.50213 85.69292
Note: * Parameters that do not satisfy monoton@igditions.
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Table4.A. Two-Sample Kolmogorov-Smirnov Test for Selected Dates
Copula Based Stochastic Weather Generator (P-Values)

Selected Dates Conrad, Montana

Max Temp Precipitation Min Temp

January, 9th 0.028 * 0.267 0.002 **
February, 1st 0.001 ** 0.998 0.000 **
March, 3rd 0.453 0.999 0.525
April, 3rd 0.737 0.995 0.242
May, 1st 0.372 0.999 0.095
June, 1st 0.000 ** 0.072 0.019 *
July, 1st 0.001 ** 0.071 0.046 *
August, 7th 0.011 * 0.009 ** 0.112
September, 5th 0.571 0.886 0.225
October, 1st 0.744 0.995 0.306
November, 4th 0.819 0.969 0.063
December, 1st 0.763 0.669 0.489
Spokane, Washington
January, 9th 0.069 0.001 ** 0.107
February, 1st 0.159 0.050 * 0.001 **
March, 3rd 0.113 0.024 * 0.304
April, 3rd 0.012 * 0.804 0.017 *
May, 1st 0.077 0.362 0.058
June, 1st 0.089 0.765 0.360
July, 1st 0.082 0.999 0.011 *
August, 7th 0.007 ** 0.530 0.000 **
September, 5th 0.691 0.701 0.730
October, 1st 0.022 * 0.739 0.172
November, 4th 0.023 * 0.004 ** 0.123
December, 1st 0.000 ** 0.000 ** 0.371
Temple, Texas

January, 9th 0.035 * 0.393 0.015 *
February, 1st 0.013 * 0.049 * 0.040 *
March, 3rd 0.057 0.232 0.074
April, 3rd 0.007 ** 0.959 0.530
May, 1st 0.113 0.001 ** 0.203
June, 1st 0.000 ** 0.114 0.013 *
July, 1st 0.000 ** 0.989 0.000 **
August, 7th 0.013 * 0.980 0.003 **
September, 5th 0.002 ** 0.985 0.000 **
October, 1st 0.111 0.965 0.343
November, 4th 0.046 * 0.866 0.199
December, 1st 0.967 0.994 0.142

Note: * Reject Hy at 5% significance level

** Reject Hp at 1% significance level
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Table4.B. Two-Sample Kolmogorov-Smirnov Test for Selected Dates
Richardson Stochastic Weather Generator (P-Values)

Selected Dates Conrad, Montana

MaxTemp Precipitation Min Temp

January, 9th 0.226 0.560 0.022 *
February, 1st 0.167 0.989 0.062
March, 3rd 0.433 0.610 0.085
April, 3rd 0.448 0.662 0.794
May, 1st 0.028 * 0.081 0.073
June, 1st 0.019 * 0.053 0.267
July, 1st 0.628 0.404 0.794
August, 7th 0.190 0.404 0.069
September, 5th 0.062 0.696 0.139
October, 1st 0.017 * 0.880 0.145
November, 4th 0.104 0.960 0.056
December, 1st 0.867 0.960 0.464
Spokane, Washington
January, 9th 0.074 0.008 ** 0.000 **
February, 1st 0.005 ** 0.008 ** 0.000 **
March, 3rd 0.001 ** 0.326 0.000 **
April, 3rd 0.055 0.100 0.000 **
May, 1st 0.673 0.010 ** 0.000 **
June, 1st 0.718 0.000 0.056
July, 1st 0.673 0.050 0.098
August, 7th 0.000 ** 0.999 0.000 **
September, 5th 0.039 0.368 0.000 **
October, 1st 0.026 * 0.308 0.000 **
November, 4th 0.001 ** 0.001 0.000 **
December, 1st 0.006 ** 0.000 0.000 **
Temple, Texas

January, 9th 0.082 0.166 0.860
February, 1st 0.407 0.211 0.945
March, 3rd 0.377 0.673 0.339
April, 3rd 0.709 0.860 0.860
May, 1st 0.356 0.231 0.186
June, 1st 0.252 0.403 0.087
July, 1st 0.015 * 0.915 0.108
August, 7th 0.200 0.999 0.067
September, 5th 0.356 0.915 0.209
October, 1st 0.915 0.761 0.938
November, 4th 0.274 0.403 0.615
December, 1st 0.399 0.575 0.549

Note: * Reject Hy at 5% significance level

** Reject Hg at 1% significance level
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Table 5. Comparative Quantile Analysisfor Three L ocations™

Minimum Temperature, °c

Precipitation Amount, cm

Maximum Temperature, °c

Quantile Observed Copula Richardson Observed Copula Richardson Observed Copula Richardson
Conrad, Montana
0.025 0.000 0.000 0.000 -13.300 -8.430 -10.509  -25.000 -19.554  -23.416
0.05 0.000 0.000 0.000 -7.800 -5.078 -6.691  -21.100 -16.894  -19.987
0.1 0.000 0.000 0.000 -1.100 -1.570 -2.270 -15.600 -13.919  -15.950
0.2 0.000 0.000 0.000 4.400 2.882 3.499 -9.400 -10.824  -10.628
0.3 0.000 0.000 0.000 7.800 6.621 7.845 -5.600 -8.173 -6.548
0.4 0.000 0.000 0.000 11.100 10.101 11.656 -2.800 -5.286 -3.130
0.5 0.000 0.001 0.000 14.400 13.668 15.179 -0.600 -2.231 -0.109
0.6 0.000 0.002 0.000 18.300 17.021 18.574 2.200 0.850 2.653
0.7 0.000 0.004 0.000 21.700 20.708 21.926 5.000 4.014 5.170
0.8 0.000 0.012 0.000 25.000 24.521 25.360 7.800 7.213 7.532
0.9 0.203 0.227 0.189 28.900 29.184 29.218 10.000 10.269 10.171
0.975 0.864 0.700 0.862 32.800 35.305 34.067 13.300 14.168 13.460
Spokane, Washington
0.025 0.000 0.000 0.000 -5.000 -4.310 -9.620  -13.300 -9.946  -21.603
0.05 0.000 0.000 0.000 -2.200 -2.193 -6.219  -10.000 -8.247  -18.306
0.1 0.000 0.000 0.000 0.600 0.513 -2.214 -6.100 -6.355  -14.364
0.2 0.000 0.000 0.000 3.900 4.117 3.000 -2.800 -3.920 -9.242
0.3 0.000 0.000 0.000 7.200 7.296 6.939 -1.100 -1.713 -5.409
0.4 0.000 0.000 0.000 10.000 11.101 10.356 0.600 0.707 -2.121
0.5 0.000 0.002 0.000 13.300 14.906 13.668 2.800 3.323 0.757
0.6 0.000 0.004 0.000 17.200 18.782 16.967 5.000 5.676 3.400
0.7 0.025 0.013 0.000 21.100 22.232 20.440 7.800 7.952 5.899
0.8 0.127 0.142 0.057 25.000 25.227 24.114 10.000 10.098 8.255
0.9 0.406 0.385 0.310 29.400 28.778 28.416 12.800 12.460 10.881
0.975 1.036 0.847 1.051 33.900 33.279 33.821 16.700 15.418 14.170
Temple, Texas
0.025 0.000 0.000 0.000 5.600 8.628 5.834 -3.900 -1.949 -3.887
0.05 0.000 0.000 0.000 8.300 10.808 8.879 -1.700 -0.089 -1.718
0.1 0.000 0.000 0.000 12.800 13.258 12.514 1.100 1.579 0.916
0.2 0.000 0.000 0.000 17.200 16.658 17.173 4.400 4.265 4.598
0.3 0.000 0.000 0.000 21.100 19.400 20.764 7.700 6.622 7.802
0.4 0.000 0.000 0.000 23.900 22.198 23.771 10.600 9.397 10.868
0.5 0.000 0.000 0.000 26.700 25.397 26.549 13.900 12.355 13.943
0.6 0.000 0.000 0.000 28.900 28.454 29.058 17.200 15.529 16.841
0.7 0.000 0.000 0.000 31.700 30.986 31.440 19.900 18.297 19.272
0.8 0.025 0.025 0.000 33.300 33.538 33.684 21.700 20.588 21.130
0.9 0.533 0.802 0.618 35.600 36.810 36.122 22.800 23.421 22.878
0.975 2.769 2.901 2.767 37.800 41.595 39.152 23.900 26.973 25.023

%2 |n weather stations the minimum reported amoumtre€ipitation is 0.0254cm (0.01 inches).
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Table 6. Average Rainfall Amount and Average Number of Rainy Days by 28-Day
Period
Precipitation Amount in Cms. Number of Rainy Days

Period Observed Copula Richardson Observed Copula Richardson

Conrad, Montana

1 0.976 1.590 0.858 5.020 4.625 3.067
2 0.798 1.502 0.801 4.120 4.708 2.720
3 1.193 1.573 1.148 4.580 5.125 3.367
4 2111 2.002 1.853 5.040 5.525 3.780
5 3.335 1.903 3.722 6.620 5.767 5.187
6 6.672 1.272 5.227 9.800 4.542 6.787
7 4.086 2.323 3.960 7.420 5.958 5.293
8 2.483 2.535 2.681 5.440 6.542 4.507
9 2.925 1.950 2.565 5.900 5.058 4.573
10 2.156 1.357 1.897 4.960 4.367 3.513
11 1.037 1.699 1.137 3.660 4.558 2.533
12 1.127 1.703 1.108 4.420 4.242 3.007
13 1.036 2.210 0.901 4.700 5.925 2.947
Spokane, Washington
1 4.390 3.053 1.233  12.314 8.958 4.253
2 3.807 3.196 1.149  10.824 9.575 4.020
3 3.477 2.946 1.555  10.275 6.233 5.093
4 3.035 2.978 2.760 9.118 4.967 6.267
5 3.123 3.106 5.468 8.627 5.408 8.187
6 3.872 2.295 6.699 8.765 4.042 9.080
7 1.805 2.287 5.888 5.118 3.533 8.300
8 0.977 1.531 4.010 3.216 3.350 6.153
9 1.710 1.594 3.651 4.647 2.625 6.080
10 1.659 3.588 2.715 5.314 5.258 5.433
11 2.839 4.311 1.596 7.353 6.642 3.860
12 5.558 3.675 1.159 12.667 6.683 3.573
13 5.443 3.111 1.223  12.824 8.717 4.060
Temple, Texas
1 4.999 8.728 5.098 6.561 6.608 5.380
2 6.792 7.112 5.753 6.951 5.208 5.540
3 5.552 5.798 5.480 6.512 4.408 5.340
4 5.297 4.364 5.947 5.927 4.383 5.030
5 10.555 6.271 9.093 6.976 5.125 5.450
6 9.318  10.320 9.153 6.171 6.017 5.000
7 5.472 8.680 6.428 4.634 5.442 3.840
8 4.265 6.061 4.283 3.220 5.700 2.950
9 6.122 6.591 5.720 4.439 5.833 3.890
10 8.556 4.532 9.753 5.902 5.250 5.110
11 9.223 5.943 7.331 6.024 5.117 4.360
12 6.554 9.549 6.826 5.634 6.283 4.820
13 6.209  10.246 7.352 5.976 7.333 5.240
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Table 7. Average Maximum Temperature and Average Minimum Temper ature by
28-Day Period

Maximum Temperature °C  Minimum Temperature °C
Period Observed Copula EPIC Observed Copula EPIC

Conrad, Montana

1 0.03 0.48 1.16 -13.47 -13.06 -13.04
2 3.38 1.23 3.26 -10.59 -12.20 -10.89
3 6.73 5.35 6.99 -7.85 -9.15 -7.70
4 12.62 11.15 12.61 -2.92 -4.32 -3.15
5 17.37 17.12 17.79 1.60 1.28 1.69
6 21.56 22.44 21.86 6.19 5.72 5.88
7 25.90 26.45 25.88 9.07 8.41 8.87
8 28.48 27.05 27.57 10.24 8.66 9.45
9 25.86 24.62 25.50 7.92 7.04 7.42
10 20.04 19.89 20.19 2.78 2.77 2.80
11 14.10 13.20 14.09 -1.93 -2.85 -2.20
12 5.74 6.81 6.86 -8.12 -7.93 -7.59
13 1.03 2.74 1.83 -11.91 -11.39 -12.05
Spokane, Washington
1 0.45 0.66 1.88 -5.60 -6.12 -11.35
2 3.77 1.43 2.89 -3.65 -5.74 -9.63
3 8.16 5.37 5.69 -1.42 -3.23 -6.87
4 12.64 11.23 10.35 1.06 0.47 -2.57
5 17.31 17.91 15.24 4.38 4.85 1.95
6 21.51 23.70 19.89 8.24 8.91 6.02
7 26.21 27.31 24.46 11.32 11.25 9.30
8 29.90 27.81 26.95 13.77 11.45 10.31
9 26.38 25.51 24.73 11.14 10.25 8.55
10 20.96 21.55 19.00 6.61 7.95 3.99
11 12.91 15.47 13.21 1.44 4.04 -0.88
12 4.71 9.58 7.06 -1.99 -0.05 -5.88
13 0.57 4.30 2.69 -5.44 -3.69 -10.35
Temple, Texas
1 13.83 15.45 14.57 1.85 2.44 2.29
2 16.31 15.23 16.14 3.70 2.55 3.66
3 19.99 17.15 19.84 7.13 4.66 7.16
4 24.13 21.25 24.24 11.60 8.96 11.54
5 27.75 26.57 27.88 15.90 14.02 15.93
6 31.05 31.54 31.02 19.51 19.01 19.33
7 33.80 34.69 33.57 21.83 22.08 21.53
8 35.40 35.65 35.03 22.54 22.88 22.34
9 34.81 34.03 34.37 21.98 21.42 21.48
10 30.44 30.75 30.51 17.75 17.73 17.87
11 25.29 26.36 25.71 12.59 13.41 12.82
12 19.70 21.48 20.74 7.35 8.72 7.98
13 15.26 17.54 15.95 3.26 4.58 3.76
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Table 8. Annual Average Temperature and Number of Days of Extreme Events by,
Weather Station

Weather Variable Observed Copula Richardson
Conrad
Maximum Temperature, °C 40.60 47.50 49.99
Minimum Temperature, °C -27.20  -28.53 -45.58
Days 235 °C 1.10 5.08 6.38
Days < 0°C 183.84 205.13 183.93
Spokane
Maximum Temperature, °C 42.20 42.02 51.42
Minimum Temperature, °C -24.40  -24.56 -43.37
Days 235 °C 6.41 3.27 6.17
Days < 0°C 138.27  113.95  172.73
Temple
Maximum Temperature, °C 43.30 55.30 48.32
Minimum Temperature, °C -14.40 -9.68 -16.23
Days > 35 °C 54.61 55.43 52.11
Days < 0°C 31.49 18.92 29.14
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Table9. Summary on Camelina Production Characteristicsin Montana

Features Description
Varieties 18 varieties of Camelina in dryland
Yeld Average Yield ranges from 500 to 1,850 lbs/acreeddipg on variety
and geographical characteristics related soisatd, inclination, etc.
Oil content 29 to 41% equals 60-80 gallons/acre
_ 18-16 cents/lb (2008), Great Plains
Price 9-12 cents/lb (2009), Great Northem Growers Coop
16 cents/lb (2009), Bill Schilinger, WSU
Return With yield of 1,585 Ibs./acre and a price of Eits/pound, gross
return is $142.61/acre and net return of $105.6&/ac
-With yield of 1,500 Ibs/acre, total operating ties$46.67/acre,
Costs breakeven production cost is $1.56/bushel (1 Buditelbs.), smaller

than Canola ($4.33/acre) and spring wheat ($1.84)ac
-Fertility requirements 33.3% less than Canola yctdn.

Note: This data corresponds to several AgrononpeBxental Stations of Montana State
University located across Montana.

Sources: Johnson, D. (2007). Presentation Pregaréide Harvesting Clean Energy
Conference VII, MSU Northwestern Agricultural ReegaCenter, Montana State

University.
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Table 10. Physiology and Cultural Practices Scheduling for Camelina Calibration
in Conrad Farm, Pondera County, Montana

Stage Approximate dates
Planting Early April-Early June
emerging Mid Aprikmid June
Blooming Mid June-Early July
Turning Late June-Late July
Harvesting Mid July-Late August
Activity Exact Dates
Pesticide March 15
Fertilize March 20
Pesticide April 1
Fertilize April 15
Planting April 15
Fertilizer June 12
Hauling July 1
Harvest July 30

Source: Adapted from RMA (2011)
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Table 11. Producer Vs. Simulated Yield
Grain Yidd in |Ibgdacre

Year Producer Smulated

2007 1,150.0 1,099.0
2008 2,295.0 2,302.8
2009 1,135.0 1,048.6
2010 1,378.0 1,855.6

Average 1,489.5 1,576.5
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Table 12. Detrending Regressionsfor Camelina Yields

Yields Simulated Using Richardson (1981) SWG

Observations 100.00
F( 1, 98) 1.40
Prob > F 0.24
R-squared 0.01
Adj R-squared 0.00
Root MSE 555.23
Variable Coefficient  Std Error t- Statistic P>t
Trend -2.28 1.92 -1.18 0.24
Const 1065.86 111.88 9.53 0.00
Yields Simulated Using Copula Based SWG
Observations 100.00
F( 1, 98) 3.67
Prob > F 0.06
R-squared 0.04
Adj R-squared 0.03
Root MSE 992.44
Variable Coefficient  Std Error t- Statistic P>t
Trend 8.41 4.39 1.92 0.06
Const 539.32 276.29 1.95 0.05
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Table 13. Camélina Yields Basic Statistics: Conrad, Pondera County, Montana

SWG Mean Std Dev. Minimum M aximum
Copula based 967.07 963.28 17.46 3,827.62
Richardson (1981) 950.95 556.35 64.99 3,178.69
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Table 14. Probability Parametric Distributionsfor Camelina Yieldsfrom Conrad,
Pondera County, Montana

Distribution Range & Params.

a B Max Likelihood AlIC BIC
CopulaBased SWG
Beta &x<1, a>0,B>0 0.42 0.75 -29.26 62.51 67.72
Weibull O<x<e0, 0>0,3>0 922.58 0.90 792.86 -1,581.73 -1,576.52
Gamma Bx<oo, 0>0,3>0 0.83 1,164.29 768.50 -1,533.00 -1,527.79
Richardson (1981) SWG
Beta &x<1, a>0,B>0 0.75 1.09 -5.39 14.77 19.99
Weibull O<x<oo, >0, 3>0 1,069.58 1.78 756.88 -1,509.75 -1,504.54
Gamma O<x<co, 0>0,3>0 2.62  363.20 77545 -1546.90 -1,541.69
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Table 15. APH Insurancefor Camelina Yieldsfor Different Coverage L evels

Coverage 50% 60% 65% 70% 75% 80% 85%
CopulaBased SWG, APH Yield 967.07 Lbs/Acre and Guarantee Price of $0.15 per Pound
Liability 72.53 87.04 94.29 101.54 108.80 116.05 123.30
Unloaded Fair Premium (Dollars per Acre)
Weibull 7.92 13.22 16.53 20.30 24.55 29.30 34.55
Beta 6.07 9.80 12.09 14.66 17.55 20.75 24.28
Gamma 7.90 13.15 16.43 20.15 24.36 29.05 34.24
Kernel 5.83 9.98 12.60 15.63 19.08 22.97 27.31
Fully Loaded Premium (Dollars per Acre)
Weibull 12.99 21.70 27.13 33.31 40.29 48.09 56.71
Beta 9.96 16.09 19.84 24.07 28.80 34.06 39.85
Gamma 12.96 21.59 26.96 33.08 39.98 47.68 56.20
Kernel 9.57 16.37 20.69 25.65 31.31 37.70 44.82
L oss Cost (Percentage)
Weibull 10.92 15.19 17.53 19.99 22.56 25.24 28.02
Beta 8.37 11.26 12.82 14.44 16.13 17.88 19.69
Gamma 10.89 15.11 17.42 19.85 22.39 25.03 27.77
Kernel 8.04 11.46 13.37 15.39 17.54 19.79 22.15
Fully L oaded Base Premium (Percentage)
Weibull 17.92 24.93 28.78 32.81 37.03 41.44 45.99
Beta 13.74 18.48 21.04 23.70 26.48 29.35 32.32
Gamma 17.87 24.80 28.60 32.58 36.75 41.09 45.58
Kernel 13.19 18.81 21.94 25.26 28.78 32.48 36.35
Richardson (1981) SWG, APH Yield 950.95 L bs/Acre and Guarantee Price of $0.15 per Pound
Liability 71.32 85.59 92.72 99.85 106.98 114.11 121.25
Unloaded Fair Premium (Dollars per Acre)
Weibull 2.59 5.14 6.91 9.06 11.62 14.67 18.19
Beta 3.3 5.9 7.5 9.4 11.6 14.0 16.8
Gamma 2.51 5.17 7.04 9.31 12.04 15.27 19.02
Kernel 2.58 5.17 6.95 9.10 11.63 14.60 18.00
Fully L oaded Premium (Dollars per Acre)
Weibull 4.25 8.44 11.34 14.86 19.08 24.07 29.86
Beta 5.45 9.62 12.30 15.40 18.97 23.04 27.62
Gamma 4.13 8.49 11.55 15.28 19.76 25.07 31.22
Kernel 4.24 8.49 11.41 14.93 19.09 23.96 29.55
Loss Cost (Percentage)
Weibull 3.63 6.01 7.45 9.07 10.87 12.85 15.00
Beta 4.66 6.85 8.08 9.40 10.80 12.30 13.88
Gamma 3.62 6.04 7.59 9.32 11.25 13.38 15.69
Kernel 3.62 6.04 7.50 9.11 10.87 12.79 14.85
Fully L oaded Base Premium (Percentage)
Weibull 5.96 9.86 12.23 14.89 17.84 21.10 24.63
Beta 7.64 11.24 13.26 15.43 17.74 20.19 22.78
Gamma 5.79 9.92 12.46 15.31 18.47 21.97 25.75
Kernel 5.94 9.92 12.31 14.95 17.84 21.00 24.37
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