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ABSTRACT 

 

Stochastic Weather Generators (SWG) try to reproduce the stochastic patterns of 

climatological variables characterized by high dimensionality, non-normal probability 

density functions and non-linear dependence relationships. However, conventional 

SWGs usually typify weather variables with unjustified probability distributions 

assuming linear dependence between variables. This research proposes an alternative 

SWG that introduces the advantages of the Copula modeling into the reproduction of 

stochastic weather patterns. The Copula based SWG introduces more flexibility allowing 

researcher to model non-linear dependence structures independently of the marginals 

involved, also it is able to model tail dependence, which results in a more accurate 

reproduction of extreme weather events.  

Statistical tests on weather series simulated by the Copula based SWG show its 

capacity to replicate the statistical properties of the observed weather variables, along 

with a good performance in the reproduction of the extreme weather events. 

In terms of its use in crop growth models for the ratemaking process of new 

insurance schemes with no available historical yield data, the Copula based SWG allows 

one to more accurately evaluate the risk. The use of the Copula based SWG for the 

simulation of yields results in higher crop insurance premiums from more frequent 

extreme weather events, while the use of the conventional SWG for the yield estimation 

could lead to an underestimation of risks. 
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CHAPTER I 

INTRODUCTION  

 

Stochastic Weather Generators (SWG) are numerical models that try to reproduce 

the statistical properties from observed historical climate series. Climatological variables 

are complex systems, characterized by high dimensionality, non-normal probability 

density functions and non-linear dependence relationships. 

In the last decade copula methods and their applications have experienced a 

significant progress. In particular, the desire of reproducing more accurately stochastic 

patterns has conducted the application of copula procedures in the modeling of natural 

hazards. 

In this research, copula approach is used to develop a SWG where the modeling 

of the joint distribution of weather variables satisfies two objectives. First, to model the 

non-linear dependence structures within weather variables. Second, to reproduce more 

accurately extreme weather patterns through the use of copula families like Gumbel and 

Clayton, or even through copula mixtures  which introduce more flexibility. In addition, 

Copula based SWG considers Brownian motion process to emulate the daily time 

stochastic dynamics of the weather variables.  

An evaluation on the performance of the Copula based SWG is carried out in 

terms of its use in crop growth simulation models and the modeling of insurance policies 

where no historical yield data is available.  

For the sake of simplicity, this research is structured as follows: 
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• Chapter II discusses the foundations, functioning and characteristics of the 

SWGs. Also, this chapter describes in detail the motivation, the methodology and 

the structure of the Copula based SWG. 

• Chapter III presents a statistical validation on the Copula based SWG against the 

observed data and against Richardson’s (1981) SWG, one of the most broadly 

used SWG. Basic statistics, quantile analysis and non-parametric tests of 

goodness of fit are estimated for both simulated weather series. 

• Chapter IV depicts the parametric calibration process for the Camelina crop in 

the Environmental/Policy Integrated Climate Model (WinEPIC). Next, yields are 

simulated using both SWGs and the resulting series are comparatively evaluated 

in terms of their distributions. The estimation of insurance premiums for both 

yield-series is carried out.  

• Chapter V summarizes the most important findings, discuss some results and 

suggest some opportunity areas for future research. 
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CHAPTER II 

THE MODELING OF WEATHER VARIABLES WITH COPULA APPROACH 

 

Introduction 

SWGs are a fundamental input for crop simulation models. These statistical 

models are able to produce long synthetic weather series, while they offer a solution for 

missing data by simulating key properties of the observed weather records. However, 

because climatological and meteorological phenomena are complex, characterized by 

non-normal probability density functions, such models have not attained a satisfactory 

quantification of uncertainty. 

This study proposes an alternative SWG, based on copula methodology, to 

simulate the climate variables: precipitation, maximum temperature and minimum 

temperature, required by the WinEPIC to simulate crop yields. The main objective of 

this research is to apply the copula technique for the simulation of multivariate 

climatological variables capturing more accurately their nonlinear dependence structure 

and the occurrence of extreme events.  

The Copula approach has several advantages; however, the most important for 

this research is its flexibility that allows researchers to model dependence structures 

between random variables independently of the marginal involved.  Also, the copula 

technique offers different treatments on dependence structures for extreme events, 

common in weather variables. In fact, the initial hypothesis of this study is that 

multivariate probability distribution resulting from the copula approach might capture 
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more accurately long-term changes in the hydrologic cycle and weather patterns of a 

specific region because it can model different patterns of dependency and extreme 

events.   

The proposed SWG’s specification is a hybrid copula, which incorporates 

different families of multivariate distributions using the conditional mixtures approach. 

This technique allows additional flexibility because it can interpolate from perfect 

conditional negative dependence to perfect conditional positive dependence, with 

conditional independence in between (Salvadori et al. 2007). In some cases, marginal 

distributions are specified under nonparametric specifications because parametric 

distributions are a poor description of the climatological process under these stochastic 

variables.  

This research proposes the selection of particular observations for solving the 

dimensionality problem. The selected dates consider the observations with the highest 

average anomalies per month. Copula estimation is applied for the selected observations 

and simulated, while the daily dynamic of weather series is emulated by a random walk 

described by a geometric Brownian motion.  

Model estimation is carried out by Maximum Likelihood (ML) methods. Also, 

ML is used to determine the best specification for copula family because multivariate 

goodness of fit tests (GOF) do not lead to an unique, or even conclusive criterion 

(Genest and Favre 2007a). Data from three weather stations located in Montana, 

Washington and Texas are used for this research. 
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Background and Motivation 

Climatological and meteorological phenomena are complex and characterized by 

non-normal probability density functions. Temperature belongs to bounded and skewed 

distributions usually parameterized by the gamma distribution. Precipitation is a central 

issue in the climate modeling because it is ruled by nonlinear physical processes which 

are highly variable in space and time (Schölzel and Friederich 2008). However, it is 

known that traditional models have not attained an adequate quantification of uncertainty 

for climate (Wilks and Wilby 1999).  

SWGs are numerical models that try to reproduce the statistical properties from 

observed historical climate series, mainly maximum temperature, minimum temperature 

and precipitation. In theory, these models are able to generate long synthetic weather 

series that preserve the statistical properties of the original data. SWGs satisfy the 

random number generator conditions: efficiency (fast and small use of memory), 

repeatability (exactly reproduction of sequences) and portability (L’ecuyer 2004). With 

these characteristics, SWGs are able to reproduce sequences of weather data whose 

behavior is very close to the “truly random” observed weather patterns in a broad variety 

of climates and regions. SWGs are not weather forecasting algorithms, which are 

deterministic weather models that typically operate by numerically integrating partial 

differential equations. SWGs behave statistically as weather data, which no weather 

sequence can be duplicated at a given time in either the past or future (Wilks and Wilby 

1999). 



 

6 

 

SWG parameters comprise a concise summary of climate behavior and use Monte 

Carlo methods as a random number generator for simulation whose output statistically 

resembles daily weather data at a location, where any particular simulated weather 

sequence will be duplicated (Wilks and Wilby 1999).1 

Typically, SWGs award a determinant role to the precipitation process. 

Precipitation is a complex stochastic process whose occurrence gives rise to numerous 

physical processes in nature affecting the statistics of many non-precipitation variables 

(Wilks and Wilby 1999). Precipitation has a high zeros rate which introduce a 

discontinuity in its probability distribution between zero and nonzero observations. In 

terms of temporal correlations, precipitation owns a mixed character of discrete and 

continuous variable. 

Because of these features, precipitation is modeled in two treatments, occurrence 

and intensity processes. Some authors combine the use of first-order Markov models to 

characterize occurrence and pseudo-random number generators to describe intensity by 

the generation of independent and identically distributed (i.i.d.) draws.  

SWGs have numerous applications; their parameters can be interpolated to 

generate synthetic daily data for unobserved locations. Also, they are frequently used in 

climate change studies for impact evaluation by using modifications in climatic means 

and variabilities, predicted by the Global Climate Models (GCM) (Semenov et al. 1998). 

In particular, SWGs have been widely used as input in crop simulation models because 

                                                 
1In computational statistics, random variate generation includes two steps. First, the generation of i.i.d. 
random variables with Uniform(0, 1); second, the application of transformation on these random i.i.d. U(0, 
1) to imitate random variates and random vectors from arbitrary distributions. 
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of their ability to generate missing data with only monthly or seasonal statistics. 

Additionally, they are able to produce long enough series to allow good estimates of the 

probability of extreme events that affect crop yield.  

This research will focus on the construction of a SWG, based on copula 

methodology, as a component in WinEPIC, originally developed in the early 1980's, to 

assess the effect of erosion on productivity (Williams et al. 1984). WinEPIC is a 

comprehensive crop simulation model to analyze cultural practices and cropping systems 

on production, soil quality, water quality, water and wind erosion, and profits.2 

WinEPIC’s components include weather simulation, hydrology, erosion, sedimentation, 

nutrient cycling, pesticide fate, crop growth, soil temperature, tillage, economics, and 

plant environment control (Williams et al. 1984). Crop growth is one of the most 

important simulated processes because soil productivity is expressed in terms of crop 

yield. Thus, the model is sensitive to crop characteristics (weather, soil and fertility) and 

to other properties. Potential plant growth is simulated on daily basis and constrained by 

three stress factors: soil, strength, temperature and aeration (Williams et al. 1989).    

WinEPIC includes the SWG developed for Richardson (1981) for simulating 

precipitation, radiation, maximum and minimum temperature. The model configuration, 

awards a primary role to precipitation, preserving the dependence in time, the correlation 

between variables, and the seasonal characteristics in actual weather data for the 

location. Precipitation is characterized in two stages. First, a Markov chain exponential 

model – with two states, wet and dry– describes the occurrence process where the 

                                                 
2 WinEPIC considers homogeneous weather, soils, and management systems in field-size area up to 100 
ha and operates on a daily basis. 
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probability of rain is conditioned on the wet or dry status of the previous day, which 

exhibit persistence or positive serial autocorrelation. 3 So, wet and dry runs tend to clump 

together in volume more strongly than could be expected by chance. Second, daily 

precipitation amount, given a wet day, is supposed to be independently determined by an 

exponential distribution (Richardson 1981). The inputs for the model are monthly means 

and coefficients of variation for each variable.  

Richardson’s SWG considers that for each variable the dependence structure 

(serial correlation) is characterized by a first order linear autoregressive model. Although 

this model operates on a daily time step, their simulations do not show longer-term 

variations (Wilks and Wilby 1999). The random values for the current SWG show a 

lower monthly mean temperature and monthly accumulated precipitation with respect to 

the observed weather data. The SWG currently cannot capture the variability year to 

year, as their statistics vary only through a fixed annual cycle.  

Authors such as Semenov et al. (1998) and Wilks (1990) have pointed out that 

sensivity analysis in crop simulation models have shown that stochastic simulations for 

weather variables based on mean temperatures values produce overestimated crop yields.  

Semenov et al. (1998) showed that changes in climate variability and extreme 

weather events can have a major effect on crop growth simulation and the associated 

agricultural risk. In particular, because the occurrence of extreme weather events are 

better correlated with changes in the variability of climate variables than with changes in 

                                                 
3 The behavior of the Markov chain is ruled by the transition probabilities that specify the conditional 
probabilities for the system to be in each of its possible states during the next time period. In a first order 
Markov chain, the transition probabilities controlling for the next stage of the system depend only on the 
current state of the system (Wilks, 2011). 
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the mean values. As a consequence, a SWG modeled by copulas with more accurate 

properties could have multiple implications in WinEPIC use because copulas are able to 

model tail dependence, which relates to dependencies of extreme events.  Copula 

estimation of anomalies on climatic variables could produce more accurate yields 

simulation because crop simulation models incorporate a mixture of non-linear responses 

of the crop to its environment (Semenov et al. 1998). Thus, more precise simulations 

could result in the estimation of more accurate yields generated by the crop simulation 

model because crop simulation models incorporate a mixture of nonlinear responses of 

the crop to its environment components.  

A Copula Based Stochastic Weather Generator 

Traditional modeling of climate variables relies on a multivariate distribution, 

which is usually characterized jointly under the same parametric family and their pattern 

of dependence is assumed to be linear. Any kind of high dimensional multivariate 

distribution is either limited in covariance structure or comes with a high number of 

parameters (Schölzel and Friederichs 2008). 

According to Genest and Favre (2007a), the traditional multivariate approach has 

disadvantages because it dismisses additional information from their individual behavior. 

The implicit rigidity in the dependence pattern might avoid the incorporation of 

variability and, also it would prevent capturing the long term changes in the 

climatological process.  

In contrast, the copula approach might incorporate additional information into the 

climate simulation providing important insights to give a more accurate representation of 
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the underlying processes of climatological variables. Besides, this methodology allows a 

multivariate dimension analysis for climatological variables, while the modeling of 

dependence structures between random variables can be far from linearity and 

independent of the marginal laws involved. In addition, the copula technique offers 

different treatments on dependence structure for extreme events, common in climatic 

variables. These properties jointly might help to detect long-term changes in the 

hydrologic cycle of a specific location (Genest et al. 2007b).  

In recent years, the applications of copulas in simulation of multivariate data, 

extreme value analysis and modeling dependence structure has increased in 

climatological phenomena analysis. Favre et al. (2004) used copulas to analyze the 

multivariate hydrological frequency. Schölzel and Friederichs (2008) studied the 

appropriateness of the application of copulas to meteorological and climatological 

phenomena summarizing the problem of goodness of fit for copulas and analyzing the 

connection with multivariate extremes. More recently, in the planning and management 

of water resources Wong et al. (2010) modeled droughts using copulas to simulate 

duration, peak, intensity and average intensity.  

However, no application in climate analysis that involves copula methods in the 

design of a SWG has been developed, and this is precisely the objective of this research: 

the use of copula methodology in the development of a SWG for precipitation, 

maximum temperature and minimum temperature.  

Basically the idea of modeling climatic variables using copula methods relies on 

the dynamics of these variables.  Every year weather observations follow a determined 
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cycle: high temperature realizations in summers and low temperature realizations during 

winters. Although weather realizations are stochastic, their differences between one day 

and the next one are not far. For example, usually the temperature on June 1st is at most 

two or three degrees different from June 2nd, or even on June 5th. There exist evident 

dependence patterns which might not be adequately modeled assuming linear 

dependence, for example: maximum temperature realizations have a strong connection 

with minimum temperature realizations, lower realizations in minimum temperature are 

associated with rainfall occurrence.  

Furthermore, the copula approach provides additional flexibility because the true 

probability distribution of the weather variables is unknown. Copula methods allow 

researcher to fit individually the probability distribution for every variable and then to 

model the dependence relationship between the variables with different copula family 

specifications.  

However, the copula estimation in daily basis implies a dimensionality problem. 

In a high-dimensional distribution model, where the whole surface is estimated using a 

set of observations, the more points are considered in the estimation, more accurate will 

be the surface estimations; but the cost for on higher dimensionality is the low reliability 

of the estimation. The solution that this research proposes is the selection of specific 

dates to perform the copula estimation. For such purpose 12 dates per year were selected 
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– one per month – where the dates are determined by the maximum monthly average 

historical anomalies.4  

The parameters of the probability distribution for the marginals are individually 

estimated, while the trivariate copula parameters are jointly estimated for the selected 

dates. The simulation of the weather variables implies the description of their joint 

probability distribution at the selected time which is the bordering conditions of the 

climate stochastic dynamic simulation, while the Brownian Bridge reflects the 

intertemporal dynamic of weather variables evolving on a path forward through time. 

Basically the SWG structure would impose anything but a joint dependence 

structure and the Brownian motion process between the simulated structures to emulate 

their daily time stochastic dynamics.5  

The strong connection between random weather variables and their daily 

sequence validate the assumption of the Brownian Bridge stochastic process to 

interpolate the copula realizations.6 Turvey (2005) used a similar idea to daily pricing of 

weather insurance for ice wine in the Niagara Peninsula of southern Ontario. The 

Brownian Bridge results from conditioning of the Brownian motion on its endpoints and 

its behavior depends on its parametric space. The potential advantage of Brownian 

                                                 
4 Anomalies measure deviations over a certain period of time (month, season or year) from the long-term 
climate statistics, relating to their calendar period. 
5 The Brownian motion is the most known form of the Wiener-Levy process, which has been adopted as 
the probabilistic model for numerous natural phenomena. Brownian motion describes the random 
movement of particles in multidimensional space, such as the stochastic process in weather and hydrology. 
6 The Brownian Bridge conserves the Brownian motion properties: Gaussian, centered, with independent 
increments and diffusion Markovian or Martingale property, that is: �[����)|����	
),����	�), … ,���
)� = ����	
),				�
 < �� < ⋯ < �� 
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Bridge relays in its use with variance reduction techniques and low discrepancy methods 

(Glasserman 2010). 

 

 

Dependence Patterns of Weather Variables  

Although weather generation was performed for three locations – one in Montana, 

one in Texas and one in Washington – figure 1, in appendix A, just describe climate 

patterns on one weather station, Conrad in Pondera County, Montana.   

Figure 1, in appendix A, depicts the relations between the multiple pairs of 

intersections for weather variables and provide some insight about the form of the 

dependence between weather variables. The scalar plots show asymmetric distributions, 

the key is the difference in the ends of the distributions which describe tail dependence 

and, in turn, extreme weather events. Maximum temperature corresponds to lower bound 

precipitation while minimum temperature corresponds to upper bound precipitation. On 

the other hand, maximum temperature and minimum temperature show a positive 

dependence in the right corner suggesting a positive concordance between these two 

variables.7 

Figure 2, in appendix A, shows positive concordance between minimum 

temperature and precipitation with more weight in just one tail of these multivariate 

                                                 
7 Concordance refers to the probability of having large (or small) values of both variables X and Y is high, 
while the probability of having “large” values of X together with small values of Y (or vice versa) is low 
(Cherubini et al. 2004).  
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distributions. Asymmetric copulas – such as Clayton, Gumbel or Frank – are able to 

model multidimensional movement only in one corner.  

Methods and General Theory About Copulas 

Copulas are joint cumulative distribution functions that describe dependencies 

among variables independent of their marginals (Joe 1997). In other words, the copula is 

a multivariate distribution with all univariate margins being U(0,1) that represent 

dependencies between variables (Cherubini et al. 2004). 

According to Nelsen (2006) copulas satisfy mainly four conditions: 

i)∀ u Є [0,1], C(1,…,1,u,1,…,1) = u; 

ii)∀ ui Є [0,1], C(u1,…,un) = 0 if at least one of the ui equals zero; 

iii)Cm is grounded and m-increasing.8  

In terms of an m-dimensional distribution F with marginal cumulative distribution 

functions  (F1,…,Fm), and a jth univariate margin Fj, the copula associated with F is a 

distribution function C:[0,1]m� [0,1] that satisfies  

���) = �	��
��
),… , �����)), � ∈ �� (1) 

Besides, if F is a continuous m-variate distribution function with univariate 

margins F1,…,Fm, and quantile functions F1
-1,…,Fm

-1, then 

���) = ���
	
��
),… , �	�	
���)) (2) 

This is because if X~F and F is continuous then (F1(x1),…,Fm(xm))~C and if U ~ 

C, then  (F1
-1(U1),…,Fm

-1(Um)) ~ F.  Copula is the distribution of a random vector,  

                                                 
8 Let A1 and A2 non-empty subsets of R and a function G: A1xA2�R and denote ai the least element of Ai, 
i=1,2. The function G is grounded if for every (v,z) of A1xA2, G(a1,z) = 0 = G(v,a2), (Cherubini et al. 
2004). 
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   U= (U1,…,Um), where each Uj ~ U(0,1), C is a continuous function and 

increasing, which guarantees that right derivatives exist.  

In terms of multivariate weather data simulation, copula representation is more 

than convenient because of their probabilistic interpretation. The Sklar theorem states 

that if all F1,…, Fm are continuous, then copula Cm is uniquely determined on the range 

of F1,…, Fm. As a consequence, the joint probability density of multivariate distributions 

can be presented as the product of the marginal probability densities and the copula 

density, which is the canonical representation (Cherubini et al. 2004).  

����) = 			 ����
��
), �����), … , �����) 	.		"�#��# �
#$
  

(3) 

where  

����
��
), �����),… , �����) = 	%����
��
), �����),… , �����)))%�
��
), %�����),… , %�����)  
(4) 

Two important implications are derived from Sklar theorem. First, the 

independent representation from marginals of the copula defines the dependence 

structure in the multivariate structure (Nelsen 2006). This separation between marginal 

distributions and dependence creates the flexibility to use marginals from different types 

of distributions that describe better the multivariate phenomena. The second implication 

is the possibility for simulating random variables with the same probability distributions 

as original data and preserving the dependence structure through the copula.  

Copula Families 

Each copula family or class is represented by its density and conditional 

distribution function and the parameter or a vector of parameters. Families characterize 
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dependence functional forms related to properties that include reflection symmetry, 

extreme value copula, multivariate extendibility, as well as dependence properties (Joe 

1997).   

Some families such as Gaussian and t-student (copulas of elliptical distributions) 

are frequently used in all areas of study because of their advantage in extension to 

arbitrary dimensions. However, they are restricted to radial symmetry and they do not 

have a close form expression, which could imply a high cost in high-dimensional 

estimation. An exhaustive list of copula families can be found in Nelsen (2006). 

Archimedean copula is another class, particularly used in the modeling of climate 

and hydrological phenomena.9 These copulas specifications are easy to construct and 

they allow a broader variety in dependence structures, such as tail dependence (Nelsen 

2006). Archimedian copulas can be constructed by a generator function ϕ: I�R+, which 

defines a subcall or family of Archimedean copulas. Generator function (ϕ) is 

continuous, decreasing and convex with ϕ(1)=0 (Cherubini et al. 2004). Given a 

generator and its pseudo-inverse, the next equation states the generation of an 

Archimedean copula CA.10  

�&��
, … , ��) = 	'	
�'��
) + ⋯+ '���)) (5) 

The generator function must be strict (strictly monotonic, continuous and strictly 

increasing) to allow multivariate extension of the copula. Archimedean copula properties 

                                                 
9 Salvadori et al.  2007; Schölzel and Friederichs  2008. 
10 The pseudo-inverse function is φ−1: [0,inf] �I, continuous and non-increasing  on [0,inf]  and strictly 
decreasing on [0, φ(0)] and by composition with the generator gives the identity, φ-1(φ(x))=x . )	
��) = * )	
��)						0 ≤ � ≤ )�0)								0																	)�0) 	≤ � ≤ +	∞		 
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are: symmetry, associativity and easy identification of their level curves by the following 

condition:11 

.��
, … , ��) ∈ /�:	���
, … , ��) = 1} (6) 

The most frequent source of generators for m-dimensional Archimedean copulas 

are the Laplace inverse transformations for distribution functions, which existence is 

guaranteed only when function ϕ is completely monotonic (Cherubini et al. 2004). 

Copulas describe naturally the dependence between multivariate extremes. The tail 

dependence concept in a bivariate distribution rates the amount of dependence in the 

upper-quadrant tail or lower-quadrant (Salvadori et al. 2007). 

The three copulas used in this research are Gumbel, Clayton and Frank.12 Gumbel 

m-copula belongs to the Gumbel-Hougaard family, which is the only extreme value of 

the Archimedean family. Gumbel is completely monotonic, has upper tail dependence, 

extreme value copula and partial multivariate extension.13 

345467�86				'��) = �− ln��))< 

'	
��) = exp @−�
<A 

���
, ��, … , ��) = expB− CD�− ln �E)<�
E$
 F
<G 				�86			H > 1 

(7) 

(8) 

(9) 

Clayton m-copula, belongs to Clayton family, is completely monotonic and owns 

lower and upper tail dependence. 
                                                 
11 Generator is strict if it satisfies φ(0)=+inf, (Cherubini et al. 2004) 
12 An exhaustive list of Archimedean copulas or other classes, see Nelsen (2006); Salvadori et al. (2007).  
13 Extreme value distributions and their three types (Gumbel, Frétchet and the Weibull) provide the only 
non-degenerated limit laws for adequate transformed maxima of identical and independently distributed 
random variables. For a detailed reference in this issue, consult Embrechts et al. (2001).  
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345467�86				'��) = u	< − 1 

'	
��) = �� + 1)	
< 

���
, ��, … , ��) = CD�uL	α−5 + 1)�
E$
 F	
< 				�86		H > 0 

(10) 

(11) 

(12) 

Frank m-copula, belongs to Frank family, is completely monotonic, it owns 

reflection symmetry, partial multivariate extension and extension to negative 

dependence. 

345467�86				'��) = M5 Nexp�−H�) − 1exp�−H) − 1 O 

'	
��) = − 1H 	ln	�1 + 4P�4	< − 1)) 
���
, ��, … , ��) = − 1H ln Q1 + ∏ �4	<ST − 1)�E$
�4	< − 1)�	
 U 				�86			0 ≤ H ≤ ∞	Vℎ45	5 ≥ 3 

(13) 

 

(14) 

 

(15) 

Mixtures of Conditional Distributions 

The conditional mixture method allows extending bivariate copulas to an 

arbitrary dimension, at the same time that introduces additional flexibility in the model. 

By this technique, the construction of an m-multivariate family starts from two 

dimensional marginals. Salvadori et al. (2007) mentions that “these families of 

multivariate distributions can be made to interpolate from perfect conditional positive 

dependence with conditional independence in between.” 

Copula family can depict a range of dependence structure. Furthermore, copula 

mixture is able to model different dependence patterns in multivariate distributions. 

Thus, this method allows one to model the dependence pattern by pairs of variables 
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capturing the best dependence structure in each pair of variables using the conditional 

sampling method. For example, the trivariate Frank copula is symmetric and cannot 

admit tail dependence, while the mixture Frank-Clayton-Gumbel admits asymptotic tail 

dependence and asymmetry. 

The conditional approach, used here, is a unifying method for constructing 

multivariate distributions with a given family copula for each bivariate margin. 

However, the conditional mixture effectively enhances flexibility when there is a gain 

constructed in a common base measure for all component mixtures: the likelihood 

function. This model is especially effective with large sample sizes (Salvadori et al. 

2007).  

M-variate distributions can be constructed based on (m-1) dimensional margins, 

which must have m-2 variables in common. If one is given, F12, F23,…,Fm-1,m, m≥3, it is 

possible  to build a m-variate  distribution  starting with the  trivariate  distribution 

Fi,i+1,i+2 ∈ F(Fi,i+1 , Fi+1,i+2), next the four-variate distributions from F,…,Fi+3 ∈ F(Fi,i+1,i+2, 

Fi+1,i+2,i+3), and so on. There exist a bivariate copula Cij associated with the (i, j) bivariate 

margin of the m-variate distribution. For (i, j) with│Z − [│ > 1, Cij measures the amount 

of conditional dependence in the ith and jth variables, given those variables with indices 

in between (Joe 1997).  Following Joe (1997), the next equation shows the construction 

of a trivariate copula family. 

�
�\��) = ] �
\��
│���^
	_ �
│	��)�\│��	�\│�� ���`��), (16) 
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The arguments of the integrand are conditional cumulative distribution functions 

(F1│2  and F3│2 ) obtained from F12 and F23. They can be written in terms of copulas 

because by construction, equation (16) is a trivariate distribution with univariate margins 

F1, F2, F3 and bivariate margins F12 and F23. C13 can be interpreted as a copula 

representing the amount of conditional dependence between the first and third univariate 

margins given the behavior of the second (Joe 1997).  This method can be extended 

recursively to an m-dimensional copula. 

�
,..,���) 
= ] …] �
���
│�…�	
��abc

	_ �
│	��, … , ��	
). ��│�…�	
�	��│��, … , ��	
 .	��…�	
�`��, … , `��	
)
�^

	_  

 

(17) 

Where F1│2…m-1  and Fm│2…m-1 are conditional distributions functions obtained 

from     F1…m-1 and F2…m-1 (Joe 1997). Copulas can be derived directly by using the 

integral representation in equation (17) and Sklar’s theorem.  

This research applies the conditional mixture method for the estimation of a 

trivariate copula. This approach includes not only diverse marginal distributions, but also 

different copula family specifications. The trivariate copula is expressed in equation 

(18). 

�
�\��
, ��, �\) = ] �
\ Nd�
���
, �)d�� , d��\��, �\)d�� Oe^
f dx 

(18) 

In general terms, the estimation and simulation of copulas is possible by the 

calculation of partial derivatives, as the following equations show.  
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(19) 

with 

d�E#��E , �# , iE# d�E  

�E#��E, �# = d��E#��E , �# , iE# d�Ed�#  

(20) 

 

(21) 

Thus, different specification families can be used to give more flexibility to the 

specification. Three different parameters substituting equation (20), and (21) into (19) 

result in a three-variable-three parameter copula density �
�\��
, ��, �\; 	i
, i�,i\, . This 

expression can be used to estimate the parameter values by Maximum Likelihood. As 

Cherubini et al. (2004) mentions, this approach is elegant but the calculation of the 

inverse function analytically could be challenging.  

Archimedean copulas provide advantages in estimation because they can be 

rewritten in their Laplace transformation representation and then estimated more easily. 

If ���
, ��, … , ��) = '	
['��
) + 	'���) +	…+ 	'���)	� is an Archimedian m-

variate copula with generator '�. ). For a k=2,…,m,  
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(23) 

Thus, the parameter estimation in the case of the copulas would result more 

straightforward. 

Copula Based Simulation  

Simulation of multivariate vectors with given m-distributions can be carried out 

by calculating partial derivatives of the copulas because the integral operator is removed 

from equation 18 when the copulas of interest are differentiated. Eventually only 

composite functions of partial derivatives for bivariate copulas are evaluated (Salvadori 

et al. 2007). 

The algorithm to simulate multivariate copula distribution has a nested structure. 

Salvadori et al. (2007) provides a straightforward method based on Sklar Theorem. 

Assume that F is a multivariate distribution with continuous marginals F1,…,Fm that can 

be represented by a m-copula, Cm. Then, the generation of a vector (X1,…,Xm) ~ F can 

be done by simulating a vector (U1,…,Um) ~ C, where the random variables Ui’s are 

Uniform [0,1].  

Because copulas are invariant to transformations, the simulated random vector X 

has the same dependence structure as vector U. The following equation shows the joint 

application of the Sklar theorem and the Probability Integral Transform. 

lE =	�E��E)⇔ �E = �E[	
��lE) (24) 
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Where i=1,…,m, the Xi’s  random variables have marginal distributions of Fi’s, 

(which do not necessarily belong to the same distribution) and a joint distribution F.  The 

whole simulation process for k variables is described by the following steps. 

First, let u1 to be the random realization of the random variable U1’ uniform on 

[0,1]. The simulated variable is u1. For the sake of the simulation of X, set  

�
 = ��
	
�lE) (26) 

The next step is to simulate u1 and u2 based on the joint distribution function F. 

For this purpose, u2 sampled from U2, must be conditioned on the event {U1=u1} 

�� = ��	
	���│�
 = o�l� ≤ ��	│	l
 = �
) (27) 

Where the conditional functions can be expressed as  

%Sc���
, ��		)%Sc���
) 	= 	 %Sc���
, ��		) (28) 

Where u2’ is the realization of a random variable U2’ uniform on [0,1] and 

independent of U1’ 

Thus, successively for example to simulate uk, sampled from Uk and consistent 

with the joint distribution function F or previously sampled u1,…,uk-1; Uk must be 

conditioned to the events {U1=u1, U2=u2,…,Uk-1=uk-1}   

�k = �k	
	��k│�
, … , �k	
 = p.lk ≤ �k	│	l
 = �
, … , lk	
 = �k	
} 
�k	
	��k│�
, … , �k	
 = %Sc,…,Sqbc���
, … , �k)%Sc,…,Sqbc���
, … , �k	
) 

(29) 

(30) 
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Where uk’ is the realization of the random variable Uk’ uniform on [0,1], and 

independent of U1’,…, Uk-1. Finally, by the probability integral transform it is possible to 

generate the sample (x1,…,xm). 

��
, … , ��) = ��
	
��
),… , ��	
���)) (31) 

Estimation Methods 

The canonical representation for the multivariate density function in equation 

(23), allows decomposing the statistical modeling of copulas in two steps: first the 

identification and modeling of the marginal distributions; and second, the estimation of 

the suitable copula function. This procedure can be generalized to mainly three methods: 

the Exact Maximum Likelihood (EML) method, the inference for the marginal (IFM) 

method and the canonical maximum likelihood (CML) method. 

EML method assumes a parametric family of the copula and parametric marginal 

distribution, and it simultaneously estimates both sets of parameters (Cherubini et al. 

2004). However, its efficiency depends on the numerical complexity of the optimization 

problem which increases with the dimensionality of the random vectors (Schölzel and 

Friederichs 2008).   

IFM is a two stage estimation process based on maximum likelihood. The first 

stage consists of the estimation for the univariate marginal distribution parameters and 

the second stage estimates the copula parameters. This procedure is consistent and 

asymptotically normal under regularity conditions (Cherubini et al. 2004).  

Finally, CML is also a two-step method based on maximum likelihood. The first 

step involves the estimation of the marginals using the empirical distributions and 
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second, the estimation of the copula density by using maximum likelihood estimation 

method. This method produces consistent estimates of the copula parameters and their 

standard errors. 

This research carries out the estimation in two steps. First, the estimation of the 

univariate marginal distributions parameters, assuming parametric specifications was 

carried out.  Second, the kernel smoothing technique was applied to compare, or even, to 

attain a better fit of the distributions, with emphasis on precipitation.  

Dependence Measures 

Pearson correlation and linear dependence concepts do not capture the complete 

dependence dimensions of non-normal distributions. Linear correlation is not preserved 

when nonlinear transformations are applied to random variables. Multivariate models, 

such as copulas, require dependence measures that can be able to capture and identify 

their dependence properties.  

Kendall’s tau (τ) is used for compatibility conditions. Thus, Kendall’s tau and 

Spearman’s rho(ρ) are multidimensional measures of monotone dependence for 

continuous variables that are invariant respect to strictly increasing transformations, 

which is mainly the characteristic of copulas and non-normal distributions. Other 

important property of τ and ρ is that are increasing with respect to the concordance 

ordering (Joe 1997).14  

                                                 
14Concordance means the degree to which large or small values of one random variable associate with 
large or small values of another and as a rank correlation. Concordance measure satisfies properties: 
completeness; normalized measure, symmetry, continuity and concordance zero when variables are 
independent. These properties imply invariance respect to increasing transformations (Cherubini et al. 
2004). 
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Other measures such as tail dependence, positive quadrant dependence and the 

concordance ordering are also basic in the analysis of multivariate extreme value 

distributions and copulas.  

F be a continuous multivariate cumulative distribution function (c.d.f.) and let 

(X1,X2,…,Xn) and (X’1,X’ 2,…,X’n) be independent random vectors  with distribution F 

(Joe 1997). Kendall’s tau is15  

r = o6[��
 − �s
)��� − �s�)… ��� − �s�) > 0�
− 	o6[��
 − �s
)��� − �s�)… ��� − �s�) < 0� 

r = 2Pr	�o6[��
 − �s
)��� − �s�)… ��� − �s�) > 0� − 1 = 4	]�	`� − 1 

(32) 

(33) 

F be a continuous multivariate c.d.f. with univariate margins F1,F2,…,Fn and let 

(X1,X2,…,Xn)~F; then the Spearman’s rho is the correlation of F1(X1), F2(X2),…,Fn(Xn). 

As F1 and F2 are U(0,1) random variables under the continuity assumption, their 

expectations are ½, their variances are ½ and Spearman’s rho is in the following 

equation. 

x = 12y�
��
) �����)…�����)`���
, ��, … , ��) − 3
= 12y�`�
`�� …`�� − 3 

(34) 

                                                 
15 The condition ��
 − �s
)��� − �s�)… ��� − �s�) > 0 denotes ��
, ��, … ��), ��′
, �s�, … ,�′�  are 
two concordant vectors where one of the vectors has the larger value for both components. The condition ��
, ��, … ��), ��′
, �s�, … ,�′� < 0 refers ��
, ��, … , ��), ��′
, �s�, … , �′�) are two discordant pairs 
where for each pair one component is larger than the corresponding to the other component and one is 
smaller (Joe 1997). 
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Because Kendall’s tau and Spearman rho are invariant to strictly increasing 

transformations, they can be expressed in terms of a copula with the C associated with F 

(Joe 1997). 

r = 	]4	�	`� − 1 

x = 	12]…]�
	�� …��`���
, … ��) − 3
= 12	y���
 …��)`�
	`�� …`�� − 3 

 

(35) 

 

 

Tail dependence captures the dependence in extreme values measured in the 

upper-quadrant or lower quadrant and it is also invariant to increasing transformations.  

Tail dependence is defined for a multivariate copula C in the following equations.  

limS→
	���, �, … , �)� = ~S 

limS→f	���, �, … , �)� = ~� 

(36) 

 

(37) 

There exist upper tail dependence if ~S��0,1� and no upper tail dependence if 

~S = 0.  On the other hand, C has lower tail dependence if ~���0,1� and no lower tail 

dependence if ~� = 0. 

Copula Methods Applied to a Stochastic Weather Generator 

The application of the copula technique for modeling climatological variables 

implies overcoming some challenges. First, no general criterion for selecting the copula 

family has been established because there is not a generalized GOF test methodology for 

multivariate copula. Second, the marginal distributions are unknown; however, marginal 
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distributions determine the copula of a distribution and the rate of convergence in the tail 

dependence. Third, copula does not solve the problem of dimensionality, but allows 

several kinds of dependence structures redirecting the problem toward finding 

parametric distributions for high dimensional random vectors (Schölzel and Friederichs 

2008). 

Data 

The SWG methodology is applied to simulate climate for three weather stations: 

one in Montana, one in Washington and one in Texas. The weather stations are Pondera 

County, Conrad-MT1974, Spokane, Spokane County, Washington and Temple, Bell 

County, Texas. 

All of these climatological stations provide daily information about maximum 

temperature, minimum temperature and precipitation. The information was obtained 

from the National Oceanic and Atmospheric Administration (NOAA) website, from 

January 1st 1960 to December 31st 2010.16   

Based on daily historical average temperatures for 50 years (1960-2010), the date 

selection criterion for the copula estimation is focused on the dates with the highest 

absolute deviations from mean with respect to the average monthly observation. 

Variable Detrending 

The modeling of the weather variables requires the decomposition of the series 

when some sequential or cyclical patterns are observed. Temperature cannot be well 

modeled using random walks because these variables include seasonal variations, 

                                                 
16 http://gis.ncdc.noaa.gov/map/cdo/?thm=themeDaily  
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cyclical patterns and high autocorrelation, which explains that its short-term behavior 

differs from the long-term behavior (London 2007).  

In general terms the standard methodology consists of decomposing the series in 

long-term trend, seasonal behavior and white noise. In particular, for the case of 

temperature, given the seasonal and cyclical nature of the temperature the model for 

detrending the series could incorporate mean reversion in the process because the 

temperature seems to vary between (London 2007).  

Harmonic analysis is useful to extract the fluctuations and variations in the series, 

using sin and cosine functions.17  Application of harmonic series requires three 

adjustments (Wilks 2011). First, the fundamental frequency term  V
 = 2Π/5 rescales 

proportionally time to angular measure, i.e. specifies the fraction of the full cycle over 

the whole data series (given n, the length of the data is considered as a full cycle of 360o 

or 2π radians in angular measure). Second, the amplitude (C1) is the determination of the 

stretching or compressing of the cosine or sine into the range of the data. Third, the 

phase angle or phase shift (φ) that makes the lateral adjustment of the harmonic function. 

�P = �� + �
 cos @2Πt5 − )A +	�
 sin @2Πt5 − )A 

�
 cos @2Πt5 − )A = �
 cos @2Πt5 A +	�
 sin @2Πt5 A 

(38) 

 

(39) 

                                                 
17 These periodic functions have repetitive patterns every 2 π radians or 360o and they oscillate around 
their average value of zero and attain maximum values of +1 and minimum of -1. The cosine function is 
maximized at 0o, 360o and so on, the sine function is maximized at 90o, 450o and so on. 
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Where �
 = �
	cos�)) 	75`	�
 = �
	sin�)) are the amplitudes of an upshifted 

cosine and sine waves. The parameters A1 and B1 are calculated by using standard 

regression methods. 

This detrending technique was applied to daily observations of the three variables 

for all of the weather stations, considering a cycle of 365 days. The coefficients of the 

regressions were significant for minimum and maximum temperatures. Once the trend 

was removed from these data series, from the detrended data some dates were selected 

for the copula parameter estimation. However, any trend specification was significant for 

precipitation. Figure 3, in appendix A, shows the application of this method for the 

maximum temperature monthly anomalies with data from Conrad, Montana weather 

station.  Trend was highly significant: in Conrad weather station, trend explains 66% in 

maximum and minimum temperature behavior; in Spokane weather station, trend 

explains 80% and 70% respectively, and in Temple weather station, the trend explains 

69% and 75% respectively (see tables 1.A 1.B, and 1.C, in appendix B). 

Thus, the estimated trend was taken away from the original daily observations 

and hence, all estimation processes were carried out using detrended data series. 

Selection Process for Marginal Distributions 

Parametric distributions have been widely used to model climate variables. In 

parametric density fitting, the criterion of selection for the best fit distribution relay on 

Maximum Likelihood as a competitive indicator of goodness of fit, especially if the 

parametric densities have the same number of parameters. However, when the number of 
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parameters differs, the Akaike Information Criterion (AIC) and Bayesian Information 

Criterion (BIC) are able to derive a conclusion about fitting the distributions. 

Even when the assumption is not justified, frequently Gaussian distributions are 

assumed for modeling temperature using the Box-Cox transformation (Wilks 2011).  In 

contrast, although it is mathematically possible to fit precipitation into a Gaussian 

distribution, the adjustment is not good because of its asymmetry and right skeweness 

(Wilks 2011), see figure 4.C. in appendix A.   Also, its mixed character (discrete and 

continuous) and its discontinuity in probability distribution between zero and non-zero 

observations increases the difficulty of its estimation. On the other hand, the versatility 

of the gamma distribution for modeling precipitation is suitable, but the estimation of the 

two parameters for a gamma is complex because they do not exactly correspond to the 

moments of the distribution (Wilks 2011).18   

The pitfall of the parametric approach is the a priori assumption of the parametric 

functional form of the variable to be estimated. Misspecification often occurs because 

restrictive assumptions can result in a misrepresentative characterization of the true 

density, thus producing erroneous estimates that lead to unsound inference. 

Nonparametric characterization of the marginal distribution is a potential option because 

of its flexibility. Instead of assuming a functional form, nonparametric representation 

requires some regularity conditions such as smoothness and differentiability. However, 

non-parametric approach requires more data to achieve the same grade of precision as a 
                                                 
18 The gamma probability distribution function can take a broad range of shapes depending on its shape 
parameter α and the scale parameter β which stretch or squeeze the function to the right or the left 
depending on data. The mean is the product of the two parameters (αβ) and variance in αβ2, and draws 
simulated from estimators show that the median is below the real median because the distribution is 
positively skewed (Wilks 2011). 
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parametric model, which is not a problem for the case of weather data (Wand and Jones 

1995).   

The nonparametric density estimator assumes no pre-specified functional form 

Kernel. 

����; ℎ) = 15ℎD1 *�� − �E)ℎ ��
E$  

 

(40) 

Where K is a function that satisfies�1��)`� = 1, which is the kernel and h is 

bandwidth or window width and is a positive number. K is chosen to be a unimodal 

probability density function that is symmetric about zero ensuring that ����; ℎ) is a 

density (Wand and Jones 1995). For a given sample size n, if h is small, the resulting 

estimator will have a small bias but a large variance. Conversely, if h is large, the 

resulting estimator will have a small variance but large bias. Minimization of the Mean 

Square Error (MSE) – which is the error measure of the estimation of the density at a 

single point of the density kernel function – is a consequence of the bandwidth optimal 

selection, which requires the balance of the bias squared and the variance terms. 

There are numerous kernel functions: uniform, triangular, biweight, triweight, 

Epanechnikov, normal. However, as Wand and Jones (1995) pointed out, the choice of 

the shape of the kernel function is not a particular important, but the choice of the 

bandwidth value is the big issue. 

Table 2 shows, in appendix B, the results of the parametric estimation for the 

marginals. The AIC and the BIC show that for maximum temperature and minimum 
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temperature the best parametric specification is the normal distribution.19 In contrast, the 

AIC and the BIC pointed out that the best specification for the precipitation is the 

extreme value distribution; however, this distribution hardly provides a good description 

of the data distribution. Thus, parametric specification shows a poor fit for precipitation 

because of the high rate of zero rainfall. 

In general terms, the graphs of the adjusted probability distribution function 

(p.d.f.) show a good kernel fit and also a good parametric fit under the normal 

distribution of the maximum temperature. In the case of precipitation and minimum 

temperature, kernel clearly attains a better fit. Although the parametric distribution could 

result more efficient, the large volume of weather data provides reliability on non-

parametric estimations that usually captures more accurately the probability in the tails 

of the distribution.  

For these reasons, this research adopts the kernel specification of the probability 

distribution for the three weather variables originated in all weather stations (see figures 

4, 5, and 6, in appendix A).  

Copula Estimation 

The goodness of fit test (GOF) helps to determine if the observed data are well 

modeled by the specified dependence structure of the multivariate distribution for the 

specific family of parametric copulas.20 However, the development of a GOF test for the 

mixture copula exceeds the primary objective of this research.   

                                                 
19 The most negative AIC and BIC indicates the best adjustment. 
20 There are three groups of methodologies. The simplest approach assumes dependence structures. The 
second kind uses statistical tests of the arbitrary parameters such as the rank-based statistics, kernels, 
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Although important advances have been attained in GOF test, the formal 

methodology to test the GOF for a copula is just recently emerging (Genest et al. 2009). 

Most of the progress has been done for a one-dimensional test, while in the multivariate 

case, there is no consensus. Although recent advances in copulas GOF have centered in 

“blanket test type”, in the multivariate case the advances are not robust enough because 

the value of the statistics depends on the order in which the variables are conditioned. 

So, different conditioning decisions could lead to different results (Genest et al. 2009).  

Because of the inconclusive information that GOF can provide in multivariate 

analysis, the selection of the appropriate copula family was based on a ranking copula 

criterion that measures the likeness of that sample coming from a given distribution. 

Although maximum likelihood criterion cannot be properly the criterion for the selection 

of the copula family because parametric distributions are unknown, it is possible to use 

maximum likelihood as a common base measure for all component mixtures that 

indicates if the conditional mixture effectively enhances flexibility.  

It is impossible to prove all copula mixtures; however, in this context the 

maximum likelihood provides some discernment about the applicability of a particular 

distribution to every sample. Table 3, in appendix B, shows AIC and the BIC statistics 

for the considered weather stations, where the three best specifications are attained by 

the one-parameter-Gumbel copula family.  

 

                                                                                                                                                
weight functions and associated smoothing ad hoc categorization of the data. Finally, the “Blanket tests” 
can be applied to any specification and do not require selection for kernel and optimal bandwidth (Genest 
et al. 2009). 
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Brownian Bridge Treatment and Construction 

In general terms, Brownian motion describes the random movement of particles 

in multidimensional space. By definition, the Brownian Motion on [0,T] is the stochastic 

process  .���), 0 ≤ � ≤ �} which satisfy the following properties (Glasserman 2010): 

i) Centered, W(0)=0; 

ii)  The Mapping t � W(t) is, with probability 1, a continuous function on 

[0,T]; 

iii)  The increments {W(t1)-W(t0), W(t2)-W(t1),…,W(tk)-W(tk-1)} are 

independent for any k and any  0 ≤ �f < �
 < ⋯ < �k ≤ �; 
iv) W(t)-W(s) ~N(0, t-s) for any 0 ≤ � < � ≤ � 

v) As a consequence of (i) and (iv) it can be inferred that  

W(t) ~ N(0, t) for        0 < � ≤ �. 

As a stochastic process, Brownian motion has the property of scaling invariance 

property, which identifies a transformation on the space of functions which changes the 

individual Brownian random functions but leaves their distribution unchanged 

(Glasserman 2010).  

The Brownian Bridge has stationary increments but non-independent, in contrast 

with Brownian motion that has independent increments. Dependent increments in 

Brownian Bridge are the result of conditioning the final value to be canceled in the 

considered interval.  Let Z1,…,Zn be independent standard normal random variables. For 

a standard Brownian motion set t0=0 and W(0)=0. The subsequent values can be 

generated as 
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���E�
) = 		���E) +	��E�
 −	�E	�E�
,				[ = 0,… , 5 − 1 (41) 

For X~ BM(µ, σ2) with constant m and s, given X(0), set 

���E�
) = 		���E) + ��	�E�
 −	�E) + ��E�
 −	�E	�E�
,				[ = 0,… , 5 − 1 (42) 

These methods are exact in the sense that the joint distribution of the simulated 

values [W(t1),…,W(tn)] or [X(t1),…,X(tn)] are the same for the joint distribution of the 

corresponding Brownian motion at [t1,…,tn].  The vector [W(t1),…,W(tn)] is a linear 

transformation of the vector of increments [W(t1), W(t2) – W(t1), …,W(tn) – W(tn-1)] 

because these increments are independent and normally distributed, then 

[W(t1),…,W(tn)] has a multivariate normal distribution (Glasserman 2010).  

For a standard Brownian Motion, the mean E[W(ti)] = 0, so for the covariate 

matrix and 0 < � < � < �; using the independence of the increments,  

�8�[���),���)� = �8�����),���) + ����) −���) � 
= �8�[���),���)� + �8�����), ����) −���) � = � + 0 = � 

 

(43) 

If Cov denotes the covariance matrix of [W(t1),…,W(tn)], then  

�8�E# = min	��E, �#) (44) 

Given the Brownian motion {W(t), t≥0},  T>0, then  

���) = ���) − �����), � ∈ [0, �� (45) 

Is a stochastic process of Brownian Bridge independent of W(T).  However, when the 

Brownian bridge realizations satisfy ���) = � and ���) = � they are the initial and 

final points, respectively, and the Brownian Bridge can be expressed as 
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�f,��,���) = � +���) − �� ����) − � + �) (46) 

In fact, the Brownian Bridge Matlab program generates the underlying Brownian 

motion process by successive increments. The Brownian Bridge construction involves a 

process that begins with the generation of the final value W(tn), then filling in the 

intermediate values amounts to simulating a Brownian Bridge from 0=W(0) to W(tn). 

Next, W(t[n/2]) is sampled, and valued between times t[n/2] and tn are filled in to simulate 

the Brownian Bridge from W(t[n/2]) to W(tn) and so on. 

A Brownian bridge constructed from a Brownian motion with drift µ, is the same 

as the one constructed from a standard Brownian motion, only the first step (sampling 

the rightmost point) would change. Instead of sampling W(tn) from N(0, tn), it would be 

sampled from N(µtn, tn). The conditional distribution of  W(t1),…, W(tn-1) given W(tn) is 

the same for all values of µ (Glasserman 2010). 

The d-dimensional Brownian Bridge construction implies the application of 

independent one-dimensional constructions to each one of the coordinates. To include a 

drift vector for BM(µ,Ι) process, it must be added µitn to Wi(tn) at the first step of the 

construction of the ith coordinate, the remaining parts of the construction are the same 

(Glasserman 2010). 

To construct X~BM(µ,Σ), X can be can be represented as X(t) = µ t +BW(t) with 

B as a dxk matrix, k≤d, satisfying BBT=Σ and W a standard k-dimensional Brownian 

motion. Then a Brownian Bridge construction can be applied to W(t1),…,W(tn) and 

recover  X(t1),…,X(tn) through a linear transformation.  
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X~ BM(µ,Σ) means that the process X is a Brownian motion with drift µ − with µ 

being a vector in Rn and Σ a nxn matrix, positive definite or semidefinite –. X is a 

continuous sample paths, with initial value X(0) = 0 and independent increments with   

���) − ���)~���� − �)�, �� − �)Σ  (47) 

Let B a dxk matrix satisfying BBT = Σ and W is a standard Brownian motion on 

Rk, then the process BM(µ,Σ) is defined by  

���) = 	�	� + �	���) (48) 

In particular the law of X depends on B only through BBT, then the process in equation 

48 solves the stochastic differential equation  

`���) = 	�	`� + �	`���) (49) 

So, extending the definition to a d-dimensional Brownian motion to deterministic, time 

varying µ(t), and Σ(t) through the solution to 

`���) = 	���)	`� + ���)	`���) (50) 

Where B(t)B(t)T = Σ(t). this process has continuous sample paths, independent 

increments and  

���) − ���)~� N] ���)`�P
� , ] Σ��)`�P

� 	O 
(51) 

In this terms, if X~ BM(µ,Σ) then  

�8� ��E�s), �#�t)� = min	��, �)ΣE# (52) 

Let Z1,Z2,…be independent N(0,1) random vectors in Rd. The standard d-dimensional 

Brownian motion at times 0 = t0<t1<…<tn by setting W(0) = 0 and  
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���E�
) = 		���E) +	��E�
 −	�E 	�E�
,				[ = 0,… , 5 − 1 (53) 

Equivalent to applying the one-dimensional random walk construction separately to each 

coordinate of W. To simulate X~ BM(µ,Σ), first matrix B is found for which BBT = Σ. If 

B is dxk, let Z1, Z2,… be independent standard normal random vectors in Rk. Set X(0)=0 

and 

���E�
) = 		���E) + 	����
 − �E) + ��E�
 −	�E	�	�E�
,				[ = 0,… , 5 − 1 (54) 

The simulation of BM(µ,Σ) is simple once Σ has been factored (Glasserman 2010).   

However, in the particular case of the Brownian Bridge construction for the 

SWG, in the construction of the tridimensional Brownian motion one of the variates (Z1, 

Z2…) is truncated to emulate the precipitation behavior. As a consequence µ and Σ have 

to reflect such circumstance. The coefficients of the multivariate normal are determined 

by fitting the historical weather variables (maximum temperature, minimum temperature 

and precipitation) using the maximum likelihood estimation method. The parameters 

estimation is from a population with single truncated sample, normal p.d.f. and the 

truncation point of zero. Cohen (1991) shows the analytical solutions for �̅ and σ, 

derived using maximum likelihood estimation.  

When restriction occurs only in one of the variates of the multivariate 

distribution, such as in the case of precipitation; say X= (x1,x2,x3), is the trivariate 

distribution with the following p.d.f. equation.  

��¡) = 2¢	\/�│ΣE#│	
/�exp	�	
/�)��	£)s¤bc��	£) (55) 
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For left truncated samples, the analytical solutions for the estimates µ1 and σ1 

have close form solutions. As Cohen (1991) shows solutions for x1 (truncated variate) 

can be calculated only from marginal data of x1, without consider for any of the other 

variates. 

�̅ = D�E5
�

E$
  

�� = D��E − �̅)�5
�

E$
  

i�¥) = ¦�¥)¦�¥) − ¥′ 
¦�¥) = )�¥)1 − Φ�¥) 

� = �̅ − 	i�¥)��̅ − �) 
¨� =	�� + 	i�¥)��̅ − �) 

(56) 

 

(57) 

 

(58) 

 

(59) 

(60) 

(61) 

Where n is the number of truncated rain-rate samples, 	i�¥) is the auxiliary 

estimation function, and )�¥) and Φ�¥) are probability distribution function and 

cumulative distribution function of the standard normal distribution, respectively.   

Estimation of parameters of the remaining two variates and their correlation 

coefficients show the following pattern. 

�̂# =	�# − 6# 	 �#�
 	��
 − �̂
), 
ª̈# =	�#«1 − ~� 	�1 − 6E#��1 − ~�  

(62) 

 

(63) 
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xªE# =	 6E# − ~�	�6E# − 6
E	6
# ¬­1 − ~� �1 − 6
E��® ­1 − ~� 	�1 − 6
#� �®	 
 

(64) 

For i=1,2,…,p-1, j=2,3,…,p,i<j. 

~� = 1 − �
����

̈���� (65) 

Since by definition rii=1, the last equation for i=1 becomes  

xª
# =	 6E#¬­1 − ~� �1 − 6
#� �®	 
(66) 

For more details on this issue, consult Cohen (1991).  

Brownian Bridge is useful in the context of this application because it is able to 

generate high quality sequences to outline the paths of the Brownian motion process, by 

sampling the weather generated by copulas acting as milestones (or borderline 

conditions), the sequence can be filled using Monte Carlo methods. The Brownian 

Bridge could represent an advantage when it is used with variance reduction techniques 

and low-discrepancy methods.  

Summary of the Applied Methods for the Copula Based SWG 

The applied methods that compose the Copula Based SWG are briefly detailed. First, 

the selection of the dates for the estimation of the Copula parameters is carried out based 

on the criterion of the highest average monthly anomaly. Second, the original daily 

weather observations are detrended to extract the cyclical patterns in the series. Third, 

the detrended selected dates are used to estimate the parameters from different copula 

mixture specifications and the best specification is determined. Four, parameters on the 
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trivariate normal with one truncated variate are obtained from the detrended weather 

variables using daily observations, one set of parameters per month. Five, simulation of 

the weather variables is carried out using the Copula parameters previously obtained. 

Six, Brownian Bridge generation is carried out to emulate daily dynamics of the weather 

variables using the Copula simulations as the borderline of the Copula based SWG and 

the trivariate normal simulations. Seven, trend is incorporated into the daily simulated 

variables.  

Summary 

The proposed technique considers the application of the copula methods for the 

stochastic generation of daily values for the weather variables: maximum temperature, 

minimum temperature and precipitation. This methodology solves three important 

issues. First, the selection of the marginal distributions which was determined 

individually based on the best fit for every variable including parametric and non-

parametric approach.  Second, the solution of the dimensionality problem that relays in 

the reduction of the sample for the copula estimation. This principle selects the dates 

with the highest average monthly anomalies in the sample. Third, the copula family 

selection criterion for the final representation of the multivariate model, which was 

established on a common base measure for all component mixtures: the likelihood 

function. Under this measure the best specification for the three models was the one-

parameter Gumbel.   
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CHAPTER III 

STATISTICAL VALIDATION FOR THE COPULA BASED STOCHASTIC 

WEATHER GENERATOR 

 

Introduction  

The statistical validation of the Copula based SWG represents a key issue in the 

generation of weather series for crop simulation models such as the WinEPIC. The 

copula based SWG was tested in nine locations with two different climatic conditions. 

Weather stations are located in Conrad, Montana; Spokane, Washington and Temple, 

Texas.  

An evaluation of the Copula based SWG performance versus the Richardson’s 

SWG performance, currently used in the WinEPIC, is carried out to learn about their 

strengths and limitations. Copula based SWG does not assume parametric specifications; 

instead, Copula based SWG was designed on non-parametric modeling using kernel 

smoothing and copula methods to capture jointly the adjacent weather patterns in the 

series. Also, Copula based SWG relies on Brownian Motion to emulate the daily 

behavior of the weather series and used Monte Carlo methods to replicate the behavior 

of the observed weather series. 

First, because any parametric functional form is being used, a non-parametric two 

sample Kolmogorov-Smirnov test can be used to evaluate the performance of the Copula 

method to replicate the distribution for the weather series.  
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Next, a deeper analysis by periods is applied to get more detailed information on 

the Copula based SWG’s performance in contrast to the Richardson’s SWG 

performance. 

In general terms, although the Copula based SWG provides a good representation 

and an acceptable replication of the observed weather patterns from historical data, there 

is no a conclusive evidence on which SWG has the best performance. However, one 

remarkable characteristic of the Copula based SWG is that I t provides accurate 

representations on magnitudes of extreme weather events in temperatures. 

Monte Carlo Methods 

Weather models are stochastic representations that replicate daily variations on 

weather. The parameters of such models represent specific characteristics of the local 

climate that the Monte Carlo simulation technique reproduces by random number 

generators which resembles daily weather.  Thus, the weather series generated cannot be 

duplicated at any time. Monte Carlo methods are a fundamental component of the SWG 

and the laws that govern the samples generated by this method are also applicable to 

those daily weather series generated by SWG. 

Monte Carlo simulation method is a numerical calculation method that performs 

numerical computations of random variables.  Basically Monte Carlo is a method which 

simulates independent realizations of the stochastic event z as an estimate for the 

probability or expectation of the phenomenon via an appropriate estimator obtained from 

independent samples (Asmussen and Glynn 2007). The probability ¯ = o��� > �) can 

be calculated as the sample proportion of the Wrn that is greater than x. The estimator ¯̂  
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of ¯ = °� is developed by an algorithm that generates independent and identical 

distributed (i.i.d.) random variables Z1,...,ZR  and estimates z from the sample by the 

expectation estimator. 

¯̂ = 	 ¯±² =	 1�D 1.�³� > �}±
³$
  

(67) 

Where 1 is the indicator function and the Law of Large Numbers (LLN) 

guarantees that the algorithm converges to as the number of independent replications 

goes to infinite (Asmussen and Glynn 2007). Monte Carlo method is able to generate 

independent sequences under the distributional assumptions defined.  

Precision or the number of simulation required for attaining convergence under 

the LLN can be improved using the central Limit Theorem (CLT). Thus, assuming	¨� ≝
µ76	� < ∞ 

√��¯̂ − ¯) ·→��0, ¨�)		7�	� → 	∞ (68) 

This can be expressed as  

¯̂ ≈ ¯ +	 ¨µ√� 	Vℎ464	µ~��0,1) (69) 

When R is large ̂̄	converges in distribution with a  convergence   rate of the 

order R-1/2. However, because the error for large R is asymptotically normally 

distributed, the error for large R depends on the standard deviation σ and it is possible to 

assess accuracy by the confidence intervals derived from the normal distribution 

(Asmussen and Glynn 2007). Because of the CLT, zα denotes the α-quantile of the 

normal distribution Φ	�¯<) = 	H with the asymptotic probability of the event 
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@¯<�¨√� < 	 ¯̂ − ¯ < 	 ¯
	<�¨√�A (70) 

So, the interval is 

@¯̂ − ¯
	<�¨/√�	, ¯̂ −	¯<�¨/√�A (71) 

Because in practice ¹̈� is unknown, it can be estimated by its sample estimator 

�¹º � = 1� − 1D�¯³ −±
³$
 ¯̂)� 

(72) 

In general terms, precision on �¹º � is complex to obtain; however, because z is 

Gaussian then �¹º �	tends toward ̈¹� for every large N (Huynh et al. 2008). 

@¯̂ − ¯
	<��/√�	, ¯̂ − 	¯<��/√�A 	≝ 	 ¯̂ ±	¯
	<��/√�	 (73) 

Where 1-α is the asymptotic confidence interval for z. The speed of convergence 

is measured by the size of the confidence interval. The standard choice for 1-α= 95% 

=1.96, so the confidence interval is zª ± 1.96	s/√R.  

There are several methods for increasing the efficiency of Monte Carlo 

simulation by reducing the variance of simulation estimates. However, the 

implementation of a reduced-variance estimator with a valid confidence interval requires 

sacrificing some potential variance reduction.   

Methods such as antithetic sampling, control variates, conditional sampling, 

stratified sampling or importance samplings are common. However, they vary in 

effectiveness and complexity (Asmussen and Glynn 2007). While the antithetic sampling 

is easier to be implemented because it does not require specific information about a 



 

47 

 

simulated model, their efficiency is minor.  In contrast, importance sampling is the most 

complex method because it has the capacity to exploit detailed knowledge about a model 

(often in the form of asymptotic approximations) to produce orders of magnitude 

variance reduction (Glasserman 2010). The adequate application of importance sampling 

method can attain an effective reduction in variance.  

Monte Carlo Method in the Copula Based Stochastic Weather Generator 

Monte Carlo methods are a fundamental component of the Copula based SWG. 

They get involved in two different stages of the climate generation. First, the conditional 

Monte Carlo method provides variance reduction in the simulation of Copula draws. 

This three-step process for the multivariate copula simulation is broadly described in 

Chapter II, which basically follows Cherubini et al. (2004) and Salvadori et al. (2007). 

Second, Monte Carlo method is involved in the simulation of the Brownian 

Bridge to emulate the daily dynamic of the weather series. Brownian Bridge uses high 

quality sequences to outline the paths of the Wiener process, by sampling points acting 

as the milestones; they can fill the trajectory Monte Carlo sampling or even better quasi-

Monte Carlo Methods (Brandimonte 2006). The property of stationary independent 

increments of the Brownian Bridge makes the simulation process equivalent to the 

random variable generation from a specific infinitely divisible distribution (Glasserman 

2010).  Because Brownian Bridge relies on Brownian Motion, it exhibits Markovian 

property that aggregates more persistence in the simulated weather series.  
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Statistical Tests on Simulated Weather Data 

Daily weather data for three locations with highly differentiated weather patterns 

across the United States were generated by the Copula based SWG. Following 

Richardson’s (1981) research, observations from three Weather stations in Conrad, 

Montana; Spokane, Washington and Temple, Texas were used to test their accuracy 

properties.  

Parameters were estimated with data from Conrad and Spokane weather stations 

using 50 years of daily observations (1960-2010); for Temple the estimation was carried 

out with 42 years of daily data. Year data were partitioned into 12 observations per year 

(one per month) according to the highest average anomalies recorded and whose 

distributions are replicated by Copula methods. The complete methodology of the SWG 

based in copulas is accurately described in the previous chapter.  

 Two-Sample Kolmogorov-Smirnov Test 

The two-sample Kolmogorov-Smirnov test (KS) is applied to Copula simulations 

to compare the c.d.f. of the generated weather series vs. the c.d.f. of original observed 

weather data at each one of the three locations in Montana, Washington and Texas. In 

this context, this non-parametric test compares two unknown c.d.f.s: F for the observed 

data and G for the simulation, quantifying the distance between the empirical 

distribution functions of the two samples through the test statistic in the following 

expression 

À� = sup |��
 − 3��| (74) 
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Where F_n1 is the empirical c.d.f. from a sample of n1 data values (observed weather 

data) and G_n2 is the empirical cdf from a sample of n2 data values (simulated data), 

being ��
, 3�� continuous distributions.  

The null hypothesis is H0: ��
 = 3��. The fit is measured by the statistic	À�with 

its asymptotic distribution and the limiting distribution √5À� is distribution free, in 

consequence, the reasonable criterion is to reject H0 if À� is large. (Mood et al. 1974). 

A sample of 120-year draws for every one of the three locations was generated 

using both SWGs and the two-sample Kolmogorov-Smirnov test was applied.  

Table 4.A and 4.B, in appendix B, show the p-values for the selected dates 

generated. Simulated dates that reject the H0 are marked with asterisks, in these cases the 

probability distribution of the simulated weather data does not correspond to the 

probability distribution of the observed data. In the case of the Copula based SWG 

simulations the H0 is rejected in 37% of the cases, while in the case of Richardson SWG 

is 27%; however the cases of rejection are concentrated in the simulation for the 

Spokane weather station.  

However, this rate of rejection in the case of the Copula based SWG can be 

attributed to the fact that the KS test is more sensitive to median values than to extreme 

values of the distribution, and Copulas precisely tend to capture more information from 

the tails of the observed distributions (or extremes of the distribution). In particular, this 

result makes sense because the Gumbel Copula family used to model weather series is 

characterized by upper tail dependence.  
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Quantile Analysis 

Quantiles of the distributions are calculated to analyze in detail the differences in 

the distributions for the simulated weather series versus the observed weather series. A 

120-year simulation was performed to carry out the quantile analysis.  

The quantiles of a distribution are points taken at regular intervals c.d.f. function 

that provides nonparametric estimators of their population counterparts based on a set of 

independent observations {X1,X2,..,Xn} from the distribution F. Quantile of the 

distribution F is define by the following expression.  

¦�Á) = 	�	
�Á) = inf.�: ���) ≥ Á} ,											0 < Á < 1 (75) 

Let {X (1),X(2),..,X(n)} denote the order statistics of {X1,X2,..,Xn} and let ¦ÃÄ �Á) 
denotes the ith sample quantile.  

Table 5, in appendix B, shows values of the weather variables for different 

quantiles of the distribution.  The Copula based SWG generates weather series 

significantly closer to the original observed data. Although the reproduction of the 

weather patterns is consistent, the replication of the climate is comparatively better for 

the station of Spokane, Washington and Temple, Texas than for Conrad, Montana. The 

values of the lower percentiles are more accurate in the case of the simulations generated 

by the Copula based SWG. This result could be attributed to the property of copulas to 

capture more information in the tails of the distribution.   

Statistical Analysis of the Simulated Weather Series 

The validation of a weather generator based only on the analysis of their moments 

distribution (mean, standard deviation, skewness and kurtosis) is insufficient.  A more 
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accurate description of the occurrence of precipitation by season provides key 

information to evaluate the performance of the Copula based SWG. For such purpose 

28-day period indicators were calculated for both, the generated and the observed 

weather data series. Next, mean values of accumulated precipitation amounts (cm), mean 

number of rainy days, mean minimum temperature and mean maximum temperature per 

period were calculated.  

Table 6, in appendix B, shows that the simulated mean precipitation amounts do 

not differ significantly from the values obtained from the observed data. However, the 

replication of the amount of water from precipitation is more accurate for locations with 

higher amounts of water such as Temple, Texas than in locations with low levels of 

rainfall during the year. The average number of days per period generated by the Copula 

based SWG was in general terms close to the observed data. However, the Copula based 

SWG shows certain inflexibility in replicating the amounts of water and the recurrence 

of rain periods in highly variable precipitation patterns. 

The same analysis is applied for the daily simulated temperatures. Table 7, in 

appendix B, shows the mean maximum temperature and the mean minimum temperature 

for 120-years of generated series and for the observed weather series. The means for the 

maximum and minimum temperature in the three weather stations are close to the 

observed data. The differences in averages can be mainly attributed to the detrending 

technique by harmonic analysis described in detail, in Chapter II. 



 

52 

 

 Both SWGs reproduce significantly close weather patterns in the three weather 

stations. However, there is no conclusive evidence about how to rank the accurateness of 

these models. 

 Table 8, in appendix B, summarizes the capacity of the Copula based SWG to 

reproduce the distribution of the annual extreme temperatures in minimum temperature 

and maximum temperature series. The comparative analysis of the generated and the 

observed data in Table 8, in appendix B, confirms that Copula based SWG reproduces 

much closer the patterns of extreme events in weather series. Both, Copula based SWG 

and Richardson’s SWG, show about the same number of days with extreme 

temperatures; however, the Copula based SWG shows a better replication in magnitude 

of the temperature extreme events of the observed data for the three weather stations.  

Summary 

Tests on copula based SWG showed that the model is able to represent the main 

features for the distributions of the observed weather variables.  For the three weather 

stations, the Gumbel with a single parameter was the best specification.  Although there 

is no a clear insight about which SWG has the best performance, the copula based SWG 

shows a better performance in the reproduction of the extreme weather events. 
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CHAPTER IV 

COMPARATIVE EVALUATION OF THE COPULA BASED STOCHASTIC 

WEATHER GENERATOR: AN APPLICATION FOR CROP GROWTH  

MODELS AND CROP INSURANCE 

 

Introduction 

The performance of the SWG is evaluated in terms of the Camelina yields 

produced by two different weather generators – Copula based SWG versus Richardson’s 

SWG, currently used in WinEPIC – and in terms of Average Production History (APH) 

insurance schemes for Camelina.  

Camelina is an oilseed crop recently growed in some North areas in the United 

States. Because no historical data on Camelina yields are available for rating of the new 

insurance scheme, the alternative solution is to obtain these data from crop growth 

models like the Environmental Policy Integrated Climate model (WinEPIC). In such 

models, weather is one of the main determinants of crop yields. Given that the Copula 

based SWG more accurately reproduces the observed extreme weather events, it is 

expected that the yields generated using this weather generator will reflect more 

accurately the effect of extreme weather events on insurance premiums. This exercise is 

applied in the specific location of Conrad, Pondera County, Montana. For the sake of 

this research, some issues and results from the Risk Management Agency study (RMA 

2011) are considered.  
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Energy Crops 

The global crisis triggered by the rise of the world food prices during 2007 and 

2008 caused a renewed interest for oilseed crops as a feedstock for renewable fuels. In 

particular, part of increase in food prices was attributed to the diversion of food crops 

(maize in particular) for producing first-generation biofuels in coincidence with weather-

related cereal production shortfalls in Australia, U.S., EU, Canada, Russia and Ukraine.21  

The Energy Independence and Security Act of 2007 had a considerable impact on 

U.S. energy policy, making the production of corn more profitable than other crops 

which lead to significant increasing of corn acreage and reduction in soybean and wheat 

acreages. In this circumstance, non-food crops like Camelina, Jatropha, Crambe, Castor 

bean, safflower, switch grass, seashore mallow and mustard are being considered for 

biofuel production. These crops can prosper on marginal agricultural land where edible 

crops do not.  

This research will focus the analysis on the crop of Camelina sativa (Camelina). 

This is a spring annual oilseed plant of the mustard (Brassicaceae) family (genus 

Cruciferae), a distant relative to canola. This crop, originally from Central Asia and 

traditionally cultivated in Europe, has shown some advantages over other oilseed plants: 

it matures earlier than other oilseed crops, it is more drought tolerant, greater spring 

freezing tolerant, and more resistant than canola to flea beetles. All these features imply 

greater economic advantages from reduced production costs in some climates compared 

to other oil crops such as canola or oilseed rape (Johnson 2007).  

                                                 
21 From 2004 to 2007 the use of maize for ethanol grew exponentially, using about 70% of the increase in 
global maize production for such purposes (Donald, 2008). 
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Camelina is adequate for the same growing areas as canola, flax, and mustard 

such as Idaho, Montana, Minnesota, Oregon, North Dakota, South Dakota, and 

Washington. However, agronomical trials on Camelina in Texas have not shown a 

favorable experience on yield and quality.22 Specialists pointed out that until additional 

equipment and/or genetic improvements take place, Camelina yields will not be 

competitive with other cool-season, oil-seed crops. The two major limitations to 

Camelina are establishment of very small seed and shattering prior to harvest. However, 

this result could be inconclusive because of limited experience with Camelina in 

Texas.23 

At present, contract farming is used as the predominant method for producing 

Camelina in states with acceptable performance (Montana, North Dakota, Oregon, and 

Washington). Processors and first handlers contract growers and set up production 

conditions under fixed price terms (RMA 2011).  

Mainly the demand for Camelina comes from the U.S. Navy for its biodiesel jet 

fuel and other companies such as Great Plains Oil & Exploration-The Camelina 

Company, Sustainable Oils, and Willamette Biomass Processors (RMA 2011). 

In Montana Camelina has been grown since 2004. In 2010 crop year 9,900 acres 

of Camelina were planted, of which 9,400 acres were harvested. In 2009 20,800 acres 

were planted of which 19,500 acres harvested (NASS website, last accessed 5/5/2012: 

http://quickstats.nass.usda.gov).  Montana farmers consider that Camelina is a low input, 

                                                 
22 Camelina trials were conducted in the Agricultural Experimental Stations of Texas A&M University for 
between 5-7 locations across Texas for 3 years (2008-2010). 
23 Personal Communication with Dr. Gaylon D. Morgan, Associate Professor and Cotton Specialist, Texas 
AgriLife Extension Service - Texas A&M University. 
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low risk, and high efficiency crop (RMA 2011).  Table 9, in appendix B, shows the 

economic advantages of growing Camelina in Montana instead of other crops such as 

canola or spring wheat. Camelina production requires 33% less fertilization than canola 

and has additional properties that implicitly reduce its production risk. 

RMA (2011) evaluated energy crops that are commercially grown and dedicated 

to energy production in terms of their insurance feasibility. RMA (2011) found that some 

of these energy crops like Camelina in Montana, Oregon and Washington are feasible 

because its characteristics are similar to other insured crops in these locations. In 

addition, higher premium estimates in Montana point out a greater demand for insurance 

in this State.24 

The purpose of this research is not to design of a new insurance scheme per se, 

but the comparison of the performance of two weather generators in terms of their use in 

crop growth models as an instrument for the rating of new insurance schemes where no 

historical data on yields is available.  

It is a priori known that the copula based SWG reproduces more accurately the 

extreme weather event patterns than Richardson’s SWG, currently used in WinEPIC as 

the weather generator. For this reason, some of the issues and results of the RMA (2011) 

feasibility study are considered. 

Furthermore, this research incorporates new dimensions to the problem initially 

formulated by RMA (2011). The proposed analysis evaluates the implications of using 

the copula based SWG in terms of fair premiums in insurance schemes for Camelina.  

                                                 
24 There exists a precedent of Camelina insurance in Saskatchewan, Canada (Canada, Saskatchewan 
Government, 2012).  
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 Physiology and Cultural Practices for Camelina 

Camelina can be grown in semi-arid regions on dryland or with minimum 

rainfall, where other crops cannot be grown. In Montana, Camelina’s advantage lies in 

better management of moisture and cold tolerance (Johnson 2007). Camelina grows up 

to 90 centimeters tall and has branched smooth or hairy woody stems. Camelina seed 

contains 29-41% oil compared to 20% in soybeans and the remaining 60-70% 

germplasm can be used as livestock feeding as a potential soybean meal replacement in 

finishing beef cattle. (Ehrensing and Guy 2008). 

To simulate Camelina with WinEPIC is necessary to specify the biological 

parameters for the crop. Camelina is on 85-100 day lifetime-crop with a physiological 

cycle of six stages: seedling (0-14 days), leafing (15-45 days), blossom (46-58 days), 

green boll (59-77 days), boll ripening (78-100 days) and maturity (100th day) (RMA 

2011). Planting dates are variable across regions. In North Central Montana, spring 

planting dates are from late March to late April; in Eastern Montana dates range from 

late April to early June.25 

In Montana, Camelina is planted no deeper than ¼ to ½ inch using 3 to 5 lbs of 

seed per acre. Seedbed preparation is done by drilling the seed very shallow using packer 

wheels to ensure good seed to soil contact and a firm seedbed. Other cultural practices 

suggest the distribution of the seed onto a clean seed bed followed by a harrow or rollers.  

                                                 
25 A difference of one month between planting and harvesting occurs between western Montana and 
Southeastern Montana (Billings), USDA website. 
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Seed to soil contact and soil compaction is vital and planting too deep will cause poor or 

no establishment (McVay and Lamb 2008).26 

Different rotation patterns are possible for Camelina. In Montana, producers 

replace their fallow land with Camelina between wheat crops in a wheat/Camelina/wheat 

rotation pattern (RMA 2011). Better results for Camelina yields have been observed in 

Montana and Oregon when Camelina was planted in fields with a previously fallow or 

growing wheat, barley, peas or lentils. Poor performance is shown when it is planted 

consecutively or following canola or another Brassica such as brown mustard, canola or 

rapeseed. Farmers use Camelina to replace fallow in their crop rotation system because 

Camelina can stabilize exposed soils for erosion control.  

Camelina responds to nitrogen, sulphur and phosphorus fertilizer application. 

Sustainable production suggests an application of nitrogen lower than 90 pounds per acre 

and no than less than 32 pounds of phosphorous. Areas with higher yield potential (more 

available moisture) may experience response to increased fertilizer rates (Ehrensing and 

Guy 2008).  

Camelina should be planted in fields with limited weed pressure to reduce 

competition. A burn down of broadleaves and grassy weeds utilizing Round Up 

(glyphosate) is recommended prior to planting to lessen weed competition during 

establishment. Like canola, no herbicides are necessary because Camelina produces a 

natural exudate from its roots (alleopathy) and it is highly sensitive to long-term 

herbicide residuals (McVay and Lamb 2008). 

                                                 
26Authors suggest a minimum tillage or no-tilled (Mc Vay  2008; Ehrending and Guy 2008). 
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Camelina is alternaria blackspot resistant and is highly resistant to a wide range 

of blackleg isolates (Leptosphaeria maculans), which are major diseases of canola or 

Brassica crops. It exhibits variation for resistance to sclerotinia stem rot, brown girdling 

root rot, and downy mildew, suggesting that disease resistant cultivars can be developed 

(Ehnrensing and Guy 2008).  Other diseases such as clubroot, white rust, and aster 

yellows limit its adaptation. Camelina is also susceptible to viral diseases like turnip 

crinkle virus and turnip rosette virus that are transmitted by flea beetles (RMA 2011). 

Camelina must be harvested within a few days of maturity because pods mature, 

the seed easily falls from the pod. The seed moisture content must be less than eight 

percent to ensure proper storage quality (RMA 2011). 

Several agronomical trials have been performed on Camelina by the Montana 

Agricultural Experiment Stations of the Montana State University. Since 2004 Dr. K. A. 

McVay has led a broad research program at seven agronomical experiment stations of 

the Montana State University to determine the best management practices.  In particular, 

McVay and Khan (2011) conducted a two-year study to evaluate the effects of stand 

reduction on Camelina at different growth stages; his results suggest that Camelina 

exhibits plasticity to maintained grain yield across a wide range of stand reductions 

under dryland conditions. Yield plasticity is higher at the rosette compared to when the 

stand was reduced at bolting stage (McVay and Khan 2011).  

Although agronomic trials provide useful information about productive practices, 

their results in terms of yields depend on the particular production practices that 

agronomists are evaluating. For this reason, the yields on agricultural experimental 
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stations could be different from actual farmers. As a consequence, information regarding 

cultural practices for the calibration of the Camelina yields was obtained from farmers in 

Pondera County, Montana. RMA gathered information on management practices and 

yields from producers consistently growing Camelina for 4 years under the same 

management practices (RMA 2011). 

WinEPIC Crop Calibration 

Farmers cultivating new crops experience higher uncertainty about the response 

of the plant to cultural practices, weather, and natural disasters. For this reason, yield 

simulation can be effective for the risk analysis and the development of instruments that 

allow coping with such risks, such as the insurance. 

Plant growth simulation models represent a feasible option for this purpose. In 

particular the WinEPIC evaluates production strategies considering sustainability, 

erosion (wind, sheet, and channel), economics, water supply and quality, soil quality, 

plant competition, weather and pests.27 Also, WinEPIC is able to simulate hundreds of 

years of daily potential plant grow constrained by the minimum of five stress factors 

(water, nitrogen, phosphorus, temperature and aluminium toxicity). WinEPIC models the 

phenological development of the crop based on a wide set of equations that capture the 

processes of daily growth from emergence to harvest (Williams et al. 1989).  

Farming practices are set up for WinEPIC in the form of crop production 

schedules. Such plans specify application rates, dates of operations prior to and during 

the growing season for tillage, planting, pesticides, irrigations, fertilizers, and harvesting. 

                                                 
27WinEPIC was developed in the early 1980's by Dr. J.R.Williams, Blacklands Research and Extension 
Center, Texas AgriLife Research, Texas A&M University, Temple, Texas, 
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In addition, management information such as rates and dates of crop production inputs 

facilitates the simulations for tillage, irrigation, and fertilizer procedures (RMA 2011). 

Based on the cultural practices documented in Montana region where Camelina is an 

important crop, parameters on leaf area development, temperature responses, 

development-rate, radiation-use efficiency, nitrogren and phosphorous concentrations in 

plant biomass and plant growth process of the crop are adjusted to calibrate the Camelina 

growth model.  

This research considers the information and the calibration parameters from the 

RMA’s (2011) research as a base to simulate Camelina yields. According to RMA 

(2011), a local Conrad producer provided his best estimates of 2007-2010 non-irrigated 

yields. The 2008 yield was reduced significantly by shattering and the 2009 yields 

suffered from harvesting losses. The farmer’s rotation was wheat-fallow-Camelina, so 

Camelina production followed a summer fallow period for each specific field. Thus, a 

rotation of minimum-till winter wheat/no-till fallow/direct-seeded spring seeded 

Camelina was utilized for calibrating the WinEPIC model and to simulate the yields as 

closely as possible. 

The farming practices, in table 10  in appendix B, detail the production schedules 

about  the cultural practices, schedules for tillage, planting, fertilization, pesticide 

applications, and harvesting operations along with management decisions and dates for 

each operation, seeding rates, and application rates of fertilizers, and pesticides.  The 

daily weather information used for the simulation was obtained from the closest weather 

station to the farm, Conrad MT1974. 
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The usual way to evaluate the robustness of the crop growth model calibration is 

a graph with the simulated output by the model on the “x” axis versus yield observations 

on the “y” axis. This graph highlights the comparison of model predictions and system 

measurements, a 45° line or 1:1 line would indicate a perfect adjustment of simulated 

data respect to the observed data. In general terms every generation from the model is 

accompanied by an error, even for robust models data are scattered around the 1:1 line.28  

Divergence lines, usually of  ±15%, could be determined by the observed 

coefficient of variation (CV) for the variable under consideration. If the model is robust, 

data should be located between these divergence lines, 80 or 90% of the points (Soltani 

and Sinclair 2012).   

As table 11, in appendix B, shows the yield series simulated for a 300-acres 

Camelina farm that has an average of 1,576.5 lbs/acre versus 1,489.5 lbs/acre for the 

observed data. Figure 7, in appendix A, depicts the relationship of simulated to producer 

yields year-by-year in table 11, in appendix B. The regression line with a 1.001 slope 

and R-squared of 0.81 indicate a satisfactory adjustment.  

An APH Insurance Scheme for Camelina  

This research uses the Average Production History (APH) insurance scheme to 

carry out the comparative insurance analysis on yields generated by the Copula based 

Stochastic Weather Generator vs. yields generated by Richardson (1981) SWG. 

This insurance scheme was evaluated by the RMA (2011) as a feasible 

application for energy crops. In particular for the case of Camelina, RMA concluded that 

                                                 
28 This graph is common for output variables with a single value for each situation, e.g. days to maturity, 
crop yield, crop mass at maturity, and so forth (Soltani and Sinclair  2012). 
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the reasons for the pertinence of the APH insurance are mainly two. First, Camelina does 

not trade on a commodity exchange. Instead, in regular basis the prices are established a 

priori in the farming contract as a result of a private negotiation between the farmer and 

the processor or first handler. Second, although the lack of clear price mechanisms 

prevents the design of a revenue protection insurance program, in the other hand the 

specific contract conditions on production conditions and delivery process reduces the 

risk of revenue variability (RMA 2011). 

APH is based on historical loss experience data and it has been broadly applied 

by the RMA for insuring crops in the United States. The APH provides a yield risk 

protection guarantee for the producer against shortfalls in yield as a function of a proven 

yields and its selected level, which trigger the indemnity payment (Coble et al. 2010).  

The ratemaking procedure deals strictly with the derivation of the expected loss 

component, represented by the Loss Cost Ratio (LCR).29 RMA establishes rates for 

every crop separately and at any level of coverage, expected losses are aggregated 

geographically for a group of similar risks, typically by county. Furthermore, there are 

other tailoring criteria for adjusting the rate to an individual producer. Basically the 

ratemaking procedure has five steps: one, adjusting the loss (indemnity) and exposure 

(liability) to a common coverage level; two, derivation of county unloaded rates; third, 

base rate loading; fourth, capping rate changes; five, updating of practices and group 

factors (Milliman and Robertson  Inc. 2000).  

                                                 
29 LCR measures the loss per unit of exposure, which is obtained by dividing indemnity by liability. 
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When historical losses are available, rating methodologies are based on historical 

loss costs ratios. Historical indemnity and liability are used to evaluate the premium rate 

through the LCR. The incorporation of this information guarantees that moral hazard or 

changes in production practices as a famer reacts to insurance are reflected in the 

expected value of future costs.   

When historical data is not available like in the case of a new insurance scheme 

like Camelina, the ratemaking procedure relies on the yield data available and on 

simulated losses (Goodwin and Mahul 2004).  In this context simulation can be helpful 

for rating this scheme because the observed experience could not reflect either the full 

range of potential outcomes or the current distribution of exposures (Coble et al. 2010). 

This rating method could have the required flexibility to reflect the 

heterogeneous risk characteristics, such as Coble et al. (2010) recommends. Simulation 

based rating is able to consider the effects on yield of: different variety on soils, weather, 

topography and cultural practices within a country.   

Unfortunately there are two weaknesses in the yield simulation based approach 

for insurance ratemaking purposes. First, insurance parameters such as premium rates are 

sensitive to the assumptions made in modeling yield distributions. Second, this 

procedure does not capture the impact of insurance on farming practices. The yields used 

to build the insurance parameters are not from insured farmers, so it could reflect the 

behavior of the uninsured farmer, which naturally affects the perception and how he 

copes with risk. In contrast historical indemnity data reflect the impacts of farming 

practices on yields.   
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Coble et al. (2010) affirm that loss experience base rating has an advantage with 

respect to a yield simulation based approach because crop insurance indemnifies losses 

that are not normally reflected in planted acre yields mainly from three sources: 

preventing planting provisions, replant payment provisions, and quantifying quality loss. 

A valid insurance rating system requires a procedure to evaluate the convergence of the 

rates and the observed experience (Coble et al. 2010).   

Yield Modeling and Rating of a New Insurance Contract 

The Camelina APH insurance schemes developed in this research use as a base 

the simulation base rating and, by construction, embraces mainly three implicit 

assumptions. First, yields stochasticity is entirely originated in the WinEPIC model by 

weather. Second, yields simulation is produced under the same technological conditions, 

no technological improvement is considered.  Third, patterns of physiological 

development in the crop, erosion in soils and the general conditions of the environment 

are considered without alteration and climate change issues are not considered.   

By its nature, crop yield risk is mainly driven by climate. Thus, crop yield loss 

events and consequently yield risk are determined by the extreme but infrequent events. 

So, the analysis of the APH insurance schemes for Camelina capture the effect of having 

a more accurate replication of the extreme weather patterns observed. 

Crop yields are the result of the interactions among several factors mostly related 

to environmental conditions, which implies that the evaluation of their risk probabilities 

is determined by the accurate assessment of the probability of these events (Coble et al. 

2010).  Thus, simulated yields provide details on the frequency of occurrence of extreme 
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events such as floods, droughts, etc. at the same time that reflect the characteristics of the 

present production systems and cultural practices.  In contrast, the observed historical 

yield series could reflect loss experiences from crop production systems and 

technologies no longer in use, which might create distortions in the effective risk 

valuation.  

In a new insurance scheme the rating procedure heavily relies on yield data 

available and on simulated losses. Thus, Camelina indemnity payments can be simulated 

from the yield data (Goodwin and Mahul 2004). In this context, the weather generators 

have important implications for yield probability distribution functions; in particular 

regarding the tails of the probability distribution. Thus, weather generator yield 

distribution will directly impact expected insurance payouts and the premium rates 

derived from the estimated yield densities.  

For the sake of simplicity, assume a yield insurance contract at a predetermined 

fixed price that pays indemnities if the actual yields fall below some threshold defined 

by the guarantee (liability). In this scheme, the two parameters are influenced by the 

underlying yield distribution. Yield guarantee determines the total liability or the 

maximum possible indemnity paid in the event of total loss and it reflects the expected 

yield and establishes the conditions in which the indemnity disbursements are paid. The 

premium or price of the insurance reflects the likelihood and the expected level of loss 

that corresponds to the coverage level specified in the contract. An actuarially fair 

premium equals the expected insurance loss (expected indemnities). The premium rate is 
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expressed as the ratio of expected loss to total liability, it means the dollars paid in 

premium for each dollar of liability.   

Assuming that there is an adequate representation of the yield density ���), the 

contract with level of coverage ~, and the expected insurance yield �.  

��Á4��4`	�[4M` = 	� = ���) = �	] ���)_
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(76) 

The Expected Insured Loss (EIL) is the product of the probability of a loss times 

the expected loss, given that a loss occurs.  
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In this simple scheme, the insurance premium is the expected LCR.  The reserve 

load is the cost of reserves the insurer must set to pay unexpected losses with a 

determined degree of confidence (Goodwin and Mahul 2004). 

In general terms, crop yields are negatively skewed because they show more 

frequent yields near the maximum than yields near the minimum. Because insurance 

issues occur toward the tail of the distribution rather than near its median, parameter and 

model error in the estimation of the yield distribution are compounded when the yield 

distribution is translated into insured losses (Goodwin and Mahul 2004). Thus, the 

selection of the appropriate specification of the yield distribution is primary and no 
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consensus exists because observed yield distributions tend to be inconsistent across 

region, production potential and soils.   

Modeling of the yield probability distribution includes basically two approaches: 

parametric and non-parametric. Parametric methods use available data and maximum 

likelihood method or moment estimation procedures to obtain the parameters of the 

distribution. Under this approach the fundamental assumption is that the true distribution 

of the data is a priori known (Goodwin and Mahul 2004).  

Usually beta, Weibull, gamma log-normal and normal distributions are 

considered for modeling crop yield distributions. However, a normal distribution could 

not be suitable because the systemic risk (covariate component) violates the assumptions 

of the central limit theorem about i.i.d. Yields reflect agricultural risk which is composed 

of systemic and non-systematic risk. Systemic risk is caused by weather, pest, or natural 

phenomena that uniformly affect entire geographical areas (Goodwin and Mahul 2004). 

The alternative approach to model the yield distribution is the non-parametric 

distribution; however, the weakness of this approach is the bin width and placements of 

bins.  The non-parametric kernel approach provides additional flexibility because it 

imposes a minimal structure on the estimated distribution.  The only requirement is 

enough observations to estimate reliable probabilistic estimates.  

There exists a tradeoff between efficiency and bias in the selection between 

parametric versus non-parametric probability distributions.  The incorrect selection of a 

parametric distribution can create bias in estimates of the distributions which results in 

inaccurate insurance premiums rates. However, when the parametric distribution is 
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known the resulting estimates are the most efficient because they attain the Crámer-Rao 

lower bound.  

So, the best strategy consists in estimating the yield probability distribution of the 

parametric type when the distribution is a priory known. As a consequence, non-

parametric distribution only could represent an improvement in distribution modeling 

under two conditions: when there is enough data to attain a reliable estimate and the 

functional form of the distribution of the observed data is unknown. 

Camelina Yield Distribution   

By construction Camelina simulated yields are not subject to technological 

change or differentiated cultural practices. Instead, they are generated by the same data-

generating process in the WinEPIC. As expected, trend is not significant for both 

Camelina yield series, see table 12, in appendix B.  

Camelina simulated yields from both SWGs have important differences in terms 

of standard deviation. Table 13, in appendix B, shows higher standard deviations on 

simulated data by the copula based SWG which could reflect the effect of a more 

accurate description of the observed data. 

Yields were modeled using mainly three parametric distributions beta, gamma 

and Weibull. The selection criterion for the probability distribution relays on the best 

representation of the left tail of the yield probability distribution. The probabilities 

associated with the left tail of the distribution mostly determine the expected insured 

loss. Thus, based on this criterion and the AIC and BIC criterion showed in  table 14, in 

appendix B, the Weibull probability distribution attained the best fit for the Camelina 
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yields in both cases, when Copula based SWG is used and also when Richardson SWG 

is applied.  

Figures 8 and 9, in appendix A, show that Weibull distribution attains a better fit 

for the Camelina yield simulated using Richardson SWG and for the yield generated 

using the Copula Based SWG.   

Also, the yield simulated using the Copula based SWG has fatter tails (kurtosis 

3.85), and it is more positive skewed (1.26). In contrast, distribution generated by the 

yields from Richardson SWG are less positive skewness (0.90) and has a more 

peakedness distribution with kurtosis of 4.37, bigger than yields generated by the Copula 

based SWG. 

APH Insurance Scheme for Camelina  

In the insurance scheme the guarantee considered equals the APH multiplied by 

the selected coverage level. Following RMA (2011), additional considerations related to 

loss adjustment procedures or insured causes of loss for Camelina are those applicable to 

small grains like canola and rapeseed because growth stages and losses are similar.  

The comparison of the yields series generated by the two SWG is made in terms 

of the insurance results.  Seven yield insurance policies entail the different percentages 

of the coverage of the APH (50%, 60%, 65%, 70%, 75%, 80% and 85%). The unloaded 

premiums were calculated under three different parametric probability distributions and 

the non-parametric kernel smoothing. Insurance analysis is done under the assumption 

that the APH yield equals the average simulated yield and the consideration that all risk 

contained in these series is entirely generated by the stochastic weather.  
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The examination of the unloaded fair premiums for both Camelina yields shows 

substantial differences.30 Table 15, in appendix B, shows that the premiums from the 

yields generated using Copula based SWG are significantly higher than premiums from 

almost two fold when the coverage increases at 70% and higher. The premium for the 

yield simulated with yieldcop is $7.92 per acre in comparison with $2.59 per acre for the 

yieldRich.  At 70% coverage level the unloaded premium for the yieldcop is $20.3 per 

acre, while for the yieldRich the unloaded premium is $9.06 per acre. At the 85% of 

coverage the unloaded premium is $34.55 per acre for yieldcop, while for yieldRich is 

$18.19 per acre. The fully loaded base premium at 85% APH coverage is $56.71 per acre 

for the yieldcop, while for the yieldRich is $29.86 per acre.   

Following RMA (2011), the fully loaded premium is calculated by dividing the 

unloaded fair premium by 0.90 that corresponds to the unit division load factor and then 

again dividing by the 0.88 that corresponds to the Federal Crop Insurance Corporation 

(FCIC) disaster reserve factor and finally multiplying by 1.3 which is the qualitative load 

factor that adjust for taking in account the additional risk different from climate on the 

regression equation for physical relationships and production functions in the WinEPIC 

model (RMA 2011). The loss cost ratio for all the insurance policies is the ratio of the 

expected loss and the liability.  

The difference between the APH insurance schemes generated by the two 

weather simulators is significant. The loss cost for the yield generate using copula 

                                                 
30 The amounts mentioned here consider the Weibull probability distributions for both Camelina yield 
series.  
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approach at an 85% level of coverage attains the 28.02%, while the loss cost for the yield 

generated by Richardson approach at the same coverage level is 15%.  

These differences indicate the underestimation of the agricultural risks in the 

ratemaking process of a new insurance scheme based on the use of SWG that does not 

accurately reproduce extreme weather event patterns. In particular, differences in 

insurance premiums can be attributed to probability distributions with fatter tails, where 

the extreme weather events are reflected.   

Summary 

The results of this analysis strength the evidence of the RMA (2011) feasibility 

study for the development of an APH insurance scheme for Camelina in conditions of 

farming contract with prices pre-established.  

A new insurance scheme with no historical data available requires, for the 

ratemaking process, the yield generation from a crop growth model such as the 

WinEPIC. The generated yields are proxies of the real Camelina yields for specific 

locations and under particular production practices; in consequence it is possible to 

obtain tailored approximations of unsubsidiazed unloaded and loaded fair premium 

estimates.   

Under this approach, weather is the only source of uncertainty in the crop growth 

model. This condition allowed a deeper analysis of the use of the SWG in crop growth 

models for yield simulation. In particular, the use of the Copula based SWG, which 

reproduces more accurately the extreme weather events, showed important differences in 

the generated yields and the APH insurance schemes. 
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A comparative analysis found evidence of the underestimation of risks on 

Camelina yields when Richardson’s SWG is used. The copula based SWG generated 

more positively skewed and fatter tails in Camelina yield distribution than the yields 

distribution generated by the Richardson SWG. As a consequence, when Copula based 

SWG is used in the WinEPIC, the generated yields reflect higher premiums as a result of 

more risk from more frequent extreme weather. 

Furthermore, another advantage in the use of crop growth models in the 

ratemaking process of new insurance schemes reside is the possibility of include 

additional heterogeneity through the incorporation of differentiated site characteristics 

involved in production, such as soils, topography, cultural practices and weather.  Also, 

the simulation of yields could be an effective tool to incorporate the analysis of the 

effects of climate change in insurance policies.   
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CHAPTER V 

SUMMARY, CONCLUSIONS AND FUTURE RESEARCH 

 

Stochastic Weather Generators represent a key issue in the generation of weather 

series for multiple applications in agriculture, such as in crop growth simulation models 

like the WinEPIC. However, conventional SWGs have many shortcomings. Climate 

variables are complex and characterized by non-normal probability density functions, 

while usually SWG assumes parametric probability distributions that are not close 

enough to the observed data. Also, SWGs assume linear dependence between variables 

which lead to the simulation of inaccurate climatic variables.  Likewise, SWGs tend to 

under-estimate the occurrence of extreme weather events from observed data.  

The main objective of this research is to design a SWG based on copula 

methodology that more accurately models the nonlinear dependence structure and the 

occurrence of extreme events between precipitation, maximum temperature, and 

minimum temperature. An additional objective of this research is to provide a clear 

insight of the advantages of the use of this SWG in the crop growth models for its 

applicability in insurance. 

The idea of modeling climatic variables using copula methods relies on the 

behavior and structure of these variables.  The copula modeling of the weather variables 

depicts their joint probability distribution considering their dependence patterns, which 

are far from linear dependence. The dimensionality problem in copula estimation was 

solved by the selection of 12 dates with the highest average monthly anomalies.  Thus, 
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the weather series simulated by copula methods are the bordering conditions of the 

weather stochastic simulator, while the Brownian Bridge uses Monte Carlo methods to 

replicate the daily dynamic of weather variables evolving on a path forward through 

time. 

Copula methods provide the flexibility to model dependence structures between 

random variables independent of the marginal distributions involved. The selection of 

the marginal distributions was between the normal distribution and the non-parametric 

kernel smoothing specification. Although the copula based SWG can incorporate a 

hybrid specification on copula families – that describe different dependence patterns – 

and numerous specifications were tested, the final specification was the one-parameter 

Gumbel family.  

Statistical tests on simulated weather showed that Copula based SWG is able to 

represent the main features for the distributions of the observed weather variables.  

Although the comparative analysis of the copula based SWG versus Richardson SWG 

did not provide a clear insight about which SWG has the best performance in terms of 

their simulations, there is evidence that indicates the copula based SWG has better 

performance in the reproduction of the extreme weather events. 

For a comprehensive evaluation on the SWG, this research considers a 

comparative analysis of two SWGs in the generation of yields using the WinEPIC.31 The 

simulated yields are proxies of real Camelina yields for specific locations and under 

particular production practices. Assuming that the only source of uncertainty in yield 

                                                 
31 It refers a comparison of the yield generated by the copula based SWG versus the yields generated by 
Richardson SWG. 
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simulation is the weather, insurance estimation provides some insights of the advantages 

for the use of a copula based SWG in the generation of yields and the risk modeling of 

insurance policies where no historical yield data is available. 

Non-parametric statistical tests were applied to the simulated series of climate 

variables because the true probability distribution for these weather variables is not 

known. These tests showed that copula based SWG had an acceptable replication of the 

observed weather patterns. In particular, the SWG simulated series showed an accurate 

reproduction of the extreme weather event patterns. Although in general there is no a 

conclusive evidence about if the copula based SWG has a better performance than 

Richardson’s SWG, in terms of extreme weather events the reproduction of the 

simulations derived from the copula based SWG showed to be more accurate.  

In terms of the yields generated and insurance analysis, there is evidence of 

significant differences in the yields generated by the two SWGs. The copula based SWG 

generated Camelina yields with a distribution that was more positively skewed and with 

fatter tails. Furthermore, there is evidence of underestimation of risks on Camelina yields 

derived from Richardson’s SWG. As a consequence, when Copula based SWG is used in 

the WinEPIC, the yields generated reflect higher crop insurance premiums as a result of 

greater risk from more frequent extreme weather.  

This research can be extended in multiple ways: 

• More advances can be attained in terms of the copula specification to more 

accurately capture the dependence patterns between weather variables.  
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• Multiple criteria for the selection of the dates estimated by copula methods can 

be development for the SWG. 

• Higher climate variability could be incorporated into the SWG by the 

incorporation of changes in means and variances in Brownian Motion that 

resembles the daily changes in the climate variables.  

• Climate change analysis could be included by adding changes in parameters for 

the Brownian Motion by decades, emulating recent research which has focused 

on the study of the patterns of decadal variability in precipitation and 

temperature.  

• There are additional advantages in the use of crop growth models in the 

ratemaking process for new insurance schemes.  

o The possibility of adding heterogeneity into the yields simulation through 

the incorporation of differentiated site characteristics involved in 

production, such as soils, topography, cultural practices and weather.  

o Crop growth models for the yield simulation could be an effective tool to 

incorporate in the analysis the effects of climate change on crop insurance 

policy.   
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APPENDIX A 

FIGURES 

 

 

Figure 1.  Bidimensional Scatter Matrix for Weather Variables, Conrad, Pondera 
County, Montana: Selected Dates for Estimation 
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Figure 2.  Tridimensional Scatter Plot for Climate Variables: 
Precipitation, Minimum Temperature and Maximum Temperature 
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Figure 3.  Detrend Technique Based in Harmonic Analysis Applied to Maximum 
Temperature Anomalies, Conrad-MT1974, Pondera County, Montana (1960-2010) 
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Figure 4.A.  Probability Distribution Fit: Conrad, Pondera County, Montana: 
Maximum Temperature 
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Figure 4.B.  Probability Distribution Fit: Conrad, Pondera County, Montana: 
Minimum Temperature 
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Figure 4.C.  Probability Distribution Fit: Conrad, Pondera County, Montana, 
Precipitation 
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Figure 5.A. Probability Distribution Fit:  Spokane, Spokane County, Washington 
Maximum Temperature 
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Figure 5.B.  Probability Distribution Fit:  Spokane, Spokane County, Washington 
Minimum Temperature 
  

-20 -15 -10 -5 0 5 10 15
0

20

40

60

80

100

120

140

160

180

Celsius Degrees

F
re

qu
en

cy

Minimum Temperature Distribution

 

 

Histogram

Normal Fit

-20 -15 -10 -5 0 5 10 15
0

20

40

60

80

100

120

140

160

180

Celsius Degrees

F
re

qu
en

cy

Minimum Temperature Distribution

 

 

Histogram

Normal Fit

-20 -15 -10 -5 0 5 10 15
0

20

40

60

80

100

120

140

160

180

Celsius Degrees

F
re

qu
en

cy

Minimum Temperature Distribution

 

 

Histogram

Kernel Fit



 

91 

 

 

 

 

Figure 5.C.  Probability Distribution Fit:  Spokane, Spokane County, Washington 
Precipitation 
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Figure 6.A.  Probability Distribution Fit: Temple, Bell County, Texas 
Maximum Temperature 
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Figure 6.B. Probability Distribution Fit: Temple, Bell County, Texas  
Minimum Temperature 
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Figure 6.C. Probability Distribution Fit: Temple, Bell County, Texas 
Precipitation 
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Figure 7.  Camelina Yields Calibration: Comparison Producer vs. Simulated, 
Conrad, Pondera County, Montana  
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Figure 8.  Camelina Simulated Yields Under Different Probability Distributions 
Copula Based SWG 
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Figure 9.  Camelina Simulated Yields Under Different Probability Distributions 
Richardson SWG 
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APPENDIX B 

TABLES 

 

Table 1.A. Detrending Regression for Conrad, Pondera County, Montana 

 

  

Observations 18250.00
F( 2,    18250) 17992.50
Prob > F 0.00
R-squared 0.66
Adj R-squared 0.66

Variable Coefficient Std Error t- Statistic P>t
Cost -13.04 0.07 -181.25 0.00
Sint -4.02 0.07 -55.97 0.00
Const 14.02 0.05 275.55 0.00

Observations 18250.00
F( 2,    18250) 17788.95
Prob > F 0.00
R-squared 0.66
Adj R-squared 0.66

Variable Coefficient Std Error t- Statistic P>t
Cost -11.10 0.06 -181.68 0.00
Sint -3.10 0.06 -50.70 0.00
Const -1.49 0.04 -34.60 0.00

Maximum Temperature

Minimum Temperature
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Table 1.B. Detrending Regression for Spokane, Spokane County, Washington 

 

  

Observations 18250.00
F( 2,    18250) 36107.00
Prob > F 0.00
R-squared 0.80
Adj R-squared 0.80

Variable Coefficient Std Error t- Statistic P>t
Cost -13.37 0.05 -258.81 0.00
Sint -3.79 0.05 -72.34 0.00
Const 14.23 0.04 389.23 0.00

Observations 18250.00
F( 2,    18250) 21437.75
Prob > F 0.00
R-squared 0.70
Adj R-squared 0.70

Variable Coefficient Std Error t- Statistic P>t
Cost -8.66 0.47 -198.06 0.00
Sint -2.64 0.47 -60.39 0.00
Const 3.05 0.03 98.59 0.00

Maximum Temperature

Minimum Temperature
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Table 1.C.  Detrending Regression for Temple, Bell County, Texas 

 

  

Observations 15330.00
F( 2,    15330) 16884.71
Prob > F 0.00
R-squared 0.69
Adj R-squared 0.69

Variable Coefficient Std Error t- Statistic P>t
Cost -9.91 0.06 -174.56 0.00
Sint -3.26 0.06 -57.43 0.00
Const 25.18 0.04 627.19 0.00

Observations 15330.00
F( 2,    15330) 22778.32
Prob > F 0.00
R-squared 0.75
Adj R-squared 0.75

Variable Coefficient Std Error t- Statistic P>t
Cost -9.95 0.05 -203.89 0.00
Sint -3.08 0.05 -63.12 0.00
Const 12.82 0.34 371.54 0.00

Maximum Temperature

Minimum Temperature
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Table 2. Parametric Distributions Fit for Weather Variables, 
 Three Weather Stations 
 

 

  

Distribution αααα ββββ  - ΣΣΣΣ  log L AIC BIC

Maximum Temperature 0.40 5.16 1,835.79 -3,667.58 -3,658.79
Precipitation 0.06 0.22 -64.48 132.95 141.75
Minimum Temperature -0.57 5.90 1,916.06 -3,828.12 -3,819.33

Maximum Temperature 3.05 7.64 2,028.13 99,999.00 99,999.00
Precipitation 0.21 0.53 387.32 -770.64 -761.84
Minimum Temperature 2.22 5.38 1,920.69 3,986.14 3,994.93

Precipitation 0.06 -1,071.89 2,145.79 2,150.18

Maximum Temperature 0.29 3.62 1,622.86 -3,241.72 -3,232.93
Precipitation 0.12 0.30 128.04 -252.08 -243.29
Minimum Temperature -0.09 4.16 1,705.92 -3,407.85 -3,399.05

Maximum Temperature 2.08 3.42 1,651.93 3,467.29 3,476.08
Precipitation 0.30 0.52 421.92 -839.85 -831.05
Minimum Temperature 1.88 3.68 1,703.00 3,551.313.56E+03

Precipitation 0.12 -685.35 1,372.70 1,377.10

Maximum Temperature 0.36 3.90 1,398.35 -2,792.71 -2,784.27
Precipitation 0.24 0.89 656.70 -2,928.01 -1,300.95
Minimum Temperature -0.40 4.47 1,466.00 -2,928.01 -2,919.56

Maximum Temperature 2.30 4.20 1,456.83 3,102.95 3,111.39
Precipitation 0.86 2.08 1,019.89 -2,035.78 -2,027.34
Minimum Temperature 1.84 4.66 1,519.48 3,213.06 3,221.50

Precipitation 0.24 -205.38 412.76 416.98

Extremevalue (Gumbel)

Exponential

Normal

Extremevalue (Gumbel)

Exponential

Temple TX, Bell County, Texas
Normal

Conrad MT1974, Pondera County, Montana
Normal

Extremevalue (Gumbel)

Exponential

Spokane WA, Spokane County, Washington
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Table 3.   Copula Mixture Estimation for Climatic Variables by Weather Stations 

 

Copula Mixture Param. 1 Param. 2 Param. 3  - ΣΣΣΣ  log L AIC BIC

Clayton 0.001000 0.041399 1.917202 6.314132
Frank 0.001000 0.025487 1.949025 6.345955
Gumbel 1.100000 5.732520 -5.244449 -9.465039
Clayton, Clayton,Clayton 0.001000 0.077741 -0.048485 * -1.036122 8.072244 21.263033
Clayton, Clayton,Gumbel 1.022122 -0.164136 0.846158 * -19.985389 45.970779 59.161568
Frank, Frank, Frank 0.001000 -1.099259 -1.418806 -13.851869 33.703739 46.894528
Frank, Frank, Clayton 0.001000 0.862911 -0.044400 * -1.105269 8.210538 21.401327
Frank, Frank, Gumbel 1.000204 -1.297100 0.832434 -20.887645 47.775289 60.966078
Gumbel,Gumbel, Gumbel 1.513458 0.952485 * 0.751978 * -25.867954 57.735909 70.926698
Gumbel, Frank, Clayton 0.813972 * 0.925946 -0.043871 -4.338217 14.676433 27.867222
Gumbel, Frank, Gumbel 0.995191 1.000036 0.842727 * -25.061201 56.122402 69.313191

Clayton 0.00100 0.05886 6.10288 1.88229
Frank 0.00100 0.02635 6.16790 1.94731
Gumbel 1.10000 -41.69724 -29.63757 -25.41698
Clayton, Clayton,Clayton 0.00100 0.14990 -0.07667 * -3.51428 25.69033 13.02856
Clayton, Clayton,Gumbel 0.00100 0.04713 0.77590 * -32.56102 83.78380 71.12203
Frank, Frank, Frank 0.00100 1.21032 -2.14424 * -29.1238176.90940 64.24763
Frank, Frank, Clayton 0.00100 1.73605 -0.07553 * -5.27117 29.20411 16.54234
Frank, Frank, Gumbel 0.00100 1.61078 0.79008 * -34.1725987.00695 74.34518
Gumbel,Gumbel, Gumbel 0.90662 * 1.11905 0.77290 * -41.69724 102.05625 89.39448
Gumbel, Frank, Clayton 0.87410 1.75801 -0.07423 * -7.30074 33.26324 20.60147
Gumbel, Frank, Gumbel 0.90662 * 1.11897 0.77243 * -40.54667 99.75512 87.09335

Clayton 0.00100 0.11772 1.76457 6.16150
Frank 0.00100 0.02776 1.94448 6.34141
Gumbel 1.10000 -32.98232 -37.37925 -32.98232
Clayton, Clayton,Clayton 0.00100 0.21398 -0.12842 -11.13180 28.26361 41.45439
Clayton, Clayton,Gumbel 0.00100 1.13314 0.89037 * -12.96967 31.93935 45.13014
Frank, Frank, Frank 0.00100 0.19995 0.87737 -16.54238 39.08476 52.27555
Frank, Frank, Clayton 0.00100 1.77027 -0.10693 * -13.77605 33.55209 46.74288
Frank, Frank, Gumbel 0.00100 1.72906 -1.00565 * -16.30425 38.60849 51.79928
Gumbel,Gumbel, Gumbel 0.00100 * 1.85597 0.89791 * -34.14157 74.28315 87.47394
Gumbel, Frank, Clayton 0.73401 * 1.83158 -0.13861 -34.72642 75.45285 88.64364
Gumbel, Frank, Gumbel 0.81940 * 2.74101 0.86815 * -33.25106 72.50213 85.69292

Note: * Parameters that do not satisfy monotonicity conditions.

Conrad MT1974, Pondera County, Montana

Temple TX, Bell County, Texas

Spokane WA, Spokane County, Washington
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Table 4.A.  Two-Sample Kolmogorov-Smirnov Test for Selected Dates  
Copula Based Stochastic Weather Generator (P-Values) 

 

Selected  Dates

Max Temp Precipitation Min Temp

January, 9th 0.028 * 0.267 0.002 **

February, 1st 0.001 ** 0.998 0.000 **

March, 3rd 0.453 0.999 0.525

April, 3rd 0.737 0.995 0.242

May, 1st 0.372 0.999 0.095

June, 1st 0.000 ** 0.072 0.019 *

July, 1st 0.001 ** 0.071 0.046 *

August, 7th 0.011 * 0.009 ** 0.112

September, 5th 0.571 0.886 0.225

October, 1st 0.744 0.995 0.306

November, 4th 0.819 0.969 0.063

December, 1st 0.763 0.669 0.489

January, 9th 0.069 0.001 ** 0.107

February, 1st 0.159 0.050 * 0.001 **

March, 3rd 0.113 0.024 * 0.304

April, 3rd 0.012 * 0.804 0.017 *

May, 1st 0.077 0.362 0.058

June, 1st 0.089 0.765 0.360

July, 1st 0.082 0.999 0.011 *

August, 7th 0.007 ** 0.530 0.000 **

September, 5th 0.691 0.701 0.730

October, 1st 0.022 * 0.739 0.172

November, 4th 0.023 * 0.004 ** 0.123

December, 1st 0.000 ** 0.000 ** 0.371

January, 9th 0.035 * 0.393 0.015 *

February, 1st 0.013 * 0.049 * 0.040 *

March, 3rd 0.057 0.232 0.074

April, 3rd 0.007 ** 0.959 0.530

May, 1st 0.113 0.001 ** 0.203

June, 1st 0.000 ** 0.114 0.013 *

July, 1st 0.000 ** 0.989 0.000 **

August, 7th 0.013 * 0.980 0.003 **

September, 5th 0.002 ** 0.985 0.000 **

October, 1st 0.111 0.965 0.343

November, 4th 0.046 * 0.866 0.199

December, 1st 0.967 0.994 0.142

Note: * Reject H0 at 5% significance level

             ** Reject H0 at 1% significance level

Temple, Texas

Conrad, Montana

Spokane, Washington
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Table 4.B.  Two-Sample Kolmogorov-Smirnov Test for Selected Dates  
Richardson Stochastic Weather Generator (P-Values) 

  

Selected  Dates

Max Temp Precipitation Min Temp

January, 9th 0.226 0.560 0.022 *

February, 1st 0.167 0.989 0.062

March, 3rd 0.433 0.610 0.085

April, 3rd 0.448 0.662 0.794

May, 1st 0.028 * 0.081 0.073

June, 1st 0.019 * 0.053 0.267

July, 1st 0.628 0.404 0.794

August, 7th 0.190 0.404 0.069

September, 5th 0.062 0.696 0.139

October, 1st 0.017 * 0.880 0.145

November, 4th 0.104 0.960 0.056

December, 1st 0.867 0.960 0.464

January, 9th 0.074 0.008 ** 0.000 **

February, 1st 0.005 ** 0.008 ** 0.000 **

March, 3rd 0.001 ** 0.326 0.000 **

April, 3rd 0.055 0.100 0.000 **

May, 1st 0.673 0.010 ** 0.000 **

June, 1st 0.718 0.000 0.056

July, 1st 0.673 0.050 0.098

August, 7th 0.000 ** 0.999 0.000 **

September, 5th 0.039 0.368 0.000 **

October, 1st 0.026 * 0.308 0.000 **

November, 4th 0.001 ** 0.001 0.000 **

December, 1st 0.006 ** 0.000 0.000 **

January, 9th 0.082 0.166 0.860

February, 1st 0.407 0.211 0.945

March, 3rd 0.377 0.673 0.339

April, 3rd 0.709 0.860 0.860

May, 1st 0.356 0.231 0.186

June, 1st 0.252 0.403 0.087

July, 1st 0.015 * 0.915 0.108

August, 7th 0.200 0.999 0.067

September, 5th 0.356 0.915 0.209

October, 1st 0.915 0.761 0.938

November, 4th 0.274 0.403 0.615

December, 1st 0.399 0.575 0.549

Note: * Reject H0 at 5% significance level

             ** Reject H0 at 1% significance level

Conrad, Montana

Spokane, Washington

Temple, Texas
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Table 5. Comparative Quantile Analysis for Three Locations32 

 

                                                 
32 In weather stations the minimum reported amount of precipitation is 0.0254cm (0.01 inches). 

Quantile Observed Copula Richardson Observed Copula Richardson Observed Copula Richardson

Conrad, Montana

0.025 0.000 0.000 0.000 -13.300 -8.430 -10.509 -25.000 -19.554 -23.416

0.05 0.000 0.000 0.000 -7.800 -5.078 -6.691 -21.100 -16.894 -19.987

0.1 0.000 0.000 0.000 -1.100 -1.570 -2.270 -15.600 -13.919 -15.950

0.2 0.000 0.000 0.000 4.400 2.882 3.499 -9.400 -10.824 -10.628

0.3 0.000 0.000 0.000 7.800 6.621 7.845 -5.600 -8.173 -6.548

0.4 0.000 0.000 0.000 11.100 10.101 11.656 -2.800 -5.286 -3.130

0.5 0.000 0.001 0.000 14.400 13.668 15.179 -0.600 -2.231 -0.109

0.6 0.000 0.002 0.000 18.300 17.021 18.574 2.200 0.850 2.653

0.7 0.000 0.004 0.000 21.700 20.708 21.926 5.000 4.014 5.170

0.8 0.000 0.012 0.000 25.000 24.521 25.360 7.800 7.213 7.532

0.9 0.203 0.227 0.189 28.900 29.184 29.218 10.000 10.269 10.171

0.975 0.864 0.700 0.862 32.800 35.305 34.067 13.300 14.168 13.460

Spokane, Washington

0.025 0.000 0.000 0.000 -5.000 -4.310 -9.620 -13.300 -9.946 -21.603

0.05 0.000 0.000 0.000 -2.200 -2.193 -6.219 -10.000 -8.247 -18.306

0.1 0.000 0.000 0.000 0.600 0.513 -2.214 -6.100 -6.355 -14.364

0.2 0.000 0.000 0.000 3.900 4.117 3.000 -2.800 -3.920 -9.242

0.3 0.000 0.000 0.000 7.200 7.296 6.939 -1.100 -1.713 -5.409

0.4 0.000 0.000 0.000 10.000 11.101 10.356 0.600 0.707 -2.121

0.5 0.000 0.002 0.000 13.300 14.906 13.668 2.800 3.323 0.757

0.6 0.000 0.004 0.000 17.200 18.782 16.967 5.000 5.676 3.400

0.7 0.025 0.013 0.000 21.100 22.232 20.440 7.800 7.952 5.899

0.8 0.127 0.142 0.057 25.000 25.227 24.114 10.000 10.098 8.255

0.9 0.406 0.385 0.310 29.400 28.778 28.416 12.800 12.460 10.881

0.975 1.036 0.847 1.051 33.900 33.279 33.821 16.700 15.418 14.170

Temple, Texas

0.025 0.000 0.000 0.000 5.600 8.628 5.834 -3.900 -1.949 -3.887

0.05 0.000 0.000 0.000 8.300 10.808 8.879 -1.700 -0.089 -1.718

0.1 0.000 0.000 0.000 12.800 13.258 12.514 1.100 1.579 0.916

0.2 0.000 0.000 0.000 17.200 16.658 17.173 4.400 4.265 4.598

0.3 0.000 0.000 0.000 21.100 19.400 20.764 7.700 6.622 7.802

0.4 0.000 0.000 0.000 23.900 22.198 23.771 10.600 9.397 10.868

0.5 0.000 0.000 0.000 26.700 25.397 26.549 13.900 12.355 13.943

0.6 0.000 0.000 0.000 28.900 28.454 29.058 17.200 15.529 16.841

0.7 0.000 0.000 0.000 31.700 30.986 31.440 19.900 18.297 19.272

0.8 0.025 0.025 0.000 33.300 33.538 33.684 21.700 20.588 21.130

0.9 0.533 0.802 0.618 35.600 36.810 36.122 22.800 23.421 22.878

0.975 2.769 2.901 2.767 37.800 41.595 39.152 23.900 26.973 25.023

Precipitation  Amount, cm Maximum Temperature, 
o
C Minimum Temperature, 

o
C
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Table 6. Average Rainfall Amount and Average Number of Rainy Days by 28-Day 
Period  

 

  

Precipitation Amount in Cms. Number of Rainy Days

Period Observed Copula Richardson Observed Copula Richardson

Conrad, Montana

1 0.976 1.590 0.858 5.020 4.625 3.067

2 0.798 1.502 0.801 4.120 4.708 2.720

3 1.193 1.573 1.148 4.580 5.125 3.367

4 2.111 2.002 1.853 5.040 5.525 3.780

5 3.335 1.903 3.722 6.620 5.767 5.187

6 6.672 1.272 5.227 9.800 4.542 6.787

7 4.086 2.323 3.960 7.420 5.958 5.293

8 2.483 2.535 2.681 5.440 6.542 4.507

9 2.925 1.950 2.565 5.900 5.058 4.573

10 2.156 1.357 1.897 4.960 4.367 3.513

11 1.037 1.699 1.137 3.660 4.558 2.533

12 1.127 1.703 1.108 4.420 4.242 3.007

13 1.036 2.210 0.901 4.700 5.925 2.947

Spokane, Washington

1 4.390 3.053 1.233 12.314 8.958 4.253

2 3.807 3.196 1.149 10.824 9.575 4.020

3 3.477 2.946 1.555 10.275 6.233 5.093

4 3.035 2.978 2.760 9.118 4.967 6.267

5 3.123 3.106 5.468 8.627 5.408 8.187

6 3.872 2.295 6.699 8.765 4.042 9.080

7 1.805 2.287 5.888 5.118 3.533 8.300

8 0.977 1.531 4.010 3.216 3.350 6.153

9 1.710 1.594 3.651 4.647 2.625 6.080

10 1.659 3.588 2.715 5.314 5.258 5.433

11 2.839 4.311 1.596 7.353 6.642 3.860

12 5.558 3.675 1.159 12.667 6.683 3.573

13 5.443 3.111 1.223 12.824 8.717 4.060

Temple, Texas

1 4.999 8.728 5.098 6.561 6.608 5.380

2 6.792 7.112 5.753 6.951 5.208 5.540

3 5.552 5.798 5.480 6.512 4.408 5.340

4 5.297 4.364 5.947 5.927 4.383 5.030

5 10.555 6.271 9.093 6.976 5.125 5.450

6 9.318 10.320 9.153 6.171 6.017 5.000

7 5.472 8.680 6.428 4.634 5.442 3.840

8 4.265 6.061 4.283 3.220 5.700 2.950

9 6.122 6.591 5.720 4.439 5.833 3.890

10 8.556 4.532 9.753 5.902 5.250 5.110

11 9.223 5.943 7.331 6.024 5.117 4.360

12 6.554 9.549 6.826 5.634 6.283 4.820

13 6.209 10.246 7.352 5.976 7.333 5.240
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Table 7. Average Maximum Temperature and Average Minimum Temperature by 
28-Day Period 

  

Maximum Temperature 
o
C Minimum Temperature 

o
C

Period Observed Copula EPIC Observed Copula EPIC

Conrad, Montana

1 0.03 0.48 1.16 -13.47 -13.06 -13.04

2 3.38 1.23 3.26 -10.59 -12.20 -10.89

3 6.73 5.35 6.99 -7.85 -9.15 -7.70

4 12.62 11.15 12.61 -2.92 -4.32 -3.15

5 17.37 17.12 17.79 1.60 1.28 1.69

6 21.56 22.44 21.86 6.19 5.72 5.88

7 25.90 26.45 25.88 9.07 8.41 8.87

8 28.48 27.05 27.57 10.24 8.66 9.45

9 25.86 24.62 25.50 7.92 7.04 7.42

10 20.04 19.89 20.19 2.78 2.77 2.80

11 14.10 13.20 14.09 -1.93 -2.85 -2.20

12 5.74 6.81 6.86 -8.12 -7.93 -7.59

13 1.03 2.74 1.83 -11.91 -11.39 -12.05

Spokane, Washington

1 0.45 0.66 1.88 -5.60 -6.12 -11.35

2 3.77 1.43 2.89 -3.65 -5.74 -9.63

3 8.16 5.37 5.69 -1.42 -3.23 -6.87

4 12.64 11.23 10.35 1.06 0.47 -2.57

5 17.31 17.91 15.24 4.38 4.85 1.95

6 21.51 23.70 19.89 8.24 8.91 6.02

7 26.21 27.31 24.46 11.32 11.25 9.30

8 29.90 27.81 26.95 13.77 11.45 10.31

9 26.38 25.51 24.73 11.14 10.25 8.55

10 20.96 21.55 19.00 6.61 7.95 3.99

11 12.91 15.47 13.21 1.44 4.04 -0.88

12 4.71 9.58 7.06 -1.99 -0.05 -5.88

13 0.57 4.30 2.69 -5.44 -3.69 -10.35

Temple, Texas

1 13.83 15.45 14.57 1.85 2.44 2.29

2 16.31 15.23 16.14 3.70 2.55 3.66

3 19.99 17.15 19.84 7.13 4.66 7.16

4 24.13 21.25 24.24 11.60 8.96 11.54

5 27.75 26.57 27.88 15.90 14.02 15.93

6 31.05 31.54 31.02 19.51 19.01 19.33

7 33.80 34.69 33.57 21.83 22.08 21.53

8 35.40 35.65 35.03 22.54 22.88 22.34

9 34.81 34.03 34.37 21.98 21.42 21.48

10 30.44 30.75 30.51 17.75 17.73 17.87

11 25.29 26.36 25.71 12.59 13.41 12.82

12 19.70 21.48 20.74 7.35 8.72 7.98

13 15.26 17.54 15.95 3.26 4.58 3.76
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Table 8. Annual Average Temperature and Number of Days of Extreme Events by, 
Weather Station 

 

 

  

Weather Variable Observed Copula Richardson

Maximum Temperature, 
o
C 40.60 47.50 49.99

Minimum Temperature, 
o
C -27.20 -28.53 -45.58

Days ≥ 35 
o
C 1.10 5.08 6.38

Days ≤  0
o
C 183.84 205.13 183.93

Maximum Temperature, 
o
C 42.20 42.02 51.42

Minimum Temperature, 
o
C -24.40 -24.56 -43.37

Days ≥ 35 
o
C 6.41 3.27 6.17

Days ≤  0
o
C 138.27 113.95 172.73

Maximum Temperature, 
o
C 43.30 55.30 48.32

Minimum Temperature, 
o
C -14.40 -9.68 -16.23

Days ≥ 35 
o
C 54.61 55.43 52.11

Days ≤  0
o
C 31.49 18.92 29.14

       Conrad

Spokane

Temple
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Table 9.  Summary on Camelina Production Characteristics in Montana  

 

  

Features Description

Varieties 18 varieties of Camelina in dryland

Yeld Average yield ranges from 500 to 1,850 lbs/acre depending on variety 
and geographical characteristics related soils, climate, inclination, etc.

Oil content 29 to 41% equals 60-80 gallons/acre

Price
18-16 cents/lb (2008), Great Plains
9-12 cents/lb (2009), Great Northem Growers Coop
16 cents/lb (2009), Bill Schillinger, WSU

Return With yield of 1,585 lbs./acre  and  a price of 16 cents/pound, gross 
return is $142.61/acre and net return of $105.61/acre.

Costs
 -With yield of 1,500 lbs/acre, total operating cost is $46.67/acre, 
breakeven production cost is $1.56/bushel  (1 bushel= 50 lbs.), smaller 
than Canola ($4.33/acre) and spring wheat ($1.81/acre).
-Fertility requirements 33.3% less than Canola production.

Sources:  Johnson, D. (2007). Presentation Prepared for the Harvesting Clean Energy
Conference VII, MSU Northwestern Agricultural Research Center, Montana State 
University.  

Note: This data corresponds to several Agronomic Experimental Stations of Montana State 
University located across Montana.
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Table 10. Physiology and Cultural Practices Scheduling for Camelina Calibration 
in Conrad Farm, Pondera County, Montana 

 

  

Stage Approximate dates
Planting Early April-Early June
emerging Mid April-mid June
Blooming Mid June-Early July
Turning Late June-Late July
Harvesting Mid July-Late August
Activity Exact Dates
Pesticide March 15
Fertilize March  20
Pesticide April 1
Fertilize April 15
Planting April 15
Fertilizer June 12 
Hauling July 1
Harvest July 30
Source:  Adapted from RMA (2011)
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Table 11. Producer Vs. Simulated Yield 

Grain Yield in lbs/acre 

 

  

Year Producer Simulated
2007 1,150.0 1,099.0

2008 2,295.0 2,302.8

2009 1,135.0 1,048.6

2010 1,378.0 1,855.6

Average 1,489.5 1,576.5
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Table 12. Detrending Regressions for Camelina Yields  

Yields Simulated Using Richardson (1981) SWG 

 

 

 

Yields Simulated Using Copula Based SWG 

 

  

Observations 100.00
F(  1,    98) 1.40
Prob > F 0.24
R-squared 0.01

Adj R-squared 0.00
Root MSE 555.23

Variable Coefficient Std Error t- Statistic P>t
Trend -2.28 1.92 -1.18 0.24
Const 1065.86 111.88 9.53 0.00

Observations 100.00
F(  1,    98) 3.67
Prob > F 0.06
R-squared 0.04
Adj R-squared 0.03
Root MSE 992.44

Variable Coefficient Std Error t- Statistic P>t
Trend 8.41 4.39 1.92 0.06
Const 539.32 276.29 1.95 0.05
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Table 13. Camelina Yields Basic Statistics: Conrad, Pondera County, Montana 

 

SWG Mean Std Dev. Minimum Maximum
Copula based 967.07 963.28 17.46 3,827.62
Richardson (1981) 950.95 556.35 64.99 3,178.69



 

114 

 

Table 14.  Probability Parametric Distributions for Camelina Yields from Conrad, 
Pondera County, Montana 

 

 

  

Distribution Range & Params. αααα ββββ Max Likelihood AIC BIC

Beta 0≤x≤1,  α>0, β>0 0.42 0.75 -29.26 62.51 67.72
Weibull 0≤x<∞,  α>0, β>0 922.58 0.90 792.86 -1,581.73 -1,576.52

Gamma 0≤x<∞,  α>0, β>0 0.83 1,164.29 768.50 -1,533.00 -1,527.79

Beta 0≤x≤1,  α>0, β>0 0.75 1.09 -5.39 14.77 19.99
Weibull 0≤x<∞,  α>0, β>0 1,069.58 1.78 756.88 -1,509.75 -1,504.54
Gamma 0≤x<∞,  α>0, β>0 2.62 363.20 775.45 -1,546.90 -1,541.69

Richardson (1981) SWG

Copula Based SWG
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Table 15. APH Insurance for Camelina Yields for Different Coverage Levels 

 

Coverage 50% 60% 65% 70% 75% 80% 85%

Liability 72.53 87.04 94.29 101.54 108.80 116.05 123.30

Weibull 7.92 13.22 16.53 20.30 24.55 29.30 34.55
Beta 6.07 9.80 12.09 14.66 17.55 20.75 24.28
Gamma 7.90 13.15 16.43 20.15 24.36 29.05 34.24
Kernel 5.83 9.98 12.60 15.63 19.08 22.97 27.31

Weibull 12.99 21.70 27.13 33.31 40.29 48.09 56.71
Beta 9.96 16.09 19.84 24.07 28.80 34.06 39.85
Gamma 12.96 21.59 26.96 33.08 39.98 47.68 56.20
Kernel 9.57 16.37 20.69 25.65 31.31 37.70 44.82

Weibull 10.92 15.19 17.53 19.99 22.56 25.24 28.02
Beta 8.37 11.26 12.82 14.44 16.13 17.88 19.69
Gamma 10.89 15.11 17.42 19.85 22.39 25.03 27.77
Kernel 8.04 11.46 13.37 15.39 17.54 19.79 22.15

Weibull 17.92 24.93 28.78 32.81 37.03 41.44 45.99
Beta 13.74 18.48 21.04 23.70 26.48 29.35 32.32
Gamma 17.87 24.80 28.60 32.58 36.75 41.09 45.58
Kernel 13.19 18.81 21.94 25.26 28.78 32.48 36.35

Liability  71.32 85.59 92.72 99.85 106.98 114.11 121.25

Weibull 2.59 5.14 6.91 9.06 11.62 14.67 18.19
Beta 3.3 5.9 7.5 9.4 11.6 14.0 16.8
Gamma 2.51 5.17 7.04 9.31 12.04 15.27 19.02
Kernel 2.58 5.17 6.95 9.10 11.63 14.60 18.00

Weibull 4.25 8.44 11.34 14.86 19.08 24.07 29.86
Beta 5.45 9.62 12.30 15.40 18.97 23.04 27.62
Gamma 4.13 8.49 11.55 15.28 19.76 25.07 31.22
Kernel 4.24 8.49 11.41 14.93 19.09 23.96 29.55

Weibull 3.63 6.01 7.45 9.07 10.87 12.85 15.00
Beta 4.66 6.85 8.08 9.40 10.80 12.30 13.88
Gamma 3.52 6.04 7.59 9.32 11.25 13.38 15.69
Kernel 3.62 6.04 7.50 9.11 10.87 12.79 14.85

Weibull 5.96 9.86 12.23 14.89 17.84 21.10 24.63
Beta 7.64 11.24 13.26 15.43 17.74 20.19 22.78
Gamma 5.79 9.92 12.46 15.31 18.47 21.97 25.75
Kernel 5.94 9.92 12.31 14.95 17.84 21.00 24.37

Copula Based SWG,  APH Yield 967.07 Lbs/Acre and Guarantee Price of $0.15 per Pound

Unloaded Fair Premium (Dollars per Acre)

Fully Loaded Base Premium (Percentage)

Richardson (1981) SWG, APH Yield 950.95 Lbs/Acre and Guarantee Price of $0.15 per Pound

Unloaded Fair Premium (Dollars per Acre)

Fully Loaded Premium (Dollars per Acre)

Loss Cost (Percentage)

Fully Loaded Base Premium (Percentage)

Fully Loaded Premium (Dollars per Acre)

Loss Cost (Percentage)


