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ABSTRACT 

 

We propose a rigorous approach for well drainage volume calculations in gas 

reservoirs based on the flux field derived from dual porosity finite-difference simulation 

and demonstrate its application to optimize well placement. Our approach relies on a 

high frequency asymptotic solution of the diffusivity equation and emulates the 

propagation of a ‘pressure front’ in the reservoir along gas streamlines. The proposed 

approach is a generalization of the radius of drainage concept in well test analysis (Lee 

1982), which allows us not only to compute rigorously the well drainage volumes as a 

function of time but also to examine the potential impact of infill wells on the drainage 

volumes of existing producers. Using these results, we present a systematic approach to 

optimize well placement to maximize the Estimated Ultimate Recovery. 

A history matching algorithm is proposed that sequentially calibrates reservoir 

parameters from the global-to-local scale considering parameter uncertainty and the 

resolution of the data. Parameter updates are constrained to the prior geologic 

heterogeneity and performed parsimoniously to the smallest spatial scales at which they 

can be resolved by the available data. In the first step of the workflow, Genetic 

Algorithm is used to assess the uncertainty in global parameters that influence field-scale 

flow behavior, specifically reservoir energy. To identify the reservoir volume over which 

each regional multiplier is applied, we have developed a novel approach to heterogeneity 

segmentation from spectral clustering theory. The proposed clustering can capture main 

feature of prior model by using second eigenvector of graph affinity matrix.  

In the second stage of the workflow, we parameterize the high-resolution heterogeneity 

in the spectral domain using the Grid Connectivity based Transform to severely 

compress the dimension of the calibration parameter set. The GCT implicitly imposes 

geological continuity and promotes minimal changes to each prior model in the 

ensemble during the calibration process. The field scale utility of the workflow is then 

demonstrated with the calibration of a model characterizing a structurally complex and 

highly fractured reservoir. 
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CHAPTER I      

INTRODUCTION AND OBJECTIVES 

 

Current practice of well placement in tight gas reservoirs generally involves the use of 

empirical correlations based on reservoir properties and analysis of past production 

histories and/or pressure maps from flow simulation. No rigorous procedure is available 

to compute well drainage volumes in the presence of permeability heterogeneity 

controlled by the distribution and orientation of natural fractures. The situation is 

complicated by the routine use of horizontal and complex wells in unconventional gas 

reservoirs and the presence of multistage hydraulic fractures. The computation of 

drainage volume will be critical to our understanding of the interaction between existing 

wells, potential infill locations and the estimated ultimate recovery (EUR) computations 

for infill wells. 

We propose a rigorous approach for well drainage volume calculations in gas 

reservoirs based on the flux field derived from dual porosity finite-difference simulation 

and demonstrate its application to optimize well placement and hydraulic fracture stages. 

Our approach relies on a high frequency asymptotic solution of the diffusivity equation 

and emulates the propagation of a ‘pressure front’ in the reservoir along gas streamlines. 

The proposed approach is a generalization of the radius of drainage concept in well test 

analysis (Lee 1982). The method allows us not only to compute rigorously the well 

drainage volumes as a function of time but also examine the potential impact of infill 

wells on the drainage volumes of existing producers. Using these results, we present a 

systematic approach to optimize well placement to maximize the EUR.  

We utilize the streamline-based drainage volumes to identify depleted sands and 

generate a reservoir ‘depletion capacity’ map to optimize infill well placement based on 

the undepleted and undrained regions. The field application clearly demonstrates a 

systematic approach to optimal well placement in tight gas reservoirs. Once we get the 

accurate drainage volume information, it’s applicable to wide range of optimization 

target. We verified to the infill well placement and hydraulic fracture stage optimization. 
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This concept can easily be extended to optimal well spacing or completion. This 

drainage volume calculation with streamline provides general but a powerful tool even 

under high complex and changing well conditions. 

To reduce geological uncertainty and reliable optimization plan, characterization of 

reservoir is imperative before forecasting in closed-loop management workflows. We 

propose a hierarchical history matching algorithm that is constrained to the prior 

geologic heterogeneity and parsimoniously updates high-resolution geologic parameters 

to the level that can be resolved by the available data. The hierarchical approach 

calibrates, in sequence, reservoir parameters characterizing global to local regions to 

account for the uncertainty in spatial scale of the parameters and the resolution of the 

data. First, a probabilistic genetic algorithm (GA) is used to assess the uncertainty in 

global parameters (regional permeability, pore volumes and transmissibility) that 

influence field-scale flow behavior, specifically reservoir energy. Results from this 

analysis are used to establish multiple prior models for the second stage of local or high-

resolution parameter calibration to well-level observation data. Next, a novel re-

parameterization method is used to considerably reduce the number of parameters for 

their calibration in a low-dimensional transform domain using a grid-connectivity-based 

transform (GCT) basis. The reduced model parameters implicitly impose geological 

continuity and promote minimal changes to each prior model during calibration. 

To get a more rigorous history matching in global scale, we develop a novel zonation 

algorithm from spectral clustering scheme. The novel Spectral clustering can capture 

main feature of prior model by using 2
nd

 eigenvector of graph affinity Laplacian. The 

zoning approach from spectral clustering theory enhance speeding up global scale model 

calibration, which is common in hierarchical approach and standard industry practice, 

and then move to local fine scale calibration. At the same time, we can keep prior 

model’s key information; facies edge, faults and channels. The proposed spectral 

clustering has a clear cutting edge detection power in smoothly varying high and low 

value regions. Hence, the proposed spectral clustering provides the optimal zonation 

criteria for complex reservoir history matching problems. 
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The suggested systematic history matching, drainage volume calculation and 

optimization procedures can be applied as a fast and rigorous closed-loop reservoir 

management process, especially in highly fractured and complex geometry systems.   

 

1.1 Overview of Reservoir Characterization and Closed Loop Management 

The closed loop reservoir management, also referred to as “smart reservoir 

management”, is a sequential process of data assimilation and optimization (Chen and 

Oliver 2010; Gildin and Lopez 2011).  

 

 

Figure 1.1. Closed Loop Reservoir Management and Control 

 

The purpose of closed loop control in Fig. 1.1 is to maximize the reservoir 

performance such as oil/gas recovery or a given financial measure. There have been 

many previous studies for reservoir optimization and history matching. However, the 

problem in the fractured reservoir management is quite difficult because of complicated 

flow mechanism and difficulty in both history matching and optimization compared to a 

non-fractured model. Hence, understanding this complex flow mechanism is a first step 

in closed-loop reservoir management strategy. 
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1.2 Fractured Reservoirs  

In the low permeable porous medium, naturally generated fractures are the primary 

route for the fluid movement and significantly affect the real production and injection 

efficiency in a field. The proper modeling of naturally existing fractures and/or 

artificially developed hydraulic fractures is important factor in successful simulation of 

low permeable tight and shale gas reservoir models as well as for conventional system. 

Planning a field development strategy, especially in unconventional gas reservoirs, 

comes from estimating reservoir size and drainage capacity of current wells with proper 

simulation models. But in practice, the existing and induced fractures make problems 

more complex in production optimization and drainage volume calculation. 

In the naturally fractured reservoir models, fluids exist in two systems. The rock 

matrix provides the storage of fluids and the fracture network provides main route for 

flow. If the fractures (or equivalent matrixes) are only considered to provide the main 

path as well as storage for gas, this system can be regarded as a single porosity single 

permeability system (SPSP; Fig. 1.2 (a)). Otherwise, the fluid flows in the reservoir 

through the fractures while the matrix is only connected to the fracture network. This can 

be regarded as a dual porosity and single permeability (DPSP; Fig. 1.2 (b)). 

Additionally, if we consider flow between matrixes as well as fractures, this system will 

be regarded as dual porosity and dual permeability system (DPDP; Fig. 1.2 (c)). The 

DPDP approach is the most general approach to simulate fractured reservoirs and it is 

reduced to the DPSP if flow between the matrix is negligible (Al-Huthali and Datta-

Gupta 2004).   

 

 

(a) Single Porosity Single Permeability (SPSP) 

Figure 1.2. Schematics of the Different Fracture-Matrix Models 
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(b) Dual Porosity Single Permeability (DPSP) 

 

 

(c) Dual Porosity Dual Permeability (DPDP) 

Figure 1.2. Continued 

 

Today, many researches are focusing on optimization or history matching under SPSP 

models. There have been no rigorous works on drainage volume calculation under the 

condition of natural fractures and DPSP system. As a result, petroleum engineers mainly 

depend on production decline curve and/or simulated pressure distribution for estimating 

drainage volume and planning new infill well locations in tight gas and naturally 

fractured reservoirs. 

In this research, we propose a closed loop management algorithm in highly fractured 

reservoirs; drainage volume calculation, model characterization and optimization. First 

in Chapter 2, we propose a rigorous drainage volume calculation methodology under 

highly fractured condition. We compute the pressure front propagation along the main 

flow paths (streamline trajectories) by defining a diffusive time of flight. This leads to a 

fast and accurate drainage volume calculation method, which allows us to identify 

undrained areas where we can find potential new infill well locations. We expanded this 

drainage volume calculation to horizontal wells, which are common in unconventional 

reservoirs. The calculated drainage volume in different fractured completions can 

provide the optimal number of fracture stages. In Chapters 3 and 4, we propose a new 

zonation algorithm and a hierarchical history matching application. The spectral 

clustering theory has been applied to many engineering fields for similarity grouping. 
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The application to reservoir zonation provides promising cutting criteria for continuous 

and/or fault-embedded simulation models. The systematic hierarchical approach 

simplifies complex history matching problems and provides guidelines in fractured 

reservoir model characterization. 
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CHAPTER II      

DRAINAGE VOLUME CALCULATION, WELL PLACEMENT AND 

HYDRAULIC FRACTURE STAGE OPTIMIZATION: STREAMLINE 

APPLICATIONS TO UNCONVENTIONAL RESERVOIRS


 

 

2.1 Purpose 

Current practice of well placement in tight gas reservoirs generally involves the use of 

empirical correlations based on reservoir properties and analysis of past production 

histories and/or pressure maps from flow simulation. No rigorous procedure is available 

to compute well drainage volumes in the presence of permeability heterogeneity 

controlled by the distribution and orientation of natural fractures. The situation is 

complicated by the routine use of horizontal and complex wells in tight gas reservoirs 

and the presence of multistage hydraulic fractures. The computation of drainage volume 

will be critical to our understanding of the interaction between existing wells, potential 

infill locations and the estimated ultimate recovery (EUR) computations for infill wells. 

We propose a rigorous approach for well drainage volume calculations in tight gas 

reservoirs based on the flux field derived from dual porosity finite-difference simulation 

and demonstrate its application to optimize well placement. Our approach relies on a 

high frequency asymptotic solution of the diffusivity equation and emulates the 

propagation of a ‘pressure front’ in the reservoir along gas streamlines. The proposed 

                                                           
 

 Part of this chapter is reprinted with permission from “Impact of Natural Fractures in Drainage Volume 

Calculations and Optimal Well Placement in Tight Gas Reservoirs” by SukSang Kang, Akhil Datta-Gupta 

and W. John Lee, 2011. Paper SPE 144338-MS presented at the 2011 SPE North American 

Unconventional Gas Conference and Exhibition, The Woodlands, Texas, 14-16 June. Copyright 2011. by 

the Society of Petroleum Engineers. 

 Part of this chapter is reprinted with permission from “Optimizing Fracture Stages and Completions in 

Horizontal Wells in Tight Gas Reservoirs Using Drainage Volume Calculations” by Baljit S Sehbi, 

SukSang Kang, Akhil Datta-Gupta and W. John Lee, 2011. Paper SPE 144365-MS presented at the 2011 

SPE North American Unconventional Gas Conference and Exhibition, The Woodlands, Texas, 14-16 June. 

Copyright 2011. by the Society of Petroleum Engineers.  
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approach is a generalization of the radius of drainage concept in well test analysis (Lee 

1982). The method allows us not only to compute rigorously the well drainage volumes 

as a function of time but also examine the potential impact of infill wells on the drainage 

volumes of existing producers. Using these results, we present a systematic approach to 

optimize well placement to maximize the EUR.  

We demonstrate the power and utility of our method using both synthetic and field 

applications. The synthetic example is used to validate our approach by establishing 

consistency between the drainage volume calculations from streamlines and the EUR 

computations based on detailed finite-difference simulations. We also present 

comparison of our approach with analytic drainage volume calculations for simplified 

cases. The field example is from one of the tight gas fields in the Rocky Mountain 

region. We utilize the streamline-based drainage volumes to identify depleted sands and 

generate a reservoir ‘depletion capacity’ map to optimize infill well placement based on 

the undepleted and undrained regions. The field application clearly demonstrates a 

systematic approach to optimal well placement in tight gas reservoirs. 

Horizontal well technology is now considered a standard completion practice in 

unconventional gas reservoirs. With significant improvements in the drilling and 

completion technology, many tight gas and shale gas prospects have become 

economically viable. Optimizing location, distribution and the number of stages of 

hydraulic fractures is an important issue in tight gas reservoir completions, particularly 

for horizontal and complex wells. 

A field example is shown to demonstrate the application of our approach by 

optimizing well completions in a horizontal well recently drilled in the Cotton Valley 

formation. We first apply the proposed drainage volume calculations in an existing 

vertical well to identify its ‘region of influence’ and the potential interference from the 

proposed horizontal well and the number of fracture stages in the horizontal well. The 

combined drainage volumes from the vertical and horizontal well are calculated as a 

function of the number of fracture stages to determine the point of diminishing return 

and to optimize the number of fracture stages. The results are found to be consistent with 
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independent analysis based on rate profiles from numerical simulation and NPV 

calculations. 

 

2.2 Introduction 

In low permeability gas reservoirs, natural fractures are often the primary conduit for 

flow in the reservoir and can significantly impact the well performance and productivity 

(Aguilera 2008). Proper modeling of the orientation, distribution and connectivity of the 

natural fractures is critical to reservoir simulation and forecasting (Cipolla et al. 2009b; 

Olson 2008).  In particular, the understanding of the interaction between the induced 

hydraulic fractures and the naturally existing fractures is an important key in the 

successful development and exploitation of these reservoirs (Cipolla et al. 2011; Lee and 

Hopkins 1994; Weng et al. 2011). Planning an effective field development strategy 

requires estimating the drainage capacity of current wells and optimizing well placement 

so as to minimize the overlapping of drainage volumes of existing wells. Production 

decline curves have been widely used to compute drainage volumes and estimate EUR in 

tight gas reservoirs (Blasingame and Rushing 2005; Cox et al. 2002; Fetkovich 1980; 

Rushing et al. 2007). Also, pressure transient tests are commonly used in determining 

the well productivity and the benefits of hydraulic fracturing in tight gas reservoirs (Lee 

and Hopkins 1994). Whereas both decline curve analysis and pressure transient tests 

have played a vital role in the exploitation of tight gas reservoirs, the interpretation of 

such analytical tools can be considerably complicated in the presence of complex spatial 

heterogeneity and natural fractures. In particular, the interactions between the hydraulic 

fracture and natural fractures and their implications on the well drainage volumes cannot 

be adequately accounted for by the existing analytic methods. 

Our objective in this paper is to develop a systematic procedure for well placement 

optimization in naturally fractured tight gas reservoirs. Towards this goal, we develop a 

rigorous approach to defining well drainage volumes during numerical simulation of 

naturally fractured tight gas reservoirs. Specifically, we will build on the concept of 

radius of drainage as defined by (Lee 1982). Currently there is no well-defined method 
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for computing the well drainage volumes from numerical simulation in gas reservoirs. A 

common practice is to use pressure contours to understand well drainage behavior with 

time. The well drainage volume is defined by following the evolution of a pressure 

contour level that is defined rather arbitrarily and Lee et al. (2003) define the radius of 

drainage as the propagation distance of ‘maximum’ pressure disturbance resulting from 

an impulse (instantaneous) source. More recently, this concept was used by Meyer et al. 

(2010) to examine fracture interference in the presence of multiple hydraulic fractures in 

horizontal wells. However, much of these previous developments have been limited to 

homogeneous medium. We generalize the concept of drainage radius and drainage 

volumes to arbitrary heterogeneous medium and completely general well conditions by 

first computing the reservoir flux field from numerical simulation and then, examining 

the propagation of the pressure disturbance along the gas streamlines. 

Streamlines are trajectories or flow paths that are everywhere tangential to the local 

flow velocity. In fact, streamlines are simply a representation of the instantaneous 

velocity field. Streamlines exist whenever there is an underlying velocity field. These 

include compressible and incompressible flows, steady and unsteady conditions, oil and 

gas reservoirs (Datta-Gupta and King 2007). Although the visualization power of 

streamlines have been widely used to examine the swept and drainage volumes in oil 

reservoirs, the application of streamlines to compressible flow and particularly to gas 

reservoirs has been very limited.  

One of the primary challenges in the application of the streamlines to gas reservoirs is 

the diffusive nature of the pressure equation. How can we define the concept of a 

propagating ‘front’ when the underlying phenomenon is diffusive? Kulkarni et al. (2001) 

generalized the streamline-based travel time approach to transient pressure conditions by 

introducing a ‘diffusive time of flight’ and rigorously computed well drainage radius 

during primary recovery and for heterogeneous permeability distributions. He et al. 

(2002) showed a good agreement between streamline-derived drainage volume 

calculations with decline type curve results. Kim et al. (2009) utilized the diffusive time 
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of flight to invert pressure response from interference test to characterize permeability 

distribution. The power of the method was illustrated using a field application.  

Britt and Smith (2009) examine horizontal well completion and stimulation 

optimization for different reservoir conditions and geomechanic limitations along with 

risk mitigation strategies for effective horizontal well planning. They present results of 

design and optimization study followed by post appraisal study of the horizontal wells 

drilled in Arkoma basin. Meyer et al. (2010) presented analytical solution for predicting 

behavior of multiple transverse hydraulic fractures in a horizontal well and optimization 

methodology to hydraulic fracture stages considering NPV and ROI (return on 

investment). They also utilized the concept of radius of drainage (Lee 1982) to examine 

the interference between multiple transverse fractures. 

Our objective in this paper is to develop a procedure for computing well drainage 

volumes in tight gas reservoirs. Because our approach relies on the streamlines derived 

from a finite difference simulator, the method is completely general and can handle any 

arbitrary heterogeneity and well conditions. The organization of the paper is as follows. 

We first highlight the main features of our approach and illustrate the steps using a 

synthetic example. We also validate our drainage volume calculations by comparing 

with analytic solutions for homogeneous medium. Next, we discuss the mathematical 

foundations behind the high frequency asymptotic solution of the diffusivity equation, 

the propagation of a ‘pressure front’ in the reservoir and its relationship to the concept of 

radius drainage as defined by Lee (1982). Finally, we demonstrate the power and utility 

of our method using a field application. 

 

2.3 Approach 

Our goal here is to examine the evolution of drainage volume of wells in tight gas 

reservoirs in the presence of natural fractures. This entails computation of well drainage 

volumes in the presence of arbitrary heterogeneity, well pattern and also accounting for 

well interactions. We build on the definition of radius of investigation Lee (1982) in 

terms of the propagation of a pressure pulse corresponding to an impulse source/sink. 
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Specifically, we generalize the concept of a propagating pressure pulse along individual 

streamlines in a gas reservoir. This allows us not only to compute and visualize the well 

drainage volumes as a function of time but also provides a mechanism to quantitatively 

examine the impact of well interactions on the drainage volumes and EUR. Below, we 

briefly discuss the major steps in our approach followed by an illustration of the 

procedure.  

 

 Fracture Generation Using a DFN Model: Proper characterization of fractures 

is a key step in modeling naturally fractured reservoirs. A discrete fracture 

network (DFN) model is used to represent the fracture distribution in the 

reservoir. The purpose of fracture modeling is to create geological model 

properties which can more closely mimic the flow behavior in the real reservoir. 

We utilized tight and shale gas field data from previous studies (Bogatkov and 

Babadagli 2008; Cipolla et al. 2009a; Gale and Holder 2008) to get a 

representative set of fracture network model.  

 

 Dual Porosity Simulation Using Finite Difference Simulator: We have utilized 

a commercial finite difference simulator (ECLIPSE
TM

) for modeling the gas 

reservoir. A dual porosity model is used for the fluid movement along the 

hydraulic and natural fractures while accounting for the matrix-fracture 

interactions. All relevant physical mechanisms such as gas compressibility, 

gravity effects and matrix-fracture interactions are fully accounted for in the 

finite-difference simulation. 

 

 Tracing Streamline Trajectories: We utilize the flux from the finite difference 

simulator to construct the streamlines in the fractures for the dual porosity model. 

The fluxes can be analytically integrated on a cell-by-cell basis to trace the 

streamline trajectories. The trajectory tracing is based on the method proposed by 

Jimenez et al. (2008). It is computationally efficient and can be used for general 

grid geometries including corner point cells. The streamlines are started at the 
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grid block centers and are traced backwards to the originating producers. Only 

those grid blocks having a finite gas flux will have a streamline passing through 

them. Because of high compressibility effects and the transient nature of the 

flow, the streamlines are recomputed every time step based on the updated flux 

field. 

 

 Computing Well Drainage Volume: The well drainage volume is a 

generalization of the radius of drainage concept Lee (1982) and relies on 

calculating the propagation of a pressure disturbance corresponding to an 

impulse source/sink along the streamlines.  Specifically, we utilize the concept of 

a ‘diffusive time of flight’ based on a high frequency asymptotic solution of the 

pressure equation (Datta-Gupta et al. 2001; Datta-Gupta et al. 2007; Vasco et al. 

2000) as discussed later. It is shown that the pressure pulse propagates with a 

velocity given by the square root of the diffusivity. We can now extend the 

concept of radius of investigation to compute well drainage volumes under 

completely general conditions.  

 

 Depletion Capacity Map: The well drainage volume calculations allow us to 

examine the interference between existing wells and also to identify the 

undrained regions for potential infill drilling. We define a ‘depletion capacity 

map’ for optimal well placement based on a combination of the undrained 

volumes and reservoir static and dynamic properties to maximize well 

productivity. 

 

 Analysis for Various Well Completion Alternatives. A drainage volume analysis 

was carried out in the Cotton Valley field example for different well completions 

based on different hydraulic fracture stages being pumped in the well. The 

economic analysis was performed on the projections of rate profiles from the 

finite difference simulator and considering net gas and the lease operating 
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expenses. These results were compared to the drainage volumes estimated using 

the proposed approach for consistency check. 

 

2.4 Illustration of Procedure 

The detailed mathematical formulation for the well drainage calculations will be 

discussed in a later section. To start with, we illustrate our overall procedure using a 

section model of a tight gas field. The 3-D reservoir model consists of water-gas phase 

with 95×112×65 grid blocks. There are two producing wells, one near the center (well 

147) and the other near the edge (well 148). The wells are separated by approximately 

2,000 ft.  The well 147 is first produced for 3 years; then well 148 starts producing. Fig. 

2.1 shows the matrix permeability distribution including the well locations. The wells 

are hydraulically fractured (xf : 650 ft) with a fracture conductivity of 40 md·ft. 

 

 
 

 

Figure 2.1. Permeability of Tight Gas Section Model 

 

One of our objectives here is to compute and visualize the impact of natural fractures 

on the drainage volume calculations through dual-porosity simulation. For this, we 

utilize a discrete fracture network (DFN) model to generate the permeability distribution 

for the natural fractures.  Hatzignatiou and McKoy (2000) demonstrated the use of 

stochastic fracture network generation based on fracture connectivity in tight gas sands. 

Olson and Taleghani (2009) suggested modeling parameters (apertures, fracture porosity 
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and effective permeability) ranges for fracture pattern generation in tight gas sands and  

Gale and Holder (2008) provided an observed range of fracture properties from Barnett 

Shale field. We utilize these previously suggested and observed ranges from field data 

for fracture network generation. The generated aperture range is between 3×10
-7

~ 3×10
-3

 

(ft) with a stochastic distribution. The fracture permeability and conductivity are then 

computed with cubic law from the aperture and permeability relationship (Bogatkov and 

Babadagli 2008).  

 

   

Figure 2.2. DFN Distribution with Fracture Clustering and Upscaled Permeabilities 

 

Fig. 2.2 shows the DFN model with fracture clustering and the corresponding upscaled 

fracture permeability for dual porosity flow simulation. A commercial geological 

modeling package is used for this purpose (Petrel
TM

). For this illustrative example, we 

assume that the fracture clusters follow the trend of original matrix permeability to keep 

direction of heterogeneity of the original single porosity model.  Fig. 2.3 shows the 

distribution of porosity in the matrix and in the fracture with the fracture porosity being 

much lower, as expected. 

 

   

Figure 2.3. Matrix Porosity and Fracture Porosity Distribution 
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A dual porosity gas flow simulation is carried out with the above-mentioned fracture 

and matrix properties. In the dual porosity models, the gas flow is assumed to be 

primarily in the fractures whereas the matrix serves as gas storage. The fluxes derived 

from the simulator are used to trace streamline trajectories and compute the propagation 

of the pressure pulse along the streamlines to visualize the well drainage volumes. By 

thresholding the propagation time at various levels, we can visualize the evolution of the 

well drainage as a function of time (Fig. 2.4a). The drainage volume of the well at a 

given time is computed by summing up the pore volumes of the grid cells intersected by 

the streamlines. Fig. 2.4b shows the drained volumes mapped onto the grids. The blue 

regions show the drained volumes whereas the red regions are the undrained volumes 

which can be targeted for infill drilling.  

 

1 year 3 year 10 year 25 year 

    

(a) Well Drainage given by Propagating Pressure Pulse along Gas Streamlines 

 

    

(b) Drained Volumes Computed by the Grid Blocks Intersected by the Streamlines 

Figure 2.4. Gas Streamlines, Well Drainage Propagation and Drained Volumes 
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Fig. 2.5 shows the evolution of the drainage volumes of the two wells as a function of 

time including the effects of the natural fractures (NF) as discussed above. In the same 

plot we have shown the corresponding drainage volumes without the natural fractures, 

that is hydraulic fracture only. The enhanced well drainage because of the interaction of 

the natural fractures with the hydraulic fracture can be clearly seen in this figure. One of 

the powerful features of our proposed method is that we can not only visualize the 

evolution of the drainage volume with time but also quantitatively examine the 

interaction of nearby wells on the drainage volume. This is also illustrated in Fig. 2.5(a). 

Recall that the second well came into production after three years and the impact of the 

second well on the drainage volume of the first well can be clearly seen here. In Fig. 

2.5(b), we can see approximately 30% increment in the drainage volume for this 

example because of the presence of the natural fractures.  

 

    

Figure 2.5. (a) Effect of Natural Fractures on Drainage Volume for Individual Wells  

and (b) on Total Drainage Volume 

 

It is rather obvious that the impact of the natural fractures on the well drainage will 

depend upon the specific distribution of the fractures and is likely to vary significantly 

from case to case. To illustrate this, we generated a more dense fracture distribution as 

shown in Fig. 2.6(a). The corresponding drainage volume evolution with time is shown 

in Fig. 2.6(b). We can clearly see the acceleration effects on the drainage volume 

because of the increased fracture permeability. 
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Figure 2.6. (a) High Fracture Density DFN (b) Effect of Fracture Density on the Drainage Volumes 

 

2.5 Depletion Capacity Map and Infill Targeting 

One of the objectives here is to identify undrained regions in the reservoir based on the 

drainage volumes of the existing wells. This will allow us to identify potential infill 

wells. Rather than just mapping the undrained volumes, we compute a depletion capacity 

index which also accounts for the reservoir properties such as permeability and pressure 

in the undrained regions. This is explained in more detail in the next section. The 

depletion capacity map shows the most productive location for the next infill well. This 

is illustrated in Fig. 2.7(a) for the two well example discussed above. The dark red areas 

indicate the most productive infill location for a potential third well. For comparison 

purposes, we carried out exhaustive simulations whereby the infill well was placed in 

every available grid cell and the EUR was computed. This required a total of 270 

simulations for this case. The map of the computed EUR is shown in Fig. 2.7(b). The 

similarity with the depletion capacity map is quite obvious here. However, the depletion 

capacity map required a single flow simulation and computation of the drainage volumes 

as discussed above. 
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Figure 2.7. (a) Depletion Capacity Map based on Undrained Volumes  

(b) EUR Map from Exhaustive Simulations 

 

2.6 Drainage Volume Calculations: Mathematical Formulation 

In this section we describe the mathematical foundations for the generalization of the 

radius of drainage concept (Lee 1982) using a high frequency asymptotic solution of the 

diffusivity equation. For clarity of exposition, we describe our formulation in terms of 

pressure although the same development can be made for gas reservoirs in terms of real 

gas pseudo pressure (Al-Hussainy et al. 1966). 

The transient pressure response from a heterogeneous permeable medium can be 

described by the diffusivity equation 
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Using Fourier transform of Eq. 2.1, we obtain the following equation in the frequency 

domain. 
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The goal of the asymptotic approach is to find a solution of the diffusive pressure 

equation that mimics the one found in wave propagation. Asymptotic ray theory (also 

known as the ‘ray series method’) forms the mathematical basis for geometrical ray 

theory and has been extensively used in both electromagnetic (Virieux et al. 1994) and 

seismic (Červený 2005) wave propagation. The method has also proved valuable in the 

analysis of front propagation in general (Adalsteinsson and Sethian 1995) and many of 

the concepts such as ray and propagating interfaces have direct counterparts in 

hydrology (Bear 1972) and petroleum engineering in terms of streamlines and flood 

fronts (Datta-Gupta and King 2007).  

The asymptotic solution for a transient pressure response assumes the following form 

(Datta-Gupta and King 2007; Vasco et al. 2000; Virieux et al. 1994). 
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In these expansions, )(x represents the phase of a propagating wave and thus, 

describes the geometry of a propagating front. Also, (x)kA  
are real functions that relate 

to the amplitude of the wave. The advantage of this form of expansion is that the initial 

terms of the series represent rapidly varying (high frequency, large  ) components of 

the solution and successive terms are associated with lower frequency behavior. Hence, 

the propagation of a sharp front is described by the initial terms of the summation. To 

emulate the propagation of a ‘pressure front’, we will consider only 0
th

 order expansion 

or the first term in Eq. 2.3. 

 

     xx
x

0,
~

AeP i          (2.4) 

 



 

 

21 

After inserting Eq. 2.4 into Eq. 2.2 and collecting terms with the highest order of i , 

that is,  2i , we obtain the equation for the front propagation in an isotropic 

permeable media, 

 

    12  xx          (2.5) 

 

where α(x) is the diffusivity, given by 
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Eq. 2.5 is actually a form of the Eikonal equation which explains a variety of 

propagation behaviors (Kline and Kay 1965; Sethian 1999a). It is interesting and 

important to note that Eq. 2.5 has a form similar to that of the streamline time of flight 

equation which describes the propagation of a neutral tracer (Datta-Gupta and King 

2007). 

 

  1ˆ  xv          (2.7) 

 

where ̂ (x) is the streamline time of flight and v is the interstitial velocity of a neutral 

tracer. By analogy with the time of flight formulation, we can see that the pressure wave 

fronts travel with a velocity given by (α(x))
1/2

. In fact, we can define a diffusive time of 

flight for the propagation of a pressure front as follows (Datta-Gupta et al. 2001; 

Kulkarni et al. 2001) 
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Note that the unit of diffusive time of flight in Eq. 2.8 is the square root of time which 

is consistent with the scaling behavior of diffusive flow. However, the diffusive time of 

flight is defined along the trajectories of a ‘pressure wave front’ ψ, which are given by 

the ray paths of the wave equation. These trajectories are not necessarily in the 

streamlines (Vasco and Finsterle 2004). Kim et al. (2009) has shown that for many 

practical applications, the pressure trajectories can be approximated by the streamlines.  

 

2.6.1 The Pressure Wave Front 

Lee (1982) defines the radius of investigation at any given time as the propagation 

distance of the ‘maximum’ pressure disturbance corresponding to an impulse 

(instantaneous) source. In this section, we examine the physical significance of a 

‘pressure front’ or a ‘diffusive’ time of flight and demonstrate its close correspondence 

to the concept of the radius of investigation. The time domain solution to the 0
th

 order 

asymptotic expansion for an impulse source is given by the inverse Fourier transform of 

Eq. 2.4. For a 2-D medium, we obtain the following 

 

   
   











tt
AtP

4
exp

2

2

0

xx
x






      (2.9) 

 

The above equation corresponds to the propagation of a pressure response for an 

impulse source in a 2-D medium. The pressure response at a fixed position, x, will be 

maximized when the time derivative of Eq. 2.9 vanishes. 
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This results in the following relationship between the observed time and the ‘diffusive’ 

time of flight for a two-dimensional medium. 
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 
4

2
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x
t          (2.11) 

 

Physically, the ‘diffusive’ time of flight is associated with the propagation of a front of 

maximum drawdown or build up for an impulse source or sink. This concept is closely 

related to the idea of a drainage radius (Lee 1982). In fact, it is interesting to note that for 

a homogeneous medium with radially symmetric streamlines, Eq. 2.11 reduces to the 

following. 

 

4

2

max

r
t            (2.12) 

 

where, r is the distance travelled by the pressure disturbance along streamlines and  is 

the diffusivity. Eq. 2.12 is exactly the same expression for the propagation time given by 

Lee (1982). To illustrate this correspondence further, we have shown in Fig. 2.8(a) the 

radius of drainage at three different times computed based on the diffusive time of flight 

for a single producing well in a 2-D homogeneous medium. To accomplish this, we first 

trace the streamlines and compute the diffusive time of flight along the streamlines as 

given by Eq. 2.8.  The diffusive time of flight is then converted to physical propagation 

time of the pressure pulse time using Eq. 2.11. The evolution of the drainage volume is 

given by contouring the propagation time. For comparison purposes, we have also 

shown in Fig. 2.8(b) the radius of drainage based on the expression given by Lee (1982). 

The close correspondence between these is quite apparent from these figures.  
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(a) Drainage Radius from the Diffusive Time of Flight 

 

 

Figure 2.8. Comparison between Diffusive Time of Flight Radius and Analytical Solution 

 

One of the major advantages of the asymptotic approach is that we can now extend the 

concept of radius of investigation to any arbitrary heterogeneous medium. This is 

illustrated in Fig. 2.9 It is interesting to note that although the streamlines are 

recomputed based on updated flux, the streamline geometry remains remarkably similar 

other than their evolution with time. The well drainage volume is computed by adding 

up the volumes of the grid cells intersected by the streamlines at a given time. 
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(b) Drainage Radius Computed from Lee (1982) 
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Permeability Field 0.01 day 0.05 day 0.1 day 

    

 

   

Figure 2.9.  Radius of Investigation and Drainage Volume Calculations in a Heterogeneous Field. 

 

Finally, it is worth pointing out that for a 3D medium, the time domain solution for an 

impulse source will be given by the following (Kulkarni et al. 2001). 

 

   
   











t

x

t

x
xAtP

4
exp

2

2

3
0






      (2.13) 

 

The propagation time for the pressure ‘front’ will now be related to the diffusive time 

of flight through the following expression. 
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2.6.2 Depletion Capacity Map 

One of our objectives in this paper is to optimize infill locations based on the 

undrained reservoir volumes. After computing the drainage volumes associated with 

existing wells, we can identify undrained region where the ‘pressure front’ has not 

reached. This can be seen in Fig. 2.9 for the illustrative example with a single well in a 

heterogeneous permeability field. For infill locations, instead of relying solely on the 

undrained volumes, we define a ‘depletion capacity’ that includes permeability, pore 

volume and reservoir ‘energy’ as indicated by the level of pressure drop at any given 

time. We create a 2-D map of ‘depletion capacity’ by a vertical sum for the undrained 

cells as given by the equation below: 

 

  
k

kavgijporoijijij ppVkDC )(,       (2.15) 

 

The 2-D areal map of the depletion capacity can now be used as a guide to locate 

potential infill locations. In the synthetic example discussed before, we have already 

demonstrated the close correspondence of this depletion capacity map with exhaustive 

flow simulations. 

 

2.7 Field Application of Optimal Well Placement 

In this section, we illustrate the application of our approach with a tight gas field 

located at the Rocky mountain region. The section of the field under consideration has 

more than 25 years of producing history and 85 production wells. The matrix 

permeability is shown in Fig. 2.10(a). Because one of our objectives is to examine the 

role of natural fractures, a discrete fracture network is generated along the high matrix 

permeability regions. Fig. 2.10(b) also shows the generated DFN and upscale 

permeability.  
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(a) Matrix Permeability Distribution 

 

  

(b) Generated DFN and Upscaled Permeability Field 

Figure 2.10. Field Permeability and Discrete Fracture Network (DFN) Generation 

 

A dual porosity model is built using the matrix and fracture permeabilities and 

streamlines are generated based on the flux field in the fractures obtained from the dual 

porosity finite difference simulation as shown in Fig. 2.11(a). For each simulation time, 

streamlines are started from the center of each grid cell and traced back to the originating 

producer.  The diffusive time of flight is also computed along streamlines and converted 

to physical time required to drain the grid cell as given by Eq. 2.14. For computing the 

reservoir drained volumes, the drainage information is mapped into grid blocks as shown 

in Fig. 2.11(b). The summation of volumes inside the drainage boundary at a given time 
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will be the drainage volume at that time. In Fig. 2.11(b), we have illustrated the grid 

blocks will be drained after 35 years of production. 

 

   

Figure 2.11. (a) Diffusive Streamline Time of Flight and (b) Drainage Grid Blocks 

 

Because the streamlines are regenerated and drainage volumes are recomputed as a 

function of time, we can examine the evolution of drainage volumes of individual wells 

based on the streamlines originating from the well. This is shown in Fig. 2.12.  We can 

see that there is a complex interference of the producing wells. In fact, we can see that 

the drainage volumes of some of the existing wells drop substantially when a new well is 

brought in. This seems to indicate that some of the new wells, at least to some extent, are 

‘stealing’ from the existing producing well. Such interference is often not adequately 

accounted for computing the EUR associated with new wells.   
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Figure 2.12. Drainage Volume in Each Well Location 

Finally, as mentioned before, we can compute a depletion capacity map based on the 

undrained volumes and production potential in different parts of the reservoir. This is 

shown in Fig. 2.13. Such a map can greatly facilitate infill drilling decision. The red 

areas in Fig. 2.13 indicate the regions that have not been drained during 35 years and are 

the most optimal infill target. 

 

 

 

Figure 2.13. Depletion Capacity Map for Next Infill Well 
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2.8 Field Application of Optimal Hydraulic Fracture Stages 

In this section, we discuss the field application of the concept of the drainage volumes 

to a tight gas reservoir in the Cotton Valley Formation. Specifically, we utilize the well 

drainage volumes to optimize the number of hydraulic fracture stages. We also show that 

the results of the drainage volume calculations to optimize the completion strategy are 

similar to the conclusions arrived from calculations based on the production forecast 

from finite difference simulator. The main advantage of the drainage volume approach is 

that it allows to visualize evolution of the well drainage with time and also to examine 

the interference between fracture stages. All these can facilitate well completion 

optimization and also well placement optimization based on undrained volumes in the 

reservoir (Kang et al. 2011). 

The Cotton Valley group represents the first major influx of Clastic  sediments into the 

ancestral Gulf of Mexico (Dyman and Condon 2006). Reservoir properties and 

production characteristics identified two Cotton Valley Group sandstone trends across 

northern Louisiana and East Texas: a high permeability blanket sandstone trend and a 

down-dip low permeability massive sandstone trend. The study well is located in low 

permeability sandstone trend in Louisiana.  

 

                  

Figure 2.14. Schematic of the Two Phase Model for History Matching 

 

An existing vertical well in the field had about two years of production history. This 

well was history matched by building a 3D two phase reservoir model. The schematic of 
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the model is as shown in Fig. 2.14. After three years of production of the vertical well, a 

horizontal well was planned. The purpose of this study is to optimize the completion 

strategy of the planned horizontal well while taking into account any potential 

interaction with the existing vertical well. 

Layer 1 in the model in Fig. 2.14 shown above is 200 ft thick with 7.6% porosity and 

45% water saturation. The second layer is 40 ft thick with 11% porosity and 98% water 

saturation. The model was constrained to actual gas production. History matching was 

performed to match the model BHP and water production to the observed data in Fig. 

2.15.  

 

  

(a) Gas Production HM (V1) (b) Water production HM (V1) 

Figure 2.15. Production Rate History Matching Results 

 

As the produced water is a combination of the formation water and fracture fluid, 

Water Gas Ratio (WGR) was used as a matching parameter instead of cumulative water. 

The well was treated with 685       of fluid and 1        of 20/40 white sand with 

tail-in of resin coated sand. The 1-ft wide hydraulic fracture was incorporated in the 

model (using local grid refinement) with an equivalent fracture conductivity of 0.1 inch 

wide hydraulic fracture created in the field conditions. The existing vertical well had an 

initial production of about 1.6        with a well head pressure of about 1,500    . 
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The well has a cumulative gas production of about 0.35     . The surface pressure data 

was used to estimate flowing bottom-hole pressure (FBHP) after adequately correcting 

for liquid loading effects. The model pressure match to calculated FBHP is shown in 

Fig. 2.16. 

 

Figure 2.16. Bottom Hole Pressure History Match for Well V1 

 

The results of the calibrated model are shown in Table 2.1. Two models with fracture 

half lengths estimate of (500 ft and 800 ft) along with permeability for gas layer and 

water layer are shown. This was done to get a better estimate to design the surface 

facilities required for producing these wells.   

 

Table 2.1. Range of Permeability and Fracture Length from Calibrated Model (V1) 

Layer fL = 500 ft fL = 800 ft 

1 0.0075 md 0.0035 md 

2 0.0350 md 0.0190 md 

 

This calibrated model (           ) was used to estimate the drainage volumes from 

streamlines at the end of the history match. The planned horizontal well (H1) had a 

lateral length of 4000 ft. The completion strategy for the horizontal well envisaged six 
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(Case 1), eight (Case 2), ten (Case 3) and twelve (Case 4) hydraulic fracture stages. 

These hydraulic fracture stages were spaced equally. The existing vertical well along 

with different completion options in the horizontal well enabled examining the 

interference effects and helped design an optimal number of hydraulic fracture treatment 

stages. The forecast for the horizontal well was made with an initial production of 8 

       for 35 years of well life for a constant flowing BHP of 1,000    . Based on 

these forecast, DTOF was calculated for this time period and drainage volume was 

estimated. Fig. 2.17 shows the drainage volume computed from DTOF at 35 years cut-

off for existing vertical well (V1) and planned horizontal well (H1).  

 

 

Figure 2.17. Drainage Volume (RB) based on DTOF 35 years Cut-off for Well V1 and H1 

 

The interference between the existing vertical and new horizontal well can be seen 

from the plot. In particular, the drilling of the horizontal well clearly interfered with the 

drainage volume of the existing vertical well and we see a significant reduction in the 

drainage volume which is reallocated to the horizontal well. This can also be seen from 
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the 3-D evolution of the drainage volume along streamlines. In Fig. 2.18 we have shown 

the drainage volumes at three different times corresponding to 6 and 10 stages of 

fractures. The gradual interference of the horizontal and vertical well drainage volumes 

is obvious here. 

 

Stages 
1 Month 5 Years 35 Years 

 

6 

   

10 

   

Figure 2.18. Comparison of Streamlines based on DTOF at the End of 1, 5 & 35 years  

for Different Completion Options 

 

We can quantify the drainage volume by summing up the pore volumes of the grid 

cells intersected by the streamlines at a given time. This is shown in Fig. 2.18 as a 

function of the number of hydraulic fracture stages at the end of 35 years. With 

increased fracture stages, we access more drainage volume until 10 stages beyond which 

we reach diminishing returns. This result shows that ten stage hydraulic fracture strategy 

is the most optimal completion that can help maximize the drainage volume. 
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Figure 2.19. Drainage Volume for Different Hydraulic Fracture Stages for Horizontal Well (H1) 

 

2.9 Summary and Conclusions 

We have presented a systematic approach to well placement in naturally fractured tight 

gas reservoirs based on the well drainage volumes computed from dual porosity 

numerical simulation. Specifically, we have extended the radius of drainage concept 

(Lee 1982) to arbitrary heterogeneity and well conditions by utilizing the gas streamlines 

derived from dual porosity numerical simulation. This allows us to visualize the 

undrained regions and optimize well placement based on a single flow simulation. The 

results have been shown to be consistent with well placement optimization through 

exhaustive flow simulations.  

We have also presented a systematic approach to drainage volume calculations for 

horizontal wells in the presence of multistage fractures. Specifically, we have extended 

the radius of drainage concept (Lee 1982) to arbitrary heterogeneity and well conditions 

by utilizing the gas streamlines derived from finite difference simulation. This allows us 

to optimize well completions by examining the drained volumes as a function of the 

number of fracture stages.  

Some specific conclusions from this study are as follows. 

 

1. Using a high frequency asymptotic solution of the diffusivity equation, the 
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concept of radius of drainage (Lee 1982) has been generalized to arbitrary 

heterogeneous medium and general flow conditions by examining the 

propagation of a ‘pressure front’ corresponding to an impulse (instantaneous) 

source along gas streamlines. The gas streamlines can be traced from the flux 

field of a finite-difference flow simulation.  

 

2. Visualizing the well drainage is a physical and intuitive way of examining the 

influence of existing wells and their mutual interference. By summing up the grid 

cells intersected by the streamlines originating from a given well, we can 

quantitatively estimate the well drainage volume, its evolution with time and 

potential interference from wells in the vicinity.  

 

3. We have used a discrete fracture network model to examine the role of natural 

fractures in the well drainage volumes. As expected, the results show that the 

presence of natural fractures tends to enhance the well drainage volumes and 

accelerate production depending upon the distribution and orientation of 

fractures.  

 

4. Based on the undrained reservoir volumes and reservoir static and dynamic 

properties, we have defined a ‘depletion capacity’ map for rapid identification 

and optimization of infill locations in tight gas reservoirs. The power and utility 

of the method has been demonstrated using both synthetic and field applications. 

 

5. We have demonstrated the use of drainage volume concept in optimizing number 

of fracture stages in the Cotton Valley formation. The incremental drainage 

volumes with the number of fracture stages indicate that eight to ten hydraulic 

fracture stages indicate the most optimal completion strategy for the horizontal 

well studied from the field example. 
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CHAPTER III      

A MODEL SEGMENTATION FROM SPECTRAL CLUSTERING: NEW 

ZONATION ALGORITHM AND APPLICATION TO RESERVOIR HISTORY 

MATCHING 

 

3.1 Purpose 

Proper characterization of reservoir is an important step for optimization and field 

management. A purpose of this research is proposing a novel zonation criterion in the 

history matching stage. Typically we apply a multiplier in the large scale field model and 

it has been subjective to choose the parameter multiplicative region. Many industry 

practices have applied a box multiplier near the well region or on the geological key 

features; fault or flow barrier. Many cases applied a single multiplier over whole 

reservoir field. This box multiplier approach might improve matching simulation to 

observation, but it violates prior model’s important features and disengaged geologic 

continuity between different region boundaries. That has been a key issue in history 

matching process for geologists and reservoir engineers. It is also clear that this broken 

links, between the prior and update model’s static key features, will decrease forecasting 

and optimization reliability.  

Our goal in the paper is minimizing static feature’s loss by proposing reasonable 

zonation criteria. In other words, by using proposed zonation, we will be able to keep 

main features of the prior model. At the same time, we can ensure improved history 

matching quality after history matching step.  

Zonation is a technique that partitions the reservoir region based on certain criteria. In 

that sense, graphic partitioning provide a good decision gauge to segment regions while 

keeping prior model’s main heterogeneous and/or connectivity features; such as high or 

low permeable channel and barrier. For this purpose, we introduce graphical partitioning 

for reservoir segmentation based on grid properties and/or connectivity. The 

heterogeneity and connectivity are closely related to flow dynamics of a reservoir. 
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For history matching, we integrate genetic algorithm (GA) for calibrating reservoir 

models. We demonstrated the strength and applicability of proposed zonation in 

reservoir history matching problem, with both synthetic example and the Brugge field 

example. This zonation approach from spectral clustering theory can enhance speed up 

of global scale model calibration, which is common in hierarchal history matching 

approach and in industry practice. At the same time, we can keep prior model’s main 

information. Another advantage of spectral clustering is its adaptability to every grid 

properties, even dynamic data at certain time.  

The proposed spectral clustering has a clear edge detection power in smoothly varying 

high and low valued regions. Hence, the proposed approach will provide potential 

zonation criteria for reservoir history matching problems. 

 

3.2 Introduction 

 The clustering or grouping algorithm is defined as “minimize the similarity between 

groups and maximize the similarity within a group”. A graph partitioning from spectral 

theory provides a fast way to decompose a domain for local grouping. As a matter of 

fact, the spectral clustering has been used in various engineering fields; supercomputing, 

machine learning, logistics, internet shopping, social network service and more. Because 

of that, spectral clustering algorithm has profound theoretical background and is 

comparatively easy to implement in new area.  

The spectral clustering is an algorithm that partitions an affinity matrix with 

eigenvectors of a graph. Pothen et al. (1990) showed that the ‘second’ smallest 

eigenvalue will be positive if the graph G is connected. The corresponding second 

eigenvector relates to the vertex and edge connectivity of a graph. Hagen and Kahng 

(1992) applied the ratio cut partitioning and clustering for VLSI circuit design. They 

adopted the spectral ‘ratio cut’ clustering to minimize the number of inter block signals. 

Shi and Malik (2000) proposed a new clustering algorithm, ‘normalized cut’ and 

compared with ‘ratio cut’ using some sample images. They examined the relationship 

with ‘normalized cut’ and other eigenvector based partitioning algorithm. The 



 

 

39 

‘normalized cut’ algorithm can balance between ‘finding clumps’ and ‘finding splits’. 

Wang and Siskind (2003) proposed an improved ‘ratio cut’ algorithm in image 

segmentation. They proposed a new cost function to minimize for optimal clustering. 

von Luxburg (2007) introduced and summarized the underline background theory in a 

tutorial paper. She also proposed many new algorithms in the spectral clustering area 

(Von Luxburg 2010; von Luxburg et al. 2011). Buhler and Hein (2009) proposed the 

spectral clustering by using graph p-Laplacian. They proved that their Laplacian 

construction is at least equal or better than normal square Laplacian (also called standard 

cut). Recently, Hein and Bühler (2010)  proposed a novel spectral clustering based on 

the Laplacian. They generalized a non-linear standard graph Laplacian and verified 

capturing key feature in a graph image. Fig. 3.1 shows how the spectral clustering 

generates segmentation on a sample image. Briefly, it captures the main features of 

image and cut the edge based on optimization criteria from image pixel information. The 

spectral clustering theory has been extensively applied and verified in other industries 

with its theory and applications. 

 

   

(a) Original Image (b) Computed Edges (c) 10 Clusters 

 

(d) Leading Eigenvectors (2
nd

 to 6
th

 from left) 

Figure 3.1. Illustration of Spectral Image Clustering 
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In the reservoir history matching field, various zonation algorithms have been 

proposed for partitioning reservoir models. Huang et al. (2001) proposed cluster analysis 

for constructing fluid flow zones from seismic attributes. They used the spatially dense 

set of geophysical attributes to create spatial zones. Agunwoke et al. (2004) suggested 

the reservoir flow zonation based on similar geologic, physical property from well 

logging data. They applied a statistical approach based on geologic litho-stratigraphic 

correlation using gamma ray and resistivity logs. Brun et al. (2004) proposed the 

‘Gradzone analysis’ to impose geological constraints during the gradient based history 

matching process. They generated the ‘Gradzone’ based on spectral analysis of the 

second derivative (Hessian) matrix from the objective function. Cominelli et al. (2007) 

proposed a gradient-based multiscale parameterization method. They used the multiscale 

zone as history matching parameter. D'Windt (2007) proposed a hybrid approach to 

compute permeability based on Carman-Kozeny equation. His suggested an approach for 

defining ‘flow zone indicators’ for identifying rock types. Most of these zonal 

approaches attempt to reduce the size of model parameter or dimension of history 

matching problems with certain proposed grouping or categories. Recent work of Bhark 

et al. (2011a) introduced a ‘ratio cut’ for reservoir modeling application. This zonation 

algorithm concept from spectral clustering can be found in their work. In this paper, we 

expand this spectral zonation algorithm and verify the applicability for the reservoir 

history matching problems.   

    

3.3 Approach 

Our proposed research consists of the following steps: (1) construct adjacency based 

Laplacian to capture spatial variability in subsurface properties (2) use graph partitioning 

techniques to create zonation and find cutting edges (3) apply the partitioning with 

history matching algorithms. The graphic cut from the model geometry and/or 

heterogeneity is not arbitrary and derived from optimization with graphic cutting metric. 
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 Construct Affinity Laplacian We construct affinity Laplacian from the prior 

connectivity and/or heterogeneity information (Bhark et al. 2011a). The 

connectivity strength between grid points should be defined based on geometry 

and heterogeneity. In this paper, we introduce three different ways to define the 

affinity. Grid Connectivity Laplacian (GCL) is based on pure connection 

between the adjacency grids. Adjacency Based Laplacian (ABL) is constructed 

with model heterogeneity and Euclidean distance. These two Laplacian are 

mostly used on graphic partition algorithm. A new Prior-weighted Connectivity 

Laplacian (PCL) is also proposed in this paper. This Laplacian has both 

connectivity and prior information, which are important key factors in reservoir 

flow dynamics.   

 

 Model Segmentation from Spectral Clustering From eigenvalue decomposition 

of the affinity matrix, the leading eigenvectors can be attained. The ‘second’ 

eigenvector, more exactly ‘eigenvector corresponding to smallest positive 

eigenvalue’, will be used for spectral clustering. The reason of using ‘second’ 

vector is described more details in the mathematical formulation section. The 

segmented zones represent the dissimilar facies or disjointed region in the 

subsurface domain. 

 

 Deciding clustering algorithm and number of Segments The spectral clustering 

itself is a heuristic approach. Also, there are many algorithms in the spectral 

clustering area and there will return similar but different zones. Note that we use 

the clustering to propose history matching zonation, not just for clustering itself. 

In other words, we should decide in meaningful zones for history matching. It 

requires some experiments and deciding the number of segments is a trade-off 

between history matching computation time and resolution. We also illustrate 

various zonation results to explain these issues.      
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 Application to History Matching Once we segmented the reservoir model, we 

can calibrate prior model with respect to dynamic observation or seismic data, 

which is a routine process in history matching practices. We can use gradient 

based optimization approach (Conjugate Gradient or L-BFGS) or derivative free 

methods (EnKF or GA), which are very popular and have been applied in many 

history matching cases. Our selected algorithm is the well-known evolutionary 

optimization, Genetic Algorithm (GA), to find optimal zonal multiplier for 

history matching.    

 

From the image clustering theory (Hagen and Kahng 1992; Shi and Malik 2000; von 

Luxburg 2007), the ‘second’ eigenvector, or ‘the smallest positive eigenvalue and its 

corresponding eigenvector’ represent model partitioning. With this second vector, we 

can suggest an optimal reservoir model zonation for the next stage. This approach is 

particularly applicable when we use a hierarchal history matching approach (Massonnat 

et al. 2002; Yin et al. 2010). Our segmentation method can propose optimal 

multiplicative zonation in the global history matching stage with low resolution. Then, 

we can further calibrate with local fine scale algorithm, for example, streamline assisted 

history matching (Vasco et al. 1999) or reparameterization approach (Bhark et al. 

2011a). 

     

3.4 Illustration of Procedure 

We illustrate using a simple 5 spots synthetic example to verify our proposed 

algorithm. In this model, there is a water injection well in the middle (I1) and four 

producing wells at each corner as in Fig. 3.2. In this history matching problem, our 

objective function is reducing water cut misfit between observation data and calculated 

response from the finite difference simulator by calibrating gird block permeability (  ).    
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Figure 3.2. Initial Model with Heterogeneous Permeability Field 

 

3.4.1 Construction of the Affinity Laplacian Matrix and Computing the Second 

Eigenvector 

First step is constructing the affinity Laplacian based on grid property and/or 

connectivity. Fig. 3.3 illustrates the leading eigenvectors from an eigenvalue 

decomposition of the Laplacian. Note that the first eigenvalue is always zero and its 

corresponding eigenvector is a constant because the graph Laplacian are always positive 

semi-definite (von Luxburg 2007). Among these leading eigenvectors, the ‘second’ 

eigenvector, shown inside the box will be used for spectral clustering. 

 

 

 

Figure 3.3. Leading Eigenvalue and its Corresponding Eigenvectors; Increasing Order 
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3.4.2 Model Segmentation from Spectral Clustering 

By using the second eigenvector, the optimal partitioning can be achieved (Weiss 

1999) and this is illustrated in Fig. 3.4. If we compare Fig. 3.2 and Fig. 3.4, the 

segmented pieces represent the main heterogeneity trends. This is a key advantage that 

we can obtain from spectral clustering. We can preserve main heterogeneity features, 

which come from the underlying geostatic and petro-physical analysis. What we attempt 

to preserve the features during the history matching process.  

In Fig. 3.4, one more important point to note is the way to do sub-partitioning from 

fewer to more segments, i.e. from the segments 2 to 3 or 4. It will subdivide it in existing 

segment to generate new segments by ‘bi-partitioning’ (Shi and Malik 2000; Wang and 

Siskind 2003). This is how the spectral clustering works, and we will discuss it more 

details in the mathematical formulation section.  

    

 

Figure 3.4. Segmented Model (Ratio cut) 

 

3.4.3 Application to History Matching 

In this section, we utilize the generated segments for history matching. To verify the 

robustness of our proposed zonation, we compared our zonation with box-type 

multipliers, common in manual history matching as shown in Fig. 3.5. In both cases, we 

use 4 multiplier zones with Genetic Algorithm (GA) for history matching. The specified 

population size is 20 and the GA is run until 4th generation in both cases. 

cluster 2 cluster 3 cluster 4 cluster 5 cluster 6

cluster 7 cluster 8 cluster 9 cluster 10 cluster 11
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Figure 3.5. Tested History Matching Segmentations; Box Type (Left) and Proposing (Right) 

 

The Genetic Algorithm (GA) is an evolutionary algorithm for both constrained and 

unconstrained optimization. The GA mimics the process of natural evolution: 

inheritance, mutation, selection and crossover. After several stages of evolution, this 

algorithm returns an improved population compared to the initial population and best 

fitting solutions. Fig. 3.6 illustrates the best fitting solution from both proposed zonal 

history matching and the conventional box type segmentation in Fig. 3.5. 

 

 

Figure 3.6. Updated Field Watercut Response after Genetic Algorithm (GA)  
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It is quite obvious that we can get better solution after GA optimization in both cases. 

Although, the proposed spectral zonation gives closer fitting solution in Fig. 3.6, it is 

difficult to tell which one is better because different number of population or generation 

make difference in the GA. But if we compare the final history matching quality as in 

Fig. 3.7, it is quite evident why our approach is providing more reasonable zoning 

criteria. Even box type multiplier can fit the dynamic response but it loses the prior 

model’s main heterogeneity trends (Fig. 3.7; upper). Also, we need to change a lot from 

the original permeability; see the ΔPerm Field. Such discontinuity of the original 

model’s main feature is quite often observed in the manual history matching results. 

From this example, it is clear that the new proposed algorithm can provide better zonal 

criteria for history matching.  
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Figure 3.7. Compare History Matching Results 
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3.5 Mathematical Formulation 

A graph G is defined as        , where V notates the vertex and E denotes the 

edge, can be separated into two subgraph     ̅  set by simply drawing a cutting edge on 

the graph. The degree of dissimilarity of these segmented graphs can be computed as a 

‘cut’ function, defined as the total weight of the edges that has been removed after the 

segmented in Eq. 3.1 below.  

 





CvCu

vuwCCcut
,

),(),(          (3.1) 

 

The optimal segmentation is finding the ‘optimal cut’ of a graph G, where the 

generated edge minimizes this ‘cut’ value between two clusters. The procedure is : (1) 

constructing an affinity Laplacian matrix based on point connectivity (2) decomposing 

the Laplacian with eigenvalue decomposition (3) segmenting domain from the second 

eigenvector, known as Fiedler vector (Fiedler 1973), with graphic optimization 

algorithm. 

 

3.5.1 Constructing Affinity Laplacian 

The affinity Laplacian ( ) is always symmetric and positive semidefinite, is defined as 

 

              (3.2)  

 

In this formulation, D is the degree of affinity, L is Laplacian of system (also, called as 

Kirchhoff operator) and W is the connectivity weight matrix (or conductance matrix) 

between grid points, where matrix component        . The degree matrix D is a 

diagonal matrix, which defines the degree sum of connectivity strength (  ) between one 

point (i) and others (   ) as in Eq. 3.3.  
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         (3.3) 

 

We propose three different ways to formulate the connection weights (also called 

Affinity) between the grid points; Grid Connectivity based Laplacian (GCL), Adjacency 

Based Laplacian (ABL) and Prior-weighted Connectivity Laplacian (PCL). 

 

Grid Connectivity based Laplacian (GCL) 

The spectral mesh has been proposed in the field of machining learning and computer 

vision (Wu 2005; Zhang et al. 2010). This mesh grid construction has been applied to 

identify connectivity based parameterization (Bhark et al. 2011b; Bhark et al. 2011c). 

The generated Laplacian is used for reparameterization using leading eigenvectors for 

parameterization, not spectral clustering. As in Eq. 3.4 below, the constructed Laplacian 

has immediate neighboring information on each matrix entry and this construction is 

powerful in complex geometry models including unstructured grids.  
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aij
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       (3.4) 

 

Adjacency Based Laplacian (ABL) 

The adjacency based measure is defined as the product of two exponential functions, 

which provide similarity measure of paired grid block i and j as in Eq. 3.5 below (Bhark 

et al. 2011a; Shi and Malik 2000). First term of Eq. 3.5 measure the distance between 

block i and j, second term is the corresponding property difference (permeability, 

porosity, pressure and so on). The adjacency beyond the Euclidean distance limit ‘r’ is 
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always zero. Note that both the distance and property have value of one if two points are 

located at the same coordinate or have the same property value. Also, each term 

diminishes very fast if the difference is increasing due to the exponential form.       
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In Eq. 3.5, variables    and    are defined as free parameters in spectral theories 

(Weiss 1999). There is no rigorous formulation but several proposals to select those two 

parameters and Euclidean cut off distance r. In fact, the spectral clustering performance 

is heavily dependent on the proper combination of these free parameters. Previous work 

of Bhark et al. (2011a), select these three parameter indirectly. They picked parameters 

such that two terms are ‘similar’ far from a point, where the parameters can be regarded 

as ‘correlation thresholds for the property difference and distance between cell pairs and 

both zero beyond distance r’. Fischer and Poland (2004) proposed two different selection 

methods: manual using distance histogram or context-dependent similarity. Shi and 

Malik (2000) recommended to set the values between 10 to 20 percent of the parameter 

or distance range. 

An interesting point is that if we select two free parameters as big numbers, the 

calculated adjacency is approaching very fast to the GCT affinity value (     ) and 

will lose heterogeneity and/or distance measure. So, a proper combination of two free 

parameters as well as the cut off distance plays an important role to capture the prior 

information. 

Our proposed approach is using variogram to select these three parameters. First, the 

Euclidean distance cut off ‘r’ is calculated from the ‘range’ of variogram analysis 

(Gringarten and Deutsch 1999) as shown in Fig. 3.8. 
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Figure 3.8. Variogram Model and Range (r) 

 

Once we decide the cut off distance, we can easily decide the distance parameter   . If 

we take a negligible value (ε, for example 0.001) at the boundary (r), the free parameter 

for distance (  ) can be calculated as in Eq. 3.6; 

 

 
 


ln

2r
I           (3.6) 

 

The free parameter for property    can be calculated initially from the range of grid 

property value as in Eq. 3.7. This is an experimental formulation and comparable to 

suggestion of Shi and Malik (2000).  

 

 02.0~01.0)(  PipP SwherefrangeS     (3.7) 

 

In Eq. 3.5, we use different measures with    norm but different order of definition is 

possible, i.e.          and so on with new free parameters. Basically, higher order 

norms emphasize more the difference of grid property and/or connected distance. 

Ideally, the optimal combination for free parameters in this ‘Gaussian kernel’ type 

function is to determine variables    and    such that both exponential terms diminish to 

similar insignificant values (ε) near the range (r). 

Lag distance (h)

Range (r)

Nugget
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Prior weighted Connectivity Laplacian (PCL) 

We propose a new affinity Laplacian construction as in below Eq. 3.8. This new 

formulation has both grid connectivity from GCL and prior model’s heterogeneity as in 

ABL. In other words, the PCL formulation can capture faulted geometry, which is 

missing in ABL and can include prior heterogeneity, which is missing in GCL. The two 

free parameters in the formulation (Eq. 3.8) can be decided by the same approach as 

with ABL construction even though there is no distance cut off ‘r’ term in Eq. 3.8.   
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This simple example illustrates how we construct the affinity Laplacian matrix in the 

simple 9 (3×3) grid data points as in Fig. 3.9. The lines between data points show the 

weighted connectivity and its strength (   ) from Eq. 3.4, 3.5 and 3.8. 

 

 

Figure 3.9. Discrete Grid Points (3×3) 
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The constructed Laplacian in Fig. 3.10 illustrate the information captured from the 

same data points in Fig. 3.9 by different definition of affinity. Note that diagonal term in 

each matrix (  ) is the sum of the non-diagonal entries. PCL has the same matrix entry 

points as in GCL and have same weight as in ABL matrix between adjacency points. 

Only ABL takes diagonal connection in the affinity construction. Also in ABL, points 

between non-diagonal (for example, 1 to 6 or 1 to 9) can have non-zero connectivity 

values if Euclidean distance is inside the cut off ‘r’ and there exists a connectivity value 

from Eq. 3.5.    

 

Grid Connectivity 

Laplacian (GCL) 

Adjacency Based Laplacian  

(ABL) 

Prior-weighted 

Connectivity Laplacian 

(PCL) 

   

Figure 3.10. Affinity Laplacian Matrix Construction 

We illustrate how different affinity constructions affect the second eigenvector and 

corresponding segmentation results from the model in Fig. 3.11 (heterogeneous 9-spot 

synthetic model, Fig. 3.2); the grid connectivity Laplacian (GCL) performs cutting based 

on equal weigh on each grid. Both adjacency based Laplacian (ABL) and prior-weight 

connectivity Laplacian (PCL) take into account the model heterogeneity in the generated 

segments. An interesting point in Fig. 3.11 is that the GCL clustering provides exactly 

the same clusters as in the box zones in Fig. 3.5 (left), where we assumed that we don’t 

have any prior knowledge and do a blind cutting.  
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Figure 3.11. Second Eigenvector and Segmentation Results (Ncut) from Different Affinity Laplacian 

 

3.5.2 Graphic Cut Algorithm 

The fundamental concept of graph partitioning is solving a minimum cut problem. To 

get the optimal solution in this NP hard (von Luxburg 2007), Non-deterministic 

Polynomial-time hard in computational complexity theory, minimization problems. The 

spectral relaxation of ‘ratio cut’ (Hagen and Kahng 1992) and ‘normalized cut’ 

algorithm (Shi and Malik 2000) have been suggested and used as standard graphic 

partitioning criterion. Under the baseline of these two main frame works, many 

improved algorithms have been proposed (Buhler and Hein 2009; Fischer and Poland 

2004; Hein and Bühler 2010; Wang and Siskind 2003). In this section, we explain the 

basic idea of two representative partitioning and their improvement by using Cheeger 

Constants (Cheeger 1970). 

Explaining ‘graphic cut algorithm’ is related to graphic theoretic language. So, we first 

clarify some important definitions. The notation | |  is the size of   defined by its 

number of vertices and        is the size of   by summing over the weights of all edges 

attached to the vertices.  
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 Ratio Cut (Rcut) 

The ratio cut algorithm is to find a ‘cut’, which is relaxed by the vertices between 

clusters (Hagen and Kahng 1992). The size of a subset C in a graph G is measured by its 

number of vertices | | ; 

 

C

CCcut

C

CCcut
CCRcut

),(),(
),(        (3.9)

  

 

 Normalized Cut (Ncut) 

The size of clustering is measured by the weights of its cutting edge (Shi and Malik 

2000). The normalized cut is relaxed by the weight of edges between clusters. The main 

difference between ‘ratio’ cut and ‘normalized’ cut is using un-normalized Laplacian 

(ratio cut) versus the normalized one (see next section for detail).  
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 Ratio Cheeger Cut (RCC) 

The Cheeger constant is a measurement of ‘bottleneckedness’ in a graph (Cheeger 

1970). The baseline of Cheeger Constant is defining isoparametric inequality in a 

Riemannian geometry. Hein and Bühler (2010) proved that the Cheeger cut is at least as 

good as standard spectral clustering with expensive of computation time, which is 

explained with the Cheeger inequality (Amghibech 2003). They solve the nonlinear 

eigen problems (Cheeger Cut) with Inverse Power Method (IPM). In the Ratio Cheeger 

Cut (RCC), the balanced cut is optimized by the minimum cardinality of the clusters; 
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 Normalized Cheeger Cut (NCC) 

The Normalized Cheeger Cut (NCC) is optimized by the minimum volume of clusters. 

Recall that volume is summation of degree in a grid (Buhler and Hein 2009; Hein and 

Bühler 2010). From spectral theory, ‘normalized cut’ is statistically more consistent than 

‘ratio cut’ (von Luxburg 2007) and ‘Cheeger cut’ performs at least equal to ‘standard’ 

cut or better in most cases (Hein and Bühler 2010). Hence, NCC is recommended for 

first trial among the four cutting algorithms. 
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We illustrate the segmentation results in Fig. 3.12 from the same ‘second’ eigenvector. 

Also, grid property (permeability) field is the same as Fig. 3.2. It is obvious that 

different algorithm returns different relaxation cut as illustrated in Fig. 3.12.  
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(a) Calculation Illustrations 

Figure 3.12. Second eigenvector and Segmentation results by Different Clustering Algorithms  

(using Adjacency Based Laplacian) 
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(b) Cutting Results from Different Algorithms 

Figure 3.12. Continued 

You may raise a question: “which algorithm is better one?” or “How many clusters do 

we have to use for history matching?”. The selection of algorithm and number of optimal 

clustering will be discussed in the ‘nature of graph partitioning’ section. 

 

3.5.3 Optimal Partitioning with Second Eigenvector 

For the graph partitioning, we use the ‘second’ eigenvector of the affinity Laplacian, 

constructed from the connectivity definition. The reason why we use the ‘second’ 

eigenvector can be clarified with both physical and mathematical explanations (Shi and 

Malik 2000; von Luxburg 2007). Note that K-means clustering, also used in many 
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clustering problems, is different from spectral clustering and it will not use ‘second’ 

eigenvector (Fischer and Poland 2004). 

 

 Physical Explanation 

A physical analogy is provided by comparing a spring-mass system (Shi and Malik 

2000) or vibration of a string as in Eq. 3.13. We can relate graphic nodes as physical 

nodes and graph edges as moving part of string inside the node as in Fig. 3.12. Imagine 

that if we shake this string with a strong oscillation frequency, the stationary nodes will 

not move at steady state and will divide the region into subpieces as in Fig. 3.13. In the 

equation, x is a location in a string, y is magnitude of vibration, t is time of a certain 

moment,   is linear mass and T is acting tension on each side of the string. 
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From general solution of this wave equation with fixed ends, where    is vibration 

frequency,    is length of the string and    is nth mode; 
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The steady solution of Eq. 3.14 can be derived by plugging into Eq. 3.13; 
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(3.15) 

 

Eq. 3.16 below satisfies the steady state of string vibration with non-trivial terms of k
th

 

harmonic mode; 
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The amplitude component    gives the steady state displacement of the fundamental 

vibration in each k
th

 harmonic mode, which is eigenvector of a system. We also can 

derive harmonic frequency    that relates the energy (  
 ) to sustain each vibration mode, 

where it minimized if k is smallest in Eq. 3.17; 
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Figure 3.13. Fundamental Vibration Modes of Sting Problem; Leading Eigenvectors 

 

Therefore, the first mode is constant and the second eigenvalue is the first steady state 

solution, to divide the zone as in Fig. 3.13. Physically, it requires the minimal energy to 

sustain segments or least effort to divide. In other words, finding graphic cutting edge is 
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a process to find “minimal effort” stationary node to divide the system. Note that 

‘second’ eigenvector always divide the system into ‘two’ pieces which is called 

bipartitioning. This is how the spectral clustering works in most of partitioning 

algorithms.  

 

Mathematical Explanation 

In Eq. 3.1, we define the ‘cut’ function for measuring the degree of dissimilarity 

between two pieces. Fiedler (1973, 1975) proved and applied the algebraic connectivity 

theory from second eigenvector (called Fiedler vector) of non-directed graphs. Hagen 

and Kahng (1992) provide the mathematical bipartition for ‘ratio cut’ algorithm. Shi and 

Malik (2000) also prove that second eigenvector offer optimal ‘normalized cut’. It is an 

important spectral property of eigenspectrum. If the graph G is connected, the second 

eigenvalue (  ; also called algebraic connectivity) is positive                

and first eigngenvector is a constant (Pothen et al. 1990) as already shown in Fig. 3.3.  

Finding optimal clustering can be proved by solving relaxation of simple balanced 

‘ratio’ cuts (von Luxburg 2007) as in Eq. 3.18; 
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Here, we transformed the real value problem into discontinuous indicator vector space 

(von Luxburg 2007). From Eq. 3.1, we can rearrange as; 
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We have already imposed condition that | |  | ̅| from Eq. 3.18, which leads to Eq. 

3.21 for optimal condition; 

 

  
i if 0          (3.21) 

The above Eq. 3.21 indicate that 
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The vector   as defined in Eq. 3.19 is orthogonal to the constant identity vector   ⃗ . 

Also, from same definition in Eq. 3.19, norm of vector  ; 

 

 nCCff
n

i

i 
1

22
       (3.23) 

 

The optimal clustering, which is solving minimization problem as derived in Eq. 3.20 

from Eq. 3.18, can be rewritten from Eq. 3.20, 3.22 and 3.23 (    is a scale factor and 

can be discarded) ; 

 

 nfandfftosubjectLff iVC  1,1'min


    (3.24) 

 

By Rayleigh Quotient (also known as Rayleigh-Ritz theorem), it can be immediately 

proved that the solution of this problem is given by the second eigenvector of Laplacian 

( ). Recall that ‘second’ means the smallest non-zero eigenvalue and its corresponding 

eigenvector (Weiss 1960). So, we can approximate the optimal solution by the second 

eigenvector in ‘ratio cut’ relaxation problems.  

The optimal ‘normalized’ cut is also easily proved by same approach from the 

comparable one (Eq. 3.18 with Eq. 3.25); 
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We can derive the imposed conditions as      ⃗                 (von Luxburg 

2007). Recall that D has been defined as degree of affinity in Eq. 3.2. 

 )('1,1'min VvolDffandfDftosubjectLff iVC 
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  (3.26) 

 

Now, we substitute   with normalized vector         in Eq. 3.26 and       

          ; 
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
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Consequently, we also arrive at the standard Rayleigh Quotient type formulation as in 

Eq. 3.27. The relaxation solution   is given by the second eigenvector of normalized 

Laplacian (    ). Now, we can see that ‘ratio’ cut leads to un-normalized clustering as 

in Eq. 3.24 while relaxing ‘normalized’ cut leads to normalized solution in Eq. 3.27. 

Hence generally speaking, the ‘normalized’ cut is more statistically consistent than 

‘ratio’ cut (von Luxburg 2007). 

   

3.5.4 Nature of Graph Partitioning 

We already see that different affinity construction and relaxation algorithm will lead to 

different segmentation. There are also many more affinity construction and algorithms 

that we cannot illustrate in this paper. Even, a small change in selecting free parameters 

will induce quite different segmentations. It is almost impossible to recommend one 

single method for reservoir model segmentation. Instead, we will explore the true nature 

of graph partitioning and will derive ‘tentative’ answer to select cutting algorithm and 

number of segments for history matching. 
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3.5.5 Recursive bipartitioning and Hierarchical Approach 

The fundamental idea of getting more clusters is bipartitioning inside the subdomain 

using its ‘new’ second eigenvector. It is a recursive and hierarchical divisive approach. 

After initial partitioning of the graph into two pieces, reapply the same procedure to the 

sub graphs as in Fig. 3.14. The new number of groups is controlled by imposing 

threshold to the objective function. If we require odd number of segments, the clustering 

algorithm compares and chooses a piece such that sub partition makes overall ‘cut’ value 

minimum. 

 

 

Figure 3.14. A Hierarchal Bipartitioning 

 

One important observation in Fig. 3.14 is that sub-partitioning will not change the 

previously generated cutting edge. Hence, more numbers of segmentation will ‘always’ 

make higher degrees of freedom.  
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3.5.6 Facies Edge Detect 

The strength of spectral clustering is detecting the clear edge of a group for both 

continuous and discontinuous medium. To verify this important property of our 

approach, we test with a very simple 3 facies field in Fig. 3.15.   

 

        

Figure 3.15. Log-Permeability in 3 Different Facies (Left)  

and Second Eigenvector of Adjacency based Construction (Right)  

The ABL affinity Laplacian is constructed from Eq. 3.5 and decomposed into 

eigenspectrum. The eigenvector in Fig. 3.15 (right) has exactly same distribution as the 

original facies. From this second vector, we get clustering with ratio cut. Fig. 3.16 shows 

how it recaptures the facies in this example. Other algorithms can also successfully 

detect the facies boundary edge. This is the main underlying idea to use spectral 

clustering for reservoir model segmentation.  

   

 

Figure 3.16. Segmented Zone from Ratio Cut and Facies edge detection (ABL) 
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3.5.7 NP hardness and Heuristic Approach 

The clustering has no ground truth and is naturally an unsupervised problem in itself. 

This makes it hard to find optimal clustering in real problems. Also, the graph 

partitioning is a well-known NP hard (non-deterministic polynomial-time hard) problem  

(Wang and Siskind 2003). The clustering results at some parts of the space may affect a 

completely different region. Hence, one important property of spectral clustering is that 

algorithm requires a heuristic approach and trials to get good segmentations.   

 

3.5.8 A Good Segmentation; Algorithm Point of View 

Getting a good segmentation starts from choosing a proper affinity Laplacian. The 

adjacency based Laplacian (ABL) leans toward capturing model heterogeneity. The grid 

connectivity Laplacian (GCL) has advantageous in complex and faulted geometry but 

takes no prior heterogeneity into account. Prior-weighted connectivity Laplacian (PCL) 

is standing in the middle as in Fig 3.17.  

 

Fault Dominant 

Geometry  Smooth Geometry 

GCL PCL ABL 

Homogeneous  Heterogeneous 

 

Figure 3.17. Relationship between Affinity Laplacian and Geological Models 

 

Exploring the two free parameters (     ) and cut off distance (r) is also important 

issue to get a connected graph. In Fig 3.18, we illustrate the exponential diminishing 

behavior of two ‘Gaussian Kernel Function’ from Eq. 3.5 (                  , r = 

1.5). The previous work of Bhark et al. (2011a) showed how various parameters affect 

the eigenspectrum.  
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Figure 3.18. Diminishing Behavior of Adjacency Measures  

 

The role of scale factor (  ) or the property parameter (  ) is examined in Fig. 3.19 (r 

= 170ft,            , ABL, NCC). For small scale factor (        ), the second 

eigenvector looks less variable (upper left; looks homogeneous but it isn’t) but finds 

sharper cutting edges. Larger scale factors miss prior heterogeneity and result in wide 

and stable clustering (       ) with little prior features. 
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Figure 3.19. Effect of Scale Factor in Eq. 5 on Second Eigenvector and Clustering 
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0.10 

 

Figure 3.19. Continued 

 

Also, we explore the cut off distance (r) and the computed parameter (  ) from Eq. 

3.6. Note that a value (ε) in Eq. 3.6 equal to 0.001 throughout the paper. The grid block 

size is uniform with 32.8 ft in this model and minimum ‘r’ should be bigger than that for 

a connected graph G.  
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Figure 3.20. Effect of Cut off Distance (r) in Eq. 4.6 on Second Eigenvector and Clustering 

 

In the smaller cut off range, we get clearer cutting edge. If we apply bigger cut off 

criteria (r = 1,000 ft), the edge becomes indistinguishable due to wider diagonal terms in 

affinity Laplacian as in Fig. 3.21. This causes ‘mixing’ between different zones.  
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r = 50 r = 200 r = 1,000 

Figure 3.21. Constructed Adjacency Based Laplacian (ABL) Matrix 

 

As we illustrate in Fig. 3.19 and 3.20 (r = 170ft,        , ABL, NCC), the optimal 

relaxation of a graph is heavily dependent on two free parameters (     ) and cut off 

distance (r) in the adjacency based Laplacian (ABL). Comparatively, grid connectivity 

based Laplacian (GCL) is free of that dependence. From the spectral image theory point 

of view, there is no rigorous guideline to choose the type of affinity Laplacian and free 

parameters. There are some the guideline for this important points (Igor and Jan 2004; 

von Luxburg 2007) but there are not extensively tested for many different cases. In the 

reservoir engineering application, we provide a general guideline for affinity Laplacian 

in Fig. 3.17 and Eq. 3.6 and 3.7 for initial free parameters selection.  

The other point, we need to address, is deciding the number of clusters for history 

matching. This is an old issue in spectral clustering theories (Igor and Jan 2004; von 

Luxburg 2007).  There has been several methodology for suggesting optimal number of 

clustering: stability analysis (Hur et al. 2002), the gap statistic (Tibshirani et al. 2000), 

an Information-theoretic approach (Still and Bialek 2003) and the eigengap heuristic 

analysis (von Luxburg 2007). Those approaches are useful to estimate optimally relaxed 

segmentation in spectral theory point of view. We also can refer to those algorithms for 

our decision. But, our segmentations are generated for history matching purposes. 

Hence, deciding the number of segmentation should reflect the computation power and 

history matching algorithms after segmentation. Again, this decision is a trade-off 

between computation time and degree of freedom for the next stage. Recall that spectral 
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clustering is a hierarchical approach and ‘always’ give higher degrees of freedom in 

higher number of segmentation.  

The most important key point to get good clustering is that segmented pieces should be 

“meaningful” zones for history matching. This should be decided by geologic and 

engineering considerations.   

 

3.6 History Matching: Genetic Algorithm (GA) 

We adapt the method genetic algorithm, one of the well-developed evolutionary 

algorithms in reservoir history matching. Experimental design, genetic algorithm and 

response surface are used for calibrating geological features of initial reservoir model. 

The strengths of genetic algorithm are its wide flexibility in choice of parameters as well 

as construction of objective function. The objective function to optimize with GA is 

constructed as logarithmic summation of data misfits as in Eq. 3.28; 
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3.6.1 Field Application: Brugge 

In this section, we apply our model segmentation approach to a field example. We 

choose the Brugge reservoir model in Fig. 3.22, a SPE benchmark case. This Brugge 

reservoir model has been widely used to evaluate closed-loop reservoir management 

strategy developments (Alhuthali 2009; Peters et al. 2010) and history matching 

algorithm verification (Bhark et al. 2011a; Vallhs and Naevdal 2009).  



 

 

69 

 

Figure 3.22. Brugge Reservoir Model 

 

3.6.2 Field Descriptions 

The Brugge reservoir model is developed by TNO and includes multiple high 

resolution prior permeability fields with unknown level of uncertainty. This reservoir is 

replicating a North Sea Brent type field with 44,355 active corner point grids. The wells 

consist of ten peripheral water injectors and twenty producers in the up structure. 

Production data are provided for 10 years: well water production rate (WWPR), well oil 

production rate (WOPR) and bottom-hole pressure (BHP). One realization of the prior 

permeability with nine layers is illustrated in Fig. 3.23. We used this realization for 

history matching from 104 realizations provided by TNO. This black oil model is 

targeted for characterizing oil flow dynamics; therefore, gas productions are not taken 

account. The boundary condition for producers is liquid rate control (LRAT) mode and 

injectors are under bottom hole pressure control (BHP). In this field application 

example, we will update permeability distribution by matching WWPR, WOPR and 

BHP at each producers. 
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Layer # 1 2 3 4 

     
5 6 7 8 9 

Figure 3.23. Permeability Distribution in Each Layer 

 

3.6.3 Spectral Decomposition (Model Segmentation) in of the Permeability Field 

For spectral decomposition, the affinity Laplacian is constructed based on adjacency 

(ABL) as in Eq. 3.5. This ABL construction is more attractive in smoothly varying 

permeability fields as in Fig. 3.23 (see also suggestion in Fig. 3.17).  

 

 
    

Layer # 1 2 3 4 
Figure 3.24. Second Eigenvector (ABL) 
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5 6 7 8 9 

Figure 3.24. Continued 

 

The spectral clustering is based on the second eigenvector (Fig. 3.24:         , r = 

2,000 ft). The generated segmentation zones from the Normalized Cheeger Cut (NCC) 

are illustrated in Fig. 3.25. This segmentation pieces are representative of different 

heterogeneity regions. A comparison with Ratio Cut (Rcut), Normalized Cut (Ncut) and 

Ratio Cheeger Cut (RCC) are discussed later. 
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5 6 7 8 9 

Figure 3.25. Segments from Normalized Cheeger Cut (NCC): 50 Zones 
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3.6.4 History Matching Results  

In the history matching problem, our update parameter is now reduced to the number 

of segmentations instead of number of grids. As we previously mentioned, choosing the 

number of segmentation should be based on the computation capability for simulation 

and the type of application. Recall that selecting the number of cluster is a ‘trade-off 

between computation power and the degree of freedom”.  

 

  
BR-P-10 BR-P-14 

  
BR-P-17 BR-P-20 

Figure 3.26. Genetic Algorithm Populations (WBHP, WWPR and WOPR);  

circle: Observed, line: Initial and dot: updated 

 

Fig. 3.26 illustrates how the genetic algorithm works during the history matching 

process. We use a population size of 50 and 5 generations for the objective function 

optimization. The genetic algorithm performs evolution with inheritance, selection, 

mutation and cross over. The final best history matching results are shown in Fig. 3.27. 
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BR-P-1 BR-P-2 BR-P-3 BR-P-4 

    
BR-P-5 BR-P-6 BR-P-7 BR-P-8 

    
BR-P-9 BR-P-10 BR-P-11 BR-P-12 

    
BR-P-13 BR-P-14 BR-P-15 BR-P-16 

    
BR-P-17 BR-P-18 BR-P-19 BR-P-20 

Figure 3.27. Updated Dynamic Response (WBHP, WWPR and WOPR);  

circle: Observed, line: Initial and dot: updated 
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At the end of history matching, we can achieve match to the dynamic response as in 

Fig. 3.27. The updated permeability field in Fig. 3.28 shows that we can preserve the 

main features of the prior permeability field after the updates. 
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5 6 7 8 9 

Figure 3.28. Updated Permeability Distribution in Each Layer 

 

3.6.5 Segmentation Experiments  

In this section, we compared different segmentation algorithms with the same free 

parameters and cut off criteria. Also, we explore clustering from different Laplacian in 

the same parameters.  
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(a) Ratio Cut (Rcut) 

     
Layer # 1 2 3 4 
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(b) Normalized Cut (Ncut) 

Figure 3.29. Segmentation from Different Cutting Algorithms: 50 zones 
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(c) Ratio Cheeger Cut (RCC) 

Figure 3.29. Continued 

 

The ‘ratio’ cut in Fig. 3.29(a) and (c) shows a noticeable difference with ‘normalized’ 

cuts (Fig. 3.25 and Fig. 3.26 (b)) using the same affinity Laplacian. Most of 

segmentations are located around the low permeability region in Fig. 3.23. Basically, 

‘ratio’ and ‘ratio Cheeger’ cuts focus on “Finding strong connection”. But ‘normalized’ 

and ‘normalized Cheeger’ cuts show more “balanced behavior” as in Fig. 3.29. Also, 

‘Cheeger’ cuts seem to take into account more heterogeneity than ‘standard’ cuts 

(compare Fig. 3.25 and 3.29(b)).  
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(a) Prior-weighted Connectivity Laplacian (PCL): Normalized Cheeger Cut (NCC) 
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(b) Grid Connectivity Laplacian (GCL): Normalized Cheeger Cut (NCC) 

Figure 3.30. Segmentations from Different Affinity Laplacian 
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More interestingly in Fig. 3.30, the Prior-weight Connectivity Laplacian (PCL) is 

showing features between ABL and GCL as expected (compare Fig. 3.25 and 3.30(b)). 

But the Grid Connectivity Laplacian (GCL) shows less variability (almost constant) in z-

direction. Because the grid dimension of x (139) and y (48) directions are comparatively 

bigger than the z direction (9), the grid connectivity is more dominant in the x-y plain. 

 

3.7 Summary and Conclusions 

We propose a new model segmentation technique from the spectral clustering theory. 

The suggested approach is verified with both synthetic and the Brugge SPE benchmark 

model. The new zonation algorithm provides more consistent criteria for history 

matching compared to the common industry practice; box multipliers. 

The procedure is to (1) construct Affinity Laplacian to capture spatial variability in 

subsurface properties; (2) use graph partitioning techniques to create zonation and find 

cutting edges; (3) apply partitioning with history matching algorithm. The graphic cut 

from the model geometry and/or heterogeneity is not arbitrary but is satisfied by 

optimization with graphic cutting metric. 

 

1. The proposed zonation algorithm can preserve the major features of the prior 

model after history matching because the generated zonation is based on the 

model heterogeneity and/or connectivity information. We illustrate that spectral 

clustering approach can potentially capture different facies in the reservoir. 

 

2. We propose three different Affinity Laplacian constructions and four different 

graph cutting algorithms. Basically, there is no ground truth in spectral 

clustering. So, it is not possible to say which one is the best or the worst. But we 

can arrive at some general conclusions from image clustering problems: 

‘normalized’ cut is more statistically stable than ‘ratio’ cut. Also, ‘Cheeger’ cut 

shows at least as good or better performance than ‘standard’ cut. Hence, 

‘Normalized Cheeger Cut’ is a good starting point for segmentation. 
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3. The spectral clustering problem is a NP-hard and heuristic approach. As we 

demonstrated, we can generate different cutting with combinations of Laplacian 

and cutting algorithms. Even wider choices are available with free parameter and 

cutting range. We inherited these properties in our proposed segmentation. 

Hence, we require some initial experiments and experience with different 

combination of cutting algorithms and Laplacian. Also, the two free parameters 

and cut off range heavily impact the clustering. 

 

4. Through human interventions and heuristics, the spectral clustering provides a 

good guideline for automatic zonation criteria. This is more attractive when we 

do hierarchical history matching; which is essential for history matching 

problems for full-field model with decades of production history. We can adapt 

this zonal concept for global stage history matching and then further calibrate 

with fine scale approach. 
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CHAPTER IV      

A HIERARCHAL MULTISCALE MODEL CALIBRATION WITH SPECTRAL 

DOMAIN PARAMETERIZATION: APPLICATION TO A STRUCTURALLY 

COMPLEX FRACTURED RESERVOIR 

 

4.1 Purpose 

A hierarchal history matching algorithm is proposed that sequentially calibrates 

reservoir parameters from the global-to-local scale in consideration of parameter 

uncertainty and the resolution of the data. Parameter updates are constrained to the prior 

geologic heterogeneity and performed parsimoniously or only to the spatial scales at 

which they can be resolved by the available data. In the first step of the workflow, a 

genetic algorithm (GA) is used to assess the uncertainty in global parameters (i.e., 

regional permeability, pore volumes and aquifer strength) that influence field-scale flow 

behavior, specifically reservoir energy. To identify the reservoir volume over which each 

regional multiplier is applied, we have developed a novel approach to heterogeneity 

segmentation from spectral clustering theory. The ensemble of model realizations 

identified using GA, then reduced via cluster analysis to establish for the second stage of 

local or high-resolution parameter calibration to well-level observation data. At this 

stage we parameterize the high-resolution heterogeneity in the spectral domain using the 

Grid Connectivity based Transform (GCT) to compress the dimension of the calibration 

parameter set. At the same time, the GCT implicitly imposes geological continuity and 

promotes minimal changes to each prior model in the ensemble during calibration.  

We apply the proposed calibration workflow to a structurally complex and highly 

fractured reservoir located offshore in Peru. The reservoir is modeled as dual porosity 

and single permeability (DPSP). First, the field water and gas production are matched 

using the GA with zonal multipliers for fracture porosity and shape factor (‘sigma’). 

Next, well-by-well production history is matched by locally calibrating the most 

uncertain fracture network property, fracture permeability distribution, which is reduced 

using the GCT parameterization to improve the ill-posedness of the problem. The final 
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updated model is found to be geologically realistic and is being used for field 

development strategies. 

   

4.2 Introduction 

Reservoir model calibration to field production data, commonly known as dynamic 

data integration or history matching, is an essential component of successful field 

development planning and optimization. The history matching of high-resolution 

geological models is typically an ill-posed inverse problem because the numbers of 

observed data are considerably less than the number of calibrated reservoir parameters, 

which themselves are often strongly correlated. This leads to non-unique and potentially 

unstable parameter solutions despite an acceptable history matching of the data. 

However, if the history matching problem is structured relative to the resolution of the 

data and appropriately constrained, then together with assisted history matching 

algorithms a geologically consistent and close-to-optimal calibration solution can be 

achieved. For this purpose, we propose a hierarchal history matching algorithm that is 

constrained to the prior geologic heterogeneity and parsimoniously updates high 

resolution geologic parameters to the level that they can be resolved by the available 

data. 

The hierarchal approach calibrates, in sequence, reservoir parameters that characterize 

global-to-local regions while accounting for multiscale parameter uncertainty and the 

resolution of the data. As the first component of the workflow, a history matching of the 

coarse-scale genetic algorithm (GA) is applied to characterize the uncertainty in global 

parameters including regional permeability, porosity and transfer function between 

matrix and fracture, that influence field-scale flow behavior and reservoir energy. Rather 

than using box-type or manually defined multiplier regions, we introduce a novel 

method of model segmentation based on a spectral analysis of the reservoir grid 

connectivity, which is an important key factor in reservoir flow dynamics. This zonal 

segmentation technique assists in the definition of regional multiplier boundaries in 

consideration of prior model heterogeneity and its connectivity. An eigenspectrum 
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analysis is then used to parse the ensemble of calibrated models resulting from the GA 

analysis into a smaller set of prior models for the second stage of local or high resolution 

parameter calibration to well observation data.  

In this second workflow component, a heterogeneity parameterization technique is 

used to characterize the high-resolution calibration parameters in a low-dimensional, 

spectral transform domain using the Grid Connectivity-based Transform or GCT. This 

compact representation of the model parameters implicitly imposes geologic continuity 

and promotes minimal changes to each prior model during the calibration updates to 

match well production data. The calibration of each prior model itself is performed using 

an iterative least-squares method; therefore, each model is deterministically history 

matched and parameter uncertainty is assessed from the ensemble of final models. To 

improve the computational efficiency of this conceptual approach, the basis parameter 

sensitivities at each model update steps are derived from a semi-analytical streamline 

based formulation. Such that all sensitivities are computed via a single forward 

simulation and streamline tracing. 

The development of the proposed history matching workflow builds on the strengths 

and limitations of more recent hierarchical approaches to the integration of dynamic data 

into reservoir description, beginning with those based on a GA then local model 

calibration. The genetic algorithm has many applications so far in reservoir history 

matching. Schulze-Riegert et al. (2002) applied to complex history matching problem. 

They applied genetic algorithm and arbitrary zonal multiplier for history matching. 

Cheng et al. (2008) provide a robust flow chart for a structured history matching 

approach listing dominant global and local parameters. They applied a GA for history 

matching and determined probabilistic reservoir models using proxy models of history 

match error for model filtering and optimization. Yin et al. (2010) applied a GA to 

update global reservoir parameters, followed by a streamline-assisted history matching 

of finer scale heterogeneity. (Bhark et al. 2011c) applied the GCT parameterization to 

calibrate field-scale permeability trends (GCT) using a quasi-Newton method and then a 
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streamline-assisted calibration of local or grid-cell scale permeability at spatial scales 

finer than the data could resolve using the global parameterization. 

In this paper, a focus is placed on the calibration of fractured reservoirs. We 

demonstrate that in addition to permeability and porosity heterogeneity, which are the 

parameters typically calibrated in automatic history matching (AHM) workflows, that 

the proposed methods of connectivity based segmentation and parameterization, applied 

within a hierarchical approach, are applicable to fracture properties as well. The 

characterization of fractured geologic properties has long been studied. Warren and Root 

(1963) investigated flow behavior in naturally fractured reservoir models and defined 

fracture flow with two parameters, the absolute permeability and the effective porosity. 

They proved that with these two parameters, much of the fracture storage capacity and 

matrix-fracture interaction could be represented. Massonnat et al. (2002) illustrated the 

importance of characterizing the fracture network in a fractured carbonate reservoir. 

They examined the connection from the fracture network to the flow network. Then they 

conclude that fracture aperture distribution is a strong factor for assessing fracture 

properties rather than fracture distribution. A more recent study by Jabbari and Zeng 

(2011) suggest a third parameter description for fractured reservoirs; an elasticity 

parameter similar to Poisson’s ratio and Young’s modulus should be included to account 

for stress sensitive natural fracture system. They described fractured reservoir with 

fracture storage capacity, matrix-fracture interaction and combined effect of both matrix 

geomechanic and fracture apertures. 

From these previous descriptions of fractured reservoirs, we define the fracture 

parameters of interest for calibration; fracture porosity, fracture permeability and a shape 

factor ( ) which characterizes matrix-fracture interface area per unit volume (Kazemi et 

al. 1976). All of which are typically of large uncertainty in dual porosity finite difference 

models. It should be noted that the analysis methods applied during the proposed 

workflow are relevant to fractured reservoir modeling. Kang et al. (2011) investigated 

the effect of natural and hydraulic fracture network for drainage volume calculation in 

tight gas reservoir. 
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Previously, there have been several attempts to integrate dynamic data for fracture 

characterization. Al-Huthali and Datta-Gupta (2004) presented a general dual porosity 

and dual permeability formulation for streamline simulation in naturally fractured 

reservoirs. They explained the domain flow mechanism in dual systems. Al-Harbi et al. 

(2005) use the streamline sensitivity for fine scale Model Calibration in the fractured 

reservoir. They used the streamline derived sensitivities in conjunction with a dual 

porosity finite difference simulator for fine scale model update. They characterized the 

fracture permeability based on streamline derived sensitivity in local grid.     

In this paper, we focus on characterizing fracture properties in the complex structured 

geometry with a hierarchical approach. To explain our approach, the mathematical 

formulations, together with a hierarchical workflow are presented first. We then apply 

the proposed calibration workflow to a highly complex and fractured reservoir field. The 

field is modeled as dual porosity and single permeability (DPSP) and located offshore in 

Peru. In this field example, the global dynamic data (total field water production) misfit 

is successfully reduced at first along the field wise using the genetic algorithm (GA); 

updating aquifer property, shape factor and fracture porosity with zonal multipliers. 

Average reservoir pressures are also considered with observation data in this stage. The 

well-by-well production history is then matched by calibration of the uncertain local 

fracture properties; fracture permeability, which is updated using the GCT 

parameterization and improved the ill-posedness of the problem. 

 

4.3 Approach 

This section explains the individual components of the proposed hierarchical workflow 

from a conceptual viewpoint. The mathematical formulation behind each step is 

presented in the following section. In brief summary, there are two primary hierarchical 

components. The first uses a GA to calibrate the reservoir model at the global or coarse 

scale using regional property multipliers, where region geometries are defined using a 

novel model segmentation technique. Other global parameters, e.g., those that 

characterize aquifer strength, are included in the calibration based on the outcome of a 
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parameter sensitivity analysis. These selected parameters are subsequently applied in an 

experimental design for construction of a proxy model of the data misfit response 

surface (Yin et al. 2010). The response proxy is required for reduction of the 

computational expense of the GA-based calibration which executes inheritance, 

selection, mutation and crossover of the parameters during their evolution or updating. 

At termination of the GA an ensemble of globally calibrated reservoir models is defined, 

so a cluster analysis is used to select a small subset that approximates the range of 

variability of the complete set. In the second hierarchical component, each of the (now 

prior) heterogeneity models from the first component is calibrated at the local scale. To 

reduce the number of high-resolution parameters, they are compressed in a low-

dimensional transform domain in which the calibration is performed. The sensitivities of 

the production data to the transform parameters, which drives a gradient-based inversion 

approach, are efficiently computed using a streamline-based technique. The production 

data misfit is accordingly characterized using the generalized travel time (GTT) 

approach (Al-Huthali and Datta-Gupta 2004), which also exploits the efficiencies of a 

streamline-base characterization of model heterogeneity as described below. The 

combined approaches of spectral parameterization and GTT data misfit reduce the 

dimensionality and non-linearity of the inversion, expediting data misfit reduction and 

reducing the occurrence of local minimum convergence. These steps are now altogether 

reviewed, referring to the field application as appropriate. 

 

 Initial Model Response and Parameter Sensitivity Analysis A proper history 

matching workflow must start from a conceptual understanding of the prior 

geologic model and its static and dynamic uncertainties. In the fractured field 

model presented, the San Pedro field at offshore Peru, the primary uncertainties 

are hydraulic continuity across the main faults, static and dynamic fracture 

properties and aquifer strength. To understand the influence of these properties 

on production behavior, particularly in the presence of complex flow geometries 

and changing field conditions, we utilize two approaches. First, and more 
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qualitatively, we use streamline simulation to visualize and quantify fluid 

movement. With individual phase streamlines, i.e., individually tracing water, oil 

or gas flux trajectories as opposed to tracing the total fluid flux trajectories, the 

individual phase production source and flow paths are easily identified. For 

example, in the San Pedro modeling application, water phase streamlines are 

used to identify the level of aquifer support, which is suspected to be strong, 

from a source in the bottom layer of the reservoir model. Second, and more 

quantitatively, we apply the complete set of global parameters in a sensitivity 

analysis to identify the ‘heavy hitters’ that are to be applied in the first step of the 

hierarchical calibration. The sensitivity analysis is efficiently computed using an 

analytical proxy of the production data misfit surface, which itself is constructed 

via an experimental design with a proficient Latin hypercube sampling. 

 

 Model Segmentation from Spectral Clustering To characterize static 

heterogeneity related to fracture properties for the global calibration, a novel 

model segmentation technique based on the theory of graph partitioning is 

applied to identify regional multiplier domains over the complete grid volume. 

These regions rely on the grid geometry structure to indicate a natural 

partitioning rather than applying traditional box-type multiplier regions. When 

the grid geometry, relative to its cell connectivity structure, is characterized in a 

specific Laplacian operator or matrix, then the eigenvector corresponding to the 

second smallest (non-zero) eigenvalue represents the grid grouping based on 

heterogeneity and connectivity. This eigenvector, in turn, can be applied in a 

spectral clustering algorithm to partition the domain (Pothen et al. 1990). We 

take advantage of this property and propose an optimal model zonation for 

history matching relative to a graph cut metric, which quantifies any piecewise 

continuous partitioning of the grid cells. In this field application, we apply the 

graphic “normalized cut” for model segmentation. 
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 Global Parameter Calibration To complete the first stage of the hierarchical 

history match, a GA is used to identify the reservoir parameter combinations that 

match the observed field water production and average reservoir pressure, both 

of which are considered to represent global drive mechanisms and energy. These 

data are shown particularly sensitive to aquifer strength. At each generation of 

the GA, a proxy of the individual data misfit terms is used to efficiently select an 

ensemble of models. Each model is added to the accepted population of that 

generation if the data misfit is reduced. At the termination of each generation, 

each proxy surface is updated to include the latest simulation results, each 

corresponding to a new and unique parameter combination, before moving on to 

the next generation. This sequence is continuously repeated until a maximum 

number of generations are reached or until the data misfit can no longer be 

reduced. At termination of the GA, a small subset of the ensemble at the last 

generation is selected using a cluster analysis. The cluster reproduces the 

statistical uncertainty of the complete ensemble and yields a small number of 

prior reservoir models that are applied in the next stage of local parameter 

calibration. Fig. 4.1 presents a flow chart of the first hierarchical workflow 

components. 

 

 

Figure 4.1. Global Stage Model Update  
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 Spectral-Domain Parameterization of High-Resolution Reservoir Properties 

The second hierarchical workflow component involves calibration of the fracture 

properties at high resolution, or at the scale of individual grid cells. To address 

the intractable inverse problem of their individual identification from the well 

production data, each fracture property field is characterized in a low 

dimensional transform domain for the history matching. For this the GCT 

parameterization (Bhark et al. 2011c) is applied to linearly map a spatial property 

field, at grid cell resolution, to a spectral domain in which the dominant modes of 

the property can be identified and calibrated. However, note that we have elected 

to apply a domain-scale multiplier field in lieu of each of the calibrated property 

fields for the parameterization. This permits the retention of all prior model 

features through the calibration, which are assumed constructed from multiple 

data sources and their modification only when warranted by the production data. 

Regardless of whether a multiplier field or the reservoir property itself is 

calibrated, the transformation to the spectral domain is achieved by 

multiplication of the spatial property with the orthogonal GCT basis. The basis is 

itself constructed from the grid connectivity structure such that each mode or 

basis vector represents a harmonic of the grid structure that is characterized by a 

modal frequency. Therefore, when characterized in the transform domain, the 

spatial property is decomposed as the linear combination of GCT coefficients, 

where each coefficient corresponds to the amplitude of an associated modal 

frequency. When only the coefficients corresponding to the dominant modal 

frequencies are calibrated, the estimable parameter dimension is considerably 

reduced, typically to less than one percent of the original dimension in the spatial 

domain. A secondary benefit of the GCT parameterization is the enforcement of 

spatial continuity or smoothness in the calibration updates. 

 

 Transform Parameter Sensitivity Calculation An iterative sensitivity-based 

algorithm is applied to deterministically calibrate each of the prior reservoir 
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models output from the first stage of the hierarchical workflow. Accordingly, for 

the calibration of each model, the sensitivity of the well production responses to 

a perturbation in each of the fracture model parameters is required. However, the 

production data misfit in this second local component of the workflow is 

characterized by the GTT approach, or by a single time shift per well response 

that maximizes the cross-correlation between the observed and simulation 

fractional flow profiles. Further, the fracture property field is parameterized by a 

small set of GCT coefficients. Despite the parameterization of both the model 

input parameters and production response metrics for definition of a less ill-

posed calibration problem, formulation of the sensitivity matrix remains a 

computationally expensive task. To mitigate this expense, a streamline-derived 

sensitivity technique is used to efficiently define the complete sensitivity matrix 

at each model update, requiring only a single forward simulation. As an 

additional contribution of this paper, we expand the Generalized Travel Time 

(GTT) sensitivity formulation for consideration of the GCT coefficients as 

opposed to high-resolution grid cell parameters. This extension is straightforward 

and requires only an additional vector-matrix multiplication (see Eq. 4.18). Once 

computed, the derived GCT coefficient sensitivities are applied to minimize the 

GTT misfit using a sparse equations solver with a least-squares optimization 

algorithm (LSQR). 

 

 Local Parameter Calibration in the Transform Domain At the termination of 

each LSQR calibration step, the GCT coefficients, which again characterize 

fracture property multiplier fields, must be transformed back to the spatial 

domain or to the grid for their inclusion in flow simulation. This requires only a 

vector-matrix multiplication between the GCT coefficients and the transpose of 

the GCT basis because the basis vectors are pairwise orthogonal. The resultant 

simulation output is used to check if the updated parameters improve the 

production data misfit. At some step in the iterative minimization, the data misfit 
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or objective function will converge to a minimum, likely a local minimum. If the 

data misfit is unsatisfactory at this point, then additional basis vectors can be 

appended to the GCT basis and the minimization re-started from previous 

updated point. These new basis vectors correspond to higher modal grid 

frequencies, or to finer scales of spatial information in the calibrated multiplier 

field. Therefore, an outer iterative loop to the LSQR minimization is defined that 

consists of adding increased levels of spatial resolution to the multiplier fields via 

the addition of successively higher-frequency GCT basis vectors to the 

parameterization. This multiscale loop enables the calibration of simple and 

coarse heterogeneity to complex high-resolution heterogeneity. A flow chart of 

this workflow, or for the second component of the hierarchical history matching 

workflow, is illustrated in Fig. 4.2. 

 

 

Figure 4.2. Local Stage Model Calibration 
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4.4 Mathematical Formulation 

This section describes the mathematical formulation behind individual steps of the 

history matching workflow. Only those steps, in either the coarse or local-scale 

components of the hierarchical workflow, requiring mathematical details are presented. 

The intent of this section is not to review the complete workflow but to provide details 

only when warranted. 

 

4.4.1 Genetic Algorithm 

 The approach of global parameter estimation in the coarse-scale component of the 

hierarchical workflow is adapted from Yin et al. (2010). This involves the steps of 

experimental design, response surface characterization via proxy modeling, and data 

misfit reduction using a proxy-based GA. The data misfit objective function is 

constructed as the summation of the natural logarithm of the individual data misfit 

components; 
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where      is objective function to optimize during GA evolution and    represent 

individual history matching parameter.      and      represent any type of dyanamic 

response data misfit, e.g., well pressure, well production rate, etc. The logarithmic 

summation of each objective function component, which corresponds in Eq. 1 to the 

summation of data misfit at an individual well, is equivalent to normalizing each data 

type for the difference in magnitude across different types of sources. 

The GA-based history matching is achieved by minimizing the objective function 

while maximizing the fitness of genomes, where the latter become the measure of an 

objective function. We further incorporate a stretching of the fitness function with the 

‘heat-bath algorithm’ to facilitate, or relax, the selection criteria for those models that are 
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passed on to the next generation (Sen et al. 1995). The selection probability of an 

individual model    is given by 
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In Eq. 4.2,       is the objective function of model    that is to be minimized by 

maximizing fitness                 and    is a control parameter that corresponds to 

temperature in simulated annealing (SA). The heat-bath algorithm accelerates 

convergence and requires fewer simulations for reduction of the objective function, both 

of which properties are important to reduce the large computational expense of the GA, 

particularly with field-scale models (Yin et al. 2010).  

 

4.4.2 Connectivity Based Graph Laplacian 

The spectral graph G is defined as a set of data set               in a domain with 

vertex                and edges E, that is connectivity     between    and   . The 

graph Laplacian L is used to calculate the number and connected strength of a given 

graph G. The graph Laplacian   is constructed simply as      , where   is the 

grid weighted adjacency matrix and   is the degree matrix in Eq. 4.4. For an N number 

of data set,   is the    matrix constructed as Eq. 4.3; 
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and the entry of degree matrix  , defined as diagonal matrix, equal to the degree of each 

corresponding vertex.  
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Such that each non-zero diagonal element of D is equal to the row sum of W. 

Accordingly, the Laplacian is constructed only once, prior to the history matching 

workflow, using grid connectivity information and is independent of the prior parameter 

heterogeneity. Fig. 4.3 depicts the two-point connectivity structure, corresponding to a 

5-point stencil in two dimensions, used to define Laplacian L. The graph Laplacian must 

represent ‘connected’ graph G, which means all the data should have at least one 

connectivity to the rest. 

 

 



 




otherwise

ji

w

d
L

ij

i

ji,  (4.5) 

Figure 4.3. Construction of Connectivity Laplacian 

 

The same graph Laplacian will be used for global and local scale update; clustering for 

global and reparameterization for local update. Note that the clustering in the global 

stage will do spatial grouping based on ‘second eigenvector’ of Laplacian (von Luxburg 

2007) and the reparameterization is to transform history matching parameters into 

frequency domain with ‘leading eigenvectors’. This is important to understand that we 

can use the same graph Laplacian for different stage of hierarchical history matching. 

How it is possible? The leading eigenvectors of graph Laplacian, corresponding from 

lowest eigenvalues, represent the dominant eigenspectrum of a system (Bhark et al. 
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2011c). Especially, the second eigenvector, corresponds to lowest positive eigenvalue, 

provide the algebraic connectivity of a connected graph (Fiedler 1973). 

 

4.4.3 Spectral Domain Decomposition: Model Segmentation for Global Update 

For the global stage update, we propose the new zoning algorithm from spectral 

clustering theories. The spectral cutting criteria, such as ‘ratio cut’ and ‘normalized cut’, 

has been applied in many engineering problems; MRI image analysis (Szu-Hao et al. 

2009), remote sensing (Wem et al. 2010) and circuit design (Hagen and Kahng 1992), 

because of its profound mathematical theory and easy to implement in new area. The 

utility of spectral clustering is defining similarity measure between data points such that 

maximize similarity in a same cluster and minimize similarity between different clusters. 

This fundamental idea of spectral clustering enables us to construct zonal groups with 

similar grid properties or electrofacies.    

We want to reemphasis that the region boundaries are not selected manually but are 

deterministically defined from an optimal partitioning of the prior fracture property field 

relative to a partitioning metric known as ‘cut’ criteria. In this application we apply a 

specific cut algorithm, defined as the optimization approach is to generate a partition   

and its complement  ̅ which minimizes the value of Eq. 4.6, where    and    are data 

points in a set. 
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The optimal clustering of a connected graph is that minimize this cut value as Eq. 4.6. 

The summation of weighted affinity provides zoning criteria for optimal spatial zones. 

This is corresponding to define the clustering as “finding a partition of the graph such 

that points in different clusters are dissimilar and within a group are similar to each 

other” (von Luxburg 2007). 
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Now, how we find the optimal value? This is related to clustering algorithms. We 

suggest a novel ‘ratio cut’ and ‘normalized cut’ partitioning for balanced clustering in 

the zonation of a reservoir model. In fact, there are many clustering algorithm but most 

of them are based on those two clustering idea. Before we explain algorithms, we need 

to define two different ways to measure the size of a subcluster in Eq. 4.7. 
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:
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    (4.7) 

 

The minimum of Ratio Cut is shown to define the optimal partitioning of the data 

characterized by the affinity matrix (Hagen and Kahng 1992). The ratio cut is clustering 

based on number of vertices;  
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In Eq. 4.8, the optimal partitioning identifies regions that have maximum similarity 

within regions (numerator) balanced by the condition of equal size or number of data 

(denominator) (von Luxburg 2007). In easy speaking, if we have a data set with size of 

n, we can minimize     (ratio cut measure) by equally dividing with n/2.   

Shi and Malik (2000) proposed a new partition criteria, ‘normalized cut’, for 

measuring the goodness of an image partitioning. The normalized cut is measured by the 

weight of its edges. This cut measure is minimized by equal weighting. The main 

difference between ‘ratio’ cut and ‘normalized’ cut is using un-normalized Laplacian for 

ratio cut and normalized cut use normalized Laplacian (von Luxburg 2007). 
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The ‘normalized cut’ leads to normalized spectral clustering, which is statistically 

stable, while relaxing ‘ratio cut’ leads to unnormalized spectral clustering. These two 

spectral clustering algorithms provide ‘balanced’ cutting criteria even in complex 

geometry, regarded as connected graph. 

The approximate solution to the minimization of cut, or alternatively to the minimum 

of the Rayleigh quotient (solve eigenvalue problem with iterative approximation), is 

achieved by the eigen decomposition of the affinity Laplacian L. In the form of Eq. 4.5 

is always positive semi-definite and, therefore, has real non-negative eigenvalues with a 

smallest eigenvalue always equal to zero (von Luxburg 2007). The zero eigenvalue 

corresponds to a constant eigenvector, and then the next eigenvector corresponding to 

the second eigenvalue indicates an optimal partitioning of the heterogeneity information 

embedded in L. If mapped onto the simulation grid, the second eigenvector depicts 

spatial features, potentially including edge information, related to similar and dissimilar 

regions of the prior model, where again the term ‘similar’ is defined relative to the 

adjacency graph metric in Eq. 4.3. 

 

4.4.4 Reparameterization for Local Update 

The parameterization of high-resolution reservoir properties, or in this application 

fracture properties defined at each grid cell, is performed using the Grid Connectivity-

based Transform or GCT (Bhark et al. 2011c) in Eq. 4.5. As described, a spatial fracture 

property field is mapped to a spectral domain via the GCT basis vectors, each of which 

corresponds to a modal shape of the grid structure and is associated with a modal 

frequency. Several such basis vectors are shown mapped onto the grid in the application 

below. The basis in its entirety is constructed as a subset of the eigenvectors of a grid 

connectivity matrix, which has the form of a Laplacian operator, which characterizes 

two-point grid cell connectivity over the domain that is to be parameterized. 

Note that the basis functions      are pairwise orthogonal to each other. This 

orthogonality permits inclusion of additional fine scale variation into the multiplier field. 
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Initially, all basis coefficients except first have zero value from Eq. 4.10. So, first basis 

vector contributes to calibrating field average and others to local distributions.       

 

 G

T mv           (4.10) 

 

where spatial parameter (grid properties)    is the n  1 vector depicting the spatial 

property at n grid cells,  is the n  m GCT basis where the number of basis vectors m 

<< n and v is the m  1 vector of GCT coefficients that are the calibration parameters. 

Because the basis vectors      are pairwise orthogonal to each other, a refinement of the 

parameterization by the addition of higher-frequency basis vectors (or by the addition of 

finer-scale variation into the field) is achieved simply by appending the corresponding 

     to . After updating of the components of v during each iterate of the sensitivity-

based minimization, described next, the pairwise orthogonality of  also enables an 

efficient transformation of the GCT coefficient back to the spatial domain as;  

 

vmG           (4.11) 

 

This step is required to apply the updated field in simulation. Finally, it is reiterated 

that we elect not to parameterize and calibrate a fracture property field itself, but rather 

to apply a parameterized multiplier field so that the prior information at its initial high-

resolution will not be degraded (Bhark et al. 2011b). Notating this prior model as     , 

the parameterization is posed as;  

 

  vmm GG 0,         (4.12) 

 

where the multiplication operator )(  is the entry wise product of each component. That 

is, the fracture heterogeneity field applied in simulation is computed as the entry wise 

product of the prior model        and the calibrated multiplier field     . 
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In the local-scale scale calibration workflow in Fig. 4.2, the GCT is applied in a 

multiscale workflow where the parameterized fracture heterogeneity is sequentially 

refined. Between iterations of a sensitivity-based data misfit minimization algorithm, the 

additional higher modal frequency basis vectors are added to the parameterization. At 

the first step of the multiscale workflow, only a small number of the lowest-frequency 

basis vectors are used to parameterize the fracture heterogeneity in the GCT domain then 

add more high resolution, corresponds to high frequency basis vector, if require (multi-

scale iteration loop). 

 

4.4.5 Sensitivity Calculation 

Within each multiscale iterate of the local-scale calibration workflow, the GCT 

coefficient sensitivity is required for the LQSR-based data misfit minimization (Bhark et 

al. 2011a). The streamline-based generalized travel time (GTT) sensitivity (Vasco et al. 

1999; Wu and Datta-Gupta 2002) is used to efficiently accomplish this. The GTT 

sensitivity is analytically calculated along the trajectory with single streamline tracing. 

So, the computation is extremely cheaper and faster than numerical perturbation and 

applicable to any complex geometry like non-neighbor connection (NNC) model or 

fracture system. The ‘General Travel Time (GTT)’ inversion seeks the optimal time shift 

   at each well to minimize the production data misfit at each well. The optimal shift 

will minimize the misfit function. 
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or, maximize the correlation coefficient defined by 
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In the dual-porosity system, the fluid flow is assumed to occur primarily through the 

high permeability fracture network system and matrixes are acting as storages. So, the 

streamline sensitivities are calculated by the streamline tracing along the fracture system 

(Al-Harbi et al. 2005). The water cut arrival time ( ) or streamline time of flight ( ) 

sensitivity with respect to the fracture permeability will be calculated by 
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Here,      is ‘slowness’ which is reciprocal of interstitial velocity and integral are 

evaluated along the trajectory (Vasco et al. 1999). The model parameter    is linear 

combination of coefficient weighted basis function and from basis orthogonality; 
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or by using multiplier field from Eq. 4.12; 
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The calculated streamline GTT sensitivity is utilized for the basis coefficient 

sensitivity from expansion; 
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Simply, the basis coefficient sensitive is derived from streamline general travel time 

(GTT) sensitivity by multiplying basis vector as in Eq. 4.18. Also, adjoint sensitivity 
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also easily integrated with the same formulation if available (Bhark and Jafarpour, 

2011). 

 

4.4.6 Model Update in the Parameterized Domain 

Reconciling high resolution geological models to low resolution field production data 

involves the under-determined inverse problem (He et al. 2001). Updating in the 

transformed domain helps to reduce this non-linearity by reducing number of unknown 

parameters. Then, we minimize the penalized misfit function.  

 

 vvSt  1

~
         (4.19) 

 

Compared to the misfit function by several papers (Al-Harbi et al. 2005; He et al. 

2001) as Eq. 4.20, we don’t add smoothness penalized term. Paramerization will do 

preserving ‘smoothness’ during the dimension condensation.   

 

RLRRSt  ˆ~
21        (4.20) 

 

The minimum in Eq. 4.19 can be obtained by an iterative least square solution in the 

following linear system. An iterative sparse matrix solver, LSQR, is used for solving 

under-determined inverse problem. 

 

4.5 Field Application: San Pedro Reservoir 

In this section the proposed history matching workflow is demonstrated using a field 

application which a models a faulted and fractured (dual porosity, single permeability) 

reservoir. After a description of the field geology and reservoir model calibration 

parameters, each component of the hierarchical workflow is presented in chronological 

sequence. 
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4.5.1 Field Descriptions 

The San Pedro reservoir sits offshore Peru within a complex structure of normally 

faulted Paleozoic quartzite and argillites in the Sechura basin. The reservoir is 6,500 ft 

below sea level and discovered in 2005; 6 years production history up to date. The daily 

production at the initial is 3,200 BOPD and 1,700 BWPD with 33˚ API on average is 

shown on previous work by Meza et al. (2010).  The dip of the basin structure is 

approximately 40 degrees to the northeast. The structural geology in Fig. 4.4, there is 

two main faults in the middle of the reservoir. The first one is East-West (EW) 

directional and a type of strike-slip fault. Second
(2)

 on the north side of reservoir in Fig. 

4.4 is a normal fault. The first fault
(1)

 in Fig. 4.4 with EW is currently prevailing and 

influences the distribution of open fractures. A thin post-Paleozoic layer is actively 

producing but has variations in thickness and productivity. Hence, fracture identification 

is very important because producible fractures are on those layers whose rock types of 

main layers are quartzite, phillyte, slate, argillite.  

Velez et al. (2010) studied the origin of faults and fractures in the Sechura basin and 

constructed an initial geologic model using seismic and well log data. They explained 

how the initial discrete fracture network model is constructed from image logging in this 

field.  From a pre-existing stress analysis (Meza et al. 2010) and image logging (Velez et 

al. 2010), main strike-slip faults and open fractures were identified and had generated 

parallel to the predominant stress field.  
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Figure 4.4. (a) Configuration of well and faults (b) geological Model 

 

From a seismic survey, the oil-water contact (OWC) is defined at 7,174 ft and the gas-

water contact (GWC) at 6,460 ft as shown in Fig. 4.5. Strong aquifer support from the 

base of reservoir is inferred from pressure observations, although the size and strength of 

the aquifer are highly uncertain. Initial pressure at the reservoir top level is 2,983 psi and 

average pressure gradient is 0.35 psi/ft. The estimated bubble point pressure is 3,012 psi 

from the PVT lab test. 

 

 

Figure 4.5. Typical Well Section and OWC / GWC level 

 

The San Pedro field has 18 production wells and 1 gas injection well are tied back to 

two platforms up to date.  Meza et al. (2010) determined that the well productivity 
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indexes are related to average fracture direction and orientation and that the main source 

of production is primarily from the fractures. They addressed the importance of 

accurately characterizing reservoir fracture properties. The average reservoir matrix 

porosity, estimated using the Bortex method, is 3% in the previous study. 

In the naturally fractured reservoirs like San Pedro, fluids exist in two systems. The 

rock matrix provides the storage of fluids and the fracture network provide main route 

for flow dynamics. If the fractures (or equivalent matrixes) are only considered to 

provide the main path and storage for flow, this type of system is a single porosity single 

permeability (SPSP: most common). Otherwise, the main flow exists in the fracture, 

while the matrixes are only connected to the fracture network in the dual porosity and 

single permeability (DPSP). The flux interchange between the matrix and fracture are 

defined with transfer function (Kazemi et al. 1976). Hence, two fracture properties 

(fracture permeability and porosity) and transfer function factor (    are the most 

important but uncertain parameter in dual porosity models. 

 

 

(a) Single Porosity Single Permeability (SPSP) 

 

 
(b) Dual Porosity Single Permeability (DPSP) 

Figure 4.6. Schematics of the Fracture-Matrix Flow Mechanism 

 

4.5.2 Initial Fracture Network (DFN) Model 

As shown in Fig. 4.7, open fractures are observed in reservoir quality rocks within the 

basin. Three types of fractures are reported from the geological data. The first 

corresponds to sedimentary features and are manifest at bed boundaries and in cross-
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beds. The second type corresponds to regional joints which are perpendicular to each 

other. The last is associated with faults, vary locally and have a large uncertainty but 

closely relate to productivity. 

 

  

Figure 4.7. Observed Fractures from San Pedro Field 

Fracture properties are measured in the field using a Formation Micro Imager (FMI), 

shown in Fig. 4.18. The FMI measures properties including density, dip angle, dip 

magnitude and azimuth.  

 

 

Figure 4.8. Image Logging Tool 

 



 

 

105 

The stereonet and strike rosset plots (also called rose plot) in Fig. 4.9 show a high 

dispersion of the fractures with an average dip azimuth in the Paleozoic section of 33˚ / 

35 ˚. 

 

  

Figure 4.9. Example of Steronet and Strike Rosette of all Conductive open Fractures Interpreted on 

the Images (FMI) 

 

A detailed structural analysis is obtained from the interpreted bedding planes as in Fig. 

4.10. Fracture properties derived from logging include density, aperture, permeability 

and porosity, all of which are incorporated into the prior geologic model. In the first 

track in Fig. 4.10, fracture porosity is computed from the FMI-interpreted fractures to 

the right. The second track shows the fracture aperture as estimated from a resistivity 

log; open fractures are shown as blue points and partial or discontinuous fractures as 

yellow points. The third track depicts the lithology with depth, and the fourth through 

sixth tracks the dynamic and static formation micro scanner (FMS) images, together with 

the corresponding fracture orientation at their right. The final track plots the fracture 

density (fractures per foot). Table 4.1 lists each of the fracture property distributions as 

applied for population of the initial geological model. The corresponding Discrete 

Fracture Network (DFN) model is illustrated in Fig. 4.11. The high average fracture 

permeability, aperture distribution and length indicate a well-connected flow network. 
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To map the high-resolution DFN properties to the flow simulation grid we use the Oda-

based upscaling algorithm which upscales fracture permeability, aperture and length 

relative to the total area of fractures in each cell (Oda 1985). The Oda approach solves 

for the upscaled values independent of fluid flux of dynamic information and, therefore, 

does not account for fracture connectivity or length (Correia et al. 2011). For this reason 

it is necessary to characterize the upscaled fracture properties of equivalent simulation 

grids through history matching process. 

 

Fracture 

Porosity 

Fracture 

Apertures 
 

Interpreted 

Fractures 

Fracture 

Orientation 
 

Fracture 

Orientation 

Fracture 

Density 

 

Figure 4.10. Example of the Fracture Interpretation in the geologic data 

The distribution of fracture properties from initial geological model, are summarized in 

Table. 4.1. The initial Discrete Fracture Network (DFN) model is illustrated in Fig. 

4.21.  
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Table 4.1. Fracture Properties 

Fracture 

Properties 
Unit Min Max Mean 

Standard 

Deviation 

Permeability md 33.3 1.74E+7 2.19E+6 3.5E+6 

Aperture ft. 2.07E-6 1.50E-3 3.98E-4 3.5E-4 

Length ft. 5.47 5.0E+2 2.21E+2 1.2E+2 

Surface Area     6.01 1.25E+5 2.78E+4 2.8E+4 

Dip deg 1.73 90.0 56.2 14.3 

Dip azimuth deg 0 360 242 99 

 

The high average fracture permeability, aperture distribution and its length show the 

strong flow network. This fracture network is described in the geologic model then 

upscaled to equivalent initial simulation model. 

 

  

Figure 4.11. Fracture Aperture and Permeability in initial Discrete Fracture Network (DFN) model 

 

For upscaling DFN properties into the simulation grid, we use Oda-based upscaling 

algorithm in the geologic software package, Petrel, which upscale the fracture 

permeability based on the total area of fractures in each cell (Oda 1985). This method is 

fast because it solves upscaling problems without flow simulation, but it cannot account 

for fracture connectivity and its length (Correia et al. 2011). Now, we have an initial 

simulation grid for history matching from geologic data. 
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4.5.3 Global History Match: Initial Model and Parameter Sensitivity Analysis 

Throughout the whole History matching process, we focus on the characterizing 

Aquifer and fracture network properties. From the sensitivity analysis and response 

surface, we choose the “heavier hitter” with big uncertainties as in Table. 4.2 from 

fractures and aquifer parameters. 

 

Table 4.2. Sensitivity Analysis 

Global Parameter Initial Min Max Sensitive Update Parameter 

WOC 7,175 7,060 7,175 YES NO 

GOC 3,275 3,100 3,275 YES NO 

Sigma Multiplier 1 E-4 1 YES YES 

Fracture Porosity Multiplier 1 0.8 1.5 YES YES 

Fracture Transmissibility Multiplier 1 0.8 3 YES YES 

Matrix Porosity Multiplier 1 0.8 1.5 NO NO 

Matrix Transmissibility Multiplier 1 0.8 3 NO NO 

Aquifer Depth 7,300 7,100 7,300 YES YES 

 

From parameter sensitivity analysis, we select fracture property multipliers (Sigma, 

fracture porosity and permeability) and aquifer depth as calibrating parameters. Selected 

multiplier is at first updated with genetic algorithm. In this global stage, we find optimal 

zonal fracture properties multipliers; fracture porosity and sigma, which are segmented 

by spectral clustering based on spectral theory as illustrated in next section.   

 

4.5.4 Spectral Clustering: Model Segmentation 

The new proposing spectral segmentation technique has been applied for global history 

matching stage. The affinity Laplacian is constructed based on mesh connectivity based 

matrix (Zhang et al. 2010) from Eq. 4.5.  
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Figure 4.12. The Second Eigen Vector 

 

The second eigenvector of connectivity Laplacian, shown in Fig. 4.12, provides the 

optimal spectral clustering criteria. Using this second eigenvector is the way in spectral 

clustering, to optimally divide the domain into regions with minimal effort (Shi and 

Malik 2000). The segmented zones are illustrated in Fig. 4.13. Selecting number of 

segments in the global matching is tradeoff between computation costs and degree of 

freedom. Hence, selection process is a heuristic approach and need some experience. In 

this San Pedro model, we selected 20 segments for genetic algorithm calibrating 

parameters (middle in Fig. 4.13). Note that using connectivity Laplacian is efficient than 

weighting by prior when more than one history matching parameters with different 

distribution or magnitude involve with clustering. In this stage, we update the fracture 

sigma and fracture porosity, totally 40 variables plus aquifer depth for GA.   

 

       

Figure 4.13. Segmented Model (3, 20, 50 Segments from left) 
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4.5.5 Genetic Algorithm Model Update 

In the global stage history matching, we applied the genetic algorithm with proxy. The 

target dynamic response to match is water production rate in this stage. The reservoir has 

oil production rate controls and there are some observed pressure data in the tubing head 

(THP) of key wells. So, we construct our objective function, targeting to minimize as 

shown in Eq. 4.1, combined with water, gas production Total and tubing head pressure 

misfits between observed data and calculated values from finite difference simulator, 

which is minimized during first global stage.   

   

SP1A-12D SP1A-1D SP1-5X 

Figure 4.14. Results from Global Stage History Matching  

(Water and Gas Production Total and Tubing Head Pressure) 

 

We illustrated the some key wells’ improved response during the global history 

matching process in Fig. 4.14, where round dots (◦) are observed data, bar dots (-) are 

initial model response and stars (*) are GA generate realizations. 
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Figure 4.15. Field Water Production Rate (FWPR) after Global Update 

 

Note that in the global matching stage, we updated fracture properties multiplier; 

porosity and sigma plus aquifer depth to match field wise energy balance. Fig. 4.15 

shows the updated water production rate from one of best GA realizations after global 

stage. It is clear that overall reservoir energy calibrated after global stage history 

matching.  

 

4.5.6 Local Parameter Calibration: Parameterization 

In the local stage model calibration, we applied the Grid Connectivity based 

parameterization (GCT). The basis vector in Fig. 4.16 is generated from grid 

connectivity Laplacian in Eq. 4.5. The transformation between fine grid (  ) and 

transformed domain ( ) is easily converted by matrix multiplication. This is important 

property of reparametrization when we using fine grid sensitivity for updating basis 

coefficients. Recall that we used the ‘second’ eigenvector for spectral clustering in 
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global stage and will use ‘leading eigenvectors’ for reparameterization in local 

calibration from the same Laplacian. 

 

 

Figure 4.16. Parameterization with Grid Connectivity 

 

4.5.7 Identifying Water Source and Sensitivity Calculation with Streamline 

One and efficient way to analyze our problem is viewing local energy source with 

visualization. Water phase streamline provide a clear movement of water from source. 

We illustrate the water movement in Fig. 4.17 and this help us to analysis the source of 

data misfit.  

 

Aug 2005 Nov 2005 Sept 2006 

   

(a) Initial Model Water Influx before History Matching 

Figure 4.17. Illustration of Single Water Phase Streamline at SP1-1X Well 
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(b) Final Model Water Influx after History Matching 

Figure 4.17. Continued 

 

As we mentioned in mathematical section (Eq. 4.13 to 4.18), we integrated the 

streamline Generalized Travel Time (GTT) sensitivity for calculating basis coefficient 

sensitivity. The benefit of sensitivity based optimization is its fast convergence and 

cheaper computation time compared to gradient based method. In that sense, calculating 

basis coefficient (v) sensitivity is fast and attractive in field scale history matching. The 

streamline sensitivities are calculated by single finite difference calculation and 

streamline calculation (Cheng et al. 2005). Hence, utilizing this information does 

provide fast convergence. Updating in the transformed domain also spreads out local 

fine scale sensitivities to fieldwise scale; hence, we can update grid parameters not just 

along the streamline trajectory but for the entire reservoir domain.  

 

   

Figure 4.18. 3 Phase Streamline Tracing at Aug 2006 (Left), Oct 2011 (Middle)  

and Calculated Well Sensitivity (Right, SP1-2D) 



 

 

114 

Once the streamline sensitivity is calculated, we transform to the basis coefficient 

sensitivity as in Eq. 4.18. In this second local stage update, we used the 50 to 100 basis 

functions for history matching (see multi-scale iteration in Fig. 4.2). Integrating 

streamline sensitivity make multiscale approach more feasible in large field model, 

which can be computationally expensive using gradient based approach (Bhark et al. 

2011a). At the same time, we update whole the reservoir grid property by updating in the 

transformed domain instead of calibrating along the streamline trajectory. This fast 

domain transform enables us to apply multiscale update more effective even to fine scale 

streamline sensitivity inversion. Finally, we calculate the required basis coefficient 

change (  ) by using Least Square Iteration Solver (LSQR).  

 

4.5.8 Local Update Results 

We illustrate the well by well improved response between the stages in Fig. 4.19. After 

first stage GA history matching, we can match most of reservoir energy in Fig. 4.15. 

From there, we calibrate local production balance with grid connectivity 

parameterization (GCT) in Fig. 4.16. Fig. 4.19 shows how the two different steps work 

for reducing mismatch in water producing rate. At the initial stage, there is no water 

production in those two wells from finite difference simulator unlike the observation 

data.  

The two stage hierarchical approach expedites the overall history matching speed and 

its quality. The multiscale-loop in Fig. 4.2 helps to escape local minima and easily can 

add more resolution. Utilizing streamline sensitivity provides visual inspection of flow 

dynamics and fast computation for model update.      
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Figure 4.19. Well Water Production Rate (WWPR) Response 

 

The final results are compared in Fig. 4.20; Well water production rate (WWPR), gas 

production rate (WGPR) and tubing head pressure (WTHP) are illustrate in sequence.  

Most of producing wells have big improvement (minimized data misfit) compared to 

initial dynamic response.  

 

   
SP1-1X SP1-3CD SP1-6D 

Figure 4.20. Final History Matching Results in All Producers 

 (round dot (◦): observed, line (-): initial and star (*): updated)  
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SP1-5X SP1-2D SP1-7D 

   

SP1-11D SP1-9D SP1-8D 

   

SP1-1XST SP1-10D SP1-4D 

   

SP1-9DST SP1-12D SP1A-1D 

Figure 4.20. Continued 
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4.6 Summary and Conclusions 

We propose a hierarchical history matching for complex geometry and highly 

fractured reservoir model. Our structured approach is successfully applied in the field 

example. We characterize the most uncertain model parameters in fractured reservoirs, 

fracture properties (fracture porosity, permeability and sigma) and aquifer depth. We can 

summarize our results as following,   

 

1. We have proposed a hierarchical history matching process and simplified our 

problem into two stages in a highly fractured reservoir. Our approach starts from 

global parameter update with zonal multiplier from spectral clustering (or 

segmentation). We then calibrate local parameter with GCT parameterization. 

This hierarchical or structured history match corresponds with many industry 

experience but we suggest automatic history matching workflows both global 

and local stage. 

 

2. In the global scale updating, we have updated a few heavy hitters such as fracture 

shape factor ( ) and fracture porosity multipliers, in addition to aquifer property. 

This small size of global parameters and zonation approach can significantly 

expedite field scale reservoir energy balance after minimal runs. 

 

3. The spectral clustering using ‘Normalized cut’ from Connectivity Laplacian, 

which provides a good zonation measure. This is not an arbitrary cut but based 

on spectral theories. The algorithm proposes a fast and reasonable multiplicative 

zones based on the flow dynamic connectivity and/or model heterogeneity. 

 

4. Model reduction into parameterized domain with Grid Connectivity 

Transformation increases the convergence speed through a significant reduction 

in the parameter space. The updating in the parameter domain prevents the 



 

 

118 

trapping in the local minima and helps to preserve initial model heterogeneity by 

introducing multiplier field.  

 

5. Integrating streamline sensitivity or adjoint sensitivity can save expensive 

computation costs compared to gradient based methods. With single reservoir 

simulation and streamline tracing, we can determine basis coefficient sensitivity. 

This sensitivity can be utilized for updating model with Least Square Iteration 

Solver (LSQR). Model is updated not just along the streamline but at the entire 

reservoir scale. The integration approach provides an easy multiscale updating 

from coarse scale to finest. 

 

6. We have validated our approach with a field example. The applicability for the 

real problem has been demonstrated by a highly fractured field with complex 

geometry, San Pedro in the Offshore Peru. For a complex example, initial model 

analysis and a structured hierarchical history matching approach are essential in 

addition to the assisted history matching algorithm.   
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CHAPTER V      

CONCLUSION AND RECOMMENDATION 

 

In this research, we focused on aspects of closed loop reservoir management, 

especially for highly fractured reservoirs. The proposed new methodologies are tested in 

simple synthetic and field examples. In the first part (Chapter 2), we introduce the 

generalized drainage volume calculations with streamline diffusive time of flight. The 

depth of investigation is calculated along the streamline trajectory from the diffusivity 

equation. This approach can be applicable to unconventional tight and shale gas 

reservoir under general and changing field operator conditions. The identified drainage 

region can help optimize new infill well locations. We expand the drainage volume 

calculations to propose optimal fracture stages in the horizontal wells. We also proposed 

a novel reservoir model segmentation technique for global scale model update using 

history matching and for field scale optimization in Chapter 3. Our proposed algorithm 

provides decision criteria for model partitioning, multiplicative zones, in the global scale 

model update.  

Finally in Chapter 4, we apply a hierarchical history matching approach to a 

structurally complex fractured reservoir. We suggest a systematic history matching 

approach for fractured reservoirs with genetic algorithm (GA) and model segmentation 

for global change and grid connectivity transformation (GCT) for local update. 

 

5.1 Drainage Volume Calculation, Well Placement and Hydraulic Fracture Stages 

Optimization 

We have presented a systematic approach to well placement in naturally fractured tight 

gas reservoirs based on the well drainage volumes computed from dual porosity 

numerical simulation. Specifically, we have extended the radius of investigation concept 

(Lee 1982) to arbitrary heterogeneity and well conditions by utilizing the gas streamlines 

derived from dual porosity numerical simulation. This allows us to visualize the 

undrained regions and optimize infill well placement based on a single flow simulation. 
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The results have been shown to be consistent with well placement optimization through 

exhaustive flow simulations. Some specific conclusions from this study are as follows. 

 

1. Using a high frequency asymptotic solution of the diffusivity equation, the 

concept of radius of drainage (Lee 1982) has been generalized to arbitrary 

heterogeneous medium and general flow conditions by examining the 

propagation of a ‘pressure front’ corresponding to an impulse (instantaneous) 

source along gas streamlines. The gas streamlines can be traced from the flux 

field of a finite-difference flow simulation.  

 

2. Visualizing the well drainage is a physical and intuitive way of examining the 

influence of existing wells and their mutual interference. By summing up the grid 

cells intersected by the streamlines originating from a producing well, we can 

quantitatively estimate the well drainage volume, its evolution with time and 

potential interference from wells in the vicinity.  

 

3. We have used a discrete fracture network model to examine the role of natural 

fractures in the well drainage volumes. As expected, the results show that the 

presence of natural fractures tends to enhance the well drainage volumes and 

accelerate production depending upon the distribution and orientation of 

fractures.  

 

4. Based on the undrained reservoir volumes and reservoir static and dynamic 

properties, we have defined a ‘depletion capacity’ map for rapid identification 

and optimization of infill locations in tight gas reservoirs. The power and utility 

of the method has been demonstrated using both synthetic and field applications. 

 

5. We have demonstrated the use of drainage volume concept in optimizing number 

of fracture stages in the Cotton Valley formation. The incremental drainage 
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volumes with the number of fracture stages seem to reach a diminishing return. 

Eight to ten hydraulic fracture stages indicate the most optimal completion 

strategy for the horizontal well studied from the field example. 

 

6. The optimization based on the drainage volume was found to be consistent with 

the performance forecasting based on the rate profiles generated from the 

simulator. Besides quantitative analysis, drainage volume calculations provide 

the added benefits of flow visualization with no additional simulation. 

 

5.2 Model Segmentation from Spectral Clustering  

We propose a new model segmentation technique from spectral clustering theory. The 

suggested zonal approach is verified with both synthetic and Brugge SPE benchmark 

model. The new zonation algorithm provides rigorous criteria for history matching 

compared to old industry practice of using box multiplier.   

Our proposed procedure is: (1) construct adjacency based Laplacian to capture spatial 

variability in subsurface properties (2) use graph partitioning techniques to create 

zonation and find cutting edge (3) apply partitioning with history matching algorithm. 

The graphic cut from the model geometry and/or heterogeneity is not arbitrary and is 

derived from optimization with graphic cutting metric. 

 

1. The proposed zonation algorithm can preserve the major features of the prior 

model after history matching because the generated zonation is based on the 

model heterogeneity and/or connectivity information. We illustrate that spectral 

clustering approach can potentially capture different facies in the reservoir. 

 

2. We propose three different Affinity Laplacian constructions and four different 

graph cutting algorithms. Basically, there is no ground truth in spectral 

clustering. So, it is not possible to say which one is the best or the worst. But we 

can arrive at some general conclusions from image clustering problems: 
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‘normalized’ cut is more statistically stable than ‘ratio’ cut. Also, ‘Cheeger’ cut 

shows at least as good or better performance than ‘standard’ cut. Hence, 

‘Normalized Cheeger Cut’ is a good starting point for segmentation. 

 

3. The spectral clustering problem is a NP-hard and heuristic approach. As we 

demonstrated, we can generate different cutting with combinations of Laplacian 

and cutting algorithms. Even wider choices are available with free parameter and 

cutting range. We inherited these properties in our proposed segmentation. 

Hence, we require some initial experiments and experience with different 

combination of cutting algorithms and Laplacian. Also, the two free parameters 

and cut off range heavily impact the clustering. 

 

4. Through human interventions and heuristics, the spectral clustering provides a 

good guideline for automatic zonation criteria. This is more attractive when we 

do hierarchical history matching; which is essential for history matching 

problems for full-field model with decades of production history. We can adapt 

this zonal concept for global stage history matching and then further calibrate 

with fine scale approach. 

 

5.3 A Hierarchal Multiscale Model Calibration with Spectral Domain 

Parameterization  and its Application 

We propose a hierarchical history matching for complex geometry and highly 

fractured reservoir model. Our structured approach is successfully applied in the field 

example. We characterize the most uncertain model parameters in fractured reservoirs, 

fracture properties (fracture porosity, permeability and sigma) and aquifer depth. We can 

summarize our results as following,   

 

1. We have proposed a hierarchical history matching process and simplified our 

problem into two stages in a highly fractured reservoir. Our approach starts from 
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global parameter update with zonal multiplier from spectral clustering (or 

segmentation). We then calibrate local parameter with GCT parameterization. 

This hierarchical or structured history match corresponds with many industry 

experience but we suggest automatic history matching workflows both global 

and local stage. 

 

2. In the global scale updating, we have updated a few heavy hitters such as fracture 

shape factor ( ) and fracture porosity multipliers, in addition to aquifer property. 

This small size of global parameters and zonation approach can significantly 

expedite field scale reservoir energy balance after minimal runs. 

 

3. The spectral clustering using ‘Normalized cut’ from Connectivity Laplacian, 

which provides a good zonation measure. This is not an arbitrary cut but based 

on spectral theories. The algorithm proposes a fast and reasonable multiplicative 

zones based on the flow dynamic connectivity and/or model heterogeneity. 

 

4. Model reduction into parameterized domain with Grid Connectivity 

Transformation increases the convergence speed through a significant reduction 

in the parameter space. The updating in the parameter domain prevents the 

trapping in the local minima and helps to preserve initial model heterogeneity by 

introducing multiplier field.  

 

5. Integrating streamline sensitivity or adjoint sensitivity can save expensive 

computation costs compared to gradient based methods. With single reservoir 

simulation and streamline tracing, we can determine basis coefficient sensitivity. 

This sensitivity can be utilized for updating model with Least Square Iteration 

Solver (LSQR). Model is updated not just along the streamline but at the entire 

reservoir scale. The integration approach provides an easy multiscale updating 

from coarse scale to finest. 
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6. We have validated our approach with a field example. The applicability for the 

real problem has been demonstrated by a highly fractured field with complex 

geometry, San Pedro in the Offshore Peru. For a complex example, initial model 

analysis and a structured hierarchical history matching approach are essential in 

addition to the assisted history matching algorithm. 

 

5.4 Recommendation 

1. Drainage Volume Calculation with Streamline Diffusive Time of Flight 

1) Application to Dual Porosity and Dual Permeability (DPDP) Model. 

2) Well Spacing Optimization 

3) Compare with Decline Curve Analysis 

4) History Matching with Pressure Transient Analysis  

 

2. Spectral Clustering 

1) Clustering with Dynamic Data 

2) Include Producers and Injector Information in the Clustering 

3) Co-Clustering Algorithm 

4) K-Means Clustering 

5) Grouping of Realizations in the Solution Space 

 

3. Hierarchical History Matching 

1) Reparameterization with Prior-weighted Connectivity Transformation 

2) Fine scale Fracture Porosity and Sigma Sensitivity Calculation with 

Streamline and Inversion 

3) History Matching with DPDP Model 
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NOMENCLATURE 

 

     Adjacency between cell i and j 

A  Adjacency matrix 

kA   Real functions of amplitude of wave 


 

 Diffusivity 

1   The strength of preserving prior model 

2   The strength of change model smooth 

C  Cluster 

C  
 Complement of Cluster C 

| |
  Number of Vertices 

cut  Objective for graph partitioning  

    Degree of connectivity of cell i 

D  Degree of connection matrix 

DC
 

 Depletion capacity 

)(   Entrywise product operator 

R   Change in the reservoir property to be made 

t
~

   The vector of generalized travel time shift at the wells 

v   The vector of basis coefficient change to be made 

ε  A Negligible Value 

    Grid Property of cell i 

        natural vibration frequency of a system 

    Natural vibration frequency 

    Water fractional flow 

ij   Grid block position i, j 

J  Objective function for local stage 

k  Number of basis used for domain transform 

k  Permeability 
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L  Grid Laplacian matrix 

sL   String length 

L̂   A second spatial difference operator 

i       Eigenvalue 

   Vector of parameters for GA update   

m  Matrix 

    Local model parameter for local update 

   Linear density of string 

      Normalized cut 

    Number of observation points 

n  Number of connected grid points 

mn   Harmonic mode 


  Norm 

   Objective function 

Obs
 

 Observed data  

P  Probability of model 

),( txp   Pressure at time t 

   
 Grid property of cell i 

   
 Basis function or vector 

 x   porosity 

   Streamline 

r  Euclidean distance cut off limit 

    Correlation Coefficient 

      Ratio cut 

s(x)  Slowness of streamline 

S  The basis coefficient sensitivity matrix  

Sim  Simulated response 

   
 Water saturation 
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t  Time, t 

maxt   Time of maximum pressure change 

   
 Temperature like parameter 

τ  Streamline time of flight 

)(x
  Diffusive time of flight 

)(ˆ x   Streamline time of flight 

u  Fine Grid property  

   Fluid viscosity 

v  Basis coefficient 

)(xv   Interstitial velocity of a neutral tracer 

porvV   Pore volume 

        Summation over the Weights of all edges attached to Vertices 

     Connectivity weight between grids   and   

W  Connectivity weight Matrix 

   Wave frequency 

w  Connectivity Weight between Two Points 

x   Location of grid block 

x  Location in a String 

fx   Length of hydraulic fracture (one wing) 

   
 Grid centroid coordinate of cell i 

   Distance along the streamline 

y  Magnitude of Vibration 
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APPENDIX A      

A PETREL PLUG-IN FOR STREAMLINE TRACING, RESERVOIR 

MANAGEMENT & HISTORY MATCHING 

 

A.1 Introduction 

Reconciling high-resolution geologic models to dynamic data such as transient 

pressure, tracer and multiphase production history or time-lapse seismic data is by far 

the most time-consuming aspect of the workflow for geoscientists and engineers. 

Although significant advancements have been made in this area over the last decade, 

current industry practice still largely involves iterative trial and error methods and 

property multipliers that often result in local discontinuities and loss of geologic realism. 

Manual history matching is time-consuming, manpower intensive and highly subjective.  

The DESTINY plug-in is designed for fast calibration of high resolution geologic 

models to dynamic data based on the research at the Texas A&M University. There are 

additional functionalities in DESTINY that allow for flow visualization, reservoir 

management and optimization through identification of well drainage and swept 

volumes and selection of optimal well locations for infill drilling. DESTINY can be used 

with both finite difference as well as streamline simulators. This extends its application 

from slightly compressible flow situations (for example, waterflood about bubble point 

pressure) to highly compressible flow such as gas reservoirs.  DESTINY utilizes unique 

information gleaned from streamlines and a novel generalized travel time inversion of 

production data to update geologic models. Streamline-based sensitivities can be used to 

quickly identify the discrepancies between the geologic model and reservoir dynamic 

response. The sensitivities can be used in conjunction with the inversion algorithm to 

make targeted changes to geologic models while preserving geologic realism. In 

particular, the sensitivities can be obtained in a single forward simulation because it 

utilizes an analytic approach that involves 1-D integral along streamlines. The 
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DESTINY can also be used for assisted history matching aided by the streamline-

derived sensitivities.  

The DESTINY plug-in utilizes Ocean and PETREL technology extensively. It is 

composed of three sequential workflows: streamline tracing, parameter sensitivity 

calculation and history matching. The users can choose to turn on or off any of these 

functionalities. The inversion output provides complete information on the status of the 

history matching during execution. The plug-in has functions to monitor the sensitivity 

of each well, the updated geological model and its production response, and the 

production data misfit during the inversion process. Descriptive statistics can be 

generated on a field-wide or on a facies-by-facies basis with using the PETREL 

embedded functions. The synergy between PETREL and Ocean technology is fully 

utilized by the plug-in.  

 

A.2 Streamline Applications Using DESTINY 

Streamlines provide several benefits for reservoir characterization and management. 

The streamline trajectories and time of flight are useful for visualizing reservoir flow 

dynamics. Using streamlines, we can easily identify the drainage volumes and swept 

volumes associated with producers and injectors, respectively. This provides us with a 

natural way to identify potential infill producer and injector locations during water 

flooding. Streamlines can also be used to identify and visualize the connectivity and 

communication among wells or between wells and the aquifer. This allows us to identify 

the source of and also allocate fluid volumes associated with individual producers and 

injectors. This information can be utilized for pattern balancing and flood optimization.  

A powerful application of streamlines is in waterflood management and optimization. 

The streamline time of flight provides us with a dynamic picture of the flood front 

evolution. By adjusting the injection and production rates at the wells, we can manage 
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the movement of the flood front to maximize waterflood sweep efficiency. This gives us 

an efficient approach to optimal waterflood management through rate control. 

A commonly held misconception about the application of streamlines is that the 

technology is limited to incompressible flow and requires injectors and producers. In 

reality, the streamlines are simply a representation of the velocity field and streamlines 

exist whenever there is an underlying velocity field. This allows us to take advantage of 

the streamline technology in conjunction with finite difference simulation. For example, 

we can apply streamlines to compute and visualize the drainage volumes in tight gas 

reservoirs using the flux field generated from the finite difference simulation. The 

drainage volumes of existing wells can then be used to optimize infill locations based on 

undrained parts of the reservoir.  

Streamlines are particularly useful for history matching.  Streamlines can be used to 

identify and target changes during history matching. In particular, streamlines can be 

used to efficiently compute the sensitivity of the production response to reservoir 

parameters such as porosity and permeability. These sensitivities can then be used to 

facilitate manual history matching or can be used in conjunction with inversion 

algorithms to suggest updates to the geologic models. Reconciling high-resolution 

geologic models to production history is a very time-consuming aspect in reservoir 

modeling. Current practice still involves a tedious and manual history-matching process 

that is highly subjective and often employs ad-hoc property multipliers that can lead to 

loss of geologic realism. Streamline can aid during history matching in terms of (i) 

efficiency in workflow, (ii) obtaining geologic insight (iii) understanding reservoir 

dynamics and, (iv) preserving geologic realism. 

 

A.3 DESTINY Process and Workflow 

Fig. A.1 shows the general process of DESTINY. First, it runs the forward simulator 

and reads the output of the simulator. The forward simulator can be either a finite 
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difference or a streamline simulator. The current options for simulators are: ECLIPSE, 

VIP and FRONTSIM. For finite difference simulators, DESTINY utilizes the flux field 

to compute streamlines and time of flight. This information can then be used to visualize 

swept volumes and drainage volumes of existing wells during water flooding and also 

for gas reservoirs to locate potential locations for infill producers or injectors. The flux 

associated with streamlines can also be used to optimize injection and production rates 

of the wells to maximize flood performance. DESTINY is particularly useful for 

streamline-assisted history matching. Using DESTINY, we can visualize the sensitivities 

of production data with respect to reservoir properties. These sensitivities depict the 

region of the geologic model impacting the production data.  Guided by these 

sensitivities, we can either manually update the geologic model to match the production 

data or use inverse modeling techniques for suggested updates to the model. 

 

 

Figure A.1. General DESITNY Process 

 

Fig. A.2 shows the overall work flow of streamline tracing and production history 

matching.  



 

 

143 

 

Figure A.2. Destiny Work Flow 

 

The use of commercial simulators in DESTINY provides a great deal of flexibility in 

terms of grid geometry, well conditions and process simulations. However, because of 

the multiple options offered by commercial simulators and the resulting variations in 

setting up the simulation deck, instead of scanning the input deck made by the users, 

DESTINY scans output files from simulator to obtain the necessary data to trace 

streamlines and compute time of flight. It enables users to fully utilize flexibility for 

describing the flow simulation model and leads to robust streamline tracing without 

failure because of the fixed simulation output file format. 
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A.4 Installation and Getting Started 

The installation package consists of two files named “setup.exe” and 

“DestinyModuleInstaller.msi” as shown in Fig. A.3. Users can easily install DESTINY 

plug-in for PETREL with just a few clicks on “setup.exe”. For successful installation, 

users need installation authority on that machine and proper version of PETREL the as 

Fig. A.3 right. We provide several versions of installation package, which depend on 

installed PETREL version in the user’s machine. This is because the Ocean technology 

allows different version of plug-in for different versions of PETREL. Members can 

download the latest version of the plug-in from our MCERI website 

(http://www.pe.tamu.edu/mceri/) with member’s log-in or can ask us to make a new 

plug-in for your particular version of PETREL.  

 

    

Figure A.3. Installation Package 

This installed plug-in is shown at PETREL “Process window” as in Fig. A.4 and users 

can start DESTINY workflow by double clicking this icon. Note that PETREL allows 

just one process window at a time. Sometimes, different process windows may 

manipulate one data set at the same time and this causes undesired results to occur. 

http://www.pe.tamu.edu/mceri/
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If your model will take too long for history matching, we also provide the option to run 

DESTINY as an independent process. This allows you to release the PETREL license. 

This functionality enables the user to work on other jobs during DESTINY computation 

as a background process. 

 

 

Figure A.4. DESTINY in PETREL Process 

 

A.5 User Interface 

DESTINY module consists of 8 different tab windows. After starting DESTINY, users 

can move each tab by clicking the tab name on the title or next/previous button at the 

bottom right. Also in each option, DESTINY provides default values to choose for user’s 

convenience. If you are not sure about those options, default values will work in many 

cases.  
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A.5.1 Welcome 

 

 

Users can open the manual by clicking “REFERENCE MANUAL” button. There are 

also quick pop-up help balloons if the user moves the mouse over a question mark beside 

each option box. Note that the description in this manual is mainly based on the 

ECLIPSE100 developed by Schlumberger although DESTINY has been interfaced with 

several commercial simulators such as FRONTSIM and VIP. 

In the first tab, users can choose between 3 main work branches in “RUN OPTION”. If 

you choose “Tracing Only” option, then the “Sensitivity” and “Inversion” setting tabs 

disappear to keep the process simple and transparent. Alternatively, if you want to run 

“Tracing and Sensitivity”, then you will not see “Inversion” setting tab. Otherwise, users 

can change every setting for running DESTINY.  

The main module of DESTINY is structured as in Fig. A.5. It consists of three main 

modules which are encapsulated with object oriented program language.   

 

http://www.google.com/url?sa=U&start=1&q=http://www.slb.com/&ei=QtkKSruvNozstgOprZXYCA&usg=AFQjCNEU0g7yYCZo9lSNtE_yfHdv9zEmrA
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Figure A.5. DESTINY Main Module 

 

A.5.2 General 

 

 

In the “General” setting tab, users need to define the basic simulation settings. As 

mentioned earlier, DESTINY reads simulation output and does its own computation. 

Therefore, we strongly recommend verifying that the forward simulation deck runs 

without error before the DESTINY computation. 
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Working Directory Defines the location of existing Forward simulation data 

deck. This requires information for 3 files.  “Simulation 

Info: main simulation data file name”, “Porosity Info: 

Porosity file name” and “PERM: Permeability file name”. 

If users don’t have these porosity and permeability with 

different files, users should make as separate files with 

“INCLUDE” keyword for iterative model update. Users 

also can consider Y and Z directional permeability to 

preserve the original relationship between these directions.  

It can be activated by checking the appropriate box.  

Please, note that DESTINY requires a few keywords in 

the simulation deck to make sure that the simulation 

output contains all the information for DESTINY to 

carry out its computations. These are discussed later in 

the manual under ‘TEST CASES’ in Example 1. 

Forward Simulator Defines which simulator will be used for tracing and 

inversion calculations. Current DESTINY is interfaced to 

work with ECLIPSE /FRONTSIM/VIP. 

Phase Present Defines model phases for calculation. Users can check this 

simulation phase from forward simulator setting. 

Tracing Option Defines phases to be traced for streamline calculation.  

These tracing phases should also be marked in “Phase 

Present”. 

Tracing Starting Defines the starting points of streamline tracing. 

Streamlines can start from the injector, producer or cell 

center based on the user’s visualization or computation 

purpose. 
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Tracing Ending Define the ending points of streamline tracing. This button 

becomes active / inactive based on “Tracing Starting” 

setting. If the user traces from producers to injectors, the 

streamlines will depict the drained area. If the tracing is 

from injectors to producers, swept area will be visualized. 

Tracing from cell centers to producers / injector will 

visualize the relation between grid cells and wells and will 

be used to visualize the flood front location at different 

times. 

A.5.3 Tracing 

 

 

Figure A.6. Detail of Tracing Module 

 

In “Tracing” tab, users can set up streamline tracing options. DESTINY uses flux 

information for streamline generation.  
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Forward Simulator Defines if we want to RUN the forward simulator or not. If 

USE RESTART FILES is selected, then there must be an 

available set of restart files for use by DESTINY. 

Tracing Intervals Defines if tracing is to be done at ALL schedule dates or at 

a SINGLE date. If the user chooses “Single Time”, the 

“Schedule Time” will be activated and the user can 

choose the time step for tracing. 

Streamline definition Specifies if the originating streamlines per completion is 

defined based on flux or should be uniformly distributed. 

Tracing Method Defines tracing schemes near faults and non-neighbor 

connections (NNC). This option provides a consistent 

representation for streamlines and velocities near faults 

and non-neighbor connections. (Reference paper:  SPE-

113425)  

Discretization Defines the location of the streamline starting point at the 

boundary of the starting grid block. Based on the user 
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choice, streamlines start from those points and then tracing 

continues. 

Flood Efficiency Map Defines the use of Flood Efficiency MAP visualization. 

Users can generate intuitive connections between injection 

and production wells. DESTINY provides two methods for 

MAP, based on flux and time of flight. (Reference paper:  

SPE-132642) 

Coarsened Model Defines the use of COARSEN keyword in Finite 

Difference simulator. This option saves a lot of simulation 

time for large field model and gives good approximated 

result. DESTINY can trace streamline under coarsened 

geometry, calculate sensitivities and calibrate model under 

coarsened scale and finally update fine geological model.  

Number of SLN Defines the total number of streamline for tracing. If you 

choose tracing from cell centers, this option will be 

ignored and try to generate from the entire grid block. 
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A.5.4 Diffusive TOF (Time of Flight) 

  

 

 

In “Diffusive TOF” tab, ‘diffusive’ time of flight can be used to define the drainage 

radius and infill well optimization in case of primary recovery or compressible flow such 

as gas reservoirs. 

 

Diffusive TOF Select if the user wants to trace using Diffusive Time of 

Flight. This option is activated if the user chooses 

“Tracing Only” in the “Welcome” tab. This diffusive time 

of flight will trace from cell center to producer as a default. 

(Reference paper:  SPE-88802) 

Drainage Volume Defines the well for which the user wants to calculate the 

drainage volume. If the user wants to calculate for a single 

well, then “Well Name” will be activated. 

Calculation Time Defines if the user wants to calculate the well drainage 

volume in every time step or at the last time step.  
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Well Information Defines the well name for single well drainage volume 

calculations and the threshold time to visualize the 

drainage volume (year). 

Dual Porosity Can use dual porosity model which is common in 

unconventional oil/gas models. DESTINY can generate 

streamlines along the natural and/or hydraulic fracture 

networks. 

Optimal well Can visualize the next infill well location. Users can easily 

visualize the most optimal regions for potential infill well 

placement. 

 

A.5.5 Sensitivity 

 

 

 

In “Sensitivity” tab, the user can define calculation options for grid block sensitivity 

computations. For mathematical background for sensitivity calculations, the user can 
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refer to chapter 10 of the SPE streamline textbook or papers. (Reference paper:  SPE-

99465) 

 

Normalization When checked, the sensitivities are normalized. The 

normalization facilitates convergence of the inversion 

algorithm when different data are involved. 

Sensitivity Cut off Defines a percentile based cutoff that will be applied to 

water cut sensitivities on a well-basis. It is used to reduce 

unusually high and low sensitivity values.  

Cut off Range Defines the upper and lower percentile for the water cut 

sensitivity cut-off. 

Sensitivity cut off Defines a time of flight based cut off that will be applied 

to water cut sensitivities on a well-basis. This is used to 

eliminate the sensitivities in stagnation regions which may 

cause poor inversion performance.  

Maximum TOF Defines the threshold of the time of flight for the water cut 

sensitivity cut-off. This Maximum Time of Flight cut off 

value is automatically calculated by multiplication of 

actual producing time period with input multiplier value.  

Sensitivities Output Define whether the user wants to generate sensitivity 

outputs or not. This sensitivity output can be used as 

reference data for manual history matching. Sensitivity 

files will be found at working folder with well name and 

no extension. 
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A.5.6 Inversion 

 

 

 

In the “Inversion” tab, users can change several options for improved inversion results. 

These settings also improve the calculation speed and help maintain geologic continuity 

and geologic realism during history matching. 

 

Data Misfit Travel Time Tolerance will define overall travel time 

misfit for all wells and water cut (WWCT) misfit tolerance 

defines the overall amplitude misfit defined for all wells. 

These values will be used to stop the inversion whenever 

the specified tolerance is satisfied.  

  

Inversion Tuning  

LSQRITE Number of LSQR iterations for non-linear solution 



 

 

156 

DECRFAC Decrease factor to be applied to the norm and smoothing 

constraints through iterations. 

Weight MAX Defines maximum weight given to permeability changes in 

the each iteration. 

Weight MIN Defines minimum weight given to permeability changes in 

the each iteration. 

Weight default  Defines default weight given to permeability changes in 

the each iteration. 

 

Inversion Constraints 

Variables to integrate production well water cut (WWCT) and well 

gas oil ratio (WGOR). Users can also use both water-cut 

and gas oil ratios. 

Constraints DAMPING Norm constraint.  A large value of the norm 

constraint minimizes changes to the prior model. This will 

lead to poor quality data match. We can then gradually 

lower the norm constraint to get an acceptable compromise 

between changes to the prior model and quality of the data 

match. 

HSMOOTH  Horizontal smoothing constraint. A large 

value of this parameter leads to more continuity of the 

estimated property in the horizontal direction. 

VSMOOTH Vertical smoothing constraint. A large 

value of this parameter will lead to more continuity of the 

estimated parameter in the vertical direction. 
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The inversion constraints on this version of DESTINY are 

only meant to update permeability. Only the first values on 

each line will be considered during the minimization of the 

objective function. The other values are reserved for 

further development when integrating additional reservoir 

parameters. 

 

Inversion Setting  

Objective  functions that are targeted for minimization. DESTINY 

can utilize three options for choice of objective function (1) 

“Generalized Travel Time”, (2) “Amplitude” and (3) 

“Travel Time”. The travel time inversion mainly focuses 

on matching the breakthrough time whereas the 

generalized travel time matches both breakthrough and 

amplitude response (recommended). The amplitude match 

focuses on matching the production amplitude. If user 

changes the objective function option, corresponding 

iteration number box is activated and others are kept 

inactive.   

Threshold This is the water cut value selected for travel time misfit 

evaluation. At every producing well, whenever the water 

cut reaches this value, both simulated and observed times 

will be extracted and used for misfit and sensitivity 

calculations. 

Permeability range enables users to set updating permeability range 

during history match. By default, initial permeability field 

range is used. 



 

 

158 

A.5.7 Run Simulation 

 

    

 

After finishing DESTINY setting, users can easily check the compatibility between 

DESTINY setting and Finite Difference Simulator. At the left bottom of this page has a 

“DATA CHECK” button, which provides this compatibility report and user can get 

advice for successful simulation. 

Now, DESTINY is ready to run for streamline tracing, sensitivity calculation and 

model calibration depending on your choice. The DESTINY calculation simply starts by 

clicking “Run Simulation” button at the bottom. Users can see the run time comments at 

this tab and also can find it recorded in the file “DESTINY.PRT” under the working 

directory after the computation. Another choice is “Run in Background” for running 

DESTINY. If the user checks this box, DESTINY computations will run as an 

independent process and the PETREL license will not be occupied during the simulation 

run.  The user then can close the DESTINY window and open again after the simulation 

is finished. 
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A.5.8 View Result 

 

 

 

DESTINY provides a lot of outputs which are very useful to monitor the performance 

of both tracing and inversion. The streamline output is compatible with a wide range of 

commercial visualization packages. DESTINY generates streamline files which can be 

loaded directly to PETREL.  

Users can import simulation model by clicking “Import” button. Users can see import 

file window and must designate main simulation file name. Imported model will be 

placed at PETREL model window. Users have to check current directory name as 

indicated in the lower part of tab.  
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The streamline information is imported together with the model as default. Users can 

visualize various streamline properties as shown in Fig. A.7 under the “Streamline 

folder”. 

 

Figure A.7. Streamline (Water Saturation) 

 

To visualize objective function change with iterations, click “Data Misfit” button. 

Users can see the change in data misfit with respect to iterations as in Fig. 8 left.  The 

water cut change in each well can be visualized by selecting “Check Well Name” and 

then clicking “Plot” button. Those graphs are placed under “Input” window and can be 

modified for color and line thickness for capture at the “Setting option”. 

 

    

Figure A.8. Data Misfit (Objective Function) and Water Cut Response 
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To visualize the permeability field, users need to check the permeability file name and 

import each permeability field. The imported data set will be placed under “Properties”. 

Note that the permeability data will be in log scale as default. The user needs to turn off 

this log scale and color range for visualization of permeability difference. 

 

 

Figure A.9. Initial / Updated / Change of Permeability Field 

 

To visualize the sensitivity of each well, check the well name in the “Sensitivity” list 

and then import that file from working folder. Note that sensitivity is equal or less than 

zero, so users also change data value range from “color table”. 
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Figure A.10. Streamline Sensitivities of Well P1 and P4 

 

“Drainage Volume” and “Optimal Well” window will be explained at “Diffusive Time 

of Flight” example. 

The inversion output offers information to know the status of the history matching 

performance at any iteration. DESTINY has implemented functions to monitor the 

permeability changes during the inversion iterations. Descriptive statistics can be 

generated to monitor the behavior of statistical moments on a field-wide or on a facie-

based basis. A brief summary of the DESTINY output files are presented for advanced 

users.  

 

A.6 Streamline Output 

 SLNXXX Files: When the binary output is selected, DESTINY will generate 

*.sln files for every simulation time step. ECLIPSE users can use the restart files 

and the *.sln files to load the entire simulation workspace to PETREL.  
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A.7 Inversion Output 

 Updated permeability files: After running the first inversion iteration this file 

will be modified and to the end of the each iteration. The updated permeability 

will be written out as initial permeability file name (the updated files will have a 

suffix with the iteration number in which the permeability was updated). 

 resinv.obj: This file has the objective function behavior through all iterations. It 

has two columns representing the travel time and amplitude misfit defined at all 

producing wells included in the data integration 

 resInv.wwctX: It contains the simulated and observed production water cut for all 

wells included in the project. At the header of each well the travel time misfit 

will be written out. This file is generated at the end of the each iteration. 

 dynamic.bin: Binary files contain the production sensitivities. This file is used by 

LSQR to perform the objective function minimization. 

 dynamic.ascii: An ASCII file contains the production sensitivities. This file is 

provided for history matching applications where streamline-based sensitivities 

are used as complementary information. 

 

 

A.8 Test Cases 

We provide 7 different synthetic test cases for DESTINY testing. DESTINY reads the 

necessary information from the restart file of the forward simulator. Hence, it is 

important to include some specific keywords in the forward simulator setting for 

successful DESTINY running.  We discuss these keywords in the following examples. 

 

A.8.1 ECLIPSE Model Tracing and History Matching  

(1) Eclipse Settings for Tracing 
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SECTION EECLIPSE SETTING REASON 

SOLUTION 

RPTSOL 

'RESTART=2' / 

Print output to the Restart 

files 

REMOVE “UNIFOUT” & “FMTOUT” 
Destiny use separate binary 

file for each time step 

SUMMARY 

 WOPR /  

 WGPR / 

 WWPR / 

Read production rate base 

on tracing phase 

SCHEDULE 

RPTRST 

'BASIC=2' FLOWS PRESSURE 

ALLPROPS/ 

Control restart file written 

data for computation 

 

(2)  Eclipse Settings for Inversion (History Matching) 

 

SECTION EECLIPSE SETTING REASON 

GRID 

INCLUDE 

'PORO.GRDECL' / 

 

INCLUDE 

'PERMX.GRDECL' / 

Use “INCLUDE” as 

separate porosity and 

permeability files for 

iterative parameter update 

SOLUTION 
RPTSOL 

'RESTART=2' / 

Print output to the Restart 

files 

SUMMARY 

 WOPR / 

 WGPR / 

 WWPR / 

Print out production rate 

base on tracing phase 

 WWCT / 

 WWCTH / 

Print out water cut data and 

history for water cut match 

 WOPT / 

 WWPT / 

 WGPT / 

 WOPRH / 

 WWPRH / 

 WGPRH / 

Print out oil, water and gas 

production rate 

SCHEDULE 

RPTRST 

'BASIC=2' FLOWS PRESSURE 

ALLPROPS / 

Control restart file written 

data for computation 
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WCONHIST 

P1   1*   LRAT    69.87   559.09   1* / 

P2   1*   LRAT   168.62   460.34   1* / 

P3   1*   LRAT   163.53   465.43   1* / 

P4   1*   LRAT   628.97          0     1* / 

/ 

 

WCONINJH 

I1 WATER 1* 2515.92  / 

/ 

Use “WCONHIST” for 

production target and 

“WCONINJH” for injection 

target instead of 

“WCONPROD” and 

“WCONINJ” for history 

match. Two control modes 

return similar but different 

results. DESTINY use 

history target. 

 

Users can test this model by changing “RUN OPTION”. All of default settings are 

based on this test model. All of Eclipse data file is located under “Eclipse_SET” folder. 

 

A.8.2 FRONTSIM Model History Matching 

FRONTSIM is a streamline simulator. The FRONTSIM generates its own streamline 

and DESTINY reads the streamlines for sensitivity calculation and inversion. Hence, 

DESTINY will not trace streamline for the FRONTSIM option. One nice feature is that 

FRONTSIM uses almost the same keywords as ECLIPSE and thus the same keyword 

restrictions apply as in previous “Eclipse setting for Inversion”. This data set is located 

under “FrontSim_SET” folder. 

 

Figure A.11. Setting for FrontSim Test 
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A.8.3 GOR + Water cut History Matching 

  

Figure A.12. Setting for GOR/WWCT Model 

 

For testing this GOR/WCT model, users need to change some options in the inversion 

part. Also for speedy inversion, we recommend to turn on “Permeability Cut Off” as 

shown in Fig. A.11. This data set is located under “GORWCT_SET” folder. 

     

Figure A.13. Results of Simulation Run and Well (P1) GOR Sensitivity 

 

After running DESTINY, simulation data files are imported as shown in Fig. A.13. In 

this model, you can also check GOR sensitivity as shown. 
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A.8.4 Reservoir Management Examples 

 

 

Figure A.14. New Reservoir Management Modules 

 

We added new features for reservoir management purposes. Fig. A.14 shows the 

details of the new algorithm and illustrated relevant examples below.  

A.8.5 Diffusive Time of Flight 

(1) Eclipse Settings for Tracing 

SECTION EECLIPSE SETTING REASON 

SOLUTION 
RPTSOL 

'RESTART=2' / 
Print output to the Restart files 

SUMMARY WOPR / WGPR / WWPR / WGPT 
Read production rate base on 

tracing phase 

SCHEDULE 

RPTRST 

'BASIC=2' FLOWS PRESSURE 

ALLPROPS / 

Control restart file written data 

for computation 

 

This diffusive time of flight is a function of calculating drainage volumes in primary 

recovery/gas reservoirs and also for well placement optimization in gas reservoirs. So, 

WGPT keyword is necessary for this computation.   
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Figure A.15. Setting for Diffusive Time of Flight Calculation 

 

For Diffusive time of flight test case, users need to choose “Tracing Only” at “Run 

Option” and then follow the next settings as above. There is no file information here 

under “Permeability”, “Sensitivity” and “WaterCut” which are related to model 

inversion. 
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Figure A.16. Drainage Volume Mapping and PETREL filter 

 

Users can visualize drainage volume of each well at certain time step with the 

embedded PETREL filter function as in Fig. A.14. This volume data can be imported by 

clicking “Import” button.  

 

    

Figure A.17. Drainage Volume Plot of Each Well and Optimal Infill Well Location 
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Also, users can check the interaction between wells by clicking “PLOT” button at the 

bottom. The power of this functionality is suggesting next optimal infill well location 

without additional simulations as shown in Fig. A.16. 

 

A.8.6 Flood Efficiency Map 

 

Figure A.18. Setting for Flood Efficiency Map 

 

For tracing with Flood Efficiency maps, the user can choose for calculation 

“GENERATE FE MAP”. Users can try this function with “FEMAP_SET” for testing 

and Flood Efficiency map will be generated in addition to normal streamlines. Users can 

import this result in “Models  Streamlines folder  Import (on selection)”. This 

option will generate both “Time of Flight” and “Flux Distribution” Flood efficiency map 

in addition to normal streamlines. So, user can import both results as a sequential 

manner.  

We display the key information related to flow patterns and reservoir sweep with the 

flood efficiency map. It includes a flux distribution map and an average TOF distribution 

map that enable us to optimize waterflood management. The streamlines connecting 

each injector-producer pair is depicted with a single representative streamline and the 

fastest streamline. The TOF distribution map displays the ‘average TOF’ between the 
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well pairs. The average TOF is calculated by a simple arithmetic average of time of 

flight associated with all the streamlines for each connection. The flux distribution map 

display volumetric flux between connecting wells computed by summing the fluxes 

carried by the streamlines. The flux distribution map is colored by the total flux 

connecting the wells while the color in TOF distribution map displays the average TOF. 

Thus, the flood efficiency map is a compact representation of the reservoir flow pattern 

and the flood front advancement. 

 

 

 

 

 

 

 

 

       

  

Figure A.19. (a) Time of Flight Distribution Map and (b) Flux Distribution Map 
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A.8.7 Tracing and Inversion in Coarsened Scale Model 

  

Figure A.20. Setting for Coarsened Model 

For tracing and model calibration in Coarsened scaled model, we need to verify that 

Finite Simulation Model is using “COARSEN” keyword. Then we can trace streamline, 

calculate sensitivity and calibrate model under the coarsen scale. Finally, DESTINY 

updates the fine grid model as shown in Fig. A.20.     

 

Figure A.21. Inversion Process in Coarsened Mode  
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APPENDIX B      

A STECTRAL CLUSTERING PROGRAM WITH DESCRETE DATA 

 

B.1 Introduction 

The clustering or grouping algorithm is defined as “minimize the similarity between 

groups and maximize the similarity within a group”. A graph partitioning from spectral 

theory provides a fast way to decompose a domain for local spatial grouping. The 

spectral clustering has been used in various engineering fields; supercomputing, machine 

learning, logistics, internet shopping and social network service. Hence, the spectral 

clustering algorithm has profound theoretical background and is comparatively easy to 

implement in new area.  

The graphic partitioning in the petroleum engineering provide a good decision gauge 

to segment regions while keeping prior model’s main heterogeneous and/or connectivity 

features; such as high or low permeable channel and barrier. For this purpose, we have 

introduced graphical partitioning for reservoir segmentation based on grid properties 

and/or connectivity on Chapter 3 and 4. The heterogeneity and connectivity are closely 

related to flow dynamics of a reservoir. 

To understand the Spectral Clustering features is important to get a good segmentation 

results for history matching. For the purpose, we prepare a simple data clustering 

program with MATLAB graphic user interface.  

 

B.2 Program Overview 

The background theories are explained more details on Chapter 3. The provided 

spectral clustering demonstration program consists of the following steps: (1) Randomly 

generate Gaussian distribution data clusters (2) Construct affinity Laplacian matrix 

based on input free parameters and correlation distance (3) Use graph partitioning 

techniques to create zonation and find groups. The graphic cut from the data location and 

heterogeneity, is not arbitrary and derived from optimization with graphic cutting metric. 
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Users can easily test the correlations of initial data distribution, free parameters, 

correlation distance and cutting algorithms, which are input parameters in the program.   

 

B.3 The Graphic User Interface (GUI)  

The GUI illustrated in Fig. B.1 follows this procedure as (1) generate data set (2) 

construct affinity Laplacian and calculate the second eigenvector (3) apply cutting 

algorithm.  

 

 

Figure B.1. Graphic User Interface for Clustering 
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 Generate Data Set We generate data sets based on input setting: number of 

group, size, center point and standard deviation. If user selects two groups, G3 

row input data will be ignored. Randomly generated Gaussian data sets will be 

displayed with 2D, 3D plots and histogram.  

 

 Construct Affinity Laplacian and Calculate Eigenvectors We construct affinity 

(   ) Laplacian (L) from the data location (     ) and data value (     ) from 

below formulation, which is corresponding to grid block and heterogeneity of a 

reservoir model. Calculation details are explained at Section 4.5.1. From 

eigenvalue decomposition of the computed affinity matrix, the leading 

eigenvectors can be attained. The ‘second’ eigenvector, more exactly 

‘eigenvector corresponding to smallest positive eigenvalue’, will be used for 

spectral clustering. The reason of using ‘second’ vector is described more details 

in Section 4.5.3. In the below formulation, three input parameters can be tried: 

SigmaX (  ), SigmaP (  ) and Correlation Distance (r). 
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 Spectral Clustering with Cutting Algorithm In the demo program, we provide 4 

different spectral clustering algorithms: ‘Ratio Cut’, ‘Normalized Cut’, ‘Ratio 

Cheeger Cut’ and ‘Normalized Cheeger Cut’. Details of each algorithm are 

explained in Section 3.5.2.  
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B.4 Experiments  

B.4.1 DATA: Equally Distributed Two Groups 

   

Figure B.2. DATA Part 

 

Above two figures show the effect of distance between two groups. Second group 

moves to left by shifting center location at right figure. The computed affinity matrix has 

more connectivity and second eigenvalue has bigger value in right figure, as observed in 

well-connected graph G.  
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B.4.2 AFFINITY: Three Groups with Overlap 

   

Figure B.3. AFFINITY Part 

 

The correlation distance effect is tested above two figures. In the right of Fig. B.3, The 

affinity is sparse and the range of eigenvalue is small, which means ‘not well-connected’ 

graph. But the clustering results shows similar in both cases. 

 

B.4.3 CUT: Three Groups Clustering Results 

  

Ratio Cut Normalized Cut 

Figure B.4. CUT Part 
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Ratio Cheeger Cut Normalized Cheeger Cut 

 

Figure B.5. Continued 

 

Different cutting algorithms return different grouping results in Fig. B.4. Normalized 

cut shows statistically stable cut, if we compare right two figures to left figures. Cheeger 

cut appears to be better than standard cuts. It is still complex problem to choose single 

best one, but ‘Normalized Cheeger Cut’ is a good starting point for segmentation as 

explained in Chapter 3. 

 

B.5 Summary  

The spectral clustering problem is basically a NP-hard and heuristic approach. As we 

explored, we can generate different cutting results from combinations of Affinity 

Laplacian and cutting algorithms. Even we have wider choice of free parameters and 

correlation distance, which are heavy impact factors for clustering. We inherited these 

spectral clustering properties in our model segmentation. Hence, we require some 

experiments and experience with different combination of cutting algorithms and 

constructing Affinity Laplacian. This simple clustering Program with handy Graphic 

User Interface provides intuitive experiments to users. 


	ABSTRACT
	DEDICATION
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER I      INTRODUCTION AND OBJECTIVES
	1.1 Overview of Reservoir Characterization and Closed Loop Management
	1.2 Fractured Reservoirs

	CHAPTER II      DRAINAGE VOLUME CALCULATION, WELL PLACEMENT AND HYDRAULIC FRACTURE STAGE OPTIMIZATION: STREAMLINE APPLICATIONS TO UNCONVENTIONAL RESERVOIRS((
	2.1 Purpose
	2.2 Introduction
	2.3 Approach
	2.4 Illustration of Procedure
	2.5 Depletion Capacity Map and Infill Targeting
	2.6 Drainage Volume Calculations: Mathematical Formulation
	2.6.1 The Pressure Wave Front
	2.6.2 Depletion Capacity Map

	2.7 Field Application of Optimal Well Placement
	2.8 Field Application of Optimal Hydraulic Fracture Stages
	2.9 Summary and Conclusions

	CHAPTER III      A MODEL SEGMENTATION FROM SPECTRAL CLUSTERING: NEW ZONATION ALGORITHM AND APPLICATION TO RESERVOIR HISTORY MATCHING
	3.1 Purpose
	3.2 Introduction
	3.3 Approach
	3.4 Illustration of Procedure
	3.4.1 Construction of the Affinity Laplacian Matrix and Computing the Second Eigenvector
	3.4.2 Model Segmentation from Spectral Clustering
	3.4.3 Application to History Matching

	3.5 Mathematical Formulation
	3.5.1 Constructing Affinity Laplacian
	3.5.2 Graphic Cut Algorithm
	3.5.3 Optimal Partitioning with Second Eigenvector
	3.5.4 Nature of Graph Partitioning
	3.5.5 Recursive bipartitioning and Hierarchical Approach
	3.5.6 Facies Edge Detect
	3.5.7 NP hardness and Heuristic Approach
	3.5.8 A Good Segmentation; Algorithm Point of View

	3.6 History Matching: Genetic Algorithm (GA)
	3.6.1 Field Application: Brugge
	3.6.2 Field Descriptions
	3.6.3 Spectral Decomposition (Model Segmentation) in of the Permeability Field
	3.6.4 History Matching Results
	3.6.5 Segmentation Experiments

	3.7 Summary and Conclusions

	CHAPTER IV      A HIERARCHAL MULTISCALE MODEL CALIBRATION WITH SPECTRAL DOMAIN PARAMETERIZATION: APPLICATION TO A STRUCTURALLY COMPLEX FRACTURED RESERVOIR
	4.1 Purpose
	4.2 Introduction
	4.3 Approach
	4.4 Mathematical Formulation
	4.4.1 Genetic Algorithm
	4.4.2 Connectivity Based Graph Laplacian
	4.4.3 Spectral Domain Decomposition: Model Segmentation for Global Update
	4.4.4 Reparameterization for Local Update
	4.4.5 Sensitivity Calculation
	4.4.6 Model Update in the Parameterized Domain

	4.5 Field Application: San Pedro Reservoir
	4.5.1 Field Descriptions
	4.5.2 Initial Fracture Network (DFN) Model
	4.5.3 Global History Match: Initial Model and Parameter Sensitivity Analysis
	4.5.4 Spectral Clustering: Model Segmentation
	4.5.5 Genetic Algorithm Model Update
	4.5.6 Local Parameter Calibration: Parameterization
	4.5.7 Identifying Water Source and Sensitivity Calculation with Streamline
	4.5.8 Local Update Results

	4.6 Summary and Conclusions

	CHAPTER V      CONCLUSION AND RECOMMENDATION
	5.1 Drainage Volume Calculation, Well Placement and Hydraulic Fracture Stages Optimization
	5.2 Model Segmentation from Spectral Clustering
	5.3 A Hierarchal Multiscale Model Calibration with Spectral Domain Parameterization  and its Application
	5.4 Recommendation

	NOMENCLATURE
	REFERENCES
	APPENDIX A      A PETREL PLUG-IN FOR STREAMLINE TRACING, RESERVOIR MANAGEMENT & HISTORY MATCHING
	A.1 Introduction
	A.2 Streamline Applications Using DESTINY
	A.3 DESTINY Process and Workflow
	A.4 Installation and Getting Started
	A.5 User Interface
	A.5.1 Welcome
	A.5.2 General
	A.5.3 Tracing
	A.5.4 Diffusive TOF (Time of Flight)
	A.5.5 Sensitivity
	A.5.6 Inversion
	A.5.7 Run Simulation
	A.5.8 View Result

	A.6 Streamline Output
	A.7 Inversion Output
	A.8 Test Cases
	A.8.1 ECLIPSE Model Tracing and History Matching
	A.8.2 FRONTSIM Model History Matching
	A.8.3 GOR + Water cut History Matching
	A.8.4 Reservoir Management Examples
	A.8.5 Diffusive Time of Flight
	A.8.6 Flood Efficiency Map
	A.8.7 Tracing and Inversion in Coarsened Scale Model


	APPENDIX B      A STECTRAL CLUSTERING PROGRAM WITH DESCRETE DATA
	B.1 Introduction
	B.2 Program Overview
	B.3 The Graphic User Interface (GUI)
	B.4 Experiments
	B.4.1 DATA: Equally Distributed Two Groups
	B.4.2 AFFINITY: Three Groups with Overlap
	B.4.3 CUT: Three Groups Clustering Results

	B.5 Summary


