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ABSTRACT 

 

 

 

Maximizing Crosstalk-Induced Slowdown During Path Delay Test. 

(August 2011) 

Dibakar Gope, B.E., Birla Institute of Technology and Science 

Co-Chairs of Advisory Committee: Dr. Duncan Henry M. Walker 

 Dr. Jiang Hu 

 

 

 

Capacitive crosstalk between adjacent signal wires in integrated circuits may lead 

to noise or a speedup or slowdown in signal transitions. These in turn may lead to circuit 

failure or reduced operating speed. This thesis focuses on generating test patterns to 

induce crosstalk-induced signal delays, in order to determine whether the circuit can still 

meet its timing specification. A timing-driven test generator is developed to sensitize 

multiple aligned aggressors coupled to a delay-sensitive victim path to detect the 

combination of a delay spot defect and crosstalk-induced slowdown. The framework 

uses parasitic capacitance information, timing windows and crosstalk-induced delay 

estimates to screen out unaligned or ineffective aggressors coupled to a victim path, 

speeding up crosstalk pattern generation. In order to induce maximum crosstalk 

slowdown along a path, aggressors are prioritized based on their potential delay increase 

and timing alignment. The test generation engine introduces the concept of alignment-

driven path sensitization to generate paths from inputs to coupled aggressor nets that 

meet timing alignment and direction requirements. By using path delay information 
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obtained from circuit preprocessing, preferred paths can be chosen during aggressor path 

propagation processes. As the test generator sensitizes aggressors in the presence of 

victim path necessary assignments, the search space is effectively reduced for aggressor 

path generation. This helps in reducing the test generation time for aligned aggressors. In 

addition, two new crosstalk-driven dynamic test compaction algorithms are developed to 

control the increase in test pattern count. The proposed test generation algorithm is 

applied to ISCAS85 and ISCAS89 benchmark circuits. SPICE simulation results 

demonstrate the ability of the alignment-driven test generator to increase crosstalk-

induced delays along victim paths.  
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1. INTRODUCTION 

 

With continuous scaling of process technology in the very deep sub-micron (DSM) 

regime, the capacitive coupling between adjacent interconnect wires continues to 

increase and now dominates total interconnect capacitance. This leads to signal crosstalk 

noise. Interconnect delays are increasingly affected by signal crosstalk, leading to timing 

violations, reduced timing margin and signal glitches. Therefore, signal crosstalk noise 

must be considered in timing closure and manufacturing test. Capacitive crosstalk noise 

results from parasitic coupling between adjacent signal nets and is most seen in nets that 

have weaker drivers than adjacent nets [1]. 

Crosstalk faults can be categorized into two types: crosstalk-induced glitches and 

crosstalk-induced delays. A crosstalk-induced glitch [2] occurs when a victim line is 

intended to be in a stable state, but is found to have an unwanted noise pulse due to the 

transitions on one or more neighboring nets. Depending on their amplitude and width, 

these pulses can have an important impact on circuit performance [3]. A crosstalk-

induced delay [4] is produced when both the affecting and victim lines have 

simultaneous or near simultaneous transitions. If the affecting net switches in the same 

direction as the victim net, it reduces the transition time of the victim. We refer to this 

phenomenon as crosstalk speedup. However, if the affecting and victim lines switch in 

____________ 

This thesis follows the style of IEEE Transactions on Computer-Aided Design of 

Integrated Circuits and Systems. 
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the opposite direction, the victim line will experience an increase in delay, which is 

termed as crosstalk slowdown. In most circuits, crosstalk-induced delay, particularly 

slowdown delay, leads to the chip failure more so than the crosstalk-induced glitch [4] 

[5]. In current trends in integrated circuit design, it is impossible to eliminate errors 

caused by crosstalk noise because of stringent area and performance requirements. These 

crosstalk noises could be eliminated by resizing drivers, shielding interconnect 

techniques, rerouting signals and repeater insertion techniques. However, redesign may 

be very expensive in terms of design effort and its impact on a product’s schedule. 

Moreover, due to the random nature of process variations, careful design and validation 

techniques cannot ensure all manufactured parts to be free of error-causing crosstalk 

effects. Thus testing for severe crosstalk noise effects is essential to guarantee the correct 

functionality of fabricated chips. 

The need to magnify the impact of these crosstalk effects becomes increasingly 

important to reduce the probability of test escape of the delay-sensitive paths. Normal 

functional patterns cannot effectively maximize the crosstalk-induced delay effects along 

timing-critical paths. In addition to test these paths, these patterns need to model other 

functional use conditions in the remaining circuit to effectively detect other hard-to-

detect logical defects. As a result, generating such efficient functional patterns that can 

maximize crosstalk-induced delays is a challenging task and can be prohibitively 

expensive. New automatic test pattern generation (ATPG) techniques are required to 
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maximize the coupling effects on critical paths while still ensuring high fault coverage 

and low pattern count.  

As explained above, switching activity in capacitive-coupled nets can speed up or 

slow down the victim path if the nets involved in coupling have simultaneous or near 

simultaneous transitions. If the transitions at the affecting and victim lines occur at 

significantly different times (more than one gate delay), then there is no significant delay 

impact [4]. Moreover, in DSM circuits, physical synthesis avoids long parallel runs of 

signal nets, to minimize the noise from any one coupling capacitor. Because of the 

logical constraints and different timing windows of the aggressor sites, it is quite 

improbable for a single delay test pattern to excite a large number of aggressors on a 

single victim net. Significant crosstalk delay increases can only occur due to multiple 

aggressors coupling to multiple victim nets along a victim path.  

Prior work on crosstalk ATPG does not consider the timing alignment of 

aggressor-victim nets and the impact of multiple simultaneous aggressor nets on a single 

critical path. As a result, the delay of the tested paths may be less than the worst case, 

leading to a test escape. New test pattern generation algorithms must focus on sensitizing 

a maximal subset of timing-aligned aggressors along the victim path under test. 

The key contributions of this thesis are: 

1. Timing-oriented test generation to target multiple aggressors along a victim 

path, so as to maximize the crosstalk delay. 
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2. Alignment-driven path sensitization to generate a path from primary inputs 

(PIs) to the coupled aggressor net that meets the required timing alignment 

and direction. 

3. Two crosstalk-driven dynamic compaction algorithms to control the 

number of test patterns when incorporating crosstalk. 
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2. RELATED PRIOR WORK 

 

Most of the prior work on testing for crosstalk has focused on logic faults caused 

by crosstalk induced glitches [1] [6] [7] [8] [9] and related test pattern generation 

techniques. Testing for crosstalk-induced delays has recently received more attention 

[10] [11]. Several fault models and test generation techniques have been proposed to 

take into account crosstalk-induced delay. The common objective of all these techniques 

is to find the most effective set of patterns causing maximum crosstalk-induced delay 

along timing-critical paths. Since the pattern generation for crosstalk induced delay 

faults requires timing information, reducing the high complexity of the ATPG process is 

a major issue for prior test-generation methods.  

The timing-oriented backtrace procedure proposed in [4] and [12] considered 

timing alignment of the aggressor with the victim net in pattern generation. However, 

this approach did not take into account the possible influence of multiple aggressors for 

a given victim net or the effect of multiple victim nets on a single critical path. 

Essentially the coupling capacitance to overall net capacitance ratio considered was large 

enough that by propagating on the longest path and sensitizing the worst case, the 

coupling slowdown would be detected. This is not feasible in modern DSM circuits. 

Focused on all aggressor lines of a victim line, the authors in [13] proposed a solution 

that combines an integer-linear program with the traditional stuck-at fault ATPG. These 

two methods could not activate the worst case crosstalk-induced delay, since they 
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consider testing of the crosstalk effect on a single victim line, similar to transition fault 

delay testing, without considering accumulated delay defects or effects on a path. 

The work presented in [14] and [15] employs an algorithm based on boolean 

satisfiability (SAT) wrapped by a branch-and-bound algorithm to find the subset of 

aggressors exciting maximal crosstalk noise on a victim line. As a result, false noise can 

be reduced in order to provide a more accurate static timing analysis. Since no 

previously generated test is given as a constraint, this approach is guaranteed to calculate 

the subset of aggressors providing maximal crosstalk noise but without taking test 

generation into account. The drawback of this approach is the long run time. 

The authors in [16] proposed a test generation method for critical paths 

considering single aggressor crosstalk effect with due consideration to the timing 

alignment and direction. This method has similar CPU efficiency to that of [17] and 

[18]. However, they did not take into account the possible impact of multiple aligned 

aggressors along a victim path. In addition, the backtrace procedure does exhaustive 

search for aggressor pattern generation and so this methodology suffers from 

computational complexity. 

The ATPG technique in [19] applied boolean constraints and modified PODEM 

algorithm to construct a heuristic solution that excited multiple aggressors on a target 

path. In [20] the authors presented a constrained path delay fault (CPDF) model as a 

combination of a timing-critical path and a set of crosstalk noise sources interacting with 

the path. However, the technique was computational intensive because it was based on 
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genetic algorithm and did not efficiently handle timing information. A timed ATPG 

method is proposed in [21] to generate critical paths and corresponding input vectors to 

sensitize these paths under crosstalk effects. This approach incorporated special timing 

processing techniques into ATPG algorithms and employed expensive circuit-level 

timing simulation. These three methods are not scalable to industrial circuits.  

In [22] the authors used timing-driven boolean logic to characterize signal 

transitions in a time interval. Moreover, they employed boolean satisfiability (SAT) 

technique to check the correlations between aggressor and victim transitions. The 

authors in [10] incorporated the sensitization of a maximal set of potential coupled 

aggressors in a transition fault framework. This has the advantage of reusing the existing 

transition fault infrastructure, but the disadvantage of not being able to determine timing 

alignment. These two methods can find the patterns efficiently by means of ignoring the 

timing of aggressors, but they could not guarantee the timing requirements for activation 

of the targeted crosstalk effects. 

To generate deterministic test patterns for crosstalk-induced delay faults, timing 

information cannot be ignored. However, including timing information into an ATPG 

engine will significantly increase the complexity of the ATPG algorithm. Considering 

the timing of the aggressors is the main obstacle for efficient test generation. 
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3. CROSSTALK-INDUCED DELAY MODELING 

 

Crosstalk is caused by parasitic coupling between adjacent signal nets that include 

inductive and capacitive effects. On-chip inductance becomes significant at high 

frequency in certain global signal lines, such as VDD and ground buses. However, 

capacitive coupling tends to dominate for signal interconnects. So it is still possible to 

accurately model crosstalk-induced delay effects without considering any impact from 

inductance. 

Signal crosstalk between a victim net and its neighboring aggressor nets may 

either speed up or slow down the victim path depending on the transition direction, 

transition arrival time overlap and coupling capacitance between the victim and 

aggressor nets [1] [23]. This work will focus on signal slowdown. 

Coupling models proposed in the literature can be broadly classified into two 

categories: charge sharing based coupling models and simulation based coupling models. 

Transitions on aggressors change the effective capacitance (Ceff) seen by the victim net 

driving gate and thus change the signal transition delay. In charge sharing based 

coupling models, crosstalk is modeled by scaling the physical coupling capacitance (CC) 

with a Miller Coupling Factor (MCF) to obtain the effective coupling capacitance value. 

 

 

Ceff = MCF . CC 
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If the aggressor transition occurs at a significantly different time than the victim 

net (more than one gate delay), then there is no significant delay impact [4]. If the 

aggressor transition overlaps with the victim transition and is in the same (helper) 

direction, then Ceff is reduced and the victim speeds up. If the aggressor transition is in 

the opposite (aggressor) direction, then Ceff is increased and the victim slows down. In 

addition, crosstalk delay noise depends on other factors such as slew rate [1] [24] and 

drive strength of victim-aggressor pair [1] [25]. 

For aggressor and victim switching in opposite directions, the MCF factor can take 

values from 1 to 3 [26]. If the coupled aggressor net has a much faster transition time 

than the on-path victim net, then an MCF greater than 2 can result. A probabilistic linear 

model is proposed in [27] to estimate the MCF. Given the minimum relative signal 

arrival times estimated for a victim-aggression pair, the authors in [28] can determine the 

corresponding MCF using a regression based model. The dependence of delay noise on 

the alignment can be computed by using circuit simulations [29] or derived analytically 

using curve-fitting techniques [30]. 

Charge-sharing based coupling models are used chiefly in the early stages of 

design flow because of their efficiency. In this work, we focus on early stages of the 

design flow and therefore use a charge sharing based coupling model. Our algorithm can 

be extended to an accurate crosstalk delay model [31], but details of the extension are 

beyond the scope of this work.  
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The following delay equation is used to estimate the crosstalk-induced delay 

increase caused by i-th aggressor switching at the same time, but in the opposite 

direction, as the coupled victim net: 

 

 

                 (
   

    ∑    
 
   

)                    

 

 

where                 is the crosstalk-induced delay increase caused by the i-th 

aggressor;     denotes the coupling capacitance between the i-th aggressor and the 

victim net,    is the line capacitance from the victim net to ground, n is the number of 

aggressors, and                   is the nominal stage delay of the victim net, assuming 

no transitions on the coupled nets. The denominator of the equation is the nominal value 

of Ceff. This equation approximates the delay as linear in the change in Ceff. Further equal 

aggressor and victim slew rates are assumed with completely overlapping transitions, so 

the MCF is 2. In practice, this is the maximum potential delay increase. We assume 

linear superposition of aggressor noise, so the aggressor noise coupled to a victim net 

can be aggregated linearly. Thus nonlinearity of parasitic and Miller effects are ignored 

in this work. Further we do not consider the impact of aggressors on each other to 

compute the potential delay increase on the victim net. 

Coupling noise is a significant issue for relatively long signal nets. These nets tend 

to be routed through multiple metal layers. We have found from the RC extraction of the 
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ISCAS circuits that typical long nets are capacitive-coupled to 40–50 other signal nets. 

However, out of those 40–50 neighboring nets, only 4-5 make up 80%–90% of the total 

coupling capacitance value. As a result, if we can generate aligned aggressor transitions 

on 4–5 significant coupled nets, we can come close to producing the worst case crosstalk 

delay on the victim net without creating implausible ATPG requirements. 

The afore-mentioned delay model considers the nominal stage delay of the victim 

net                   in the crosstalk delay increase computation. However, a change in 

input-signal slope caused by crosstalk can impact the nominal stage delay at its receiving 

gates. In addition, the impact of noise on a signal line may affect its receiver gates 

differently because of varying logical thresholds of the receivers. These effects are not 

considered in this work.  
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4. PROPOSED TEST GENERATION FOR CROSSTALK-INDUCED 

DELAY 

 

Our proposed crosstalk-induced delay test generation procedure consists of three 

major steps: (1) K longest path per gate (KLPG) [32] test generation for a delay-

sensitive path; (2) sorting and pruning aggressors along each victim path, based on logic 

constraints, timing alignment, and their potential delay increase; and (3) path generation 

from PIs to the aggressor nets that meets the timing alignment and transition direction. 

For a set of potential aggressors coupled to a delay-sensitive victim path, the 

objective of this proposed ATPG is to generate a test vector that can excite maximal 

number of aligned aggressors while also sensitizing the victim path. 

4.1 KLPG Test Generation 

In this work, KLPG test generation [32] is used to generate the longest path 

through every line in the circuit under robustness constraints. The target line or fault site 

is assumed to have a spot delay defect. Figure 1 shows the basic flow of the KLPG path 

generation algorithm.  

The search space for each fault site is the fan-in and fan-out paths of the target 

line. Paths outside the search space can provide side input constraints for gates on the 

path. 

  



13 

 

 

 

 

 

 

Figure 1   KLPG path generation algorithm 

 

 

 

 

In the path generation phase, a path store is used to store partial paths, which are 

paths originating from a PI but have not reached a PO. Every partial path has a value 

called esperance [33], which is the sum of the length of the partial path and the min-max 

path delay from its last node to a PO, without considering any logic constraint. In other 

words, the maximum esperance is the upper bound on the length of a partial path that 

grows to be a complete path, and the minimum esperance is the lower bound. As shown 

in Figure 1, in each iteration of path generation, the partial path with the largest max 

esperance is popped from the sorted path store and extended by adding one fan-out gate 
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with largest max esperance. If the last gate of the partial path has multiple fan-outs, the 

path will split, leaving the alternate choices in the path store. Depending on the 

sensitization criterion, such as robust or non-robust sensitization, constraints to 

propagate the transition on the added gate are applied. Then direct implications [32] are 

performed to identify local conflicts. A direct implication on a gate is one where the 

input or output value of that gate can be determined from other values assigned to that 

gate. Previous research [32] [33] found that direct implications can eliminate most false 

paths. If a partial path reaches a PO, it becomes a complete path. Then a PODEM-based 

final justification [32] is performed to find a vector pair that sensitizes this path. Since 

the longest path through one line may be the longest path through other lines, a new 

complete path must be checked to see if it has already been generated before. The test 

generation repeats until the K longest testable paths (both rising and falling transitions) 

through each line are generated or the path store is exhausted. 

When a path is generated and passes final justification, a set of necessary 

assignments (values assigned to lines) are identified that are necessary to sensitize and 

propagate the fault along the path. Assignments generated during final justification are 

not saved, since they may not be necessary. Assignments generated during victim path 

generation are used to screen out the coupled aggressors that have a helper transition or 

constant values set from the victim path necessary assignments (NAs).  

Crosstalk-induced delay increases are relatively small. They are only of concern if 

the delay defect on the path under test is large enough that the path is almost failing, but 
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not so large that the path fails regardless of crosstalk. Thus aggressors are aligned 

assuming that the target delay defect is equal to the path timing slack. This shifts the 

nominal transition times downstream from the defect site, as shown in Figure 2. 

 

 

 

Figure 2   (a) Path never fails, no crosstalk impact; (b) crosstalk can cause                

delay fault; (c) path always fails, no crosstalk impact 

 

 

 

 

Maximizing the victim path delay increase is a form of the maximum cover 

problem. The cost of a near-optimal solution for this problem does not make sense given 

our timing model approximations. We instead use a greedy algorithm, targeting 

aggressors in decreasing order of potential delay increase. This works well when a small 

number of larger coupling capacitances dominate the potential delay increase. 
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4.2 Aggressor Pruning and Ranking 

4.2.1 Delay Threshold Pruning 

Aggressors that do not cause victim path delay increases are pruned away. 

Cadence SoC Encounter is used to extract the Standard Parasitic Exchange Format 

(SPEF) file for ISCAS85 and ISCAS89 circuits. SPEF stores the parasitic information of 

the nets used in the layout.   

First, the NAs to sensitize the victim path may propagate to aggressors. These 

aggressors are discarded since there is no decision to be made. Second, many coupling 

capacitors are small, and cause insignificant victim path delay increase. Aggressors are 

retained only if their potential delay increase metric is above a specified threshold: 

 

 

                                       

 

 

where                 is the crosstalk-induced delay increase caused by an aggressor, 

defined in Section 3. The threshold is set by analyzing victim path delay increase vs. 

threshold to determine an appropriate delay vs. cost trade-off. We term this pruning as 

delay threshold pruning. 

4.2.2 Logical and Alignment-Based Pruning 

Along a path there are multiple logic stages, each one having many coupled nets. 

The worst path delay due to crosstalk would be for all coupled nets to have aggressor 
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transitions aligned with the victim transition on the tested path. However, this case is not 

possible due to logic and timing conflicts: 

1. Some coupled nets have NAs for the testing of the path that preclude an 

aggressor transition, or in fact mandate a helper transition. 

2. Some coupled nets can only have transitions that do not align with the 

tested path transition. For example, if a net on a short path is coupled near 

the end of a long path. 

3. Some aggressor transitions have logic constraints that conflict with other 

aggressor transitions. For example, one transition may have an NA that 

precludes another transition. 

4. Some aggressor transitions have timing alignment constraints that conflict 

with other aggressor alignment requirements. For example, if a net couples 

to two different logic stages on the tested path, only one of the couplings 

can be aligned. 

Logical and alignment-based pruning is used to screen out cases #1 and #2.In our 

research, we combine cases #3 and #4 together by modifying our existing KLPG path 

generator to generate paths from the PIs or PPIs to the coupled net location with the 

necessary parity (transition direction) and timing alignment. 

Direct implications are applied on remaining aggressors obtained from delay 

threshold pruning. The aggressor net is assigned a transition opposite to that of the 

victim net and direct implication is used to propagate values. During direct implications, 



18 

 

 

 

 

 

if a conflict is found with the NAs to sensitize the victim path, the aggressor is not 

considered for further alignment checking and sensitization. We term this pruning as 

logical pruning. This direct implication trims off the false-aggressor candidates in the 

initial phase of aggressor ranking, else an aggressor may be selected that will fail during 

its path sensitization, wasting ATPG work. 

Next, a static timing analysis (STA) engine computes the earliest and latest 

possible rising/falling transition timing windows on the input and output lines of each 

gate in the circuit, using the victim path NAs. Assuming the transition at PIs at time 

zero, the engine traverses the circuit starting from PIs in a breadth-first manner to 

compute timing windows for each line. If the aggressor and victim net timing windows 

do not overlap, the aggressor is pruned. The victim path NAs significantly narrow 

aggressor timing windows and ease the identification of more accurate time-aligned 

aggressor. Since prior work [17] [34] did not use the victim path NAs to compute the 

earliest and latest possible rising/falling transition timing windows like traditional STA 

calculations, timing windows generated by those methods are very pessimistic and have 

very wide ranges. This may lead to missing the real aggressor lines for the target victim 

path. 

This three-step pruning is performed on each aggressor coupled to a victim net and 

for the aggressors to the other victim nets along the same target path. 
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After pruning, aggressors are inserted into the potential aggressor list for the 

victim path in decreasing order of coupling effectiveness. The coupling effectiveness 

metric is defined as: 

 

 

                  (      )       (        ) 

                        (        ) 

                 (      )          

                                  

             
                  

                             
 

 

 

where             is the coupling effectiveness of the aggressor, TAgg and TVictim 

denote the aggressor and victim transition times and C1, C2, C3 are user-defined 

constants. Aggressors that have higher potential delay increase, more symmetric overlap 

of aggressor and victim timing windows, and a smaller timing window, will be ranked 

higher in the potential aggressor list. The overall aggressor pruning flow is shown in 

Figure 3. 
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Figure 3   Aggressor pruning algorithm 
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5. TIMING-ORIENTED ATPG 

 

After sorting the potential aggressors for a victim path, the aggressor with 

maximum coupling effectiveness is considered for sensitization in presence of victim 

path NAs. The goal is to find a propagation path from the PIs to the aggressor that has 

the best timing alignment. In practice, alignment is probabilistic, depending on process 

variation, supply noise, and other unmodeled effects. Activity in one part of the circuit 

can throw off the alignment in another part of the circuit. Since we are concerned with 

paths that are too slow, the alignment requirement can be indirectly accounted for by 

using min-max gate delays in the coupling effectiveness ranking. In our work, we will 

use nominal circuit delays during the search for the path to the aggressor that achieves 

the best alignment, ignoring any lack of correlation due to noise or process variation. 

Each aggressor shifts the timing alignment of later nets on the victim path. This can be 

handled by updating transition times along the victim path, but the shift in alignment is 

small enough that this is not considered. 

5.1 Path Store 

The KLPG engine was modified to sensitize aligned aggressor transitions. In the 

path generation phase, a path store is used to store partial paths, which are paths 

originating from a PI but have not reached the aggressor of interest. The search space for 

each aggressor net, as shown in Figure 4, is the fan-in cone of the aggressor line. Paths 

outside the search space can provide side input constraints for gates on the path. Figure 5 
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shows an example. The partial path starts from primary input g0, and ends at gate gi. A 

set of partial paths are grown from PIs towards the aggressor net, with the goal of 

sensitizing a path to the aggressor and achieving the best timing alignment with the 

victim net. At the beginning, the path store attempts to generate 2nPI partial paths, where 

nPI is the number of primary inputs in the fan-in cone of the aggressor line. Partial paths 

are initialized as rising and falling transitions from all the PIs of the aggressor fan-in 

cone that do not already have NAs. When a partial path reaches the aggressor net, it 

becomes a complete path. 

 

 

 

Figure 4   Aggressor path search space 
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Figure 5   A partial path 

 

 

 

 

The earliest and latest aggressor transition times are associated with each partial 

path. These are the sum of the length of the partial path and the min/max path delay from 

its last node to the target aggressor. The partial paths are sorted by their potential timing-

alignment to the victim net. The timing alignment metric is calculated as: 
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where TimingAlign is the timing alignment metric.           is the path delay from the 

last node of the partial path to the target aggressor.                  is the length of the 

partial path. The other variables are as described earlier. In Figure 5, suppose the length 

of the partial path g0...gi is 10 and the min/max path delay from gi to the aggressor is 

5/12. The victim net transition timing is shown as 20. Assuming the value of C2 and C3 

as 0.25 and 0.25 respectively, the potential timing-alignment of this partial path is 0.4. 

5.2 Path Generation 

In each iteration of path generation, the partial path with the largest timing 

alignment value is popped from the path store and extended by adding a fan-out gate that 

achieves the maximum alignment. If the last gate of the partial path has multiple fan-

outs, the path will split, leaving the alternate choices in the path store. In order to target 

an aligned aggressor, the timing-driven ATPG always propagates on the fan-out tree 

whose minimum and maximum delays bracket the victim net transition. One challenge is 

that several fan-out trees may meet this requirement. The heuristic we use to make a 

selection is to choose the fan-out tree that most evenly brackets the required delay and 

has the smallest delay range. Intuitively, as a path is built from inputs to outputs, the 

minimum length increases and the maximum length decreases, as false paths are ruled 

out. For example, in Figure 6, the partial path g0...gi is extended by adding gate gj, 

because extending to gj could potentially give the best possible aggressor alignment to 

the victim transition. After the partial path is extended (g0...gigj in Figure 6), the 

constraints to propagate the transition on the added gate (gj) are applied. Then direct 
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implications are used to check the compatibility of the new partial path NAs with the 

existing NAs from the victim path. 

 

 

 

Figure 6   Extending a partial path 

 

 

 

 

If a conflict happens during direct implications, the partial path is false. In other 

words, any path including this partial path is a false path. Therefore, the partial path is 

deleted from the path store so that the whole search space which contains this partial 

path is trimmed off. If a partial path reaches the target aggressor, it becomes a complete 

path. It also means the NAs from the aggressor path sensitization are compatible with the 

existing victim paths NAs. Then a PODEM-based final justification is performed on the 

combined sets of NAs to find a test pattern that simultaneously sensitizes the victim path 

and the aggressor net. 

Once a partial path reaches the desired aggressor net, it is not further propagated to 

an observable point, because propagating the aggressor transition further may create 
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additional NAs that can be better used to activate an opposite transition at another 

aggressor net. 

The NAs for the justification of this aggressor are retained when searching for later 

aggressor paths. The path generation procedure is repeated for all other aggressors in 

decreasing order of potential delay increase. The process is repeated for all victim paths. 

The path generation process is shown in Figure 7. 

 

 

 

Figure 7   Path generation algorithm 
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Procedure Timing-Oriented Aggressor Sensitization() describes the alignment-

driven aggressor path generation flow as follows: 

Procedure Timing-Oriented Aggressor Sensitization() 

1. Find the longest path through a target line. Justify the necessary 

assignments, but do not keep the primary input values. 

2. Find the next aggressor coupling that would cause the largest path delay 

increase. If the potential delay increase due to this aggressor is less than the 

specified threshold, END. 

3. Check whether this coupled net can have an aggressor transition on it. If 

not, go to step 2. 

4. Check whether this coupled net can have timing alignment with the path 

net. If not, go to step 2. This can be easily checked by computing min-max 

delays of each net using breadth and depth first search.  

5. Generate a path from PIs to the coupled net that meets the timing alignment 

and direction. 

6. Justify the necessary assignments of the tested path and all coupling paths, 

but keep only the necessary assignments, as in step 1. If justification fails, 

discard the aggressor coupling. Go to step2. 
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6. CROSSTALK-AWARE DYNAMIC COMPACTION 

 

Capacitive crosstalk has a relatively small impact on path delay compared to path 

length, supply noise or temperature. At one time, the optimal logic depth in 

microprocessors was thought to be 6 to 8 gates. However, logic depth is currently rising 

to meet low power requirements. If we assume a logic depth of 10, and a coupling 

capacitance of about 10% of the total net capacitance, then one aggressor transition can 

increase path delay by at most 1%. Prior work suggests at most a few percent delay 

increase due to crosstalk. So in order to cause substantial crosstalk-induced delay along 

the targeted victim path and subsequently to push that path towards delay test failure, the 

crosstalk pattern generation should attempt to excite maximal possible number of 

aggressors with required timing alignment and direction along a delay-sensitive path. 

Once aggressors are sensitized using our timing-oriented ATPG, they are 

combined together into the test pattern of the victim path in decreasing order of their 

coupling effectiveness. That way the final compacted pattern will tend to activate as 

many high-impact aggressors as possible along a victim path to maximize the impact of 

crosstalk slowdown. This algorithm is greedy, so it may miss the worst possible 

crosstalk delay increase, both due to the order dependence, and stopping when the 

couplings are too small. However, in our experience, there are relatively few significant 

coupling capacitances and many insignificant ones, and a greedy algorithm will come 
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close to achieving the worst-case delay increase, particularly when considering the fact 

that timing alignment is uncertain due to intra-die process variation. 

It is typically the case that many path tests can be dynamically-compacted into one 

test pattern [35]. This significantly reduces test pattern count over static compaction 

[36]. There are two approaches to using dynamic compaction when considering 

crosstalk. 

6.1 Aggressor-First Dynamic Compaction 

One approach to dynamic test compaction is to first compact the maximal number 

of aggressors into the test pattern for each victim path. The NAs of the victim path and 

aggressors sensitized so far are used to constrain the search for later (lower potential 

delay increase) aggressors, as shown in Figure 8. We term this aggressor-first dynamic 

compaction, since we first compact as many aggressors as possible per victim path, then 

compact these groups of victim and aggressors together into patterns. 
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Figure 8   Aggressor-first dynamic compaction 

 

 

 

 

Procedure Aggressor-First_dc() describes the crosstalk pattern generation flow 
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structures created to save the compacted aggressor pattern set for each victim path and 

the final compacted pattern pool respectively. 

Procedure Aggressor-First_dc( ) 

1. Initialize the pattern pool POOL-Victim as empty. 

2. Initialize the pattern pool POOL-Aggr as empty. 

3. Use KLPG to generate a longest path I through a line, resulting in pattern 

F.F contains the NAs before justification. 

4. Sort the potential aggressors coupled to that delay-sensitive victim path. 

5. Pop the next potential aggressor with maximum coupling effectiveness. If 

the potential aggressor list for a victim path becomes empty, go to step 9. 

6. Use timing-oriented ATPG to generate aligned aggressor transition. 

7. Do final justification of the combined NAs from the victim path and the 

new aligned aggressor path. Do not keep the NAs from final justification. 

8. If justification fails, destroy the NAs from the new aggressor path and go to 

step 5. Else Call procedure Dyn_compact(F, POOL-Aggr) and go to step 5. 

9. For each and every pattern Pin POOL-Aggr, call procedure 

Dyn_compact(P, POOL-Victim). Go to step 2.  

10. Do final justification for all patterns in POOL-Aggr one by one to generate 

the final vectors. 

The dynamic compaction procedure Dyn_compact(F, POOL) [35] uses a greedy 

approach, in which each new pattern F is compacted with the first compatible pattern in 
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POOL. Patterns in POOL are sorted by non-increasing order of the number of necessary 

assignments in order to compact as many as possible paths into a pattern before it is 

written out. In contrary to static compaction, dynamic compaction algorithm checks the 

compatibility between necessary assignments, greatly expanding the compaction space 

without loss of fault coverage. Clearly the first pattern in any aggressor path-pool 

POOL-Aggr will sensitize the maximal number of time-aligned aggressors coupled to 

that victim path. In practice, the number of coupled nets that can be sensitized for a 

victim path using a single pattern is not large. As each aggressor is set, it adds more NAs 

that rule out other aggressors to sensitize. 

6.2 Pattern-First Dynamic Compaction 

The aggressor-first compaction procedure will maximize the crosstalk-induced 

delay increase on each victim path, but may cause an increase in the number of test 

patterns, compared to a test set that does not consider crosstalk. This pattern inflation 

can be avoided by first compacting victim paths and then sensitizing aggressors, which 

we term pattern-first compaction, as shown in Figure 9. The coupled nets to a victim 

path are sensitized in the presence of NAs from all the victim paths in a compacted 

pattern. The additional NAs in each pattern due to the victim paths will preclude 

sensitization of many aggressors. The same process will be repeated for the other 

compacted patterns in the set. Within a pattern, victim paths will be targeted in 

decreasing order of length. 
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Figure 9   Pattern-first dynamic compaction 

 

 

 

 

Procedure Pattern-First_dc() describes the crosstalk pattern generation flow with 

pattern-first dynamic compaction. POOL is the data structure created to save patterns. 

 

Consider the next victim path in the 

compacted pattern

Generate possible coupling paths in 

decreasing order of coupling-effectiveness

Any victim path  

left in compacted 
set ?

Pop the next compacted path-delay pattern

Generate KLPG patterns and compact them

Combine new assignments to existing ones 

Any compacted 

pattern left? 

Y

Y

N

N

End

Delete all necessary assignments



34 

 

 

 

 

 

Procedure Pattern-First_dc( ) 

1. Initialize the pattern pool POOL as empty. 

2. Use KLPG to generate a longest path I through a line, resulting in pattern 

F. F contains all NAs before justification. If no more paths can be 

generated or we have enough paths, go to step 4. Otherwise go to step 3. 

3. Call procedure Dyn_compact(F, POOL). Go to step 2. 

4. Do final justification for all patterns in POOL one by one to generate the 

compacted victim path patterns. 

5. Pop the next compacted pattern from POOL. If no more compacted pattern 

is left in POOL, procedure is finished. 

6. Consider the next victim path in the compacted pattern. If no more victim 

path is left in compacted set, go to step 9. 

7. Generate possible coupling paths in decreasing order of coupling-

effectiveness in presence of NAs from all victim paths in compacted set. 

8. Combine new NAs to existing ones. Do not keep NAs from any final 

justification of compacted victim pattern and new aligned aggressor paths. 

Go to step 6. 

9. Delete all NAs. Go to step 5. 
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7. LOW-COST METRIC 

 

We have proposed a realistic low cost fault coverage metric to detect the 

combination of a delay spot defect, process variation and crosstalk-induced slowdown. 

Our goal in using the low cost fault coverage metric is to reduce crosstalk-aware pattern 

count by dropping victim paths with large slack from crosstalk delay-induced pattern 

generation. 

In many designs, there are a set of speed paths that determine the clock cycle time, 

and most fault sites have relatively short paths. The authors in [37] reported that the 

average longest path through each line is much shorter than the longest path length in 

ISCAS89 circuits. For example, for s38417, the longest path length is 41 gate delays, 

while the average length is 18.1. 

In general, a precise physical model to reflect the real process and defect 

environment is not available. Even if available, it would be too costly to use during 

crosstalk pattern generation. In order to minimize test generation time, a simple model is 

desired. In this work, we use three criteria to set a detection probability threshold 

          . First, we assume the process variation is independent for each path and 

influences delay by increasing the required delay guard band. The percentage bound α 

covers the influence of inter-die and intra-die variation [38], power supply and substrate 

noise. Second, we consider that the spot delay defect size due to resistive short or open 

has a guard band. The defect size to exceed this guard band requires a bridge resistance 
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so small or open resistance so large that it nearly causes a transition fault. Third, the total 

crosstalk-induced delay from all the potential aggressors coupled to a victim path 

increases the required delay guard band. As the majority of the potential aggressors after 

pruning cannot be sensitized in the presence of victim path NAs, considering the 

cumulative delay effect from all the potential aggressors may give rise to a conservative 

           determination. So the percentage bound β is added to control the            

metric, permitting experimentation with different crosstalk-induced slowdown along a 

victim a path and its effect on the crosstalk-pattern count. 

Based on these three assumptions, we set the            as the function of process-

variation (α), spot delay fault guard band ( max), cumulative crosstalk-delay increase, 

percentage bound ( ) and clockcycle (    ), as expressed in the formula given below. 

 

 

           (    )         ∑                
    

      

 

 

A delay-sensitive victim path is considered for crosstalk-induced slowdown if the 

nominal delay of the path          is above the           . That is, whenever the 

maximum delay of a path under process variation, crosstalk-induced slowdown plus spot 

delay defect size guard band is less than the clock cycle time     , the victim path is not 

considered for cross-induced delay pattern generation. For simplicity, we set  max as 

several gate delays in our experiments.   
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8. EXPERIMENTAL RESULTS 

 

The proposed path delay test generator maximizing crosstalk-induced slowdown 

was implemented in Visual C++ and run on a 64-bit Windows 7 PC with Intel Core 2 

Duo processor (2.66GHz) and 4GB of memory. Experiments are performed on the 

ISCAS85 and ISCAS89 benchmark circuits. For our experiments, parasitic information, 

such as coupling capacitance and load capacitance was extracted using SoC Encounter 

on TSMC 45nm technology. Net-to-net nominal delays reported in the extracted 

Standard Delay Format (SDF) file are used for STA delay computation in the crosstalk-

induced delay test generator. 

8.1 Aggressor Pruning 

Table 1 and Table 2 show the results of aggressor pruning for the aggressor-first 

and pattern-first dynamic compaction algorithms on ISCAS85 benchmark circuits. 

Column 2 gives the KLPG path count and Column 3 reports the total number of 

neighboring nets coupled to those paths. We observe from the extracted coupling 

capacitances of the ISCAS circuits that a substantial number of those neighboring nets 

coupled to a victim net have insignificant coupling capacitance value. So we compute 

the potential delay increase of each neighboring net using                 metric, as 

detailed in Section 4.3.1. 

A minimum delay increase threshold is used thereafter to filter the neighboring 

nets that have almost no effect on the victim path. The coupled nets with potential delay 
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increase of less than 2.5% of the victim path delay under test are trimmed off. The 2.5% 

delay increase threshold is set by analyzing victim path delay increase vs. threshold to 

determine an appropriate delay vs. cost trade-off. The resultant number of potential 

aggressors is shown in column 4. For a majority of the ISCAS85 circuits, the 2.5% 

minimum delay increase threshold reduces the number of aggressors by 75-80%. For 

larger circuits such as c3540, c5315 and c7552, this delay increase criterion limits the 

potential aggressors to about 10-15% of the total aggressors extracted from circuit 

layout. Existing NAs from the victim path forbid some of the aggressors to set an 

opposite transition on the coupled victim. Column 5 lists aggressors after pruning for 

victim path NAs. Column 6 reports the number of aggressors that meet timing alignment 

and transition direction. After pruning, aggressors are inserted into the potential 

aggressor list for the victim path in decreasing order of coupling effectiveness. We 

consider the values of C1, C2 and C3 as 0.5, 0.25 and 0.25 respectively in the coupling 

effectiveness computation of the aggressor nets. That way we gave more priority to 

potential delay increase of an aggressor rather than to its timing alignment. So the logical 

pruning step reduces the potential aggressor candidates by almost half for the ISCAS85 

circuits. Of the remaining aggressors, approximately 30% have transition windows that 

bracket the victim transition and so are considered for timing-aligned crosstalk pattern 

generation. Table 3 and Table 4 repeat the experiments with a 1% delay increase 

threshold, with a corresponding increase in number of aggressors. 
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Table 1   Aggressor pruning in aggr-1st compaction with 2.5% delay th (ISCAS85) 

 

Circuit 

 

# Paths 

# Initial Aggr 

(for all victim 

paths) 

# Aggr meeting 

Min Delay 

Increase Th 

# Aggr after 

Logical Pruning  

# Aggr with 

Potential 

Alignment 

c432 312 25036 5127 2282 1119 

c499 460 25331 7190 4316 1585 

c880 742 38571 11130 6551 1581 

c1355 878 81948 14207 5817 2393 

c1908 1030 89681 16113 7562 2805 

c2670 1464 139298 21825 13665 4105 

c3540 1900 285958 26328 11152 5456 

c5315 3971 363807 63059 37670 13447 

c7552 4633 580903 66361 32145 12205 

 

 

 

 

Table 2   Aggressor pruning in pat-1st compaction with 2.5% delay th (ISCAS85) 

 

Circuit 

 

# Paths 

# Initial Aggr 

(for all victim 

paths) 

# Aggr meeting 

Min Delay 

Increase Th 

# Aggr after 

Logical Pruning  

# Aggr with 

Potential 

Alignment 

c432 312 25036 5127 1832 871 

c499 460 25331 7190 3633 1315 

c880 742 38571 11130 4064 852 

c1355 878 81948 14207 5370 2226 

c1908 1030 89681 16113 5908 2372 

c2670 1464 139298 21825 9253 2580 

c3540 1900 285958 26328 9490 5003 

c5315 3971 363807 63059 26714 9095 

c7552 4633 580903 66361 23342 9089 
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Table 3   Aggressor pruning in aggr-1st compaction with 1% delay th (ISCAS85) 

 

Circuit 

 

# Paths 

# Initial Aggr 

(for all victim 

paths) 

# Aggr meeting 

Min Delay 

Increase Th 

# Aggr after 

Logical Pruning  

# Aggr with 

Potential 

Alignment 

c432 312 25036 12738 4823 2188 

c499 460 25331 13897 8089 2653 

c880 742 38571 21355 12993 3406 

c1355 878 81948 28393 11943 4869 

c1908 1030 89681 38024 16782 6571 

c2670 1464 139298 46467 29514 9013 

c3540 1900 285958 85456 35063 15889 

c5315 3971 363807 129157 79394 26723 

c7552 4633 580903 164797 89406 33838 

 

 

 

 

Table 4   Aggressor pruning in pat-1st compaction with 1% delay th (ISCAS85) 

 

Circuit 

 

# Paths 

# Initial Aggr 

(for all victim 

paths) 

# Aggr meeting 

Min Delay 

Increase Th 

# Aggr after 

Logical Pruning  

# Aggr with 

Potential 

Alignment 

c432 312 25036 12738 3899 1740 

c499 460 25331 13897 6982 2180 

c880 742 38571 21355 7754 1857 

c1355 878 81948 28393 11161 4506 

c1908 1030 89681 38024 13457 5696 

c2670 1464 139298 46467 20193 6045 

c3540 1900 285958 85456 30770 14669 

c5315 3971 363807 129157 58175 18747 

c7552 4633 580903 164797 63870 24719 
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8.2 Timing-Oriented ATPG 

Table 5 and Table 6 show the crosstalk test generation results for aggressor-first 

and pattern-first compaction with delay increase threshold of 2.5% and 1% respectively. 

Further it compares the increase in pattern count with these two compaction approaches. 

Column 2 lists the compacted test patterns without crosstalk. Columns 3 and 7 compare 

the number of potential aggressors between aggressor-first and pattern-first compaction. 

These are the aggressors that meet timing alignment and transition requirements during 

aggressor pruning steps. Columns 4 and 8 list the number of sensitized aggressors using 

the two compaction techniques. Similarly columns 5 and 9 show the compacted test 

patterns with aggressor-first and pattern-first compaction respectively. As we can see 

from Table 5 and Table 6 aggressor-first compaction can sensitize 60-75% of the 

potential aggressors from column 3. Sensitizing crosstalk prior to compaction increases 

pattern count by 150-200% for most of the ISCAS85 benchmark circuits, as shown in 

column 5. Although there is no increase in pattern count with pattern-first compaction, 

the NAs of the multiple victim paths in the compacted path set preclude an opposite 

transition for many aggressors. The NAs also reduce the search space for aggressor 

sensitization in pattern-first compaction. This leads to an abrupt drop down in the 

number of sensitized aggressors as shown in column 8 when compared number of 

aggressors sensitized by aggressor-first compaction in column 4. Columns 6 and 10 

further illustrate this by showing the difference in per-path aggressors sensitized by the 

two compaction techniques. The decrease in sensitized aggressors per victim path in 
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pattern-first compaction will result in lower crosstalk-induced delay increase. There is 

clearly a trade-off between pattern count and test quality. 

 

 

Table 5   Crosstalk pattern generation for ISCAS85 circuits with 2.5% delay th 

Circuit 

# 

Comp- 

-acted 

KLPG 

Pattern 

Aggressor-first Compaction Pattern-first Compaction 

# 

Potential 

Aggr 

# Aggr 

Justified 

# Xtalk 

Patterns 

# 

Aggr 

Per 

Path 

(Avg) 

# 

Potential 

Aggr 

# Aggr 

Justified 

# Xtalk 

Patterns 

# 

Aggr 

Per 

Path 

(Avg) 

c432 110 1119 781 170 2.5 871 205 110 0.65 

c499 265 1585 1194 445 2.59 1315 167 265 0.36 

c880 96 1581 1126 210 1.52 852 81 96 0.11 

c1355 626 2393 1304 826 1.49 2226 16 626 0.02 

c1908 469 2805 1142 661 1.11 2372 4 469 0.004 

c2670 280 4105 2901 448 1.98 2580 14 280 0.009 

c3540 1107 5456 2230 1579 1.17 5003 78 1107 0.041 

c5315 887 13447 9237 1492 2.33 9095 175 887 0.044 

c7552 754 12205 5682 1634 1.23 9089 11 754 0.002 

 

 

 

 

 

 

 



43 

 

 

 

 

 

Table 6   Crosstalk pattern generation for ISCAS85 circuits with 1% delay th 

Circuit 

# 

Comp- 

-acted 

KLPG 

Pattern 

Aggressor-first Compaction Pattern-first Compaction 

# 

Potential 

Aggr 

# Aggr 

Justified 

# Xtalk 

Patterns 

# 

Aggr 

Per 

Path 

(Avg) 

# 

Potential 

Aggr 

# Aggr 

Justified 

# Xtalk 

Patterns 

# 

Aggr 

Per 

Path 

(Avg) 

c432 110 2188 1450 231 4.65 1740 448 110 1.44 

c499 265 2653 2156 693 4.68 2180 276 265 0.6 

c880 96 3406 2304 344 3.11 1857 246 96 0.33 

c1355 626 4869 2744 1084 3.13 4506 163 626 0.19 

c1908 469 6571 2272 817 2.21 5696 66 469 0.064 

c2670 280 9013 6395 783 4.37 6045 141 280 0.096 

c3540 1107 15889 5869 2355 3.08 14669 239 1107 0.13 

c5315 887 26723 16613 2260 4.18 18747 969 887 0.24 

c7552 754 33838 17605 2351 3.79 24719 3824 754 0.83 
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Table 7 and Table 8 show the results for the aggressor-first and pattern-first 

dynamic compaction algorithms on ISCAS89 circuits. 

 

 

Table 7   Crosstalk pattern generation using aggr-1st compaction for ISCAS89      

circuits with 1% delay th 

 

Circuit 

 

# 

Paths 

#Aggr 

meeting 

Min 

Delay 

Incr.Th 

# Aggr 

after 

Logical 

Pruning  

# Aggr 

with 

Potential 

Alignment 

# Aggr 

Justified 

# 

 Patterns 

# Xtalk 

Patterns 

CPU 

Time 

(s) 

s1423 412 22250 8654 3262 910 141 271 141.70 

s1488 197 9836 5253 1233 384 70 90 3.67 

s1494 199 9240 4853 1131 278 66 84 3.47 

s5378 1801 58350 36174 8820 3696 235 531 243.53 

s9234 2386 87607 41255 14764 6685 400 1185 1568.7 

s13207 3470 103209 44361 13444 5367 870 1056 966.86 

s15850 2781 87886 42480 12929 4484 297 438 728.98 

s35932 10242 149840 79414 21609 9145 32 161 1748.25 

s38417 10640 189315 111959 38726 19840 417 831 4460.20 

s38584 10812 170334 98386 25468 12076 285 958 7063.12 
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Table 8   Crosstalk pattern generation using pat-1st compaction for ISCAS89        

circuits with 1% delay th 

 

Circuit 

 

# 

Paths 

# Aggr 

meeting 

Min 

Delay 

Incr.Th 

# Aggr 

after 

Logical 

Pruning  

# Aggr 

with 

Potential 

Alignment 

# Aggr 

Justified 

# 

Compact-

ed Delay 

Patterns 

# 

Compact-

ed Xtalk 

Patterns 

CPU 

Time (s) 

s1423 412 22250 7142 2679 203 141 141 100.11 

s1488 197 9836 3568 817 28 70 70 2.55 

s1494 199 9240 3178 720 56 66 66 2.95 

s5378 1801 58350 24411 6554 411 235 235 65.63 

s9234 2386 87607 27756 9971 154 400 400 1054.32 

s13207 3470 103209 29329 9387 70 870 870 633.4 

s15850 2781 87886 26924 9237 18 297 297 482.51 

s35932 10242 149840 43148 12708 24 32 32 811.80 

s38417 10640 189315 105638 38501 540 417 417 5326.74 

s38584 10812 170334 54625 14960 46 285 285 1540.92 
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8.3 ATPG Run-Time Overhead 

Table 9 lists the CPU time for each component of the proposed crosstalk-driven 

pattern generation algorithm using a 1% delay threshold. Column 2 shows the potential 

aggressors that meet the minimum potential delay increase and timing alignment 

requirements. The number of aggressors for which a path from the PIs cannot be found 

is listed in column 3. Column 4 lists how many complete paths failed justification. The 

CPU time required to generate the victim paths is shown in column 5. Column 6 shows 

the CPU time for pruning the initial aggressor candidates. Column 7 lists the CPU time 

to generate aligned patterns for the potential aggressors and dynamically compact those 

to maximize the effects of crosstalk-induced delay on a target path. As can be seen, for 

all the benchmark circuits, the aggressor pruning step takes little time. Most of the time 

is either spent in victim path generation or aggressor sensitization. c499, c3540, c5315 

and c7552 benchmark circuits spend most of the CPU time targeting aggressors, while 

c432, c1908, c2670 circuits take less time for aggressor path sensitization. The amount 

of time in aggressor sensitization is dominated by the number of aggressors that fail 

sensitization or justification in columns 3 and 4. Since justification is the most expensive 

step in victim path and aggressor path generation, the benchmarks with more aggressor 

paths failing final justification spend more time in generating aggressor transitions. So 

speeding up the algorithm is mostly dependent on using a faster justification procedure. 

Table 10 shows the CPU time for pattern-first compaction. The increased NAs filter out 

more aggressors, so there are fewer justification failures and so much lower CPU time. 
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Table 9   CPU time breakdown for aggr-1st compaction (ISCAS85) 

Circuit 
#Potential 

Aggr 

#Aggr Not 

Sensitized 

#Aggr Not 

Justified 

CPU Time 

(s) Path 

Gen. 

CPU Time 

(s) Aggr 

Pruning 

CPU Time 

(s) Xtalk Pat 

Gen 

c432 2188 738 99 44.91 0.38 9.20 

c499 2653 497 703 2.04 0.66 139.81 

c880 3406 1102 2 0.72 1.11 10.99 

c1355 4869 2125 589 45.87 1.96 346.13 

c1908 6571 4299 564 346.69 1.90 163.19 

c2670 9013 2618 112 85.41 3.37 71.17 

c3540 15889 10020 5094 287.11 5.88 4312.90 

c5315 26723 10110 2702 54.73 11.26 511.16 

c7552 33838 16233 13910 217.36 14.83 1219.89 

 

 

 

 

Table 10   CPU time breakdown for pat-1st compaction (ISCAS85) 

Circuit 
#Potential 

Aggr 

#Aggr Not 

Sensitized 

#Aggr Not 

Justified 

CPU Time 

(s) Path 

Gen. 

CPU Time 

(s) Aggr 

Pruning 

CPU Time 

(s) Xtalk Pat 

Gen 

c432 1740 1292 0 45.94 0.73 7.04 

c499 2180 1904 99 1.78 1.84 54.40 

c880 1857 1611 12 0.98 0.27 0.20 

c1355 4506 4343 4 47.65 4.48 191.55 

c1908 5696 5630 13 348.69 3.63 16.03 

c2670 6045 5904 1367 72.56 4.22 25.74 

c3540 14669 14430 168 286.18 10.66 393.15 

c5315 18747 17778 144 53.53 13.71 404.95 

c7552 24719 20895 221 216.37 16.13 49.71 
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8.4 Timing-Oriented ATPG with Low Cost Fault Coverage Metric 

Experiments on aggressor-first compaction were conducted to demonstrate the 

benefits of timing-oriented ATPG with the low cost delay fault coverage metric. We 

performed experiments onISCAS85 benchmark circuits. The clock period is set to be 8% 

longer than the nominal delay of the longest testable path. It is assumed that there is only 

one spot delay defect in any target victim path and the circuit is subject to process 

variation. For the low cost aggressor-first compaction experiments, the crosstalk delay 

increase threshold is considered as 1% of the victim path delay. 

In the first experiment, process variation is assumed to be ±20% of the nominal 

path delay (α) and the local random spot defect guard band ( max) is 3 gate delays. We 

assume that local delay defects exceeding 3 gates are essentially transition faults. In our 

crosstalk ATPG environment, once a victim path is generated, we prune away the 

aggressor candidates that do not meet the delay increase and timing alignment 

requirements. We compute the cumulative delay increase from the remaining potential 

aggressors coupled to that victim path for use in low-cost metric. However, a percentage 

of the potential aggressors cannot be sensitized in the presence of victim path NAs, so 

considering the cumulative delay effect from all the potential aggressors may give rise to 

a conservative            determination. We can observe from columns 3 and 4 in Table 

5 and Table 6 that aggressor-first dynamic compaction can sensitize approximately 75% 

of the potential aggressors for most benchmark circuits. However, for circuits like 

c3540, c5315 and c7552, the percentage of aggressors justified is about 50%. It is quite 
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likely that some victim paths have many more aggressors sensitized than others. Setting 

the percentage bound β to 0.5 can cause crosstalk pattern generation to erroneously skip 

some victim paths. We use a β of 0.75 in our experiments and accordingly set the 

           value for different victim paths in ISCAS85 circuits. 

Table 11 shows the results of aggressor-first compaction using the low cost fault 

coverage metric. Column 2 lists the number of delay-sensitive victim paths that are 

considered for cross-induced delay pattern generation. Column 3 shows the total number 

of aggressors that meet timing alignment and transition direction on those victim paths 

considered for crosstalk pattern generation in column 2. The number of sensitized 

aggressors is listed in column 4. Column 5 shows the compacted patterns count with the 

low-cost fault coverage metric. For c5315 and c7552, the number of victim paths 

considered for timing-driven ATPG is small, which indicates that many fault sites are 

dropped because the longest paths through them are short. In c1355, many paths are 

considered for crosstalk ATPG. This is because this circuit is optimized to have many 

paths close to the maximum delay. 

In the second experiment, process variation is set to±30%. The local delay defect 

guard band is kept at 3 gate delays and crosstalk percentage bound β is 0.75. Table 12  

shows the results. Since            is decreased, more victim paths with shorter nominal 

length will be considered for crosstalk-induced delay pattern generation. The number of 

test vectors is sensitive to the parameters interacting with the circuit path delay 

distribution. 
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Table 11   Aggr-1st compaction with low cost coverage metric for ISCAS85 circuits             

(with 20% process variation) 

Circuit # Paths Considered # Potential Aggr # Aggr Justified 
#Compacted 

Crosstalk Patterns 

c432 202 1637 1028 193 

c499 396 2491 1995 682 

c880 222 1145 682 204 

c1355 616 4018 2155 1037 

c1908 450 3444 853 579 

c2670 546 3888 2379 544 

c3540 960 8296 2650 1721 

c5315 246 1671 403 899 

c7552 347 2137 576 864 

 

 

 

 

Table 12   Aggr-1st compaction with low cost coverage metric for ISCAS85 circuits             

(with 30% process variation) 

Circuit # Paths Considered # Potential Aggr # Aggr Justified 
#Compacted 

Crosstalk Patterns 

c432 219 1724 1081 201 

c499 396 2491 1995 682 

c880 266 1421 860 231 

c1355 701 4323 2341 1076 

c1908 501 3855 931 586 

c2670 603 4162 2555 555 

c3540 1059 9112 2924 1794 

c5315 346 2319 566 910 

c7552 487 3076 893 927 
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Table 13 compares the crosstalk test size using low cost coverage metric to the 

regular crosstalk test with α, β and  max as 20%, 0.75 and 3 gate delays respectively. 

Columns 2 and 5 compare the number of victim paths considered for crosstalk pattern 

generation for the two tests. Columns 3 and 6 compare the CPU time for the two tests. 

Column 7 shows the decrease in compacted pattern count with low cost coverage metric 

in comparison to column 4. Column 8 reports the speedup factor. Overall, aggressor-first 

compaction is much faster with low cost coverage metric. With the implementation of 

the low-cost coverage metric, the aggressor-first compaction has a much smaller test size 

with reasonable CPU time overhead for crosstalk pattern generation. 

 

 

Table 13   Crosstalk pattern count comparison 

Circuit 

Without Low Cost Coverage Metric With Low Cost Coverage Metric 
Speed 

Up 

Factor 
# Paths 

Considered 

ATPG 

Time (s) 

# 

Compacted 

Patterns 

# Paths 

Considered 

ATPG 

Time (s) 

# 

Compacted 

Patterns 

c432 312 55.54 231 202 53.59 193 1.03 

c499 460 142.52 693 396 141.78 682 1.00 

c880 742 12.83 344 222 8.97 204 1.43 

c1355 878 413.97 1084 616 394.23 1037 1.05 

c1908 1030 513.79 817 450 451.67 579 1.13 

c2670 1464 159.96 783 546 137.19 544 1.16 

c3540 1900 4605.90 2355 960 3121.68 1721 1.47 

c5315 3971 577.17 2260 246 98.85 899 5.83 

c7552 4633 1452.11 2351 347 386.94 864 3.75 

  



52 

 

 

 

 

 

8.5 Crosstalk ATPG for Non-Robust and Long Transition Test 

The prior results were generated using robust sensitization for the victim path and 

the path to each aggressor site. Table 14 shows the results for crosstalk pattern 

generation for all testable paths on ISCAS89 circuits. In this experiment, KLPG test 

generation is used to generate the longest path through each line under robustness 

constraints, topped off with non-robust path tests for the dropped target paths, topped off 

with long transition fault tests. The results further show the increase in testable paths, 

pattern count, number of sensitized aggressors and CPU time with top-off tests. Columns 

2 and 6 in Table 14 show that top-off tests increase the testable paths by 100-300% for 

most of the ISCAS89circuits except s5378 and s35932. That results in increase in 

number of sensitized aggressors, as listed in columns 3 and 7 respectively. However, this 

increase in testable paths and sensitized aggressors inflate the crosstalk pattern count by 

about 10-60%, as shown in columns 4 and 8 respectively. Columns 5 and 9 compare the 

CPU time between robust and top-off tests. For a majority of the benchmark circuits, 

top-off tests increase the crosstalk pattern generation time by about 300-400%. However, 

for s5378 and s35932, top-off tests double the CPU time, as non-robust and long-

transition tests cannot increase the testable paths substantially on top of robust tests. 
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Table 14   Crosstalk pattern generation for all testable paths on ISCAS89 circuits 

Circuit 

Robust Robust + Non-robust + Long-transition 

# 

Testable 

Paths 

# Aggr 

Sensitized 

# Xtalk 

Patterns 

CPU 

Time (s) 

# 

Testable 

Paths 

# Aggr 

Sensitized 

# Xtalk 

Patterns 

CPU 

Time (s) 

s1423 412 910 271 141.70 790 1281 363 575.01 

s1488 197 384 90 3.67 649 1138 161 15.45 

s1494 199 278 84 3.47 650 946 151 15.03 

s5378 1801 3696 531 243.53 1995 4038 577 431.10 

s9234 2386 6685 1185 1568.76 3583 9277 1415 10063.0 

s13207 3470 5367 1056 966.86 6132 8055 1670 4726.22 

s15850 2781 4484 438 728.98 5045 5766 491 2810.39 

s35932 10242 9145 161 1748.25 11730 9525 171 3608.23 

s38584 10812 12076 958 7063.12 17021 17392 1255 7779.97 
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9. COMPARISON AND CORRELATION 

 

In order to verify that the crosstalk-aware patterns generated by our timing-driven 

test generator maximize crosstalk-induced delay on delay-sensitive paths, we will 

compare their delay distribution against the path delays for zero-filled and random-filled 

KLPG patterns ignoring crosstalk. In addition, we will show the correlation between the 

estimated crosstalk-induced delay increase using our proposed                 metric 

and the delay increase observed from circuit simulation of the crosstalk patterns. The 

estimated delay increase may deviate from the simulated one as the                 

metric does not take into account the fortuitous helper transitions or aligned aggressors 

coupling to the same victim net. 

9.1 Crosstalk Delay Increase 

Table 15 compares the circuit simulation delay of 20 randomly selected testable 

paths in c5315 using zero-filled, random-filled and crosstalk delay-induced KLPG 

pattern. These 20 paths have experienced increase in delay only because of crosstalk 

coupling. Column 2 shows the path delay for a zero-filled conventional KLPG pattern 

ignoring crosstalk. Column 3 reports the delay increase of the same KLPG pattern whose 

unspecified bits are random-filled. We repeat each and every random-filled KLPG 

simulation 10 times with different random values for the unspecified bits. The delay 

increase from our proposed alignment-driven crosstalk patterns are shown in column 4. 

Column 5 lists the percentage increase in path delay using our crosstalk patterns when 
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compared to the zero-filled path delay. We can see from Table 15 that for all the victim 

paths selected (except path no. 18), the crosstalk patterns have longer delay than the 

zero-filled and random-filled KLPG patterns. Columns 6, 7 and 8 in Table 15 further 

confirm this by comparing the number of aggressors sensitized by the three pattern set. 

Random-filling of the unspecified bits in path no. 18 have created additional fortuitous 

aligned aggressors coupling to the same path, which results in more delay increase than 

crosstalk patterns. For few paths in Table 15, random-filling reduce path delays than 

zero-filled path delays ignoring crosstalk. This is due to helper transitions being 

accidentally generated by the random-filling of unspecified bits. 

Figure 10 further shows the delay increase using our crosstalk delay-induced 

patterns for 45 testable paths spread over the entire path delay distribution of c5135. In 

order to show the impact of crosstalk-induced slowdown from our timing-driven ATPG, 

we did the circuit simulations of those 45randomly chosen paths, that have a potential 

delay increase of more than 15ps and the number of sensitized aggressors coupled to 

those victim paths are at least 4. Those 45 paths are simulated in turn using zero-filled, 

random-filled KLPG patterns ignoring crosstalk and crosstalk patterns from our timing-

oriented ATPG. 
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Table 15   Crosstalk delay increase for c5315 

Path 

No. 

Path Delay 

(0-filled 

KLPG) (ps) 

Increase in Delay (ps) % Incr  in 

Delay by 

Xtalk 

Pattern 

# Aligned Aggressors Sensitized 

Random-

filled 

KLPG 

Xtalk 

Pattern 

0-filled 

KLPG 

Random-

filled KLPG 

Xtalk 

Pattern 

1 364.84 -4.15 4.41 1.21 0 0 6 

2 425.38 4.54 9.53 2.24 0 4 6 

3 447.81 2.57 8.38 1.87 0 1 5 

4 453.69 5.37 12.51 2.75 0 4 7 

5 462.69 -3.91 8.39 1.81 0 -2 6 

6 474.49 -3.81 12.12 2.55 0 0 5 

7 475.51 0 4.03 0.84 0 1 6 

8 513.15 1.05 8.01 1.56 1 1 5 

9 530.19 0 10.63 2.00 1 1 8 

10 563.05 3.09 4.98 0.88 1 1 3 

11 604.64 5.31 10.34 1.71 0 1 3 

12 620.97 0 8.83 1.42 0 0 3 

13 627.67 7.03 10.85 1.72 0 2 3 

14 641.51 3.57 10.83 1.68 -2 1 2 

15 700.83 2.77 4.53 0.64 0 2 3 

16 725.4 0.31 3.84 0.52 0 0 4 

17 765.74 -2.51 3.99 0.52 0 0 2 

18 816.51 14.78 9.01 1.10 -3 4 5 

19 880.93 3.13 5.91 0.67 0 2 2 

20 883.15 1.05 8.01 0.90 1 1 5 
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Figure 10   Increase in path delay for c5315 

 

 

 

 

We can see from Figure 10 that for the majority of victim paths selected, the 

alignment-driven crosstalk patterns have longer delay than the zero-filled and random-

filled KLPG patterns. However, there are quite a few paths in Figure 10, where the 

crosstalk-aware patterns are not slower than the zero-filled or random-filled patterns. 

The reasons for this are discussed in the following sections. 

9.1.1 Delay at the Side-Input Transition during Robust Test 

According to the definition of a robust test, the KLPG ATPG engine satisfies the 

following conditions to guarantee the detection of a delay fault regardless of the delays 

of all other gates: 
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1. For propagating a to-controlling transition at an on-path input, the side fan-

ins must be set to their static non-controlling value. 

2. For propagating a to-non-controlling transition at an on-path input, the side 

fan-ins must also have to-non-controlling transitions. 

As the second condition of robust test allows to-non-controlling transitions at the 

side fan-ins, a late transition at side fan-ins can delay the propagation of the on-path 

input transition and thus potentially can change the on-path timing down the path. A 

delay fault is still detected, but not on the victim path. Thus detailed timing information 

at the side inputs is required to ensure that the generated test for an on-path transition is 

not affected by the side fan-ins. Due to the impracticality of using such information in an 

ATPG, the KLPG ATPG tool does not take into account the timing at the side fan-ins. In 

our proposed timing-driven crosstalk ATPG, we attempt to sensitize the potential 

aggressors once a victim path and the timing on the on-path nets is completely known. 

We leverage the timing of the victim nets to align the coupled aggressors. However, it is 

observed during circuit simulations of the crosstalk-driven patterns that sometimes the 

side-input non-controlling transitions slow down the on-path transition. This in turn 

changes the victim net timing that our timing-driven ATPG has utilized to align the 

coupled aggressors down the path. This is entirely circuit-specific. For some of the 

testable paths such as path 27, 33 and 42 for c5315 in Figure 10, the side-input 

transitions change the timing of the victim paths and so the crosstalk patterns cannot 
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align the aggressor transitions to the victim net transitions. As a result, they do not 

experience any delay from coupling noise. 

In addition, for some of the testable paths like path 2, 3, 7, 24, 42 in Figure 10, the 

zero-filled and random-filled patterns have higher delay than the crosstalk-aware pattern. 

Zero-filling or random-filling of the unspecified bits in those patterns delays the side-

input transitions and thus slows down the propagation of the overall victim path.  

9.1.2 Mismatch in Cell Characterization between SDF and SPICE 

In our timing-driven crosstalk ATPG, we use the net-to-net nominal delays 

reported in the extracted SDF file for all timing analysis. The STA engine uses those 

delay values to compute the earliest and latest possible rising/falling transition timing 

windows during alignment-driven aggressor net sensitization. The net-to-net delay 

values in SDF are computed using cell delay-lookup table in timing library file, which 

contains the delay values for various input slew rates and output load capacitances. So 

the delay values obtained from SDF file are conservative. We observe that the path 

delays obtained in ISCAS85 circuits using circuit simulation are approximately 25-30% 

less than the path delays estimated using SDF data. As our crosstalk-driven ATPG uses 

SDF data for aligning an aggressor transition with victim net, it is quite likely that the 

crosstalk patterns from our timing-driven ATPG cannot generate aligned transitions in 

circuit simulations, due to this mismatch between circuit simulation delay and SDF 

reported delay. However, we have observed that for majority of cases the delays of the 

victim path and the aggressor paths are affected equally in circuit simulations. As a 
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result, most of our crosstalk-aware patterns are still effective in generating aligned 

transitions in SPICE simulations. Further in order to reduce the mismatch in cell 

characterization between SPICE and SDF, we perform the SPICE simulations at an 

elevated temperature of 55C. 

Figure 11, Figure 12 and Figure 13 compare the change in delays by our crosstalk 

patterns against the path delays induced by zero-filled and random-filled KLPG patterns 

for c2670, c7552 and c1355 respectively. 

 

 

Figure 11   Increase in path delay for c2670 
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Figure 12   Increase in path delay for c7552 

 

 

 

 

 

Figure 13   Increase in path delay for c1335  
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9.2 Estimated vs. Observed Crosstalk Delay Increase 

We conducted experiments to determine the correlation between our estimated 

delay increase metric and the delay increase observed using SPICE simulations of our 

crosstalk patterns. Figure 14 shows the correlation between estimated and observed 

delay increase for 45 randomly selected paths in c5315 circuit. We can see from Figure 

14 that estimated delay increase sets an upper bound for observed delay increase. For the 

majority of the paths, the alignment-driven crosstalk patterns could not induce 

substantial delay increase, as expected from the estimated delay increase metric.  

 

 

Figure 14   Correlation between estimated and observed delay increase for c5315 
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We can see from Figure 14 that for a few testable in c5315 circuit, the crosstalk 

patterns induce more delay than the estimated                 metric. As the 

                 metric is the upper bound for the observed crosstalk delay increase, one 

reason behind this additional delay is that the                  metric does not take into 

account any fortuitous aligned aggressor couplings to the same victim paths. Further the 

additional necessary assignments generated from the multiple aggressor sensitizations 

may delay the side-input non-controlling transitions of the target path. This is turn can 

increase the victim path delay by more than the estimated value. Once the late side-

inputs change victim path timing, these late inputs in turn destroy the alignment that 

timing-driven ATPG has assumed for sensitizing the aggressors coupled to that path. So 

a delay increase of more than the estimated                 metric may be due to late 

side-input transitions being accidently generated from the aggressor NAs. 

For a majority of the paths, the timing-driven crosstalk patterns could not induce 

substantial delay increase, compared to the prediction by the estimated delay increase 

metric. One reason behind this is the mismatch between circuit simulation delay and 

SDF reported delay as detailed in Section 9.1.2. As a result, in circuit simulations of the 

crosstalk patterns, the aggressors lose alignment to victim transitions and thus incur no 

increase in victim net delay. The other reason may be the assumptions involved in 

crosstalk delay-induced modeling. 
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9.2.1 Assumptions involved in                 Metric 

In our crosstalk-induced delay modeling detailed in Section 3, we assume the 

aggressor and victim nets have completely overlapping transitions and so we do not take 

into account the impact of skew in crosstalk delay estimation.  However, we observe in 

circuit simulation of the crosstalk patterns that if the aggressor transition is skewed by as 

little as 50ps, the aggressor net will appear quiescent as the transition propagates through 

the targeted path. In addition, there are three additional objectives in creating a crosstalk 

effect of large severity: a weak driver on the victim line, a fast signal transition on the 

affecting line and a propagation path that maintains or amplifies the noise effect until it 

reaches an output. But our crosstalk-delay model does not consider the slew rates of the 

aggressor and victim nets in delay increase estimation. So the estimated delay increase is 

quite conservative in nature. All these above reasons lead to a poor correlation between 

the estimated and observed delay increase in circuit c5315. 

The model approximates the delay as linear in the change in Ceff. Further we do not 

consider the impact of aggressors on each other to compute the potential delay increase 

on the victim net. Moreover, the afore-mentioned delay model considers the nominal 

stage delay of the victim net                   in the crosstalk-delay increase 

computation. However, a change in input-signal slope caused by crosstalk can impact 

the nominal stage delay at its receiving gates. The impact of noise on a signal line may 

affect its receiver gates differently because of varying switching threshold across those. 
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Figure 15 shows the correlation between the estimated and observed delay increase 

for circuit c7552. 

 

 

 

Figure 15   Correlation between estimated and observed delay increase for c7552 

 

 

 

 

9.3 Crosstalk Test under Non-Robust and Long Transition Constraints 

Although  shows the increase in number of sensitized aggressors with non-robust 

and long transition tests, the alignment of aggressor transitions with victim path is even 

more uncertain in comparison to robust test. As the non-robust test allows controlling 

values at side fan-ins in the first time frame, so a late transition at side fan-ins can block 

0

5

10

15

20

25

30

12 14 16 18 20 22 24

O
b

se
rv

ed
 D

el
a
y
 I

n
cr

ea
se

 (
p

s)
 

Estimated Delay Increase (ps) 



66 

 

 

 

 

 

the propagation of the on-path transition, which is targeted for crosstalk delay increase. 

As a result, the crosstalk delay effect cannot reach an observable output through the 

victim path. In addition, more than one transition can attempt to propagate through a 

target path and this in turn can change the target path timing that our test generator has 

utilized to align coupled transitions down that path. Further the transitions at side fan-ins 

may create fortuitous helper transitions along a target path. In addition, the effects of 

hazards and glitches can interfere with the observation of the output value. 
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10. CONCLUSION AND FUTURE WORK 

 

In this work, we have proposed a novel timing-oriented test generation algorithm 

to target multiple aligned aggressors coupled to a target victim path to maximize the 

crosstalk slowdown effects. The algorithm utilizes timing windows, potential delay 

increase, and logic constraints to prune a substantial number of ineffective aggressor 

couplings and thus speed up the pattern generation process. In addition, this algorithm 

introduces the concept of alignment-driven path sensitization to generate timing-aligned 

crosstalk patterns. As this test generator sensitizes aggressors in the presence of victim 

path NAs, the search space is effectively reduced for aggressor path generation. It helps 

in reducing the crosstalk pattern generation time for aggressors. This algorithm was 

applied with aggressor-first and pattern-first dynamic compaction. 

There are several open issues to be addressed in the future course of this work. The 

current approach does not consider the fact that due to process variation and side-input 

transition delays, the timing alignment is uncertain. In general there are many different 

paths to a coupled line, so it is possible to sensitize a coupled transition at a number of 

different times. To thoroughly test a circuit, it is necessary to generate test patterns that 

sweep the coupled transition across a range large enough that all cases of potential 

alignment are considered. Here in this work we have used the nominal delays for victim 

path transition. In the future work, we will set a delay bound around the on-path 
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transition and then attempt to justify up to M different paths that cover that range. 

Min/max path delays will limit the search space. 

If two potential aggressors have almost equal coupling effectiveness, sensitizing 

one aggressor first may preclude a greater number of aligned transitions along a victim 

path due to conflicting logical and timing constraints. So the greedy algorithm may miss 

the worst possible crosstalk delay increase. In our experience, a greedy algorithm will 

come close to achieving the worst-case delay increase, particularly when considering the 

fact that timing alignment is uncertain due to side-input transitions and intra-die process 

variation. To quantify the impact of a greedy algorithm requires implementation of an 

exact algorithm. 

In the coupling effectiveness metric, we have assumed a single value for 

parameters C1, C2 and C3 and generated crosstalk patterns accordingly. The chosen 

parameters gave priority to potential delay increase of an aggressor rather than to its 

timing alignment. In future work, a sensitivity analysis of these parameters must be 

performed. 

In this work, we have demonstrated the change in path delay using our alignment-

driven crosstalk patterns against the path delays induced by zero-filled and random-filled 

KLPG patterns ignoring crosstalk. We further intend to compare the crosstalk delay 

increase by our approach against prior work [10] that targeted multiple aggressors along 

a victim path, but did not consider any timing alignment. 
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