

MAXIMIZING CROSSTALK-INDUCED SLOWDOWN DURING PATH DELAY

TEST

A Thesis

by

DIBAKAR GOPE

Submitted to the Office of Graduate Studies of

Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

August 2011

Major Subject: Computer Engineering

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&M Repository

https://core.ac.uk/display/13642596?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Maximizing Crosstalk-Induced Slowdown During Path Delay Test

Copyright 2011 Dibakar Gope

MAXIMIZING CROSSTALK-INDUCED SLOWDOWN DURING PATH DELAY

TEST

A Thesis

by

DIBAKAR GOPE

Submitted to the Office of Graduate Studies of

Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Approved by:

Co-Chairs of Committee, Duncan Henry M. Walker

Jiang Hu

Committee Members, Gwan S. Choi

 Jose Silva-Martinez

Head of Department, Costas N. Georghiades

August 2011

Major Subject: Computer Engineering

iii

ABSTRACT

Maximizing Crosstalk-Induced Slowdown During Path Delay Test.

(August 2011)

Dibakar Gope, B.E., Birla Institute of Technology and Science

Co-Chairs of Advisory Committee: Dr. Duncan Henry M. Walker

 Dr. Jiang Hu

Capacitive crosstalk between adjacent signal wires in integrated circuits may lead

to noise or a speedup or slowdown in signal transitions. These in turn may lead to circuit

failure or reduced operating speed. This thesis focuses on generating test patterns to

induce crosstalk-induced signal delays, in order to determine whether the circuit can still

meet its timing specification. A timing-driven test generator is developed to sensitize

multiple aligned aggressors coupled to a delay-sensitive victim path to detect the

combination of a delay spot defect and crosstalk-induced slowdown. The framework

uses parasitic capacitance information, timing windows and crosstalk-induced delay

estimates to screen out unaligned or ineffective aggressors coupled to a victim path,

speeding up crosstalk pattern generation. In order to induce maximum crosstalk

slowdown along a path, aggressors are prioritized based on their potential delay increase

and timing alignment. The test generation engine introduces the concept of alignment-

driven path sensitization to generate paths from inputs to coupled aggressor nets that

meet timing alignment and direction requirements. By using path delay information

iv

obtained from circuit preprocessing, preferred paths can be chosen during aggressor path

propagation processes. As the test generator sensitizes aggressors in the presence of

victim path necessary assignments, the search space is effectively reduced for aggressor

path generation. This helps in reducing the test generation time for aligned aggressors. In

addition, two new crosstalk-driven dynamic test compaction algorithms are developed to

control the increase in test pattern count. The proposed test generation algorithm is

applied to ISCAS85 and ISCAS89 benchmark circuits. SPICE simulation results

demonstrate the ability of the alignment-driven test generator to increase crosstalk-

induced delays along victim paths.

v

DEDICATION

To my parents and family

vi

ACKNOWLEDGEMENTS

First, I would like to express my sincere gratitude to my advisor, Dr. Duncan M.

(Hank) Walker, for his guidance and continuous support throughout the course of my

thesis work. I would also like to thank him for guiding me with such dedication and

consideration and never failing to pay attention to any details of my work. His technical

insight, his novel ideas and his encouragement are all essential to this work. This thesis

would never have been accomplished without his technical and editorial advice.

I would like to extend my gratefulness to the members of my advisory committee,

Dr. Jiang Hu, Dr. Gwan S. Choi and Dr. Jose Silva-Martinez, for their guidance in my

research. Thanks to my colleague Shayak Lahiri for his help in several software issues.

I would also like to thank the staff in the Department of Electrical Engineering for

making my academic life at Texas A&M University a great experience. A special thanks

to my friends, Reeshav Kumar, Akshay Godbole, Ayush Garg and Anurag Singla, for

their support and encouragement which made this work possible. Finally, I am thankful

to my parents for their love, encouragement and confidence in my abilities.

My research was funded in part by Semiconductor Research Corporation (SRC)

and by National Science Foundation (NSF). I thank them for their financial support.

vii

TABLE OF CONTENTS

Page

ABSTRACT ... iii

DEDICATION ... v

ACKNOWLEDGEMENTS .. vi

TABLE OF CONTENTS ...vii

LIST OF FIGURES ... ix

LIST OF TABLES ... x

1. INTRODUCTION ... 1

2. RELATED PRIOR WORK ... 5

3. CROSSTALK-INDUCED DELAY MODELING ... 8

4. PROPOSED TEST GENERATION FOR CROSSTALK-INDUCED

DELAY .. 12

4.1 KLPG Test Generation ... 12
4.2 Aggressor Pruning and Ranking .. 16

5. TIMING-ORIENTED ATPG .. 21

5.1 Path Store ... 21
5.2 Path Generation .. 24

6. CROSSTALK-AWARE DYNAMIC COMPACTION .. 28

6.1 Aggressor-First Dynamic Compaction ... 29
6.2 Pattern-First Dynamic Compaction .. 32

7. LOW-COST METRIC .. 35

8. EXPERIMENTAL RESULTS .. 37

viii

Page

8.1 Aggressor Pruning .. 37
8.2 Timing-Oriented ATPG ... 41

8.3 ATPG Run-Time Overhead ... 46
8.4 Timing-Oriented ATPG with Low Cost Fault Coverage Metric 48
8.5 Crosstalk ATPG for Non-Robust and Long Transition Test 52

9. COMPARISON AND CORRELATION .. 54

9.1 Crosstalk Delay Increase .. 54
9.2 Estimated vs. Observed Crosstalk Delay Increase 62

9.3 Crosstalk Test under Non-Robust and Long Transition Constraints 65

10. CONCLUSION AND FUTURE WORK .. 67

REFERENCES ... 69

VITA .. 75

ix

LIST OF FIGURES

Page

Figure 1 KLPG path generation algorithm ... 13

Figure 2 (a) Path never fails, no crosstalk impact; (b) crosstalk can cause

delay fault; (c) path always fails, no crosstalk impact 15

Figure 3 Aggressor pruning algorithm ... 20

Figure 4 Aggressor path search space .. 22

Figure 5 A partial path ... 23

Figure 6 Extending a partial path ... 25

Figure 7 Path generation algorithm .. 26

Figure 8 Aggressor-first dynamic compaction ... 30

Figure 9 Pattern-first dynamic compaction .. 33

Figure 10 Increase in path delay for c5315 .. 57

Figure 11 Increase in path delay for c2670 .. 60

Figure 12 Increase in path delay for c7552 .. 61

Figure 13 Increase in path delay for c1335 .. 61

Figure 14 Correlation between estimated and observed delay increase for c5315 62

Figure 15 Correlation between estimated and observed delay increase for c7552 65

x

LIST OF TABLES

Page

Table 1 Aggressor pruning in aggr-1st compaction with 2.5% delay th (ISCAS85) 39

Table 2 Aggressor pruning in pat-1st compaction with 2.5% delay th (ISCAS85) 39

Table 3 Aggressor pruning in aggr-1st compaction with 1% delay th (ISCAS85) 40

Table 4 Aggressor pruning in pat-1st compaction with 1% delay th (ISCAS85) 40

Table 5 Crosstalk pattern generation for ISCAS85 circuits with 2.5% delay th 42

Table 6 Crosstalk pattern generation for ISCAS85 circuits with 1% delay th 43

Table 7 Crosstalk pattern generation using aggr-1st compaction for ISCAS89

circuits with 1% delay th ... 44

Table 8 Crosstalk pattern generation using pat-1st compaction for ISCAS89

circuits with 1% delay th ... 45

Table 9 CPU time breakdown for aggr-1st compaction (ISCAS85) 47

Table 10 CPU time breakdown for pat-1st compaction (ISCAS85) 47

Table 11 Aggr-1st compaction with low cost coverage metric for ISCAS85 circuits

(with 20% process variation) ... 50

Table 12 Aggr-1st compaction with low cost coverage metric for ISCAS85 circuits

(with 30% process variation) ... 50

Table 13 Crosstalk pattern count comparison ... 51

Table 14 Crosstalk pattern generation for all testable paths on ISCAS89 circuits 53

Table 15 Crosstalk delay increase for c5315 .. 56

1

1. INTRODUCTION

With continuous scaling of process technology in the very deep sub-micron (DSM)

regime, the capacitive coupling between adjacent interconnect wires continues to

increase and now dominates total interconnect capacitance. This leads to signal crosstalk

noise. Interconnect delays are increasingly affected by signal crosstalk, leading to timing

violations, reduced timing margin and signal glitches. Therefore, signal crosstalk noise

must be considered in timing closure and manufacturing test. Capacitive crosstalk noise

results from parasitic coupling between adjacent signal nets and is most seen in nets that

have weaker drivers than adjacent nets [1].

Crosstalk faults can be categorized into two types: crosstalk-induced glitches and

crosstalk-induced delays. A crosstalk-induced glitch [2] occurs when a victim line is

intended to be in a stable state, but is found to have an unwanted noise pulse due to the

transitions on one or more neighboring nets. Depending on their amplitude and width,

these pulses can have an important impact on circuit performance [3]. A crosstalk-

induced delay [4] is produced when both the affecting and victim lines have

simultaneous or near simultaneous transitions. If the affecting net switches in the same

direction as the victim net, it reduces the transition time of the victim. We refer to this

phenomenon as crosstalk speedup. However, if the affecting and victim lines switch in

This thesis follows the style of IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems.

2

the opposite direction, the victim line will experience an increase in delay, which is

termed as crosstalk slowdown. In most circuits, crosstalk-induced delay, particularly

slowdown delay, leads to the chip failure more so than the crosstalk-induced glitch [4]

[5]. In current trends in integrated circuit design, it is impossible to eliminate errors

caused by crosstalk noise because of stringent area and performance requirements. These

crosstalk noises could be eliminated by resizing drivers, shielding interconnect

techniques, rerouting signals and repeater insertion techniques. However, redesign may

be very expensive in terms of design effort and its impact on a product’s schedule.

Moreover, due to the random nature of process variations, careful design and validation

techniques cannot ensure all manufactured parts to be free of error-causing crosstalk

effects. Thus testing for severe crosstalk noise effects is essential to guarantee the correct

functionality of fabricated chips.

The need to magnify the impact of these crosstalk effects becomes increasingly

important to reduce the probability of test escape of the delay-sensitive paths. Normal

functional patterns cannot effectively maximize the crosstalk-induced delay effects along

timing-critical paths. In addition to test these paths, these patterns need to model other

functional use conditions in the remaining circuit to effectively detect other hard-to-

detect logical defects. As a result, generating such efficient functional patterns that can

maximize crosstalk-induced delays is a challenging task and can be prohibitively

expensive. New automatic test pattern generation (ATPG) techniques are required to

3

maximize the coupling effects on critical paths while still ensuring high fault coverage

and low pattern count.

As explained above, switching activity in capacitive-coupled nets can speed up or

slow down the victim path if the nets involved in coupling have simultaneous or near

simultaneous transitions. If the transitions at the affecting and victim lines occur at

significantly different times (more than one gate delay), then there is no significant delay

impact [4]. Moreover, in DSM circuits, physical synthesis avoids long parallel runs of

signal nets, to minimize the noise from any one coupling capacitor. Because of the

logical constraints and different timing windows of the aggressor sites, it is quite

improbable for a single delay test pattern to excite a large number of aggressors on a

single victim net. Significant crosstalk delay increases can only occur due to multiple

aggressors coupling to multiple victim nets along a victim path.

Prior work on crosstalk ATPG does not consider the timing alignment of

aggressor-victim nets and the impact of multiple simultaneous aggressor nets on a single

critical path. As a result, the delay of the tested paths may be less than the worst case,

leading to a test escape. New test pattern generation algorithms must focus on sensitizing

a maximal subset of timing-aligned aggressors along the victim path under test.

The key contributions of this thesis are:

1. Timing-oriented test generation to target multiple aggressors along a victim

path, so as to maximize the crosstalk delay.

4

2. Alignment-driven path sensitization to generate a path from primary inputs

(PIs) to the coupled aggressor net that meets the required timing alignment

and direction.

3. Two crosstalk-driven dynamic compaction algorithms to control the

number of test patterns when incorporating crosstalk.

5

2. RELATED PRIOR WORK

Most of the prior work on testing for crosstalk has focused on logic faults caused

by crosstalk induced glitches [1] [6] [7] [8] [9] and related test pattern generation

techniques. Testing for crosstalk-induced delays has recently received more attention

[10] [11]. Several fault models and test generation techniques have been proposed to

take into account crosstalk-induced delay. The common objective of all these techniques

is to find the most effective set of patterns causing maximum crosstalk-induced delay

along timing-critical paths. Since the pattern generation for crosstalk induced delay

faults requires timing information, reducing the high complexity of the ATPG process is

a major issue for prior test-generation methods.

The timing-oriented backtrace procedure proposed in [4] and [12] considered

timing alignment of the aggressor with the victim net in pattern generation. However,

this approach did not take into account the possible influence of multiple aggressors for

a given victim net or the effect of multiple victim nets on a single critical path.

Essentially the coupling capacitance to overall net capacitance ratio considered was large

enough that by propagating on the longest path and sensitizing the worst case, the

coupling slowdown would be detected. This is not feasible in modern DSM circuits.

Focused on all aggressor lines of a victim line, the authors in [13] proposed a solution

that combines an integer-linear program with the traditional stuck-at fault ATPG. These

two methods could not activate the worst case crosstalk-induced delay, since they

6

consider testing of the crosstalk effect on a single victim line, similar to transition fault

delay testing, without considering accumulated delay defects or effects on a path.

The work presented in [14] and [15] employs an algorithm based on boolean

satisfiability (SAT) wrapped by a branch-and-bound algorithm to find the subset of

aggressors exciting maximal crosstalk noise on a victim line. As a result, false noise can

be reduced in order to provide a more accurate static timing analysis. Since no

previously generated test is given as a constraint, this approach is guaranteed to calculate

the subset of aggressors providing maximal crosstalk noise but without taking test

generation into account. The drawback of this approach is the long run time.

The authors in [16] proposed a test generation method for critical paths

considering single aggressor crosstalk effect with due consideration to the timing

alignment and direction. This method has similar CPU efficiency to that of [17] and

[18]. However, they did not take into account the possible impact of multiple aligned

aggressors along a victim path. In addition, the backtrace procedure does exhaustive

search for aggressor pattern generation and so this methodology suffers from

computational complexity.

The ATPG technique in [19] applied boolean constraints and modified PODEM

algorithm to construct a heuristic solution that excited multiple aggressors on a target

path. In [20] the authors presented a constrained path delay fault (CPDF) model as a

combination of a timing-critical path and a set of crosstalk noise sources interacting with

the path. However, the technique was computational intensive because it was based on

7

genetic algorithm and did not efficiently handle timing information. A timed ATPG

method is proposed in [21] to generate critical paths and corresponding input vectors to

sensitize these paths under crosstalk effects. This approach incorporated special timing

processing techniques into ATPG algorithms and employed expensive circuit-level

timing simulation. These three methods are not scalable to industrial circuits.

In [22] the authors used timing-driven boolean logic to characterize signal

transitions in a time interval. Moreover, they employed boolean satisfiability (SAT)

technique to check the correlations between aggressor and victim transitions. The

authors in [10] incorporated the sensitization of a maximal set of potential coupled

aggressors in a transition fault framework. This has the advantage of reusing the existing

transition fault infrastructure, but the disadvantage of not being able to determine timing

alignment. These two methods can find the patterns efficiently by means of ignoring the

timing of aggressors, but they could not guarantee the timing requirements for activation

of the targeted crosstalk effects.

To generate deterministic test patterns for crosstalk-induced delay faults, timing

information cannot be ignored. However, including timing information into an ATPG

engine will significantly increase the complexity of the ATPG algorithm. Considering

the timing of the aggressors is the main obstacle for efficient test generation.

8

3. CROSSTALK-INDUCED DELAY MODELING

Crosstalk is caused by parasitic coupling between adjacent signal nets that include

inductive and capacitive effects. On-chip inductance becomes significant at high

frequency in certain global signal lines, such as VDD and ground buses. However,

capacitive coupling tends to dominate for signal interconnects. So it is still possible to

accurately model crosstalk-induced delay effects without considering any impact from

inductance.

Signal crosstalk between a victim net and its neighboring aggressor nets may

either speed up or slow down the victim path depending on the transition direction,

transition arrival time overlap and coupling capacitance between the victim and

aggressor nets [1] [23]. This work will focus on signal slowdown.

Coupling models proposed in the literature can be broadly classified into two

categories: charge sharing based coupling models and simulation based coupling models.

Transitions on aggressors change the effective capacitance (Ceff) seen by the victim net

driving gate and thus change the signal transition delay. In charge sharing based

coupling models, crosstalk is modeled by scaling the physical coupling capacitance (CC)

with a Miller Coupling Factor (MCF) to obtain the effective coupling capacitance value.

Ceff = MCF . CC

9

If the aggressor transition occurs at a significantly different time than the victim

net (more than one gate delay), then there is no significant delay impact [4]. If the

aggressor transition overlaps with the victim transition and is in the same (helper)

direction, then Ceff is reduced and the victim speeds up. If the aggressor transition is in

the opposite (aggressor) direction, then Ceff is increased and the victim slows down. In

addition, crosstalk delay noise depends on other factors such as slew rate [1] [24] and

drive strength of victim-aggressor pair [1] [25].

For aggressor and victim switching in opposite directions, the MCF factor can take

values from 1 to 3 [26]. If the coupled aggressor net has a much faster transition time

than the on-path victim net, then an MCF greater than 2 can result. A probabilistic linear

model is proposed in [27] to estimate the MCF. Given the minimum relative signal

arrival times estimated for a victim-aggression pair, the authors in [28] can determine the

corresponding MCF using a regression based model. The dependence of delay noise on

the alignment can be computed by using circuit simulations [29] or derived analytically

using curve-fitting techniques [30].

Charge-sharing based coupling models are used chiefly in the early stages of

design flow because of their efficiency. In this work, we focus on early stages of the

design flow and therefore use a charge sharing based coupling model. Our algorithm can

be extended to an accurate crosstalk delay model [31], but details of the extension are

beyond the scope of this work.

10

The following delay equation is used to estimate the crosstalk-induced delay

increase caused by i-th aggressor switching at the same time, but in the opposite

direction, as the coupled victim net:

 (

 ∑

)

where is the crosstalk-induced delay increase caused by the i-th

aggressor; denotes the coupling capacitance between the i-th aggressor and the

victim net, is the line capacitance from the victim net to ground, n is the number of

aggressors, and is the nominal stage delay of the victim net, assuming

no transitions on the coupled nets. The denominator of the equation is the nominal value

of Ceff. This equation approximates the delay as linear in the change in Ceff. Further equal

aggressor and victim slew rates are assumed with completely overlapping transitions, so

the MCF is 2. In practice, this is the maximum potential delay increase. We assume

linear superposition of aggressor noise, so the aggressor noise coupled to a victim net

can be aggregated linearly. Thus nonlinearity of parasitic and Miller effects are ignored

in this work. Further we do not consider the impact of aggressors on each other to

compute the potential delay increase on the victim net.

Coupling noise is a significant issue for relatively long signal nets. These nets tend

to be routed through multiple metal layers. We have found from the RC extraction of the

11

ISCAS circuits that typical long nets are capacitive-coupled to 40–50 other signal nets.

However, out of those 40–50 neighboring nets, only 4-5 make up 80%–90% of the total

coupling capacitance value. As a result, if we can generate aligned aggressor transitions

on 4–5 significant coupled nets, we can come close to producing the worst case crosstalk

delay on the victim net without creating implausible ATPG requirements.

The afore-mentioned delay model considers the nominal stage delay of the victim

net in the crosstalk delay increase computation. However, a change in

input-signal slope caused by crosstalk can impact the nominal stage delay at its receiving

gates. In addition, the impact of noise on a signal line may affect its receiver gates

differently because of varying logical thresholds of the receivers. These effects are not

considered in this work.

12

4. PROPOSED TEST GENERATION FOR CROSSTALK-INDUCED

DELAY

Our proposed crosstalk-induced delay test generation procedure consists of three

major steps: (1) K longest path per gate (KLPG) [32] test generation for a delay-

sensitive path; (2) sorting and pruning aggressors along each victim path, based on logic

constraints, timing alignment, and their potential delay increase; and (3) path generation

from PIs to the aggressor nets that meets the timing alignment and transition direction.

For a set of potential aggressors coupled to a delay-sensitive victim path, the

objective of this proposed ATPG is to generate a test vector that can excite maximal

number of aligned aggressors while also sensitizing the victim path.

4.1 KLPG Test Generation

In this work, KLPG test generation [32] is used to generate the longest path

through every line in the circuit under robustness constraints. The target line or fault site

is assumed to have a spot delay defect. Figure 1 shows the basic flow of the KLPG path

generation algorithm.

The search space for each fault site is the fan-in and fan-out paths of the target

line. Paths outside the search space can provide side input constraints for gates on the

path.

13

Figure 1 KLPG path generation algorithm

In the path generation phase, a path store is used to store partial paths, which are

paths originating from a PI but have not reached a PO. Every partial path has a value

called esperance [33], which is the sum of the length of the partial path and the min-max

path delay from its last node to a PO, without considering any logic constraint. In other

words, the maximum esperance is the upper bound on the length of a partial path that

grows to be a complete path, and the minimum esperance is the lower bound. As shown

in Figure 1, in each iteration of path generation, the partial path with the largest max

esperance is popped from the sorted path store and extended by adding one fan-out gate

Pass justification?

Enough paths?

Delete the (partial) path

End

Y

Start Preprocessing

Initialize partial paths from
launch points

Pop the partial path with the

maximum esperance

Extend the partial path with
one more gate

Apply constraints and perform
direct implications

Conflict? Complete path?

Apply false path

elimination techniques

Update esperance

Insert in the (sorted)
partial path store

N
N

Y

Y
N

N

Y

14

with largest max esperance. If the last gate of the partial path has multiple fan-outs, the

path will split, leaving the alternate choices in the path store. Depending on the

sensitization criterion, such as robust or non-robust sensitization, constraints to

propagate the transition on the added gate are applied. Then direct implications [32] are

performed to identify local conflicts. A direct implication on a gate is one where the

input or output value of that gate can be determined from other values assigned to that

gate. Previous research [32] [33] found that direct implications can eliminate most false

paths. If a partial path reaches a PO, it becomes a complete path. Then a PODEM-based

final justification [32] is performed to find a vector pair that sensitizes this path. Since

the longest path through one line may be the longest path through other lines, a new

complete path must be checked to see if it has already been generated before. The test

generation repeats until the K longest testable paths (both rising and falling transitions)

through each line are generated or the path store is exhausted.

When a path is generated and passes final justification, a set of necessary

assignments (values assigned to lines) are identified that are necessary to sensitize and

propagate the fault along the path. Assignments generated during final justification are

not saved, since they may not be necessary. Assignments generated during victim path

generation are used to screen out the coupled aggressors that have a helper transition or

constant values set from the victim path necessary assignments (NAs).

Crosstalk-induced delay increases are relatively small. They are only of concern if

the delay defect on the path under test is large enough that the path is almost failing, but

15

not so large that the path fails regardless of crosstalk. Thus aggressors are aligned

assuming that the target delay defect is equal to the path timing slack. This shifts the

nominal transition times downstream from the defect site, as shown in Figure 2.

Figure 2 (a) Path never fails, no crosstalk impact; (b) crosstalk can cause

delay fault; (c) path always fails, no crosstalk impact

Maximizing the victim path delay increase is a form of the maximum cover

problem. The cost of a near-optimal solution for this problem does not make sense given

our timing model approximations. We instead use a greedy algorithm, targeting

aggressors in decreasing order of potential delay increase. This works well when a small

number of larger coupling capacitances dominate the potential delay increase.

A given vector pair is applied

A
B

tSPEC

A
B

A
B

(a)

tSPEC

(b)

tSPEC

(c)

A given vector pair is applied

A
B

tSPEC

A
B

A
B

(a)

tSPEC

(b)

tSPEC

(c)

16

4.2 Aggressor Pruning and Ranking

4.2.1 Delay Threshold Pruning

Aggressors that do not cause victim path delay increases are pruned away.

Cadence SoC Encounter is used to extract the Standard Parasitic Exchange Format

(SPEF) file for ISCAS85 and ISCAS89 circuits. SPEF stores the parasitic information of

the nets used in the layout.

First, the NAs to sensitize the victim path may propagate to aggressors. These

aggressors are discarded since there is no decision to be made. Second, many coupling

capacitors are small, and cause insignificant victim path delay increase. Aggressors are

retained only if their potential delay increase metric is above a specified threshold:

where is the crosstalk-induced delay increase caused by an aggressor,

defined in Section 3. The threshold is set by analyzing victim path delay increase vs.

threshold to determine an appropriate delay vs. cost trade-off. We term this pruning as

delay threshold pruning.

4.2.2 Logical and Alignment-Based Pruning

Along a path there are multiple logic stages, each one having many coupled nets.

The worst path delay due to crosstalk would be for all coupled nets to have aggressor

17

transitions aligned with the victim transition on the tested path. However, this case is not

possible due to logic and timing conflicts:

1. Some coupled nets have NAs for the testing of the path that preclude an

aggressor transition, or in fact mandate a helper transition.

2. Some coupled nets can only have transitions that do not align with the

tested path transition. For example, if a net on a short path is coupled near

the end of a long path.

3. Some aggressor transitions have logic constraints that conflict with other

aggressor transitions. For example, one transition may have an NA that

precludes another transition.

4. Some aggressor transitions have timing alignment constraints that conflict

with other aggressor alignment requirements. For example, if a net couples

to two different logic stages on the tested path, only one of the couplings

can be aligned.

Logical and alignment-based pruning is used to screen out cases #1 and #2.In our

research, we combine cases #3 and #4 together by modifying our existing KLPG path

generator to generate paths from the PIs or PPIs to the coupled net location with the

necessary parity (transition direction) and timing alignment.

Direct implications are applied on remaining aggressors obtained from delay

threshold pruning. The aggressor net is assigned a transition opposite to that of the

victim net and direct implication is used to propagate values. During direct implications,

18

if a conflict is found with the NAs to sensitize the victim path, the aggressor is not

considered for further alignment checking and sensitization. We term this pruning as

logical pruning. This direct implication trims off the false-aggressor candidates in the

initial phase of aggressor ranking, else an aggressor may be selected that will fail during

its path sensitization, wasting ATPG work.

Next, a static timing analysis (STA) engine computes the earliest and latest

possible rising/falling transition timing windows on the input and output lines of each

gate in the circuit, using the victim path NAs. Assuming the transition at PIs at time

zero, the engine traverses the circuit starting from PIs in a breadth-first manner to

compute timing windows for each line. If the aggressor and victim net timing windows

do not overlap, the aggressor is pruned. The victim path NAs significantly narrow

aggressor timing windows and ease the identification of more accurate time-aligned

aggressor. Since prior work [17] [34] did not use the victim path NAs to compute the

earliest and latest possible rising/falling transition timing windows like traditional STA

calculations, timing windows generated by those methods are very pessimistic and have

very wide ranges. This may lead to missing the real aggressor lines for the target victim

path.

This three-step pruning is performed on each aggressor coupled to a victim net and

for the aggressors to the other victim nets along the same target path.

19

After pruning, aggressors are inserted into the potential aggressor list for the

victim path in decreasing order of coupling effectiveness. The coupling effectiveness

metric is defined as:

 () ()

 ()

 ()

where is the coupling effectiveness of the aggressor, TAgg and TVictim

denote the aggressor and victim transition times and C1, C2, C3 are user-defined

constants. Aggressors that have higher potential delay increase, more symmetric overlap

of aggressor and victim timing windows, and a smaller timing window, will be ranked

higher in the potential aggressor list. The overall aggressor pruning flow is shown in

Figure 3.

20

Figure 3 Aggressor pruning algorithm

Parasitic

Parameters

STA Timing

Information KLPG test generation for a timing-critical path

Uninitialized neighboring net identification

coupled to the target path

Is delay increase of

this coupled net >

threshold?

Conflict with

existing NAs from

the PDF pattern?

Applying opposite transition to this coupled

net and perform direct implication

Timing window computation of this coupled

net for possible alignment to the victim

Computed window

brackets the victim

transition?

Ranking this coupled net based on Coupling-

effectiveness in potential aggressors list

All nets coupled to

the target path

considered?

Alignment-driven ATPG for the selected

aggressor nets and crosstalk-aware compaction

N

Y

N

N

Y

N

Y

Y

Selection of the

Potential

Aggressors

21

5. TIMING-ORIENTED ATPG

After sorting the potential aggressors for a victim path, the aggressor with

maximum coupling effectiveness is considered for sensitization in presence of victim

path NAs. The goal is to find a propagation path from the PIs to the aggressor that has

the best timing alignment. In practice, alignment is probabilistic, depending on process

variation, supply noise, and other unmodeled effects. Activity in one part of the circuit

can throw off the alignment in another part of the circuit. Since we are concerned with

paths that are too slow, the alignment requirement can be indirectly accounted for by

using min-max gate delays in the coupling effectiveness ranking. In our work, we will

use nominal circuit delays during the search for the path to the aggressor that achieves

the best alignment, ignoring any lack of correlation due to noise or process variation.

Each aggressor shifts the timing alignment of later nets on the victim path. This can be

handled by updating transition times along the victim path, but the shift in alignment is

small enough that this is not considered.

5.1 Path Store

The KLPG engine was modified to sensitize aligned aggressor transitions. In the

path generation phase, a path store is used to store partial paths, which are paths

originating from a PI but have not reached the aggressor of interest. The search space for

each aggressor net, as shown in Figure 4, is the fan-in cone of the aggressor line. Paths

outside the search space can provide side input constraints for gates on the path. Figure 5

22

shows an example. The partial path starts from primary input g0, and ends at gate gi. A

set of partial paths are grown from PIs towards the aggressor net, with the goal of

sensitizing a path to the aggressor and achieving the best timing alignment with the

victim net. At the beginning, the path store attempts to generate 2nPI partial paths, where

nPI is the number of primary inputs in the fan-in cone of the aggressor line. Partial paths

are initialized as rising and falling transitions from all the PIs of the aggressor fan-in

cone that do not already have NAs. When a partial path reaches the aggressor net, it

becomes a complete path.

Figure 4 Aggressor path search space

23

Figure 5 A partial path

The earliest and latest aggressor transition times are associated with each partial

path. These are the sum of the length of the partial path and the min/max path delay from

its last node to the target aggressor. The partial paths are sorted by their potential timing-

alignment to the victim net. The timing alignment metric is calculated as:

 () ()

 ()

 ()

24

where TimingAlign is the timing alignment metric. is the path delay from the

last node of the partial path to the target aggressor. is the length of the

partial path. The other variables are as described earlier. In Figure 5, suppose the length

of the partial path g0...gi is 10 and the min/max path delay from gi to the aggressor is

5/12. The victim net transition timing is shown as 20. Assuming the value of C2 and C3

as 0.25 and 0.25 respectively, the potential timing-alignment of this partial path is 0.4.

5.2 Path Generation

In each iteration of path generation, the partial path with the largest timing

alignment value is popped from the path store and extended by adding a fan-out gate that

achieves the maximum alignment. If the last gate of the partial path has multiple fan-

outs, the path will split, leaving the alternate choices in the path store. In order to target

an aligned aggressor, the timing-driven ATPG always propagates on the fan-out tree

whose minimum and maximum delays bracket the victim net transition. One challenge is

that several fan-out trees may meet this requirement. The heuristic we use to make a

selection is to choose the fan-out tree that most evenly brackets the required delay and

has the smallest delay range. Intuitively, as a path is built from inputs to outputs, the

minimum length increases and the maximum length decreases, as false paths are ruled

out. For example, in Figure 6, the partial path g0...gi is extended by adding gate gj,

because extending to gj could potentially give the best possible aggressor alignment to

the victim transition. After the partial path is extended (g0...gigj in Figure 6), the

constraints to propagate the transition on the added gate (gj) are applied. Then direct

25

implications are used to check the compatibility of the new partial path NAs with the

existing NAs from the victim path.

Figure 6 Extending a partial path

If a conflict happens during direct implications, the partial path is false. In other

words, any path including this partial path is a false path. Therefore, the partial path is

deleted from the path store so that the whole search space which contains this partial

path is trimmed off. If a partial path reaches the target aggressor, it becomes a complete

path. It also means the NAs from the aggressor path sensitization are compatible with the

existing victim paths NAs. Then a PODEM-based final justification is performed on the

combined sets of NAs to find a test pattern that simultaneously sensitizes the victim path

and the aggressor net.

Once a partial path reaches the desired aggressor net, it is not further propagated to

an observable point, because propagating the aggressor transition further may create

26

additional NAs that can be better used to activate an opposite transition at another

aggressor net.

The NAs for the justification of this aggressor are retained when searching for later

aggressor paths. The path generation procedure is repeated for all other aggressors in

decreasing order of potential delay increase. The process is repeated for all victim paths.

The path generation process is shown in Figure 7.

Figure 7 Path generation algorithm

Initialize partial paths from

primary inputs

Pop the partial path with the

maximum timing alignment

Extend the partial path with

one more gate

Apply constraints and

perform direct implications

Delete the partial

path

Conflict

?

Reach target

aggressor net ?

Pass

justification?

Update timing alignment

Insert in the sorted partial

path store

Start

End

N

N

N

Y

Y

Y

27

Procedure Timing-Oriented Aggressor Sensitization() describes the alignment-

driven aggressor path generation flow as follows:

Procedure Timing-Oriented Aggressor Sensitization()

1. Find the longest path through a target line. Justify the necessary

assignments, but do not keep the primary input values.

2. Find the next aggressor coupling that would cause the largest path delay

increase. If the potential delay increase due to this aggressor is less than the

specified threshold, END.

3. Check whether this coupled net can have an aggressor transition on it. If

not, go to step 2.

4. Check whether this coupled net can have timing alignment with the path

net. If not, go to step 2. This can be easily checked by computing min-max

delays of each net using breadth and depth first search.

5. Generate a path from PIs to the coupled net that meets the timing alignment

and direction.

6. Justify the necessary assignments of the tested path and all coupling paths,

but keep only the necessary assignments, as in step 1. If justification fails,

discard the aggressor coupling. Go to step2.

28

6. CROSSTALK-AWARE DYNAMIC COMPACTION

Capacitive crosstalk has a relatively small impact on path delay compared to path

length, supply noise or temperature. At one time, the optimal logic depth in

microprocessors was thought to be 6 to 8 gates. However, logic depth is currently rising

to meet low power requirements. If we assume a logic depth of 10, and a coupling

capacitance of about 10% of the total net capacitance, then one aggressor transition can

increase path delay by at most 1%. Prior work suggests at most a few percent delay

increase due to crosstalk. So in order to cause substantial crosstalk-induced delay along

the targeted victim path and subsequently to push that path towards delay test failure, the

crosstalk pattern generation should attempt to excite maximal possible number of

aggressors with required timing alignment and direction along a delay-sensitive path.

Once aggressors are sensitized using our timing-oriented ATPG, they are

combined together into the test pattern of the victim path in decreasing order of their

coupling effectiveness. That way the final compacted pattern will tend to activate as

many high-impact aggressors as possible along a victim path to maximize the impact of

crosstalk slowdown. This algorithm is greedy, so it may miss the worst possible

crosstalk delay increase, both due to the order dependence, and stopping when the

couplings are too small. However, in our experience, there are relatively few significant

coupling capacitances and many insignificant ones, and a greedy algorithm will come

29

close to achieving the worst-case delay increase, particularly when considering the fact

that timing alignment is uncertain due to intra-die process variation.

It is typically the case that many path tests can be dynamically-compacted into one

test pattern [35]. This significantly reduces test pattern count over static compaction

[36]. There are two approaches to using dynamic compaction when considering

crosstalk.

6.1 Aggressor-First Dynamic Compaction

One approach to dynamic test compaction is to first compact the maximal number

of aggressors into the test pattern for each victim path. The NAs of the victim path and

aggressors sensitized so far are used to constrain the search for later (lower potential

delay increase) aggressors, as shown in Figure 8. We term this aggressor-first dynamic

compaction, since we first compact as many aggressors as possible per victim path, then

compact these groups of victim and aggressors together into patterns.

30

Figure 8 Aggressor-first dynamic compaction

Procedure Aggressor-First_dc() describes the crosstalk pattern generation flow

with aggressor-first dynamic compaction. POOL-Aggr and POOL-Victim are the data

Generate KLPG test for a

target path, keep the
necessary assignments

Pop next coupled net with

max. coupling-effectiveness

Generate timing-aligned path

to the coupled net

Pass

justification?

Combine the assignments of

this new aligned path to the
existing assignments, but do

not keep the PI values

Discard the current

aggressor coupling and its
assignments

All

potential
aggressors

tried?

Sort the potential aggressor

nets coupled to that path

Compact this new

aggressors-coupled victim
path pattern with existing

path-delay patterns

N

N

Y

Y

Justify the combined

assignments of the victim
path &the new aligned path

31

structures created to save the compacted aggressor pattern set for each victim path and

the final compacted pattern pool respectively.

Procedure Aggressor-First_dc()

1. Initialize the pattern pool POOL-Victim as empty.

2. Initialize the pattern pool POOL-Aggr as empty.

3. Use KLPG to generate a longest path I through a line, resulting in pattern

F.F contains the NAs before justification.

4. Sort the potential aggressors coupled to that delay-sensitive victim path.

5. Pop the next potential aggressor with maximum coupling effectiveness. If

the potential aggressor list for a victim path becomes empty, go to step 9.

6. Use timing-oriented ATPG to generate aligned aggressor transition.

7. Do final justification of the combined NAs from the victim path and the

new aligned aggressor path. Do not keep the NAs from final justification.

8. If justification fails, destroy the NAs from the new aggressor path and go to

step 5. Else Call procedure Dyn_compact(F, POOL-Aggr) and go to step 5.

9. For each and every pattern Pin POOL-Aggr, call procedure

Dyn_compact(P, POOL-Victim). Go to step 2.

10. Do final justification for all patterns in POOL-Aggr one by one to generate

the final vectors.

The dynamic compaction procedure Dyn_compact(F, POOL) [35] uses a greedy

approach, in which each new pattern F is compacted with the first compatible pattern in

32

POOL. Patterns in POOL are sorted by non-increasing order of the number of necessary

assignments in order to compact as many as possible paths into a pattern before it is

written out. In contrary to static compaction, dynamic compaction algorithm checks the

compatibility between necessary assignments, greatly expanding the compaction space

without loss of fault coverage. Clearly the first pattern in any aggressor path-pool

POOL-Aggr will sensitize the maximal number of time-aligned aggressors coupled to

that victim path. In practice, the number of coupled nets that can be sensitized for a

victim path using a single pattern is not large. As each aggressor is set, it adds more NAs

that rule out other aggressors to sensitize.

6.2 Pattern-First Dynamic Compaction

The aggressor-first compaction procedure will maximize the crosstalk-induced

delay increase on each victim path, but may cause an increase in the number of test

patterns, compared to a test set that does not consider crosstalk. This pattern inflation

can be avoided by first compacting victim paths and then sensitizing aggressors, which

we term pattern-first compaction, as shown in Figure 9. The coupled nets to a victim

path are sensitized in the presence of NAs from all the victim paths in a compacted

pattern. The additional NAs in each pattern due to the victim paths will preclude

sensitization of many aggressors. The same process will be repeated for the other

compacted patterns in the set. Within a pattern, victim paths will be targeted in

decreasing order of length.

33

Figure 9 Pattern-first dynamic compaction

Procedure Pattern-First_dc() describes the crosstalk pattern generation flow with

pattern-first dynamic compaction. POOL is the data structure created to save patterns.

Consider the next victim path in the

compacted pattern

Generate possible coupling paths in

decreasing order of coupling-effectiveness

Any victim path

left in compacted
set ?

Pop the next compacted path-delay pattern

Generate KLPG patterns and compact them

Combine new assignments to existing ones

Any compacted

pattern left?

Y

Y

N

N

End

Delete all necessary assignments

34

Procedure Pattern-First_dc()

1. Initialize the pattern pool POOL as empty.

2. Use KLPG to generate a longest path I through a line, resulting in pattern

F. F contains all NAs before justification. If no more paths can be

generated or we have enough paths, go to step 4. Otherwise go to step 3.

3. Call procedure Dyn_compact(F, POOL). Go to step 2.

4. Do final justification for all patterns in POOL one by one to generate the

compacted victim path patterns.

5. Pop the next compacted pattern from POOL. If no more compacted pattern

is left in POOL, procedure is finished.

6. Consider the next victim path in the compacted pattern. If no more victim

path is left in compacted set, go to step 9.

7. Generate possible coupling paths in decreasing order of coupling-

effectiveness in presence of NAs from all victim paths in compacted set.

8. Combine new NAs to existing ones. Do not keep NAs from any final

justification of compacted victim pattern and new aligned aggressor paths.

Go to step 6.

9. Delete all NAs. Go to step 5.

35

7. LOW-COST METRIC

We have proposed a realistic low cost fault coverage metric to detect the

combination of a delay spot defect, process variation and crosstalk-induced slowdown.

Our goal in using the low cost fault coverage metric is to reduce crosstalk-aware pattern

count by dropping victim paths with large slack from crosstalk delay-induced pattern

generation.

In many designs, there are a set of speed paths that determine the clock cycle time,

and most fault sites have relatively short paths. The authors in [37] reported that the

average longest path through each line is much shorter than the longest path length in

ISCAS89 circuits. For example, for s38417, the longest path length is 41 gate delays,

while the average length is 18.1.

In general, a precise physical model to reflect the real process and defect

environment is not available. Even if available, it would be too costly to use during

crosstalk pattern generation. In order to minimize test generation time, a simple model is

desired. In this work, we use three criteria to set a detection probability threshold

 . First, we assume the process variation is independent for each path and

influences delay by increasing the required delay guard band. The percentage bound α

covers the influence of inter-die and intra-die variation [38], power supply and substrate

noise. Second, we consider that the spot delay defect size due to resistive short or open

has a guard band. The defect size to exceed this guard band requires a bridge resistance

36

so small or open resistance so large that it nearly causes a transition fault. Third, the total

crosstalk-induced delay from all the potential aggressors coupled to a victim path

increases the required delay guard band. As the majority of the potential aggressors after

pruning cannot be sensitized in the presence of victim path NAs, considering the

cumulative delay effect from all the potential aggressors may give rise to a conservative

 determination. So the percentage bound β is added to control the

metric, permitting experimentation with different crosstalk-induced slowdown along a

victim a path and its effect on the crosstalk-pattern count.

Based on these three assumptions, we set the as the function of process-

variation (α), spot delay fault guard band (max), cumulative crosstalk-delay increase,

percentage bound () and clockcycle (), as expressed in the formula given below.

 () ∑

A delay-sensitive victim path is considered for crosstalk-induced slowdown if the

nominal delay of the path is above the . That is, whenever the

maximum delay of a path under process variation, crosstalk-induced slowdown plus spot

delay defect size guard band is less than the clock cycle time , the victim path is not

considered for cross-induced delay pattern generation. For simplicity, we set max as

several gate delays in our experiments.

37

8. EXPERIMENTAL RESULTS

The proposed path delay test generator maximizing crosstalk-induced slowdown

was implemented in Visual C++ and run on a 64-bit Windows 7 PC with Intel Core 2

Duo processor (2.66GHz) and 4GB of memory. Experiments are performed on the

ISCAS85 and ISCAS89 benchmark circuits. For our experiments, parasitic information,

such as coupling capacitance and load capacitance was extracted using SoC Encounter

on TSMC 45nm technology. Net-to-net nominal delays reported in the extracted

Standard Delay Format (SDF) file are used for STA delay computation in the crosstalk-

induced delay test generator.

8.1 Aggressor Pruning

Table 1 and Table 2 show the results of aggressor pruning for the aggressor-first

and pattern-first dynamic compaction algorithms on ISCAS85 benchmark circuits.

Column 2 gives the KLPG path count and Column 3 reports the total number of

neighboring nets coupled to those paths. We observe from the extracted coupling

capacitances of the ISCAS circuits that a substantial number of those neighboring nets

coupled to a victim net have insignificant coupling capacitance value. So we compute

the potential delay increase of each neighboring net using metric, as

detailed in Section 4.3.1.

A minimum delay increase threshold is used thereafter to filter the neighboring

nets that have almost no effect on the victim path. The coupled nets with potential delay

38

increase of less than 2.5% of the victim path delay under test are trimmed off. The 2.5%

delay increase threshold is set by analyzing victim path delay increase vs. threshold to

determine an appropriate delay vs. cost trade-off. The resultant number of potential

aggressors is shown in column 4. For a majority of the ISCAS85 circuits, the 2.5%

minimum delay increase threshold reduces the number of aggressors by 75-80%. For

larger circuits such as c3540, c5315 and c7552, this delay increase criterion limits the

potential aggressors to about 10-15% of the total aggressors extracted from circuit

layout. Existing NAs from the victim path forbid some of the aggressors to set an

opposite transition on the coupled victim. Column 5 lists aggressors after pruning for

victim path NAs. Column 6 reports the number of aggressors that meet timing alignment

and transition direction. After pruning, aggressors are inserted into the potential

aggressor list for the victim path in decreasing order of coupling effectiveness. We

consider the values of C1, C2 and C3 as 0.5, 0.25 and 0.25 respectively in the coupling

effectiveness computation of the aggressor nets. That way we gave more priority to

potential delay increase of an aggressor rather than to its timing alignment. So the logical

pruning step reduces the potential aggressor candidates by almost half for the ISCAS85

circuits. Of the remaining aggressors, approximately 30% have transition windows that

bracket the victim transition and so are considered for timing-aligned crosstalk pattern

generation. Table 3 and Table 4 repeat the experiments with a 1% delay increase

threshold, with a corresponding increase in number of aggressors.

39

Table 1 Aggressor pruning in aggr-1st compaction with 2.5% delay th (ISCAS85)

Circuit

Paths

Initial Aggr

(for all victim

paths)

Aggr meeting

Min Delay

Increase Th

Aggr after

Logical Pruning

Aggr with

Potential

Alignment

c432 312 25036 5127 2282 1119

c499 460 25331 7190 4316 1585

c880 742 38571 11130 6551 1581

c1355 878 81948 14207 5817 2393

c1908 1030 89681 16113 7562 2805

c2670 1464 139298 21825 13665 4105

c3540 1900 285958 26328 11152 5456

c5315 3971 363807 63059 37670 13447

c7552 4633 580903 66361 32145 12205

Table 2 Aggressor pruning in pat-1st compaction with 2.5% delay th (ISCAS85)

Circuit

Paths

Initial Aggr

(for all victim

paths)

Aggr meeting

Min Delay

Increase Th

Aggr after

Logical Pruning

Aggr with

Potential

Alignment

c432 312 25036 5127 1832 871

c499 460 25331 7190 3633 1315

c880 742 38571 11130 4064 852

c1355 878 81948 14207 5370 2226

c1908 1030 89681 16113 5908 2372

c2670 1464 139298 21825 9253 2580

c3540 1900 285958 26328 9490 5003

c5315 3971 363807 63059 26714 9095

c7552 4633 580903 66361 23342 9089

40

Table 3 Aggressor pruning in aggr-1st compaction with 1% delay th (ISCAS85)

Circuit

Paths

Initial Aggr

(for all victim

paths)

Aggr meeting

Min Delay

Increase Th

Aggr after

Logical Pruning

Aggr with

Potential

Alignment

c432 312 25036 12738 4823 2188

c499 460 25331 13897 8089 2653

c880 742 38571 21355 12993 3406

c1355 878 81948 28393 11943 4869

c1908 1030 89681 38024 16782 6571

c2670 1464 139298 46467 29514 9013

c3540 1900 285958 85456 35063 15889

c5315 3971 363807 129157 79394 26723

c7552 4633 580903 164797 89406 33838

Table 4 Aggressor pruning in pat-1st compaction with 1% delay th (ISCAS85)

Circuit

Paths

Initial Aggr

(for all victim

paths)

Aggr meeting

Min Delay

Increase Th

Aggr after

Logical Pruning

Aggr with

Potential

Alignment

c432 312 25036 12738 3899 1740

c499 460 25331 13897 6982 2180

c880 742 38571 21355 7754 1857

c1355 878 81948 28393 11161 4506

c1908 1030 89681 38024 13457 5696

c2670 1464 139298 46467 20193 6045

c3540 1900 285958 85456 30770 14669

c5315 3971 363807 129157 58175 18747

c7552 4633 580903 164797 63870 24719

41

8.2 Timing-Oriented ATPG

Table 5 and Table 6 show the crosstalk test generation results for aggressor-first

and pattern-first compaction with delay increase threshold of 2.5% and 1% respectively.

Further it compares the increase in pattern count with these two compaction approaches.

Column 2 lists the compacted test patterns without crosstalk. Columns 3 and 7 compare

the number of potential aggressors between aggressor-first and pattern-first compaction.

These are the aggressors that meet timing alignment and transition requirements during

aggressor pruning steps. Columns 4 and 8 list the number of sensitized aggressors using

the two compaction techniques. Similarly columns 5 and 9 show the compacted test

patterns with aggressor-first and pattern-first compaction respectively. As we can see

from Table 5 and Table 6 aggressor-first compaction can sensitize 60-75% of the

potential aggressors from column 3. Sensitizing crosstalk prior to compaction increases

pattern count by 150-200% for most of the ISCAS85 benchmark circuits, as shown in

column 5. Although there is no increase in pattern count with pattern-first compaction,

the NAs of the multiple victim paths in the compacted path set preclude an opposite

transition for many aggressors. The NAs also reduce the search space for aggressor

sensitization in pattern-first compaction. This leads to an abrupt drop down in the

number of sensitized aggressors as shown in column 8 when compared number of

aggressors sensitized by aggressor-first compaction in column 4. Columns 6 and 10

further illustrate this by showing the difference in per-path aggressors sensitized by the

two compaction techniques. The decrease in sensitized aggressors per victim path in

42

pattern-first compaction will result in lower crosstalk-induced delay increase. There is

clearly a trade-off between pattern count and test quality.

Table 5 Crosstalk pattern generation for ISCAS85 circuits with 2.5% delay th

Circuit

Comp-

-acted

KLPG

Pattern

Aggressor-first Compaction Pattern-first Compaction

Potential

Aggr

Aggr

Justified

Xtalk

Patterns

Aggr

Per

Path

(Avg)

Potential

Aggr

Aggr

Justified

Xtalk

Patterns

Aggr

Per

Path

(Avg)

c432 110 1119 781 170 2.5 871 205 110 0.65

c499 265 1585 1194 445 2.59 1315 167 265 0.36

c880 96 1581 1126 210 1.52 852 81 96 0.11

c1355 626 2393 1304 826 1.49 2226 16 626 0.02

c1908 469 2805 1142 661 1.11 2372 4 469 0.004

c2670 280 4105 2901 448 1.98 2580 14 280 0.009

c3540 1107 5456 2230 1579 1.17 5003 78 1107 0.041

c5315 887 13447 9237 1492 2.33 9095 175 887 0.044

c7552 754 12205 5682 1634 1.23 9089 11 754 0.002

43

Table 6 Crosstalk pattern generation for ISCAS85 circuits with 1% delay th

Circuit

Comp-

-acted

KLPG

Pattern

Aggressor-first Compaction Pattern-first Compaction

Potential

Aggr

Aggr

Justified

Xtalk

Patterns

Aggr

Per

Path

(Avg)

Potential

Aggr

Aggr

Justified

Xtalk

Patterns

Aggr

Per

Path

(Avg)

c432 110 2188 1450 231 4.65 1740 448 110 1.44

c499 265 2653 2156 693 4.68 2180 276 265 0.6

c880 96 3406 2304 344 3.11 1857 246 96 0.33

c1355 626 4869 2744 1084 3.13 4506 163 626 0.19

c1908 469 6571 2272 817 2.21 5696 66 469 0.064

c2670 280 9013 6395 783 4.37 6045 141 280 0.096

c3540 1107 15889 5869 2355 3.08 14669 239 1107 0.13

c5315 887 26723 16613 2260 4.18 18747 969 887 0.24

c7552 754 33838 17605 2351 3.79 24719 3824 754 0.83

44

Table 7 and Table 8 show the results for the aggressor-first and pattern-first

dynamic compaction algorithms on ISCAS89 circuits.

Table 7 Crosstalk pattern generation using aggr-1st compaction for ISCAS89

circuits with 1% delay th

Circuit

Paths

#Aggr

meeting

Min

Delay

Incr.Th

Aggr

after

Logical

Pruning

Aggr

with

Potential

Alignment

Aggr

Justified

 Patterns

Xtalk

Patterns

CPU

Time

(s)

s1423 412 22250 8654 3262 910 141 271 141.70

s1488 197 9836 5253 1233 384 70 90 3.67

s1494 199 9240 4853 1131 278 66 84 3.47

s5378 1801 58350 36174 8820 3696 235 531 243.53

s9234 2386 87607 41255 14764 6685 400 1185 1568.7

s13207 3470 103209 44361 13444 5367 870 1056 966.86

s15850 2781 87886 42480 12929 4484 297 438 728.98

s35932 10242 149840 79414 21609 9145 32 161 1748.25

s38417 10640 189315 111959 38726 19840 417 831 4460.20

s38584 10812 170334 98386 25468 12076 285 958 7063.12

45

Table 8 Crosstalk pattern generation using pat-1st compaction for ISCAS89

circuits with 1% delay th

Circuit

Paths

Aggr

meeting

Min

Delay

Incr.Th

Aggr

after

Logical

Pruning

Aggr

with

Potential

Alignment

Aggr

Justified

Compact-

ed Delay

Patterns

Compact-

ed Xtalk

Patterns

CPU

Time (s)

s1423 412 22250 7142 2679 203 141 141 100.11

s1488 197 9836 3568 817 28 70 70 2.55

s1494 199 9240 3178 720 56 66 66 2.95

s5378 1801 58350 24411 6554 411 235 235 65.63

s9234 2386 87607 27756 9971 154 400 400 1054.32

s13207 3470 103209 29329 9387 70 870 870 633.4

s15850 2781 87886 26924 9237 18 297 297 482.51

s35932 10242 149840 43148 12708 24 32 32 811.80

s38417 10640 189315 105638 38501 540 417 417 5326.74

s38584 10812 170334 54625 14960 46 285 285 1540.92

46

8.3 ATPG Run-Time Overhead

Table 9 lists the CPU time for each component of the proposed crosstalk-driven

pattern generation algorithm using a 1% delay threshold. Column 2 shows the potential

aggressors that meet the minimum potential delay increase and timing alignment

requirements. The number of aggressors for which a path from the PIs cannot be found

is listed in column 3. Column 4 lists how many complete paths failed justification. The

CPU time required to generate the victim paths is shown in column 5. Column 6 shows

the CPU time for pruning the initial aggressor candidates. Column 7 lists the CPU time

to generate aligned patterns for the potential aggressors and dynamically compact those

to maximize the effects of crosstalk-induced delay on a target path. As can be seen, for

all the benchmark circuits, the aggressor pruning step takes little time. Most of the time

is either spent in victim path generation or aggressor sensitization. c499, c3540, c5315

and c7552 benchmark circuits spend most of the CPU time targeting aggressors, while

c432, c1908, c2670 circuits take less time for aggressor path sensitization. The amount

of time in aggressor sensitization is dominated by the number of aggressors that fail

sensitization or justification in columns 3 and 4. Since justification is the most expensive

step in victim path and aggressor path generation, the benchmarks with more aggressor

paths failing final justification spend more time in generating aggressor transitions. So

speeding up the algorithm is mostly dependent on using a faster justification procedure.

Table 10 shows the CPU time for pattern-first compaction. The increased NAs filter out

more aggressors, so there are fewer justification failures and so much lower CPU time.

47

Table 9 CPU time breakdown for aggr-1st compaction (ISCAS85)

Circuit
#Potential

Aggr

#Aggr Not

Sensitized

#Aggr Not

Justified

CPU Time

(s) Path

Gen.

CPU Time

(s) Aggr

Pruning

CPU Time

(s) Xtalk Pat

Gen

c432 2188 738 99 44.91 0.38 9.20

c499 2653 497 703 2.04 0.66 139.81

c880 3406 1102 2 0.72 1.11 10.99

c1355 4869 2125 589 45.87 1.96 346.13

c1908 6571 4299 564 346.69 1.90 163.19

c2670 9013 2618 112 85.41 3.37 71.17

c3540 15889 10020 5094 287.11 5.88 4312.90

c5315 26723 10110 2702 54.73 11.26 511.16

c7552 33838 16233 13910 217.36 14.83 1219.89

Table 10 CPU time breakdown for pat-1st compaction (ISCAS85)

Circuit
#Potential

Aggr

#Aggr Not

Sensitized

#Aggr Not

Justified

CPU Time

(s) Path

Gen.

CPU Time

(s) Aggr

Pruning

CPU Time

(s) Xtalk Pat

Gen

c432 1740 1292 0 45.94 0.73 7.04

c499 2180 1904 99 1.78 1.84 54.40

c880 1857 1611 12 0.98 0.27 0.20

c1355 4506 4343 4 47.65 4.48 191.55

c1908 5696 5630 13 348.69 3.63 16.03

c2670 6045 5904 1367 72.56 4.22 25.74

c3540 14669 14430 168 286.18 10.66 393.15

c5315 18747 17778 144 53.53 13.71 404.95

c7552 24719 20895 221 216.37 16.13 49.71

48

8.4 Timing-Oriented ATPG with Low Cost Fault Coverage Metric

Experiments on aggressor-first compaction were conducted to demonstrate the

benefits of timing-oriented ATPG with the low cost delay fault coverage metric. We

performed experiments onISCAS85 benchmark circuits. The clock period is set to be 8%

longer than the nominal delay of the longest testable path. It is assumed that there is only

one spot delay defect in any target victim path and the circuit is subject to process

variation. For the low cost aggressor-first compaction experiments, the crosstalk delay

increase threshold is considered as 1% of the victim path delay.

In the first experiment, process variation is assumed to be ±20% of the nominal

path delay (α) and the local random spot defect guard band (max) is 3 gate delays. We

assume that local delay defects exceeding 3 gates are essentially transition faults. In our

crosstalk ATPG environment, once a victim path is generated, we prune away the

aggressor candidates that do not meet the delay increase and timing alignment

requirements. We compute the cumulative delay increase from the remaining potential

aggressors coupled to that victim path for use in low-cost metric. However, a percentage

of the potential aggressors cannot be sensitized in the presence of victim path NAs, so

considering the cumulative delay effect from all the potential aggressors may give rise to

a conservative determination. We can observe from columns 3 and 4 in Table

5 and Table 6 that aggressor-first dynamic compaction can sensitize approximately 75%

of the potential aggressors for most benchmark circuits. However, for circuits like

c3540, c5315 and c7552, the percentage of aggressors justified is about 50%. It is quite

49

likely that some victim paths have many more aggressors sensitized than others. Setting

the percentage bound β to 0.5 can cause crosstalk pattern generation to erroneously skip

some victim paths. We use a β of 0.75 in our experiments and accordingly set the

 value for different victim paths in ISCAS85 circuits.

Table 11 shows the results of aggressor-first compaction using the low cost fault

coverage metric. Column 2 lists the number of delay-sensitive victim paths that are

considered for cross-induced delay pattern generation. Column 3 shows the total number

of aggressors that meet timing alignment and transition direction on those victim paths

considered for crosstalk pattern generation in column 2. The number of sensitized

aggressors is listed in column 4. Column 5 shows the compacted patterns count with the

low-cost fault coverage metric. For c5315 and c7552, the number of victim paths

considered for timing-driven ATPG is small, which indicates that many fault sites are

dropped because the longest paths through them are short. In c1355, many paths are

considered for crosstalk ATPG. This is because this circuit is optimized to have many

paths close to the maximum delay.

In the second experiment, process variation is set to±30%. The local delay defect

guard band is kept at 3 gate delays and crosstalk percentage bound β is 0.75. Table 12

shows the results. Since is decreased, more victim paths with shorter nominal

length will be considered for crosstalk-induced delay pattern generation. The number of

test vectors is sensitive to the parameters interacting with the circuit path delay

distribution.

50

Table 11 Aggr-1st compaction with low cost coverage metric for ISCAS85 circuits

(with 20% process variation)

Circuit # Paths Considered # Potential Aggr # Aggr Justified
#Compacted

Crosstalk Patterns

c432 202 1637 1028 193

c499 396 2491 1995 682

c880 222 1145 682 204

c1355 616 4018 2155 1037

c1908 450 3444 853 579

c2670 546 3888 2379 544

c3540 960 8296 2650 1721

c5315 246 1671 403 899

c7552 347 2137 576 864

Table 12 Aggr-1st compaction with low cost coverage metric for ISCAS85 circuits

(with 30% process variation)

Circuit # Paths Considered # Potential Aggr # Aggr Justified
#Compacted

Crosstalk Patterns

c432 219 1724 1081 201

c499 396 2491 1995 682

c880 266 1421 860 231

c1355 701 4323 2341 1076

c1908 501 3855 931 586

c2670 603 4162 2555 555

c3540 1059 9112 2924 1794

c5315 346 2319 566 910

c7552 487 3076 893 927

51

Table 13 compares the crosstalk test size using low cost coverage metric to the

regular crosstalk test with α, β and max as 20%, 0.75 and 3 gate delays respectively.

Columns 2 and 5 compare the number of victim paths considered for crosstalk pattern

generation for the two tests. Columns 3 and 6 compare the CPU time for the two tests.

Column 7 shows the decrease in compacted pattern count with low cost coverage metric

in comparison to column 4. Column 8 reports the speedup factor. Overall, aggressor-first

compaction is much faster with low cost coverage metric. With the implementation of

the low-cost coverage metric, the aggressor-first compaction has a much smaller test size

with reasonable CPU time overhead for crosstalk pattern generation.

Table 13 Crosstalk pattern count comparison

Circuit

Without Low Cost Coverage Metric With Low Cost Coverage Metric
Speed

Up

Factor
Paths

Considered

ATPG

Time (s)

Compacted

Patterns

Paths

Considered

ATPG

Time (s)

Compacted

Patterns

c432 312 55.54 231 202 53.59 193 1.03

c499 460 142.52 693 396 141.78 682 1.00

c880 742 12.83 344 222 8.97 204 1.43

c1355 878 413.97 1084 616 394.23 1037 1.05

c1908 1030 513.79 817 450 451.67 579 1.13

c2670 1464 159.96 783 546 137.19 544 1.16

c3540 1900 4605.90 2355 960 3121.68 1721 1.47

c5315 3971 577.17 2260 246 98.85 899 5.83

c7552 4633 1452.11 2351 347 386.94 864 3.75

52

8.5 Crosstalk ATPG for Non-Robust and Long Transition Test

The prior results were generated using robust sensitization for the victim path and

the path to each aggressor site. Table 14 shows the results for crosstalk pattern

generation for all testable paths on ISCAS89 circuits. In this experiment, KLPG test

generation is used to generate the longest path through each line under robustness

constraints, topped off with non-robust path tests for the dropped target paths, topped off

with long transition fault tests. The results further show the increase in testable paths,

pattern count, number of sensitized aggressors and CPU time with top-off tests. Columns

2 and 6 in Table 14 show that top-off tests increase the testable paths by 100-300% for

most of the ISCAS89circuits except s5378 and s35932. That results in increase in

number of sensitized aggressors, as listed in columns 3 and 7 respectively. However, this

increase in testable paths and sensitized aggressors inflate the crosstalk pattern count by

about 10-60%, as shown in columns 4 and 8 respectively. Columns 5 and 9 compare the

CPU time between robust and top-off tests. For a majority of the benchmark circuits,

top-off tests increase the crosstalk pattern generation time by about 300-400%. However,

for s5378 and s35932, top-off tests double the CPU time, as non-robust and long-

transition tests cannot increase the testable paths substantially on top of robust tests.

53

Table 14 Crosstalk pattern generation for all testable paths on ISCAS89 circuits

Circuit

Robust Robust + Non-robust + Long-transition

Testable

Paths

Aggr

Sensitized

Xtalk

Patterns

CPU

Time (s)

Testable

Paths

Aggr

Sensitized

Xtalk

Patterns

CPU

Time (s)

s1423 412 910 271 141.70 790 1281 363 575.01

s1488 197 384 90 3.67 649 1138 161 15.45

s1494 199 278 84 3.47 650 946 151 15.03

s5378 1801 3696 531 243.53 1995 4038 577 431.10

s9234 2386 6685 1185 1568.76 3583 9277 1415 10063.0

s13207 3470 5367 1056 966.86 6132 8055 1670 4726.22

s15850 2781 4484 438 728.98 5045 5766 491 2810.39

s35932 10242 9145 161 1748.25 11730 9525 171 3608.23

s38584 10812 12076 958 7063.12 17021 17392 1255 7779.97

54

9. COMPARISON AND CORRELATION

In order to verify that the crosstalk-aware patterns generated by our timing-driven

test generator maximize crosstalk-induced delay on delay-sensitive paths, we will

compare their delay distribution against the path delays for zero-filled and random-filled

KLPG patterns ignoring crosstalk. In addition, we will show the correlation between the

estimated crosstalk-induced delay increase using our proposed metric

and the delay increase observed from circuit simulation of the crosstalk patterns. The

estimated delay increase may deviate from the simulated one as the

metric does not take into account the fortuitous helper transitions or aligned aggressors

coupling to the same victim net.

9.1 Crosstalk Delay Increase

Table 15 compares the circuit simulation delay of 20 randomly selected testable

paths in c5315 using zero-filled, random-filled and crosstalk delay-induced KLPG

pattern. These 20 paths have experienced increase in delay only because of crosstalk

coupling. Column 2 shows the path delay for a zero-filled conventional KLPG pattern

ignoring crosstalk. Column 3 reports the delay increase of the same KLPG pattern whose

unspecified bits are random-filled. We repeat each and every random-filled KLPG

simulation 10 times with different random values for the unspecified bits. The delay

increase from our proposed alignment-driven crosstalk patterns are shown in column 4.

Column 5 lists the percentage increase in path delay using our crosstalk patterns when

55

compared to the zero-filled path delay. We can see from Table 15 that for all the victim

paths selected (except path no. 18), the crosstalk patterns have longer delay than the

zero-filled and random-filled KLPG patterns. Columns 6, 7 and 8 in Table 15 further

confirm this by comparing the number of aggressors sensitized by the three pattern set.

Random-filling of the unspecified bits in path no. 18 have created additional fortuitous

aligned aggressors coupling to the same path, which results in more delay increase than

crosstalk patterns. For few paths in Table 15, random-filling reduce path delays than

zero-filled path delays ignoring crosstalk. This is due to helper transitions being

accidentally generated by the random-filling of unspecified bits.

Figure 10 further shows the delay increase using our crosstalk delay-induced

patterns for 45 testable paths spread over the entire path delay distribution of c5135. In

order to show the impact of crosstalk-induced slowdown from our timing-driven ATPG,

we did the circuit simulations of those 45randomly chosen paths, that have a potential

delay increase of more than 15ps and the number of sensitized aggressors coupled to

those victim paths are at least 4. Those 45 paths are simulated in turn using zero-filled,

random-filled KLPG patterns ignoring crosstalk and crosstalk patterns from our timing-

oriented ATPG.

56

Table 15 Crosstalk delay increase for c5315

Path

No.

Path Delay

(0-filled

KLPG) (ps)

Increase in Delay (ps) % Incr in

Delay by

Xtalk

Pattern

Aligned Aggressors Sensitized

Random-

filled

KLPG

Xtalk

Pattern

0-filled

KLPG

Random-

filled KLPG

Xtalk

Pattern

1 364.84 -4.15 4.41 1.21 0 0 6

2 425.38 4.54 9.53 2.24 0 4 6

3 447.81 2.57 8.38 1.87 0 1 5

4 453.69 5.37 12.51 2.75 0 4 7

5 462.69 -3.91 8.39 1.81 0 -2 6

6 474.49 -3.81 12.12 2.55 0 0 5

7 475.51 0 4.03 0.84 0 1 6

8 513.15 1.05 8.01 1.56 1 1 5

9 530.19 0 10.63 2.00 1 1 8

10 563.05 3.09 4.98 0.88 1 1 3

11 604.64 5.31 10.34 1.71 0 1 3

12 620.97 0 8.83 1.42 0 0 3

13 627.67 7.03 10.85 1.72 0 2 3

14 641.51 3.57 10.83 1.68 -2 1 2

15 700.83 2.77 4.53 0.64 0 2 3

16 725.4 0.31 3.84 0.52 0 0 4

17 765.74 -2.51 3.99 0.52 0 0 2

18 816.51 14.78 9.01 1.10 -3 4 5

19 880.93 3.13 5.91 0.67 0 2 2

20 883.15 1.05 8.01 0.90 1 1 5

57

Figure 10 Increase in path delay for c5315

We can see from Figure 10 that for the majority of victim paths selected, the

alignment-driven crosstalk patterns have longer delay than the zero-filled and random-

filled KLPG patterns. However, there are quite a few paths in Figure 10, where the

crosstalk-aware patterns are not slower than the zero-filled or random-filled patterns.

The reasons for this are discussed in the following sections.

9.1.1 Delay at the Side-Input Transition during Robust Test

According to the definition of a robust test, the KLPG ATPG engine satisfies the

following conditions to guarantee the detection of a delay fault regardless of the delays

of all other gates:

-25

-15

-5

5

15

25

35

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45

P
a

th

D

el
a

y
 I

n
cr

ea
se

 (
p

s)

Path No.

Xtalk KLPG

Random-filled KLPG

58

1. For propagating a to-controlling transition at an on-path input, the side fan-

ins must be set to their static non-controlling value.

2. For propagating a to-non-controlling transition at an on-path input, the side

fan-ins must also have to-non-controlling transitions.

As the second condition of robust test allows to-non-controlling transitions at the

side fan-ins, a late transition at side fan-ins can delay the propagation of the on-path

input transition and thus potentially can change the on-path timing down the path. A

delay fault is still detected, but not on the victim path. Thus detailed timing information

at the side inputs is required to ensure that the generated test for an on-path transition is

not affected by the side fan-ins. Due to the impracticality of using such information in an

ATPG, the KLPG ATPG tool does not take into account the timing at the side fan-ins. In

our proposed timing-driven crosstalk ATPG, we attempt to sensitize the potential

aggressors once a victim path and the timing on the on-path nets is completely known.

We leverage the timing of the victim nets to align the coupled aggressors. However, it is

observed during circuit simulations of the crosstalk-driven patterns that sometimes the

side-input non-controlling transitions slow down the on-path transition. This in turn

changes the victim net timing that our timing-driven ATPG has utilized to align the

coupled aggressors down the path. This is entirely circuit-specific. For some of the

testable paths such as path 27, 33 and 42 for c5315 in Figure 10, the side-input

transitions change the timing of the victim paths and so the crosstalk patterns cannot

59

align the aggressor transitions to the victim net transitions. As a result, they do not

experience any delay from coupling noise.

In addition, for some of the testable paths like path 2, 3, 7, 24, 42 in Figure 10, the

zero-filled and random-filled patterns have higher delay than the crosstalk-aware pattern.

Zero-filling or random-filling of the unspecified bits in those patterns delays the side-

input transitions and thus slows down the propagation of the overall victim path.

9.1.2 Mismatch in Cell Characterization between SDF and SPICE

In our timing-driven crosstalk ATPG, we use the net-to-net nominal delays

reported in the extracted SDF file for all timing analysis. The STA engine uses those

delay values to compute the earliest and latest possible rising/falling transition timing

windows during alignment-driven aggressor net sensitization. The net-to-net delay

values in SDF are computed using cell delay-lookup table in timing library file, which

contains the delay values for various input slew rates and output load capacitances. So

the delay values obtained from SDF file are conservative. We observe that the path

delays obtained in ISCAS85 circuits using circuit simulation are approximately 25-30%

less than the path delays estimated using SDF data. As our crosstalk-driven ATPG uses

SDF data for aligning an aggressor transition with victim net, it is quite likely that the

crosstalk patterns from our timing-driven ATPG cannot generate aligned transitions in

circuit simulations, due to this mismatch between circuit simulation delay and SDF

reported delay. However, we have observed that for majority of cases the delays of the

victim path and the aggressor paths are affected equally in circuit simulations. As a

60

result, most of our crosstalk-aware patterns are still effective in generating aligned

transitions in SPICE simulations. Further in order to reduce the mismatch in cell

characterization between SPICE and SDF, we perform the SPICE simulations at an

elevated temperature of 55C.

Figure 11, Figure 12 and Figure 13 compare the change in delays by our crosstalk

patterns against the path delays induced by zero-filled and random-filled KLPG patterns

for c2670, c7552 and c1355 respectively.

Figure 11 Increase in path delay for c2670

-27

-22

-17

-12

-7

-2

3

8

13

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

P
a

th
 D

el
a

y
 I

n
cr

 (
p

s)

Path No.

Xtalk KLPG

Random-filled KLPG

61

Figure 12 Increase in path delay for c7552

Figure 13 Increase in path delay for c1335

-30

-20

-10

0

10

20

1 3 5 7 9

1
1

1
3

1
5

1
7

1
9

2
1

2
3

2
5

2
7

2
9

3
1

P
a

th
 D

el
a

y

In

cr
ea

se
 (

p
s)

Path No.

Xtalk KLPG

Random-filled KLPG

-12

-7

-2

3

8

13

18

23

28

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

P
a

th
 D

el
a

y
 I

n
cr

ea
se

 (
p

s)

Path No.

Xtalk KLPG

Random-filled KLPG

62

9.2 Estimated vs. Observed Crosstalk Delay Increase

We conducted experiments to determine the correlation between our estimated

delay increase metric and the delay increase observed using SPICE simulations of our

crosstalk patterns. Figure 14 shows the correlation between estimated and observed

delay increase for 45 randomly selected paths in c5315 circuit. We can see from Figure

14 that estimated delay increase sets an upper bound for observed delay increase. For the

majority of the paths, the alignment-driven crosstalk patterns could not induce

substantial delay increase, as expected from the estimated delay increase metric.

Figure 14 Correlation between estimated and observed delay increase for c5315

0

5

10

15

20

25

30

35

40

10 15 20 25 30 35 40 45

O
b

se
rv

ed
 D

el
a
y
 I

n
cr

ea
se

 (
p

s)

Estimated Delay Increase (ps)

63

We can see from Figure 14 that for a few testable in c5315 circuit, the crosstalk

patterns induce more delay than the estimated metric. As the

 metric is the upper bound for the observed crosstalk delay increase, one

reason behind this additional delay is that the metric does not take into

account any fortuitous aligned aggressor couplings to the same victim paths. Further the

additional necessary assignments generated from the multiple aggressor sensitizations

may delay the side-input non-controlling transitions of the target path. This is turn can

increase the victim path delay by more than the estimated value. Once the late side-

inputs change victim path timing, these late inputs in turn destroy the alignment that

timing-driven ATPG has assumed for sensitizing the aggressors coupled to that path. So

a delay increase of more than the estimated metric may be due to late

side-input transitions being accidently generated from the aggressor NAs.

For a majority of the paths, the timing-driven crosstalk patterns could not induce

substantial delay increase, compared to the prediction by the estimated delay increase

metric. One reason behind this is the mismatch between circuit simulation delay and

SDF reported delay as detailed in Section 9.1.2. As a result, in circuit simulations of the

crosstalk patterns, the aggressors lose alignment to victim transitions and thus incur no

increase in victim net delay. The other reason may be the assumptions involved in

crosstalk delay-induced modeling.

64

9.2.1 Assumptions involved in Metric

In our crosstalk-induced delay modeling detailed in Section 3, we assume the

aggressor and victim nets have completely overlapping transitions and so we do not take

into account the impact of skew in crosstalk delay estimation. However, we observe in

circuit simulation of the crosstalk patterns that if the aggressor transition is skewed by as

little as 50ps, the aggressor net will appear quiescent as the transition propagates through

the targeted path. In addition, there are three additional objectives in creating a crosstalk

effect of large severity: a weak driver on the victim line, a fast signal transition on the

affecting line and a propagation path that maintains or amplifies the noise effect until it

reaches an output. But our crosstalk-delay model does not consider the slew rates of the

aggressor and victim nets in delay increase estimation. So the estimated delay increase is

quite conservative in nature. All these above reasons lead to a poor correlation between

the estimated and observed delay increase in circuit c5315.

The model approximates the delay as linear in the change in Ceff. Further we do not

consider the impact of aggressors on each other to compute the potential delay increase

on the victim net. Moreover, the afore-mentioned delay model considers the nominal

stage delay of the victim net in the crosstalk-delay increase

computation. However, a change in input-signal slope caused by crosstalk can impact

the nominal stage delay at its receiving gates. The impact of noise on a signal line may

affect its receiver gates differently because of varying switching threshold across those.

65

Figure 15 shows the correlation between the estimated and observed delay increase

for circuit c7552.

Figure 15 Correlation between estimated and observed delay increase for c7552

9.3 Crosstalk Test under Non-Robust and Long Transition Constraints

Although shows the increase in number of sensitized aggressors with non-robust

and long transition tests, the alignment of aggressor transitions with victim path is even

more uncertain in comparison to robust test. As the non-robust test allows controlling

values at side fan-ins in the first time frame, so a late transition at side fan-ins can block

0

5

10

15

20

25

30

12 14 16 18 20 22 24

O
b

se
rv

ed
 D

el
a
y
 I

n
cr

ea
se

 (
p

s)

Estimated Delay Increase (ps)

66

the propagation of the on-path transition, which is targeted for crosstalk delay increase.

As a result, the crosstalk delay effect cannot reach an observable output through the

victim path. In addition, more than one transition can attempt to propagate through a

target path and this in turn can change the target path timing that our test generator has

utilized to align coupled transitions down that path. Further the transitions at side fan-ins

may create fortuitous helper transitions along a target path. In addition, the effects of

hazards and glitches can interfere with the observation of the output value.

67

10. CONCLUSION AND FUTURE WORK

In this work, we have proposed a novel timing-oriented test generation algorithm

to target multiple aligned aggressors coupled to a target victim path to maximize the

crosstalk slowdown effects. The algorithm utilizes timing windows, potential delay

increase, and logic constraints to prune a substantial number of ineffective aggressor

couplings and thus speed up the pattern generation process. In addition, this algorithm

introduces the concept of alignment-driven path sensitization to generate timing-aligned

crosstalk patterns. As this test generator sensitizes aggressors in the presence of victim

path NAs, the search space is effectively reduced for aggressor path generation. It helps

in reducing the crosstalk pattern generation time for aggressors. This algorithm was

applied with aggressor-first and pattern-first dynamic compaction.

There are several open issues to be addressed in the future course of this work. The

current approach does not consider the fact that due to process variation and side-input

transition delays, the timing alignment is uncertain. In general there are many different

paths to a coupled line, so it is possible to sensitize a coupled transition at a number of

different times. To thoroughly test a circuit, it is necessary to generate test patterns that

sweep the coupled transition across a range large enough that all cases of potential

alignment are considered. Here in this work we have used the nominal delays for victim

path transition. In the future work, we will set a delay bound around the on-path

68

transition and then attempt to justify up to M different paths that cover that range.

Min/max path delays will limit the search space.

If two potential aggressors have almost equal coupling effectiveness, sensitizing

one aggressor first may preclude a greater number of aligned transitions along a victim

path due to conflicting logical and timing constraints. So the greedy algorithm may miss

the worst possible crosstalk delay increase. In our experience, a greedy algorithm will

come close to achieving the worst-case delay increase, particularly when considering the

fact that timing alignment is uncertain due to side-input transitions and intra-die process

variation. To quantify the impact of a greedy algorithm requires implementation of an

exact algorithm.

In the coupling effectiveness metric, we have assumed a single value for

parameters C1, C2 and C3 and generated crosstalk patterns accordingly. The chosen

parameters gave priority to potential delay increase of an aggressor rather than to its

timing alignment. In future work, a sensitivity analysis of these parameters must be

performed.

In this work, we have demonstrated the change in path delay using our alignment-

driven crosstalk patterns against the path delays induced by zero-filled and random-filled

KLPG patterns ignoring crosstalk. We further intend to compare the crosstalk delay

increase by our approach against prior work [10] that targeted multiple aggressors along

a victim path, but did not consider any timing alignment.

69

REFERENCES

[1] W. Chen, S. Gupta, and M. Breuer, "Analytic models for crosstalk delay and pulse

analysis under non-ideal inputs," in Proc. Int. Test Conf., Nov. 1997, pp. 809–818.

[2] R. Anglada and A. Rubio, "Logic fault model for crosstalk interferences in digital

circuits," Int. J. Electron., vol. 67, no. 3, pp. 423–425, Feb. 1989.

[3] F. Moll and A. Rubio, "Spurious signals in digital CMOS VLSI circuits : a

propagation analysis," IEEE Trans. Circuits Syst., vol. 39, no. 10, pp. 749–752, Oct.

1992.

[4] W. Chen, S. Gupta, and M. Breuer, "Test generation for crosstalk-induced delay in

integrated circuits," in Proc. Int. Test Conf., Sep. 1999, pp. 191–200.

[5] S. Kundu, S. T. Zachariahi, Y. Chang, and C. Tirumurti, "On modeling crosstalk

faults," IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 24, no. 12,

pp. 1909–1915, Dec. 2005.

[6] A. Rubio, N. Itazaki, X. Xu, and K. Kinoshita, "An approach to the analysis and

detection of crosstalk faults in digital VLSI circuits," IEEE Trans. Comput.-Aided

Design Integr. Circuits Syst., vol. 13, no. 3, pp. 387–395, Mar. 1994.

[7] N. Itazaki, Y. Matsumoto, and K. Kinoshita, "An algorithmic test generation

method for crosstalk faults in synchronous sequential circuits," in Proc. Asian Test

Symp., Nov. 1997, pp. 22–27.

[8] W. Chen, S. Gupta, and M. Breuer, "Test generation in VLSI circuits for crosstalk

70

noise," in Proc. Int. Test Conf., Oct. 1998, pp. 641–650.

[9] K. T. Lee, C. Nordquist, and J. A. Abraham, "Automatic test pattern generation for

crosstalk glitches in digital circuits," in Proc. VLSI Test Symp., Apr. 1998, pp. 34–

39.

[10] J. Lee and M. Tehranipoor, "A novel pattern generation framework for inducing

maximum crosstalk effects on delay-sensitive paths," in Proc. Int. Test Conf., Oct.

2008, pp. 1–10.

[11] K. P. Ganeshpure and S. Kundu, "On ATPG for multiple aggressor crosstalk

faults," IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 29, no. 5, pp.

774–787, May 2010.

[12] S. Irajpour, S. K. Gupta, and M. A. Breuer, "Timing-independent testing of

crosstalk in the presence of delay producing defects using surrogate fault models,"

in Proc. Int. Test Conf., Oct. 2004, pp. 1024–1033.

[13] K. P. Ganeshpure and S. Kundu, "Automatic test pattern generation for maximal

circuit noise in multiple aggressor crosstalk faults," in Proc. Des. Autom. Test Eur.,

Apr. 2007, pp. 1–6.

[14] M. Palla, J. Bargfrede, K. Koch, W. Anheier, and R. Drechsler, "Adaptive branch

and bound using SAT to estimate false cosstalk," in Proc. Int. Symp. Quality

Electronic Des., Mar. 2008, pp. 508–513.

[15] M. Palla, J. Bargfrede, S. Eggersgl¨uß, and W. Anheier, "Timing arc based logic

71

analysis for false noise reduction," in Proc. Int. Conf. Comput.-Aided Des., Nov.

2009, pp. 225–230.

[16] S. Chun, T. Kim, and S. Kang, "ATPG-XP: test generation for maximal crosstalk-

induced faults," IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 28,

no. 9, pp. 1401–1413, Sep. 2009.

[17] H. Li and X. Li, "Selection of crosstalk-induced faults in enhanced delay test," J.

Electron. Test., vol. 21, no. 2, pp. 181–195, Apr. 2005.

[18] H. Li, Y. Zhang, and X. Li, "Delay test pattern generation considering crosstalk-

induced effects," in Proc. Asian Test Symp., Nov. 2003, pp. 178–183.

[19] X. Bai, S. Dey, and A. Krstic, "HyAC: a hybrid structural SAT based ATPG for

crosstalk," in Proc. Int. Test Conf., Sep. 2003, pp. 112–121.

[20] A. Krstic, J. Liou, Y. Jiang, and K. T. Cheng, "Delay testing considering crosstalk-

induced effects," in Proc. Int. Test Conf., Oct. 2001, pp. 558–567.

[21] B. C. Paul and K. Roy, "Testing crosstalk-induced delay faults in static CMOS

circuit through dynamic timing analysis," in Proc. Int. Test Conf., Oct. 2002, pp.

384–390.

[22] Y. Ran, A. Kondratyev, K. H. Tseng, Y. Watanabe, and M. Marek-Sadowska,

"Eliminating false positives in crosstalk noise analysis," IEEE Trans. Comput.-

Aided Design Integr. Circuits Syst., vol. 24, no. 9, pp. 1406–1419, Sep. 2005.

[23] Ke Peng, M. Yilmaz, M. Tehranipoor, and K. Chakrabarty, "High-quality pattern

72

selection for screening small-delay defects considering process variations and

crosstalk," in Proc. Des. Autom. Test Eur., Mar. 2010, pp. 1426–1431.

[24] J. Kong, D. Z. Pan, and P. V. Srinivas, "Improved crosstalk modeling for noise

constrained interconnect optimization," in Proc. Asia South Pacific Des. Autom.

Conf., Jan. 2001, pp. 373–378.

[25] M. Becer, V. Zolotov, R. Panda, A. Grinshpon and I. Algol, "Pessimism reduction

in crosstalk noise aware STA," in Proc. Int. Conf. Comput.-Aided Des., Nov. 2005,

pp. 954–961.

[26] M. Kulkarni and T. Chen, "A sensitivity-based approach to analyzing signal delay

uncertainty of coupled interconnects," IEEE Trans. Comput.-Aided Design Integr.

Circuits Syst., vol. 24, no. 9, pp. 1336–1346, Sep. 2005.

[27] B. Choi and D. M. H. Walker, "Timing analysis of combinational circuits including

capacitive coupling and statistical process variation," in Proc. VLSI Test Symp.,

Apr. 2000, pp. 49–54.

[28] T. Rajeshwary and J. A. Abraham, "Critical path selection for delay test considering

coupling noise," in Proc. Eur. Test Symp., May 2008, pp. 119–124.

[29] T. Sato, Y. Cao, D. Sylvester, and C. Hu, "Characterization of interconnect

coupling noise using in-situ delay change curve measurements," in Proc. Int. Conf.

ASIC/SoC, Sep. 2000, pp. 321–325.

[30] K. Agarwal, T. Sato, Y. Cao, D. Sylvester, and C. Hu, "Efficient generation of

73

delay change curves for noise-aware static timing analysis," in Proc. Asia South

Pacific Des. Autom. Conf., Jan. 2002, pp. 342–348.

[31] D. Das, W. Scott, S. Nazarian, and H. Zhou, "An efficient current-based logic cell

model for crosstalk delay analysis," in Proc. Int. Symp. Quality Electronic Des.,

Mar. 2009, pp. 627–633.

[32] W. Qiu and D. M. H. Walker, "An efficient algorithm for finding the K longest

testable paths through each gate in a combinational circuit," in Proc. Int. Test Conf.,

Sep. 2003, pp. 592–601.

[33] J. Benkoski, E. V. Meersch, L. J. M. Claesen, and H. D. Man, "Timing verification

using statically sensitizable paths," IEEE Trans. Comput.-Aided Design Integr.

Circuits Syst., vol. 9, no. 10, pp. 1073–1084, Oct. 1990.

[34] K. J. Keller, H. Takahashi, K. K. Saluja, and Y. Takamatsu, "On reducing the target

fault list of crosstalk-induced faults in synchronous sequential circuits," in Proc. Int.

Test Conf., Oct. 2001, pp. 568–577.

[35] Z. Wang and D. M. H. Walker, "Dynamic compaction for high quality delay test,"

in Proc. VLSI Test Symp., May 2008, pp. 243–248.

[36] I. Pomeranz and S. M. Reddy, "On static compaction of test sequences for

synchronous sequential circuits," in Proc. Des. Autom. Conf., Jun. 1996, pp. 215–

220.

[37] Z. Wang and D. M. H. Walker, "Compact delay test generation with a realistic low

74

cost fault coverage metric," in Proc. VLSI Test Symp., May 2009, pp. 59–64.

[38] P. S. Zuchowski, P. A. Habitz, J. D. Hayes, and J. H. Oppold, "Process and

environmental variation impacts on ASIC timing," in Proc. Int. Conf. Comput.-

Aided Des., Nov. 2004, pp. 336–342.

75

VITA

Name: Dibakar Gope

Address: C/O Dr. Duncan M. (Hank) Walker

Department of Computer Science and Engineering

Texas A&M University

College Station, TX 77843-3112

Email Address: dibakar@tamu.edu

Education: B.E., Electrical and Electronics Engineering, Birla Institute of

Technology and Science, India, 2008

M.S., Computer Engineering, Texas A&M University, 2011

