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ABSTRACT 

Thermo-Viscoelastic-Viscoplastic-Viscodamage-Healing Modeling of Bituminous 

Materials: Theory and Computation. (August 2011) 

Masoud Darabi Konartakhteh, B.S., Sharif University of Technology; 

M.Sc., Sharif University of Technology 

Co-Chairs of Advisory Committee: Dr. Rashid K. Abu Al-Rub 
                                              Dr. Eyad A. Masad 

 

Time- and rate-dependent materials such as polymers, bituminous materials, and soft 

materials clearly display all four fundamental responses (i.e. viscoelasticity, 

viscoplasticity, viscodamage, and healing) where contribution of each response strongly 

depends on the temperature and loading conditions. This study proposes a new general 

thermodynamic-based framework to specifically derive thermo-viscoelastic, thermo-

viscoplastic, thermo-viscodamage, and micro-damage healing constitutive models for 

bituminous materials and asphalt mixes. The developed thermodynamic-based 

framework is general and can be applied for constitutive modeling of different materials 

such as bituminous materials, soft materials, polymers, and biomaterials. This 

framework is build on the basis of assuming a form for the Helmohelotz free energy 

function (i.e. knowing how the material stores energy) and a form for the rate of entropy 

production (i.e. knowing how the material dissipates energy). However, the focus in this 

work is placed on constitutive modeling of bituminous materials and asphalt mixes. A 

viscoplastic softening model is proposed to model the distinct viscoplastic softening 

response of asphalt mixes subjected to cyclic loading conditions. A systematic procedure 

for identification of the constitutive model parameters based on optimized experimental 

effor is proposed. It is shown that this procedure is simple and straightforward and yields 

unique values for the model material parameters. Subsequently, the proposed model is 

validated against an extensive experimental data including creep, creep-recovery, 

repeated creep-recovery, dynamic modulus, constant strain rate, cyclic stress controlled, 

and cyclic strain controlled tests in both tension and compression and over a wide range 
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of temperatures, stress levels, strain rates, loading/unloading periods, loading 

frequencies, and confinement levels. It is shown that the model is capable of predicting 

time-, rate-, and temperature-dependent of asphalt mixes subjected to different loading 

conditions. 
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NOMENCLATURE 

Symbol Definition Symbol Definition 

New symbols introduced in Chapter II 

  Total strain tensor Y  Damage force 

nve  
Nonlinear viscoelastic 
strain tensor 

vd  
Damage viscosity 
parameter 

vp  Viscoplastic strain tensor 
0 , ,Y q k , 

vdd  Damage model parameters

e  Deviatoric strain tensor vd  
Deviatoric component of 
the viscodamage force 

kk  Volumetric strain vd  
Viscodamage dynamic 
loading condition 

p  Effective viscoplastic 
strain 

RW , 
R  

Pseudo strain energy and 
pseudo strain 

eff  Total effective strain 0D , D  
Instantaneous and 
transient creep 
compliances 

  Stress tensor nD , n  Prony series’ coefficients 

S  Deviatoric stress tensor 0g , 1g , 2g  Viscoelastic nonlinear 
parameters 

kk  Volumetric stress  Reduced time 

1I  First stress invariant Ta , sa , ea  
Temperature, strain or 
stress, and environmental 
shift factors 

2J , 3J  The second and the third 
deviatoric stress invariants ijq  Hereditary integral 

E , G , K  
Elastic, Shear,  and bulk 
moduli 

“tr” Designates trial values 
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Symbol Definition Symbol Definition 

J , B  
Shear and bulk 
compliances 

vp  Viscoplastic multiplier 

  Poisson’s ratio f , F  Viscoplastic yield and 
potential functions 

ij  Kronecker delta   Viscoplastic dynamic 
yield surface 

“ ”  
Designate the effective 
(undamaged) 
configuration 

vp  
Viscoplastic viscosity 
parameter 

  Damage density variables   Overstress function 

  Continuity scalar 
0, , ,N   

1 2, , , vpd   
Viscoplastic model 
parameters 

A , A   

Cross-sectional area in the 
damaged and effective 
configuration 

 Macaulay brackets 

DA  
Area of the micro-
damages 

0
y  Initial yield stress 

c  Critical damage density   
Isotropic hardening 
function 

vp  

Deviatoric component of 
the viscoplasticity yield 
surface 

1 , 2 , 3  Temperature coupling 
term parameters 

T  Temperature 0T  Reference temperature 

R  Residual strain ijklS  Tangent compliance 

New symbols introduced in Chapter III 

  Mass density u
 

Displacement vector 

b  Body force vector extr  External heat 
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Symbol Definition Symbol Definition 

  Specific entropy q  Heat flux vector 

  Helmholtz free energy e
 

Internal energy 

( )mQ  

Thermodynamic 
conjugate forces 
associated with the 
viscoelastic internal state 
variables ( )m  

pc  Tangent specific heat 
capacity 

  Rate of energy dissipation g , G  
Damage loading condition 
and damage potential 
function 

  Lagrange Multiplier   Objective function 

  
Temperature coupling 
term 

  Gradient operator 

v  Viscoplastic overstress vd
v  Viscodamage overstress 

New symbols introduced in Chapter IV 

 “  ”  
Designate the healing 
configuration 

uhA , hA  
Area of unhealed and 
healed micro-damages 

h  
Micro-damage healing 
variables 

uhA  
Area of the unhealed 
micro-damages  

  Effective damage density h  Healing viscosity 

E  Secant stiffness modulus tE  Tangent stiffness modulus 

W  Elastic strain energy Rt  Rest period 

ReL  Reloading UL  Unloading 

New symbols introduced in Chapter V 

  
Macroscopic recovery 
parameter I  Intrinsic healing function 
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Symbol Definition Symbol Definition 

  
Wetting distribution 
function b  Bond strength 

cW  Work of cohesion ba  Rate of crack shortening 

    

  Healing process zone h , 1b , 2b  
Micro-damage healing 
model parameters 

New symbols introduced in Chapter VI 

H  Healing force   Kinematic hardening 

intP  Internal power extP  External power 

*

intP  Internal virtual power 
*

extP  External virtual power 

“ene” 
Designates energetic 
component 

“dis” 
Designates dissipative 
component 

New symbols introduced in Chapter VII 

*D  Dynamic compliance D  Storage compliance 

D   Loss compliance ,softvp  
Viscoplastic softening 
viscosity parameter 

vpq  
Viscoplastic softening 
internal state variable 1S , 2S , 3S  Viscoplastic softening 

model parameters 

,softvp  
Viscoplastic softening 
dynamic memory surface 

  

New symbols introduced in Chapter VIII 

“^” 
Designates nonlocal 
variables   

Intrinsic material length 
scale 

2  Laplacian operator mng  Nonlocal coefficients 
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Symbol Definition Symbol Definition 

ed
tE  

Elastic-damage tangent 
stiffness 

alg
tE  

Algorithmic elastic-
damage tangent stiffness 
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CHAPTER I  

INTRODUCTION AND LITERATURE REVIEW 

1.1. Problem Statement 

Asphalt concrete pavements are one of the largest infrastructure assets in the United 

States and almost in every other country in the world. Although pavement design has 

gradually moved from art to science, empirical relations and equations still play a 

substantial role in design guides and manuals. The complex behavior of the constituents 

of the pavements along with the environmental effects that pavements experience during 

their service life has made it extremely difficult to develop fully mechanistic models to 

predict the performance of pavements during their service life. 

 Various types of tests and models have been used to characterize the mechanical 

response of asphalt concrete mixes as one of the main constituents of the pavements. 

However, most of these models are developed to predict the responses under specific test 

conditions or design problem, and therefore, are usually ad hoc and do not represent the 

behavior of these materials under general three dimensional stress states and realistic 

environmental conditions that actually happens in the field. The reason is that the asphalt 

concrete mixes show nonlinear responses under different loading conditions. 

Asphalt concrete mix and Hot Mix Asphalt (HMA) can be considered to be 

consist of three scales :(a) the micro-scale (mastic), where fine fillers are surrounded by 

the asphalt binder; (b) the meso-scale, fine aggregate mixture (FAM), where fine 

aggregates are surrounded by the mastic; and (c) the macro-scale which includes all the 

coarse aggregates surrounded by FAM. The complex interactions between these scales 

are the primary source of nonlinearity in asphalt concrete mixes. Numerous experimental 

studies have shown that the HMA response is time-, rate-, and temperature-dependent. 

Several degree of magnitude of differences between the stiffness of the aggregate and 

the binder makes the strain localization in the binder a dominant reason for the nonlinear 

behavior of asphalt concrete mixes. Rotation and slippage of aggregates and interaction 

between binder and aggregates during the loading are also other factors contributing to 

This dissertation follows the style of International Journal of Plasticity. 
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the nonlinear behavior of asphalt concrete mixes. Moreover, the severe temperature 

sensitivity of asphalt concrete mixes results in substantial changes of the behavior with 

the temperature change. The combined effect of these phenomena causes the asphalt 

mixes to show nonlinear responses even at very small strain or stress levels.  

 Added to this, the evolution of the permanent deformation in asphalt mixes 

makes the mechanical response of these materials more nonlinear which is also a source 

of a major distress in asphalt pavements referred to as rutting. Figure 1.1 shows a picture 

of the severe rutting in an asphalt pavement section as a result of evolution of the 

permanent deformation. 

 

  

 

Figure 1.1. Rutting in the asphalt pavements as a result of evolution of the viscoplastic strain. 
This section is related to US 287 highway in Whichita Falls near Dallas Fort Worth. 

Another major source of nonlinearity in the thermo-mechanical response of 

HMA is the evolution of micro-cracks and micro-voids and rate-dependent plastic 

(viscoplastic) hardening/softening. Figure 1.2 shows X-Ray computed tomography (CT) 

images of the cross-section of an asphalt mixture laboratory specimen before loading 

and at different strain levels. As it is shown in Figure 1.2 (b)-(d), micro-damages (micro-

cracks and micro-voids) nucleate and propagate progressively as the material deforms 

and cause the stiffness to degrade. However, at specific temperature ranges, the binder in 
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the asphalt mixes and subsequently the asphalt concrete mix has the potential to heal 

with time and recover part of its strength and stiffness during the rest period. Therefore, 

an accurate prediction of the thermo-mechanical response of asphalt mixes and 

bituminous materials require the coupling between viscoelasticty, viscoplasticity, 

viscodamage, and healing models. 

 

 
Figure 1.2. X-Ray images of the cross-section of an asphalt mixture laboratory specimen 

subjected to triaxial loading. (a) Before loading; (b) 2% strain; (c) 4% strain; (d) 8% strain. 
Micro-damages (i.e. micro-cracks and micro-voids) nucleate and propagate as the material 

deforms. 

In addition to thermo-mechanical loadings, pavements are subjected to 

environmental conditions such as moisture and oxygen. The moisture at the surface of 

the asphalt mixes in the forms of water or environmental humidity disperses into the 

mixture, fully/partially fills the air voids, and diffuses to the solid part through the 

diffusion process. The infiltrated moisture may yield to stiffness and strength 

degradation because of chemical, physical, and mechanical processes. This effect is 

referred to as moisture damage in this work and may cause the aggregates in the asphalt 
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surface to loosen gradually and separate individually from the asphalt layer. On the other 

hand, the existing oxygen in the air in contact with the asphalt layer of a pavement can 

also diffuse inside the asphalt layer through the interconnected air voids. Once infiltrated 

by oxygen, the binder phase in the mix reacts with oxygen resulting in changes in the 

mechanical properties of asphalt concrete mixes. This phenomenon is known as aging 

which is the result of the chemical reaction of oxygen with binder.  

More complication arises because each individual processes (i.e. thermo-

viscoelasticity, thermo-viscoplasticity, thermo-viscodamage, healing, moisture damage, 

and aging) also interact with one another and are in most cases coupled. For instance, 

crack propagation enables more water and higher amount of oxygen to diffuse inside the 

mix and accelerates the moisture damage and aging effects. It also yields to the 

acceleration of accumulative permanent deformation in the mix. Subsequently, the 

increase in the deformation causes more damage growth which degrades the mechanical 

properties of the mix in higher extent which obviously makes the mix to be more prone 

to distresses. This process is very important in predicting the performance prediction of 

asphalt pavements.  

The presence of different mechanical, thermal, and environmental effects in the 

pavements during their service life makes it necessary to develop a robust constitutive 

model to predict the multi-physics response of asphalt mixes in the pavements. 

However, the developed constitutive model should be as general as possible and be 

validated over extensive experimental measurements to ensure proper model response 

under complex three-dimensional stress states. In fact, development of such constitutive 

models for a specific material has been the main challenge of the modern constitutive 

modeling. This can be effectively achieved, so far, through the thermodynamic 

principles by enforcing the balancing laws, the conservation of mass, the conservation of 

linear and angular momentums, and the first and second laws of thermodynamics.     

The ultimate goal of developing a robust constitutive model is to provide a 

reliable tool for predicting the pavement performance during its service time. This raises 

another challenging task which is the proper computational techniques for pavement 
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performance predictions. The long life of pavements, very large number of loading 

cycles (millions of loading cycles), the complex constitutive model, and the complex 

nature of the applied loading conditions make the development of an accurate and yet 

affordable computational technique very difficult and challenging task. Even with the 

current state-of-the-art in computational power, conducting realistic 3D finite element 

(FE) rutting and/or fatigue performance simulations for pavements subjected to millions 

of wheel loading cycles by considering realistic wheel/pavement interactions and 

environmental effects is almost impossible. 

Added to the mentioned challenges in developing computational techniques, 

strain and damage localization phenomena in the asphalt concrete mixes causes 

instabilities and mesh-dependent results in the FE simulations. In other words, as the 

loading increases, asphalt binder undergoes a substantial strain levels comparing to the 

applied strain to the HMA. For example, strain in the binder could range between 

average of eight times and a maximum of 510 times the bulk strain of the mixture  (Kose 

et al., 2000) and some regions within the mastic can experienced strain levels as high as 

30 times the applied strain (Masad and Somadevan, 2002). These localizations lead to 

the mesh-dependent results in the FE simulations specially at softening regions such that 

the traditional local continuum theories fail to predict physical response. One alternative 

to remedy this problem is to use and implement non-classical gradient-dependent 

continuum theories.  

This work tries to contribute in filling the gap in constitutive modeling and 

computational techniques of bituminous materials and asphalt mixes. Therefore, a 

thermo-viscoelastic-viscoplastic-viscodamage-healing constitutive model is developed to 

model the complex response of these materials under more realistic conditions. The term 

“visco” is referred to time- and rate-dependent characteristic of the model, whereas, the 

term “thermo” is related to temperature-dependent response of bituminous materials. 

The developed model is calibrated, validated, and subsequently implemented in the well-

known finite element code Abaqus (2008) through the user material subroutine UMAT. 
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The implemented model is finally used to predict the complex mechanical response of 

asphalt mixes and to conduct the performance simulation of asphalt pavements. 

1.2. Background and State of the Art  

Numerous experimental studies on polymers, bituminous materials, asphalt 

mixes, and soft materials have shown that the mechanical response of these materials is 

time- and rate-dependent. These materials clearly display all four fundamental 

mechanical responses (i.e. viscoelasticity, viscoplasticity, viscodamage, and healing) 

where contribution of each response strongly depends on the temperature and loading 

conditions. For example, the viscoelastic response could be dominant at low 

temperatures and stress levels, whereas viscoelastic and viscoplastic responses are 

dominant at high temperatures. However, the viscodamage (rate-dependent damage) 

response becomes very important at post peak stress-strain regions, high stress levels, 

and long loading periods; whereas for some materials, the healing could be significant in 

fatigue loadings. This section provides the background and a limited literature review on 

the modeling efforts to simulate these effects. These previous works are considered as 

the foundation for developing new theories and modifying the existing ones for each 

component of the thermo-viscoelastic-viscoplastic-viscodamage-healing model proposed 

in this work. 

1.2.1. Viscoelasticity 

Experimental observations have clearly shown that the response of asphalt mixes 

show both recoverable and irrecoverable components (Perl et al., 1983; Collop et al., 

2003; Huang, 2008). The recoverable component is usually modeled using the solid-like 

viscoelasticity models, whereas, the irrecoverable component is usually modeled using 

fluid-like viscoelasticity and/or viscoplasticity models.  

In terms of the viscoelastic behavior of materials, Biot (1954) derived a 

formulation for linear viscoelastic materials. Schapery (1969b) used the thermodynamics 

of irreversible processes and developed a single integral constitutive model for nonlinear 

viscoelastic materials such as polymers (e.g. Christen, 1968; Schapery, 1969a, b; Sadkin 
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and Aboudi, 1989; Haj-Ali and Muliana, 2004; Muliana and Haj-Ali, 2008). Schapery’s 

constitutive model has been applied to asphalt mixes by several other researchers (e.g. 

Huang et al., 2007; Masad et al., 2008; Abu Al-Rub et al., 2009; Saadeh and Masad, 

2010; Darabi et al., 2011c). Moreover, Touti and Cederbaum (1998), Haj-Ali and 

Muliana (2004), Sadd et al. (2003), and Huang et al. (2007) developed algorithms for 

numerical implementation of Schapery’s viscoelastic constitutive model in finite element 

codes. Recently, Levesque et al. (2008) extended the Schapery’s nonlinear viscoelastic 

model for 3D applications based on laws of thermodynamics. Masad et al. (2009), Abu 

Al-Rub et al. (2010a), Huang et al. (2011a), and Darabi et al. (2011c) have developed 

and applied a systematic  procedure to characterize and decouple the recoverable 

(viscoelastic) by analyzing repeated creep-recovery experimental tests using Schapery’s 

nonlinear viscoelastic model.  

These studies clearly show that the viscoelastic response of HMA can be well-

predicted using Schapery’s nonlinear viscoelasticity model (Huang et al., 2007; Masad et 

al., 2008; Abu Al-Rub et al., 2010a; Darabi et al., 2011c). It should be noted that the 

Schapery’s linear/nonlinear model is a solid-like viscoelastic model and predicts only the 

recoverable strains. 

1.2.2. Viscoplasticity 

Two approaches have been used in the literature to model the irrecoverable 

component of the deformation in bituminous materials and asphalt mixes. The first 

approach is based on the spring-dashpot analogy and development of fluid-like 

viscoelasticity models; whereas, the second approach is to use the plastic/viscoplastic 

models to represent the irrecoverable component of the strain and deformation.  

One of the early models for describing the mechanical behavior of bituminous 

materials is the burger’s model (Burgers, 1939) which has also been used and modified 

by Saal and Labout (1940). Krishnan and Rajagopal (2004, 2005) introduced the concept 

of the natural configurations and derived a large deformation fluid-like viscoelasticity 

theory based on the spring-dashpot analogy to predict the mechanical response of 

asphalt. However, they assumed the incompressibility condition which has not been fully 
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validated experimentally. In fact, the experimental measurements on the asphalt concrete 

show the development of significant volumetric strains in deformation (Erkens, 2002). In 

another attempt, Scarpas, Kringos and their co-workers at Delft University of 

Technology derived a large deformation viscoplasticity theory using the concept of 

spring-dashpot analogy (e.g. Scarpas, 2004; Kringos et al., 2007; Kringos et al., 2010). 

However, the assumption of small deformations for asphalt mixes and for a range 

of temperatures is a fairly reasonable assumption which significantly simplifies the 

viscoplastic component of the constitutive model.  Sides et al. (1985) proposed a one-

dimensional empirical equation to describe the viscoelastic-viscoplastic response of 

asphalt mixes subjected to uniaxial loading. Later, Chehab et al. (2003) proposed an 

elasto-viscoplastic model for one-dimensional state of stress. However, these models 

were valid only for one-dimensional problems which obviously cannot be used to 

explain the response of asphalt mixes for three-dimensional stress states. In another 

attempt, Sousa and Weissman (1994) improved the work of Sousa et al. (1993) by 

incorporating Von-Misses yield function with kinematic hardening to describe the 

plastic response of asphalt mixes. However, it is well-known that the irrecoverable 

response of asphalt mixes is time- and rate-dependent and cannot effectively be 

explained by time-independent plastic models, instead, time- and rate-dependent plastic 

models (viscoplastic models). should be used. 

 In terms of the viscoplastic behavior of asphalt mixes, Perzyna’s theory 

(Perzyna, 1971) has been used by several researchers for predicting the permanent 

deformation in asphalt mixes. For example, Lu and Wright (1998) and Seibi et al. (2001)  

used the Perzyna’s viscoplastic model with Drucker-Prager type yield surface to predict 

the viscoplastic response of asphalt mixes. These studies used the associative flow rule 

for the asphalt mixes. However, several experimental observations have shown that the 

viscoplastic deformation of HMA, and geomaterials in general, is non-associated (e.g. 

Zienkiewicz et al., 1975; Oda and Nakayama, 1989; Cristescu, 1994; Florea, 1994; 

Bousshine et al., 2001). Later, Tashman (2003) used a nonassociative elasto-viscoplastic 

model to predict the HMA mechanical responses. Dessouky (2005) and Masad et al. 
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(2007), extended the work of Tashman (2003) by modifying the yield surface to 

distinguish between the viscoplastic behavior in compression and extension state of 

loading. However, they also used the time-independent elastic models for the 

recoverable component of the deformation which is not the case for asphalt mixes. 

Saadeh et al. (2007), Huang (2008), Abu Al-Rub et al. (2009; 2010a), Darabi et al. 

(2011c), and Huang et al. (2011a) coupled the nonlinear viscoelasticity model of 

Schapery and Perzyna’s viscoplasticity model to simulate more accurately the nonlinear 

mechanical response of HMA at high stress levels and high temperatures. 

1.2.3. Viscodamage 

The coupled viscoelastic-viscoplastic constitutive models yield reasonable predictions of 

the mechanical response of asphalt mixes prior to the damage. However, the changes in 

the material’s microstructure during deformation cause HMA materials to experience a 

significant amount of micro-damage (micro-cracks and micro-voids) under service 

loading conditions, where specific phenomena such as tertiary creep, post-peak behavior 

of the stress-strain response, and degradation in the mechanical properties of HMA is 

mostly due to damage and cannot be explained only by viscoelasticity and 

viscoplasticity constitutive models.  

Models based on the continuum damage mechanics (CDM) have been effectively 

used to model the degradations in materials due to cracks and voids (Kachanov, 1958; 

Rabotnov, 1969; Fanella and Krajcinovic, 1985; Voyiadjis and Kattan, 1992; Lemaître, 

1996; Voyiadjis and Thiagarajan, 1997). Masad et al. (2005) included isotropic (scalar) 

damage in an elasto-viscoplastic model (modified by Saadeh et al. (2007), Graham 

(2009), and Saadeh and Masad (2010) to include Schapery’s nonlinear viscoelasticity) to 

simulate the mechanical response of asphalt mixes. Another attempt is made by Uzan 

(2005) to develop a damage-viscoelastic-viscoplastic model for asphalt mixes, but this 

model is valid for one-dimensional problems and cannot be used for multi-axial state of 

stresses. Moreover, in most of these works the damage laws are not time- and rate-

dependent which is a challenge in the modeling of asphalt mixes. This argument is 

experimentally motivated since various experimental studies have shown that the 
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damage response of bituminous materials depends on temperature, time, and rate of 

loading (Kim and Little, 1990; Collop et al., 2003; Masad et al., 2007). Several rate-

dependent damage models (usually referred to as the creep-damage laws) have been 

proposed in the literature. Kachanov (1958), Odqvist and Hult (1961), and Rabotnov 

(1969) pioneered in proposing the creep-damage evolution laws. Later, various types of 

creep-damage laws in terms of stress, strain, and energy have been proposed by other 

researchers (Cozzarelli and Bernasconi, 1981; Lee et al., 1986; Voyiadjis et al., 2004; 

Abu Al-Rub and Voyiadjis, 2005b; Zolochevsky and Voyiadjis, 2005). Although many 

papers are devoted to improve the damage evolution laws in elastic media (Kachanov, 

1986; Lemaître, 1992; Krajcinovic, 1996; Lemaître and Desmorat, 2005), very few 

damage models have been coupled to viscoelasticity and viscoplasticity in order to 

predict the mechanical response of time- and rate-dependent materials. In fact, there are 

few studies that couple damage to viscoelasticity to include time and rate effects on 

damage evolution laws (Schapery, 1975c; Schapery, 1975a, b; Simo, 1987; Weitsman, 

1988; Gazonas, 1993; Sullivan, 2008). Schapery’s viscoelastic-damage model 

(Schapery, 1975b; Schapery, 1987), which has been modified by Schapery (1999) to 

include viscoplasticity, is currently used to reasonably predict the damage behavior of 

asphaltic materials (Kim and Little, 1990; Park et al., 1996; Gibson et al., 2003; Kim et 

al., 2007). This model is based on the elastic-viscoelastic correspondence principle that 

is based on the pseudo strain for modeling the linear viscoelastic behavior of the 

material; the continuum damage mechanics based on pseudo strain energy density for 

modeling the damage evolution; and time-temperature superposition principle for 

including time, rate, and temperature effects. However, it has the following limitations: 

(1) it can be used only to predict viscoplasticity and damage evolution in tensile loading 

conditions; and (2) it treats asphaltic materials as linear viscoelastic materials 

irrespective of temperature and stress levels. Recently, Darabi et al. (2011c) proposed a 

phenomenological temperature-dependent viscodamage model and coupled it to 

Schapery’s viscoelasticity and Perzyna’s viscoplasticity in order to realistically model 

the mechanical responses of asphalt mixes.  
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1.2.4. Micro-Damage Healing  

Experimental observations in the last few decades have clearly shown that 

various classes of engineering materials (e.g. polymers, bitumen, bio-inspired materials, 

rocks) have the potential to heal with time and recover part of their strength and stiffness 

under specific circumstances (e.g. Miao et al., 1995; Kessler and White, 2001; Brown et 

al., 2002; Reinhardt and Jooss, 2003; Guo and Guo, 2006; Kessler, 2007; Bhasin et al., 

2008). Constitutive models that do not account for healing of these materials 

significantly underestimate their fatigue life that will lead to very conservative design of 

structural systems made of such materials. Therefore, it is imperative to model healing 

for more accurate fatigue life predictions. 

Changes in the material’s microstructure during deformation usually cause 

significant micro-damage (micro-cracks and micro-voids) under service loading 

conditions. The creation and coalescence of micro-damages lead to degradation in the 

material’s mechanical properties including strength and stiffness. This process of 

degradation can progressively continue up to complete failure. Theories based on 

continuum damage mechanics have been successfully used to explain these degradation 

in different materials.  

However, a common assumption in the theories based on continuum damage 

mechanics is that the damage process is irreversible (e.g. Kachanov, 1958, 1986; 

Lemaître and Chaboche, 1990; Lemaître, 1992; Voyiadjis and Kattan, 1992; Kattan and 

Voyiadjis, 1993; Krajcinovic, 1996; Voyiadjis and Park, 1999; Voyiadjis and Deliktas, 

2000; Lemaître, 2002; Abu Al-Rub and Voyiadjis, 2003, 2005b; Voyadjis and Abu Al-

Rub, 2006). In other words, the damage variable is usually assumed to be a 

monotonically increasing function. However, during the unloading process and resting 

time periods some micro-crack and micro-void free surfaces wet and are brought back 

into contact with one another. In certain materials such as polymers and especially 

asphalt mixes, micro-cracks and micro-voids gradually reduce in size with a 

corresponding recovery in strength and stiffness due to micromechanical short-term 

wetting and long-term diffusion processes as the resting period increases (Wool and 
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Oconnor, 1981). These healing features are opposite to those normally associated with 

continuum damage mechanics. In fact, for long resting periods, the damaged area may 

recover all of its strength and becomes identical to the virgin state of material (Prager 

and Tirrell, 1981; Carpenter and Shen, 2006; Little and Bhasin, 2007). This process is 

referred to as micro-damage healing. 

The importance of the micro-damage healing process depends on loading 

conditions. For example, the result of the healing process can be significant when the 

material is subjected to fatigue loading conditions where rest time periods are introduced 

between the loading cycles. This is the case in asphaltic pavements under traffic loading 

conditions (Kim and Little, 1989; Lytton et al., 1993; Kim et al., 1994; Si et al., 2002). 

In other words, the impact of the recovery process is cumulative and depends on 

variables such as the length of the rest period and the temperature of the asphalt mixture. 

Moreover, Shen and Carpenter (2005), Carpenter and Shen (2006), and Shen et al. 

(2006) have documented the efficacy of the dissipated energy approach to fatigue 

damage as well as the cumulative impact of healing even for very short rest periods 

during the fatigue damage process. Furthermore, Zhang et al. (2001b) and Kim and 

Roque (2006) have identified the importance of considering a healing property in fatigue 

damage and the crack growth process. In another work, Zhang et al. (2001a) introduced 

the concept of a threshold fracture energy density as a failure criterion for the initiation 

and propagation of cracks. They state that at the “local level, in front of the crack tip, or 

in areas of high stress concentration, one could use the fracture energy density as a 

criterion below which cracks will not initiate or propagate”. This is a pertinent 

observation with regard to healing as this study focuses on the importance of considering 

the recovery of damage in the area that precedes the crack tip during the healing process. 

 Several micromechanical- and phenomenological-based models for predicting 

micro-damage healing in different materials have been proposed (Wool and Oconnor, 

1981; Schapery, 1989; Miao et al., 1995; Jacobsen et al., 1996; Ramm and Biscoping, 

1998; Ando et al., 2002; Little and Bhasin, 2007). Wool and O’connor (1981) proposed 

a phenomenological-based theory of crack healing in polymers and introduced a 
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macroscopic recovery parameter that is the convolution of an intrinsic healing function 

and the rate of wetting distribution function to relate the healing at micro scale to the 

changes in the mechanical properties of polymers at the macro scale. Schapery (1989) 

proposed a fracture mechanics-based model to describe the rate of crack shortening for 

linear viscoelastic materials using the correspondence principle. Miao et al. (1995) 

presented a thermodynamic-based model for healing of crushed rock salt. Little and 

Bhasin (2007) and Bhasin et al. (2008) combined the contributions of Wool and 

O’connor (1981) with those of Schapery (1989) and defined a macroscopic recovery 

parameter to quantify  healing in bituminous materials. They showed that the rest period 

have a significant effect on healing. 

 However, these models are mostly: (1) micromechanical- and fracture 

mechanics-based that cannot be easily used at the macroscopic level to solve an 

engineering problem; (2) augmented with several material parameters that are difficult to 

identify based on available macroscopic experiments; (3) usually developed for specific 

loading conditions and cannot be used for capturing healing effects under different 

loading conditions; and (4) not coupled with the viscoelastic, viscoplastic, and/or 

damage constitutive behavior of the healed material. Hence, development of a general 

and robust healing model at the continuum level seems appropriate and necessary as a 

contribution to understanding and modeling the general fatigue damage process. 

Surprisingly, little attention is devoted to the development of such a healing model and 

its coupling to the visco-inelastic response of asphaltic materials. 

 It is noteworthy that the problem of viscoelastic, viscoplastic, damage, and 

healing in bituminous materials and specially asphalt mixes is very complicated. 

Therefore, a rigorous thermodynamic basis for modeling the viscoelastic, viscoplastic, 

damage, and healing mechanisms should be developed in order to explain how these 

mechanisms store energy and how each of these mechanisms affect the entropy 

production. Rajagopal and his co-workers have presented a rigorous thermodynamic-

based model to explain the viscoelastic response of asphalt mixes (e.g. Krishnan and 

Rajagopal, 2003; Krishnan and Rajagopal, 2004; Koneru et al., 2008; Ravindran et al., 
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2009 and the references quoted therein). The procedure for the development of 

thermodynamically consistent coupled viscoelastic-viscoplastic-viscodamage-healing 

constitutive model will be presented in the next chapters of this work.  

 Moreover, asphalt mixture is a highly complex material which is a mixture of 

asphalt binder, aggregate, and air voids. The properties of these constituents have 

significant effect on the overall property of asphalt mixture. Mixture theory is one of the 

modern techniques to model the behavior of different mixtures such as asphalt mixtures 

initially proposed for modeling the mixture behavior of fluids (Ingram and Cemal 

Eringen, 1967; Truesdell, 1969). However, one of the important problems in using the 

mixture theories is how to handle the boundary condition problem between different 

constituents (c.f. Rajagopal and Tao, 1996; Krishnan and Rao, 2000). These theories 

along with the framework of natural configurations (Rajagopal and Wineman, 1992; 

Rajagopal, 1995) have been used by several researchers to explain the mechanical 

properties of asphalt mixtures (e.g. Krishnan and Rao, 2000; Krishnan and Rajagopal, 

2003; Krishnan and Rajagopal, 2004; Wang et al., 2004; Koneru et al., 2008; Ravindran 

et al., 2009). Although using the mixture theory is one of the promising approaches for 

modeling the behavior of asphalt mixes, they are augmented with several model 

parameters at the mixture level and for each of the constituents. Hence, in this paper we 

consider a single homogenized continuum approach to model the mechanical response of 

asphalt mixes.   

1.3. Scope and Objective   

The main objective of this work is to develop a thermo-viscoelastic-viscoplastic-

viscodamage-healing constitutive model and to apply it for predicting the response of 

bituminous materials, asphalt mixes, and pavements under realistic mechanical 

conditions. This objective is achieved through the following tasks: 

1- Development of a time-, rate-, and temperature-dependent damage model 

(thermo-viscodamage) and couple it with thermo-viscoelastic and thermo-

viscoplastic models. 
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2- Development of a general framework to model the micro-damage healing in 

materials with the healing capability. 

3- Development of a micro-damage healing model for asphalt mixes for more 

accurate prediction of the response under cyclic loading conditions. 

4- Development of a general thermodynamic framework that provides a 

systematic procedure for deriving thermodynamically consistent constitutive 

models. 

5- Implementing the proposed thermo-mechanical constitutive model in the 

finite element (FE) codes. 

6- Validating the constitutive model and subsequently applying it for 

performance prediction of the pavements. 

1.4. Organization of the Dissertation   

This dissertation is organized following the research paper format. Chapters II, 

III, IV, V, VI, VII, VIII, and IX  are research papers that have been or will be submitted 

as refereed journal papers. 

Chapter I includes the introduction which contains background on modeling 

asphalt mixture response and performance, problem statement, objectives and the outline 

of this dissertation. Chapter II presents the development of a thermo-viscoelastic-

viscoplatic-viscodamage model for asphaltic materials. Chapter III proposes a 

thermodynamic-based framework to ensure the consistency of the proposed model. 

Chapter IV introduces a continuum damage mechanics framework for modeling the 

micro-damage healing in materials and Chapter V proposes a micro-damage healing 

model for asphalt mixes. Chapter VI proposes a general thermodynamic-based 

framework for constitutive modeling of time- and rate-dependent materials. The 

proposed thermo-mechanical model is validated against another extensive experimental 

measurements in Chapter VII. Chapter VIII develops a numerical technique for 

implementation of the gradient-dependent continuum damage mechanics theories and 

the model is used to conduct the performance simulation of asphalt pavements in 
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Chapter IX. Final conclusions, recommendations, and future works are presented in 

Chapter X. 



 17

CHAPTER II 

A THERMO-VISCOELASTIC-VISCOPLASTIC-VISCODAMAGE 

MODEL FOR ASPHALTIC MATERIALS 

2.1. Introduction 

Because of the complex behavior of HMA, the coupling of the nonlinear thermo-

viscoelasticity, thermo-viscoplasticity, and temperature- and rate-dependent damage 

(thermo-viscodamage) modeling seems inevitable. However, surprisingly, very limited 

work has been focusing on the development of such models, and the current study 

attempts to close this gap and develops a robust model that overcomes the limitations of 

the current models for HMA. This chapter proposes a temperature dependent 

viscodamage model which is coupled to nonlinear temperature-dependent Schapery’s 

viscoelastic model (Schapery, 1969a) and temperature-dependent Perzyna’s 

viscoplasticity model (Perzyna, 1971) to model the nonlinear constitutive behavior of 

asphalt mixes. The viscodamage model is formulated to be a function of temperature, 

total effective strain, and the damage driving force which is expressed in terms of the 

stress invariants of the effective stress in the undamaged (effective) configuration. 

However, it is well-recognized that the damage response of asphalt mixes is 

different in compression and extension state of loading. Therefore, the damage driving 

force is formulated such that it allows for the distinction between the influence of 

compression and extension loading conditions on damage nucleation and growth. A 

systematic procedure is presented to identify temperature-dependent viscoelasticity, 

viscoplasticity, and viscodamage model parameters. The viscoelastic model parameters 

are identified by extracting the pure viscoelastic response during the recovery part of the 

creep-recovery test (Huang, 2008). Subsequently, the viscoplastic response during the 

creep part of the creep-recovery test is obtained by subtracting the viscoelastic strain 

from the total strain. This response is then used to identify the viscoplastic model 

parameters (Abu Al-Rub et al., 2009; Huang et al., 2011a). Finally, the viscodamage 

model parameters are identified from two creep tests that show the secondary and 
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tertiary responses (Darabi et al., 2011c). The presented model is implemented in the 

well-known finite element code Abaqus (2008) through the user subroutine UMAT to 

validate the model over the experimental data which was not used in the calibration 

process. The recursive-iterative and radial return algorithms are used for the numerical 

implementation of the nonlinear viscoelasticity and viscoplasticity models, respectively, 

whereas the viscodamage model is implemented using the effective (undamaged) 

configuration concept. It is shown that the presented constitutive model is capable of 

predicting the nonlinear behavior of asphaltic mixes under different loading conditions. 

2.2. Total Strain Additive Decomposition 

The total deformation of the Hot Mix Asphalt (HMA) subjected to an applied stress can 

be decomposed into recoverable and irrecoverable components, where the extent of each 

is mainly affected by time, temperature, and loading rate. In this study, small 

deformations are assumed such that the total strain is additively decomposed into a 

viscoelastic (recoverable) component and a viscoplastic (irrecoverable) component: 

 nve vp
ij ij ij     (2.1) 

where ij  is the total strain tensor, nve
ij  is the nonlinear viscoelastic strain tensor, and vp

ij  

is the viscoplastic strain tensor. The constitutive equations necessary for calculating nve
ij  

and vp
ij  will be presented in the following sections.  

2.3. Effective (Undamaged) Stress Concept 

Kachanov (1958) has pioneered the concept of continuum damage mechanics (CDM), 

where he introduced a scalar measure called continuity,  , which is physically defined 

by Rabotnov (1969) as: 

 
A

A
   (2.2) 

where A  is the damaged (apparent) area and A  is the real area (intact or undamaged 

area) carrying the load. In other words, A  is the resulted effective area after micro-
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damages (micro-cracks and micro-voids) are removed from the damaged area A . The 

continuity parameter has, thus, values ranging from 1   for intact (undamaged) 

material to 0   indicating total rupture. 

Odqvist and Hult (1961) introduced another variable,  , defining the reduction 

of area because of the micro-damages: 

 1
DA A A

A A
  
     (2.3) 

where DA  is the area of micro-damages such that DA A A  .   is the so-called 

damage variable or damage density which can be interpreted as the density of micro-

damages (micro-cracks and micro-voids) with values ranging from 0 (undamaged) to 1 

(complete damage). In fact, fracture or complete rupture mostly occurs when c  , 

where c  is the critical damage density, which is a material property (Abu Al-Rub and 

Voyiadjis, 2003). In this study, isotropic damage is assumed such that the stress tensor 

components are degraded equally in different directions. 

Based on CDM definition of an effective area, the relationship between stresses 

in the undamaged (effective) material and the damaged material is defined as [see 

Chaboche (2003) for a concise review of effective stress in CDM]: 

 
1

ij
ij








 (2.4) 

where   is the effective stress tensor in the effective (undamaged) configuration and   

is the nominal Cauchy stress tensor in the nominal (damaged) configuration. The 

schematic representation of the nominal (damaged) and effective (undamaged) 

configurations is shown in Figure 2.1. 
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Figure 2.1. Schematic representation of the effective and nominal configurations. 

It is noteworthy that the effective stress   is the one that drives viscoelastic and 

viscoplastic deformations. Moreover, it is usually argued that once the material is 

damaged, further loading can only affect the undamaged material skeleton. Hence, the 

viscoelastic, viscoplastic, and viscodamage models are defined as functions of variables 

in the effective configuration. The superimposed “” in this work designates the 

effective configuration. 

 However, a transformation hypothesis is required to relate the nominal stress and 

strain tensors (  and  ) to the stress and strain tensors in the undamaged configuration 

(  and  ). For this purpose, one can either adapt the strain equivalence hypothesis (i.e. 

the strains in nominal and effective configurations are equal) or the strain energy 

equivalence hypothesis (i.e. any form of strain energy in the nominal configuration is 

equal to the corresponding strain energy in the effective configuration) [see Voyiadjis 

and Kattan (1999) for more details]. 

Although, the strain energy equivalence hypothesis is intuitively more physically 

sound, but greatly complicates the constitutive models and their numerical 

implementation (Abu Al-Rub and Voyiadjis, 2003). Therefore, for simplicity and 

easiness in the finite element implementation of the subsequent complex constitutive 

equations, the strain equivalence hypothesis is adopted. Hence, one can assume that the 

nominal strain tensors  , nve , and vp  are equal to their counterparts in the effective 

configuration,  , nve , and vp , such that: 

Effective (undamaged)  
 configuration 

Nominal (damaged) 
configuration 

Remove both voids 
and cracks 
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 ij ij  , nve nve
ij ij  , vp vp

ij ij   (2.5) 

where nve  and vp  are the nonlinear viscoelastic and viscoplastic strain tensors in the 

nominal configuration, respectively; whereas nve  and vp  are the nonlinear viscoelastic 

and viscoplastic strain tensors in the effective configuration, respectively. This 

transformation hypothesis makes the numerical implementation of constitutive equations 

very easy and avoids the complexities associated with direct couplings between the 

damage model and different parts of the constitutive model. In fact, for small 

deformations and isotropic (scalar) damage assumptions, one can assume that the strain 

differences in the nominal and effective configurations are negligible  (Abu Al-Rub and 

Voyiadjis, 2003), such that postulating the strain equivalence hypothesis seems 

admissible.  However, the strain equivalence hypothesis results in linear variation of the 

stiffness modulus with the damage density which is not experimentally motivated. To 

remedy this issue, Cicekli et al. (2007) and Abu Al-Rub and Voyiadjis (2009) modified 

Eq. (2.4), such that: 

 
2(1 )

ij
ij








 (2.6) 

Eq. (2.6) (which is used in this work) allows the quadratic variation of the damaged 

stiffness with respect to the damage density when the strain equivalence hypothesis is 

use. 

It should be noted that the equivalency of the strain tensor in the effective and 

nominal configuration is assumed here for simplicity and might not be an accurate 

assumption for large deformation theories when damage is significant. In these cases, 

one may use alternative approaches such as postulating the strain energy equivalence 

hypothesis, power equivalence hypothesis, or  taking into account the changes in the 

density of the damaged materials by adapting finite deformation theories (c.f. Davison 

and Stevens, 1973; Davison et al., 1977; Voyiadjis and Kattan, 1992; Lubarda and 

Krajcinovic, 1995). 
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2.4. Nonlinear Thermo-Viscoelastic Model 

In this study, the Schapery’s nonlinear viscoelasticity theory (Schapery, 1966) is used to 

model the viscoelastic response of HMA. The Schapery’s viscoelastic one-dimensional 

single integral model is expressed here in terms of the effective stress  , Eq. (2.6), as 

follows: 

    2,
0 0 1 0

( , )
( , ) ( , )

tnve t t t t t t t
d g T

g T D g T D d
d

  


 
      


     (2.7) 

where 0D  is the instantaneous compliance; D  is the transient compliance; 0g , 1g , and 

2g  are nonlinear parameters related to the effective stress,  , strain level, nve , or 

temperature T  at a specific time  . The parameter 0g  is the nonlinear instantaneous 

compliance parameter that measures the reduction or the increase in the instantaneous 

compliance. The transient nonlinear parameter 1g  measures nonlinearity effects in the 

transient compliance. The nonlinear parameter 2g  accounts for the loading rate effect on 

the creep response. Note that 0D , D , 0g , 1g , and 2g  should be determined for 

undamaged material. In Eq. (2.7), t  is the reduced-time given by: 

 
0

tt

T s e

d

a a a

    (2.8) 

where Ta , sa , and ea  are the temperature, strain or stress, and environment (e.g. 

moisture, aging) shift factors, respectively. It is noteworthy to mention assuming 0g , 1g , 

and 2g  to be constant and equal to one simplified the Schapery’s nonlinear viscoelastic 

model [Eq. (2.7)] to the Boltzmann superposition integral for linear viscoelastic 

materials. For numerical convenience, the Prony series is used to represent the transient 

compliance D , such that: 

  
1

1 exp
t

N
t

n n
n

D D  


       (2.9) 
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where N  is the number of terms, nD  is the thn  coefficient of Prony series associated 

with the thn  retardation time n . In the above and subsequent equations, the 

superimposed t  and   designate the response at a specific time. 

As proposed by Lai and Bakker (1996), the one-dimensional nonlinear 

viscoelastic model in Eq. (2.7) can be generalized to three-dimensional problems by 

decoupling the response into deviatoric and volumetric parts, such that: 

 
1 1

3 2 9 2 3ij

nve nve nve kk
ij kk ij ij ij ij kk ij

J B
e S S

G K

            (2.10) 

where nvee  and nve
kk  are the deviatoric strain tensor and the volumetric component of the 

strain tensor, respectively; G  and K  are the undamaged shear and bulk moduli, 

respectively, which are related to the undamaged Young’s modulus E  and Poisson’s 

ratio   by: 

 / 2(1 )G E   ,    / 3 1 2K E    (2.11) 

J  and B  are the undamaged shear and bulk compliances, respectively; 

/ 3ij ij kk ijS      is the deviatoric stress tensor in the effective configuration; ij  is the 

Kronecker delta; and kk  is the volumetric stress in the effective (undamaged) 

configuration. Using Schapery’s integral constitutive model [Eq. (2.7)] and after some 

mathematical manipulations, the deviatoric and volumetric components of the nonlinear 

viscoelastic strain at time t  can be expressed, respectively, as follows (Lai and Bakker, 

1996): 
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    (2.13) 

where the material constants 0J  and 0B  are the instantaneous effective elastic shear and 

bulk compliances, respectively. The Poisson’s ratio   is assumed to be time-

independent which is a fairly reasonable assumption for a range of temperatures and 
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stress rates in the asphaltic materials (e.g. Di Benedetto et al., 2007). Therefore, one can 

write: 

 0 02(1 )J D  ;       0 03 1 2B D   (2.14) 

    2(1 )J D      ;         3(1 2 )B D       (2.15) 

Representing the transient compliance as the Prony series, Eq. (2.9), and making use of 

Eqs. (2.14) and (2.15) yields the following relations for the deviatoric strain tensor ,nve te  

and the volumetric strain ,

kk

nve t   (Haj-Ali and Muliana, 2004): 
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 (2.17) 

where the superscript t  designates the time increment.  

It is noteworthy that the only difference between Eqs. (2.7)-(2.17) and those 

presented in Huang et al. (2011a) is that they are expressed in the effective (undamaged) 

configuration, which allows one to easily couple viscoelasticity to damage evolution. 

2.5. Thermo-Viscoplastic Model 

In order to calculate the viscoplastic (unrecoverable) deformations in HMA, Perzyna-

type viscoplasticity constitutive equations as outlined in Masad et al. (2005), Tashman et 

al. (2005), and Huang et al. (2011a) are modified here and expressed in terms of the 

effective stress tensor  , Eq. (2.6), instead of the nominal stress tenor  . The 

constitutive equations are defined in the effective configuration since it is argued that 

once the material is damaged, further loading can only affect the undamaged (effective) 

region such that the viscoplasticity can only affect the undamaged material skeleton.  
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Taking the time derivative of Eq. (2.1) in the effective configuration implies: 

 nve vp
ij ij ij       (2.18) 

where nve  and vp  are the nonlinear viscoelastic and the viscoplastic strain rate tensors 

in the effective configuration, respectively. In Eq. (2.18) and subsequent equations, the 

superimposed dot indicates derivative with respect to time. The viscoplastic strain rate is 

defined through the following classical viscoplastic flow rule: 

 vp vp
ij

ij

F 






   (2.19) 

where vp  and F  are the viscoplastic multiplier and the viscoplastic potential function 

in the effective configuration, respectively. Physically, vp  is a positive scalar which 

determines the magnitude of vp
ij , whereas ijF    determines the direction of vp

ij . 

Perzyna (1971) expressed the viscoplastic multiplier in terms of an overstress function 

and a viscosity parameter that relates the rate of viscoplastic strain to the current stresses, 

such that vp  can be expressed as follows: 

   N
vp vp f     (2.20) 

where vp  is the viscoplastic viscosity parameter such that 1/ vp  represents the 

viscoplasticity relaxation time according to the notion given by Perzyna, N  is the 

viscoplastic rate sensitivity exponent, and   is the overstress function which is 

expressed in terms of the yield function f . Moreover,  in Eq. (2.20) is the Macaulay 

bracket defined by   / 2     . The following expression can be postulated for 

the overstress function  : 

   0
y

f
f


   (2.21) 

where 0
y  is a yield stress quantity used to normalize the overstress function and can be 

assumed unity. Eqs. (2.19)-(2.21) indicate that viscoplasticity occurs only when the 

overstress function   is greater than zero. 
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Drucker-Prager-type yield surfaces have been used by number of researchers for 

describing the viscoplastic flow behavior of HMA since it takes into consideration 

confinement, aggregates friction, aggregates interlocking, and dilative behavior of HMA 

(c.f. Abdulshafi and Majidzadeh, 1985; Tan et al., 1994; Bousshine et al., 2001; Seibi et 

al., 2001; Cela, 2002; Dessouky, 2005; Tashman et al., 2005; Saadeh et al., 2007; 

Saadeh and Masad, 2010; Huang et al., 2011a). In this study, a modified Drucker-Prager 

yield function that distinguishes between the distinct behavior of HMA in compression 

and extension, and also takes into consideration the pressure sensitivity is employed 

(Dessouky, 2005). However, this modified Drucker-Prager yield function is expressed 

here as a function of the effective (undamaged) stress tensor,  , as follows: 

  1
vpf I p      (2.22) 

where   is a material parameter related to the material’s internal friction,  p  is the 

isotropic hardening function associated with the cohesive characteristics of the material 

and depends on the effective viscoplastic strain p , 1 kkI   is the first stress invariant, 

and vp  is the deviatoric effective shear stress modified to distinguish between the HMA 

behavior under compression and extension  loading conditions, such that: 

 2 3

3
2

3 31 1
1 1

2 3

vp
vp vp

J J

d d J


       
   

 (2.23) 

where 2

1

2 ij ijJ S S  and 3

1

2 ij jk kiJ S S S  are the second and third deviatoric stress 

invariants of the effective stress tensor  , respectively. vpd  is a material parameter 

which gives the distinction of the material’s viscoplastic response in compressive and 

extensive loading conditions. For example, Eq. (2.23) shows that in uniaxial 

compression 23vp J  , whereas in uniaxial tension 23vp
vp

J

d
  . Therefore, vpd can 

simply be defined as the ratio of the yield strength in uniaxial tension to that in uniaxial 

compression. To ensure the convexity of the viscoplastic loading surface function f , 

vpd  ranges between 0.78 and 1. Eq. (2.22) simplifies to the classical Drucker-Prager 
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yield surface when 1vpd   and to the von Misses criterion when 1vpd   and 0  . 

However, 1d   indicates that the strength of the material in tension is lower than that in 

compression. Figure 2.2 (a) and (b) show the schematic illustration of the yield surface 

[Eq. (2.22)] in the deviatoric plane and the meridional plane, respectively. 

Further illustration of the effect of the parameter vpd  on the viscoplastic response 

of bituminous materials is shown schematically in Figure 2.3. Point “A” in this figure 

represents a point that is under the hydrostatic pressure. Increasing the axial stress causes 

both the first stress invariant 1I  and the second deviatoric stress invariant 2J  to increase. 

Hence, point “A” follows the stress path “AB” until the material yields at point “B”. On 

the other hand, by decreasing the axial stress (extension test), point “ A ” follows the 

stress path “ AC ”. For the conventional Drucker-Prager yield surface (i.e. 1vpd  ), the 

material yields at point “C ”. However, the modified Drucker-Prager yield surface shows 

that the material yields sooner at point “C  ” since the inclusion of the vpd  parameter 

reduces both the internal slope   and the hardening   to  and  , respectively. This 

is an interesting feature of the modified Drucker-Prager yield function in distinguishing 

the yield behavior in the compression or extension mode of loading. 

 

         
                                  (a)                                                                  (b) 
 
Figure 2.2. Schematic illustration of the extended Drucker-Prager yield surface [Eqs. (2.22) and 

(2.23)]. (a) In the deviatoric plane; (b) In the meridional plane. 

vp

1I
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Figure 2.3. Schematic illustration of  the influence of the stress path on the modified Drucker-
Prager yield surface. 

Following the work of Lemaître and Chaboche (1990), the isotropic hardening 

function  p  is expressed as an exponential function of the effective viscoplastic 

strain p , such that: 

    0 1 21 exp( )p p        (2.24) 

where 0 , 1 , and 2  are material parameters; 0  defines the initial yield stress, 0 1   

determines the saturated yield stress, and 2  is the strain hardening rate.   

As mentioned in Chapter I, several studies have shown that the viscoplastic 

deformation of HMA is non-associated which requires assuming a plastic potential 

function F  to be different than the yield function f . Hence, the direction of the 

viscoplastic strain increment is not normal to the yield surface, but to the plastic 

potential surface. The use of an associated flow rule (i.e. F f ) overestimates the 

dilation behavior of HMA when compared to experimental measurements (Masad et al., 

2005; 2007). In order to obtain non-associative viscoplasticity, the Drucker-Prager-type 
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function can still be used where the parameter   is replaced by another parameter,  ; 

defining the viscoplastic potential function as follows: 

 1
vpF I    (2.25) 

where   is a material parameter that describes the dilation or contraction behavior of the 

material. The effective viscoplastic strain rate p  is expressed as (Dessouky, 2005): 

 1 vp vp
ij ijp a       where  
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1 2
1 3
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 (2.26) 

From Eq. (2.25), one can write: 
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where ij  is the Kronecker delta and vp
ij    is given by: 
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Substituting Eq. (2.28) into Eq. (2.27) and noting that 2 ij ijJ S    and 

3 2

3

2ij ik kj ijJ S S J      imply: 
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 (2.29) 

2.6. Thermo-Viscodamage Model 

Time-, rate-, and temperature-independent evolution equations for the damage variable 

  are not appropriate for predicting the damage nucleation and growth in HMA 

materials. Generally, the damage evolution   can be a function of stress tensor  , 

hydrostatic stress kk , strain tensor  , strain rate tensor  , temperature T , and damage 

history  , such that: 
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   ( ), ( ), ( ), ( ), ( ), ( )kkt t t t t T t t       
    (2.30) 

 Kachanov (1958) was the first to postulate a time-dependent damage law to 

describe creep damage, which had the following form: 

 
2

1(1 )

C

C




 
   
  (2.31) 

where 1C  and 2C  are material constants, and   is the applied stress. Rabotnov (1969) 

assumed that damage also affects the rate of creep strain,  , and proposed the following 

evolution equations for creep strain and damage variable: 

 1 (1 )n mC     ,     2 (1 )C        (2.32) 

where 1C , 2C , n , m ,  , and   are material constants. Since most processes are stress 

controlled, the evolution law of equations (2.31) and (2.32) are functions of stress. 

However, for other types of loading conditions the dependency of evolution law on 

strain and other factors is inevitable. Hence, in several works, first of which was 

proposed by Rabotnov (1969), the evolution law was expressed in terms of strain. He 

eliminated the stress from the evolution law and proposed an exponential form in terms 

of strain as follows: 

 exp( )(1 )C k       (2.33) 

where k  is a material constant. Belloni et al. (1979) proposed the following creep 

damage law: 

 exp( )C t
T

       (2.34) 

where C ,  ,  ,  ,   are material constants, and t  is time. Afterwards, relying on 

several sets of experiments, they implied that strain is the most important one, and 

proposed the first approximation for the damage variable as: 

 C    (2.35) 

Cozzarelli and Bernasconi (1981) and Lee et al. (1986) used this idea and proposed the 

following differential evolution law:  
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0

( ) ( ) ( )
t

ct C t d


           (2.36) 

where C ,  ,  , and   are material constants, c  is the creep strain, and ( )   is the 

applied stress at specific time  . 

Schapery (1990) used the concept of viscoelastic fracture mechanics (Schapery, 

1975c; 1984; 1987) along with the elastic-viscoelastic correspondence principle and 

continuum damage mechanics to model the growing damage in viscoelastic media, 

where the following power-law evolution eqaution has been proposed for a damage 

parameter designated as S : 

 
RW

S
S


 

   
  (2.37) 

where   is a material constant, and RW  is the pseudo strain energy density defined as 

  21

2
R R RW E   (2.38) 

with R  being the pseudo strain given by  

  
0

1 tR t
R

d
E d

E d
    


   (2.39) 

where ( )E t  is the relaxation modulus in uniaxial loading, 1RE   is a reference modulus, 

and t  is the reduced time defined in Eq. (2.8). However, in addition to the limitations 

of the model discussed in Chapter I, the introduced damage parameter S  did not have a 

clear physicall meaning and could range between zero and infinity. Moreover, Park et al. 

(1996), Chehab et al. (2002), Kim et al. (2005; 2008), and Underwood et al. (2006) have 

used Schapery’s model to simulate the damage evolution in HMA. 

Motivated and guided by the aformentioned damage evolution laws, in this study, 

the first approximation of the damage evolution law is proposed as an exponential form 

of the total effective strain: 

  expvd
effk    (2.40) 
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where vd  is a damage viscousity parameter, eff ij ij    is the effective total strain in 

the effective configuration. ij  includes both viscoelastic and viscoplastic components 

[Eq. (2.1)] and k  is a material parameter. The dependence of the damage density 

evolution equation on the total strain implicitly couples the damage model to the 

viscoelasticity and viscoplasticity models. Hence, changes in loading time, rate, and 

temperature implicitly affects the damage evolution through changes in viscoelastic and 

viscoplastic strains. However, time of rupture in creep tests and peak point in the stress-

strain diagram for the constant strain rate tests are highly stress dependent. Therefore, 

one may assume the damage viscousity variable [in Eq. (2.40)] to be a function of stress. 

Here, a power law function is postulated for expressing the stress dependency of the 

damage viscosity parameter, such that: 

 0
0

q

vd vd Y

Y
    (2.41) 

where q  is the stress dependency parameter; 0
vd  and 0Y  are the reference damage 

viscousity parameter and the reference damage force obtained at a reference stress for a 

creep test; and Y  is the damage driving force in the nominal (damaged) configuration, 

which can be assumed to have a modified Drucker-Prager-type form, such that: 

 1
vdY I    (2.42) 

The brackets  in Eq. (2.41) are the Macaulay brackets defined by   / 2x x x   to 

ensure that the non-positive values of  1
vd I   load to 0  . The term 1

vd I   in 

Eq. (2.41) is the component of the damage force in the nominal configuration which is 

assumed to have the form of the modified Drucker-Prager criterion in order to include 

the pressure effects on damage nucleation and growth. Moreover,   is a parameter that 

reflects the material internal friction. Eqs. (2.41) and (2.42) state that the damage starts 

when the deviatoric stress vd  dominates the confinement effect 1I  (i.e. 1 0vd I   ).  

In this work, it is assumed that damage does not evolve due to hydrostatic pressure, and 

damage starts nucleating when the deviatoric stress exceeds the confinement effect term. 
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Note that   is expressed in the nominal configuration and is a function of the 

nominal stress ij  instead of the effective stress ij . In continuum damage mechanics, 

Y  is interpreted as the energy release rate necessary for damage nucleation and growth 

(Abu Al-Rub and Voyiadjis, 2003). Assuming the damage viscousity parameter to be a 

function of the damage force, Y , in the nominal (damaged) configuration instead of the 

effective (undamaged) configuration allows one to include damage history effects, such 

that by using the effective stress concept in Eq. (2.6) one can rewrite Y  as follows: 

  2
1Y Y    (2.43) 

Moreover, the following form is postulated for vd : 

 2 3
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where  2

1

2 ij ijJ S S  and 3

1

2 ij jk kiJ S S S  are the second and third deviatoric stress 

invariants of the effective stress tensor  , respectively. Parameter vdd  in Eq. (2.44)

captures different damage nucleation and growth conditions in extension (not necessarily 

tension) and contraction (not necessarily compression) loading conditions and can be 

defined as the ratio of the damage force in the uniaxial tension to that in the uniaxial 

compression. For example, in uniaxial compression, Eq. (2.44) indicates 3

3
2

3
1

3

J

J
  and 

23vd J  , whereas in uniaxial tension 3

3
2

3
1

3

J

J
   and 23vd

vd

J

d
  . Hence, vdd  can 

be defined as the ratio of the damage force in uniaxial tension to that in uniaxial 

compression. 

Moreover, the damage density evolution highly depends on temperature. In this 

work, the proposed damage evolution law is coupled with temperature through a damage 

temperature function ( )G T , which should be identified based on experimental data. 

Hence, the following damage evolution law can be obtained using Eqs. (2.40), (2.41), 

and (2.43): 
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   (2.45) 

 Assuming the damage force to have a Drucker-Prager-type form is a smart 

choice since it allows the damage evolution to depend on confining pressures, and to 

take into consideration the distinct response of asphalt concrete mixes under extention 

and compression loading conditions through the parameter vdd  in Eq. (2.44). 

 It should be emphasized that Eqs. (2.42) and (2.45) provide both the nucleation 

criterion and the growth function for the viscodamage model. The inherent assumption 

in these equations is that the damage rate will have a non zero value when the term 

inside the bracket has a positive value (i.e. 1 0vd I   ). In other words, the damage 

grows only in extension mode of loading where the deviatoric stress dominants the 

confinement effect. Figure 2.4 shows a schematic illustration of the damage surface. The 

effect of vdd  in Eq. (2.44) on the viscodamage nucleation criterion is very similar to the 

effect of vdd  in Eq. (2.23) on the viscoplastic yield surface as shown in Figures 2.2 and 

2.2.  

 

 
Figure 2.4. Schematic illustration of the viscodamage nucleation criterion. Damage starts 

growing when the deviatoric stress vd dominates the confinement effect 1I . 

In the following section, numerical algorithms for integrating the presented 

thermo-mechanical viscoelastic, viscoplastic, and viscodamage evolution equations will 

vd

1I
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be detailed, and the associated material constants will be indentified based on available 

experimental data. 

2.7. Numerical Implementation 

As mentioned in the previous sections, the constitutive models are presented in the 

effective (undamaged) configuration. This approach substantially simplifies the 

numerical implementation since it avoids the complexities associated with the direct 

couplings of the damage model to the viscoelastic and viscoplastic models. In other 

words, one can first update the stress tensor in the effective configuration   using the 

viscoelastic and viscoplastic models, then calculate the damage variable which is 

functions of the stress in the effective configuration, and finally update the nominal 

strain and stress tensors. The strain increment in the nominal configuration is known 

t
ij  

at the beginning the analysis. For the strain equivalence hypothesis, the strain 

increments in the effective and nominal configurations are the same. However, this is not 

the case for other transformation hypotheses such as strain energy equivalence 

hypothesis or power equivalence hypothesis. For these hypotheses, another iteration 

scheme should be added to the numerical implementation in order to obtain the 

converged strain increment in the effective configuration. Having the given strain 

increment, t t t
ij ij ij      , and values of the stress and internal variables from the 

previous step (i.e. at time t t  ), one can obtain the updated values at the end the time 

increment (i.e. at time t). Therefore, one can decompose the total strain in Eq. (2.1), the 

effective viscoplastic strain in Eq. (2.26), and the effective stress tensor ij , 

respectively, at the current time t  as follows:  

 , , , , , ,t nve t vp t t t t nve t t vp t t nve t vp t
ij ij ij ij ij ij ij ij ij                      (2.46) 

 t t t tp p p    (2.47) 

 t t t t
ij ij ij      (2.48) 
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In the next subsections, the procedure for determination of ,ve t
ij , ,vp t

ij ,  tp , 

and t
ij  will be explained. Moreover, in the following subsections, the constitutive 

model is assumed to be at the reference temperature (i.e. 0T T ), such that all 

temperature coupling terms have the value of one. In this section, a step by step 

procedure for implementation of the proposed complex constitutive model is presented. 

In other words, at the beginning, the procedure for implementation of the viscoelastic 

model is explained, then the viscoelastic model is coupled to viscoplasticity, and finally 

the coupled viscoelastic-viscoplastic model will be coupled to the damage models. 

2.7.1. Implementation of the Viscoelastic Model 

Deviatoric and volumetric components of the viscoelastic strain tensor can be rewritten 

as follows by using (2.16) and (2.17) (Haj-Ali and Muliana, 2004): 
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 (2.50) 

where the variables tt
nijq 

,  and tt
nkkq 

,  are the deviatoric and volumetric components of the 

hereditary integrals for each term n of the Prony series at previous time step tt  , 

respectively.  The hereditary integrals are updated at the end of each converged time 

increment, which will be used for the next time increment, and are expressed as follows 

(Haj-Ali and Muliana, 2004): 

 , , 2 2

1 exp( )
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 (2.51) 
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 (2.52) 

The problem in solving Eqs. (2.49) and (2.50) is that the nonlinear functions are 

not known at the current increment t . Therefore, an iterative method can be used to find 

the correct stress state. Hence, Eqs. (2.49) and (2.50) are further linearized by assuming 

that t t tg g 
 , such that the trial stress increment can be written as follows: 
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where  ,t trJ  and ,t trB  can be obtained using Eqs. (2.16) and (2.17) when the nonlinear 

parameters are functions of the trial stress. This study employs the iterative scheme to 

obtain the correct stress for a given strain increment.  Before the onset of viscoplasticity, 

the residual strain will be defined as follows: 

 , , ,1

3
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The Newton-Raphson method will be used to minimize the strain residual in Eq. (2.55). 

Moreover, when the strain is totally viscoelastic, the program uses the consistent 

Jacobian matrix which is the consistent tangent compliance and is determined as: 
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 (2.56) 

It should be noted that Eqs. (2.55) and (2.56) are not valid in the presence of the 

viscoplastic strains. These equations will be updated in the next subsection. Figure 2.5 
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shows the flowchart for implementation of the viscoelastic model. Note that, this 

flowchart is valid in the absence of viscoplasticity and damage. Hence, the nominal 

strain increment will be the same as the strain increment in the healed configuration. 

 

 
 

Figure 2.5. The flow chart of the recursive-iterative algorithm for implementation of the 
viscoelastic model. 

2.7.2. Implementation of the Viscoplastic Model 

The viscoplastic strain increment in Eqs. (2.19) and (2.20) can be rewritten as follows: 

Known  ,  , g , ,ij nq  at time t t  

Assume ,tr t t tg g 
  and calculate trial stress ,tr t

ijS  [Eq. (2.53)] and ,tr t
kk  [Eq. (2.54)] 

Correct trial stress Eqs. 
(2.53) and (2.54). 

,ve t
ijR Tolerance

Update  , g , ,ij nq , and ,kk nq  at time t  

No 

Yes 

Given t  which is equal to 
t  . 

Recalculate tg  based on the current trial stress. 

Calculate the consistent tangent compliance ve
ijklS  [Eq.(2.56)] and stress 

correction. 

Calculate the residual strain ve
ijR  [Eq. (2.55)]. 



 39

  , ,
N

vp t vp vp t
ij

ij ij

F F
f t 

 
 

      
 

 (2.57) 

where ,vp t  can be written from Eqs. (2.20) and (2.21) as follows: 
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Substituting Eqs. (2.26), and (2.57) into Eq. (2.47), the effective viscoplastic 

strain increment can be written as: 
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 (2.59) 

According to Wang et al. (1997), one can define a consistency condition for rate-

dependent plasticity (viscoplasticity) similar to the classical rate-independent plasticity 

theory such that a dynamic (rate-dependent) yield surface,  , can be expressed from 

Eqs. (2.20), (2.21), and (2.22) as follows: 
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 (2.60) 

The Kuhn-Tucker loading-unloading condition (consistency) is valid also for the 

dynamic yield surface  , such that:   

 0; 0; 0; 0vp vp           (2.61) 

A trial dynamic yield surface function tr  can be defined using Eqs. (2.53), (2.54), and 

(2.60), such that: 
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 (2.62) 

,vp t  and tp  can be obtained by iteratively solving Eq. (2.62) using the Newton-

Raphson scheme. Once ,vp t  is obtained, the viscoplastic strain increment vp
ij  can 

then be obtained from Eq. (2.57). In the Newton-Raphson scheme, the differential of   

with respect to vp  is needed, which can be expressed as follows: 



 40

 

1
0 vp N
y

vp vp vp vp

p

p N t

  
  

    
          

 (2.63) 

At the k+1  iteration, the viscoplastic multiplier can be calculated as follows: 
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 (2.64) 

The above recursive-iterative algorithm with the Newton-Raphson method is used to 

obtain the current effective stress and the updated values of viscoelastic and viscoplastic 

strain increments by minimizing the residual strain defined as: 

 , ,nve t vp t t
ij ij ij ijR          (2.65) 

The stress increment at the k+1 iteration is calculated by: 
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where the differential of t
ijR  gives the consistent tangent compliance, which is necessary 

for speeding convergence and can be derived as follows: 
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where 
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,
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 is the nonlinear viscoelastic tangent compliance which is derived 

in Eq. (2.56). The viscoplastic tangent compliance can be derived using Eqs. (2.22), 

(2.57), and (2.58), such that:   
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The tangent compliance for the coupled viscoelastic-viscoplastic model can now be 

obtained by substituting Eqs. (2.56) and (2.68) into Eq. (2.67). The flowchart for 

implementing the coupled viscoelastic-viscoplastic model is presented in Figure 2.6. 

2.7.3. Implementation of the Viscodamage Model 

Damage is implemented using the effective configuration concept. Using the effective 

configuration concept substantially simplifies the numerical implementation of the 

damage model and avoids the complexities associated with the direct couplings of the 

viscoelastic and viscoplastic models to the damage model. 

In other words, the stress in the effective configuration can be first updated using 

the viscoelastic and viscoplastic models. The damage force which is expressed in terms 

of the quantities in the effective configuration can be calculated and used to calculate the 

damage rate. The damage dynamic surface can be obtained using Eq. (2.45), such that: 
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where Y  is the damage force and vd  is the damage loading condition. A trial value for 

viscodamage loading surface can be defined as: 
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 (2.70) 

Very similar to viscoplasticity, the damage increment can be obtained using the Newton-

Raphson scheme. However, it should be noted that the values of Y  and eff  are constant 

during these trials, which substantially simplifies the implementation, since they are 

expressed in the healed configuration. However, the differential of the vd  with respect 

to   is needed which can be expressed as follows: 
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Figure 2.6. The flow chart of the recursive-iterative Newoton-Raphson algorithm for 
implementation of the coupled viscoelastic-viscoplastic model.  
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Hence, the damage density increment at the 1k   iteration can be obtained as follows: 
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 (2.72) 

The damage density   can then be obtained, such that: 

 t t t t t      (2.73) 

Finally, Eq. (2.6) can be used to update the final nominal stress. It should be noted that 

the healing process is not included in this damage model. Hence, negative damage 

density rates are not accepted and are set to zero.  

The above formulated numerical algorithms are implemented in the well-known 

commercial finite element code Abaqus (2008) via the user material subroutine UMAT. 

The finite element model considered here is simply a three-dimensional single element 

(C3D8R) available in Abaqus.  

 This subsection concludes the numerical implementation of the proposed 

viscoelastic-viscoplastic-viscodamage-healing model. 

2.8.  Application of the Model to Asphalt Concrete: Model Calibration 

In this section, the presented thermo-viscoelastic-viscoplastic-viscodamage constitutive 

model is calibrated using a set of experimental data on asphalt concrete tested at 

different stress levels, strain rates, and temperatures. The asphalt concrete used in this 

study is described as 10 mm Dense Bitumen Macadam (DBM) which is a continuously 

graded mixture with asphalt binder content of 5.5%. Granite aggregates and an asphalt 

binder with a penetration grade of 70/100 are used in preparing the asphalt mixtures. 

Cylindrical specimens with a diameter of 100mm and a height of 100mm are compacted 

using the gyratory compactor. Single creep-recovery test under direct compression at the 

reference temperature is conducted to identify the viscoelastic and viscoplastic model 

parameters, whereas, two creep tests that include the tertiary creep response at the 

reference temperature are conducted to identify the viscodamage model parameters. The 

healing model parameters are also identified using the repeated creep-recovery test with 
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rest period at the reference temperature. The temperature coupling term parameters are 

then identified by comparing the results at different temperatures. Moreover, the 

parameters that distinguish between compressive and extensive loading conditions (i.e. 

vpd  and vdd ) are identified by comparing several tests in tension and compression. 

 Finally, the identified model parameters are used to predict the mechanical 

response of asphalt concrete over an extensive experimental data including creep-

recovery, creep, constant strain rate test, and repeated creep-recovery tests over a range 

of temperatures, stress levels, loading-unloading times, and strain rates in both tension 

and compression. Table 2.1 lists the summary of the tests used for calibration of the 

model. 

The procedure for identification of the viscoelastic, viscoplastic, and 

viscodamage model parameters is presented by Darabi et al. (2011c). The procedure for 

identification of the model parameters will be explained in the next sub-sections. 

 

Table 2.1. The summary of the tests used to identify the model parameters. 

 Test Temperature ( o C ) Stress level (kPa) Loading time (Sec) 

Compression 

Creep-recovery 20 1500 30 

Creep 
10 2000  
20 1000, 1500  
40 500  

Tension Creep 20 300, 500  

 

2.8.1. Identification of the Viscoelastic Model Parameters 

The first step in calibration process is to determine the viscoelastic model parameters at 

the reference temperature. To achieve this, the viscoelastic and viscoplastic responses in 

the recovery part of a single creep-recovery test should be separated. The advantage of 

conducting a creep-recovery test is that the viscoplastic strain during the recovery 

remains constant which makes it possible to separation the viscoelastic and viscoplastic 

strains. Figure 2.7 (a) shows a schematic single creep-recovery test in which the stress 
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level   is kept constant up to time at  and is removed after time at . The strain response 

of the creep-recovery loading [Figure 2.7 (a)] is presented in Figure 2.7 (b). 

It should be noted that the stress level in the conducted creep-recovery test 

should be low and/or the loading time should be short such that the material does not get 

damaged or at least the induced damage can be assumed to be negligible. The strain 

response at the end of the loading time at  can be decomposed into viscoelastic and 

viscoplastic components, such that: 

      ve vp
a a at t t     (2.74) 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 

Figure 2.7. A schematic creep-recovery test.  

The same strain decomposition can be assumed for any time t  after the unloading 

time at  (i.e. at t ). However, the stress is zero during the recovery. Hence, the 

viscoplastic strain remains constant after the unloading time at  (i.e. 
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   vp vp
a at t t   ).  Hence, one can write the following strain decomposition at point 

at t : 

      ve vp
a at t t t      (2.75) 

Subtracting Eq. (2.75) from Eq. (2.74) and calculating  ve
at  and  ve t  using 

Eqs. (2.7) and (2.9) yield: 

          1 0 0 1 2
ve ve

a a at t g D g g D t D t D t t                  (2.76) 

A low stress level is applied in this creep-recovery test and , hence, the nonlinear 

viscoelastic parameters can be assumed to be one (i.e. 0 1 2 1g g g   ). Therefore, Eq. 

(2.76) can be simplified as follows for low stress levels: 

          1 0
ve ve

a a at t D D t D t D t t                 (2.77) 

1
ve  can be calculated for each test data in the recovery region. Note that the right hand 

side of Eq. (2.77) is only a function of viscoelastic properties. Therefore, the linear 

viscoelastic model parameters nD  and n  (i.e. the Prony series coefficients, Eq. (2.9)) 

can be identified by minimizing the error between the experimental measurements for 

1
ve  and Eq. (2.77). 

2.8.2. Identification of the Viscoplastic Model Parameters 

The next step in the model calibration process is to identify the viscoplastic model 

parameters. Basically, the creep part of the analyzed creep-recovery test [Figure 2.7] can 

be used to identify the viscoplastic model parameters at the reference temperature. In 

other words, the viscoplastic strain in the creep part can be obtained by subtracting the 

model prediction for the viscoelastic strain (using the viscoelastic model parameters 

obtained in the previous sub-section) from the total experimental measurements.  

 The dynamic viscoplastic yield surface in Eq. (2.60) for a uniaxial compression 

step-loading is expressed as: 
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where   is the applied uniaxial compressive stress. Rearranging Eq. (2.78) yields: 
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 (2.79) 

where vp  can be obtained using the separated viscoplastic strain in the creep region 

,
1
vp t  using the following expression [Eq. (2.57)]: 
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 (2.80) 

Moreover, the effective viscoplastic strain for the uniaxial compression can be calculated 

using Eq. (2.59) as follows: 
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1 2
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2vp vpp

a
       (2.81) 
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. 1
vp  and 2

vp  are the axial and radial viscoplastic 

strain increments, respectively. However, the available experimental data does not 

include 2
vp . Hence, one can calculate 2

vp  using Eq. (2.19), such that: 
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 (2.82) 

Once p  is calculated from the analyzed experimental data using Eqs. (2.80) and (2.81), 

the viscoplastic model parameters  vp , N , 0 , 1 , and 2  can be identified by 

minimizing the error between the measurements and Eqs. (2.79) and (2.81). 

Figure 2.8 shows the separation of the viscoelastic and viscoplastic strains at the 

reference temperature (i.e. 20oT C ) when the applied stress is 1500 kPa and the 

loading time is 30 sec. As mentioned before, the shortest loading time is selected to 

identify the viscoelastic and viscoplastic model parameters such that one can reasonably 

assume that the induced damage is negligible at these loading conditions. The 

viscoelastic and viscoplastic model parameters can now be identified by fitting the 
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separated viscoelastic and viscoplastic strains as shown in Figure 2.8(b). Finally, the 

model predictions and experimental measurements for the total strain at the reference 

temperature are presented in Figure 2.8(c). 

 

 

(a) 

 
(b) 

Figure 2.8. Identification of the viscoelastic and viscoplastic model parameters using a creep-
recovery test at the reference temperature (i.e. 20oT C ) when the applied stress is 1500kPa 

and the loading time is 30 sec. (a) Separation of the viscoelastic and viscoplastic strains using the 
experimental data; (b) Experimental and model predictions for the viscoelastic strain and the 

viscoplastic strain; (c) Experimental and model prediction of the total strain. 
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(c) 

Figure 2.8. Continued. 

2.8.3. Identification of the Viscodamage Model Parameters 

The loading times in the creep-recovery tests conducted to identify the viscoelastic and 

viscoplastic model parameters are too short for the material to get damaged. However, in 

other tests such as the creep tests, the load usually remains on the specimen until failure. 

The loading time in these tests are long enough for damage to evolve causing the 

secondary and tertiary creep responses. The damage model is calibrated using the 

secondary and tertiary creep responses in a creep test since these regions are mostly 

caused by damage. Moreover, during the creep loading, healing does not occur in the 

material which makes it possible to calibrate the damage model independent of the 

healing effects. To calibrate the viscodamage model at the reference temperature (i.e. 

20oT C ), the identified viscoelastic and viscoplastic model parameters at the reference 

temperature are used to predict the creep tests. These predictions usually match for the 

initial response and start deviating from the experimental measurements in secondary 

and tertiary creep regions. This deviation should be compensated for by using the 

viscodamage model. 
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At the reference temperature, the viscodamage temperature coupling term has the 

value of one [i.e.  0 1G T  ]. Therefore, at the reference temperature, Eq. (2.45) 

simplifies as follows:  
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vd
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Y
k
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  (2.83) 

The first step in identifying the viscodamage model parameters is to select an 

arbitrary reference stress level (which is selected to be 1000kPa in this work). The 

reference damage force 0Y  can be calculated easily using Eq. (2.42) as the reference 

damage force. The damage evolution law of Eq. (2.83) can be expressed in terms of the 

damage force in the nominal configuration by making use of Eq. (2.43), such that: 
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  (2.84) 

However, the nominal stress during the creep test is constant. Hence, at the reference 

stress level, the damage force Y  is the damage force at the reference stress level. 

Therefore, at the reference stress level, Eq. (2.84) can be simplified further as: 

 0 exp( )vd
effk    (2.85) 

Now, the damage viscosity parameter vd  and the strain dependency parameter k  can be 

identified using a creep test at the reference temperature and stress level. The 

viscodamage stress dependency parameter q  can finally be identified by comparing the 

experimental results and model predictions for a creep at another stress level (i.e. 

1500kPa in this work) which is different from the reference stress level.  

The identified model viscoelastic-viscoplastic-viscodamage model parameters at 

the reference temperature are listed in Table 2.2. 

Figure 2.9 shows the comparison between the model prediction and the 

experimental data for those creep tests that have been used to identify the viscodamage 

model parameters. Figure 2.9 clearly shows that the model is capable of capturing both 

secondary and tertiary behavior in the creep test. 
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Table 2.2. The identified viscoelastic-viscoplastic-viscodamage model parameters at the 
reference temperature. 

Viscoelastic model parameters 
n  1 2 3 4 5 

n (sec-1) 10 1 0.1 0.01 0.001 

nD (kPa-1) 1.98 10-7 1.48 10-6 6.56 10-7 1.43 10-6 2.74 10-6 

0D (kPa-1) 3.5 10-6 

Viscoplastic model parameters 
    vp (sec-1) N  

0 (kPa) 1 (kPa) 2  

0.3 0.15 5 10-4 3.63 35 610 215 
Viscodamage model parameters 

vd (sec-1) 0Y (kPa) q k  

4 10-5 700 5 30 

 

 
Figure 2.9. Model predictions and experimental measuremenst for the creep test at the reference 
temperature (i.e. 20oT C ) and two different stress levels. These two test are used to identify 

the viscodamage model parameters. 
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hydrostatic pressure 1I . This parameter can also be defined as the ratio of the yield 

strength in uniaxial tension to that in uniaxial compression (i.e. t c/vp
y yd   ). Similarly, 

vdd  captures the different damage responses in extension and compression. In fact, vdd  

magnifies the damage force Y  in tensile loading modes. These two parameters can be 

obtained by comparing experimental measurements and model predictions in tension and 

compression. In this study, 0.78vpd   and 0.16vpd   are identified. Figure 2.10 shows 

the model prediction and experimental measurements of the creep test at 20oC when the 

applied tensile stresses are 300kPa and 500kPa. Figure 2.10 clearly shows that using vpd  

and vdd  parameters enhance the model predictions through distinguishing the behaviors 

in tension and compression.  

 

 

Figure 2.10. Model predictions and experimental measuremenst for the creep test in tension at 

20oC and different stress levels. These tests are utilized to identify vpd  and vdd  model 
parameters. 

2.8.5. Identification of the Temperature Coupling Term Model Parameters 

It is not convenient to introduce a whole different set of material parameters for each 

temperature as done by Abu Al-Rub et al. (2009) and Huange et al. (2011a). Therefore, 
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in this study, the model’s ability to predict the response at other temperatures is achieved 

through the temperature coupling terms as discussed next.  

The viscoelastic-viscoplastic material responses at other temperatures can be 

captured using the temperature time-shift factor for both viscoelasticity and 

viscoplasticity. The reduced time concept [Eq. (2.8)] can be used for introducing the 

temperature time-shift factor ve
Ta  in the viscoelasticity constitutive equations; whereas, 

the viscoplasticity constitutive equations are coupled to temperature by replacing the 

time increment t  with the reduced time increment / vp
Tt a , such that the dynamic 

viscoplasticity yield surface in Eq. (2.60) can be rewritten as follows: 
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 (2.86) 

where vp
Ta  is the viscoplasticity temperature coupling term or the viscoplasticity 

temperature time-shift factor. Note that Eq. (2.86) implies that the viscoplasticity 

temperature coupling term should also be introduced in the viscoplasticity flow rule, Eq. 

(2.19), such that: 
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vp t vp
ij vp

ijT

t F
f

a



  

       
 (2.87) 

In this study, the same temperature coupling terms are assumed for both the 

viscoelastic and viscoplastic models (i.e. ve vp
T T Ta a a  ) as suggested by the 

experimental study of Schwartz et al. (2002) on asphalt mixtures. The values of the 

viscoelastic and viscoplastic temperature coupling parameters are obtained from the 

creep-recovery tests at different temperatures. The creep compliance ( )D t  can be 

calculated using experimental data at different temperatures [see Figure 2.10] using the 

following relation: 

 
( )

( )
t

D t



  (2.88) 
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Figures 2.11 (a) and (b) show the experimental data at different temperatures before and 

after shifting, respectively. By shifting the experimental data horizontally, one can get 

the viscoelastic-viscoplastic temperature time-shift factor, Ta , for each temperature.  

 

 
(a) 

 
(b) 

Figure 2.11. Experimental data for creep compliance at 10T  , 20, and 40oC . (a) Before 
applying the temperature time-shift factor. (b) After applying the temperature time-shift factor. 
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The reduced time (or time-shift) concept as used in viscoelasticity and 

viscoplasticity for including temperature effects can also be used in the viscodamage 

model for predicting the damage evolution in asphalt mixes at different temperatures.  

Similarly, one can replace the time increment t  in the damage evolution 

equation [Eq. (2.45)] with the reduced time / vd
Tt a , such that Eq. (2.45) can be 

rewritten as: 

  0
0

exp
q

vd
eff vd

T

Y t
k

Y a
 

  
    

 
 (2.89) 

where 
 
1vd

Ta
G T

  is the viscodamage temperature time-shift factor. In this study, two 

creep tests at temperatures 10oC and 40oC are used to determine the temperature 

coupling terms. Figure 2.12 represents the model predictions and experimental 

measurements for the creep test at 10oC and 40oC. These two tests are used in order to 

identify the temperature coupling term model parameters. 

 

 
Figure 2.12. Model predictions and experimental measuremenst for the creep test at different 

temperatures in order to identify the temperature coupling term parameters for the viscodamage 
model. 
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Arrhenius-type equations are used for expressing the viscoelastic, viscoplastic, 

and viscodamage temperature coupling terms, such that one can write: 

 1
0

exp 1vp
T T

T
a a

T


  
     

  
 (2.90) 

 2
0

exp 1vd
T

T
a

T


  
    

  
 (2.91) 

where 1  and 2  are material parameters and 0T  is the reference temperature. . The 

identified temperature coupling term parameters are listed in Table 2.3. 
 

Table 2.3. Temperature coupling term model parameters [Eqs. (2.90) and (2.91)]. 

1  
2  

-4.64 -5.89 

 

It is noteworthy that assuming the same temperature time-shift factor for both 

viscoelasticity and viscoplasticity saves significant amount of experimental tests needed 

for calibrating the thermo-viscoplastic response of asphaltic materials. Figure 2.13 

shows the flowchart for obtaining the model parameters in a systematic manner. 
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Figure 2.13. The procedure for identification of the thermo-viscoelastic-viscoplastic-
viscodamage constitutive model parameters. 

2.9. Application of the Model to Asphalt Concrete: Model Validation 

The identified model parameters listed in Tables 2.2 and 2.3 are used to validate the 

model against another set of experimental data listed in Table 2.4 which have not been 

used in the calibration process. Table 2.4 shows that the model is to be validated against 

different sets of experimental data including creep-recovery, creep, repeated creep-

recovery, and uniaxial constant strain rate tests in both tension and compression at 

different temperatures, stress levels, and strain rates. 

Separate viscoelastic response in the recovery part of the creep-recovery tests using Eq. (2.76). 

Identify the Prony series coefficients nD  and n  at the reference temperature using 

Eqs. (2.9) and (2.76). 

Calculate 1
vp , 2

vp , and p  from the creep part of the creep-recovery tests using Eqs. 

(2.80), (2.81), and (2.82). 

Identify the viscoplastic model parameters at the reference temperature by 
minimizing the error between the experimental measurements and Eq. (2.79).  

Identify vd  and k  from a creep test at the reference temperature and stress level 
using Eq. (2.85).  

Identify viscodamage stress dependency parameter q  from a creep test at the 

reference temperature, when ref   using Eq. (2.84).  

Identify temperature coupling terms model parameters by comparing experimental 
data and model predictions at different temperatures using  Eqs. (2.90) and (2.91). 

Identify vpd  and vpd  from two creep tests in tension using Eqs. (2.23) and. (2.44). 
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Table 2.4. The summary of the tests used for validating the model. 

 Test 
Temperature 

( o C ) 
Stress level 

(kPa) 
Loading time 

(Sec) 
Strain rate  

(Sec-1) 
C

om
p

re
ss

io
n 

Creep-
recovery 

10 
2000 400, 600  
2500 350,  300  

20 
1000 40, 210  
1500 130  

40 
500 130, 180  
750 35  

Creep 
10 2500   
40 750   

Constant strain 
rate 

10   
0.005, 0.0005, 

0.00005 

20   
0.005, 0.0005, 

0.00005 
40   0.005, 0.0005 

Repeated 
creep-recovery 

20 1500 
120 (100)*, 60 (100),   

60 (1500) 
 

T
en

si
on

 Creep 
10 500, 1000, 1500   
20 700   
35 100, 150   

Constant strain 
rate 

20   0.0167, 0.00167 

Repeated 
creep-recovery 

20 300 
120 (100), 60 (50), 
60 (100), 60 (1500) 

 

*Unloading time in second.  

2.9.1. Model Validation against Creep-Recovery Tests 

Creep-recovery tests at 10, 20, and 40oC for different stress levels and loading times are 

conducted in this section in order to validate the model. Model predictions and 

experimental measurements for the creep-recovery test in compression at temperatures 

10, 20 , and 40o C  are shown in Figures 2.14, 2.15, and 2.16, respectively. Figures 2.14 

and 2.15 show that at temperatures 10o C  and 20o C  the model can reasonably predict 

the experimental data at different stress levels and loading times. Figure 2.16 shows that 

the model underestimates the experimental measurements at temperature 40o C  at tress 

level 500 kPa. Although Figure 2.16 shows that the model yields reasonable predictions 

at stress level 750 kPa, more experimental measurements at high temperatures are still 

needed to more accurately identify the viscoelastic-viscoplastic temperature coupling 

terms. 
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(a) 

 
(b) 

Figure 2.14. Experimental measurements and model predictions for creep-recovery test in 
compression at 10oT C ; (a) 2000  kPa, (b) 2500  kPa. 
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(a) 

 
(b) 

Figure 2.15. Experimental measurements and model predictions for creep-recovery test in 
compression at 20oT C ; (a) 1000  kPa, (b) 1500  kPa.  
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Figure 2.16. Experimental measurements and model predictions for creep-recovery test in 
compression at 40oT C . 

2.9.2. Model Validation against Creep Tests 

Figure 2.17 shows the model predictions and experimental measurements for creep test 

in compression for different temperatures and stress levels. Figure 2.17 shows that the 

model is able to capture the tertiary behavior very close to the experimental 

measurements. It is noteworthy that the failure time changes drastically from thousands 

of seconds to couple of hundred seconds as the stress level changes. Figure 2.17(b) 

shows that even at temperature 40o C  the model can capture secondary and tertiary 

creep reasonably. 

The model is further validated by comparing the model predictions and 

experimental measurements for the creep tests in tension at different temperatures and 

stress levels. Model predictions and experimental measurements for the creep-test in 

tension for a range of temperatures and stress levels are compared in Figure 2.18. 
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(a) 

 
(b) 

 
Figure 2.17. Experimental measurements and model predictions for the creep test in 

compression at different temperatures and stress levels. (a) 10 ; 2500kPaoT C   ; (b) 

40 ; 750kPaoT C   . 
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Figure 2.18. Experimental measurements and model predictions for creep test in tension. (a) 

10oT C ; (b) 20oT C ; (c) 35oT C . 
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Figure 2.18 shows that the model is also capable of predicting the tertiary 

behavior in tension. This figure shows that at temperatures 10  and 20o C  the model can 

predict the experiments well. Although model predictions and experimental 

measurements are not quite the same at temperature 35o C , the model can still predict 

the tertiary behavior rather reasonably. It should be mentioned that the distinction 

between compression and tension is brought to the model through vpd  and vdd  

parameters. 

2.9.3. Model Validation against Uniaxial Constant Strain Rate Tests 

Different predictions are conducted in this chapter to validate the model in capturing the 

time-, temperature-, and rate-dependent properties of bituminous materials. Therefore, 

the model is also validated against the monotonic uniaxial constant strain rate tests in 

compression at different temperatures in order to test the model capability in capturing 

the temperature-dependent response of bituminous materials. Figure 2.19 shows the 

stress-strain plots at different temperatures when the strain rate is 0.005/sec. Figure 2.19 

clearly shows that the model is able to capture the temperature effects on the initial, peak 

point, and post peak responses in the stress-strain diagram using the identified model 

parameters presented in Tables 2.2 and 2.3. The plots of the predicted damage density 

versus the total strain for strain rate of 0.005/sec is shown in Figure 2.19(b). Figure 

2.19(b) shows that the damage density is close to zero at low strain levels and increases 

as strain and stress levels increases. However, the rate of damage decreases after the 

strain reaches close to 3%. This strain level corresponds to the strain at which the 

maximum value of the stress occurs. This behavior is due to the presence of the damage 

history term [i.e.  2
1  ] in the damage model in Eq. (2.45). In other words, the history 

term causes the damage rate to decrease after the stress-strain peak point. Hence, one 

may consider the inflection point of the damage-strain diagram as the strain corresponds 

to the peak stress at the stress-strain diagram. 
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Figure 2.19. (a) Comparison of experimental measurements and model predictions for the 

constant strain rate test in compression when 0.005  sec-1. (b) Damage density versus strain 
for model predictions presented in (a). 
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since they are more susceptible to damage at low temperatures. Moreover, the same test 

(i.e. constant strain rate test is conducted at two other strain rates of 0.0005/sec, and 

0.00005/sec to test the model capability in capturing the rate-dependent response of 

bituminous materials. Figures 2.20(a) and 2.21(a) show that the model can reasonably 

predict experimental data at different strain rates as well.  

 

           
Figure 2.20. (a) Comparison of experimental measurements and model predictions for the 

constant strain rate test in compression when 0.0005  sec-1. (b) Damage density versus strain 
for model predictions presented in (a). 
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Figures 2.19-2.21 clearly show that the model can reasonably predict the rate and 

temperature effects on the initial, peak point, and post peak responses of bituminous 

materials. The plots of the predicted damage density versus the total strain for strain 

rates 0.0005, and 0.00005/sec are shown in Figures 2.20(b) and 2.21(b), respectively. 

 

 

          
Figure 2.21. (a) Comparison of experimental measurements and model predictions for the 

constant strain rate test in compression when 0.00005  Sec-1. (b) Damage density versus strain 
for model predictions presented in (a). 
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Because of the lack of experimental tension data at different temperatures, model 

predictions and experimental results for the constant strain rate in tension are only 

compared at one temperature, 20oT C , and two strain rates, 0.0167/sec and 

0.00167/sec. These comparisons are shown in Figure 2.22.  

 

 

                  
Figure 2.22. (a) Experimental measurements and model predictions for the constant strain test in 
tension when 20oT C . (b) Damage density versus strain for model predictions presented in (a). 
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Figure 2.22(a) shows that the model underestimates the experimental data at 

strain rate of 0.0167/sec. However, reasonable predictions are obtained when at the 

strain rate is 0.00167.  Plots of the damage density versus the total strain for the 

predictions presented in Figure 2.22(a) are shown in Figure 2.22(b). One can also see the 

S-like shape of damage-strain diagram in Figure 2.22(b). However, since the peak stress 

occurs very rapidly in tension, this S-like is not very clear, especially at higher strain 

rates. 

2.9.4. Model Validation against Repeated Creep-Recovery Tests 

The ultimate goal of the current work is to develop a unified continuum model for 

predicting the behavior of asphalt mixes during their service life. However, pavements 

are subjected to repeated loading during the service life where fatigue damage becomes 

very important. Thus, several repeated creep-recovery tests with different loading and 

unloading times are utilized from the University of Nottingham database at the reference 

temperature and compared with the model predictions. The applied stress level in 

repeated creep-recovery tests in compression is 1500 kPa. Figure 2.23 shows the creep 

strain-time diagram when the loading time is 120sec and the unloading time is 100sec. 

As it is shown in Figure 2.23(a), the proposed model predictions compare well with the 

experimental measurements. The damage evolution versus time is also presented in 

Figure 2.23(b), which shows a stair case-type diagram for damage evolution which is 

expected in repeated creep-recovery loading in case micro-damage healing (i.e. micro-

crack healing) is neglected. Figure 2.23 shows that during the loading period damage 

evolves and during the unloading period the value of the damage density remains 

constant in case the micro-damage healing is neglected. 
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(a) 

 
(b) 

Figure 2.23. (a) Comparison between model results and experiments for repeated creep-recovery 
test in compression when LT= 120 sec and UT=100 sec. (b) Damage density versus time. 
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during the unloading process and resting time periods some micro-crack and micro-void 

free surfaces wet and are brought back into contact with one another due to the effect of 

the surface free energy. In certain materials such as polymers and especially asphalt 

mixes, micro-cracks and micro-voids gradually reduce in size with a corresponding 

recovery in strength and stiffness due to micromechanical short-term wetting and long-

term diffusion processes as the resting period increases (c.f. Wool and Oconnor, 1981). 

The underlying mechanism of micro-damage healing is usually described as a 

combination of wetting and intrinsic healing processes that occur across a crack surface. 

In the wetting process the cracked surfaces coming into contact with each other. 

However, during the intrinsic healing process the wetted crack surfaces gain strength 

over time. Surface free energy is usually considered as the driving force for wetting and 

the initial phase of the intrinsic healing in asphalt mixes. However, the subsequent time-

dependent intrinsic healing is usually assumed to be due to the self-diffusion of asphalt 

cement molecules across the crack interface (c.f. Wool and Oconnor, 1981; Bhasin et al., 

2011). 

These healing features are opposite to those normally associated with continuum 

damage mechanics. In fact, for long resting periods, the damaged area may recover all of 

its strength and becomes identical to the virgin state of material (e.g. Prager and Tirrell, 

1981; Carpenter and Shen, 2006; Little and Bhasin, 2007; Abu Al-Rub et al., 2010a). 

This process is referred to as micro-damage healing. The importance of the micro-

damage healing process depends on specific loading conditions. For example, the result 

of the healing process can be significant when the material is subjected to fatigue 

loading conditions where rest time periods are introduced between the loading cycles. In 

other words, the impact of the recovery process is cumulative and depends on variables 

such as the length of the rest period. This behavior is evident for the repeated creep-

recovery tests. Figure 2.24(a) and (b) show the results of repeated creep-recovery test in 

compression for the same loading time of 60sec but different unloading time of 100sec 

and 1500sec, respectively. As it is shown in Figure 2.24, deviation of the model 
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prediction from the experimental measurements increases when the length of the rest 

period increases. 

 

 

(a) 

 
(b) 

Figure 2.24. Comparison between model results and experiments for repeated creep-recovery 
test in compression. (a) LT= 60sec and UT=100sec; (b) LT= 60sec and UT=1500sec. 

 

0

2

4

6

8

10

12

0 5000 10000 15000 20000 25000 30000 35000

A
xi

al
 st

ra
in

 (
%

)

Time (Sec)

Experimental data

Model prediction

LT=60sec; UT=1500sec

0

2

4

6

8

10

12

0 500 1000 1500 2000

A
xi

al
 st

ra
in

 (
%

)

Time (Sec)

Experimental data

Model prediction

LT=60sec; UT=100sec



 73

From the experimental data presented in Figures 2.23(a), 2.24(a), and 2.24(b), 

one can see that the failure in the repeated creep-recovery occurs mostly because of the 

damage since at large number of loading cycles the shape of the strain-time diagram at 

failure is very similar to the tertiary creep response. These figures also show that during 

the first few cycles the model predictions and experimental measurements compared 

well. However, the model predictions start to deviate significantly from experimental 

measurements as the number of cycles increases such that the model predicts failure 

much earlier. This deviation from experimental results increases as the unloading time 

increases. It is believed that this deviation is attributed to not incorporating the micro-

crack healing during the resting time periods or unloading times. If micro-crack healing 

is incorporated, then damage and complete failure will be delayed and more reasonable 

predictions will be obtained.  

Furthermore, the model predictions are compared to experimental measurements 

for repeated creep-recovery tests in tension for different loading and unloading times. 

These tests are conducted at reference temperature when the applied stress level is 300 

kPa. Two different loading times are considered for these tests in tension. Figure 2.25 

shows the results when the loading time is 120sec and the unloading time is 100sec. 

Figure 2.25(a) shows reasonable comparisons between model and experimental results 

for creep strain versus time, but significant deviation as failure is approached. Damage 

density versus time is also plotted in Figure 2.25(b). Model predictions and experimental 

results when the loading time is 60sec are plotted in Figure 2.26. Figures 2.26(a), (b), 

and (c) show the results when the unloading time is 50, 100, and 1500sec, respectively. 

Again, one sees that the current model predictions deviate significantly from the 

experimental data as failure is approached. These deviations are more significant for 

longer unloading times. This should be corrected in case micro-crack healing is 

modeled. 

Figures 2.25(a) and 2.26(a)-(c) confirm that the model is able to predict the 

experimental results for repeated creep-recovery test when unloading time period is 
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small. However, similar to the results obtained for repeated creep-recovery test in 

compression the model fails to predict the experiments at large unloading times. 

 

 
(a) 

 
(b) 

Figure 2.25. (a) Comparison between model results and experiments for repeated creep-recovery 
test in tension when LT= 120 sec and UT=100 sec. (b) Damage density versus time. 
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This is attributed to the healing phenomenon. Hence, the inclusion of the healing 

in a unified continuum model for predicting fatigue behavior of asphalt mixes is 

inevitable especially for large rest period times. This issue will be discussed in more 

details in the following chapters.  

 

 

 
Figure 2.26. Comparison between model results and experiments for repeated creep-recovery 

test in tension. (a) LT= 60sec and UT=50sec; (b) LT= 60sec and UT=100sec; (c) LT=60sec and 
UT=1500sec. 
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(c) 

Figure 2.26. Continued. 

2.10. Conclusions 

In this work, a thermo-viscoelastic-viscoplastic-viscodamage constitutive model is 

presented and applied to predict the highly nonlinear response of asphalt mixes. The 

viscodamage model is coupled to other parts of the constitutive model by using the 

concept of the effective (undamaged) configuration within the continuum damage 

mechanics framework. This procedure simplifies the numerical implementation of the 

presented nonlinear model to a great deal since it avoids the complexities associated with 

the direct couplings of the damage to the rest of the constitutive equations and allows 

natural coupling of viscoelasticity and viscoplasticity to damage evolution. A 

straightforward procedure for identifying the associated material parameters of the 

presented model is discussed. The viscodamage model is formulated to be a function of 

stress, total strain, and the damage history. Also, both viscoplasticity and viscodamage 

models are enhanced by incorporating a parameter that accounts for the difference in 

viscoplastic and damage responses in compression and in tension. The temperature 
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coupling is brought into the model explicitly by introducing multiplicative temperature 

coupling terms in the Helmholtz free energy density function.  

 One set of material parameters identified from some specific tests is then used to 

validate the model for different tests. Validation is based on a comprehensive set of 

experimental data on a hot asphalt mix that include creep-recovery, creep, monotonic 

constant strain rate, and repeated creep-recover tests in both tension and compression 

and over a wide range of temperatures, stress levels, and strain rates. Comparing the 

experimental measurements with the model predictions show that the model can predict 

the complex mechanical responses of the bituminous materials reasonably well for the 

majority of the test data. Also, creep tests show that the model is capable of predicting 

the tertiary behavior in both tension and compression. The constant strain rate tests at 

different temperatures and strain rates show that the model is able to capture the peak 

point, post-peak behavior, and initial response in the stress-strain diagram. It is shown 

that the dependence of the viscodamage model on the history makes the damage density-

strain diagram to have an S-like shape. Hence, one can consider the inflection point of 

the damage-strain curve as the point after which the post-peak behavior occurs. 

Moreover, the comparisons between the model predictions and experimental 

measurements for repeated creep-recovery test show that the model is capable of 

predicting the experiments for low rest period times. However, once the rest period 

increases the model predictions and experimental measurements deviate because of the 

healing phenomenon which is substantial at large resting time periods. 

 The present analysis considers creep-recovery, repeated creep-recovery, creep, 

and uniaxial constant strain rate tests at different temperatures, stress levels, and strain 

rates in both tension and compression. However, more tests are still needed to fully 

validate the proposed model. This necessity is very critical at high temperatures specially 

for calibrating the viscoelastic-viscoplastic temperature coupling term more accurately. 

Furthermore, since the ultimate goal is to predict the response of the bituminous 

materials and specially the asphalt mix during its service life, the inclusion of the healing 
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in the model is also critical since experimental studies have shown that asphalt mixes 

undergo healing during their service life.  

Furthermore, although the presented model is calibrated over a large set of 

experimental data, the model should be thermodynamically consistent such that it also 

provides reasonable material response for the general loading scenarios. This will be the 

subject of the next chapter.  
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CHAPTER III 

THERMODYNAMIC CONSISTENCY OF THE THERMO-

VISCOELASTIC-VISCOPLASTIC-VISCODAMAGE 

CONSTITUTIVE MODEL 

3.1. Introduction 

One of the main challenges of the modern constitutive modeling is to derive the 

constitutive models which are consistent with the fundamental laws of thermodynamics. 

Therefore, in the past decades the development of the thermodynamic-based constitutive 

models for different materials has reached a great attention in the literature. Hence, 

numerous works have been devoted to development of thermodynamic-based 

formulations for modeling viscoelastic, viscoplastic, and/or damage behavior of different 

materials, especially metals and polymers (Kachanov, 1986; Voyiadjis and Kattan, 1990; 

Lemaître, 1992; Schapery, 1999; Voyiadjis and Park, 1999; Tao et al., 2001; Abu Al-

Rub and Voyiadjis, 2003; Boubakar et al., 2003; Abu Al-Rub et al., 2007; Ghorbel, 

2008; Levesque et al., 2008). Although the literature in developing thermodynamic-

based constitutive models for materials is rather mature and rich, few attempts are 

available for developing such constitutive models for bituminous materials and 

especially asphalt mixes. 

 Therefore, based on the continuum damage mechanics, a general and 

comprehensive thermodynamic-based framework for coupling the temperature-

dependent viscoelastic, viscoplastic, and viscodamage behaviors of bituminous materials 

is presented. This general framework derives systematically Schapery-type nonlinear 

viscoelasticity, Perzyna-type viscoplasticity, and a viscodamage model analogous to the 

Perzyna-type viscoplasticity.  

 The emphasis in this chapter is placed on deriving the constitutive model 

presented in Chapter II based on laws of thermodynamics (Darabi et al., 2011d).  
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Note that in this chapter indices m  and n  range from 1 to int
veM  (the maximum 

number of internal state variables associated with the viscoelastic processes) while the 

other indices range from 1 to 3. Moreover, bold letters indicate that variables are 

tensors or matrices. 

 Moreover, the concept of the stress in the effective configuration [Eq. (2.4)] 

along with the strain equivalence hypothesis [Eq. (2.5)] is used in this chapter.  

3.2. Basic Thermodynamic Formulations 

Development of proper constitutive equations for a specific material and determination 

of the evolution laws for assumed internal state variables characterizing the material’s 

behavior are the main challenges of the modern constitutive modeling. This can be 

effectively achieved, so far, through the thermodynamic principles by enforcing the 

balancing laws, the conservation of mass, the conservation of linear and angular 

momentums, and the first and second laws of thermodynamics. In this work, small 

deformations are assumed. The fundamental laws can be written as follows (Coleman 

and Gurtin, 1967; Lemaître and Chaboche, 1990; Lubliner, 1990, 2008): 

 , 0i iu     (3.1) 

 ,ij j i ib u      (3.2) 

 ij ji   (3.3) 

 ,ij ij ext i ie r q       (3.4) 

 
1

( ) 0ij ij i iT q T
T

           (3.5) 

where  , u , b , e , extr ,  , q ,  , and T  are the mass density, the displacement 

vector, the body force density vector, the internal energy density, the density of external 

heat, the specific entropy density, the heat flux vector, the Helmholtz free energy 

density, and temperature, respectively.  Eq. (3.1) represents the conservation of mass; 

Eqs. (3.2) and (3.3) represent the balance of linear momentum and angular momentum, 

respectively. Eq. (3.4) is the conservation of energy or the first law of thermodynamics; 
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finally, Eq. (3.5) expresses the Clausius-Duhem inequality. Meanwhile,  , e , T , and 

  are related through the following equation: 

 e T    (3.6) 

Moreover, it is usually argued that once the material is damaged, further loading 

can only affect the undamaged material skeleton. Hence, the viscoelastic, viscoplastic, 

and viscodamage models are defined as functions of variables in the effective 

configuration. This assumption makes the assumed state variables independent as it 

should be in formulating a thermodynamically consistent constitutive model.  

In this work, viscoelastic (creep and relaxation properties), viscoplastic (rate-

dependent plasticity), and viscodamage (rate-dependent damage) material responses are 

coupled to the temperature to explain the temperature-, time-, and rate-dependent 

responses of asphalt mixes. Hence, the constitutive model is considered to be a function 

of the viscoelastic strain tensor in the effective configuration ve  , int
veM - of 

phenomenological internal state variables associated with the viscoelastic processes 

( )m  ( int1, ..., vem M ; int 1veM  ), the isotropic damage density  , the accumulative 

viscoplastic strain in the effective configuration p  which is responsible for the isotropic 

hardening in the viscoplastic yield function, and the temperature T , such that one can 

express the Helmholtz free energy   as a function of the state variables in the effective 

configuration as follows: 

 ( )( , , , , )ve m
ij p T      (3.7) 

The internal state variables associated with the viscoelastic process ( ( )m ) are 

hidden state variables. These hidden state variables are associated with internal 

phenomena such as chain mobility in polymers that causes the evolution of the 

viscoelastic strain ve
ij  which is an observable variable that can be measured 

experimentally. However, although these hidden state variables finally result in the 

evolution of the viscoelastic strain tensor, their contribution to the stored and dissipated 

energies should be considered for more accurate estimation of stored and dissipated 

energies in the viscoelastic materials (as will be shown in the next sections). Schapery 
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(1966) defines these viscoelastic internal state variables as the generalized coordinates 

which could be physically interpreted as the variables representing molecular 

configurations in polymers or location of interstitial atoms in metals (please refere to 

Schapery, 1964; 1966 for more information).  

Rewriting the Clausius-Duhem inequality in the effective configuration yields: 

 
1

( ) 0ij ij i iT q T
T

           (3.8) 

Using the chain rule for taking the time derivative of the Helmholtz free energy   [Eq. 

(3.7)] with respect to its state variables implies: 

 ( )
( )

ve m
ijve m

ij

p T
p T

  
  
    

     
    

     (3.9) 

where the superimposed dot indicates derivative with respect to time. Here, small 

deformations are considered. Thus, the total effective strain tensor,  , can be additively 

decomposed into the viscoelastic strain tensor, ve , and the viscoplastic strain tensor, 

vp , such that one can write: 

 ve vp
ij ij ij       (3.10) 

Substituting the rate of the Helmholtz free energy [Eq. (3.9)] into the Clausius-Duhem 

inequality [Eq.(3.8)] and making use of Eq. (3.10) yield the following thermodynamic 

constraint (Coleman and Noll, 1963; Coleman and Gurtin, 1967): 

( )
( )

1
                                  0

ve m vp
ij ij ij ijve m

ij

i i

p
p

T q T
T T

       
 

   


   
         

         

  

 
 (3.11) 

The following thermodynamic conjugate forces and state laws can be defined by making 

use of Eq. (3.11) (Coleman and Noll, 1963; Coleman and Gurtin, 1967): 

 ij ij ve
ij

L  



 


 (3.12) 

 ( )
( )

m
m

Q 



 


 (3.13) 
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p

  


 (3.14) 

 Y 



 


 (3.15) 

 
T

 
 


 (3.16) 

Eqs. (3.12)-(3.16) describe the relation between the internal state variables and their 

associated thermodynamic conjugate forces, where ( )mQ ,  , Y , and   are the 

conjugate forces associated with the internal state variables ( )m , p ,  , and T , 

respectively. The forces ( )mQ  measure the changes in the internal structure due to 

viscoelastic process; the conjugate force   is a measure of the changes in the material 

due to the accumulation of viscoplastic strain; and Y  is measure of the changes in the 

internal structure due to micro-damage evolution. Moreover, as it will be shown later, 

tensor L  will be null since the Cauchy stress tensor is the conjugate force of the 

viscoelastic strain tensor [Eq. (3.30)]; (i.e. 0ij ij ijve
ij

L  



  


). 

One can now define the expression for the rate of the total energy dissipation   

by substituting the thermodynamic state laws (3.12)-(3.16) into Eq. (3.11), such that: 

 ( ) ( ) 1
0ve m m vp

ij ij ij ij i iL Q p Y q T
T

                  (3.17) 

One can interpret from Eq. (3.17) that the total rate of energy dissipation can be 

decomposed into viscoelastic, viscoplastic, viscodamage, and thermal components, such 

that: 

 0ve vp vd th        (3.18) 

where 

 ( ) ( ) 0ve ve m m
ij ijL Q      (3.19) 

 0vp vp
ij ij p        (3.20) 

 0vd Y    (3.21) 
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1

0th
i iq T

T
      (3.22) 

The evolution laws for ve , vp , p , and   can be obtained using the calculus of 

several variables with Lagrange multipliers vp  and vd . This can be achieved by 

subjecting the viscoinelastic rate of energy dissipation (i.e. vi vp vd   ) to two 

constraints  0f   and 0g  , such that (Simo, 1998): 

 vp vd vp vdf g         (3.23) 

where f  and g  are viscoplastic and viscodamage loading surface functions, 

respectively. It should be noted that the loading surface functions are selected as 

constraints since the selected constraints should always have a zero value.  

The maximum viscoinelastic dissipation principle states that the actual states of the 

thermodynamic forces are those which maximize the inelastic dissipation function over 

all possible states. One can now use this principle to obtain the evolution laws for the 

viscoinelastic state variables (i.e. vp
ij , p , and  ) by satisfying the necessary conditions 

for the objective function,  , as follows: 

 0
ij





 , 0







, 0
Y





 (3.24) 

By substituting Eq. (3.23) into Eq. (3.24) and making use of Eqs. (3.20) and (3.21), one 

obtains the thermodynamic laws corresponding to the evolution of the viscoplastic strain 

vp
ij , the effective viscoplastic strain p , and the damage variable  , such that: 

 vp vp
ij

ij

f 






  (3.25) 

 vd f
p 




 


  (3.26) 

 vd g

Y
  



   (3.27) 

Eqs. (3.25), (3.26), and (3.27) provide evolution functions for the viscoplastic 

strain, effective viscoplastic strain, and damage density, respectively. Lagrange 
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multipliers vp  and vd can be determined by satisfying the consistency conditions for 

viscoplasticity and viscodamage loading surfaces (i.e. 0f   and 0g  ). However, 

several experimental works on bituminous materials show that the viscoplastic 

deformation of these materials is non-associative (Oda and Nakayama, 1989; Cristescu, 

1994; Florea, 1994; Bousshine et al., 2001; Masad et al., 2005; Tashman et al., 2005; 

Masad et al., 2007). Therefore, Eqs. (3.25) and (3.26) are modified to reflect the 

nonassociative behavior of bituminous materials, such that: 

 vp vp
ij

ij

F 






  (3.28) 

 vd F
p 




 


  (3.29) 

where F  is the viscoplastic potential function which is different from the viscoplastic 

loading surface function f . The same modifications can be made to make the 

viscodamage flow rule nonassociative. However, an associative viscodamage flow rule 

is used in this paper (i.e. G g ; G  being the viscodamage potential function). Eq. 

(3.27) shows that damage can evolve even before the viscoplasticity ( 0vp  ). The next 

step in formulating the constitutive equations is to assume a proper form for the 

Helmholtz free energy density, loading surface functions, and potential functions for 

viscoplastic and viscodamage models. These assumptions are made in the subsequent 

sections to obtain viscoelastic, viscoplastic, and viscodamage constitutive models for 

asphalt mixes. It should be noted that different constitutive equations can be obtained by 

postulating different forms for the Helmholtz free energy, loading surface functions, and 

potential functions. However, in this work, specific forms are assumed such that one can 

obtain Schapery’s viscoelasticity model, Perzyna’s viscoplasticity model, and a 

viscodamage model that predicts the degradation in mechanical response of asphalt 

mixes due to induced damages.  

It is noteworthy that the Clausius-Duhem inequality [Eq. (3.11)] is valid for all 

load histories. Therefore, let one assume a reversible load history under which neither 

viscoplasticity nor viscodamage have occurred in the material. Hence, rates of the 
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effective viscoplastic strain and the damage density variable are zero under this 

hypothetical loading history. Also, let one assume that this load history is such that the 

viscoelastic state variables remain constant. For this hypothetical reversible load history, 

the rate of the state variables vanishes (i.e. 0p  ; 0  ; and ( ) 0m  , int[1... ]vem M ), 

such that Eq. (3.11) yields the following thermodynamic state law: 

 ij ve
ij

 






 (3.30) 

The above thermodynamic framework based on internal state variables is 

classical and used by many researchers for deriving constitutive theories. However, very 

few studies can be found on using this thermodynamic framework for deriving 

viscoelasticity theories. For example, Levesque et al. (2008) used this procedure and 

derived the Schapery-type viscoelastic model successfully. 

3.3. Specific Free Energy Function 

The complexity of the model is directly related to the definition of the Helmholtz free 

energy function   and the number of assumed internal state variables. Hence, the 

definition of the Helmholtz free energy is a crucial step in formulating the constitutive 

equations. Different assumptions for the form of the Helmholtz free energy function 

yield different types of constitutive equations. In this paper, it is assumed that 

bituminous materials undergo three processes (i.e. viscoelasticity, viscoplasticity, and 

viscodamage) under loading and deformation. In this paper, the Helmholtz free energy is 

decomposed into three components (i.e. thermo-viscoelastic, thermo-viscoplastic, and 

thermo-viscodamage) in order to describe the changes in stored energy associated with 

each process. The decomposition of the Helmholtz free energy into the elastic and the 

viscoplastic components for elasto-viscoplastic materials is well established (Lemaître 

and Chaboche, 1990; Lubliner, 1990; Voyiadjis and Kattan, 1999). The addition of the 

damage component of the Helmholtz free energy is an assumption based on the fact that 

damage has a distinct morphology that is different from the other deformation 

mechanisms (Voyiadjis and Kattan, 1999; Voyiadjis et al., 2004). However, this 



 87

assumption is adopted here for decomposing the Helmholtz free energy into viscoelastic, 

viscoplastic, and viscodamage components, such that one can write:  

 ( ) ( )( , , , , ) ( , , ) ( , ) ( , )ve m tve ve m tvp tvd
ij ijp T T p T T           (3.31) 

where tve , tvp , and tvd  are the thermo-viscoelastic, thermo-viscoplastic, and 

thermo-viscodamage components of the Helmholtz free energy function, respectively. It 

should be noted that one can decompose the free energy function into its components 

and yet capture the coupling between different processes via the viscoplastic and 

viscodamage potential functions (Voyiadjis et al., 2004). Moreover, to obtain a more 

realistic description for the evolution of state variables and also to couple the constitutive 

equation to the temperature, multiplicative terms of temperature are introduced in the 

viscoelastic, viscoplastic, and viscodamage constitutive laws (as will be shown in the 

following sections).  

In the classical theory of viscoelasticity it is usually assumed that the Helmholtz 

free energy can be expressed as a Taylor expression of the state variables around a 

reference state where 0ve  σ ε ζ  (Levesque et al., 2008). However, Schapery 

(1969b) proposed a nonlinear viscoelastic model by introducing nonlinear dependency 

scalars at various steps of the development of the constitutive theory (e.g. introducing 

the nonlinear dependency scalars in the definition of the Helmholtz free energy). Hence, 

the thermo-viscoelastic component of the   can be written as: 

      ( ) ( ) ( )
0 1

1 1

2 2
tve ve ve ve ve ve m m n ve

ijkl ij kl ijm ij mna P a P P T              
   (3.32) 

where  0
vea   and  1

vea 
 
are nonlinear dependency scalars and are functions of 

viscoelastic strain tensor.  ve T  is an Arrhenius-type temperature term for coupling 

temperature to the viscoelastic constitutive law and is defined as follows: 

   1
0

exp 1ve T
T

T
 

  
    

  
 (3.33) 

where 1  is a material parameter and 0T  is the reference temperature.  
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For the viscoplastic component of the Helmholtz free energy the following form 

is postulated (Abu Al-Rub and Voyiadjis, 2003; Voyiadjis and Abu Al-Rub, 2003): 

  0 1 2
2

1
exp( )tvp vpp p p T    


  

      
  

 (3.34) 

where 0 , 1 , and 2  are material constants obtained at the reference temperature; and 

 vp T  is another Arrhenius-type temperature term for coupling temperature to 

viscoplastic constitutive laws. Viscoelastic and viscoplastic temperature coupling terms 

are assumed to be the same for bituminous materials and asphalt mixes, which is proved 

experimentally by Schwartz et al. (2002), such that: 

     1
0

exp 1vp ve T
T T

T
  

  
     

  
 (3.35) 

Wu et al. (2006) proposed an energy-based plastic-damage model for concrete in 

which the Helmholtz free energy in the presence of damage is expressed as a function of 

the stress invariants and the damage variable. Similar assumptions have been made by 

Voyiadjis et al. (2004), Voyiadjis and Abu AL-Rub (2006), and Abu Al-Rub and Kim 

(2009). Therefore, the following form is postulated for the thermo-viscodamage 

component of the Helmholtz free energy in order to consider the confinement effects, the 

different effects of damage in tensile and compressive loading conditions, and the effect 

of temperature on damage evolution and growth; such that one can write: 

      1 2
1

11
1 exptvd vd vd

eff

b
I b T

b
         

   (3.36) 

where  1b , 2b , and   are model parameters and   vd T  is the viscodamage temperature 

coupling term, such that: 

   2
0

exp 1vd T
T

T
 

  
    

  
 (3.37) 

where 2  is a material parameter. The brackets  in Eq. (3.36) are the Macaulay 

brackets defined by   / 2x x x   to ensure that the nonpositive values of  1
vd I   
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load to 0tvd  . The term 1
vd I   in Eq. (3.36) is the component of the damage 

force in the effective configuration which is assumed to have the form of the modified 

Drucker-Prager criterion in order to include the pressure effects on damage nucleation 

and growth. Moreover,   is a parameter that reflects the material internal friction. Eq. 

(3.36) states that the damage starts when the deviatoric stress vd  dominates the 

confinement effect 1I  (i.e. 1 0vd I   ). In this paper, it is assumed that damage does 

not evolve due to hydrostatic pressure, and damage starts nucleating when the deviatoric 

stress exceeds the confinement effect term. The form for vd  is presented in Eq. (2.44).  

As mentioned in the previous chapter, parameter vdd  in Eq. (2.44) captures 

different damage nucleation and growth conditions in extension (not necessarily tension) 

and contraction (not necessarily compression). Eq. (2.44) has been used by several 

researchers for distinguishing the plastic response of materials in tension and 

compression  (Drucker et al., 1957; Chen and Mizuno, 1990; Dessouky, 2005; Han et al., 

2008). Making use of this function in the viscodamage component of the Helmholtz free 

energy function is a wise choice for pressure sensitive materials (such as asphaltic 

materials) that show different damage responses in tension and compression. Note that 

when 0   (i.e. no damage) the viscodamage component of the Helmholtz free energy 

has its initial value. However, when the damage variable increases the viscodamage 

component of the free energy function decreases and eventually reaches zero at complete 

failure (i.e. 1  ). Furthermore, the viscodamage component of the Helmholtz free 

energy is assumed to be a function of the total effective strain in the effective 

configuration (i.e. eff ij ij   ) in order to bring more couplings between 

viscoelasticity, viscoplasticity, and viscodamage models. 

Substituting Eq. (3.31) into Eq. (3.16) implies: 

 
tve tvp tvd

T T T
   
   

  
 (3.38) 

Therefore, one can decompose the entropy function to its components due to thermo-

viscoelastic, thermo-viscoplastic, and thermo-viscodamage processes, such that: 
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 tve tvp tvd       (3.39) 

where tve , tvp , and tvd  are the entropy function due to thermo-viscoelastic, thermo-

viscoplastic, and thermo-viscodamage processes, respectively. 

 
tve

tve

T
 

 


;   
tvp

tvp

T
 

 


;   
tvd

tvd

T
 

 


 (3.40) 

Substituting Eqs. (3.32), (3.34), and (3.36) into Eq. (3.40) implies the following 

constitutive equations for entropy function: 

     ( ) ( ) ( )
0 1

1 1 1

2 2
tve ve ve ve ve ve m m n ve

ijkl ij kl ijm ij mna P a P P Z T      

      

   (3.41) 

  0 1 2
2

1 1
exp( )tvp vpp p p Z T   

 
  

     
  

 (3.42) 

      1 2
1

11
1 exptvd vd vd

eff

b
I b Z T

b
    


   
   (3.43) 

where 

      ;     , ,
a

a T
Z T a ve vp vd

T


  


 (3.44) 

3.4. Viscoelastic Constitutive Model 

Schapery (1969b) used the thermodynamics of irreversible processes to develop a single 

integral constitutive model for non-linear viscoelastic materials. Recently, Levesque et 

al. (2008) extended the Schapery’s nonlinear viscoelastic model for 3D applications 

based on laws of thermodynamics. Here, a similar procedure is used for derivation of the 

viscoelastic model. However, the viscoelastic model is then coupled to viscoplastic 

model, viscodamage model, and temperature in order to more accurately predict the 

complex behavior of bituminous materials. 

One of the hypotheses in the linear viscoelasticity theories is that the 

thermodynamic conjugate forces have linear relationships with the variation of state 

variables. Hence, one can write: 
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 ( ) ( )
2/m n

mnC Q a  ,        int[1... ]vem M  (3.45) 

where mnC  is a constant, positive, and semi-definite tensor; and 2a  is another nonlinear 

dependency scalar that can be a function of viscoelastic strain ve
ij  which takes into 

account the nonlinearity in the viscoelastic model. Substituting Eq. (3.32) into Eq. (3.13) 

yields: 

 ( ) ( )
1( ) ( )

tve
m ve ve n ve

ijm ij mnm m
Q a P P     

 
         
 

 (3.46) 

Substituting Eq. (3.45) into Eq. (3.46) implies: 

 1 ( ) ( )
2 1

n ve ve n ve
mn ijm ij mna C a P P          (3.47) 

One can rewrite Eq. (3.47), such that: 

 1 ( ) ( )2
1 0n n ve

mn mn ijm ijve

a
C P a P  


      (3.48) 

Eq. (3.48) represents a coupled system of differential equations expressing the evolution 

of viscoelastic internal state variables ( )n  as a function of the observed variable ve
ij . 

One can also use the reduced-time parameter defined as follows: 

 
0

2

t dt

a
    (3.49) 

The reduced-time introduces the time-shifting concept. Classically, the nonlinear 

parameter 2a  can be a functions of strain, stress, temperature, moisture, and aging 

(Schapery, 1969b).  Therefore, Schapery’s viscoelastic model is usually coupled to 

temperature through the temperature time-shifting parameter instead of using the 

temperature coupling term  ve T . However, in this paper, the viscoelastic temperature 

coupling term  ve T is utilized for coupling the temperature to the viscoelastic model 

because it makes the thermo-mechanical coupling terms much simpler. Substituting the 

definition of the reduced time, Eq. (3.49), into Eq. (3.48) implies: 

 
1 ( )

( )
1 0

n
n vemn

mn ijm ijve

C d
P a P

d

  
 

 
    

 
    (No sum on n ) (3.50) 
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Since 1C  and P are symmetric and P  is positive definite, it is always possible to 

find a basis in which these tensors are diagonal (Levesque et al., 2008). Suppose for 

simplicity that these tensors are already expressed in this basis. Then Eq. (3.50) 

becomes: 

 
1 ( )

( )
1 0

m
m vemn

mm ijm ijve

C d
P a P

d

  
 

 
    

 
     (No sum on m ) (3.51) 

Eq. (3.51) is a set of uncoupled uni-dimensional differential equations. Using the 

Laplace transform one can write: 

   1( )

0

( )
( ) 1 exp[ ( )]

ve
ijm ijm t

m
mm

P d a
d

P d

  
     




    
       (No sum on m )(3.52) 

where 

  ( )m ve
mm mmP C T   (3.53) 

Eq. (3.52) represents the relationship between the viscoelastic internal state variables and 

the viscoelastic strain tensor. Substituting Eq. (3.32) into Eq. (3.30) yields: 

  0 1 ( )ve m ve
ij ijtu tukl kl ijtu tumA P A P T        (3.54) 

where 0
ijtuA  and 1

ijtuA  are nonlinear tensors related to the instantaneous and transient 

viscoelastic responses, respectively. Eq. (3.54) shows that the instantaneous nonlinear 

parameters are no longer scalars for 3D Schapery-type models and defined as follows: 
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The stress as a function of viscoelastic strain can now be obtained by substituting Eq. 

(3.52) into Eq. (3.54), such that: 
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 (3.57) 

where 
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 (3.58) 
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;    (2)

1g a  (3.59) 

Eqs. (3.57), (3.58), and (3.59) show that the general form of the thermodynamically 

consistent Schapery’s nonlinear equation for 3D applications has a complex form in 

which the nonlinear parameter are no longer scalars. For the case of linear viscoelasticity 

the nonlinear parameters (0)G , (1)G , and (2)g  should always be unity (i.e. 

(0) (1) G G I  and (2) 1g  ). Moreover, one can still use scalar variables for nonlinear 

parameters by setting (0) (0)
ijtu ijtuG g I  and (1) (1)

ijtu ijtuG g I ; I  being the fourth order unit 

tensor to retrieve the original Schapery’s nonlinear viscoelastic equation, such that: 

  
(2)

(0) (0) (1) ( )

10

( )
1 exp[ ( )]

veM
ve ve ve m t kl

ij ijkl kl ijkl m
m

d g
g E g E d

d


        



       (3.60) 

Eq. (3.57) shows that the temperature coupling term ve  captures the temperature effects 

on the instantaneous viscoelastic response, whereas temperature coupling term ve  and 

retardation time [Eq. (3.53)] introduces the temperature effects on the transient response. 

The viscoelastic strain as a function of stress can also be obtained using the 

Laplace transform. In other words, one can express the viscoelastic strain as a function 

of stress in Laplace domain and then perform the inverse Laplace transform in order to 

obtain the viscoelastic strain as a function of the stress in the time domain. It is 

noteworthy that Schapery (1969b) used the thermodynamics of irreversible processes 

and derived the relationship for viscoelastic strains as a function of stresses. His 

formulation for linear viscoelasticity in the effective stress space can be written as 

follows: 

    0

0

ve t kl
ij ijkl kl ijkl

d
D T D d

d

      


     (3.61) 

where 0 ( )t  D D D  is the fourth-order creep compliance tensor with (0)D  being the 

instantaneous compliance tensor and D  being the transient time-dependent compliance 
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tensor. For the case of isotropic and homogenous materials one can express the 

temperature-dependent instantaneous creep compliance  0 TD  as follows: 

  0 0

0

exp 1
T

D T D
T


  

    
  

 (3.62) 

where 0D  is the instantaneous compliance at reference temperature 0T , and   is a 

material constant. In Eq. (3.61), D  is the transient time-dependent compliance that can 

be expressed as a Prony series as follows: 

  
1

1 exp
Nt t

n n
n

D D  


       (3.63) 

where N  is the number of Prony series terms, nD  is the thn  coefficient of Prony series 

associated with the thn  retardation time n , which is defined as: 

 0 0

0

exp 1ve
n n n

T

T
    

  
     

  
 (3.64) 

Note that here the viscoelasticity temperature coupling term is included in the retardation 

time instead of the reduced-time [see Eq. (3.53)]. Also, 0
n  in Eq. (3.64) is the thn  

retardation time at the reference temperature. 

3.5. Viscoplastic Constitutive Model 

As argued previously, once the material is damaged, further loading can only affect the 

undamaged material skeleton. Hence, the viscoplasticity and damage loading surfaces (

f  and g ) and potential functions ( F  and G ) are represented in the effective 

configuration. A modified Drucker-Prager-type function is used here for the yield 

surface since it captures the confinement effects, inter-particle friction effects, and 

distinguishes between the viscoplastic response of asphalt mixes in tension and 

compression. This function has been successfully applied to pressure sensitive materials 

by several researchers (Dessouky, 2005; Masad et al., 2005). Hence, one can express the 

yield condition as follows: 
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  1 , 0vpf I p T       (3.65) 

where   is a material parameter related to the material’s internal friction, ( , )p T  is the 

isotropic hardening function associated with the cohesive characteristics of the material 

and depends on the effective viscoplastic strain p . Moreover, vp  is the deviatoric 

effective shear stress modified to distinguish between different viscoplastic responses of 

the asphaltic material under compression and extension loading conditions, which is 

defined in Eq. (2.23). 

The isotropic hardening function can now be determined using Eqs. (3.14) and 

(3.34), such that: 

      0 1 2, 1 exp( )
tvp

vpp T p T
p p

       
        

 (3.66) 

The temperature-independent version of Eq. (3.66) is compatible with the form proposed 

by Lemaître and Chaboche (1990). Moreover, viscoelastic and viscoplastic temperature 

coupling terms are assumed to be the same for bituminous materials and asphalt mixes 

(i.e.    vp veT T  ) [see Eq. (3.35)]. 

Several experimental works on bituminous materials show that the viscoplastic 

deformation of these materials is non-associative. Therefore, in this work, the following 

Drucker-Prager-type function (which is different from the yield surface function) is 

postulated for the viscoplastic potential function: 

 1
vpF I    (3.67) 

where   is a material parameter that describes the dilation or contraction behavior of the 

material. 

Eq. (3.65) can now be extended to include rate-dependent plasticity 

(viscoplasticity) using the overstress concept (Zener and Hollomon, 1944; Malvern, 

1951; Perzyna, 1986; Perzyna and Korbel, 1998). However, the stress state is not 

constrained anymore to remain on the yield surface (i.e. 0f  ). Hence, the overstress 

which expresses the difference between the stress state and the yield surface can be 

defined as: 
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  1 ,vp
v I p T       (3.68) 

where v  is the overstress (or viscous stress) in the effective configuration. Eq. (3.68) 

shows that the overstress function is also temperature-dependent. The overstress function 

states that an inelastic process can take place only when the overstress function is 

positive (i.e. 0v  ); as a result 0f  . The dynamic viscoplasticity yield surface vp

can now be defined from Eq. (3.68), such that: 

  1 , 0vp vp
vI p T          (3.69) 

Based on the assumed form for the yield surface function and the plastic potential 

function, the following relation between the viscoplastic Lagrange multiplier vp and the 

effective viscoplastic strain can be obtained, such that: 

  1 3
vpp      (3.70) 

Different admissible forms for the viscoplastic Lagrange multiplier can be 

substituted in Eq. (3.28). Several physically- and phenomenological-based evolution 

equations for vp  have been proposed in the literature. One of the most widely used 

models is due to Perzyna (Perzyna, 1963, 1971, 1986; Perzyna and Korbel, 1998), which 

can be considered as the penalty regularization of the rate-dependent plasticity. In 

Perzyna-type models vp  can be replaced by an increasing function of the overstress. In 

this paper the following form is postulated for bituminous materials: 

  
N

vp vp v
vp

T
I


 

 


  (3.71) 

where N  is the viscoplastic rate sensitivity exponent and  vp T  is the temperature-

dependent viscoplasticity viscosity parameter. Making vp  temperature-dependent is 

experimentally motivated for HMA materials (Huang et al., 2002). However, the same 

viscoplastic temperature coupling term vp  [Eq. (3.35)] is used here to make the 

viscosity parameter temperature-dependent. Hence, using the temperature-dependent 
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viscoplasticity viscosity parameter does not increase the number of the model 

parameters. Therefore, one can write: 

   0
vp vp vpT     (3.72) 

where 0
vp  is the viscoplasticity viscosity parameter at the reference temperature. 

Substituting Eq. (3.72) into Eq. (3.71) and rearranging Eq. (3.71) yield the following 

expression for the overstress function: 

 
1/

1
0

( )
Nvp

vp
v vp vp

I
  


 
    


 (3.73) 

The dynamic viscoplasticity yield surface vp  can now be obtained by substituting the 

overstress function [Eq. (3.73)] into Eq. (3.69), such that: 

  
1/

1 1
0

, [ ] 0
Nvp

vp vp vp
vp vp

I p T I
     


 
       


 (3.74) 

Eq. (3.74) defines the temperature-dependent dynamic yield surface which is the 

generalization of the yield surface for the rate-independent plasticity given in Eq. (3.65). 

It is noteworthy that for large values of 0
vp  the dynamic yield surface and its static 

counterpart are the same ( 0vp f   ). Also, in the elastic domain both f  and vp  are 

the same since the rate of the effective viscoplastic strain p  and as a result the 

viscoplastic multiplier vp  are both zero ( 0vpp   ). Hence, the admissible stress 

states remain within or on the viscoelastic domain such that similar to rate-independent 

plasticity 0vp  . However, the condition 0vp   does not necessary imply that the 

stress state is in the viscoelastic domain. For example, during the unloading process for a 

specific strain rate the stress state may satisfy the condition 0vp   while it is still in the 

viscoplastic domain. In this case the viscoplastic strain still continues with a smaller 

strain rate. Moreover, for large values of the viscoplasticity viscosity parameter 0
vp  the 

viscoplasticity multiplier remains finite and positive since the overstress goes to zero. 

Furthermore, the standard Kuhn-Tucker loading/unloading conditions can also be 

applied to the dynamic yield surface such that: 
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 0,vp      0,vp      0,vp vp       0vp vp     (3.75) 

Moreover, the dynamic yield surface can expand and shrink due to both 

softening/hardening effects and softening/hardening rate effects. The non-associative 

viscoplasticity flow rule can now be obtained by substitute Eqs. (3.71) and (3.72) into 

Eq.(3.28), such that: 

 0

N
vp vp vp v

ij vp
ij

F

I

 
  


 

 
  (3.76) 

Eqs. (3.74) and (3.76) show that the viscoplastic temperature coupling term should be 

included in both the flow rule and the dynamic viscoplasticity yield surface. 

3.6. Viscodamage Constitutive Model 

In this work, the constitutive models are expressed in the effective stress space. In this 

section, the thermo-viscodamage model will be formulated and will be coupled to the 

thermo-viscoelastic and thermo-viscoplastic models. Therefore, expressing the 

viscodamage model elements (i.e. the damage potential function G  and damage surface 

function g ) in the effective stress space seems quiet natural since damage also affects 

the undamaged skeleton of material. The damage force can be derived from the 

Helmholtz free energy function by substituting Eq.(3.36) into Eq. (3.15), such that: 

      1

1 2
11 exp

tvd
vd vd

eff

b
Y I b T      

 
         

  
 (3.77) 

An analogous procedure for formulating the viscoplastic model is used to formulate 

the viscodamage model. In this work the damage growth surface g  is assumed to be the 

same as the damage potential function G  (i.e. associative viscodamage). One can define 

a very simple static damage loading surface, such that: 

 0 0g Y Y    (3.78) 

where Y  is the damage force [Eq. (3.77)] and 0Y  is the threshold damage force. Very 

similar to the viscoplasticity, one can extend Eq. (3.78) to include the rate-dependent 

damage (viscodamage) such that: 
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 0vd vd
vg     (3.79) 

where vd  is the dynamic damage loading surface and vd
v  is the damage overstress 

defined as: 

 0
vd
v Y Y    (3.80) 

A form similar to the form selected for the admissible viscoplastic Lagrange multiplier is 

postulated for the damage Lagrange multiplier vd . Hence, the following form which is 

an increasing function of the damage overstress is postulated for the damage Lagrange 

multiplier: 

 0

0

qvd
vd vd v Y

Y

 
   (3.81) 

where vd  is the damage viscosity parameter and q  is a material constant.  From Eq. 

(3.81) one can simply determine the damage overstress as: 

 
1

0 1
qvd

vd
v vd

Y


  
      


 (3.82) 

Substituting Eq. (3.78) into Eq. (3.27) implies that the damage multiplier vd  is the same 

as the damage rate (i.e. vd   ). Finally, the dynamic viscodamage loading surface can 

be obtained by substituting Eqs. (3.77) and (3.78) into Eq. (3.79), such that: 

 

1

0 0
q

vd
vd

Y Y


 
    


 (3.83) 

Substituting Eq. (3.77) into Eq. (3.83) yields: 

    
1

1

1 2 0
11 exp 0

q
vd vd vd

eff vd

b
I b Y

                


 (3.84) 

The temperature-dependent dynamic viscodamage loading function, 0vd  , defined in 

Eq. (3.84) is the generalization of its static counterpart 0g   [Eq. (3.78)]. Similar to the 

viscoplasticity loading surface, the static damage loading surface can be recovered for 

large values of the damage viscosity parameter vd . In the undamaged domain g  and 



 100

vd  are the same since there is no damage evolution (i.e. 0vd    ). In this case the 

allowable stress states are forced to remain on or within the viscoelastic domain, so that 

one has similar to rate-independent damage 0g  . Again analogous to the 

viscoplasticity, during the unloading process and for a particular damage rate,  0vd   

does not necessarily imply that the material is in the undamaged domain, but the material 

could still be in the damage state with a smaller damage rate. The generalized Kuhn-

Tucker loading/unloading conditions can also be applied to the dynamic viscodamage 

surface, such that: 

 0,vd      0,vd      0,vd vd       0vd vd     (3.85) 

The evolution law for the thermo-viscodamage model can be obtained by rearranging 

Eq. (3.84), such that: 
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  (3.86) 

where the viscodamage temperature coupling term can be defined as: 

   1
0

exp 1
qvd vd T

T
  

  
     

  
  (3.87) 

As explained in the previous chapter, the proposed viscodamage model has the 

advantage that allows a systematic and straightforward procedure for determination of 

unique model parameters which makes its calibration very simple. 

3.7. The Heat Equation 

Bituminous materials and asphalt mixes are temperature- sensitive materials. Asphalt 

mixes are subjected to thermal loadings due to the daily and seasonal fluctuations in 

temperature during their service life. Also, some specific phenomena such as compaction 

of hot mix asphalt in the field are associated with drastic temperature changes. 

Moreover, local temperature changes because of the energy dissipation associated with 

the deformation processes influence the mechanical properties of asphalt mixes. Hence, 

including the temperature evolution in the constitutive model seems inevitable for 
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accurate modeling of the mechanical response of asphalt mixes. In this subsection, the 

heat equation is derived. 

Substituting the internal energy per unit mass, e , from Eq. (3.6) into the first law 

of thermodynamics [Eq. (3.4)] for the effective configuration implies the following 

energy balance equation: 

   , 0ij ij ext i iT T r q               (3.88) 

Substituting   from Eq. (3.9) into the above energy balance equation and making use 

of results in Eqs. (3.13), (3.14), (3.15), (3.16), and (3.30) yield the following equation: 

 ( ) ( )
,

vp m m
ij ij ext i iT Q p Y r q                (3.89) 

On the other hand, Substituting Eqs. (3.19), (3.20), (3.21), and (3.30) into Eq. (3.89) 

gives: 

 ,
ve vp vd

ext i iT r q         (3.90) 

Looking at Eqs. (3.41), (3.42), (3.43), and (3.44) reveals that: 

  ( ), , , ,ve m
ij p T       (3.91) 

Taking the time derivative of Eq. (3.91) yields: 
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     (3.92) 

Substituting Eq. (3.92) into Eq. (3.90) yields the thermo-mechanical heat balance 

equation, such that: 

 
( )

( )
,

Thermo-mechanical coupling terms

m
ijve vp vd m ve

p ij ext i i

Q Y
c T p T r q

T T T T

     
   

              
   


(3.93) 

where pc T T    is the tangent specific heat capacity at constant pressure. Therefore, 

from the above equation, one can calculate the increase in temperature associated with 

the energy dissipation during the viscoelastic, viscoplastic, and viscodamage 

deformation processes, and due to the external heat sources and conduction.  

The thermo-mechanical terms in Eq. (3.93) can be obtained using Eqs. (3.44), 

(3.46), (3.52), (3.53), (3.57), (3.66), and (3.77), such that: 
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(3.95) 

  0 1 21 exp( ) vpp Z
T

   
      

 (3.96) 
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where Z T   . The heat flux vector, q , can also be determined using the well-

known Fourier’s heat conduction law, such that: 

 i ij jq k T    (3.98) 

By substituting Eqs. (3.52), (3.94), (3.95), (3.96), (3.97), and (3.98) into Eq. 

(3.93) one realizes that the right hand side of thermo-mechanical heat balance [Eq. 

(3.93)] becomes a function of  viscoelastic strain tensor, veε , effective viscoplastic 

strain, p , damage density,  , and temperature, T . Eq. (3.93) expresses the changes in 

the temperature during the deformation processes. 

3.8. Conclusions 

In this work, a systematic and consistent thermodynamic-based framework for 

constructing a temperature-, time-, and rate-dependent constitutive model for bituminous 

materials, which provides a coupling among temperature, viscoelasticity, viscoplasticity, 

and viscodamage, is presented. 

The viscodamage model is coupled to other parts of the constitutive model by 

using the concept of the effective (undamaged) configuration within the continuum 

damage mechanics framework. Hence, the Helmholtz free energy function is expressed 

in terms of the internal state variables in the effective configuration. 
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This thermodynamic framework which is based on the Clausius-Duhem 

inequality is used to derive the constitutive models presented in Chapter II. It is shown 

that the presented constitutive model is thermodynamically consistent. 

However, as mentioned in Chapter II, the presented constitutive model does not 

include the micro-damage healing effect which makes the constitutive model unable to 

predict reasonable responses in the presence of the rest period. This very crucial issue 

will be discussed for general cases in Chapter IV and for the asphalt mixes in Chapter V.  

 

 

 

 

 

 

 

 

 



 104

CHAPTER IV 

A CONTINUUM DAMAGE MECHANICS FRAMEWORK FOR 

MODELING MICRO-DAMAGE HEALING 

4.1. Introduction 

Followed by Kachanov (1958) pioneering work on continuum damage mechanics, many 

researchers have used the effective configuration concept to model the irreversible 

damage processes in engineering materials. However, experimental observations in the 

last decade have clearly shown that various classes of engineering materials such as 

polymers, biomaterials, and asphalt binder have the potential to heal and retrieve part of 

their strength and stiffness under specific conditions.  

 The intrinsic healing capability of biomaterials and biological systems is a well-

known and well-established fact (e.g. Yasko et al., 1992; Rodeo et al., 1993; Arrington 

et al., 1996; Strauer et al., 2002; Werner and Grose, 2003). Moreover, several procedures 

for synthesizing self-healing polymers are recently developed inspired by these unique 

features of biological systems and materials (e.g. White et al., 2001; Brown et al., 2005; 

Bond et al., 2007; Rong et al., 2007; White et al., 2008; Yin et al., 2008; Yuan et al., 

2008). Another category of the engineering materials that tend to heal is the composite 

materials whose matrix is intrinsically tend to heal at elevated temperatures and during 

the rest periods (Little and Bhasin, 2007; Bhasin et al., 2008; Bhasin et al., 2011). 

Interestingly, from the continuum point of view, the common feature of the healing 

phenomenon in all of these materials (e.g. self-healing polymers and biomaterials) is that 

the induced micro-damages (e.g. micro-cracks, micro-voids) gradually reduce in size and 

subsequently cause the material to recover partially or fully its strength and stiffness. 

Therefore, it seems quite natural to relate the modeling of the healing phenomenon to the 

size and density of the healed micro-damages. 

 The common modeling practice in predicting the damage evolution and growth 

in the context of continuum damage mechanics is to treat the damage nucleation and 

growth analogously to time-independent plasticity by introducing a damage surface 
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(analogous to the yield surface) which determines the damage nucleation criterion and a 

damage evolution function which quantifies the damage density (Kachanov, 1986; 

Lemaître and Chaboche, 1990; Voyiadjis and Kattan, 1990; Krajcinovic, 1996). This 

modeling treatment of continuum damage mechanics yields to the fact that damage does 

not evolve during the unloading where the material point is located in the damage 

loading surface. Subsequently, the stiffness modulus remains constant during the 

unloading resulting in a linear response in the stress-strain diagram during the unloading. 

Figure 4.1 shows a schematic representation of the stress-strain response for a complete 

unloading-loading cycle (e.g. Karsan and Jirsa, 1969). 

 

 

Figure 4.1. Schematic representation of the stress-strain response for a loading (path “AB”), 
unloading (Path “BC”), and reloading (path “CD”) cycle. The stress-strain response during the 

unloading is nonlinear and also the tangent stiffness at the end of the unloading (i.e. UL
,t CE ) is less 

than the tangent stiffness modulus at the beginning of the reloading (i.e. ReL
,t CE ). 

 
As shown schematically in Figure 4.1 and has also been reported in numerous 

experimental studies on engineering materials, the stress-strain response during the 

unloading [path “BC” in Figure 4.1] is nonlinear (e.g. Sinha et al., 1964; Karsan and 
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Jirsa, 1969; Ortiz, 1985; Bari and Hassan, 2000; Mirmiran et al., 2000; Eggeler et al., 

2004; Palermo and Vecchio, 2004; Sima et al., 2008). 

In this work, the nonlinear response of the stress-strain diagram during the 

unloading is related to extra damage growth during the unloading. It should be noted that 

Ortiz (1985) was the first to model the nonlinear response of the stress-strain diagram 

during the unloading by considering the anisotropic damage and crack closure. In this 

work, the damage anisotropy is not included; instead, the damage function is allowed to 

evolve with a slower rate during the unloading to model this distinct behavior.  

Moreover, the arguments in the subsequent sections show that the underlying 

assumptions of this work are physically in line with the fundamental assumptions of  

Ortiz (1985). 

 Moreover, the experimental observations on cyclic loading of several materials 

show a jump in the tangent stiffness modulus at the unloading-loading points [point “C” 

in Figure 4.1] (Sinha et al., 1964; Karsan and Jirsa, 1969; Ortiz, 1985; Hassan et al., 

1992; Eggeler et al., 2004; Sima et al., 2008). In other words, as shown schematically in 

Figure 4.1, the material recovers part of its stiffness at unloading-loading point such that 

the tangent stiffness at the beginning of the subsequent loading cycle [ ReL
,t CE  in Figure 

4.1] is greater than the tangent stiffness modulus at the end of the unloading [ UL
,t CE  in 

Figure 4.1]. This jump in the tangent stiffness at the unloading-loading point becomes 

more significant if rest periods (or unloading times) are introduced between the loading 

cycles. The current study shows that this distinct behavior could be related to micro-

damage healing at low strain levels. In other words, at the end of the unloading, the 

strain levels becomes close to zero such that the faces of the induced micro-damages wet 

each other and retrieve part of their bond strength. The wetting of the micro-damage 

surfaces results in partial healing and subsequently partial recovery in the tangent 

stiffness modulus at unloading-loading point. This phenomenon is usually referred to as 

instantaneous healing (Wool and Oconnor, 1981). More healing will occur (e.g. due to 

cohesion and inter-molecular diffusion process between the micro-crack faces in 

polymers, biomaterials, and bituminous materials) if the wetted surfaces of the micro-
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damages put into rest for a while before the next loading cycle is applied. This 

phenomenon is usually referred to as the time-dependent (or long-term) healing in the 

literature (Wool and Oconnor, 1981).  

 Several phenomenological-based formulations for describing the healing 

phenomena in different materials have been proposed in the literature (e.g. Jacobsen et 

al., 1996; Ramm and Biscoping, 1998; Ando et al., 2002). However, little attention is 

devoted to the proper coupling of the healing to continuum damage mechanics. Miao et 

al. (1995) proposed a constitutive model for compaction of crushed rock salts, Barbero et 

al. (2005) proposed a thermodynamic-based continuum damage-healing constitutive 

model for self-healing composites, and Voyiadjis et al. (2011) extended the work of 

Barbero et al. (2005) by incorporating the isotropic hardening in damage and healing 

models. However, more studies are needed to develop a robust and simple computational 

technique to model the phenomena associated with the micro-damage healing in 

materials that tend to heal. Therefore, this study aims to contribute in filling this gap by 

proposing a micro-damage healing framework in the context of the continuum damage 

mechanics. The proposed framework introduces a healing configuration which enriches 

the continuum damage mechanics theories in modeling the micro-damage healing 

phenomenon. The well-known transformation hypotheses of continuum damage 

mechanics from the effective (undamaged) to the nominal (damaged) configurations are 

extended here to incorporate self-healing. Moreover, analytical relations are derived to 

relate the stiffness moduli in different configurations. Several numerical examples are 

presented in order to demonstrate the capabilities of the proposed framework in 

capturing interesting phenomena such as: (a) the stiffness and strength recovery in cyclic 

loading upon the application of rest periods; (b) the nonlinear response of the stress-

strain diagram during unloading; and (c) the jump in the tangent stiffness modulus at the 

unloading-loading point (Darabi et al., 2011b). 
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4.2. Micro-Damage Healing Configuration 

In the classical continuum damage mechanics (CDM) framework, a scalar variable, the 

damage variable, for the case of the isotropic damage or a higher-order tensor, the 

damage tensor, for the case of the anisotropic damage is usually used to explain the 

degradation behavior of materials due to micro-damage (micro-cracks and micro-voids) 

nucleation and growth [see e.g. Voyiadjis and Kattan (1999) for a comprehensive review 

of the this subject]. For simplicity and without loss of generality, the case of isotropic 

damage is considered here. In this work, the effective (undamaged) configuration is 

generalized to the cases when materials undergo micro-damage healing or partial/full 

recovery of the damaged stiffness. 

 Figure 4.2(a) shows a cylinder under a uniaxial tensile load T  at the current time 

“ t”. During the loading-unloading processes, some new micro-cracks and micro-voids 

nucleate and propagate upon satisfaction of the damage nucleation and growth 

conditions. On the other hand, for certain materials (e.g. polymers, bituminous materials, 

and biological materials) some of these micro-cracks may heal during the resting period 

(or the unloading process). Therefore, one can divide the total cross-sectional area, A , of 

the cylinder into three parts: (a) the area that has not been damaged (i.e. intact area), A , 

which can be considered as the effective (undamaged) area in CDM; (b) the area of 

unhealed cracks and voids, uhA , where damage is considered irreversible; (c) the area of 

micro-cracks and micro-voids that have been healed during the unloading process or the 

rest period, hA . Figure 4.2(b) shows the cross-sectional area of the cylinder at time “ t” 

in the nominal (damaged) configuration.  One can assume that the area of the completely 

healed micro-damages have the same properties of the intact material. Hence, once a 

micro-crack heals completely, it retrieves all of its strength such that its mechanical 

properties become identical to those of the intact material. Figure 4.2(c) shows the 

healing configuration.  
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(a) 

 
               (b)                                                         (c)                                                       (d) 
Figure 4.2. Schematic representation of: (a) the damaged partially healed cylinder in tension; (b) 
the nominal configuration; (c) the healing configuration; and (d) the effective configuration. The 

nominal configuration includes the intact material, unhealed damages, and healed micro-
damages; the healing configuration includes the intact material and the healed micro-damages 

and the effective configuration only includes the intact material. 

, ,uhA A A E  

Nominal (damaged) 
configuration 

Healing 
configuration 

Effective (undamaged) 
configuration 

, ,A E , ,h uhA A A A E  

Remove both healed and unhealed damages (micro-cracks and micro-voids) 

Remove healed damages Remove all unhealed 
damages 

Cross section 

Healed micro-damages, hA  Unhealed micro-damages, uhA  T

T
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This fictitious configuration results when unhealed cracks and voids are removed from 

the damaged configuration. The effective (undamaged) configuration is shown in Figure 

4.2(d). This fictitious configuration includes the materials that have never been damaged 

(intact) during the loading-unloading history. This configuration is identical to the so-

called effective configuration in CDM when healing does not occur. Therefore, one can 

write from Figure 4.2: 

 D uhA A A A A     (4.1) 

 D uh hA A A   (4.2) 

where A , A , and A   are the cross-sectional area in the nominal (damaged), effective 

(undamaged), and healing configurations, respectively; and DA  is the summation of 

both healed micro-cracks and micro-voids, hA , and unhealed micro-cracks and micro-

voids, uhA . 

As it is assumed in CDM, cracks and voids cannot carry load. In fact, load is 

carried by the area of the intact material and the healed micro-damages. Therefore, one 

can assume that the applied forces in the nominal and healing configurations are equal, 

such that: 

 T A A     (4.3) 

where   is the nominal (apparent) stress and   is the stress in the healing configuration 

(true or net stress). In this paper, the superscripts “  ” and “  ” designate the effective 

and healing configurations, respectively. The following definitions are introduced for the 

damage and healing internal state variables, respectively: 

 
DA

A
   (4.4) 

 
h

D

A
h

A
  (4.5) 

For the cases when healing is not considered,   is the classical irreversible damage 

density variable ranging from 0 1  , which is interpreted as the micro-damage 

density such that 0   indicates no damage and 1   indicates complete damage (or 
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fracture). However, when healing is included,   is interpreted as an internal state 

variable representing the damage history such that DA  is the accumulative damaged 

area. On the other hand, h  is the healing internal variable defined as the ratio of the 

accumulative area of healed micro-damages over the accumulative damaged area. 

Therefore, h  represents the healed fraction of the total accumulative damaged area. The 

healing variable ranges from 0 1h  ; 0h   for no healing and 1h   when all micro-

cracks and micro-voids are healed.  

Substituting Eqs. (4.1), (4.2), (4.4), and (4.5) into Eq. (4.3) yields: 

 
1







   (4.6) 

where   is the effective damage density ranging from 0 1eff  , such that: 

  1 h    (4.7) 

such that 0   indicates that either the material has not been damaged yet or all induced 

damages have already been healed; whereas, 1   indicates complete damage (or 

fracture). It should be noted that the effective damage density variable is no longer 

irreversible and can decrease upon micro-damage healing. 

It is noteworthy that the healing variable in Eq. (4.7) has a similar effect to the 

stiffness-recovery parameter introduced in the work of Lee and Fenves (1998) for 

modeling the stiffness recovery in concrete materials during the transition from tension 

to compression loading. However, the physics behind the stiffness-recovery parameter 

by Lee and Fenves (1998) is different than the current proposed micro-damage healing 

variable h . Lee and Fenves (1998) interpreted the area of healed micro-cracks in Eq. 

(4.5), hA , as the area of closed micro-cracks (not healed) during the loading transition 

from tension to compression. Therefore, the current proposed healing variable is more 

general as it can be interpreted as a crack-closure parameter or as a healing parameter, 

but with a different evolution law, depending on the intended application. 

Eqs. (4.6) and (4.7) relate the stress in the healing configuration to the nominal 

stress as a function of the damage and healing internal variables. This expression 
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represents the proper coupling between the damage and healing variables and modifies 

the classical definition of the effective stress in CDM [i.e. / (1 )       when 

healing is not considered (i.e. 0h  )].  

Eq. (4.6) can be simply generalized for three-dimensional cases for the case of 

the isotropic (scalar) damage, such that: 

 
1 (1 )1 h

 
 

 
   (4.8) 

where   is the nominal stress tensor in the damaged configuration and   is the true 

stress tensor in the healing configuration. 

Moreover, the following relationship between the stress tensors in the healing 

and effective configurations will be obtained if one assumes that the tensile forces in the 

effective and healing configurations are the same (i.e. A A    in Figure 4.2), such 

that: 

 
 1 1

1

h


  
   
   (4.9) 

Eq. (4.9) clearly shows that the stress tensors in the healing and effective configurations 

will be the same only for two cases: (1) damage variable is zero (i.e. 0  ), where in 

this case the stress tensors in the effective and healing configurations (i.e.   and  ) will 

be the same as the stress tensor in the nominal configuration (i.e.  ) since damage has 

not started yet; (2) healing variable is zero (i.e. 0h  ), where in this case the stress 

tensors in the effective and healing configurations will be the same since healing is not 

considered. For other cases, the stress tensor in the fictitious effective configuration will 

be always greater than the stress tensor in the healing configuration (i.e.    ). In other 

words, the effective configuration (Figure 4.2(d)) is obtained by removing the healed 

micro-damage areas from the healing configuration (Figure 4.2(c)) such that these 

healed micro-damages can tolerate load and carry stress in the healing configuration. 

Therefore, the stress tensor in the effective configurations should be magnified 

comparing to the stress tensor in the healing configuration in order to compensate for the 

stresses carried by the removed healed micro-damages.  
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In the above, the relations between the stresses in different configurations are 

derived. In the following sections, the relations among the strain tensors and stiffness 

moduli in different configurations will be derived. 

4.3. The Stiffness Moduli in Different Configurations 

As mentioned in previous Section, completely healed micro-cracks and micro-voids 

recover their total strength and stiffness such that they become identical to the intact 

material. Hence, one can assume that the stiffness moduli in the effective and healing 

configurations are the same and equal to the stiffness modulus of the virgin state of the 

material that does not change during the loading-unloading history, such that: 

 t tE E  (4.10) 

where tE  and tE  are the tangent stiffness moduli in the effective and healing 

configurations, respectively. The tangent stiffness modulus is used in this paper instead 

of the commonly used secant stiffness modulus in CDM theories. The nominal tangent 

stiffness modulus is defined as: 

 t

d

d
E




 (4.11) 

The secant stiffness modulus is commonly used in CDM to capture the degradation of 

the stiffness modulus with damage evolution. However, the tangent stiffness modulus 

could capture the nonlinear response of materials easier and is commonly used instead of 

the secant stiffness modulus for the numerical implementation purposes. Figure 3 

schematically illustrates the advantages of using tangent stiffness modulus rather than 

the secant stiffness modulus. Figure 4.3 shows three different paths that point “A” may 

continue on the stress-strain curve. Path (1) represents a path on which the material 

shows hardening behavior; the material goes to the softening region on path (2); and 

path (3) represents a schematic unloading path. The secant stiffness modulus of point 

“A” (i.e. AE ) will be the same for all these three different paths as shown in Figure 4.3. 

However, the tangent stiffness modulus at point “A” for each of these paths will be 

different (i.e. , ,1t AE , , ,2t AE , and , ,3t AE  corresponding to paths (1), (2), and (3), 
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respectively). Therefore, these different paths will clearly be distinguished by looking at 

the tangent stiffness moduli at point “A”. Moreover, physically speaking, a material 

point at a specific time feels the tangent stiffness modulus as the measure of its stiffness. 

In other words, if the tangent modulus at an arbitrary point “c” on the stress-strain curve 

is greater than that of point “d”, it can simply be implied that the material has the 

capacity to build up larger stress increment at point “c” rather than point “d” for the 

same strain increment. However, this simple argument cannot be made by looking at the 

values of the secant modulus at those points unless the history of the secant modulus is 

studied [please see Eq. (4.15)]. 

 

 

Figure 4.3. Schematic illustration of three possible paths for point “A” on the stress-strain curve. 
Path (1) represents the path on which the material shows hardening behavior; material point goes 

to softening region on path (2), and path (3) represents a schematic unloading path. The secant 
stiffness modulus of point “A” will be the same for all these three paths. However, these paths 
can be distinguished by looking at the tangent stiffness modulus of point “A” for each stress-

strain path.  

However, one can simply derive the relationship between the tangent and secant 

stiffness moduli as illustrated in the following developments. For the secant stiffness 

modulus, one can write: 

 σ E : ε=  (4.12) 

A



AE

(1) 

(2) 

(3) 

, ,1t AE

, ,2t AE

, ,3t AE
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where  , , hE E E  is the fourth-order damaged-healed secant stiffness tensor, and   

is the strain tensor in the nominal configuration. Taking the time derivative of Eq. (4.12) 

yields: 

  -1σ = E : ε + E : ε = E + E : εε : ε     (4.13) 

The superimposed dot in this equation and all subsequent equations indicates derivative 

with respect to time. Also, “A-1” indicates the inverse of “A”. On the other hand, for the 

tangent stiffness modulus, one can write: 

 tσ E : ε =  (4.14) 

The relation between the tangent and secant moduli is obtained by comparing Eqs. (4.13) 

and (4.14), such that: 

 1:t
 E E E    (4.15) 

Different expressions for E  are derived next based on adapting three different 

transformation hypotheses to relate the healing configuration to the damaged 

configuration.  

As argued before, the stiffness moduli in the effective and healing configurations 

are the same [Eq. (4.10)] and do not change during the loading-unloading history or as 

the material damages or heals. Hence, one can simply imply that for elastic-damage-

healing materials, the secant and tangent stiffness moduli in both effective and healing 

configurations are the same as the initial undamaged stiffness modulus of the intact 

materials, such that: 

 t t  E E E E   (4.16) 

Moreover, stress and strain tensors and their rates are related through the following 

relationships:  

  E :   ;      t E :      (4.17) 

Taking the time derivative of Eq. (4.8) yields: 

    1 (1 )h h h                  (4.18) 
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 Now, several transformation hypotheses from the healing configuration to the 

damage configuration are discussed. It should be noted that Eqs. (4.9) and (4.16) relate 

the stress tensors and stiffness moduli in the effective and healing configurations. One 

can also establish a general relationship between the strain tensors in the effective and 

healing configurations. Eq. (4.16) yields: 

 1 1   E E        (4.19) 

Substituting Eq. (4.9) into Eq. (4.19) gives: 

 
 1 1

1

h


  
   

   (4.20) 

Eq. (4.20) relates the strain tensors in the effective and healing configurations and shows 

that these two tensors will be the same when healing is not included (i.e. 0h  ) or when 

there is no damage (i.e. 0  ). Otherwise, there will be differences between the strain 

tensors in the effective and healing configurations depending on the levels of damage 

and healing. Also, Eq. (4.20) is true independent of the following postulated 

transformation hypotheses. 

In the next sub-sections, the relationships between the strain tensors and stiffness 

moduli in the nominal (damaged) and healing configurations will be established for 

different transformation hypotheses. Relations between the stress tensors, stiffness 

moduli, and strain tensors in the healing and effective configurations can evidently be 

obtained using Eqs. (4.9), (4.16), and (4.20), respectively. 

4.3.1. Strain Equivalence Hypothesis 

The first commonly used hypothesis in CDM to relate the nominal stress and strain 

tenors (  and  ) to the stress and strain tensors in the undamaged effective 

configuration (  and  ) is the strain equivalence hypothesis which states that the strain 

tenors in the nominal and effective configurations are equal (Lemaître and Chaboche, 

1990). This is the simplest transformation hypothesis that one can think about and makes 

the theoretical derivation and numerical implementation of constitutive models relatively 

easier. However, this hypothesis is inaccurate in case of large deformations and/or 
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significant damage evolution. This hypothesis is extended here for the healing 

configuration such that one can assume that the strain tensors in the nominal and healing 

configurations are equal, such that:  

               (4.21) 

It should be noted that equivalency of the strain tensors in the healing and 

nominal configurations does not imply the equivalency of the strain tensors in the 

effective and healing configurations when healing is included. In fact, Eq. (4.20) relates 

the strain tensors in the healing and effective configurations when healing is included. 

Substituting Eq. (4.18) into 1
t
ε E : σ =  [Eq. (4.14)] yields: 

    1 11 (1 ) t th h h        ε E : σ + E : σ    =  (4.22) 

Substituting Eq. (4.17)2 into Eq. (4.22) yields:  

   1 11 (1 ) t t t th h h            ε E : E : ε E : E : ε       (4.23) 

Furthermore, substituting Eq. (4.21) into Eq. (4.23) gives: 

     11 1 :t th h h           E E     (4.24) 

Eq. (4.24) expresses the changes in the nominal tangent stiffness as a function of the 

damage variable, the healing variable, the strain level, and their rates. As will be shown 

in the subsequent developments, Eq. (4.24) is able to capture the nonlinear response of 

the material during the loading as well as the unloading processes. Another feature of 

Eq. (4.24) is that it takes into account the deformation history by including the strain 

level. This equation can also capture the changes in the stiffness modulus at the loading-

unloading point in the cyclic loading which is triggered by the presence of the strain rate 

in Eq. (4.24). 

One can also simply derive the relation between the secant stiffness modulus and 

its rate in the nominal and healing configurations by substituting Eqs. (4.12), (4.17)1, and 

(4.21) into Eq. (4.8), such that: 

  1 1 h    E E  (4.25) 
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Taking the time derivative of Eq. (4.25) and noting that the secant modulus in the 

healing configuration is constant (i.e. 0E ) imply: 

  h h     E E    (4.26) 

Eqs. (4.25) and (4.26) relate the secant stiffness modulus and its rate in the nominal 

configuration to their corresponding counterparts in the healing configuration. It should 

be noted that Eq. (4.24) can be derived simply by substituting Eqs. (4.16), (4.25), and 

(4.26) into Eq. (4.15). 

4.3.2. Elastic Strain Energy Equivalence Hypothesis 

Another commonly used transformation hypothesis in CDM is the elastic strain energy 

equivalence hypothesis (Cordebois and Sidoroff, 1982; Voyiadjis and Kattan, 1993; 

Lemaître et al., 2000), which is more physically sound comparing to the strain 

equivalence hypothesis (Abu Al-Rub and Voyiadjis, 2003). The elastic strain energy 

densities in the nominal and healing configurations for the elastic-damage-healing 

materials can be written as follows: 

 
1

2
W  :  ;     

1

2
W  :    (4.27) 

The elastic strain energy equivalence hypothesis states that the elastic strain energy 

densities in the nominal and effective configurations are the same (i.e. the elastic strain 

energy is stored in the intact material). This hypothesis is postulated here for the nominal 

and healing configurations, such that: 

 W W   (4.28) 

However, this hypothesis does not imply the equivalency of the elastic strain energy in 

the nominal and effective configurations when healing is included. The relationship 

between the elastic strain energies in the effective, nominal, and healing configurations 

can be obtained using Eqs. (4.9), (4.20), and (4.28), such that: 

 
 

2

1

1 1
W W W

h




 
     
  (4.29) 
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where 2W  :  . Eq. (4.29) shows that the elastic strain energy in the effective 

configuration will be equivalent to that in the nominal and healing configurations only 

when the healing variable is zero (i.e. healing is not included) or when there is no 

damage. Substituting Eqs. (4.8) and (4.27) into Eq. (4.28) yields: 

  1 1 h       (4.30) 

Eq. (4.30) relates the strain tensors in the nominal and healing configurations. The 

relationship between the tangent moduli in the nominal and healing configurations can 

then be obtained by substituting Eqs. (4.12), (4.14), (4.16), (4.17), and (4.30) into Eq. 

(4.18), such that: 

       2 11 1 2 1 1t th h h h                   E : E     (4.31) 

Furthermore, the relations between the secant stiffness modulus and its rate in the 

nominal and healing configurations can be derived by substituting Eqs. (4.12), (4.16), 

(4.17)1, and (4.30) into Eq. (4.8), such that: 

   2
1 1 h    E E  (4.32) 

    2 1 1h h h          E E    (4.33) 

Equivalently, substituting Eqs. (4.32) and (4.33) into Eq. (4.15) confirms Eq. (4.31). 

4.3.3. Power Equivalence Hypothesis  

Another transformation hypothesis to relate strains and stiffness moduli in the nominal 

and effective configurations in the absence of micro-damage healing is the power 

equivalence hypothesis. This hypothesis has been used by several researchers to derive 

constitutive models associated with dissipative processes such as viscoelasticity and 

viscoplasticity. To name a few, Lee et al. (1985), Voyiadjis and Thiagarajan (1997), and 

Voyiadjis et al. (2004) used this hypothesis to couple damage to plasticity and/or 

viscoplasticity models. This hypothesis is extended here to the healing configuration 

(instead of the effective configuration) such that one can assume that the power 

expenditures in the nominal and healing configurations are the same. This hypothesis is 

attractive for mechanisms associated with dissipation processes since the correct 
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estimation of the dissipated energy is generally needed. It is noteworthy that using the 

power equivalence hypothesis along with the concept of the stress in the healing 

configuration is both numerically and physically interesting. Using the concept of the 

stress in the healing configuration eliminates numerical complexities associated with 

direct coupling between the damage and healing constitutive equations and at the same 

time makes these simplifications physically sound since it allows the accurate estimation 

of the dissipated energy in the healing configuration. 

The power expenditures in the nominal and healing configurations can be written 

as: 

 
1

2
  σ : ε ;     1

2
  σ : ε   (4.34) 

Power equivalence hypothesis states that the power expenditure in the nominal,  , and 

healing,  , configurations are the same, such that: 

    (4.35) 

Substituting Eqs. (4.8) and (4.34) into Eq. (4.35) yields: 

   1 (1 )h  ε ε   (4.36) 

which relates the rate of the nominal strain tensor to its rate in the healing configuration. 

Substituting   from Eq. (4.8) along with ε  from Eq. (4.14) into Eq. (4.34)1 gives:  

   11
1 (1 )

2 th     σ : E : σ   (4.37) 

Substituting Eqs. (4.16), (4.17)2, and (4.18) into Eq. (4.37) gives: 

 
 

 

2 1

1

1
1 (1 )

2
1

     1 (1 ) ( )
2

t t

t t

h

h h h



   





    

    

σ : E : E : ε

σ : E : E : ε

 

   
 (4.38) 

Using the power equivalence hypothesis [Eq. (4.35)] along with Eqs. (4.34) and (4.38), 

one obtains the following expression for the tangent moduli: 

       2 11 1 1 1 :t th h h h                   E ε ε E       (4.39) 
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The expressions in Eqs. (4.24), (4.31), and (4.39) show different relations 

between the tangent moduli in the nominal and healing configurations when different 

transformation hypotheses are postulated. Note that the right-hand-side of Eq. (4.39) is 

expressed as a function of the strain tensor, ε , and its rate, ε , in the healing 

configuration. One may still represent the right-hand-side of Eq. (4.39) as a function of 

the strain tensor in the nominal configuration by using Eq. (4.36), such that: 

  
0

1 (1 )
t

h dt  ε ε   (4.40) 

Applying the integration by parts to Eq. (4.40) implies: 

    
0

1 (1 )
t

h h h dt         ε ε ε   (4.41) 

Eqs. (4.30) and (4.41) show that postulating the power equivalence hypothesis yields a 

more general relationship between the strain tensors in the nominal and healing 

configurations as compared to the relations obtained by postulating the elastic strain 

energy or strain equivalence hypotheses. The difference between Eqs. (4.30) and (4.41) 

will be negligible for very slow processes where rate of the healing and damage 

variables are close to zero. Otherwise, there will be significant difference between these 

two expressions. Eq. (4.39) can now be expressed in terms of the nominal strain tensor 

by substituting Eqs. (4.36) and (4.41) into Eq. (4.39), such that: 
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1

1
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E
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 (4.42) 

Furthermore, the relationship between the secant stiffness moduli in the nominal 

and healing configurations can be obtained by substituting Eqs. (4.12), (4.17)1, and 

(4.41) into Eq. (4.8), such that: 

       2 1

0
1 1 1 1 :

t
h h h h dt                       E E     (4.43) 

Moreover, taking the time derivative of Eq. (4.43) yields: 
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(4.44) 

Eqs. (4.39) and (4.42) show the expressions for relating the damaged (nominal) 

tangent stiffness modulus to the stiffness of the intact material as a function of the 

damage density, healing variable, strain, and their rates. These relations can be used to 

capture the nonlinear change in the stiffness during the unloading since during the 

unloading both the strain and the healing variable change. Furthermore, the presence of 

the strain rate enriches Eqs. (4.24), (4.31), and (4.39) to capture the changes in the 

stiffness modulus of the loading-unloading point in the cyclic loading. These important 

features of these equations will be shown in the following section in order to show the 

capabilities of the model in cyclic loading. 

4.4. Damage and  Healing Models and the Numerical Implementation 

4.4.1. Damage and Healing Evolution Functions 

Several examples are presented in this section to show the capabilities of the proposed 

healing framework in capturing the nonlinear response of materials under cyclic loading. 

Recently, Darabi et al. (2011c) and Abu Al-Rub et al. (2010a) have proposed and 

validated rate-dependent damage (viscodamage or delay-damage) and healing models, 

respectively, and coupled those to viscoelasticity and viscoplasticity constitutive models 

to predict the mechanical response of bituminous materials. Simplified forms of these 

models are used in this work to investigate the effect of the healing on the mechanical 

response of elastic-damage-healing materials. The simplified form of the rate-dependent 

damage evolution function in the healing configuration (viscodamage) is given as 

follows (Darabi et al., 2011c): 

  2
1 exp( )vd

eff
th

Y
k

Y
  

 
   

 

   (4.45) 
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where  vd  is the viscodamage viscosity parameter that controls how fast damage 

nucleates and grows, k  is a material constant, eff ij ij      is the effective (or 

equivalent) strain, thY  is the threshold damage force, and Y  is the damage driving force 

which is assumed to have the following simple form (Darabi et al., 2011c):  

 2Y J   (4.46) 

where 1
2 2 ij ijJ s s    is the second invariant of the deviatoric stress in the healing 

configuration with 1
3ij ij kk ijs        being the deviatoric stress and ij  being the 

Kronecker delta.  

The presented viscodamage model in Eq. (4.45) can be treated analogous to 

viscoplasticity models such that the damage variable evolves when the material state is 

on or outside the viscodamage surface. The viscodamage surface can simply be extracted 

from the damage evolution function, Eq. (4.45), such that: 

   2
1 exp( ) 0vd

th effvd
f Y Y k

      


   (4.47) 

where vdf  is the viscodamage loading surface [please refer to Darabi et al. (2011c; 

2011d) for more details]. Hence, the damage variable   evolves when the viscodamage 

surface is equal or greater than zero. 

Since the main aim of this section is to show qualitative effects of micro-damage 

healing on responses of elastic-damage-healing materials, a simple phenomenological-

based healing evolution function is adapted (Abu Al-Rub et al., 2010a), such that: 

   1 1
ahh h     

  (4.48) 

where  h  is the healing viscosity parameter controlling the rate of the micro-damage 

healing, and a  is a material parameter. The following initiation condition is also 

postulated for the healing model: 

 0h h
th efff       (4.49) 
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where hf  is the healing loading surface, h
th  is the healing threshold strain, and eff  is 

the effective strain. Eq. (4.49) assumes that the healing variable evolves when the total 

effective strain is smaller than the healing threshold strain. In other words, the healing 

occurs at very small strains such that the micro-crack faces are close to each other and 

can wet each other in order for healing to occur. Moreover, it should be noted that 

healing cannot occur during the damage process and vice versa (i.e. a micro-crack 

cannot propagate and heal at the same time; either propagates or heals). Hence, rate of 

the healing variable will be zero when damage is evolving (i.e. when 0  ). 

In the following subsections, the effect of assuming rate-dependent damage 

versus rate-independent damage on the mechanical responses will also be investigated. 

Therefore, the following function is assumed to describe the rate-independent damage 

model, such that: 

 exp( )eff
th

Y
k

Y
  

 
  

 


  (4.50) 

The main difference between Eq. (4.45) and (4.50) is that the former is time- and rate-

dependent which considers the loading time as well as the loading rate while the later is 

time- and rate-independent.   

It is noteworthy that the presented models will be used to show qualitative effects 

of damage and healing on the mechanical response of elastic-damage-healing materials. 

Obviously, the evolution functions for the damage and healing models can be different 

for different materials, but similar qualitative trends will be obtained by following the 

above formulated continuum damage mechanics framework considering micro-damage 

healing. 

4.4.2. Numerical Implementation for Different Transformation Hypotheses 

The implementation procedure for the presented elastic-damage-healing model using 

different transformation hypotheses is discussed in this sub-section. However, as it will 

be discussed, the implementation procedure is general and independent of the selected 

evolution functions for the damage and healing models. 
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The use of the concept of the stress in the healing configurations substantially 

simplifies the numerical implementation of the damage and healing models, especially, 

for complex constitutive models where damage and healing models are coupled to 

viscoelasticity and/or viscoplasticity models. In other words, one can update the stress 

tensor in the healing configuration t t  without facing the complexities associated with 

the direct couplings of the damage and healing models to the rest of the constitutive 

model. The updated stress in the healing configuration can then be used to update the 

damage and healing variables and subsequently the nominal stress tensor. It should be 

noted that the nominal strain increment tensor t t as well as the nominal total strain 

tensor t t  at the current time t t  are given at the beginning of each increment. The 

nominal strain tensor and its increment will be the same as those in the healing 

configuration if the strain equivalence hypothesis is used. However, the nominal strain 

tensor and its increment will be different from their corresponding values in the healing 

configuration if either the elastic strain energy equivalence or the power equivalence 

hypotheses are used. Therefore, an iterative scheme is needed to obtain the total strain 

and the strain increment tensors in the healing configuration at time t t  when the 

elastic strain energy equivalence or power equivalence hypotheses are used. The total 

nominal strain tensor and its increment at the current time t t , the values of the 

internal state variables (i.e.  , h , and  ) at previous time t , and the stress tensors in the 

nominal and healing configurations at previous time t  are known. The objective is to 

update the current stress tensors in the nominal and healing configurations as well as the 

strain tensor in the healing configuration at the current time t t . Hence, one can start 

with a trial strain tensor in the healing configuration when the elastic strain energy 

equivalence hypothesis is used, such that: 

  , 1tr t t t t t      (4.51) 

Similarly, one can start with a trial strain increment in the healing configuration when 

the power equivalence hypothesis is used, such that: 

  , 1tr t t t t t       (4.52) 
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Subsequently, the total trial strain tensor in the healing configuration can be obtained for 

the power equivalence hypothesis [using Eq. (4.52)], such that:  

 , ,tr t t t tr t t        (4.53) 

The trial strain in the healing configuration [Eq. (4.51) for the elastic strain energy 

equivalence hypothesis; Eqs. (4.52) and (4.53) for the power equivalence hypothesis] 

can then be fed to the Hooke’s law [Eq. (4.17)] to update the stress in the healing 

configuration. The next step is to calculate the damage and healing variables based on 

the obtained trial strain and stress tensors in the healing configuration. The damage 

density can then be obtained by calculating the damage density rate using Eq. (4.45), 

such that: 

 t t t t t t       (4.54) 

The same procedure can be applied to calculate the healing variable. In other 

words, the rate of the healing variable t th   (if the healing criterion is met) should be 

calculated first using Eq. (4.48). However, as mentioned earlier, healing does not occur 

during the damage process and vice versa. Hence, the healed area hA  remains constant 

during the damage evolution. However, during the healing process both the healing area 

hA  and the total damage area D h uhA A A   which is the summation of the healed and 

unhealed damage areas will also evolve. Taking the time derivative of Eq. (4.5) and 

making use of Eq. (4.4) yield the following relations for the updated healing variable: 

 
;                  0

;            0

t
t t t t t

t t

t t t t t t t

h h

h h h t

 




 


  


 


    



 
 (4.55) 

The new trial strain tensor in the healing configuration will then be recalculated using 

updated damage and healing variables. At the end of the iteration, the new and old 

values of the strain tensor in the healing configuration will be compared to check the 

convergence. Figure 4.4 shows the flowchart for implementation of the presented elastic-

damage-healing constitutive model using different transformation hypotheses. 
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Figure 4.4. A flowchart showing the general finite element implementation procedure of the 
elastic-damage-healing model using different transformation hypotheses. 
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4.5. Numerical Results and Examples 

The presented elastic-damage-healing model is implemented in the well-known 

commercial finite element code Abaqus (2008)  via the user material subroutine UMAT. 

The finite element model considered here is simply a three-dimensional single element 

(C3D8R) available in Abaqus. 

4.5.1. Example 1: Different Transformation Hypotheses 

The effect of postulating different transformation hypotheses on the mechanical 

responses is investigated in this subsection. The rate-dependent damage and healing 

models [Eqs. (4.45) and (4.48)] along with the model parameters listed in Table 4.1 are 

used for the examples presented in this section. 

 

Table 4.1. Model parameters associated with the presented elastic-damage-healing constitutive 
model. 

E (GPa)     vd (s-1) k  thY (MPa) h (s-1) a  h
th  

2 0.25 0.25 5 10-7 75 2 0.03 2 0.001 

 

 The first simulated example is the uniaxial constant strain rate test (i.e. strain-

controlled uniaxial test). The strain rate is selected as 0.005/sec. The loading history for 

this test is shown in Figure 4.5(a). Therefore, during this numerical test, no healing is 

expected. The stress-strain responses using different transformation hypotheses are 

shown in Figure 4.5(b). Figure 4.5(b) shows that the response of all transformation 

hypotheses is close to each other at small strains. However, these responses deviate 

when the strain and subsequently the damage density increase. Figure 4.5(b) shows 

different responses for the peak point of the stress-strain diagram and the post peak 

region in the stress-strain diagram when different transformation hypotheses are 

postulated. Furthermore, it shows that the stress-strain response using the power 

equivalence hypothesis lies between the numerical results from the strain equivalence 

and elastic strain energy equivalence hypotheses.  
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  (b)                                                                               (c) 

 
  (d)                                                                               (e)  

Figure 4.5. Model predictions for a uniaxial constant strain rate test using different 
transformation hypothesis. (a) Loading history; (b) stress-strain responses; (c) ratio of the elastic 
strain energy in the healing configuration over that in the nominal configuration; (d) ratio of the 

expended power in the healing configuration over that in the nominal configuration; and (e) 
tangent stiffness moduli. 
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The ratio of the elastic strain energy and the expended power in the healing 

configuration to their corresponding values in the nominal configuration for different 

transformation hypotheses are plotted in Figures 4.5(c) and 4.5(d), respectively. Figure 

4.5(c) shows that both the strain equivalence and power equivalence hypotheses predict 

higher values for the elastic strain energy in the healing configuration comparing to their 

corresponding values in the nominal configuration. However, this deviation is much 

significant when the strain equivalence hypothesis is used. On the other hand, Figure 

4.5(d) shows that the strain equivalence hypothesis predicts larger values for the 

expended power in the healing configuration comparing to its corresponding value in the 

nominal configuration; whereas, the elastic energy equivalence hypothesis predicts 

lower values for the expended power in the healing configuration comparing to that in 

the nominal configuration. However, it should be noted that the main purpose of using 

the fictitious healing and/or effective configurations along with a specific transformation 

hypothesis is to make the implementation simpler while the underlying physics is 

preserved. Also, a proper transformation hypothesis is a one that leads to a constitutive 

model that is equivalent when expressed in both the nominal and healing configurations 

since both configurations are tools to represent the same material behavior. It is also 

interesting to look at this problem from the thermodynamic point of view. As stated by 

Ziegler (1977) and have used by many other researchers (Coleman and Gurtin, 1967; 

Rice, 1971; Ziegler, 1983; Ziegler and Wehrli, 1987; Fremond and Nedjar, 1996; Collins 

and Houlsby, 1997; Shizawa and Zbib, 1999) the constitutive equations for a material 

are fully determined by the knowledge of the Helmholtz free energy and a dissipation 

function such as the rate of the energy dissipation. Therefore, two systems will be 

thermodynamically equivalent if they predict equivalent responses for an energetic 

function such as the stored energy and for a dissipative function such as dissipated 

power. As shown in Figures 4.5(c) and 4.5(d), none of these hypotheses predict the same 

value for both of these two energetic measures (i.e. strain energy and energy power) 

functions in nominal and healing configurations. Therefore, qualitative investigation of 
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the responses of each transformation hypothesis is extremely important in deciding the 

properness of a specific transformation hypothesis for a specific type of material. 

For example, one can use the strain equivalence hypothesis for simplicity if the damage 

density is expected to be low. On the other hand, one may use the elastic energy 

equivalence hypothesis for the elastic-damage materials where the elastic strain energy 

could be the driving force for the damage evolution. Finally, the power equivalence 

hypothesis could be used for complex constitutive models including viscoelasticity and 

viscoplasticity in which case the elastic strain energy is negligible comparing to the total 

strain energy and also the dissipative power and energy becomes of great interest. 

Development of a transformation hypothesis that yields to the thermodynamically 

equivalent systems in the healing and nominal configurations will be the focus of a 

future work by the authors. 

 Finally, the tangent stiffness moduli for different transformation hypotheses are 

plotted in Figure 4.5(e). The negative values of the tangent stiffness modulus show that 

the material is in the post peak (softening) region.  

The above simulation is repeated for the case of a uniaxial constant stress rate 

test as well (i.e. stress-controlled uniaxial test). The loading history, stress-strain 

response, the ratio of the elastic energy in the healing and nominal configuration, the 

ratio of the power expenditure in the healing and nominal configurations, and the tangent 

stiffness using different transformation hypotheses are shown in Figures 4.6(a)-4.6(e), 

respectively. Comparing Figures 4.5 and 4.6 yield similar observations for both uniaxial 

constant strain rate test and uniaxial constant stress rate test. 

The predicted secant stiffness moduli using different transformation hypotheses 

are plotted in Figure 4.7 for both uniaxial constant strain rate and uniaxial constant stress 

rate tests. Figure 4.7 shows that the predicted secant moduli using the strain equivalence 

and elastic strain energy equivalence hypotheses are both path-independent. 
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  (b)                                                                               (c)  
 

 
  (d)                                                                               (e)  

Figure 4.6. Model predictions for a uniaxial constant stress rate test using different 
transformation hypothesis. (a) Loading history; (b) stress-strain responses; (c) ratio of the elastic 
strain energy in the healing configuration over that in the nominal configuration; (d) ratio of the 

expended power in the healing configuration over that in the nominal configuration; and (e) 
tangent stiffness moduli. 
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 This behavior is expected according to Eq. (4.25) and Eq. (4.32) for strain 

equivalence and elastic strain energy equivalence hypotheses, respectively. In fact, Eq. 

(4.25) shows that the secant stiffness modulus changes linearly as a function of the 

damage density for strain equivalence hypothesis; whereas, Eq. (4.32) shows that the 

secant stiffness modulus changes quadratic as a function of the damage density when the 

elastic strain energy hypothesis is postulated. On the other hand, the secant stiffness 

modulus becomes path-dependent when the power equivalence hypothesis is used, as 

shown in Figure 4.7. 

 

 

Figure 4.7. Model predictions of the secant stiffness moduli for both uniaxial constant stress and 
uniaxial constant strain rate tests using different transformation hypotheses. The secant stiffness 

modulus is path-independent when strain equivalence or elastic strain energy equivalence 
hypotheses are used. However, secant stiffness modulus depends on loading history when the 

power equivalence hypothesis is used. 

This behavior is also expected by investigating Eq. (4.43). Eq. (4.43). These 

equations clearly show that the secant stiffness modulus is a function of the strain and 

strain rate in addition to the damage density value when the power equivalence 

hypothesis is assumed. This is a very interesting conclusion that needs to be verified 

experimentally, which will be the focus of a future work. Such experimental verification 
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will be useful to decide which transformation hypothesis is more physically sound since 

this issue is still an open area of research. Many argue that the strain energy equivalence 

hypothesis is more physically sound than the strain equivalence hypothesis (e.g. 

Lemaitre and Chaboche, 1990; Voyiadjis and Kattan, 1999; Abu Al-Rub and Voyiadjis, 

2003). In fact, the current comparison, shows that the power equivalence hypothesis is 

more physically attractive since it takes into consideration the loading path-dependency 

of damage evolution.   

 The above examples show how assuming different transformation hypotheses 

affect the numerical results. Therefore, each of these transformation hypotheses can be 

selected according to the importance of the specific quantities for a specific material. For 

example, the strain equivalence hypothesis can be used for simplicity when the damage 

density is not expected to have a significant value. The elastic energy equivalence 

hypothesis can be used for the elastic-damage materials where the elastic strain energy 

could be the driving force for the damage evolution. Finally, one may use the power 

equivalence hypothesis for constitutive models with the dissipative nature (such as 

viscoelasticity and viscoplasticity) where the elastic strain energy is negligible 

comparing to the total strain energy and also the dissipative power and energy becomes 

of great interest. 

4.5.2. Effect of Healing on Stiffness Recovery 

In this subsection, the effect of the healing on the mechanical response of the elastic-

damage-healing materials is investigated. The elastic strain energy equivalence 

hypothesis is used in this example since in the current elastic-damage-healing model the 

driving force for the damage evolution is related to the elastic strain energy. However, 

adapting the other transformation hypotheses will not affect the qualitative results 

obtained in this subsection. The rate-dependent damage and healing models are used 

[Eqs. (4.45) and (4.48)]. The model parameters used in this section are listed in Table 

4.1. The loading history shown in Figure 4.8 can be summarized as follows: 

- The material is loaded with a constant strain rate until it is partially damaged (up to 

3% strain in this case). 
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- The load is removed with the same rate until the strain reaches zero. 

- Material remains in rest for time Rt  such that the induced micro-damages can 

partially heal. As explained before, Eq. (4.48) is time-dependent. Hence, more 

damages will heal for longer rest periods. Therefore different rest periods Rt  are 

examined to investigate the effect of different healing levels on the stiffness recovery 

during the reloading. 

- Material is reloaded with the same strain rate until significant amount of damage is 

developed. 

 

 

Figure 4.8. Loading history for the example simulated in Section 4.5.2. Different rest times Rt  

are introduced between the loading cycles to investigate the effect of the healing level on 
stiffness and strength recovery. 

 Four different rest periods of 0, 50, 200, and 500 sec are assumed in this 

example. Figures 4.9(a) and 4.9(b) show the stress-time and stress-strain responses for 

different rest periods Rt , respectively. As shown in Figures 4.9and 4.10, the material 

recovers part of its strength and also restores its ability to carry more stress during the 

reloading as the rest period increases (or equivalently as the healing variable increases). 
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Moreover, the mechanical response during the reloading becomes closer to the response 

of the monotonic loading as the rest period increases.  

 

        
(a) 

 

 
(b) 

Figure 4.9.  (a) Stress-time; (b) stress-strain diagrams for the loading history shown in Figure 
4.7. Model predictions show more recovery in the stiffness during the reloading as Rt  and 

consequently the healing variable increases. 
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(a) 

 
(b) 

Figure 4.10.  (a) Effective damage density versus the normalized rest time; smaller values for 
the effective damage density at the end of the rest time as the rest time increases; and (b) healing 

variable versus the normalized rest time; more damages heal as the rest time increases. 
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A normalized rest time / Rt t   is defined to make the comparison of the 

effective damage density,  , and healing, h , variables for different rest periods easier. 

Hence, 0   indicates the start of the rest period, whereas 1   indicates the end of the 

rest period. The effective damage density and healing variables are plotted versus the 

normalized rest time   in Figures 4.10(a) and 4.10(b), respectively. Figure 4.10(a) 

shows that at the beginning of the rest period the effective damage density is the same 

for all cases. However, the effective damage density variable decreases during the rest 

period as a result of healing. Figure 4.10(a) shows that the longer the rest period, the 

lower the effective damage density at the end of rest period. One would expect that the 

effective damage density to reach zero and the healing variable to reach one if long 

enough rest period is introduced between the loading cycles. In other words, the model 

shows that the material can retrieve all its strength and stiffness and as a result becomes 

identical to the virgin state of the material if put in rest for a long enough time. This can 

also be explained by looking at Figure 4.9(b) showing that for long rest periods the 

material response during the reloading converges to the response of the monotonic 

loading. 

4.5.3. Effect of Healing and Damage Models on Predicting the Fatigue Damage 

Other features of the healing model as well as the consequences of postulating rate-

dependent versus rate-independent damage models are investigated in this subsection. 

To this end, the stress response for a cyclic loading shown in Figure 4.11 is investigated. 

It should be mentioned that the elastic strain energy equivalence hypothesis is 

used for this examples and the ones presented in the subsequent sections. The selection 

of a specific transformation hypothesis will not affect the qualitative results obtained in 

the following examples. 
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Figure 4.11. The loading history for the examples presented in Section 4.5.3. 

4.5.3.1. Rate-independent damage model 

The damage function presented in Eq. (4.50), with 75 10    and 50k  , is used for 

the rate-independent damage model. The stress-strain response and the damage density 

versus time for the elastic-damage model are shown in Figures 4.12(a) and 4.12(b), 

respectively. As shown in Figure 4.12(a), the unloading occurs linearly and no hysteresis 

loop occurs after the first loading cycle. In other words, both loading and unloading 

occur linearly after the first loading cycle. In this work, the damage kinematic hardening 

is not considered. Therefore, the damage model is a function of strain and stress level in 

the healing configuration which makes the damage variable to evolve only if the strain 

and/or stress level in the healing configuration exceed its maximum corresponding value 

in the first loading cycle. Obviously, the stress and strain reach its maximum value 

during the first loading cycle. Hence, damage does not evolve during the unloading as 

well as the next loading cycle which makes the presented rate-independent model 

incapable of predicting the nonlinear response during the unloading. 
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(a) 

 
(b) 

Figure 4.12. Model response when using the rate-independent damage model. (a) Stress-strain 
response; after the first loading cycle both loading and unloading are linear. (b) Damage density 

versus time; damage density evolves only during the first loading cycle and remains constant 
during the unloading as well as during the next cycles. 
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damage force thY . However, damage evolves with slower rate during the unloading. The 

stress-strain response and evolution of the effective damage density [i.e.  1 h    

where 0h   since healing is not incorporated] are shown in Figures 4.13(a) and 4.13(b), 

respectively.  Figure 4.13(a) shows that the model gives a nonlinear response during the 

unloading as well as during the loading. This is attributed to the fact that the damage 

density can also evolve during the unloading, as shown in Figure 4.13(b). 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.13. Model responses for the rate-dependent damage model when healing is not 
considered. (a) Stress-strain response; model predicts nonlinear response during the unloading 
and loading, hysteresis loops form and energy dissipates at each cycle; (b) Effective damage 

density versus time; damage density evolves during both loading and unloading at each cycle; 
however, the rate of damage evolution decreases as the number of loading cycles increases. 
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It should be noted that Ortiz (1985) was the first to model the nonlinear response 

of the stress-strain diagram during unloading by considering the anisotropic damage and 

crack closure effects. The fundamental assumptions underlying his pioneering work are 

schematically illustrated in Figure 4.14. 

  

 

Figure 4.14. Illustration of the anisotropic damage which has been postulated by Ortiz (1985) to 
model the nonlinear stress-strain response during the unloading. (a) A schematic RVE with two 
embedded cracks “A” and “B”; (b) during the loading crack “B” opens and contributes to the 
degradation of the stiffness; and (c) during the unloading crack “A” opens while partial crack 
closure occurs at crack “B”. However, the net effect causes the stiffness modulus to degrade 

during the unloading. 

Figure 4.14(a) shows a schematic RVE with two embedded cracks “A” and “B” 

in vertical and horizontal directions, respectively. The RVE presented in Figure 4.14(a) 

is subjected to a uniaxial loading-unloading history. During the loading phase [Figure 

4.14(b)], crack “B” opens and starts growing which subsequently causes the stiffness 

modulus of the material to degrade. However, while crack “B” starts closing and reduces 

in size during the unloading phase [Figure 4.14(c)], crack “A” opens and starts growing 

as shown in Figure 4.14(c). The reduction in size of crack “B” contributes to the partial 

recovery in the stiffness modulus, whereas, the opening of crack “A” during the 

unloading contributes to the degradation of the stiffness modulus. Therefore, the change 

in the stiffness modulus during the unloading is a competing mechanism between the 

effect of the crack closure and crack opening on the stiffness during the unloading. 
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According to the experimental observations, the tangent stiffness modulus usually 

decreases gradually during the unloading which is an indication of greater contribution 

of the crack opening during the unloading (e.g. Sinha et al., 1964; Karsan and Jirsa, 

1969; Ortiz, 1985; Hassan et al., 1992; Eggeler et al., 2004; Sima et al., 2008). In this 

work, the anisotropic damage is not considered. However, the nonlinear response during 

the unloading is modeled by allowing a time-dependent degradation during the 

unloading through a delay-damage (i.e. viscodamage) evolution law. The net 

contribution of the closure of crack “A” and opening of crack “B” (Figure 4.14) on the 

stiffness reduction during the unloading is captured by allowing the material to gradually 

feel the presence of existing cracks during the unloading through crack closure/opening 

processes. In other words, at the onset of unloading the material memorizes the damaged 

stiffness from the previous loading cycle such that the presence of the newly developed 

micro-cracks during the current loading cycle is not felt yet by the material. However, 

upon more unloading a gradual opening/closure of existing cracks occurs so that the 

material starts gradually feel the presence of those newly developed cracks that will 

subsequently cause a gradual stiffness reduction until the complete unloading as 

schematically shown in Figure 4.1. 

 Consequently, one may argue that the commonly observed nonlinear response in 

the stress-strain diagram during the unloading could be due to more damage 

accumulation. However, careful and extensive experimental measurements should be 

conducted before one may prove this argument for a specific type of material. Moreover, 

Figure 4.13(a) shows that when damage is allowed to evolve during the unloading, 

hysteresis loops form for each loading-unloading cycle. Hence, energy dissipation 

continues even after the first loading-unloading cycle which could trigger the fatigue 

damage. 

The experimental investigations on the cyclic loading of several materials also 

show a jump in the tangent stiffness modulus at the unloading-loading points (e.g. point 

“A” in the loading history presented in Figure 4.11) (e.g. Sinha et al., 1964; Karsan and 

Jirsa, 1969; Ortiz, 1985; Hassan et al., 1992). In other words, the tangent stiffness at the 
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end of the unloading is usually less than the tangent stiffness at the beginning of the next 

reloading. However, the rate-dependent damage model is not able to predict this 

phenomenon as shown in Figure 4.13(a). 

4.5.3.3. Rate-dependent damage and healing model 

The rate-dependent damage and healing models presented respectively in Eqs. (4.45) and 

(4.48) are used in this section. The damage model parameters are as listed in Table 4.1. 

However, the healing model parameters are modified to expedite the healing evolution (

10.8 sh   , 1a  , 0.001h
th  ) in order to magnify the healing effect. The stress-strain 

response, evolution of the effective damage density [i.e.  1 h   ], and the evolution 

of the healing variable are shown in Figures 4.15(a), 4.15(b), and 4.15(c), respectively. 

Figure 4.15(a) shows the model’s capability in predicting the nonlinear responses during 

the unloading. It also shows the formation of hysteresis loops for each loading cycles. 

However, interestingly, the model shows the jump in the tangent stiffness at unloading-

loading point (e.g. point “A” in Figure 4.11) when healing is included (this jump can be 

seen more clearly in Figure 4.9(b) where the tangent stiffness at the end of unloading is 

less than that at the beginning of the reloading when healing is considered). Moreover, 

the hysteresis loops converge to a single loop at high loading cycles and tend to stabilize 

as shown in Figure 4.15(a) [Figure 4.15(a) shows that the hysteresis loop for loading 

cycles 5-7 are very close together and tend to converge to a single loop]. As mentioned 

before, the healing condition presented in Eq. (4.49) indicates that the healing variable 

starts evolving once the total effective strain is less than the threshold healing strain. 

Hence, in the regions close to unloading-loading point (e.g. point “A” in Figure 4.11) 

where strain is close to zero, the healing variable increases and subsequently the 

effective damage density decreases. Therefore, the material recovers part of its strength 

and stiffness at unloading-loading point that causes the stiffness to show a jump at this 

point. This observation can also be explained by looking at the effective damage density 

variable. As shown in Figure 4.15(b), the effective damage density reaches a plateau as 

the number of loading cycle increases. In other words, the newly nucleated micro-
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damages at large number of loading cycle heals at unloading-loading point, and hence, 

the effective damage density reaches a plateau where no more damage accumulation 

occurs during the next loading cycle. It also shows that, unlike the commonly postulated 

assumptions in CDM, the effective damage density is reversible as a result of micro-

damage healing. Therefore, one may argue that the jump in stiffness at unloading-

loading points might be due to micro-damage healing at low strain levels. Again, careful 

experimental tests should be conducted to prove this argument. Figure 4.15(c) shows 

that the healing variable decreases during the loading. This decrease can be explained 

according to Eq. (4.55). During loading, the area of unhealed damages uhA  increases. 

Therefore, although the area of the healed damages hA  does not change during the 

loading, the healing variable decreases since it is defined as the ratio of the healed 

damages’ area over the total damaged area (i.e. h Dh A A ).  

 

 
Figure 4.15. Model response for the rate-dependent damage and healing models. (a) Stress-

strain response; the hysteresis loops tend to converge to a single one as the number of loading 
cycles increases and model predictions also show the jump in the tangent stiffness modulus at 

unloading-loading point. (b) Effective damage density versus time; the effective damage density 
decreases during the unloading as a result of healing and reaches a plateau at large number of 

loading cycles. (c) Healing variable versus time; healing variable increases at small strain levels 
(close to unloading-loading points), and healing variable decreases during the loading since the 

total damaged area increases. 
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Figure 4.15. Continued. 

4.6. Conclusions 

A novel continuum damage mechanics-based framework is proposed in this paper to 

enhance the continuum damage mechanics theories in modeling the micro-damage 

healing phenomenon in materials that tend to self-heal. This framework is proposed by 
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extending the concept of the effective configuration and effective stress to the healing 

configuration. 

Three well-known transformation hypotheses of the continuum damage 

mechanics theories (i.e. strain, elastic strain energy, and power equivalence hypotheses) 

are also extended for the materials with healing ability. Analytical relations are derived 

for each transformation hypothesis to relate the strain tensors, secant stiffness moduli, 

and tangent stiffness moduli in the damaged (nominal) and healing configurations. 

The presented examples show that the proposed healing framework captures the 

recovery in strength and stiffness modulus when healing occurs. The presented example 

on the effect of rest periods between loading cycles show that the model predicts more 

recovery in the stiffness and strength when the rest time increases such that the material 

can recover even all of its strength and stiffness if put in rest for a long enough time. 

It is argued that the commonly observed nonlinear responses during the 

unloading in the stress-strain response can be modeled using the rate- and time-

dependent damage models. Therefore, it is implied that these nonlinear responses could 

be because of more damage accumulation during the unloading. 

It is also shown that the jump in the tangent stiffness modulus at unloading-

loading points might be related to micro-damage healing at very small strains. This 

framework will be used to model the micro-damage healing in asphaltic materials in the 

next chapter. It will be shown that the inclusion of the micro-damage healing 

significantly enhances the prediction of the fatigue life in asphalt mixes. 
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CHAPTER V 

A MICRO-DAMAGE HEALING MODEL THAT IMPROVES 

PREDICTION OF FATIGUE LIFE IN ASPHALT MIXES 

5.1. Introduction 

As mentioned in Chapters I, II, and IV, various classes of engineering materials 

including asphalt binders and asphalt mixes have the potential to heal and retrieve part of 

their strength and stiffness with time. In this study, a continuum-based healing model is 

proposed in the light of the previous micromechanical and fracture-based models in 

order to close the gap in the development of a comprehensive constitutive model for 

accurate prediction of the fatigue life of asphaltic materials. The effect of healing is 

incorporated into the model by introducing the effective damage density parameter in 

which micro-damage healing is considered. This effective damage density is no longer 

irreversible. In other words, the effective damage density can decrease during the rest 

periods. Consequently, with this effective damage density parameter included, the 

continuum model has the capability of capturing changes in material properties such as 

strength and stiffness increases during rest period. In addition, a time-dependent 

evolution law for the healing parameter is proposed. The proposed evolution law 

possesses three model parameters, one of which is directly linked to  previous 

micromechanical studies (Schapery, 1989; Little and Bhasin, 2007). 

 The proposed healing model is then coupled to viscoelastic, viscoplastic, and 

viscodamage models to enhance that model’s ability to capture the effect of micro-

damage healing and its impact on the mechanical response of asphalt mixes subjected to 

repeated loadings in both tension and compression. It is shown that considering the 

effect of micro-damage healing significantly enhances the ability of the model to predict 

responses under repeated loading during which variable unloading schemes are 

introduced. The model predictions show that the fatigue life increases as the rest period 

increases (Abu Al-Rub et al., 2010a). 
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5.2. Healing Natural Configuration 

In classical CDM, the stresses in a fictitious undamaged (but not healed) configuration 

are related to the stresses in the nominal (damaged) configuration as follows: 

 
1

ij
ij








 (5.1) 

where   is the undamaged stress tensor,   is the damaged (nominal) stress tensor, and 

  is the so-called damage variable or damage density. The damage process is primarily 

assumed to be irreversible in continuum damage mechanics. Hence, an increasing 

function with time is usually postulated for describing the damage variable   

(Kachanov, 1958, 1986; Lemaître, 1992; Kattan and Voyiadjis, 1993; Krajcinovic, 1996; 

Abu Al-Rub and Voyiadjis, 2005b).  

 However, as discussed in Chapter IV, some engineering materials and 

specifically asphalt mixtures have the potential to heal and recover part of their strength 

and stiffness under specific conditions such as resting periods during repeated or fatigue 

loading. Hence, a proper CDM framework should be developed in order to describe the 

changes in the material’s microstructure during the healing process (see Figure 5.1). 

 

 

Figure 5.1. Extension of the effective stress concept in continuum damage mechanics to 
damaged-healed materials. 
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Therefore, the micro-damage healing framework proposed in Chapter IV is adopted to 

define a natural configuration named the healing configuration as shown in Figure 5.1. 

In this natural configuration, one can simply define an effective damage density, 

 , that considers the density of healed micro-cracks and micro-voids as follows: 

  1 h    (5.2) 

where h  is referred to in this paper as the micro-damage healing internal state variable 

since it defines the density of healed micro-cracks and micro-voids. Using the definition 

proposed in Eq. (5.2), one can replace the definition of the effective stress in Eq. (5.1) by 

another effective stress that considers micro-damage healing, such that: 

 
 1 11

ij ij
ij h

 



 

 
   (5.3) 

where   is the stress tensor in the healing configuration as demonstrated in Figure 5.1. 

In the above and subsequence, the superimposed “  ” designates the healing 

configuration of the material. Note that when 0h   (i.e.   ), Eqs. (5.1) and (5.3) are 

identical which implies that no healing has occurred in the material. On the other hand, 

when 1h   (i.e. 0  ), the nominal stress tensor   and the effective stress tensor in the 

healing configuration   are the same, which implies that all micro-damage has healed; 

and hence, the material has completely recovered its strength and stiffness. Moreover, 

one notice that when the material is initially undamaged, 0h    and    . 

 It is assumed here that once a material is damaged, further loading only affects 

the portion of the material that is intact and partially or completely healed. In other 

words, further loading is carried out by the material in the healing configuration shown 

in Figure 5.1. Hence, in the subsequent developments, the constitutive equations are 

expressed in the healing configuration. 
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5.3. Constitutive Model 

5.3.1. Thermo-Viscoelastic-Viscoplastic-Viscodamage Model 

The viscoelastic-viscoplastic-viscodamage constitutive model remains the same 

as presented in Chapter II with the difference that they should be represented in the 

healing configuration instead of the effective (undamaged) configuration. In other words 

one can simply replace the superimposed “  ” by “  ” in order to represent the thermo-

viscoelastic-viscoplastic-viscodamage model in the undamaged-healed configuration 

(please refer to Chapter II for a complete detail on the constitutive model). Therefore, in 

order to avoid the repetition, the thermo-viscoelastic-viscoplastic-viscodamage 

constitutive model is not presented in this chapter. 

5.3.2. Proposed Micro-Damage Healing Model 

Wool and O’connor (1981) proposed a phenomenological-based theory for the crack 

healing in polymers. They defined a macroscopic recovery parameter that relates the 

healing at the micro-scale to the changes in the mechanical properties of polymers at the 

macro scale. They introduced the macroscopic recovery parameter   as the ratio of the 

mechanical properties of the material such as the fracture stress, the failure strain, the 

tensile modulus, and the fracture energy subjected to a healing history over the 

corresponding mechanical properties of the material in the original state (Wool and 

Oconnor, 1981). They defined   through the following convolution integral: 

    ,t

I

d X
t d

d

 
 


     (5.4) 

where  I t  is an intrinsic healing function that incorporates wetting (i.e. the free 

surfaces of a crack get closer and touch each other) and diffusion (i.e. inter-molecular 

flow of matter) and defines the rate at which the two wetted surfaces heal and recover 

part of their original strength. Therefore, the intrinsic healing function is additively 

decomposed into an intrinsic healing due to short-term wetting 0
I , which is controlled 

by the surface energy, and the intrinsic healing due to long-term diffusion, d
I . 
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Moreover,  ,X t  in Eq. (5.4) is defined as the wetting distribution function. Wool and 

O'connor (1981) also investigated two cases for  ,X t ; instantaneous wetting and 

constant rate wetting. In the case of instantaneous wetting, the two crack surfaces touch 

each other immediately which implies: 

    ,t X t   (5.5) 

where  t  is the Dirac-delta function. As a result, the macroscopic recovery parameter 

  in Eq. (5.4) and the intrinsic healing function become identical, such that: 

    0 d
I I It t       (5.6) 

However, for a constant rate of wetting one can write: 

    , wt X k U t   (5.7) 

where wk  is the wetting rate and  U t  is the Heaviside step function (i.e. 1U   for 

0t   and 0U   for 0t  ). In this case, the macroscopic recovery parameter   can be 

expressed as: 

  0 d
w Ik t t     (5.8) 

where  d t  is the component of the macroscopic recovery parameter due to diffusion. 

Power or exponential expressions can be assumed for d  such that 2
1

cd c t   or 

1 2[1 exp( )]d c c t    , respectively, where 1c  and 2c  are material parameters. 

Comparing Eqs. (5.6) and (5.8) reveals that the wetting component of the macroscopic 

recovery parameter is time-independent in case of instant wetting and time-dependent 

for the case of constant wetting rate. Using Eq. (5.6), Eq. (5.8), or another expression 

depends on how experimental data shows the variation of   with the healing time. 

Therefore, it is obvious that Eqs. (5.6) or (5.8) are fitting functions that can be 

empirically assumed with a large number of material constants without explicit 

consideration of the driving forces for healing.     

On the other hand, Schapery (1989) has developed a model for rate of crack size 

reduction ba  in linear, isotropic, viscoelastic materials based on fracture mechanics. He 
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related ba  to fundamental material properties such as the size of the fracture processed 

zone,  , the surface energy,  , the interface bond strength, b , the Poisson’s ratio  , 

and the viscoelastic material properties. It is noteworthy to mention that in the 

Schapery’s formulation (1989) the whole healing process is considered. In other words, 

he did not distinguish between the healing due to wetting and the healing due to 

diffusion since he assumed that the healed part of a crack retrieves its total original 

strength. 

 Little and Bhasin (2007) and Bhasin et al. (2008) used the work of Wool and 

O’connor (1981) and Schapery (1989) and utilized the macroscopic recovery parameter 

R  in Eq. (5.4) to describe the effect of healing in bituminous materials. They used a 

simplified form of the crack shortening rate (Schapery, 1989) as the rate of the wetting 

function, such that: 
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dt D k

 
 


  

        
  (5.9) 

where 0D , 1D , and m  are obtained by assuming a power law function for the transient 

creep compliance in Eq. (2.9) (i.e. 1
mD D t  ), and mk  is a material constant expressed 

in terms of m . Moreover, 2cW G  is the work of cohesion and is related to the 

material’s surface energy G . In obtaining Eq. (5.9), Schapery (1989) assumed that the 

bond strength, b , along in the healing process zone,  , is constant. Therefore, one 

concludes that the rate of wetting function in Eq. (5.9) utilized by Little and Bhasin 

(2007) and Bhasin et al. (2008) is constant. This reduces the healing convolution integral 

in Eq. (5.4) to the form in Eq. (5.8) such that w bk a  . Also, Little and Bhasin (2007) 

have assumed a three-parameter expression for d  in Eq. (5.8) such that 

3
1 2[1 exp( )]cd c c t    . Therefore, identifying these parameters ( 1c , 2c , 3c ) in addition 

to those in Eq. (5.9) for an asphalt mixture is a challenge. Moreover, based on limited 

experimental data, they showed that healing in asphalt binders follow Eq. (5.6) and not 
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Eq. (5.8), which implies that instantaneous healing occurs upon the wetting of cracks 

free surfaces. 

  However, one realizes that the aforementioned healing models are mostly 

fracture mechanics-based and micromechanically-based and cannot be used easily at the 

scale of the asphalt mixture. These models are also augmented with many material 

parameters that are difficult to identify experimentally. Furthermore, their coupling to 

the viscoelastic, viscoplastic, and rate- and time-dependent damage response of materials 

is not clear. On the other hand, one need an evolution law for the micro-damage healing 

internal state variable in Eq. (5.3) to establish this coupling and incorporates healing into 

the current constitutive equations. According to the aforementioned healing models and 

intuitively, one expects that the proposed healing variable h  should be a function of 

resting period (or healing time), temperature, level of damage, and the history of healing. 

Hence, one can incorporate all these effects into the following postulated 

phenomenological-based healing evolution equation: 

     1 21 1
b bhh T h      (5.10) 

where h dh dt  is the rate of the healing variable,  h T  is the healing viscosity 

parameter that determines how fast the material heals which is a function of temperature 

T ; and 1b  and 2b  are material constants. Moreover, the following expression can be 

assumed for  h T : 

   0 3
0

exp 1h h T
T

T


  
      

  
 (5.11) 

where 0
h  is the healing viscosity parameter at reference temperature 0T , and 3  is the 

healing temperature coupling model parameter. Eqs. (5.10) and (5.11) state that the 

healing rate increases as the temperature exceeds the reference temperature and 

decreases for temperatures less than the reference temperature. Also, the parameter 0
h  

has the unit of Sec-1 and determines how fast the material heals. One can argue that 0
h  

increases as the surface energy increases and shows that a material with larger surface 
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energy heals faster than a material with smaller surface energy. Note that at reference 

temperature and when 1 2 0b b  , Eq. (5.10) simplifies as follows: 

 0
hh    (5.12) 

which states that the rate of healing is constant. This is the simplest evolution equation 

one can assume for the healing variable h . In fact, this is the case in Eq. (5.9)that is 

derived by Schapery (1989) based on the assumption of a constant bond strength, b , 

along the healing process zone,  . Therefore, by assuming /bh a   , one may relate 

0
h  to more fundamental material properties by comparing Eqs. (5.9) and (5.12), such 

that: 
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 (5.13) 

Eq. (5.13) bridges the gap between the model developed at the micro-scale, Eq. (5.9), 

and the proposed model at the macro-scale, Eq. (5.10).  

 It is noteworthy that, for the general case (i.e. 1 0b   and 2 0b  ) in Eq. (5.10), 

the healing viscosity parameter can be considered as the maximum rate at which the 

healing occurs. In other words, the healing rate decreases either when the healing 

variable increases [controlled by (1 h ) term] or when the density of micro-cracks 

increases [controlled by (1   ) term]. These arguments are in agreement with those by 

Schapery (1989) and the experimental observations by Little and Bhasin (2007) and 

Bhasin et al. (2008). 

 Moreover, one can obtain the evolution expression in Eq. (5.10) based on the 

laws of thermodynamics through assuming h  to be an internal state variable in the 

Helmholtz free energy  . Thus, the corresponding thermodynamic conjugate force, H , 

can be interpreted as the strain energy recovery rate, such that  

 H
h





 (5.14) 
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where h cH  with c  being a material property. Thus, using Eqs. (5.10) and (5.14), one 

can obtain an expression for   and H  that yields the evolution equation for the healing 

variable h . Details of this thermodynamic approach are presented by Darabi et al. 

(2011d). 

5.4. Finite Element Implementation 

The finite element implementation of the thermo-viscoelastic-viscoplastic component of 

the constitutive model remains the same as explained in Chapter II. However, as 

mentioned before, the viscoelastic and viscoplastic models are presented in the healing 

configuration. The viscodamage and micro-damage healing models are incorporated into 

the model using the concept of the undamaged-healed stress space.  

 Hence, once the updated stress in the healing configuration, then calculate the 

rate of the damage density and the rate of healing variable using Eqs. (2.45) and (5.10) 

such that the total damage density and healing variables can then be obtained as follows: 

 t t t t t      (5.15) 

 t t t th h h t    (5.16) 

Finally, the nominal stress tensor can be updated using Eq. (5.3) [refer to Chapter IV for 

a detailed description of implementation procedure of the healing and damage models]. 

To clarify the implementation steps, a flowchart showing the implementation process in 

a straightforward manner is presented in Figure 5.2. 

The formulated numerical algorithms presented in this section are implemented 

in the well-known finite element code Abaqus (2008) via the user material subroutine 

UMAT. 
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Figure 5.2. Flowchart for numerical implementation of the proposed coupled thermo-
viscoelastic-viscoplastic-viscodamage-healing constitutive model. 

Calculate the residual strain Eq. (2.65). 

Input history variables and the total strain increment 

Recalculate the stress-dependent parameters based on the current trial stress 

Approximate viscoelastic stress-dependent parameters using the previous converged 
stress and calculate the trial stresses using Eqs. (2.53) and (2.54). 

Calculate the tangent stiffness [Eq. (2.67)] and stress correction [Eq. (2.66)] 

Calculate the viscoelastic strain increments from Eqs. (2.49) and (2.50). 

Put viscoplastic strain increment=0 

Calculate viscoplastic strain increment based on 
the current trial stress by using the local 
Newton-Raphson method [Eq. (2.64)]. 

Correct trial stress Eq. (2.66). 

t
ijR Tolerance

Update the effective stress and history variables using Eqs. (2.46)-(2.48) 

Calculate the rate of damage evolution and the damage density using Eqs. (2.45) and (5.15).

Calculate the rate of healing variable, Eq. (5.11), healing variable, Eq. (5.16), and the effective 
damage density, Eq. (5.2). 

Update the stress in the nominal configuration, Eq. (5.3), tangent compliance, Eq. (2.67), and 
history variables and pass them as the updated variables 

No Yes 

No No 

Yes Yes 

1 0vpf I       
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5.5. Application of the Model for Prediction of Response of Asphalt Mixes 

5.5.1. Identification of the Micro-Damage Healing Model Parameters 

It was shown in Chapter II that the coupled thermo-viscoelastic-viscoplastic-

viscodamage model fails to predict reasonable behavior for the repeated creep-recovery 

tests with the introduced rest period. In this chapter, the proposed micro-damage healing 

model is coupled to the rest of the constitutive model to enhance the model in predicting 

the fatigue behavior of asphalt mixes. The identified thermo-viscoelastic-viscoplastic-

viscodamage model parameters for the Dense Bitumen Macadam mixture discussed in 

Chapter II listed in Table 2.2 and 2.3. 

 The identified viscoelastic, viscoplastic, and viscodamage model parameters can 

now be used for prediction of repeated creep-recovery tests. However, the model without 

the healing component predicts shorter fatigue life comparing to experimental 

measurements, as discussed earlier. In other words, the model predicts higher creep 

strains comparing to experimental data. This effect is due to the fact that the damage 

density in the viscodamage model is considered to be irreversible, and hence, does not 

allow for damage recovery or healing during the rest period. This effect will be more 

pronounced for long rest periods. Hence, one can conclude that the difference between 

the experimental measurements and model predictions of creep strain should be 

compensated with the healing model. Hence, one can determine the healing viscosity 

parameter 0
h  at reference temperature and the history parameters 1b  and 2b by adjusting 

the model predictions to be comparable with the experimental measurements. In this 

study, the repeated creep-recovery test in compression when loading time is 60 sec and 

unloading time is 100 sec is selected for determination of healing model parameters. The 

identified healing model parameters in Eq. (5.11) are 3 1
0 2.5 10 Sech     , 1 3b  , and 

2 6b  . The flowchart for describing the procedure for calibrating the model in the 

presence of the micro-damage healing is updated and presented in Figure 5.3. 
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Figure 5.3. The procedure for identification of the coupled thermo-viscoelastic-viscoplastic-
viscodamage-healing constitutive model parameters. 

5.5.2. Prediction of Fatigue Life in Asphalt Mixes 

Recently, Gibson et al. (2009) have simulated several pavement structures with eight 

inch asphalt layer subjected to dual tires with both 80 kN and 178 kN single axle loads. 

They calculated the first stress invariant 1I  and the second deviatoric stress invariant 

Get healing model parameters 0
h , 1b , and 2b  using a repeated creep-recovery test in 

compression [Eq.(5.11)]. 

Separate viscoelastic response in the recovery part of the creep-recovery tests using Eq. (2.76). 

Identify the Prony series coefficients nD  and n  at the reference temperature using 

Eqs. (2.9) and (2.76). 

Calculate 1
vp , 2

vp , and p  from the creep part of the creep-recovery tests using Eqs. 

(2.80), (2.81), and (2.82). 

Identify the viscoplastic model parameters at the reference temperature by 
minimizing the error between the experimental measurements and Eq. (2.79).  

Identify vd  and k  from a creep test at the reference temperature and stress level 
using Eq. (2.85).  

Identify viscodamage stress dependency parameter q  from a creep test at the 

reference temperature, when ref   using Eq. (2.84).  

Identify temperature coupling terms model parameters by comparing experimental 
data and model predictions at different temperatures using  Eqs. (2.90) and (2.91). 

Identify vpd  and vpd  from two creep tests in tension using Eqs. (2.23) and. (2.44). 
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2J  at different positions under the dual tire configuration. These multiaxial states of 

stresses relatively represent the actual state of stress in asphalt pavements subjected to 

wheel loads.  

 In this work, the applied stress level for the repeated creep-recovery test in 

compression is assumed to be 1500 kPa whereas the applied stress level for the repeated 

creep-recovery test in tension is assumed to be 300 kPa. These two stress levels are close 

to the maximum compressive and tensile stress levels in the asphalt layer analyzed by 

Gibson et al. (2009).These tests are conducted at temperature of 20oC. 

Figures 5.4(a), 5.5(a), and 5.6(a) show the experimental results and model 

predictions for repeated creep-recovery tests in compression where the applied stress 

level is 1500 kPa. Figure 5.4(a) shows the creep strain versus time when the loading time 

is 120 sec and the unloading time is 100 sec. As it is shown in Figure 5.4(a), the model 

predictions when healing is included are significantly improved as compared to the 

experimental data and the predictions when healing is not included. The evolution of the 

effective damage density (i.e.    without healing and  1 h    with healing) is 

shown in Figure 5.4(b). As shown in Figure 5.4(b), for model predictions where healing 

is not considered, the effective damage density increases rapidly during loading and 

remains constant during unloading, whereas the model predictions when healing is 

included show that the effective damage density decreases during the resting periods. In 

other words, by including the healing parameter the effective damage density is no 

longer irreversible and can decrease during the resting time. Moreover, the model 

predictions without healing and damage significantly underestimate the total creep 

strain. It is noteworthy that failure in the simulated repeated creep-recovery test in, for 

example, Figure 5.4(a) is defined by the onset that the compliance reaches a very large 

value close to infinity or when the stiffness modulus reaches a very small value close to 

zero. One notice from Figure 5.4(b) that the damage density increases with increasing 

loading cycles such that at some loading cycles the creep response in Figure 5.4(a) 

reaches the tertiary stage with an exponential increase in the total creep strain during the 

loading cycles. 
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(a) 

 
(b) 

Figure 5.4. Repeated creep-recovery test in compression with 120sec loading time and 100sec 
resting period. (a) Compared creep strain, and (b) the evolution of the effective damage density. 

The end of the cyclic tertiary stage indicates the failure is similar to a standard 

creep test. Figure 5.5 shows the results when the loading time is 60 sec and the resting 

period is 100 sec.  
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(a) 

 
(b) 

Figure 5.5. Repeated creep-recovery test in compression with 60sec loading time and 100sec 
resting period. (a) Total experimental creep strain, and model predictions of total creep strain 

with and without damage and healing components,  (b) model predictions for viscoelastic strain 
with and without damage and healing components, (c) model predictions for viscoplastic strain 

with and without damage and healing components, and (d) the evolution of the effective damage 
density.  
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(c) 

 

 
(d) 

Figure 5.5.  Continued. 
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healing on viscoelastic and viscoplastic deformations, the model predictions for 

viscoelastic and viscoplastic strains with and without damage and healing are presented 

in Figures 5.5(b) and 5.5(c), respectively. Figures 5.5(b) and 5.5(c) show that the 

proposed model predicts larger values for both the viscoelastic and viscoplastic strains 

when damage and healing are activated. However, the increase in the viscoplastic strain 

is much larger than that in the viscoelastic strain. Moreover, Figure 5.5(d) shows that the 

damage density reaches a large value after few cycles when not considering healing; 

whereas, the effective damage density evolves at a much slower rate when the healing is 

included. 

The effect of healing becomes more pronounced when the total duration of 

resting period increases. Interesting results are shown in Figure 5.6 when the loading 

duration is 60 sec and the resting time is 1500 sec. The long resting period provides 

enough time for significant healing to take place. The model predictions without 

considering healing show that the material fails after 6 cycles as shown in Figure 5.6(a). 

However, experimental results demonstrate that the material can tolerate loading for 

many more loading cycles.  

As shown in Figure 5.6(a), the model that considers healing is able of capturing 

this behavior and is also able to predict the experimental measurements fairly well. 

Figure 5.6(a) also shows that the model predictions without healing and damage 

significantly underestimate the total creep strain. Again, as shown in Figure 5.6(b), the 

effective damage density when healing is not included grows rapidly; whereas, the 

inclusion of healing reduces the amount of damage and extends the fatigue life the 

asphalt mix. 
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(a) 

 

 
(b) 

Figure 5.6. Repeated creep-recovery test in compression with 60sec loading time and 1500sec 
resting period. (a) Compared creep strain, and (b) the evolution of the effective damage density.  
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predictions with and without consideration of the healing compared to experimental 

measurements with 120 sec loading time and 100 sec resting period.  

 

 
(a) 

 
(b) 

Figure 5.7. Repeated creep-recovery test in tension with 120sec loading time and 100sec resting 
period. (a) Compared creep strain, and (b) the evolution of the effective damage density.  
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Obviously, since damage is more severe in tension than in compression, the 

model predictions of the repeated creep-recovery response without considering healing 

significantly overestimates the amount of creep strain and damage evolution. Therefore, 

it is essential to incorporate healing into the fatigue damage predictions especially under 

tensile fatigue loading conditions. The evolution of the effective damage density is also 

shown in Figure 5.7(b). Moreover, experimental measurements and model predictions 

with and without healing for a loading time duration of 60 sec and for three different 

unloading times (50, 100, and 1500 sec) are compared in Figures 5.8, 5.9, and 5.10, 

respectively.  

The model predictions when the healing parameter is considered significantly 

improve the prediction of experimental data. The calculated effective damage density 

when the loading duration is 60 sec and the unloading durations are 50, 100, and 1500 

sec are plotted in Figures 5.8(b), 5.9(b), and 5.10(b), respectively. These figures show 

that when the micro-damage healing is considered the damage density decreases during 

the rest period due to the micro-damage healing. Also, one can clearly notice from 

Figure 5.10(b) that the damage density per loading cycle decreases as the number of 

cycles increases. 
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(a) 

 
(b) 

Figure 5.8. Repeated creep-recovery test in tension with 60sec loading time and 50sec resting 
period. (a) Compared creep strain, and (b) the evolution of the effective damage density. 
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(a) 

 

 
(b) 

Figure 5.9. Repeated creep-recovery test in tension with 60sec loading time and 100sec resting 
period. (a) Compared creep strain, and (b) the evolution of the effective damage density. 
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(a) 

 
(b) 

Figure 5.10. Repeated creep-recovery test in tension with 60sec loading time and 1500sec 
resting period. (a) Compared creep strain, and (b) the evolution of the effective damage density. 
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makes such a complex constitutive model significantly underestimates the fatigue life, 

and in turn to very conservative designs of our asphalt pavements. However, more 

experimental data for different loading conditions, especially at different temperatures, is 

needed for validating and improving the predictions of the proposed healing model. 

 It is noteworthy that for healing to impact the damage process, micro-crack 

development must occur. The damage that is recorded during the currently utilized 

repeated creep and recovery tests is consistent with the development of micro-cracks. 

This is because the experiments are performed at 20oC and the periods of loading under 

large stress levels are sufficiently long to cause micro-crack development and growth. 

Therefore, although these cyclic creep and recovery experiments do not represent what 

might be considered as “classical” fatigue experiments to most pavement engineers 

where thousands of loading cycles at low stress or strain levels are applied to cause 

failure, it does indeed represent the type of damage and recovery in asphalt pavements 

that leads to fatigue failure. 

5.6. Effect of Healing Model Parameters 

 In this section, the effect of healing model parameters on damage performance of 

asphalt mixes is investigated. For this purpose, the repeated creep-recovery test 

subjected to 1500 kPa compressive load when loading time is 60 sec and unloading time 

is 100 sec is re-simulated using different values for the healing model parameters 0
h , 1b

, and 2b . Figure 5.11 shows the effect of healing viscosity parameter, 0
h , on the fatigue 

life prediction. The values of history parameters are set to be zero (i.e. 1 2 0b b  ) in 

this figure. As is shown in Figure 5.11(a) the fatigue life increases as 0
h  increases due 

to the increased levels of micro-crack healing. Therefore, 0
h  controls the rate at which 

healing occurs such that one can classify different materials for their potential to heal 

based on the value of this parameter. Figure 5.11(b) shows the corresponding evolution 

of the effective damage density,  . This figure shows that for very large values of 0
h  

the effective damage density approaches zero indicating that the accumulated resting 
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period is sufficient for complete healing of existing micro-cracks. However, as the 

healing viscosity parameter decreases, the decrease in the effective damage density 

during the rest period slows down, and hence, the model predicts shorter fatigue lives. 

The effects of the history parameters 1b  and 2b  are shown in Figures 5.12 and 5.13, 

respectively. 

  

 
(a) 

 
(b) 

Figure 5.11. Effect of healing viscosity parameter 0
h  on fatigue behavior of asphalt mixes. (a) 

total strain versus time and (b) effective damage density versus time.  
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Figure 5.12 shows the effect of damage history parameter 1b  when 3
0 10 / sech    and 

2 0b  . Figures 5.12(a) and 5.12(b) show that the material’s potential to heal increases as 

1b  decreases. Therefore, the healing rate decreases as the damage density increases. In 

other words, it becomes more difficult to heal the crack as it grows bigger and bigger. 

 

 
(a) 

 

 
(b) 

Figure 5.12. Effect of damage history parameter 1b  on fatigue behavior of asphalt mixes when 
3

0 1.0 10 / sech     and 2 0b  . (a) total strain versus time and (b) effective damage density 
versus time.  

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0 500 1000 1500 2000 2500 3000

E
ff

ec
ti

ve
 d

am
ag

e 
de

ns
it

y

Time (Sec)

1 0b 

1 10b 
1 5b 

1 2b 

1 0b 

1 2b 

1 5b 

1 10b 

0

2

4

6

8

10

12

0 500 1000 1500 2000 2500 3000

A
xi

al
 st

ra
in

 (
%

)

Time (Sec)



 174

The effect of the healing history parameter 2b  on the total strain and effective 

damage density is presented in Figures 5.13(a) and 5.13(b), respectively. Figures 5.13(a) 

and 5.13(b) show trends similar to that in Figure 5.12(a) and Figure 5.12(b), 

respectively. This is in qualitative agreement with the experimental results by Little and 

Bhasin (2007) who showed that the rate of healing approaches zero upon complete 

healing of micro-cracks. Therefore, results for negative values for 2b  are not shown here. 

However, more experimental studies are needed to verify and validate the 

aforementioned qualitative predictions of the proposed micro-damage healing model. 

5.7. Conclusions 

In this chapter, a micro-damage healing model is proposed based on extending the 

effective stress concept in classical continuum damage mechanics by introducing a 

fictitious effective undamaged-healed natural configuration. The proposed micro-

damage healing model is coupled with temperature-dependent nonlinear viscoelastic, 

viscoplastic, and viscodamage constitutive models that can predict the highly nonlinear 

mechanical responses of asphalt mixtures subjected to repeated loading conditions.  

 Moreover, motivated by previously developed micromechanical- and fracture-

based healing models, a phenomenological healing equation is proposed for the 

evolution of the micro-damage healing internal state variable. The healing evolution 

equation is time, temperature, and loading/unloading history dependent model that 

explicitly affect the stress state and the viscoelastic, viscoplastic, and viscodamage 

response of the material while undergoing micro-damage healing. Moreover, an attempt 

is made to relate the material parameter that controls the rate of healing to the surface 

energy and bond strength of the material. Finally, the model is calibrated and validated 

against repeated creep-recovery experimental data on an asphalt mixture with different 

loading and unloading times and under tensile compressive stress states.   
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(a) 

 
(b)  

Figure 5.13. Effect of healing history parameter 2b  on fatigue behavior of asphalt mixes when 
3

0 1.0 10 / sech     and 1 0b  . (a) total strain versus time and (b) effective damage density 
versus time.  
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micro-damage healing phenomenon leads to significant deviations between the 

constitutive model predictions and the fatigue life of materials that have potential to 

heal. In fact, very conservative designs are made if such models are used in guiding the 

design of structural systems made of such material. 

The model predictions when micro-damage healing is considered show that the 

effective damage density decreases during the rest period; and thus, fatigue life 

increases. It is shown that for long unloading or resting periods the effective damage 

density (i.e. density of the unhealed micro-cracks and micro-voids) increases at a very 

low rate as the number of loading cycle increases. Hence, the proposed micro-damage 

healing model can be used effectively to predict the pavement performance during the 

service life since pavements are, at least intermittently, subjected to repeated loading 

conditions with relatively long rest periods compared to the duration of loading periods.  

The present analysis considers repeated creep-recovery tests with different 

loading and unloading times in both tension and compression at room temperature. 

However, more tests are needed to fully validate the model, especially at different 

temperatures. Furthermore, the inclusion of environmental factors such as moisture and 

aging is necessary since the ultimate goal is to predict the response of the asphalt 

pavements during their service life. 

Moreover, the proposed constitutive model is used specifically for asphalt mixes. 

However, a wide range of materials show time-, temperature-, and rate-dependent 

viscoelastic, viscoplastic, viscodamage, and healing responses. Therefore, it is 

imperative to develop a general and robust thermodynamic framework with the 

capability to derive new constitutive models for different materials or to enhance the 

existing ones without violating the very fundamental laws of thermodynamic. This 

investigation will be the subject of the next chapter.  
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CHAPTER VI 

A NEW GENERAL THERMODYNAMIC-BASED FRAMEWORK 

FOR CONSTITUTIVE MODELING OF TIME- AND RATE-

DEPENDENT MATERIALS 

6.1. Introduction 

As mentioned in the previous chapters, accurate prediction of mechanical response of 

time- and rate-dependent materials requires the coupling between temperature-dependent 

viscoelasticity, viscoplasticity, viscodamage, and healing models. These models, on the 

other hand, should be general such that they can be applied for a wide range of loading 

conditions and the complex three dimensional stress states. One of the approaches is to 

derive the models from the fundamental laws of mechanics such that they do not violate 

the fundamental laws of thermodynamics. This approach makes the model more 

consistent and reliable. 

 However, even derivation of the models based on the fundamental laws of the 

thermodynamics is usually associated with certain assumptions. These assumptions may 

reduce the reliability of the derived constitutive models. Therefore, this chapter is 

devoted to development of a general thermodynamic-based framework which can be 

used to derive different constitutive models for the time- and rate-dependent materials 

with the least possible assumptions. This framework is general and can be used for 

derivation of constitutive models for a wide variety of materials including bituminous 

materials, polymers, bio-inspired materials, and soft materials. 

 Numerous thermodynamic-based models have been proposed in the literature to 

couple one or two of the mechanisms such as viscoelastic, viscoplastic, and/or 

viscodamage to describe the behavior of different materials such as metals, polymers, 

soft materials, and bio-inspired materials (e.g. Kachanov, 1986; Voyiadjis and Kattan, 

1990; Lemaître, 1992; Schapery, 1999; Voyiadjis and Park, 1999; Rajagopal and 

Srinivasa, 2000; Tao et al., 2001; Abu Al-Rub and Voyiadjis, 2003; Boubakar et al., 

2003; Barot et al., 2008; Ghorbel, 2008; Levesque et al., 2008; Karra and Rajagopal, 
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2009). However, depending on the loading conditions, many types of time- and rate-

dependent materials show all four mechanisms under thermo-mechanical loading which 

makes it necessary to develop a general framework for coupling all four mentioned 

mechanisms. 

 Schapery (1969a) derived a single integral equation using the thermodynamics of 

irreversible processes for constitutive modeling of non-linear viscoelastic materials such 

as polymers. Several authors have extended the 1D Schapery’s constitutive theory to the 

3D viscoelastic models directly from the one-dimensional model presented by Schapery 

(Henriksen, 1984; Touati and Cederbaum, 1998; Beijer and Spoormaker, 2002; Haj-Ali 

and Muliana, 2004; Levesque et al., 2004).  Recently, Levesque et al. (2008) showed 

that these 3D applications were thermodynamically inconsistent extensions of the 1D 

Schapery’s viscoelastic model, and formulated a thermodynamically consistent 3D 

Schapery-type viscoelastic model. However, they considered the Cauchy stress tensor as 

the thermodynamic conjugate force of the total viscoelastic strain tensor. This 

assumption is valid only for a reversible load history for which the state variables 

associated with viscoelastic process remain constant and, hence, is not general. 

 In terms of the viscoplastic behavior of rate-dependent materials, Perzyna’s 

viscoplastic model (Perzyna, 1971) has been used by several researchers to predict the 

permanent deformation in these materials (e.g. Masad et al., 2005; Saadeh et al., 2007; 

Huang, 2008; Abu Al-Rub et al., 2009). Many researchers have also re-derived 

Perzyna’s viscoplastic model based on laws of thermodynamics and coupled it to 

temperature, damage, and/or viscoelasticity to predict more accurately the constitutive 

behavior of materials (e.g. Dornowski and Perzyna, 2002; Voyiadjis and Abed, 2006; 

Hallberg et al., 2009). These models are usually derived using the overstress concept 

(Zener and Hollomon, 1944; Malvern, 1951; Perzyna and Korbel, 1998). 

 In terms of the damage behavior of time- and rate-dependent materials, several 

time-independent and time-dependent damage models have been proposed in the 

literature (e.g. Kachanov, 1958; Odqvist and Hult, 1961; Rabotnov, 1969; Cozzarelli and 

Bernasconi, 1981; Schapery, 1987; Lemaître, 1992; Abu Al-Rub and Voyiadjis, 2003; 
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Sullivan, 2008). However, very few damage laws have been coupled to viscoelasticity 

and viscoplasticity to predict time- and rate-dependent responses of materials (e.g. 

Schapery, 1999; Darabi et al., 2011c).  

 Moreover, experimental observations in the last few decades have clearly shown 

that various classes of engineering materials (e.g. polymers, bitumen, bio-inspired 

materials, and rocks) have the potential to heal with time and recover part of their 

strength and stiffness under specific circumstances (e.g. Miao et al., 1995; Kessler and 

White, 2001; Brown et al., 2002; Reinhardt and Jooss, 2003; Barbero et al., 2005; Guo 

and Guo, 2006; Bhasin et al., 2008). Although one can find several studies in analyzing 

different healing processes in a phenomenological point of view (e.g. Jacobsen et al., 

1996; Ramm and Biscoping, 1998; Ando et al., 2002), few attempts are available for 

deriving healing models based on laws on thermodynamics (e.g. Miao et al., 1995; 

Barbero et al., 2005). To the authors’ best knowledge, we are the first to propose a 

thermodynamic-based model that couples the viscoelastic, viscoplastic, viscodamage, 

and healing models to model more accurately the mechanical response of time- and rate-

dependent materials. 

 Furthermore, in most cases the thermodynamic-based constitutive models suffer 

the accurate estimation of the rate of energy dissipation since in most of these models 

only the Helmholtz free energy function along with the Clausius-Duhem inequality are 

not used consistently to derive different components of the constitutive models which 

leads to the underestimation of rate of energy dissipation. 

 In his celebrated book on continuum thermodynamics, Ziegler (1977) showed 

that the correct estimation of the rate of energy dissipation requires the decomposition of 

the thermodynamic conjugate forces into energetic (or quasiconservative according to 

his notion) and dissipative components. This general theory is also summarized in his 

later works (Ziegler, 1983; Ziegler and Wehrli, 1987). In these works, he showed that 

the energetic components of the thermodynamic conjugate forces are related to the 

Helmholtz free energy function, whereas the dissipative components of the 

thermodynamic conjugate forces are related to the rate of energy dissipation. Several 
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researchers have used this theory to develop constitutive models for different materials. 

To name a few, Freemond and Nedjar (1996) used this theory and applied it to gradient-

dependent damage mechanics. Later, Shizawa and Zbib (1999), and Gurtin and his co-

workers (Gurtin, 2003; Gurtin and Anand, 2005; Gurtin et al., 2007; Gurtin and Anand, 

2009) applied this theory to gradient-dependent plasticity theories. However, Gurtin and 

his co-workers did not decompose all the thermodynamic conjugate forces into energetic 

and dissipative components. They assumed the dragstress to have only the dissipative 

component. In these works, different mathematical forms are postulated to describe 

energetic and dissipative components of the thermodynamic conjugate forces.  

 However, it is noteworthy to mention that assuming different forms for energetic 

and dissipative components of the thermodynamic conjugate forces is not quiet in line of 

the key assumption in Ziegler’s approach which states that the constitutive equations for 

materials are fully determined by knowledge of the Helmholtz free energy and the 

dissipation function. Moreover, Collins and Houlsby (1997) used the works of  Ziegler 

(1969), Houlsby (1981, 1982), and Modaressi et al. (1994) and applied these theories to 

model plastic behavior of geotechnical materials. They showed that when the rate of the 

plastic energy dissipation is a function of the current stress or the total or elastic strain in 

addition to the plastic strain and plastic strain rate, the flow rule is not necessarily 

associated (Collins and Houlsby, 1997; Collins and Kelly, 2002).  However, as we will 

show in this paper, there is no need to make these kinds of assumptions to get the non-

associated flow rules for plasticity/viscoplasticity theories. In fact, we will show that the 

non-associated plasticity/viscoplasticity theories are direct consequences of using the 

principle of virtual power. 

 Although several researchers have worked and extended the initial work of 

Ziegler (as we named a few here), we believe that the robustness and capabilities of 

Ziegler’s approach specifically in using the energetic and dissipative forces to construct 

different constitutive models has not been given enough attention. Hence, we present a 

general thermodynamic framework to derive constitutive models for time- and rate-

dependent materials with emphasis on the decomposition of thermodynamic conjugate 
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forces into energetic and dissipative components. We also present a systematic 

procedure to determine energetic and dissipative components directly from the 

Helmholtz free energy function and the rate of energy dissipation. The capabilities and 

robustness of the presented thermodynamic framework is shown through several 

examples which derive Schapery-type thermo-viscoelastic model, Perzyna-type thermo-

viscoplastic model, the thermo-viscodamage model proposed by Darabi et al. (2011c), 

and the healing model proposed by Abu Al-Rub et al. (2010a).  

 Moreover, for the first time, we show that the viscoelastic, viscodamage, and 

healing microforce balances, derived directly from principle of virtual power, along with 

the decomposition of thermodynamic conjugate forces yield to a general partial 

differential equation governing the viscoelastic, viscodamage, and healing processes. We 

also show that this framework yields a more general constitutive model for 

viscoelasticity comparing to the viscoelastic models presented by Schapery (1969a) and 

Levesque et al. (2008). We also discuss that the derived viscoelastic constitutive model 

is valid for general cases and there is no need to assume a hypothetical reversible load 

history for which the state variables associated with viscoelastic process remain 

constant. Moreover, using the proposed thermodynamic framework, we derive a 

modified non-associated Perzyna-type viscoplastic model with kinematic hardening 

without using the concept of overstress function and postulating a viscoplastic potential 

function.  Also, we show that the non-associative plasticity/viscoplasticity can be 

derived using the principle of virtual power. Furthermore, based on the presented 

framework, we derive a modified version of Armstrong and Frederick model (1966) for 

evolution of backstress. All these models are then coupled together and to temperature to 

model the complex mechanical response of time- and rate-dependent materials. Finally, 

we derive the well-known Fourier heat conduction law and the heat equation for the 

presented constitutive model (Darabi and Abu Al-Rub, 2011). 
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6.2. Natural Healing Configuration and Transformation Hypothesis 

The healing configuration proposed in Chapter IV is adopted in this work to couple 

healing and damage models to the rest of the constitutive model. The relationship 

between the stress tensors in the nominal and healing configurations are recalled as 

follows: 

 
1 (1 )1

ij ij
ij h

 



 

 
   (6.1) 

Eq. (6.1) makes it possible to extend the developed techniques for implementation of 

damage models to the healing models.  

 One of the transformation hypotheses that can be used for the constitutive models 

accompanied with the dissipative processes such as viscoelasticity and viscoplasticity is 

based on the equivalency of the power of dissipation in the effective and nominal 

configurations. Lee et al. (1985) proposed this hypothesis and assumed that the power 

dissipation associated with the plasticity is equivalent in the nominal and effective 

configurations. Based on this transformation hypothesis, they derived an elastoplastic-

anisotropic damage constitutive model for metal plates. Voyiadjis and Thiagarajan 

(1997) also used this hypothesis and proposed an uncoupled plastic-anisotropic damage 

model for metal-matrix composites. Later Voyiadjis et al. (2004) adopted this hypothesis 

for viscoplasticity and derived a gradient-dependent viscoplasticity-, anisotropic-

viscodamage constitutive model.  

 The small deformation theories are postulated in this work such that the total 

strain tensor and its rate can additively be decomposed into viscoelastic and viscoplastic 

components. Assuming the small deformations in the nominal configuration naturally 

means that the deformation in the healing configuration is also small. Therefore, the 

additive decomposition of strain tensor and its rate is also valid in the healing 

configuration, such that: 

 ve vp
ij ij ij      ;     ve vp

ij ij ij         (6.2) 

In this work, the power-correlating hypothesis which states that the power 

expenditure associated with each type of the dissipative process is the same in the 
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nominal and effective configurations is adopted. However, this hypothesis is extended 

for correlating the power in the nominal and healing configurations. Postulating this 

hypothesis along with using continuum damage-healing mechanics based on the healing 

stress space are both numerically and physically interesting. In other words, using the 

healing stress space eliminates numerical complexities associated with direct couplings 

of the damage and healing models with the rest of the constitutive model; whereas, 

power-correlating hypothesis makes these simplifications physically sound since it 

allows the accurate estimation of the dissipated energy in the healing stress space. 

Therefore, it is assumed that the dissipated power resulting from the viscoelastic and 

viscoplastic processes are the same in the nominal and healing configurations. In this 

study, the isotropic damage and healing variables are used in order to present the general 

steps of the thermodynamic framework in a much clearer and simpler way. Applying the 

power equivalence hypothesis for the isotropic damage and healing cases yields the 

following relations between different components of the strain tensor in the nominal and 

healing configurations: 

  1 (1 )ve ve
ij ijh      ;      1 (1 )vp vp

ij ijh      ;      1 (1 )ij ijh       (6.3) 

6.3. Thermodynamic Framework 

6.3.1. Internal and External Expenditures of Power 

Axioms of equilibrium and thermodynamics should be satisfied to formulate a proper 

material constitutive model. In this section, expressions for the internal and external 

expenditures of power are defined following the framework of Gurtin (2003), but with 

the consideration of viscoelasticity, damage, and healing. Definition of the internal and 

external expenditures of power is often thought to be very fixed. However, Fremond and 

Nedjar (1996) modified the definition of the classical form of the internal virtual power 

by including, in addition to the classical terms involving strain rates, the damage rate and 

its gradient. They also modified the expression of the external expenditure of power by 

including the effects of the external sources of the body and surface damage forces to 

explain the microscopic movements that produce damage. Based on these modifications, 
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they formulated an elastic- gradient-dependent damage model. A similar line of thought 

is followed here to derive a constitutive equation that couples viscoelastic (creep and 

relaxation properties), viscoplastic (rate-dependent plasticity), viscodamage (rate-

dependent damage), and healing material responses to explain the time- and rate-

dependent mechanical response of materials. However, the present treatment is limited 

to local viscoelasticity, viscoplasticity, damage, and healing where higher-order nonlocal 

gradient-dependent variables are neglected. 

 Let   to be an arbitrary sub-body and let n denote the outward unit normal on 

the boundary   of  . In this work, the internal expenditure of power is assumed to be 

characterized by the Cauchy stress tensor   defined over   for all times, the back stress 

  associated with kinematic hardening, the dragstress   associated with isotropic 

hardening, the damage force Y  conjugate to the damage density variable  , the healing 

force H  conjugate to the healing variable h , and int
veM - of phenomenological internal 

state variables associated with the viscoelastic processes m  ( int1, ..., vem M ; int 1veM  ), 

such that the expenditure of the internal power can be written as: 

 
int

int
1

veM
ve vp

ij ij m m ij ij
m

P p Y Hh dV      


 
        

 
      (6.4) 

where p  is the rate of the equivalent viscoplastic strain, which is defined by: 

 2 / 3vp vp
ij ijp      (6.5) 

Eq. (6.4) is based on the concept that the power expended by each kinematical field be 

expressible in terms of an associated force system consistent with its own balance. The 

first two terms in Eq. (6.4) represent the internal power generated because of the 

viscoelastic processes. The third and the fourth terms represent the internal power 

generated by the viscoplastic process. The third term accounts for internal power 

expenditure by the backstress (the residual stress) which is attributed to kinematic 

hardening which introduces anisotropic effects, whereas the fourth term is the internal 

power due to the dragstress attributing to the isotropic hardening. Moreover, the fifth and 

the sixth terms are the internal power expended by the damage and healing processes, 
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respectively. However, the kinematical fields in Eq. (6.4) are no longer independent and, 

therefore, special care is taken in the following in order to properly account for their 

couplings. Moreover, although the two state variables vp
ij  and p  are dependent, they 

introduce different physics such that the viscoplastic strain vp
ij  results in kinematic 

hardening in the plastic/viscoplasticity model whereas the effective plastic strain p  

results in isotropic hardening in the plastic/viscoplastic model (c.f. Abu Al-Rub et al., 

2007; Voyiadjis and Abu Al-Rub, 2007). 

 As mentioned before, the internal state variables associated with the viscoelastic 

process are considered as hidden state variables. Ideally speaking, these internal state 

variables can relate the developed constitutive model at the continuum scale to the 

microstructure. Although these hidden state variables finally result in the evolution of 

the viscoelastic strain tensor, their contribution to the stored and dissipated energies 

should be considered for more accurate estimation of the these energies in the 

viscoelastic materials (as will be shown in the next sections). 

 On the other hand, the external expenditure of power is defined in terms of the 

macroscopic body force b , a macroscopic surface traction t , and inertial forces. 

Therefore, the external expenditure of the power can be written as follows: 

 
ext i i i i i iP b u dV t u dA u u dV

  

         (6.6) 

where u is a prescribed field and represents the displacement vector. 

Moreover, it is desired to derive the constitutive model in the healing 

configuration since the common argument in CDM is that once the material is damaged, 

further loading can only affect the undamaged and healed material skeleton. Obviously, 

before the material gets damaged the healing and nominal configurations are identical. 

As it was mentioned in the previous section, the healing configuration is defined 

as a fictitious state where the unhealed damages in the material are removed. Hence, 

damage and healing does not contribute to the internal expenditure of power in the 

healing configuration. In the healing configuration, the Cauchy stress tensor in the 

healing configuration   , the back stress in the healing configuration  ,  the dragstress 
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in the healing space  , and int
veM - of phenomenological internal state variables 

associated with the viscoelastic processes m  ( int1, ..., vem M ; int 1veM  )contribute to the 

internal expenditure of power, such that the expenditure of the internal power can be 

written as: 

 
int

int
1

veM
ve vp

ij ij m m ij ij
m

P p dV     


 
      

 
          (6.7) 

where intP  is the internal expenditure of power in the healing configuration and  

 2 / 3 1 1vp vp
ij ijp h p       
      by substituting Eq. (6.3)3 into Eq. (6.5). However, as 

it will be shown in the next section, the thermodynamic forces conjugate to the damage 

and healing variables in the nominal configuration are always null [i.e. 0Y   and 0H  , 

based on the principle of virtual power, Eqs. (6.17)  and  (6.18)]. Hence, by adopting the 

power equivalence hypothesis, it can easily be shown that Eqs. (6.4) and (6.7) are the 

same, such that: 

 int intP P  (6.8) 

This can be verified by substituting Eqs. (6.1), (6.3), (6.17),  and  (6.18)   into Eq. (6.7) 

to obtain Eq. (6.4). It is noteworthy that the power equivalence hypothesis is used for all 

components of the viscoelastic power in the nominal and healing configurations (i.e. 

int int

1 1

ve veM M

m m m m
m m

   
 

    and ve ve
ij ij ij ij     ). 

6.3.2. Principle of Virtual Power 

The principle of the virtual power is the assertion that, given any sub-body  , the virtual 

power expended on   by materials or bodies exterior to   (i.e. external power) is equal 

to the virtual power expended within  (i.e. internal power). Eqs. (6.4) and (6.6) 

represent the actual expenditures of the power during a kinematical process. The virtual 

expenditure of the power can be defined when the prescribed fields are replaced by 

virtual ones. Hence, we can write internal and external expenditures of virtual power as: 
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int*

int

1

veM
ve vp

ij ij m m ij ij
m

P p Y H h dV       


 
        

 
      (6.9) 

 
*

ext i i i i i iP b u dV t u dA u u dV   
  

         (6.10) 

where  
*

intP  and 
*

extP  represent internal and external expenditures of virtual power, 

respectively. Note that the kinematical fields u , ve  ,   , vp  , p  ,  , and h   in 

Eqs. (6.9) and (6.10) are virtual, where   is the virtual operator. 

 According to the principle of the virtual power, the external virtual power should 

be balanced by the internal expenditure of virtual power, such that: 

 
* *

int extP P  (6.11) 

Let N  be a second-order tensor representing the unit direction of the viscoplastic strain 

tensor, vp , such that: 

 
2

3

vp vp
ij ij

ij vp
ij

N
p

 


 
 


 (6.12) 

Substituting Eqs. (6.9) and (6.10) into Eq. (6.11), decomposing the strain tensor into its 

viscoelstic and viscoplastic components, and using the divergence theorem imply: 

 

 

 

 

int

,

1

3

2

                                                         0

ve

ij j i i i

M

ij ij ij m m
m

i ij j i

b u u

N p Y H h dV

t n u dA

  

      

 







  

 
            

  







 

 



 (6.13) 

The fields  , u ,   , p  ,  , and h   may be arbitrary specified if and only if: 

 
,ij j i ib u    ,   in   (6.14) 

 
i ij jt n ,   on   (6.15) 

  3
0

2 ij ij ijN    ,   in   (6.16) 

 0Y  ,   in   (6.17) 
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 0H  ,   in   (6.18) 

 0m  ,   in  ,   int1... vem M     (6.19) 

Eq. (6.14) expresses the local static or dynamic equilibrium or macroforce balance. Eq. 

(6.15) defines the boundary traction as the density of the surface forces introduced. Eq. 

(6.16) is the viscoplastic microforce balance according to notion of Gurtin (2003) that 

will be used for deriving the dynamic viscoplasticity yield surface in the subsequent 

sections. Also, we will show that this equation is valid for both associative and non-

associative plasticity/viscoplasticity. Similarly, Eq. (6.17) defines the damage 

microforce  balance (Fremond and Nedjar, 1996) that will be used in deriving the 

dynamic viscodamage nucleation and growth condition. Moreover, Eq. (6.18) is the 

healing microforce balance which can be used to derive the healing condition and the 

healing evolution law. Eq. (6.19) is defined as the viscoelastic microforce balance. Eqs. 

(6.17), (6.18), and (6.19) are new and non-classical for viscoelastic materials. Eq. (6.19) 

defines the balance law for the internal work of viscoelastic process. This simple balance 

law results in the general partial differential equation that explains the viscoelastic 

processes in materials.  

 Using the power equivalence hypothesis allows one to express the internal 

expenditure of virtual power in the healed configuration. The virtual expenditure of the 

virtual power in the healing configuration can be defined when the prescribed fields in 

Eq. (6.7) are replaced by virtual ones, such that: 

 
int*

int

1

veM
ve vp

ij ij m m ij ij
m

P p dV     


 
      

 
          (6.20) 

where 
*

intP  is the internal expenditure of virtual power in the healing configuration. It can 

easily be shown that adopting the power equivalence hypothesis implies the equivalency 

of the internal expenditure of virtual power in the nominal and healed configurations, 

such that: 

 
* *

int intP P  (6.21) 
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This can be verified by substituting Eqs. (6.1) and (6.3) into Eq. (6.20) and noting that 

the damage and healing microforce balances in the nominal configuration are zero. 

Substituting Eqs. (6.1), (6.20), and (6.21) into the principle of virtual power [Eq. (6.11)] 

result the following equations: 

   ,1 1 ij j i ih b u          ,   in   (6.22) 

  1 1i ij jt h n       ,   on   (6.23) 

  3
0

2 ij ij ijN     ,   in   (6.24) 

 0m  ,   in  ,   int1... vem M     (6.25) 

Substituting Eq. (6.1) into Eqs. (6.22) and (6.23) shows that these equations are the same 

as Eqs. (6.14) and (6.15), respectively. Eq. (6.25) defines the balance law for internal 

work of viscoelastic process in the healed configuration. Moreover, Eq. (6.24) shows the 

microforce balance in the effective configuration, where: 

 
2

3

vp vp
ij ij

ij vp
ij

N
p

 


 
  

 
 (6.26) 

Substituting Eq. (6.3) into Eq. (6.26) yields: 

 ij ijN N  (6.27) 

6.3.3. Non-Associative Plasticity/Viscoplasticity Based on Principle of Virtual Power 

One of the challenges in the plasticity/viscoplasticity theories is that the associative 

plasticity/viscoplasticity theories cannot accurately predict the plastic/viscoplastic strain 

in pressure-dependent materials such as polymers, soils, rocks, bituminous materials, 

and geomaterials (e.g. Zienkiewicz et al., 1975; Oda and Nakayama, 1989; Cristescu, 

1994; Florea, 1994; Pestana and Whittle, 1999; Collins and Kelly, 2002; Dormieux et 

al., 2006). To overcome this issue, a plastic/viscoplastic potential function different from 

the yield surface function is usually assumed to obtain the accurate amount of 

plastic/viscoplastic strain using a non-associated plastic flow rule. The plastic potential 
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function is usually selected based on the experiments and without any attention to the 

fundamental laws of thermodynamics.  

Several researchers have derived the associative plasticity/viscoplasticity flow 

rule based on principle of virtual power (e.g. Gurtin, 2000; Fleck and Hutchinson, 2001; 

Gurtin, 2002; Gudmundson, 2004; Gurtin and Anand, 2005; Abu Al-Rub et al., 2007; 

Voyiadjis and Abu Al-Rub, 2007; Gurtin and Anand, 2009; Voyiadjis and Deliktas, 

2009). Moreover, it is usually thought that the principle of virtual power leads only to 

associative plasticity/viscoplasticity flow rules as mentioned and shown by several 

researchers. Several researchers, on the other hand, have used the maximum dissipation 

principle to derive plasticity theories. However, it is commonly known that the 

maximum dissipation principle leads to associative plasticity theories (c.f. Simo and 

Hughes, 1998) unless the dissipation function depends on the stress in addition to the 

plastic strain and its rate (e.g. Collins and Houlsby, 1997; Srinivasa, 2010). However, 

these approaches (e.g. Collins and Houlsby, 1997; Srinivasa, 2010) suffer from two main 

deficiencies: (1) the forms of both the yield function and the plastic potential function 

are both required to inversely obtain the form for the rate of the energy dissipation as a 

function of the stress, plastic strain, and its rate; and (2) they do not lead to an explicit 

form for the plastic strain rate, instead, the stress is usually obtained as a function of the 

strain and strain rate which most of the time requires tedious mathematical 

manipulations to express the rate of the plastic strain as a function of stress. 

However, it is shown here that the generalized nonassociative 

plasticity/viscoplasticity theories can be a direct consequence of the principle of virtual 

power. This will also be along the direction of Ziegler’s thermodynamic approach 

(Ziegler, 1983) which states that the constitutive models for materials should be fully 

determined by the knowledge of a thermodynamic potential such as the Helmholtz free 

energy function and another function which is the dissipation function. 

The associative plasticity/viscoplasticity theories assume that the direction of the 

plastic strain N  is normal to the yield surface. 
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However, in this work, it is shown that the generalized non-associative 

viscoplasticity theories are direct consequences of the principle of virtual power. Let one 

assume for simplicity and without loss of generality that the material is simply elasto-

viscoplastic with kinematic hardening. Hence, for this material the principle of virtual 

power can be written as follows: 

  e vp
ij ij ij ij i i i i i ip dV b u dV t u dA u u dV       

   

                (6.28) 

Substituting the macroforce balance [Eq. (6.14)] and boundary traction equation [Eq. 

(6.15)] into Eq. (6.28) yields: 

   0vp
ij ij ij p dV  



         (6.29) 

Substituting Eq. (6.12) into Eq. (6.29) yields: 

  3
0

2
vp

ij ij ij dV  


 
    

 
   (6.30) 

For an arbitrary   one can then write: 

 * 0vp
ij ij    (6.31) 

where *σ  is given by: 

  * 3

2ij ij ij ijN      (6.32) 

Eq. (6.31) should be satisfied for all possible cases. The possible cases which may 

always make this equation zero are investigated in the following: 

 
a) Case I: 

 0vp
ij   (6.33) 

However, the field vp  can be selected arbitrary. Therefore, this case cannot always be 

satisfied. 

 
b) Case II: 

 * 0ij ij   (6.34) 
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This case gives a plastic flow rule (or microforce balance), different than the flow rule in 

Eq. (6.16), and enforces co-directionality constraint by requiring that the direction of the 

viscoplastic strain N  coincides with the direction of     . Therefore, from Eqs. 

(6.32) and (6.34) one can write for this case: 

 
3

2
ij ij

ijN





  (6.35) 

Moreover, for this case, one can define the yield surface f  by taking the Euclidean 

norm of Eq. (6.34) along with Eq. (6.32) and noting that 1N , such that: 

 * 3
0

2ij ij ijf         (6.36) 

However, this expression shows that Case 2, Eq. (6.34), yields an associative plastic 

flow rule, where one can obtain from Eq. (6.36) that the direction of the plastic flow as 

the normal to the yield surface, such that: 

  
3

2
ij ij

ij ij

ij ij

f
N N



   

 
 (6.37) 

Eq. (6.35) is also used in obtaining the above restriction. 

 
c) Case III: 

Another possible case, which is also the most general one, is that the stress tensor  *  in 

Eq. (6.32) be perpendicular to the direction of the viscoplastic strain rate (i.e. *  N ). 

This does not necessarily imply that the plastic flow direction N  coincides with the 

direction of the stress tensor     . Eq. (6.31) can be rewritten as the inner product of  

*  and N  by utilizing Eq. (6.12) and for any arbitrary value of p  , such that: 

 * 0ij ijN   (6.38) 

However, the microforce balance in Eq. (6.16), which is equivalent to the yield function 

f , can easily be obtained from Eq. (6.38) and noting that : 1N N = , such that: 
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  * 3
0

2ij ijf N        (6.39) 

where      is termed the resolved or equivalent stress since it represents the stress 

    resolved on the direction of plastic flow N , and is given by: 

    ij ij ijN       (6.40) 

It is obvious from Eq. (6.39) that the normal to the yield surface (i.e.  /f  N =   

) does not coincide with the direction of the plastic strain rate, N . In case, N  is co-

directional with      then from Eq. (6.40) one obtains   ij ij       which is 

the case in Eq. (6.36). One can also relate N  and N  from Eq. (6.39) as follows: 

    
kl

ij ij kl kl

ij ij

N
N N 


   

 
 (6.41) 

Therefore, f  in Eq. (6.36) or (6.39) are equivalent only for the case of associative 

plasticity (i.e. N N ). In other words, taking the Euclidean norm of Eq. (6.39) and 

using 1N  yields: 

  3

2 ij ij    (6.42) 

Which implies that -   is not the equivalent stress as it is the case in Eq. (6.36). 

Also, this inequality reduces to an equality (i.e. 
3

2
    as in Eq. (6.36)) when 

-   is co-directional with N . However, for the general case Eq. (6.42) remains an 

inequality. 

Now, let F  be a plastic flow potential function, such that: 

 
 

1
ij

ij ij

F
N M


 


  

;    
 ij ij

F
M





 

 (6.43) 

Then the plastic strain rate is given from Eq. (6.12) as follows: 
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13

2
vp
ij

ij ij

F
M p


 


 

   (6.44) 

The constraint between the plastic potential F  and the yield surface function f  can be 

obtained by substituting Eq. (6.43) into Eq. (6.38) along with Eq. (6.32), such that: 

    
2

0
3ij ij

ij ij

F
f M 




   
 

 (6.45) 

Differentiating both sides of Eq. (6.45) with respect to the  ij ij   yields: 

 
   

   
2

0kl kl

ij ij ij kl kl ij ij

f F F
   
  

   
      

 (6.46) 

Eq. (6.46) provides the relationship between the yield function f  and the viscoplastic 

potential function F  for nonassociative/associative plasticity/viscoplasticity theories. 

This relationship is general and can be used for both associative and non-associative 

plasticity/viscoplasticity theories.  

 As it was discussed earlier, in the associative viscoplasticity theories, the yield 

function f  and the plastic potential function  F  are assumed to be the same or, 

equivalently, the direction of the plastic flow is normal to the yield surface (i.e. 

   / /F f    N =      . According to Eq. (6.46) the assumption of the 

associative viscoplasticity requires the second term in the right side of Eq. to be zero, 

such that: 

  
   

2

0kl kl

kl kl ij ij

F
 


 

   
;   when f F  (6.47) 

Or equivalently from Eq. (6.41): 

    
0ij

kl kl

kl kl

N





 
  

 when 
f F    

 
N N

 
 (6.48) 

which means that    


 
 

N





  as the basic assumption for associative 

plasticity/viscoplasticity theories. Therefore, one can conclude that Eq. (6.46) governs 
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the relation between the yield function and the viscoplastic potential function for both 

associative and non-associative viscoplasticity theories. It should be mentioned that this 

equation naturally implies that the yield surface and the plastic potential functions are 

the same for associative viscoplasticity theories. 

Eqs. (6.43), (6.45), and (6.46) are derived when both isotropic and kinematic 

hardening are assumed. These equations are simplified to the following forms when 

kinematic hardening is not considered. 

 1
ij

ij

F
N M


 




;   
ij

F
M







 (6.49) 
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0
3ij

ij

F
f M 




  


 (6.50) 

 
2

0kl

ij ij kl ij

f F F
   
  

  
   

 (6.51) 

It should be noted that the same arguments can be used for deriving associative 

and non-associative damage rules. 

The above arguments clearly show the existence of a constraint between the yield 

function f  and the plastic potential F  in a thermodynamically consistent framework. 

The yield surface f  can be derived directly using the microforce balance without the 

need for any further assumption more than the Helmholtz free energy function and the 

rate of the energy dissipation that will be shown in the subsequent development. On the 

other hand, one may solve the differential equation presented in Eq. (6.46) for 

thermodynamically admissible potential functions   once the yield function is known. 

Reversely, one can use the given plastic potential function to derive its associated 

thermodynamically admissible yield function f . The second approach is used in this 

work to derive the thermodynamically consistent yield functions associated with the 

given plastic potential function. 
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6.3.4. Internal State Variables and Clausius-Duhem Inequality 

The Helmholtz free energy is assumed to be a function of the following variables in the 

healing configuration: 

 ( , , , , , )ve
ij m p h T       (6.52) 

The internal state variables associated with the viscoelastic process are considered as the 

hidden variables. Ideally speaking, these hidden variables can be used to relate the 

developed constitutive equation at continuum scale to the microstructure. 

 By combining the first and second laws of thermodynamics (i.e. balance of 

energy and entropy imbalance, respectively) and also assuming that the material density 

does not change during the deformation (i.e. 0  ), the Clausius-Duhem inequality for 

non-isothermal conditions can be written as follows (c.f. Lemaître and Chaboche, 1990): 

   , ext int

1
i iT q T dV P P

T
 



           (6.53) 

Substituting Eq. (6.7) into Eq. (6.53) and noting that the sub-region   is arbitrary yield 

the following local form of the Clausius-Duhem inequality: 

  
int

,
1

1
0

veM
ve vp

ij ij m m ij ij i i
m

p T q T
T

       


                   (6.54) 

which defines the rate of the energy dissipation per unit volume,  . However, the 

thermodynamic forces conjugate to the damage density and healing variable (i.e. Y  and 

H ) are null according to Eqs. (6.17) and (6.18). Hence, these terms can be added Eq. 

(6.54) without changing the values of the rate of energy dissipation per unit volume. As 

it will be shown, adding these null terms will substantially simplify the derivation of the 

damage and healing conditions. Hence, one can rewrite Eq. (6.54) as: 

  
int

,
1

1
0

veM
ve vp

ij ij m m ij ij i i
m

p Y Hh T q T
T

        


                       (6.55) 

Substituting the time derivative of the Helmholtz free energy into Eq. (6.55) yields: 
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int

1

,

1
    0

veM
ve vp

ij ij m m ij ijve vp
mij ijm

i ip Y H h T q T
p h T T

       
 

      




      
                    

                               

       

   


(6.56) 

From Eq. (6.56) the following classical thermodynamic state law for entropy is defined: 

 
T

 
 


 (6.57) 

such that the rate of the energy dissipation  from Eqs. (6.56) and (6.57) can be written as: 

 

int

1

,

1
                      0

veM
ve vp

ij ij m m ij ijve vp
mij ijm

i ip Y H h q T
p h T

       
 

    




      
                    

                     

       

  


 (6.58) 

However, in order to obtain non-zero dissipation resulting from the viscoelasticity, 

viscoplasticity, and viscodamage dissipative processes, the following energetic 

thermodynamics conjugate forces that depend on the Helmholtz free energy are defined 

from Eq. (6.58), such that:  

 ene
ij ve

ij

 









 (6.59) 

 ene
m

m

 






  ;    int1,..., vem M     (6.60) 

 ene
ij vp

ij





 





 (6.61) 

 ene

p
  







 (6.62) 

 eneY 






 (6.63) 

 eneH
h

 



 (6.64) 

where “ene” designates the energetic component of the thermodynamic conjugate forces. 

Substituting Eqs. (6.59)-(6.64) into Eq. (6.58) implies: 
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int
ene ene ene ene

1

ene ene
,

1
                                                      0

veM
ve vp

ij ij ij m m m ij ij ij
m

i i

p

Y Y H H h q T
T

        





         

     

           


(6.65) 

Eq. (6.65) shows that the rate of energy dissipation resulting from different 

mechanisms (i.e. viscoelasticity, viscoplasticity, viscodamage, and healing) is positive 

only if the thermodynamic conjugate forces have dissipative components as well. Hence, 

rewriting Eq. (6.65) implies: 

 
int

dis dis dis dis dis dis
,

1

1
0

veM
ve vp

ij ij m m ij ij i i
m

p Y H h q T
T

      


                    (6.66) 

where “dis” designates the dissipative component of the thermodynamic conjugate 

forces and defined as follows: 

 dis ene
ij ij ij       (6.67) 

 dis ene
m m m      ;    int1,..., vem M     (6.68) 

 dis ene
ij ij ij       (6.69) 

 dis ene       (6.70) 

 dis eneY Y Y   (6.71) 

 dis eneH H H   (6.72) 

Therefore, in the current work, the energetic means that the thermodynamic conjugate 

forces are derived from the Helmholtz free energy function and the dissipative means 

that they are derived from the dissipation potential. Therefore, in order to formulate 

constitutive equations for the energetic and dissipative conjugate forces, one needs to 

know: (1) how the material stores energy which helps in assuming a mathematical form 

for the Helmholtz free energy, and (2) how the material dissipates energy which helps in 

assuming a mathematical form for the rate of energy dissipation. Furthermore, the rate of 

energy dissipation [Eq. (6.58)] naturally enforces the decomposition of the stress tensor 

into energetic and dissipative components. This decomposition results in a more 

comprehensive relation between the stress and the viscoelastic strain compared to the 
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classical relations for the viscoelastic materials. It is noteworthy to mention that, the 

Clausius-Duhem inequality also enforces the decomposition of the specific entropy   

into energetic specific entropy (i.e. ene

T
 

 


) and the dissipative specific entropy (i.e. 

dis ene    ) which is related directly to the rate of energy dissipation. However, this 

decomposition is not used for the specific entropy in this work and the classical 

thermodynamic law is assumed for entropy as in Eq. (6.57) with dis 0  . 

 Let one assume for a moment that neither damage nor viscoplasticity occur in the 

material (i.e. 0p   and 0  ) in order to explain the common argument that has been 

made in the literature for substituting the total stress instead of its energetic component 

in Eq. (6.59) [c.f. Levesque et al. (2008)]. Therefore, assuming isothermal conditions as 

well, the Clausius-Duhem inequality in Eq. (6.58) reduces to the following form: 

 
int

1

0
veM

ve
ij ij m mve

mij m

     
 

    
          

    
 (6.73) 

The commonly used argument states that the Clausius-Duhem inequality [Eq. (6.73)] is 

valid for all load histories. So, let the load history to be a hypothetical reversible load 

history such that the viscoelastic internal state variables remain constant (i.e. 0m   ). 

Under this load history the second term of the inequality in Eq. (6.73) vanishes and the 

following constitutive law is obtained: 

 ij ve
ij

 









 (6.74) 

However, the authors believe that this argument is not consistent. The reason is that the 

material is assumed to be viscoelastic, and hence, the state variables m
  are not 

independent of the viscoelastic strains ve  and they evolve even under the unloading 

process. In other words, both ve  and m  evolve during the viscoelastic process whether 

it is loading or unloading. Hence, a more consistent framework is to admit the 

decomposition of the stress tensor into energetic and dissipative components as in Eq. 
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(6.67) such that Eq. (6.74) defines the thermodynamic law for the energetic component. 

The thermodynamic laws for the dissipative components are derived next. 

6.3.5. Maximum Rate of the Energy Dissipation Principle 

As it was shown in the previous section, the correct estimation of the rate of the energy 

dissipation requires the decomposition of the thermodynamic conjugate forces into 

energetic and dissipative components (Ziegler, 1977, 1983; Ziegler and Wehrli, 1987; 

Fremond and Nedjar, 1996; Shizawa and Zbib, 1999; Gurtin, 2003; Anand et al., 2005; 

Gurtin and Anand, 2005; Abu Al-Rub et al., 2007; Gurtin and Anand, 2009; Lele and 

Anand, 2009; Voyiadjis and Deliktas, 2009). However, in all of these works, except for 

the works of Ziegler (1977, 1983) and Shizawa and Zbib (1999), the constitutive 

equations for the dissipative components are merely constitutive assumptions and are not 

derived based on the laws of thermodynamics. However, in this work, the dissipative 

components of thermodynamic conjugate forces are determined directly from the rate of 

energy dissipation by using the maximum energy dissipation principle. Eq. (6.66)shows 

that the rate of the energy dissipation can be decomposed into its thermo-viscoelastic, 

thermo-viscoplastic, thermo-viscodamage, thermo-healing, and thermal components, 

such that: 

 0tve tvp tvd tH th        (6.75) 

where  tve , tvp , tvd , tH , and th  are thermo-viscoelastic, thermo-viscoplastic, 

thermo-viscodamage, thermo-healing, and thermal components of the rate of the energy 

dissipation, respectively, which are given as follows: 

 
int

dis dis

1

0
veM

tve ve
ij ij m m

m

   


        (6.76) 

 dis dis 0tvp vp
ij ij p           (6.77) 

 dis 0tvd Y     (6.78) 

 dis 0tH H h    (6.79) 

 ,

1
0th

i iq T
T

     (6.80) 
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Obviously, Eqs.  (6.76)-(6.80) are more restrict constraints for obtaining a positive-

definite dissipation than that in Eq.(6.75). Now, constraint conditions are needed in order 

to maximize the rate of energy dissipation. This can be achieved by defining the 

following constraint conditions: 

 
int

dis dis

1

0
veM

tve tve ve
ij ij m m

m

D    


 
      

 
     (6.81) 

  dis dis 0tvp tvp vp
ij ijD p            (6.82) 

 dis 0tvd tvdD Y      (6.83) 

 dis 0tH tHD H h    (6.84) 

 ,

1
0th th

i iD q T
T

     (6.85) 

Hence, the following objective functions tve , tvp , tvd , tH , and th  with their 

corresponding Lagrange multipliers tve , tvp , tvd , tH , and th  subjected to the 

constraint 0tveD  , 0tvpD  , 0tvdD  , 0tHD  , and 0thD  , respectively, are defined, 

such that: 

 tve tve tve tveD    (6.86) 

 tvp tvp tvp tvpD    (6.87) 

 tvd tvd tvd tvdD    (6.88) 

 tH tH tH tHD    (6.89) 

 th th th thD    (6.90) 

Maximizing the above objective functions by using the necessary conditions implies: 

 0
tve

ve
ij




 
; 0

tve

m




 
; 0

tvp

vp
ij




 
; 0

tvp

p





; 0

tvd





 

; 0
tH

h




 
;

 
0

/

th

iq T





(6.91) 

Substituting Eqs. (6.86)-(6.90) into Eq. (6.91) yield the following conjugate laws for the 

dissipative forces, such that: 

 dis
tve

tve
ij ve

ij





 




 

 (6.92) 
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 dis
tve

tve
m

m





 




 

 (6.93) 

 dis
tvp

tvp
ij vp

ij


  





 (6.94) 

 dis
tvp

tvp

p
 

 



 

 (6.95) 

 dis
tvd

tvdY



 




  (6.96) 

 dis
tH

tHH
h


 




  (6.97) 

 
 , /

th
th

i
i

T
q T


 




 (6.98) 

where 

 
1 1 1 1 1

1 ;   1 ;  1 ;  1 ;  1tve tvp tvd tH th
tve tvp tvd tH th

              
    

    
(6.99) 

By substituting Eqs. (6.92)-(6.98) respectively into Eqs. (6.81)-(6.85), the Lagrange 

multipliers in Eq. (6.99) can be determined as: 

 
int

1

ve

tve
tve

Mtve tve
ve
ij mve

mij m

 
 


 

 


 




   

 (6.100) 

 
tvp

tvp
tvp tvp

vp
ijvp

ij

p
p





 

 






    

 (6.101) 

 
tvd

tvd
tvd





 









 (6.102) 

 
tH

tH
tH

h
h


 









 (6.103) 
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 /

th
th

th
i

i

q

q T T


 





 (6.104) 

It is noteworthy that other constraints such as the viscoplastic microforce balance 

[Eq.(6.24)], the viscodamage microforce balance [Eq. (6.17)], the healing microforce 

balance [Eq. (6.18)], and the viscoelastic microforce balance [Eq. (6.25)] can also be 

applied to the objective functions which requires determination of several Lagrange 

multipliers. Although applying more constraints to the objective function results in a 

more comprehensive solution for dissipative components of the thermodynamic 

conjugate forces, it makes the problem more complex. This section concludes the 

general thermodynamic framework for determining the energetic and dissipative 

components of thermodynamic conjugate forces. The next following sections present the 

capabilities of the presented thermodynamic framework through an example that derives 

a temperature-dependent viscoelastic, viscoplastic, viscodamage, and healing 

constitutive model for time- and rate-dependent materials. 

6.4. Application to Bituminus Materials 

In this section, the thermodynamic framework explained in the previous sections will be 

used to derive a thermo-viscoelastic, thermo-viscoplastic, thermo-viscodamage, and 

thermo-healing constitutive equations for time- and rate-dependent materials. The 

objective is to derive thermodynamic consistent Schapery-type viscoelastic law, 

Perzyna-type viscoplastic law, damage law proposed by Darabi et al. (2011c), and a 

healing law suitable for time- and rate-dependent materials. 

The Helmholtz free energy is decomposed into thermo-viscoelastic, thermo-

viscoplastic, thermo-viscodamage, and healing components, such that: 

 
( , , , , , , ) ( , , ) ( , , )

                                                                  ( , ) ( , )

ve vp tve ve tvp vp
ij m ij ij m ij

tvd tH

p h T T p T

T h T

      



    

 

     
 (6.105) 
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6.4.1. Thermo-Viscoelastic Constitutive Equation 

Schapery (1969b) used the thermodynamics of irreversible processes and developed a 

single integral constitutive model for non-linear viscoelastic materials. Schapery made 

his viscoelastic model nonlinear by introducing the stress and/or strain-dependent scalars 

at various steps during the development of the constitutive theory. Recently, Levesque et 

al. (2008) extended the Schapery’s nonlinear viscoelastic model for 3D applications 

based on laws of thermodynamics. Here, the procedure of Levesque et al. (2008) will be 

followed to derive the viscoelasticity model and couple it to viscoplasticity, 

viscodamage, and healing models. However, the formulation is expressed in the healing 

configuration and the thermodynamic conjugate forces are decomposed into energetic 

and dissipative components which result in a more general relationship between the 

stress and the viscoelastic strain, as argued in previous sections. Moreover, the 

viscoelastic microforce balance is used to derive viscoelastic equations. 

Both the viscoelastic strain tensor and the viscoelastic internal state variables are 

assumed to contribute to the viscoelastic component of the Helmholtz free energy, such 

that the thermo-viscoelastic component of the Helmholtz free energy can be written as 

follows:  

    (1) (2) (3)
0 1

1 1

2 2
tve ve ve ve ve ve ve

ijkl ij kl mn m n ijm ij ma L L a L             
         (6.106) 

where  0
vea   and  1

vea   are nonlinear dependency scalars to make the viscoelastic 

model nonlinear (Schapery, 1969b); (1)L , (2)L , and (3)L  are positive definite coefficient 

matrices; and ve  is an Arrhenius-type temperature term for coupling temperature to the 

viscoelastic model. 

 The energetic component of the stress can be easily derived using  Eqs. (6.59) 

and (6.106), such that: 

  ene (0) (1) (1) (3)ve ve
ij ijtu tukl kl ijtu tum mA L A L       (6.107) 
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where  (0)
ijtuA  and (1)

ijtuA  are nonlinear parameters related to the instantaneous and transient 

viscoelastic responses, respectively which are no longer an scalar for 3D models, such 

that: 

 (0) 0
0

1

2
ve

ijtu it ju tuve
ij

a
A a   




 





;    (1) 1
1

ve
ijtu it ju tuve

ij

a
A a   




 





 (6.108) 

Eq. (6.108) shows that the energetic component of the stress has two terms, one of which 

is related to instantaneous response and the other one is related to the recoverable 

processes associated with the viscoelastic internal state variables. These two terms are 

recovered upon the unloading and no energy dissipates due to these terms. However, the 

dissipation mechanism results from the viscoelastic strain rate and the rate of the 

viscoelastic internal state variables which are related to the chain mobility and friction 

between the polymer chains. In this work, a simple quadratic form is postulated for the 

viscoelastic component of the rate of energy dissipation, such that: 

 tve ve ve ve
ijkl ij kl mn m nP          

       (6.109) 

Parameters in Eq. (6.109) are defined as follows: 

 
2 tve

ijkl ve ve ve
ij kl


  
 


   

;    
2 tve

mn ve
m n

P
  

 


   
 (6.110) 

The same Arrhenius-type temperature coupling terms are assumed for both temperature-

dependent Helmholtz free energy and rate of energy dissipation. However, different 

temperature coupling terms can be assumed for the Helmholtz free energy and the rate of 

energy dissipation. The assumed form for the thermo-viscoelastic component of rate of 

energy dissipation guarantees the rate of the energy dissipation to be always positive. 

Another common assumption in the theory of nonlinear viscoelasticity is that the 

thermodynamic conjugate forces can be expressed as a nonlinear function of the 

evolution of the state variables (see e.g. Schapery, 1969a; Levesque et al., 2008). 

However, as it will be shown here, there is no need to make these assumptions and the 

viscoelastic laws can be derived directly using the viscoelastic microforce balance [Eq. 

(6.25)]. The viscoelastic microforce balance indicates that the summation of the 
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energetic and dissipative components of the thermodynamic forces conjugate to the 

viscoelastic internal state variables is zero, such that: 

 ene dis0 0m m m         (6.111) 

The energetic and dissipative components of the viscoelastic conjugate forces can be 

determined using Eqs., (6.60), (6.93), (6.100), (6.106), and (6.109), such that: 

  ene (2) (3)
1

ve ve ve
m mn n ijm ijL a L      

   ;    dis ve
m mn nP      

  (6.112) 

Substituting Eq. (6.112) into Eq. (6.111) implies: 

  (2) (3)
1 0ve ve

mn n mn n ijm ijP L a L         (6.113) 

Eq. (6.113) is the partial differential equation governing the viscoelastic processes. This 

equation relates the viscoelastic internal state variables to the viscoelastic strain tensor. 

Eq. (6.113) represents a coupled system of differential equations which expresses the 

evolution of internal variables n  as a function of ve
ij . Expressing Eq. (6.113) in a basis 

where the coefficient matrices are diagonal and using the Laplace transform implies: 

    
(3)

1(2) 0
( ) 1 exp[ ( )]

tijm ve
m m ij

mm

L d
t t a d

L d
    


      ; No sum on m  (6.114) 

where 
(2)
mm

m
mm

L

P
  .  Eq. (6.114) shows the relation between the viscoelastic state variables 

and the viscoelastic strain. It is clear from Eq. (6.114) that the viscoelastic state variables 

m  depend on the viscoelastic deformation history ve
ij . Hence, the viscoelastic internal 

state variables evolve with the evolution of the viscoelastic strain. This supports the 

previously made argument for decomposing the total stress into its energetic and 

dissipative components. Also, Eq. (6.114) shows that the assumptions of assuming state 

variables m  to be constant (i.e. 0m  ) is valid only when the viscoelastic strain is 

constant (i.e. 0ve
ij  ) which happens only in the absence of the viscoelastic processes. 

Hence, it is not consistent to make this argument to derive a viscoelasticity law as 

presented by several researchers (Levesque et al., 2008).  
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The dissipative component of the stress can now be obtained using Eqs. (6.92) and 

(6.109), such that: 

 dis
tve

tve ve
ij ijkl klve

ij

  



  



  
 (6.115) 

The stress as a function of the viscoelastic strain can now be obtained by substituting 

Eqs. (6.107), (6.114), and (6.115) into Eq. (6.67), such that: 

 
   

(0) (0)

(2)

(1) ( )

0
1

       1 exp[ ( )]

ve ve ve
ij ijkl kl ijtu tukl kl

veMt klve m
ijtu tukl m

m

G E

d g
G E t d

d

    


   



  

 
    



 

  (6.116) 

where 

 

(3)
(0) (0) (0) (1) (1) (3)

1 (2)

(3) (3)
(1) (1) ( ) (2)

1(2)

;   

;    ;    

klm
ijtu tukl ijtu tukl ijtu tum

mm

m tum klm
ijtu ijtu tukl

mm

L
G E A L a A L

L

L L
G A E g a

L

 

  
 (6.117) 

Eq. (6.116) represents a more comprehensive formulation that relates the total stress to 

the viscoelastic strain comparing to Levesque et al. (2008). According to notations of 

Duvaut and Lions (1976), the first two terms in the right hand side of Eq. (6.116) refer to 

the viscoelastic materials with the short memories since these two terms relate the state 

of stress at time t  only to the strains at current time t  and the immediately preceding 

time. However, the third term in the right hand side of Eq. (6.116) corresponds to the 

viscoelastic materials with long term memory since it relates the state of stresses at time  

t  to strains at the times preceding t . For the case of linear viscoelasticity the nonlinear 

parameters should be always unity (i.e. (0) (1) G G I  and (2) 1g  ). 

Eq. (6.116) clearly shows that the temperature-dependency can easily be 

incorporated into the viscoelastic models using a temperature coupling term for all terms 

in the right hand side of Eq. (6.116). This approach is more general comparing to the 

classical Schapery-type viscoelasticity where the temperature shift factor is introduced in 

the definition of reduced time. The reason is that incorporation of the temperature shift 

factor as part of the reduced time variable only makes the third term in the RHS of Eq. 



 208

(6.116) temperature-dependent. However, using the Arrhenius-type temperature 

coupling term makes all terms of Eq. (6.116) to depend on temperature. Moreover, as it 

was mentioned earlier, two temperature coupling terms can be introduced in Eq. (6.116), 

one is related to Helmholtz free energy affecting the instantaneous response and the 

other is related to the rate of energy dissipation affecting the rate-type and the transient 

responses. Furthermore, using ve  implies that the nonlinear parameters (0)G , (1)G  , and 

(2)g  are not temperature-dependent which makes their calibration easier. It is 

noteworthy that a proper viscoelastic model can be derived for a specific material by 

postulating different mathematical forms for viscoelastic components of Helmholtz free 

energy and rate of energy dissipation. 

6.4.2. Thermo-Viscoplastic Constitutive Equation 

In the classical theory of continuum plasticity/viscoplasticity several experimentally 

motivated assumptions should be made to formulate a plasticity/viscoplasticity theory. 

These assumptions are the mathematical forms for yield surface and plastic potential 

function from which the plastic strain is determined. Most of the times these 

assumptions are made based on experimental observations. Hence, there is no guarantee 

for these experimental assumptions to satisfy fundamental laws of thermodynamic. As it 

was mentioned in the introduction, several researchers have tried to derive the plasticity 

yield surface based on the fundamental laws of thermodynamics (Gurtin, 2003; Anand et 

al., 2005; Gurtin and Anand, 2005; Abu Al-Rub et al., 2007; Gurtin et al., 2007; 

Voyiadjis and Abu Al-Rub, 2007; Abu Al-Rub, 2008a, b; Gurtin, 2008; Gurtin and 

Anand, 2009). However, to the authors’ best knowledge they could only derive the von-

Misses-type associative plasticity/viscoplasticity theory (i.e. the 2J -flow theory). In this 

section, the generalized non-associative viscoplasticity yield conditions and potential 

functions will be derived based on the viscoplastic microforce balance. Both isotropic 

and kinematic hardening terms are considered. Also, an evolution equation similar to 

Armstrong and Frederick model (1966) is derived using the presented thermodynamic 

framework. 
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T non-associative viscoplasticity can be derived based on principle of virtual 

power. Eq. (6.45) represents the relationship between the yield surface and the plastic 

potential function. In this section, the thermodynamically consistent dynamic yield 

surface associated with a given viscoplastic potential function will be derived. As it is 

shown in this section, Eq. (6.45) naturally yields to non-associative viscoplasticity for 

the given viscoplastic potential.  The normality rule for non-associative plasticity in the 

healing configuration which states that the direction of the viscoplastic strains in the 

effective configuration is normal to the viscoplastic potential function is used. Hence, 

there exists a viscoplastic potential function F  for which the direction of the 

viscoplastic flow in the healing configuration, N , in Eq. (6.43)  can be defined as: 

  
1

ij

ij ij

F
N M


 


 




;    
 ij ij

F
M





 




 (6.118) 

Comparing Eqs. (6.26)and (6.118) implies: 

    
13 3

2 2
vp
ij ij

ij ij

F
pN pM


 

 
 

     
 (6.119) 

Eq. (6.119) properly relates N  and  ij ij

F




 




. The modified Drucker-Prager-type 

[see Eqs. (2.23) and (2.25)] is expressed in the healing configuration and assumed as the  

viscoplastic function, such that: 

 1
vpF I     (6.120) 

Substituting Eq. (6.120) into Eq. (6.118) implies: 

 

    

1 1

2

1
2 32

2

3 1 3 1
1 1

4 2 3

1 9 3
          

4 2

ij ij
ij ijvp vp

vp

ik ik kj kj ij ijvp

S
N A A

d dJ

d
A J S S J S

d J

  



                   

        

 




     


 (6.121) 

where 
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2 2
2

3
3/2
2

2 2
3

2 3
2 2

3 1 27 1 3
1 1 1

8 3 4

3 3 1 3
         1 1

4

1 81
          1 9

16
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ik ik kj kj im im mj mj
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A
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(6.122) 

Substituting Eq. (6.122) into the equation of microforce balance yields: 

 1 0vp I A       (6.123) 

Eq. (6.123) shows the expression of the yield surface associated with the assumed 

viscoplastic potential function in Eq. (6.120). It is noteworthy that the term A  can be 

considered as the hardening function. Interestingly, Eq. (6.122) shows that the hardening 

function associated with this plastic potential function is stress dependent. 

It should be mentioned that one of the common ways to obtain viscoplasticity 

theories is to treat Eq. (6.123) as the rate-independent plasticity yield surface and extend 

it to rate-dependent plasticity (viscoplasticity) using the overstress concept (Zener and 

Hollomon, 1944; Malvern, 1951; Perzyna, 1986; Perzyna and Korbel, 1998). According 

to this approach, the extension of the plasticity yield surface to the rate-dependent 

plasticity (viscoplasticity) theory is usually accompanied by the assumption that the 

stress state is no longer on the yield surface. Hence, an overstress function is defined in a 

dynamic yield surface to constrain the stress state to remain on the dynamic yield 

surface. Then by defining an admissible form of the plasticity Lagrange multiplier as a 

function of the overstress, the dynamic yield surface can be obtained (see Voyiadjis et 

al., 2004 for more details). However, it will be shown here that there is no need for 

extending Eq. (6.123) to viscoplasticity. In other words, the viscoplasticity dynamic 

yield surface obtains directly from Eq. (6.123) if the hardening parameter   is properly 

decoupled into its energetic and dissipative components (i.e. ene dis      ). The next 

step is to postulate mathematical forms for the thermo-viscoplastic component of the 

Helmholtz free energy tvp  and the rate of thermo-viscoplastic energy dissipation tvp  
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in order to define the dynamic yield surface for the assumed viscoplastic potential. The 

following forms are postulated for these two functions: 

  1 0 1 2
2

1 1
exp( )

2
tvp vp vp vp

ij ijC p p p T      


  
       

  
      (6.124) 

    
1

1

2 3

1
exp

2

N
tvp vp vp vp vp

ij ij vp vp

p
C p C T   



 
            

    (6.125) 

The energetic and dissipative components of the isotropic and kinematic hardening can 

be obtained using Eqs. (6.61), (6.62), (6.94), (6.95), (6.124), and (6.125), such that: 

  ene
0 1 21 exp( ) vpp           ;    

1

dis
3

N

vp vp

p
C


 

   

  (6.126) 

 ene
1

vp vp
ij ijC     ;      dis

2 exp vp vp
ij ijC p        (6.127) 

Therefore, the total isotropic and kinematic hardening functions will be expressed as: 

  
1

0 1 2 31 exp( )
N

vp
vp vp

p
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   (6.128) 

  1 2 expvp vp vp
ij ij ijC C p        

    (6.129) 

The dynamic viscoplastic yield function associated with the assumed viscoplastic 

potential can now be obtained using Eqs. (6.123), (6.128), and (6.129), such that: 

  
1

1 0 1 2 31 exp( ) 0
N

vp vp
vp vp

p
I p A C A     


 

           

   (6.130) 

Eq. (6.130) represents the temperature-dependent dynamic yield surface associated with 

the assumed viscoplastic potential [Eq. (6.120)]. 

Taking the time derivative of Eq. (6.127) at the reference temperature and 

neglecting the temperature evolution yield: 

 ene
1

vp
ij ijC     ;        dis

2 2exp expvp vp
ij ij ijC p p C p                 (6.131) 

Adding both sides of Eqs. (6.131)1 and (6.131)2 implies: 
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  dis
1 2 expvp vp

ij ij ij ijC p C p               (6.132) 

Eq. (6.132) shows the equation for the evolution of the backstress. This equation can be 

considered as the modified Armstrong and Frederick model (Armstrong and Frederick, 

1966). When the loading rate is not too high, the effect of vp
ij  can be neglected. In this 

case. Eq. (6.132) reduces to: 

 dis
1

vp
ij ij ijC p          (6.133) 

The Armstrong and Frederick model for evolution of backstress can be written as: 

 1
vp

ij ij ijC p          (6.134) 

Eqs. (6.133) and (6.134) are similar except that the total backstress tensor in the right 

side of Eq. (6.134) is replaced by its dissipative component in Eq. (6.133). Also, Eq. 

(6.133) yields the linear kinematic hardening rule when 0   (Prager, 1956). Eq. 

(6.133) can also be rewritten as the following form: 

 ene
1

vp
ij ij ij ijC p p                 (6.135) 

The first two terms represent the Armstrong and Frederick model. However, Eq. (6.135)

shows that the energetic component of the kinematic hardening function should also be 

added to Armstrong and Frederick model. 

These examples show the capabilities of the proposed framework in deriving 

different constitutive models for time- and rate-dependent materials. In the next sections, 

the presented framework will be applied in deriving viscodamage and healing loading 

conditions and evolution functions. 

6.4.3. Thermo-Viscodamage Constitutive Equation 

In classical continuum damage mechanics a damage condition is usually postulated to 

determine the onset of damage growth and evolution (Hayakawa and Murakami, 1997; 

Murakami et al., 1998). This damage function is treated very similar to plasticity theory. 

As a result, the extension of the damage condition to the rate-dependent one is also 

carried out similarly to the extension of rate-independent plasticity yield surface to the 



 213

dynamic viscoplasticity yield surface (Voyiadjis et al., 2004). However, here it will be 

shown that the rate-dependent damage (viscodamage) condition can be derived directly 

from the principle of virtual power and laws of thermodynamics. Eq. (6.17) defines the 

damage microforce balance. It will be shown here that the damage microforce balance is 

in fact the damage condition.  Combining the damage microforce balance with Eq. 

(6.71) yields: 

 ene dis ene dis0  0   Y Y Y Y Y        (6.136) 

where  eneY  and disY  are given in Eqs. (6.63) and (6.96), respectively. To the best of the 

authors knowledge, this interesting result has been reported here for the first time. In 

fact, Eq. (6.136) is the damage condition criterion. Based on the mathematical form of 

thermo-viscodamage Helmholtz free energy tvd  and rate of thermo-viscodamage 

energy dissipation tvd  the damage condition can be rate-independent or rate-

dependent. Wu et al. (2006) proposed an energy-based plastic-damage model for 

concrete in which the Helmholtz free energy in the presence of damage is expressed as a 

function of stress invariants and damage variable. Similar assumptions have been made 

by Voyiadjis et al. (2004), Voyiadjis and Abu Al-Rub (2006), and Abu Al-Rub and Kim 

(2009). Therefore, the following form is postulated for the thermo-viscodamage 

component of the Helmholtz free energy to consider the confinement effects, the 

different effects of damage in tensile and compressive loading conditions, and the effect 

of temperature on damage evolution and growth, such that: 

    1
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1 2
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1 exp

vd
tvd vd

eff

b I
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b b

    
 

   
 

 (6.137) 

This form is postulated in order to derive the viscodamage model proposed by Darabi et 

al. (2011c) [see Chapters II and III for more information]. The energetic component of 

the viscodamage force can now be determined using Eqs. (6.63) and (6.137), such that: 
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    (6.138) 
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An expression similar to that assumed for the thermo-viscoplastic rate of energy 

dissipation is postulated for the rate of the thermo-viscodamage energy dissipation tvd , 

such that: 

 

1
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vd vd
b





 

     


 (6.139) 

Then, the dissipative component of the damage thermodynamic force disY  can be 

obtained using Eqs. (6.96) and (6.139) as follows: 
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 (6.140) 

with   1
1 1/tvd q

  


. The rate-dependent damage surface can be determined by 

substituting Eqs. (6.138) and (6.140) into Eq. (6.136), such that: 
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Eq. (6.141) represents the dynamic viscodamage loading condition for temperature- and 

rate-dependent damage (thermo-viscodamage). This equation can also be represented as 

a damage evolution law, such that: 
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  (6.142) 

where   2 1qvd vd 





. A simplified version of Eq. (6.142) has applied to predict the 

time- and rate-dependent damage response of asphalt mixes [Refer to Chapter II and 

Darabi et al. (2011c) for more details]. 

6.4.4. Thermo-Healing Constitutive Equation 

As it was mentioned in the introduction part, some engineering materials have the 

potential to heal and retrieve part of their strength and stiffness with time. Hence, a 

robust continuum based model should be able to predict the healing process in addition 
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to the damage evolution and growth. Here, it is shown that the healing evolution law can 

easily be obtained from the principle of virtual power. In fact, the defined healing 

microforce balance [Eq. (6.18)] is the balance law governing the healing process in the 

materials. The healing microforce balance states that the summation of the energetic and 

dissipative components of the healing force should be zero, such that: 

 ene dis ene dis0  0   H H H H H        (6.143) 

where eneH  and disH  are given in Eqs. (6.64) and (6.97), respectively. To the best of the 

authors knowledge, this interesting result has been reported here for the first time. In 

fact, the healing evolution can be easily obtained using Eq. (6.143). Different forms for 

the healing evolution law can be obtained based on the mathematical form of thermo-

healing Helmholtz free energy tH  and the rate of thermo-healing energy dissipation 

tH . In this work, mathematical forms are assumed for the healing components of the 

Helmholtz free energy and rate of energy dissipation in order to derive the healing model 

proposed by Abu Al-Rub et al. (2010a) to model fatigue damage in bituminous 

materials. To achieve this, the following forms are postulated for the healing 

components of the Helmholtz free energy and rate of energy dissipation, such that: 

   1 1 ,ene
1

1

1
1

1
ktH Hh

k
   
    

 (6.144) 

   2 2 ,dis
2 1

ktH Hh      
  (6.145) 

where ,eneH  and ,disH  are Arrhenius-type temperature coupling terms to couple 

temperature to the energetic and dissipative components of the healing model. Note that 

the material parameters 1  and 2  could depend on surface energy since they capture the 

changes in the total surface energy because of the healing of micro-cracks. Moreover, 

the healing component of the rate of energy dissipation is expressed as a function of 

healing rate and damage history. Although the healing component of the rate of energy 

dissipation depends on the damage density, it does not contribute to the dissipative 

component of the damage force. Energetic and dissipative components of the healing 
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force can be obtained by substituting Eqs. (6.64), (6.97), and (6.103) into Eqs. (6.144) 

and (6.145), such that: 

   1ene ,ene
1 1

k HH h       (6.146) 

   2dis ,dis
2 1

k HH h     
  (6.147) 

Substituting Eqs. (6.146) and (6.147) into the healing microforce balance [Eq. (6.143)] 

gives: 

    2 1,dis ,ene
2 11 1 0

k kH Hh h            
  (6.148) 

Eq. defines the first order differential equation governing the healing process. The 

healing evolution law can be obtained by rearranging Eq. such that: 

    2 11 1
k kh Hh h      (6.149) 

where 1 2/h     is the healing viscosity parameter and  H  is the healing temperature 

coupling term. The healing viscosity parameter has the dimension 1/ sec  and controls 

the rate of healing in materials. 

This section concludes the derivation of the thermo-viscoelastic-viscoplastic-

viscodamage-healing constitutive model. It should be noted that this constitutive model 

is derived only as an example. However, the presented thermodynamic framework is 

general and can be used to derive different constitutive models. 

6.5. Heat Equation 

As it was mentioned in previous sections, rate- and time-dependent materials show a 

wide range of mechanical responses depending on the temperature. Changes in 

temperature could be caused by the changes in the ambient temperature or as a result of 

different forms of energy dissipation accompanied by the deformation process. 

Moreover, a local increase in temperature influences the behavior of materials during 

deformation. Hence, including the temperature evolution in the constitutive models for 

time- and rate-dependent materials seems inevitable for accurate modeling of their 
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mechanical responses. In this section, the heat equation necessary for calculating the 

increase in temperature due to different deformation processes is derived. 

 The first law of thermodynamic for a sub-body   having the outward unit vector 

n  normal to the boundary   can be written as: 

 ext exti i

d
edV P q n dA r dV

dt
 

  

      (6.150) 

where e  and extr  are internal energy density and the density of external heat gained by 

the body (e.g. through radiation), and extP  is the external power which is equal to the 

internal power  intP . Meanwhile, the internal energy density e  the specific entropy   

and the Helmholtz free energy density   are related through the following relationship: 

 e T    (6.151) 

By neglecting the changes in the mass density during the deformation, using the 

divergence theorem, noting that the sub-body   is arbitrary, using the equivalency of 

internal and external expenditures of power, and using the definition of internal 

expenditure of power [Eq. (6.7)], the first law of thermodynamic can be rewritten as 

follows: 

  
int

, ext
1

0
veM

ve vp
ij ij m m ij ij i i

m
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                        (6.152) 

Substituting Eqs. (6.57) and (6.76)-(6.80) into Eq. (6.152) yields: 

 ext ,
tve tvp tvd tH

i iT r q          (6.153) 

On the other hand Eqs. (6.57) and (6.105) implies: 

 tve tvp tvd tH         (6.154) 

where ,  ,  ,  and tve tvp tvd tH     are the specific entropies due to viscoelastic, viscoplastic, 

viscodamage, and healing processes, respectively. 
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 (6.155) 

The following equations for the specific entropy can be obtained by substituting Eqs. 

(6.106), (6.124), (6.137), and (6.144) into Eq. (6.155), such that: 
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where Z
T


 


. Taking the time derivative of Eq. (6.154) and substitute it in Eq. 

(6.153) and using Eqs.  (6.59)-(6.64) yield: 
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 (6.160) 

where pc T
T





 is the specific heat at constant pressure. Eq. (6.160) yields a physically 

sound relationship for the heat equation. This equation reveals two mechanisms that 

contribute to the temperature evolution: (a) the thermo-mechanical coupling terms which 

are functions of energetic components of the thermodynamic conjugate forces; and (2) 

dissipation terms which are functions of the dissipative components of the 

thermodynamic conjugate forces appearing in different components of   . 

The relationship for the heat flux vector q  can be easily determined using the 

principle of maximum dissipation. Therefore, an expression is needed for the thermal 

component of the rate of energy dissipation in Eq. (6.98). The following form is assumed 

for th : 

 11th
ij i jk q q

T
   (6.161) 

Substituting Eq. (6.161) into Eq. (6.98) implies: 
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 ,i ij jq k T   (6.162) 

with 1/ 2th 


. Eq. (6.162) is the well-known Fourier heat conduction law. The negative 

sign indicates that the heat flow is opposite to the direction of temperature increase. 

6.6. Conclusions 

In this work, a general and comprehensive thermodynamic based framework with 

especial attention to the decomposition of the thermodynamic conjugate forces into 

energetic and dissipative components is presented to derive a temperature-dependent 

viscoelastic, viscoplastic, viscodamage, and healing constitutive model for time- and 

rate-dependent materials. 

 The healing natural configuration as the extension of the well-known Kachanov’s 

effective (undamaged) configuration is used to enhance the continuum damage 

mechanics in modeling the healing phenomenon. Hence, the constitutive models are 

presented in the healing configuration which substantially simplifies the numerical 

implementation by avoiding the complexities associated with the direct couplings of 

viscoelastic and viscoplastic models to the viscodamage and healing models. The power-

correlating hypothesis is used for relating stress and strain tensors in the healing and 

damaged configurations. This hypothesis allows one to present the constitutive model in 

the healing configuration (for simplicity) and yet to estimate the dissipated energy in the 

healed stress space (healed natural configuration) accurately. 

 Moreover, it is shown that the thermodynamic formulation naturally enforces the 

decomposition of the thermodynamic conjugate forces into energetic and dissipative 

components. Energetic components are derived using the Helmholtz free energy. A 

systematic procedure based on the principle of maximum dissipation (or maximum 

entropy production) is presented for deriving dissipative components directly from rate 

of energy dissipation. The thermodynamic framework is then used for deriving a more 

comprehensive version of Schapery-type viscoelastic model, Perzyna-type viscoplastic 

model, and a viscodamage model analogous to the Perzyna-type viscoplastic model, and 
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a healing model for bituminous materials. Moreover, all the derived constitutive models 

are coupled to temperature. 

 Furthermore, it is shown that the principle of virtual power can be used for 

deriving generalized non-associative viscoplasticity theories without further needs to 

assume a viscoplastic potential function independent from the yield loading condition. It 

is also shown that the rate-dependent terms in viscoplasticity dynamic yield surface are 

identical to the dissipative components of the hardening function and can be derived 

directly from the rate of energy dissipation. Moreover, an equation for the evolution of 

the backstress is proposed which can be considered as a modified version of Armstrong 

and Frederick model (1966) for the backstress evolution. 

 The viscoelastic model is derived using the viscoelastic microforce balance, 

obtained directly from the principle of virtual power. Similarly, the viscodamage and 

healing loading conditions and evolution laws are derived using the viscodamage 

microforce balance and healing microforce balance, respectively.  

 Moreover, the well-known Fourier heat conduction law is derived as a 

consequence of decomposing thermodynamic conjugate forces into energetic and 

dissipative components and using the principle of maximum dissipation. Finally, the heat 

equation for the presented constitutive model is derived. 
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CHAPTER VII 

VALIDATION OF THE THERMO-VISCOELASTIC-

VISCOPLASTIC-VISCODAMAGE-HEALING MODEL AGAINST 

THE ALF DATA 

7.1. Introduction 

In this chapter, the presented thermo-viscoelastic-viscoplastic-viscodamage-healing 

constitutive models (see Chapters II and V for detailed information on these constitutive 

models) is further validated against the FHWA Accelerated Load Facility (ALF) data. 

The experimental measurements on ALF materials are performed at North Carolina State 

University (NCSU) (see Kim et al., (2008) for a detailed explanation regarding the 

material and test procedure). Based on the available experimental data, the calibration 

procedure presented in Chapters II and V is modified and adopted for the available 

experimental data. The compressive data at high temperatures (i.e. 55oC) shows that the 

viscoplastic response of the asphalt mixes cannot be explained by classical hardening 

plasticity/viscoplasticity models. Therefore, a novel approach is introduced to capture 

the viscoplastic softening response (i.e. decreasing in hardening during cyclic loading) in 

asphalt mixtures. This approach is based on the viscoplastic memory surface in the 

viscoplastic strain space. Subsequently, the model is validated against the experimental 

data which has not been used in the calibration process. The model prediction and 

experimental data reveal that the thermo-viscoelastic-viscoplastic-viscodamage-healing 

model with the viscoplastic memory surface has the capability to predict the complex 

response of asphalt mixes over a wide range of temperatures, stress levels, strain rates, 

and loading conditions (Darabi et al., 2011a; Huang et al., 2011b). 
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7.2. Materials 

The materials used in this study are compacted using the Superpave gyratory compactor 

to the dimension of 178 mm in height and 150 mm in diameter. To obtain the uniform 

air void distribution, the specimens are cored and cut to a height of 150 mm with a 

diameter 100 mm. The asphalt mixes have 5.3% binder content with approximately 4% 

air voids and the asphalt binder is specified as unmodified PG 70-22.  

7.3. Model Calibration in Compression 

The NCSU tests in compression include complex modulus test at different temperatures 

and repeated creep-recovery tests with different stress levels and loading/unloading 

times at 55oC. These tests are used to calibrate and validate the thermo-viscoelastic-

viscoplastic model. Table 7.1 lists the tests which are used to calibrate the thermo-

viscoelastic-viscoplastic model parameters. 

 

Table 7.1. Summary of the test used for identification of the thermo-viscoelastic-viscoplastic 
model parameters. 

Test 
Temperature 

( o C ) 
Stress level 

(kPa) 
Confinement 

(kPa) 
Loading time 

(Sec) 
Rest period 

(Sec) 

Complex Modulus test 
-10, 10, 35, 

55 
- 140 - - 

Repeated creep-recovery 
test with variable loading 

(VL) 
55 Varies 140 0.4 200 

  

It should be noted that that most of the tests in compression are conducted at 55oC. At 

high temperatures, the failure mechanism of asphalt mixes is primarily related to the 

flow of the materials. Therefore, the damage model has not been used here to predict the 

degradations of the asphaltic mixes subjected to compressive loadings at high 

temperatures. Instead, a viscoplastic softening model is proposed to capture the flow-

type response of asphalt mixes at high temperatures and in compression. 
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7.3.1. Identification of the Thermo-Viscoelastic Model Parameters 

The dynamic modulus test is used to identify the linear viscoelastic model parameters 

along with the temperature coupling terms. This test is conducted at four temperatures 

(i.e. -10, 10, 35, and 55oC) and eight frequencies (i.e. 0.01, 0.05, 0.1, 0.5, 1, 5, 10, and 

25 Hz). The strain amplitude is controlled to be low enough (i.e.  50-70  ) such that 

the material does not get damaged. The standard procedure is used to identify the 

viscoelastic model parameters and time-temperature shift factors using the complex 

compliance *D  and the phase angle  . In other words, the master curve is first 

constructed for the complex compliance *D  from which the time-temperature shift 

factors are also identified. The next step is to calculate the storage compliance 

 * sinD D    and the loss compliance  * cosD D    versus the reduced angular 

frequency R . The Prony series coefficients and the loss and storage compliances are 

related through the following relationships: 
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  (7.1) 

where nD  and n  are thn  Prony series coefficients and retardation times, respectively. 

The Prony series coefficients can then be identified by minimizing the error between the 

experimental and calculated loss and storage compliances, such that:  

 

2 2
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Exp Exp

D D
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D D

    
             

 (7.2) 

The identified model parameters at the reference temperature are listed in Table 7.2. 

Figure 7.1 (a) and (b) show the complex compliance before and after the time-

temperature shift. 
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Table 7.2. Identified viscoelastic model parameters at  and the time-temperature 
model parameters. 

Viscoelastic Model Parameters 
 1 2 3 4 5 6 7 

(sec-1) 100 1 10-2 10-3 10-4 10-5 10-6 

(kPa-1) 1.8 10-

8 
5.6 10-8 2.3 10-7 4.4 10-7 5.6 10-7 3.3 10-7 3.5 10-7 

(kPa-1) 3 10-8 

Time-temperature shift factors ( ) 

 -10 10 35 55 

 1.26 103 1 6.3 10-4 10-5 

 

7.3.2. Identification of the Viscoplastic Model Parameters 

The Variable Loading (VL) test at 55oC is used to identify the viscoplastic model 

parameters. This test is a repeated creep-recovery test where the loading time is 0.4 sec 

and the rest period is 200 sec. This test consists of several blocks where each block also 

consists of eight creep-recovery cycles. The deviatoric stress level starts from 137.9 kPa 

in the first block and increases with the factor of 1.2 for the next stress level until it 

reaches the last creep-recovery test within that block. For the next loading block, 

however, the first stress level equals to the third stress level in the previous block. Figure 

7.2 shows the applied stress history for the VL test. 
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(a) 

 
(b) 

Figure 7.1. Complex modulus data in compression at different temperatures; (a) before time-
temperature shift; (b) after time-temperature shift. 
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Figure 7.2. Stress history for the Variable Loading (VL) test. 

Once the viscoelastic model parameters are identified, the viscoelastic and 

viscoplastic strain responses can be separated. The separated viscoplastic strain 

responses for the initial loading cycles are used to identify the viscoplastic model 

parameters (please refer to Chapter II and Huang et al. (2011) for more details on 

identification of the viscoplastic model parameters). It should be noted that the 

viscoplastic model parameters are identified at 55oC, whereas, the viscoelastic model 

parameters are identified at 10oC. Therefore, it is assumed primarily that the time-

temperature shift factors are the same for the viscoelastic and viscoplastic responses. 

Having this assumption in hand, the identified viscoplastic model parameters are shifted 

to the reference temperature (i.e. 10oT C ) using the same time-temperature shift factor 

identified from the dynamic modulus test. This can be achieved by simply scaling the 

viscoplasticity viscosity parameter vp [i.e.      010 55 55, 10vp o vp o o
TC C a T C     ]. 

This simple analysis allows one to use the same time-temperature shift factor for 

viscoelasticity and viscoplasticity and avoids the confusion. The rest of the viscoplastic 

model parameters remain the same for both temperatures. Table 7.3 lists the viscoplastic 

model parameters at reference temperature (i.e. ). 
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Table 7.3. Viscoplastic model parameters at the reference temperature 0 10oT C . (Note that 
these parameters are obtained using the viscoplastic parameters identified at 55oC and the time-
temperature shift factor identified from dynamic modulus test). 

    0
y (kPa) 

vp (sec-1) N  0 (kPa) 1 (kPa) 2  

0.25 0.2 100 2.4 10-8 1.0 50 1800 135 

 

Figure 7.3 shows the comparison between the experimental data and model 

predictions for the VL test at 55oC.  Figure 7.3 shows that model predictions agree well 

with the experimental data within the first block. 

  

 
Figure 7.3. Model predictions and experimental measurements for the VL test at 55oC. 

However, the model does not show more viscoplastic strain in the second block 

until the applied stress level exceeds its maximum value in the previous block. However, 

experimental measurements show that asphalt mixes progressively accumulate the 

permanent deformation even when the applied stress is less than its maximum value in 

the previous block (more viscoplastic strain is accumulated for the first four loading 

cycles in the second block even though the applied stress is still less than the applied 

stress at the end of the first block). 
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This distinct behavior of asphalt mixes subjected to the repeated loading at high 

temperatures cannot be explained by hardening plasticity and viscoplasticity theories 

only. In other words, the hardening plasticity/viscoplasticity theories state that the 

material point remains inside the yield surface (i.e. elastic/viscoelastic) when the applied 

stress in the subsequent loading cycle is less than the stress level in the preceding 

loading cycle such that no further permanent deformation is predicted. However, as it is 

obvious from Figure 7.3, asphalt mixes once yielded show accumulation of the 

plastic/viscoplastic strain in each loading cycle even if the applied stress is decreasing. 

Although this behavior can be explained by the viscodamage model, it is not physical to 

relate this degradation behavior to the damage model since at this high temperature and 

in compression loading conditions the material rarely experiences micro-cracking. This 

behavior is related in this work to the viscoplastic softening which will be explained in 

more details in the next subsection.  

7.3.3. Viscoplastic Softening Model and the Viscoplastic Softening Memory Surface 

Asphalt mixes are subjected to repeated loading during their service life. The 

microstructure of the asphalt mixes rearranges during the unloading and rest period 

especially at high temperatures. This rearrangement of the microstructure (i.e. 

rearragement of the aggregates) changes the mechanical properties of the asphalt mixes 

such that they can undergo more viscoplastic deformation during the next loading cycle. 

This behavior is referred to as the viscoplastic softening, (Saadeh et al., 2007). There are 

several approaches to model the viscoplastic softening in materials. The first approach is 

to allow the yield surface to shrink during the unloading to take into account the 

softening behavior. This approach has been used by Yum and Kim (2011) to predict the 

viscoplastic softening response of asphalt mixes at high temperatures. However, their 

model is augmented with more than seven model parameters which increase the number 

of required tests to identify the parameters. The second approach is to additively 

decompose the hardening/softening function   in the viscoplastic dynamic yield surface 

into hardening and softening components, such that: 

 h s     (7.3) 
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where h  and s  are hardening and softening components of the function  , 

respectively. The hardening and softening components can then be obtained by 

proposing certain evolution functions. The third approach is to consider the viscoplastic 

softening effect through the maximum saturation limit of the viscoplastic hardening 

function. In other words, the classical plasticity/viscoplasticity theories state that the 

isotropic hardening saturates for large values of the viscoplastic strains. However, if 

unloading occurs after the saturation point of the isotropic hardening, additional 

softening is observed again which causes the evolution of more plastic/viscoplastic strain 

under the same stress level. Therefore, the saturation limit of the isotropic hardening is 

not constant and changes during the unloading which is accompanied with the changes 

in the microstructure. For example, the saturation limit of the viscoplastic model used in 

this work is 0 1  . In this approach, one can express the parameter 1  to be a 

decreasing function of the effective viscoplastic strain from previous loading cycles.  

 However, numerous other conditions should also be used in these approaches. 

For example, the experimental measurements show that the softening occurs when the 

viscoplastic strain exceeds a certain value. Therefore, one should put another condition 

to capture this effect in order to avoid overestimation of the viscoplastic softening. 

Moreover, experimental measurements usually show the presence of a lower limit for the 

viscoplastic softening such that the material cannot get softer than that limit. Again, 

another condition is required to capture this effect. More importantly, these models are 

usually developed for specific loading conditions and should be used with special cares 

for the general cases. 

 The last approach and the most robust approach, in the author’s opinion, is to 

define a surface in the viscoplastic strain space instead of the stress space as the 

viscoplastic softening memory surface. The memory surface can be considered as the 

counterpart of the yield surface in the viscoplastic strain space. This surface can be 

expressed in terms of an internal state variable which memorizes the maximum 

experienced viscoplastic strain in the last unloading stage. The evolution of the 

viscoplastic softening will then be controlled by this surface. This concept has been used 
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for a different purpose in modeling the stabilization of the hysteresis loops in cyclic 

plasticity of metals (Murakami and Ohno, 1982; Ohno, 1982; Chaboche, 1989). 

Analogously, in this study the static viscoplastic memory surface can be defined as 

follows: 

 ,soft 0vp vpf p q    (7.4) 

where ,softvpf  is the static viscoplastic memory surface, p  is the effective viscoplastic 

strain, and vpq  is the viscoplastic internal state variable memorizing the maximum 

experienced viscoplastic strain for which the softening has occurred. Eq. (7.4) shows that 

the material does not undergo viscoplastic softening if ,soft 0vpf  . However, similar to 

the rate-dependent plasticity (i.e. viscoplasticity), the value of the static viscoplastic 

softening memory surface can have a positive value if the viscoplastic strain exceeds the 

viscoplastic softening internal state variable. The distance of the viscoplastic strain from 

the static viscoplastic softening memory surface controls the rate of the evolution of the 

viscoplastic softening internal state variable, such that one can define a dynamic 

viscoplastic softening memory surface as follows: 

 
1

1

,soft
,soft

0
vp S

vp vp
vp

q
p q

 
     


 (7.5) 

where ,softvp  is the dynamic viscoplastic softening memory surface, ,softvp  is the 

viscoplastic softening viscosity parameter, and 1S  is a model parameter. The rate of the 

evolution of the viscoplastic softening internal state variable vpq  can be determined 

based on Eq. (7.5), such that: 

   1,soft Svp vp vpq p q    (7.6) 

This equation clearly shows that the rate of the viscoplastic softening internal state 

variable depends on the difference of the effective viscoplastic strain and the maximum 

value of the viscoplastic strain for which the softening has occurred. In other words, 

vpp q  is the amount of the viscoplastic strain for which the material has not yet 

rearranged its microstructure during the unloading (i.e. viscoplastic softening has not 
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occurred for this deformation). In fact, this difference is the driving force for the 

viscoplastic softening. Now, as the first try, one can assume that the evolution function 

for the saturation limit of the hardening parameter 1  to be a linear function of the 

viscoplastic softening internal state variable, such that: 

 1 2
vpS q     (7.7) 

However, Eq. (7.7) is modified as follows to consider the history effect in the 

viscoplastic softening model since the experimental measurements show that the rate of 

the viscoplastic softening decreases as the saturation limit of the hardening parameter 

decreases, such that: 
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1 2 initial

1

S

vpS q



 

   
 

   (7.8) 

Figure 7.4 shows the schematic representation of the concept of the viscoplastic 

softening memory surface. 

 

 

Figure 7.4. Schematic representation of the concept of the viscoplastic softening memory 
surface. 
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 This approach provides a promising framework for modeling the viscoplastic 

softening mechanism in the materials. This dynamic viscoplastic softening memory 

surface distinguishs between the viscoplastic softening under extension and compressive 

loading conditions. The identification of the model parameters is pretty straightforward 

and is similar to identification of the parameters associated with the yield surface in the 

stress space. Therefore, one can easily conduct repeated creep-recovery tests at high 

temperatures and for different loading/unloading times to identify the model parameters. 

Alternatively, one can use the flow test to identify the viscoplastic softening model 

parameters. The identified model parameters associated with the ALF materials at 55oC 

are listed in Table 7.4. 

 

Table 7.4. Identified viscoplastic softening model parameters. 
,softvp (sec-1) 1S  2S (kPa) 3S  

0.001 0.3 200000 2.5 
  

The variable loading test is resimulated using the viscoplastic softening memory 

surface as shown in Figure 7.5. As shown in Figure 7.5 (a), inclusion of the viscoplastic 

softening model through the viscoplastic softening memory surface significantly 

enhances the model prediction of the strain response in the VL test. Moreover, the 

evolution of the saturation limit of the viscoplastic model (i.e. 1 ) with time is plotted in 

Figure 7.5 (b). This Figure shows that the material undergoes softening during the rest 

period. However, the viscoplastic model parameters are identified such that the softening 

continues until the rate of the viscoplastic strain reaches a negligible value. After that 

point, no softening occurs since the softening is physically related to the rearrangement 

of the microstructure during the unloading. Therefore, no more softening is expected 

once the rate of the recoverable strain in the unloading reaches zero. 
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(a) 

 
(b) 

Figure 7.5. Experimental measurements and model prediction with and without viscoplastic 
memory surface for the variable loading test (VL) at 55oC in compression. (a) strain response; 

(b) evolution of the  parameter with time. 
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7.4. Model Validation in Compression 

The calibrated VE-VP model along with the viscoplastic softening model are used to 

further validate the model against the experimental data listed in Table 7.5 which has not 

been used in the calibration process.  

 

Table 7.5. Summary of the test used for validation of the viscoelastic-viscoplastic model with 
viscoplastic softening model* 

Test 
Stress level 

(kPa) 
Loading time 

(Sec) 
Rest period (Sec) 

Repeated creep-recovery test with 
constant loading level and time (CLT) 

827 0.1, 0.4, 1.6, 6.4 0.9 

Repeated creep-recovery test with 
variable loading time (VT) 

827 
Sequence of (0.05, 
0.1, 0.4, 1.6, 6.4) 

0.05, 1, 200 

Repeated creep-recovery test with 
reversed variable loading time (RVT) 

827 
Sequence of (6.4, 
1.6, 0.4, 0.1, 0.05) 

200 

* All tests have done at 55oC and 140kPa confinement in compression 
 

7.4.1. Model Validation against Constant Loading Time Test (CLT) 

Figure 7.6 schematically shows the stress history input for CLT. 

 

 

Figure 7.6. Schematic representation of the stress input for the constant loading time test (CLT). 
NCSU database includes CLT tests for four different loading times (LT) of 0.1, 0.4, 1.6, and 6.4 

sec.  
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The constant loading time test (CLT) is basically a simple repeated creep-

recovery test with the rest periods between the loading cycles. The applied stress level, 

loading time, and rest period are kept constant for each test. However, this test is 

repeated for four loading times of 0.1, 0.4, 1.6, and 6.4 sec. The rest period in all these 

four tests equals to 0.9 sec. The applied deviatoric stress is also constant for these four 

tests and equals to 827 kPa. Figures 7.7 and 7.8 show the comparison of the model 

prediction with and without the memory surface with the experimental measurements 

when the loading times are 0.1 and 0.4sec, respectively. As shown in Figures 7.7(a) and 

7.8(a), the VE-VP model shows that the viscoplastic strain saturates after the first one or 

two loading cycle. Therefore, it predicts no more viscoplastic strain for the next loading 

cycles. However, experimental measurements and model predictions with memory 

surface clearly show that the material can undergo more viscoplastic strain after the 

unloading occurs. This phenomenon can be clearly seen in Figures 7.7(b) and 7.8(b). 

These figures show that the material softens during the unloading by decreasing the 

saturation limit of the hardening function 1 . However, the rate of softening decreases as 

the viscoplastic strain increases and as the hardening parameter 1  decreases. This 

behavior is related to the inclusion of the history term 
3

1
initial
1

S



 
 
 

 in Eq. (7.8). This 

history term slows the rate of the viscoplastic softening as the hardening parameter 1  

decreases. Figures 7.7 and 7.8 show that the model with the viscoplastic memory surface 

agrees well with the experimental measurements. Model predictions and experimental 

measurements for longer loading times of 1.6sec and 6.4sec are presented in Figure 7.9. 

Figure 7.9 shows that as the loading time increases, the viscoplastic softening model 

slightly overestimates the experimental measurements. It should be noted that loading 

times 1.6 and 6.4sec resemble very high vehicle speed which are less likely to happen in 

the roads and pavements. However, more experimental data is required to investigate the 

reason for this overestimation as the loading time increases. 
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(a) 

 
(b) 

Figure 7.7. Experimental measurements and model prediction with and without viscoplastic 
memory surface for the constant loading and time test (CLT) at 55oC in compression when the 

loading time is 0.1sec. (a) strain response; (b) evolution of the  parameter with time. 
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(a) 

 

(b) 

Figure 7.8. Experimental measurements and model prediction with and without viscoplastic 
memory surface for the constant loading and time test (CLT) at 55oC in compression when the 

loading time is 0.4 sec. (a) strain response; (b) evolution of the  parameter with time. 
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(a) 

 

(b) 

Figure 7.9. Experimental measurements and model prediction with and without viscoplastic 
memory surface for the constant loading and time test (CLT) at 55oC in compression. (a) loading 

time is 1.6sec; (b) loading time is 6.4sec. 
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7.4.2. Model Validation against Variable Loading Time Test (VT) 

Variable loading time test (VT) is a repeated creep-recovery test where the applied 

deviatoric stress and the rest period between the loading cycles are kept constant and 

equal to 827kPa and 200sec, respectively. This test is designed to investigate the effect 

of loading time on mechanical response of asphalt mixes. VT consists of several blocks 

with each block consisting of six creep-recovery tests. The loading time in each block 

varies from short to long loading times with the sequence of 0.05, 0.1, 0.2, 0.4, 1.6, and 

6.4 sec. The schematic representation of the stress input in VT test is shown in Figure 

7.10. The unloading time (UT) remains constant during each test. However, the VT test 

is conducted at three different unloading times (i.e. rest periods) of 0.05, 1, and 200 sec  

to investigate the effect of the rest period as well.  

 

 
Figure 7.10. Schematic representation of stress input in variable loading time test (VT). The 

unloading time (UT) is constant and equals to 200 sec. 

Figures 7.11 (a), (b), and (c) show the model predictions and experimental 

measurements for the variable loading time test when the rest periods are 0.05, 1, and 

200 sec, respectively.  
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(a) 

 
(b) 

Figure 7.11. Experimental measurements and model prediction with and without viscoplastic 
memory surface for the variable loading time test (VT) at 55oC in compression. (a) rest period is 

0.05sec; (b) rest period is 1sec; (c) rest period is 200sec. 
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(c) 

 
Figure 7.11. Continued. 

 

7.4.3. Model Validation against Reversed Variable Loading Time Test (RVT) 

Figure 7.12 shows the schematic representation of the stress history for the reversed 

variable loading time test. 

  

 

Figure 7.12. Schematic representation of stress input in the reversed various loading time test 
(RVT). The unloading time (UT) is constant and equals to 200 sec. 
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Reversed variable loading time test (RVT) is very similar to the variable loading 

time test (VT) with the difference that the loading time in each block starts from its 

maximum value and decreases to its minimum value. The applied deviatoric stress is 

kept constant and equal to 827kPa. However, the loading time is a sequence of 6.4, 1.6, 

0.4, 0.2, 0.1, and 0.05sec. The unloading time or the rest period in this test is constant 

and is equal to 200sec. Figure 7.13 shows the model predictions and experimental 

measurements for the reversed variable loading time test. Figure 7.13 shows that the 

model prediction without the viscoplastic memory surface significantly underestimates 

the experimental measurements while the model prediction with the viscoplastic 

memory surface overestimates the experimental measurements. 

 

 
Figure 7.13. Experimental measurements and model prediction with and without viscoplastic 

memory surface for the reversed variable loading time test (RVT) at 55oC in compression. 
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0.9sec unloading time is selected to investigate this issue. Figure 7.14 shows the effect of 

the viscoplasticity softening viscosity parameter ,softvp  on the evolution of the 

viscoplasticity softening internal variable vpq . As shown in Figure 7.14, the viscoplastic 

softening viscosity parameter controls the rate of the change in the viscoplastic internal 

state variable vpq . For example, Figure 7.14 shows that when , 0.1vp soft  sec-1, the 

material can fulfill its full softening potential during the rest period of 0.9sec. However, 

the material can only partially fulfill its softening potential when , 0.001vp soft  sec-1. 

However, the material will fulfill its full softening potential once a long enough rest 

period is introduced. Figure 7.14 shows an interesting feature of the model in capturing 

time-dependent viscoplastic softening response. It is noteworthy that the difference 

between the effective viscoplastic strain p  and the viscoplastic softening internal state 

variable vpq  is the driving force for the viscoplastic softening.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.14. Effect of the viscoplastic softening viscosity parameter ,softvp  on the evolution of 

the viscoplastic softening internal state variable vpq . The other parameters are selected as :

1 0.3S   and 2 0S  . 
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The value of ,soft 0.001vp  sec-1 is selected to investigate the effect of the rate-

sensitivity parameter 1S  on the evolution of the viscoplastic softening internal state 

variable. Figure 7.15 shows that the 1S  parameter also controls the rate of change in the 

viscoplastic softening internal state variable. Comparing Figures 7.14 and 7.15 shows 

that the parameter ,softvp  changes both the value and the shape of the curve for the 

viscoplastic softening state variable, whereas, parameter 1S  only affects the rate of the 

change in the viscoplastic internal state variable. 

Furthermore,  Figures 7.16(a) and 7.16(b) show the effect of  and  

parameters on the softening response of materials. 

 

 
Figure 7.15. Effect of the viscoplastic softening parameter 1S  on the evolution of the 

viscoplastic softening internal state variable vpq . The other parameters are selected as :
,soft 0.001 / secvp   and 2 0S  . 
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(a) 

 

 
(b) 

Figure 7.16. Effect of viscoplastic softening model parameters on the softening response of 
materials. (a) Effect of  parameter when , , and ; (b) 

Effect of  parameter when , , and . 
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Figure 7.16(a) shows that the softening viscoplastic response signifies as the 

parameter 2S  increases. However, the history model parameter 3S  controls the rate of 

the viscoplastic softening as the material softens. 

7.6. Identification of the Model Parameters in Tension 

The NCSU test data in tension include complex modulus, uniaxial constant strain rate, 

cyclic stress control, and cyclic strain control tests at different temperatures, strain rates, 

strain levels, and stress levels. The monotonic uniaxial constant strain rates at 5oC are 

used to calibrate the damage model, whereas, the other test data are used to further 

validate the model presented in Chapter II. Tables 7.6 and 7.7 list the tests which have 

been used to calibrate and validate the model respectively. 

 

Table 7.6. Summary of the tests in tension used for identification of the thermo-viscodamage 
model parameters. 

Test Temperature ( o C ) Strain rate (sec-1) 
Uniaxial constant strain rate test 5 7 10-6;  2.1 10-5;  3 10-5;  5.5 10-5 

 

Table 7.7. Summary of the tests in tension used for validation of the thermo-viscoelastic-
viscoplastic-viscodamage-model. 

Test 
Temperature (

o C ) 
Stress level 

(kPa) 
Strain level 

(  ) Strain rate (sec-1) 

Complex Modulus test -10, 10, 35, 55    

Uniaxial constant strain 
arte test 

12   2.7 10-4;  4.6 10-4 

25   
5 10-4;  1.5 10-3;

4.5 10-3;  1.35 10-2 

40   
3 10-4;  10-3;

3 10-3 

Cyclic stress control 
5 1525   

19 250, 750   

Cyclic strain control 
5  1750  

19  1200, 1500  
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7.6.1. Viscoelastic-Viscoplastic Parameters in Tension and Time-Temperature Shift 

Factors 

The NCSU database includes the dynamic modulus tests in both tension and 

compression for the same temperatures and frequencies (i.e. -10, 10, 35, and 55oC; and 

0.01, 0.05, 0.1, 0.5, 1, 5, 10, and 25 Hz). It is usually argued that the viscoelastic 

response of asphalt mixes is controlled by the viscoelastic response of the asphalt binder. 

However, the viscoelastic response of asphalt binder is practically the same in tension 

and compression. Therefore, the viscoelastic response of asphalt mixes should also be 

similar in tension and compression. To investigate this issue, the complex modulus data 

at different temperatures are plotted versus the angular frequency   for both tension 

and compression in Figure 7.17 (a). Figure 7.17 (a) shows that the viscoelastic response 

of asphalt mixes is the same in both tension and compression for a range of temperatures 

(i.e. -10oC-35oC).  

However, the viscoelastic response in tension and compression deviate from each 

other as the temperature increases. Moreover, this deviation signifies at low angular 

frequencies. The reason is that asphalt mixes at high temperatures are very prone to 

viscoplastic deformation and cracking in compression and tension, respectively. 

Therefore, the measured complex compliance at high temperatures includes viscoplastic 

response in compression and damage response in tension. Furthermore, at low angular 

frequencies, the applied load remains on the specimen for a longer time which signifies 

the effect of the viscoplastic evolution and damage evolution in compression and 

tension, respectively.  However, surprisingly the time-temperature shift factors in both 

tension and compression are the same. Figure 7.17 (b) shows the shifted complex 

compliance data to the reference temperature  using the same time-

temperature shift factor listed in Table 7.2. Therefore, for the range of the temperatures 

for which the tension data are available (i.e. 5-25oC) the same viscoelastic parameters 

and time-temperature shift factors identified in compression can be used. Moreover, 

 is used to differentiate between the viscoplastic response in tension and 

compression. 

0 10oT C

0.78vpd 
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(a) 

 
(b) 

Figure 7.17. The complex compliance data at different temperatures. (a) before time-
temperature shift factor; (b) after time-temperature shift. 
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at low temperatures. To examine the accuracy of this assumption, the VE-VP model 

parameters along with the time-temperature shift factors are used to simulate the 

response of asphalt mixes at 5oC when the strain rate is 1 10-4/sec. Figure 7.18 shows 

the predicted viscoplastic strain versus the total applied strain. Figure 7.18 shows that the 

predicted viscoplastic strain is less than 1% of the total applied strain which reasonably 

verifies the assumption of neglecting the viscoplastic strain at 5oC. Moreover, the 

constant strain rate test is selected since one can analytically obtain the response in the 

healing configuration and subsequently identify the damage variable. 

 

 
Figure 7.18. Predicted viscoplastic strain versus the total applied strain at 5oC when the strain 

rate is 1 10-4/sec. It shows that the viscoplastic strain can be reasonably neglected at 5oC. 

To show the procedure, one can assume the strain input for the constant strain 

rate test as follows: 
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using the superposition position principle for linear viscoelastic materials which could be 

written as one of the following equations: 

          
0

0
t

t E t E t d            (7.10) 

          
0

0
t

t E t E t d            (7.11) 

However, Eq. (7.11) serves the purpose of the analysis better. Therefore, substituting Eq. 

(7.9) into Eq. (7.11) yields the following stress output for the uniaxial constant strain rate 

test: 

    
0

t

t C E d      (7.12) 

Therefore, the stress output in the healing configuration at any given time t  will be the 

multiplication of the strain rate by the area under the relaxation modulus-time curve. The 

damage density can now be identified simply by comparing the experimental 

measurements for the stress which can be considered as the stress in the nominal 

configuration and the results obtained from Eq. (7.12), such that: 

    
 

1
t

t
t





 


 (7.13) 

where  t  is the experimentally measured stress at time t . This procedure is followed 

for several constant uniaxial strain rate tests in tension at 5oC. Note that the loading 

condition is monotonic. Therefore, healing will not occur such that the healing and 

effective configurations are the same. Figure 7.19 shows the experimental stress-strain 

curves which have been used in identifying the viscodamage model parameters. The 

identified damage densities at 5oC are plotted versus time and strain in Figures 7.20(a) 

and (b), respectively. 
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Figure 7.19. Stress-strain curves at 5oC which have been used in identifying the viscodamage 

model parameters. 

Now, let one assume the following form for the rate of the damage density as a 

function of the normalized effective damage force and strain: 

  (7.14) 

where  is the damage force at the reference stress level which could be selected 

arbitrary.   

Taking the natural logarithm of both sides implies: 

  (7.15) 

 

0

1000

2000

3000

4000

5000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

St
re

ss
 (k

Pa
)

Strain (%)

Strain rate=7E-6/sec

Strain rate=2.1E-5/sec

Strain rate=3E-5/sec

Strain rate=5.5E-5/sec

 1 2
0

vd Y
f f

Y
 

 
   

 

 

0Y

     1 2
0

vd Y
Ln Ln Ln f Ln f

Y
 

  
         

  

 



 252

 
 

(a) 

 
(b) 

 
Figure 7.20. The identified damage density versus time and strain for different constant strain 

rate tests at 5oC. 

Now, as shown in Figure 7.21, one can simply plot the rate of the damage density versus 

strain using experimental measurements.  
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Figure 7.21. Rate of the damage density versus strain for the constant strain rate tests at 5oC. 

The first and the third terms in the right hand side of Eq. (7.15) will be constant if the 

strain level is kept constant. To examine the 1f  function, the values of the normalized 

effective damage force (i.e. 0/Y Y ) at four strain levels (i.e. 0.1, 0.15, 0.2, 0.25, 0.3%) 

are plotted versus the damage rate for several strain rates (Figure 7.22). For example, the 

line of 0.15% strain level in Figure 7.22 corresponds to points A1-A4 at Figure 7.21. 

Figure 7.22 clearly shows that the natural logarithm of the damage rate changes linearly 

with the natural logarithm of the normalized effective damage force for different strain 

levels. Surprisingly, the slope at all strain level lines is the same and the lines are 

parallel. Note that each point of the line at a fixed strain level corresponds to a constant 

strain rate test. Therefore, each curve at a specific strain level consists of the data at all 

four strain rate. Although Figure 7.22 is plotted at five different strain levels using four 

different constant strain rate tests, the slope of the lines are constant and the lines are 

parallel. This Figure clearly suggests the following form for the function 1f , such that: 

 1
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Y Y
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Y Y
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where q  is the slope of the lines. Furthermore, the interception of each strain level line 

with the Y-axis is the summation of the first and the third terms of the right hand side of 

Eq. (7.15) at that strain level. Therefore, the term  vdLn   and subsequently the 

parameter vd  can be identified since the strain level at each strain level line is given. 

 

 

Figure 7.22. Plot of the damage rate versus the normalized effective damage density for 

identification of the parameters q  and vd .  

This procedure allows the identification of the parameter q  independent of the 

other viscodamage parameters.  

Similarly, as shown in Figure 7.23, one can plot the rate of the damage density 

versus the effective damage force using the experimental measurements and Eq. (7.12). 
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Figure 7.23. Rate of the damage density versus the effective damage force Y  for constant strain 

rate tests at 5oC.  

The first and the second terms of the right side of Eq. (7.15) are constant if the 

effective damage force is kept constant. Therefore, one can fix the effective stress, and 

therefore the effective damage force, and plot the damage rate versus strain for the fixed 

values of the damage force in order to specify the function 2f . This plot is presented in 

Figure 7.24. The line of 3000kPa effective stress in Figure 7.24 corresponds to points 

B1-B4 at Figure 7.23. Figure 7.24 also shows that the changes in the rate of the damage 

density versus strain for constant effective stress are linear. Therefore, the function 2f  

will have the following form with k  being the slope of the lines in Figure 7.24. 

  2
kf     (7.17) 
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Figure 7.24. Plot of the damage rate versus the strain for identification of the parameters k  and 

vd .  

The interception with the Y-axis at a specific effective stress corresponds to the 

summation of the first and the second terms in right side of Eq. (7.15). Therefore, the 

viscodamage viscosity parameter vd  can be identified for each line of the effective 

stress in Figure 7.24. It is interesting that the viscodamage viscosity parameters 

identified from different lines of Figures 7.22 and 7.24 ranges between 1210 - 126 10

/sec with the average of 124 10 /sec which shows the robustness of the presented 

procedure for identification of the viscodamage model parameters. Therefore, the 

viscodamage model presented in Chapter II is slightly modified such that the exponential 

term of the effective strain is substituted by a power law. This change has been made 

since the experimental data did not show a linear correlation between  Ln   and strain 

  [please see Figure 7.25] such that the exponential-type functions are not a reasonable 

form for the  2f  function.  

Note that the viscodamage model parameters are identified at 5oC, whereas, the 

viscoelastic and viscoplastic parameters are expressed at the reference temperature (i.e. 
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temperature using the same time-temperature shift factor identified from the dynamic 

complex compliance test by scaling the viscodamage viscosity parameter such that 

     010 5 5, 10vd o vd o o
TC C a T C     . The assumption for this conversion is that the 

same time-temperature shift factor can also be used for the damage model. This issue 

will be investigated with more details in the following subsections. The viscodamage 

model parameters at the reference temperature are listed in Table 7.8. 

 

 
Figure 7.25. Plot of the natural logarithm of the damage rate versus strain for different strain 
rates at 5oC showing that the damage rate does not correlate with an exponential function of 

strain.  

Table 7.8. Viscodamage model parameters at the reference temperature 0 10oT C . (Note that 
these parameters are obtained using the viscodamage parameters identified at 5oC and the time-
temperature shift factor identified from dynamic modulus test). 

vd sec-1 0Y  kPa q k  
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7.7. Validation of the Model against the Uniaxial Constant Strain Rate Tests in 

Tension 

The identified thermo-viscoelastic-viscoplastic-viscodamage model parameters are used 

to validate the model against the constant strain rate tests at different temperatures and 

strain rates. Figure 7.26 shows the model prediction and experimental measurements for 

the constant strain rate tests at 5oC and at different strain rates. It should be noted that the 

same time-temperature shift factor identified from the dynamic modulus test is used for 

all components of the model (i.e. viscoelastic-viscoplastic-viscodamage). Figure 7.26 

clearly shows that the model is capable of predicting the rate-dependent response of 

asphalt mixes. It should be noted that the experimental measurements shown in Figure 

7.26 have been used to identify and calibrate the viscodamage model parameters. 

 

 
 
 
 
 

 
 

(a) 
 
 

 
 
 
 
 
 

 
 

Figure 7.26. Model predictions and experimental measurements for the constant strain rate test 
in tension at 5oC when strain rates are: (a) 7 10-6/sec; (b) 2.1 10-5/sec; (c) 3 10-5/sec;  (d) 5.5

10-5/sec. 
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Figure 7.26. Continued. 
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Moreover, the model is also used to predict the response of the asphalt mixes 

subjected to constant strain rate tests at 12oC, 25oC, and 40oC as well. Figure 7.27 shows 

the model predictions and experimental measurements for two strain rates at 12oC. 

Figures 7.27 (a) and (b) show that the model predictions agree well with the 

experimental data when the damage is activated. The plots of the damage density versus 

strain for the constant strain rate tests at 12oC are shown in Figure 7.28.  
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Figure 7.27. Model predictions and experimental measurements for the constant strain rate test 
in tension at 12oC when strain rates are: (a) 2.7 10-4/sec; (b) 4.6 10-4/sec. 
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Furthermore, Figure 7.29 shows further validation of the model at 25oC and for 

four different strain rates. Also, Figure 7.30 shows the predicted damage density versus 

strain for different strain rates at 25oC.  

 

 
Figure 7.28. Predicted damage density versus strain for the constant strain rate test at 12oC. 
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Figure 7.29. Model predictions and experimental measurements for the constant strain rate test 
in tension at 25oC when strain rates are: (a) 5 10-4/sec; (b) 1.5 10-3/sec; (c) 4.5 10-3/sec; (d) 

1.35 10-2/sec. 
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Figure 7.29. Continued. 
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Figure 7.30. Predicted damage density versus strain for the constant strain rate test at 25oC. 

The model is further validated at 40oC for the constant strain rate test at several 

strain rates. Figure 7.31 shows the model predictions and experimental measurements for 

the stress-strain response at several strain rates. As it is shown in Figure 7.31 model 

agrees well with the experimental data.  
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Figure 7.31. Model predictions and experimental measurements for the constant strain rate test 

in tension at 40oC when strain rates are: (a) 3 10-4/sec; (b) 10-3/sec; (c) 3 10-3/sec. 
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Figure 7.31. Continued. 

Moreover, the damage density versus strain is plotted in Figure 7.32.  
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Figure 7.32. Predicted damage density versus strain for the constant strain rate test at 40oC. 

Figures 7.20, 7.28, 7.30, and 7.32 clearly show that the model predicts higher 

damage value at fixed strain levels as the strain rate increases. This is in agreement with 

experimental measurements on asphalt mixes. Predictions presented in this section 

clearly shows that the proposed damage model is capable of predicting the rate- and 

temperature response of asphalt mixes subjected to monotonic loading. Moreover, it is 

usually recommended to identify the damage model parameters at low temperatures for 

which the material is expected to undergo severe micro-cracking as the strain level 

increases. The reason is that if the model can predict the severe damage condition, it 

might also perform well at higher temperatures for which the rate of the damage growth 

decreases. 

The viscoelastic-viscoplastic-viscodamage model parameters along with the 

time-temperature shift factors are also used to predict the response of the asphalt mixes 

subjected to cyclic loading at 5 and 19oC. However, it should be mentioned that the 

time-temperature shift factors for the damage model at 12oC, 19oC, 25oC, and 40oC are 

assumed to be slightly different from the time-temperature shift factor identified from 

the dynamic modulus test. However, this difference is negligible such that one can 

consider the asphalt mix used in this study a thermo-rheological simple material for 
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viscoelastic, viscoplastic, and viscodamage components. Figure 7.33 shows the 

comparison between the time-temperature shift factors for the damage model and the 

viscoelastic-viscoplastic model. 

 

 
Figure 7.33. Comparison of the viscodamage time-temperature shift factor and the viscoelastic-

viscoplastic time-temperature shift factor (identified from dynamic modulus test) when the 
reference temperature is 10oC.  

7.8. Validation of the Model against the Cyclic Stress Controlled Tests in Tension 

The model is further validated against the cyclic stress controlled tests in tension. This 

test is performed at 5oC and 19oC and for multiple stress amplitude. This test applies a 

cyclic stress input with the frequency of 4cycles/sec, such that the stress input can be 

written as follows: 

  max max cos 8
2 2

t
      (7.18) 

where max  is the stress amplitude. The schematic presentation of the stress history in 

this test is shown in Figure 7.34. ft  in Figure 7.34 can be considered as the failure time. 

The number of loading cycles until which the material fails is therefore 4 ft .   
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Figures 7.35(a) and (b) show the model predictions using viscoelastic-

viscoplastic model and the experimental measurements at initial loading cycles and 

intermediate loading cycles for 750kPa stress amplitude, respectively.  Figure 7.35(a) 

shows that the model agrees reasonably well with experimental data for initial cycles. 

However, as shown in Figure 7.35(b), model predictions deviates significantly from the 

experimental data. This deviation should be compensated for with the viscodamage 

model. As shown in Figure 7.36, the viscodamage component significantly enhances the 

prediction of the cyclic response of asphalt mixes at large number of loading cycles. 

 

  

  

 

 

 

 

 
 
 

Figure 7.34. Schematic representation of loading history for Controlled Stress cyclic test in 
tension. 

Figure 7.37 shows the model predictions and experimental data of the strain 

response for the cyclic stress control test at 19oC when the stress amplitude is 750kPa.  
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Figure 7.35.Compasrison of the model prediction using viscoelastic-viscoplastic model and 
experimental data for the cyclic stress control test at 19oC when the stress amplitude is 750kPa. 

(a) Loading cycles 1-30; (b) Loading cycles 970-980. 
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Figure 7.36. Comparison of the VE-VP-VD model prediction and experimental data for loading 
cycles 970-975 at 19oC when the stress amplitude is 750kPa. 

 
Figure 7.37. Comparison of the experimental data and model predictions with and without 

damage component for the strain response in the cyclic stress control test at 19oC when the stress 
amplitude is 750kPa. 
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Moreover, Figure 7.38 shows model predictions and experimental measurements 

for the same test and temperature when the stress amplitude is 250 kPa.  

 

 
Figure 7.38. Comparison of the experimental data and model predictions with and without 

damage component for the strain response in the cyclic stress control test at 19oC when the stress 
amplitude is 250kPa. 
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the cyclic control stress test at 5oC. As shown in Figure 7.39, the presented thermo-
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damage model slightly underestimates the experimental measurements, it significantly 

enhances the model predictions without the damage model. 
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Figure 7.39. Comparison of the experimental data and model predictions with and without 

damage component for the strain response in the cyclic stress control test at 5oC when the stress 
amplitude is 1525kPa. 

7.9. Validation of the Model against the Cyclic Strain Controlled Tests in Tension 

It is usually very difficult to conduct the cyclic strain controlled tests. The reason is that 

for the stress controlled tests, one can apply the stress to the specimen by controlling the 

applied force from the machine ram. However, although one can control the applied 

strain from the machine ram, the strain at the middle of the specimen is not the same as 

the applied strain at the end of the specimen. This effect is referred to as the end plate 

effects. Therefore, the common practice is to apply the cyclic controlled strain at the end 

of the specimens and measure the strain at the middle of the specimen using LVDTs. 

This test is referred to as controlled crosshead cyclic loading (refer to Kim et al., 2008). 

Figure 7.40 shows the schematic representation of the strain input for the controlled 

crosshead cyclic loading.  
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Figure 7.40. Schematic representation of the applied strain from the machine ram and the 

measured strain at the LVDTs for cyclic strain control tests. 

The NCSU database includes cyclic strain controlled tests in tension at 5 and 

19oC and at several strain amplitudes. However, the frequency of the loading at 5oC and 

19oC are 10 cycles/sec and 4 cycles/sec, respectively, such that the applied strain at the 

end of the specimen can be written as: 

  max max cos 2
2 2

ft
      (7.19) 

where f  is the frequency which is 4cycles/sec and 10cycles/sec at temperatures 19oC 

and 5oC, respectively.   

As it is schematically shown in Figure 7.40, the measured strain at the LVDTs 

does not have constant amplitudes. Therefore, to simulate these tests, the measured strain 

values versus time are fed as the strain input into the Abaqus software. The identified 

viscoelastic-viscoplastic-viscodamage model parameters along with the time-

temperature shift factors presented in Figure 7.33 are used to predict the cyclic strain 

controlled tests in tension. However, the constitutive models usually do not perform well 

in capturing the response for both stress and strain controlled tests. The reason is that the 
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controlled strain tests usually show initial responses which are related to initial stretch or 

initial densification of the material. 

To capture this effect, the instantaneous compliance is adjusted such that the 

model predictions agree with the experimental data at initial cycles. Figure 7.41 shows 

the strain amplitude measured at the LVDTs for the cyclic strain controlled test when the 

strain amplitude applied at the end plates is 1200  . 

  

 
Figure 7.41. Measured strain amplitude at LVDTs for the cyclic strain controlled test when the 

applies strain amplitude at the end plates is 1200  .  

 
The identified VE-VP-VD model parameters along with the time temperature 

shift factors are used to predict the response for the cyclic strain controlled tests. Figure 
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(a) 

 

 
(b) 

Figure 7.42. Measured and predicted stress-strain response for the cyclic strain controlled test 
when the strain amplitude applied at the end plates is 1200  . (a) cycles 1-50; (b) cycles 

22200-2250. 
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As shown in Figure 7.42 (a), the model predicts the experimental measurements 

well for the initial cycles. However, the VE-VP-VD model significantly underestimates 

the stress output as the number of loading cycles increase. Figure 7.43 shows the model 

prediction and experimental measurements for the stress amplitude versus number of 

loading cycles. Figure 7.43 shows that the model prediction using VE-VP model 

significantly overestimates the stress input, whereas, the model prediction using VE-VP-

VD model significantly underestimates the stress output such that in predicts premature 

failure. In other words, the VE-VP-VD model significantly overestimates the damage 

parameter as compared to experimental measurements. 

 

 
Figure 7.43. Measured and predicted stress amplitude for the cyclic controlled strain test when 

the applied strain amplitude at the end plates is 1200  .  
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controlled) and strain controlled tests with monotonic loading (i.e. constant strain rate 

tests). However, the model fails for the cyclic strain controlled tests. This issue is 

explained based on the viscoelasticity theory. Figure 7.44 shows schematic 

representation of the strain input and stress output for the cyclic strain controlled tests.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

Figure 7.44. Schematic representation of the strain input and stress output for the cyclic strain 
controlled tests. 
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Let one assume that the damage occurs if the tensile strain is larger than the 

threshold value (i.e. damage
th ). Therefore, for strain values larger than damage

th  damage may 

nucleate and propagate. For example, let one assume a very simple case where the 

material already contains a single crack with the length 0a  at point “A” as shown in 

Figure 7.45(a).  

 

 

Figure 7.45. Schematic representation of crack growth and crack closure/healing in the cyclic 
strain controlled tests (Points shown in this figure correspond to the points shown in Figure 

7.44).  

The strain remains larger than  damage
th  when moving from point “A” to point “B” 

as shown in Figure 7.44 (a) such that the crack length increases to 1a  which is larger 

than 0a  as shown in Figure 7.45 (b). It should be noted that the stress is also tensile from 

point “A” and close to point “B” which also causes the crack to propagate and increase 

its length from 0a  to a . However, it is well-known that the viscoelastic materials have 

fading memory. In other words, during the loading stage (when strain rate is positive) 

the stress increases. However, the stress starts relaxing and fading away with time. On 

the other hand, during the unloading stage (when the strain rate is negative) the stress 

decreases such that at some point it becomes negative. The reason is that the resulted 

negative increment in the stress due to the decrease in the strain level in the unloading 

region is more than the resulted positive increment in the stress due to the increase in the 

strain level in the preceding loading region. In other words, a large portion of the 
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resulted positive stress increment in the preceding loading region has already faded away 

since it has been applied before the current unloading stage such that the decrease in the 

stress exceeds the increase in the stress and causes the material to feel compression 

although the total strain is still in tension. On the other hand, from point “B” to point “C” 

the strain value is less than the threshold damage strain damage
th . Moreover, as discussed, 

the material feels compressive stress in this region. Therefore, as shown in Figure 7.45 

(b) the crack faces tend to attract each other and create a bond. As a result, the crack 

length decreases from a  at point “B” to  a a  at point “C”. It should be noted that this 

phenomenon can be referred to as crack closure. However, as mentioned in the previous 

chapters, the asphalt binder and as a result the asphalt mixes has the tendency to heal at 

low strain levels. Moreover, moving from tensile stresses to compressive stresses may 

enhance the healing capabilities. Therefore, without inclusion of the healing component 

the induced damage is overestimated such that the model without healing model predicts 

unrealistic failure as shown in Figure 7.43. Since the time interval for which the strain 

values is less than the damage threshold strain  damage
th  and the tensile stress changes to 

compressive stress is short, a very simplified version of the healing model presented in 

Chapter V is postulated here to explain this distinct behavior, such that one can write: 

 hh    (7.20) 

where h  is the healing viscosity parameter. As mentioned in Chapter V, the healing 

viscosity parameter should be identified from the repeated creep-recovery tests with rest 

periods. However, the NCSU database does not possess this test in tension. Therefore, 

the healing viscosity parameter is identified based on the deviation between the VE-VP-

VD model predictions and experimental measurements. The identified healing 

parameters along with the VE-VP-VD model parameters and time-temperature shift 

factors are used to predict the cyclic strain controlled tests at different temperatures and 

for different strain amplitudes. The healing viscosity parameter is identified to be 6.5

10-3/sec.  
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Figure 7.46 shows the measured stress-strain response and the model predictions 

with and without healing component for the intermediate cycles of the cyclic strain 

controlled test at 19oC when the applied strain amplitude is 1200 .  As shown in 

Figure 7.46, the healing model significantly enhances the prediction of the stress-strain 

response at intermediate cycles. 

 

 
Figure 7.46. Measured and predicted stress-strain response at intermediate cycles (i.e. cycles 
2200-2250) for the cyclic strain controlled test when the strain amplitude applied at the end 

plates is 1200  . 

Figure 7.47 shows the measured and predicted stress amplitude versus number of 
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that the material can tolerate the loading up to 16000 loading cycles. 
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amplitude at the end plates is 1500 . The measured strain at LVDTs is shown in 

Figure 7.48 (a).   

 

 
Figure 7.47. Measured and predicted stress amplitude for the cyclic controlled strain test when 

the applied strain amplitude at the end plates is 1200  .  

 
Figure 7.48(b) clearly shows that the inclusion of the healing in the constitutive model 

significantly enhances the model predictions for the cyclic strain controlled test.  

 The VE-VP-VD-H model parameters along with the time-temperature shift 

factors are used to predict the cyclic strain controlled test at 5oC. It should be noted that 

more experimental data is required to identify the healing and its associated temperature 

coupling term model parameters. However, the healing and damage time-temperature 

shift factors are assumed to be the same. Figure 7.49 (a) shows the measured LVDTs’ 

strain amplitude at 5oC for the cyclic strain controlled test when the applied strain 

amplitude at the end plates is 1750 . The experimental and model prediction for the 

strain history shown in Figure 7.49(a) is shown in Figure 7.49(b). The predictions shown 

in this chapter clearly show that the model can reasonably predict the time-, temperature- 
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and rate-dependent response of asphalt mixes under both monotonic and cyclic loading 

conditions. 

 

 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 

(a) 

 
(b) 

Figure 7.48. Experimental measurements and model predictions for the cyclic strain controlled 
test at 19oC when the applied strain amplitude at the end plates is 1500 . (a) The amplitude of 

the measured strains at LVDTs versus the number of loading cycles; (b) The tensile stress 
amplitude versus number of loading cycles.  
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(a) 

 
(b) 

 
Figure 7.49. Experimental measurements and model predictions for the cyclic strain controlled 
test at 5oC when the applied strain amplitude at the end plates is 1750 . (a) The amplitude of 

the measured strains at LVDTs versus the number of loading cycles; (b) The tensile stress 
amplitude versus number of loading cycles.  
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7.10. Conclusions 

The thermo-viscoelastic-viscoplastic-viscodamage-healing model presented in Chapter 

II is modified and further validated against an extensive experimental data from the 

NCSU database. It is shown that the classical plasticity/viscoplasticity theories are not 

capable of predicting the viscoplastic response of asphalt mixes at high temperatures. 

 A novel computational technique to model the viscoplastic softening in asphalt 

mixes is proposed. This model is based on the definition of a viscoplastic softening 

memory surface in the viscoplastic strain space. The viscoplastic softening memory 

surface is defined as a function of the effective viscoplastic strain and an internal 

variable memorizing the maximum viscoplastic strain for which the softening has 

already occurred. This memory surface can be considered as the counterpart of the 

viscoplastic dynamic yield surface in the viscoplastic strain space. The viscoelastic-

viscoplastic model with the viscoplastic memory surface is then validated against creep-

recovery tests in compression at 55oC for different stress levels, loading times, and rest 

periods. 

 The calibrated viscoelastic-viscoplastic model is then used to identify the damage 

response of asphalt mixes in tension. A straightforward procedure for identification of 

the viscodamage model parameters is proposed. This procedure is based on the analysis 

of the constant strain rate tests at several strain rates. The identified viscodamage model 

parameters are then used to predict the mechanical response of asphalt mixes at multiple 

temperatures (i.e. 5, 12, 19, 25, and 40). The tension data include constant strain rate, 

dynamic modulus, cyclic stress controlled, and cyclic strain controlled tests at multiple 

temperatures, strain rates, stress amplitudes, and strain amplitudes. Comparison of the 

model predictions and experimental measurements show that the viscodamage model 

predicts the constant strain rate tests as well as the cyclic controlled stress tests very 

well. However, it fails to capture the response for the cyclic strain controlled tests.  

 It is shown that this discrepancy is related to the healing mechanism that occurs 

during the cyclic strain controlled tests. The model predictions with the viscodamage and 
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healing models show that the inclusion of the micro-damage healing remedies this 

problem and yields reasonable responses comparing to the experimental measurements.    

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 285

CHAPTER VIII 

NUMERICAL TECHNIQUE FOR FINITE ELEMENT 

IMPLEMENTATION OF GRADIENT-DEPENDENT CONTINUUM 

DAMAGE MECHANICS THEORIES 

8.1. Introduction 

The ultimate goal of developing a multi-physics constitutive model for asphalt mixes is 

to predict the performance of these materials during their service lives. However, the 

asphalt pavements are subjected to millions of loading cycles during their service life.  

Therefore, it is imperative to develop robust, yet simple, computational techniques for 

numerical implementation of the multi-physics constitutive equations and performance 

simulation of the pavements. However, the difference between the stiffness of the 

constituents of the asphalt mixes causes the strain and the induced damages to localize in 

binder phases causing instabilities and mesh-dependent results in the FE simulations. In 

other words, as the loading increases, asphalt binder undergoes a substantial strain levels 

comparing to the applied strain to the HMA. For example, strain in the binder could 

range between average of eight times and a maximum of 510 times the bulk strain of the 

mixture  (Kose et al., 2000) and some regions within the mastic can experienced strain 

levels as high as 30 times the applied strain (Masad and Somadevan, 2002). These 

localizations lead to the mesh-dependent results in the FE simulations specially at 

softening regions such that the traditional local continuum theories fail to predict 

physical response. One alternative to remedy this problem is to use and implement non-

classical gradient-dependent continuum theories (see Dessouky, 2005 for an example). 

Therefore, a general framework for implementation of the nonlocal damage theories is 

proposed. The proposed implementation procedure will be used in the next chapter to 

simulate the performance of asphalt pavements.  

In general, failure of most of the materials is accompanied with the observation 

of localization phenomenon and softening. In the softening region, most of the 

specimen’s deformation occurs within one or more narrow bands (i.e. inside the binder 
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for the case of asphalt mixes) while the rest of specimen usually exhibits unloading 

(Pamin, 1994). Depending on the material parameters; loading type and distribution; 

loading rate, geometry, and boundary conditions the orientation and width of these 

localization bands change. The physical origin of localization and various types of size-

scale effects lies at the micro-scale of observation. Material deformation patterns are 

heterogeneous at the micro-scale; upon loading this heterogeneity causes a severe 

nonlinear behavior and local weakness of the material, which is an instability initiating 

strain localization (Pamin, 1994).  

 Continuum damage mechanics proposed initially by Kachanov (1958) seems to 

be well-adopted to describe the material response due to the existence, nucleation, and 

growth of micro-cracks and micro-voids. This approach has been used by several 

researchers for modeling damage in different materials. However, the assumption of 

variation of deformation in a sufficiently smooth manner is implicitly embedded in these 

classical theories since they are expressed in terms of averaged stress and strain. But this 

is not the case when strain or damage localization occurs. As the strain and damage 

defects localize over narrow regions, the material increasingly displays localization and 

the finite element simulations become highly affected by the mesh size and alignment 

causing non-physical predictions of the damage regions, damage distribution across the 

localized region, and the failure of the structure. In addition, the size of the fracture 

process zone becomes controlled by the size of one element in the finite element 

simulations. Therefore, the characteristic length scale governing the variations of those 

defects and their average interactions over multiple length scales falls far below the scale 

of the local state variables of classical theories of continuum mechanics. In these cases, 

damage theories and the boundary value problem in the presence of damage-induced 

softening will become ill-posed. In other words, continuum theories suffer from mesh-

dependency problems when strain or damage localizes over a narrow region and the 

material response shows the softening behavior. This mesh-dependent response is 

because of the lack of an intrinsic length scale in the governing equations of the classical 

continuum theories. Therefore, the condition for the loss of ellipticity (or hyperbolicity 
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in dynamic problems) of the governing differential equations leads to ill-posed solution 

when strain or damage localization occurs such that the width of softening zone will 

always be of the thickness of one element, regardless of the element size (e.g. de Borst et 

al., 1993; Mühlhaus, 1995; Alehossein and Korinets, 2000).  

 For quasi-static loading conditions, well-posed solutions and restoring the 

ellipticity of the governing equations can be obtained by enhancing the local damage 

models by nonlocal measure(s). This can be achieved either by using the nonlocal 

integral approach (e.g.Pijaudiercabot and Bazant, 1987; Bazant and Pijaudiercabot, 

1988; Comi, 2001; Ferrara and di Prisco, 2001) or the gradient-enhanced approach (e.g. 

Aifantis, 1984; Lasry and Belytschko, 1988; deBorst and Muhlhaus, 1992; Zbib and 

Aifantis, 1992; de Borst et al., 1993; deBorst and Pamin, 1996; Peerlings et al., 1996; 

Nedjar, 2001; Voyiadjis and Abu Al-Rub, 2003; Abu Al-Rub and Voyiadjis, 2005b, 

2006; Challamel et al., 2009). Although these nonlocal theories have provided many 

useful results, there are still some difficulties in their numerical implementation which 

are mostly due to the higher-order of the governing equations in the localized region. As 

an example, the consistency condition of damage surface becomes a differential equation 

and is not an algebraic one anymore. Moreover, there are also some complexities due to 

higher-order boundary conditions which are necessary for mathematical consistency and 

need to be prescribed on the moving elastic-damage boundary (Abu Al-Rub and 

Voyiadjis, 2005a).  

 The computational technique usually followed for integrating the gradient-

dependent constitutive relations was first proposed by de Borst and co-workers (e.g. 

Mühlhaus and Aifantis, 1991; deBorst and Muhlhaus, 1992; Pamin, 1994; deBorst and 

Pamin, 1996). In their work, the plasticity/damage flow/growth conditions depend on the 

Laplacian of an equivalent kinematic measure (hardening/softening internal state 

variables), and the consistency conditions result in differential equations with respect to 

the plastic/damage Lagrange multipliers. These multipliers are considered as 

fundamental unknowns (additional degrees of freedom) having a role similar to that of 

displacements and are discretized in addition to the usual discretization of the 
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displacements in the finite element method. The consistency condition is written in a 

weak form and solved simultaneously with the equilibrium equation. Because of the 

presence of high-order derivatives in the weak form of the (initial) boundary value 

problem, there is a need for numerically expensive C1-continuous conditions on the 

shape functions or penalty-enhanced C0 class functions for the interpolation of the 

plastic/damage multipliers in the finite element context. C2 and higher continuity are also 

needed if fourth-order or higher-order gradient terms are incorporated; otherwise the 

gradient terms lose their presence. Therefore, Hermitian or mixed formulations are 

unavoidable for a consistent finite element formulation. Moreover, for the inelastic 

process a standard return mapping algorithm is performed, in which the values of the 

kinematic fields at an integration point are interpolated from their nodal values. This 

approach has been discussed thoroughly in Voyiadjis et al. (2001; 2004), and used 

intensively by many other authors (e.g. Ramaswamy and Aravas, 1998a, b; Aifantis et 

al., 1999; Nedjar, 2001). The disadvantage of this approach is that it gives rise to many 

numerical difficulties that require considerable modifications to the existing finite 

element codes, which makes their implementation not an easy or a direct task. 

 In this work, numerical implementation of a simple nonlocal gradient-enhanced 

elastic-damage model is presented as an example. Although the proposed numerical 

approach is applied to this elastic-damage model as a simple example, it can be easily 

adapted to a more complex constitutive nonlocal damage models. Therefore, the elastic-

damage model is assumed here for simplicity and in order to emphasize and demonstrate 

the steps necessary for a direct numerical implementation of nonlocal gradient-

dependent damage theories in existing finite element codes such as Abaqus. In the 

nonlocal models the explicit incorporation of a material length scale parameter scales the 

width of the damaged zone, thus preventing strain localization into a line with 

consequent zero energy dissipation, and eliminates the mesh-dependent behavior in the 

softening regions. Moreover, in order to avoid using the numerically expensive C1-

continous condition on the shape function and penalty-enhanced C0 class functions for 

the interpolation of the damage multipliers, and also eliminate large modification of 
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existing finite element codes, the direct numerical algorithm of Abu Al-Rub and 

Voyiadjis (2005a) is extended here to nonlocal gradient-damage-type models and for 

three dimensional problems. In this approach, the nonlocal consistency condition is 

transformed into a linear set of algebraic equations that depend on the material 

parameters and the current co-ordinates of the Gauss integration points. These sets of 

linear equations are solved for the damage densities at all the integration points 

simultaneously. The gradients of the damage variable at each integration point in the 

local element are evaluated from the derivatives of a polynomial that interpolates the 

value of the damage densities from the surrounding elements. So, there is no need to 

consider a damage variable as a degree of freedom, and obviously there is no need for 

introducing high-order continuous shape functions (Abu Al-Rub et al., 2010b). 

8.2. Continuum Damage Model 

Evolution (i.e. nucleation and growth) of micro-damages (micro-cracks and micro-voids) 

due to different mechanical and environmental loading conditions can be effectively 

modeled using a continuum damage mechanics (CDM) based model. However, since 

most of the materials are very heterogeneous at the scale of micro-damages, local 

damage modeling in materials requires some generalization of CDM such that it is 

unreasonable to assume micro-cracks and micro-voids to be randomly distributed. In 

fact, material behavior is also controlled by the distribution of micro-damages within the 

material such that it is undesirable to simulate damage density evolution as a function of 

stress or strain state of the desired point only (i.e. locally). Therefore, one should also 

include the effect of damage density from the neighboring points around the point in 

study (nonlocality). 

8.2.1. Local Continuum Damage Model 

The classical relationship between the nominal and effective stress tensors in the CDM is 

recalled here, such that: 

  1
    (8.1) 
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where 2   is considered in this work. In order to calculate the damage density in Eq. 

(8.1), a procedure analogous to the classical plasticity theory is commonly used through 

defining a damage flow rule and a damage growth surface (Abu Al-Rub and Voyiadjis, 

2003). Hence, a damage surface G  is defined that determines whether a stress state 

results in damage or not, such that: 

   0d
thG Y Y       (8.2) 

where Y  is the damage force, which can be interpreted as the energy release rate as in 

classical fracture mechanics, thY  is the damage threshold, and  d   is the damage 

hardening function. In this work, the damage force Y  is considered to have a modified 

Drucker-Prager form, such that: 

 1Y I    (8.3) 

where   is defined earlier in Chapter II. Although one can simply assume a nonlinear 

damage hardening function, a linear isotropic damage hardening is considered for 

simplicity, such that: 

  d    (8.4) 

where   is a material parameter that controls the rate of damage evolution. To determine 

the damage density, one can use a damage flow rule analogous to classical plasticity 

flow rule, such that: 

 d G

Y
  



   (8.5) 

where d  is the damage multiplier. In this case, one can easily show that the damage 

multiplier is identical to the damage variable. The Kuhn-Tucker loading/unloading 

conditions should also be satisfied for the damage surface and the damage multiplier, 

such that: 

 0,       0,       0d dG G      (8.6) 

Moreover, the damage multiplier can be determined using the damage consistency 

condition (i.e. 0G   ). In this work, by making use of the damage consistency condition, 

one can derive damage density equation very simply as: 
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 1
th

Y

Y
    (8.7) 

where  thY


   is a material parameter that controls the rate of damage evolution and   

 is the Macaulay bracket. 

8.2.2. Nonlocal Damage Model 

The definition in Eq. (8.1) may be considered as the average stress acting on the 

effective area of the material. In order to give it a general physical meaning, it is 

necessary to use the corresponding damage-free material (intact material) in the meso-

scale to represent the ‘effective’ concept of Eq. (8.1) for a macroscopically damaged 

material. Thus, a proper correlating hypothesis between the two material scale levels, the 

meso- and macro-scales, can be obtained by enhancing nonlocality through using a 

nonlocal measure for the damage variable (Voyiadjis et al., 2004; Voyadjis and Abu Al-

Rub, 2006; Abu Al-Rub and Voyiadjis, 2009), such that one can rewrite Eq. (8.7) as 

follows: 

 ˆ 1
th

Y

Y
    (8.8) 

where the superimposed ^  designates the nonlocal measure. In a nonlocal integral-type 

damage theory, the damage variable    can be replaced by an averaged (nonlocal) 

quantity ̂ , such that: 

      1ˆ
V

h dV
V

  x x +   (8.9) 

where V  is the body volume, x   is the point of interest,    designates the local location 

of a material point within the localized damaged zone, and  h    is a nonlocal weight 

function that decays smoothly with distance    and fades away for the points outside 

the limits of an internal characteristic material length scale   . However, by expanding   

  x +   into a Taylor series around the point x 0   and assuming an isotropic 
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weighting function  h  , which results in disappearing of higher-order gradients with 

odd orders, and neglecting higher than second-order terms, the following expression for   

̂  can be derived (de Borst et al., 1993):  

 2 2̂      (8.10) 

where 2  is the second-order gradient (or Laplacian) of   and   is the intrinsic 

material length scale parameter which is related to the material microstructure. Voyiadjis 

and Abu Al-Rub (2005) showed that   is not constant but evolves with deformation. In 

this study, however,   is assumed constant for simplicity in demonstrating the 

robustness of the proposed computational technique in calculating 2  within a finite 

element context. Extending this technique to variable   is a straightforward. 

 Replacing the local damage density by its nonlocal counterpart Eq. (8.8) along 

with Eq. (8.2), one can obtain an expression for the nonlocal damage surface, which is 

still governed by the loading-unloading conditions in Eq. (8.6), such that: 

  2 2 0d
thG Y Y          (8.11) 

This condition should be satisfied in order to calculate the final value of the damage 

density. 

In order to calculate the nonlocal damage density in Eq. (8.10), the second-order 

damage gradient 2  is needed, which is the main reason that makes the numerical 

implementation of gradient-dependent damage theories in finite element codes difficult. 

However, Abu Al-Rub and Voyiadjis (2005a) have proposed a numerical technique that 

can be effectively used in evaluating first-, second-, and higher-order gradient terms 

without the need to formulate a new higher-order element with additional degrees of 

freedom in the finite element method. Therefore, to evaluate 2  at an arbitrary 

integration point m , the approach proposed by Abu Al-Rub and Voyiadjis (2005a) for 

strain gradient plasticity theories is extended here for nonlocal gradient-dependent 

damage theories. Also, this approach is extended here for three-dimensional (3D) 

problems. These extensions will be detailed in the following section. 
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8.3. Computation of the Nonlocal Damage Density 

In the numerical approach of Abu Al-Rub and Voyiadjis (2005a), the gradient at each 

integration point m  is evaluated from the derivatives of a polynomial function that 

interpolates the values of local variables at neighboring points. In this study, the values 

of    at integration point m   and its neighbors are needed to calculate 2 . Hence, one 

can write: 

 2

1

GPN

m mn n
n

g 


   (8.12) 

where  GPN  is the number of Gauss integration points that are used for calculating 2
m . 

The computation of coefficients mng  for 3D problems is described below. In the 

following, matrix notation is used for convenience. 

It is noteworthy that Abu Al-Rub and Voyiadjis (2005a) employed integration 

points of eight elements, the first neighbors, around the element in which the arbitrary 

integration point m  is located to calculate the gradient terms. However, this approach is 

restricted to the regular finite element meshes. Moreover, for different mesh densities the 

interaction length which is the largest distance that affects the nonlocal average at an 

arbitrary point m  is different such that the interaction length for coarse meshes is greater 

than the interaction length for fine meshes. Therefore, in this study all integration points 

of the finite element mesh are used to calculate the gradient terms, which makes the 

numerical approach even simpler than that in Abu Al-Rub and Voyiadjis (2005a). 

Therefore, in this approach the interaction length is the same for all mesh densities, and 

it can easily be used for both regular and irregular finite element meshes. Another 

method for extending Abu Al-Rub and Voyiadjis (2005a) approach to irregular meshes 

is through using the connectivity matrix for determining the neighboring points. In this 

method, one can easily consider the second and third nearest neighbors for calculating 

the gradient terms depending on different meshes such that the interaction length 

remains constant for all mesh densities. However, this method is not used here. 
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In order to determine mng  in Eq. (8.12), a complete second-order polynomial 

function is used to interpolate the damage density around point m . Hence, one can 

write: 

 T  a v  (8.13) 

where a  is the coefficients vector, v  is the variables vector, and the superimposed “T”   

designates the transpose of a matrix. For three dimensional problems, one can write the 

following expressions for a  v : 

 
 0 1 2 3 4 5 6 7 8 9

2 2 2

,  and

1

T

T

a a a a a a a a a a

x y z xy yz xz x y z



   

a

v
 (8.14) 

It is noteworthy that one can assume other higher-order polynomials for Eq. (8.14) to 

achieve higher accuracy in calculating the higher-order gradients. This is one of the 

major strengths of the proposed approach without worrying about formulating 1C  or 

higher-order finite elements or penalty enhanced 0C  elements. However, Eq. (8.14) is 

the minimum order for a polynomial that can be assumed so that non-zero values for 

2  can be calculated. 

To obtain the coefficients vector a , the minimization method by least squares 

can be used. Moreover, the interpolation is made in the global coordinate system 

 , ,x y z  of the generated finite element mesh with GPN  integration points. The 

coefficients vector a  can then be expressed using the following equation: 

 TM a   (8.15) 

where the matrix M  and   are defined as follows: 
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M  (8.16) 

 1 2 GP

T

N...       (8.17) 

Multiplying both sides of Eq. (8.15) by M  implies: 

 M Ha   (8.18) 

where  TH = MM  is a symmetric square matrix which can be expanded as follows: 

 

2 2 2

2 2 2 3 2 2

2 2 2 2 3 2

2 2 2 2 2 3

2 2 2 2 3 3 2

2 2 2 2 3

1 n n n n n n n n n n n n

n n n n n n n n n n n n n n n n n

n n n n n n n n n n n n n n n

n n n n n n n n n n n n n

n n n n n n n n n n n n n n n

n n n n n n n n n n

x y z x y y z x z x y z

x x y x z x y x y z x z x x y x z

y y z x y y z x y z x y y y z

z x y z y z x z x z y z z

x y x y z x y z x y x y x y z

y z x y z x y z y z
H

3
1

2 2 3 2 3

4 2 2 2 2

4 2 2

4

GPN

n n n

n n n n n n n n n

n n n n n

n n n

n

y z

Symm x z x z x y z x z

x x y x z

y y z

z



 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 (8.19) 

It is obvious that H  is computed only once for small deformation problems and needs to 

be updated at each loading increment for finite deformation problems. The damage 

density and its Laplacian can be determined using Eqs. (8.13) and (8.18), such that: 

  1 1

1

GP
TN

TT
n n

n

v  



 
  

 
a v = H M v = H v  (8.20) 

  2 1 2 1 2

1

GP
TN

T

n n
n

v  



 
    

 
H M v = H v  (8.21) 
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Hence, for integration point m  one can write: 

 2
m xx m yy m zz m         (8.22) 

Substituting Eq. (8.20) into Eq. (8.22) gives: 

  2 1 1 1

1

GPN
T T T

m n xx m n yy m n zz m n
n

   



       v H v v H v v H v  (8.23) 

Coefficients mng  can be calculated by comparing Eqs. (8.12) and (8.23), such that: 

 1 1 1T T T
mn n xx m n yy m n zz mg        v H v v H v v H v  (8.24) 

The coefficients mng  depend only on the  x, y,z  coordinates of the Gauss integration 

points. Thus, as stated previously, these coefficients are computed only once for small 

deformations and at each loading increment for finite deformations. 

 Since the damage densities around a point is estimated by a second-order 

polynomial function as described in Eq.(8.13), it is worthy to note that: 

 

 

 

 

2

2

2

2

2

2

0 0 0 0 0 0 0 2 0 0

0 0 0 0 0 0 0 0 2 0

0 0 0 0 0 0 0 0 0 2

;
x

;
y

z















v

v

v

 (8.25) 

Such that if one uses Eq. (8.25) in Eq. (8.24), a simple equation for calculation the 

coefficients mng  can be written as follows: 

 1 1 12 8th row of 9th row of 10th row of mn ng       H H H v  (8.26) 

Having the information of neighboring points in hand, one can calculate the second-

order damage gradient terms easily by employing Eqs. (8.26) and (8.12). 

 Once the effective stress is calculated, the damage driving force can then be 

calculated and compared with the damage threshold thY  in order to check for damage 

initiation. Therefore, upon damage occurrence, one should satisfy Eq. (8.11) to calculate 

the final nonlocal damage density at each integration point m .   

Substituting Eq.  (8.12) into Eq. (8.11) gives: 
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  2

1

0;     1,...
GPN

d d
m m th m mn n GP

n

G Y Y g m N   


       (8.27) 

which should be satisfied for all integration points simultaneously. Furthermore, Eq. 

(8.27) expresses a set of linear algebraic equations for determining the damage densities 

at all integration points. Therefore, one can define the following expressions: 

 

2 2 2
11 12 1

2 2 2
21 22 2

2 2 2
1 2

1

1

1

GP

GP

GP GP GP GP

N

N

N N N N

g g g

g g g

g g g

 
 

   
 
  

C

   

   

   
   

 (8.28) 

 1 2 GPN thth th
d d d

Y YY Y Y Y

  
  

  
  

F   (8.29) 

such that Eq. (8.27) can be expressed in a matrix format as follows: 

 C F   (8.30) 

The above linear-system of equations can be solved for the damage density vector   by 

calculating the inverse of the square matrix C . Eqs. (8.28) and (8.30) show that the 

square matrix C  is of the order GP GPN N  which seems to be very expensive to solve. 

However, it should be noted that the matrix C  remains constant for the small 

deformation problems. Therefore, one can calculate matrix C  and its inverse 1C  at the 

beginning of the simulation and store it to solve Eq. (8.30) for the rest of the simulation. 

Therefore, the proposed approach will have an initial computational cost to calculate C  

and 1C . However, this initial cost will be compensated eventually since there is no need 

to calculate these matrices at each increment. On the other hand, by considering the 

damage density as an additional degree of freedom, the required high-order continuous 

shape functions (e.g. C1 class or penalty-enhanced C0 class functions) should be used at 

each increment to calculate the gradient terms, which makes these approaches difficult to 

implement and computationally expensive. 
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8.4. Nonlocal Gradient-Dependent Tangent Moduli 

To complete the proposed nonlocal algorithmic procedure discussed above, the nonlocal 

continuum elastic-damage tangent stiffness ed
t /  E σ ε  and the nonlocal consistent 

(algorithmic) elastic-damage stiffness alg
t d / d  E σ ε  that can be used for 

accelerating convergence are derived in this section. ed
tE  can be used if small time steps 

are employed, whereas alg
tE  can be used for large time steps are employed.  

The relationship between the stress increment and the strain increment between 

the time t  and t t  at integration point m  can be written as: 

 ed
m t ,m m:  σ E ε  (8.31) 

The stress increment for the elastic-damage materials can be written as: 

    2
1 2 1m m m m m m: :        σ E ε E ε  (8.32) 

The damage consistency condition (i.e. 0G  ) for the integration point m  can be 

written using Eq. (8.27), such that: 

 2
2

: 0m m m m m
m m

G G
G  

 
 

        
 

N σ  (8.33) 

where 
G




N
σ

 can be expressed as follows: 

 2 32
22

3 1 1 9 3 1
1 3 1

4 2 2 2 3

d
J . J

d dJ dJ

                        

S
N S S S 1  (8.34) 

where 1  is the second-order identity tensor. Substituting Eqs. (8.12) and (8.32) into Eq. 

(8.33) and performing some mathematical manipulations, the nonlocal elastic-damage 

tangent stiffness can be expressed as follows: 

      2 2 1
1 med

t ,m m m m
m

: :
L





   E E E ε N E  (8.35) 

where   indicates the dyadic tensor product and mL  is the nonlocal damage softening 

modulus at integration point m  which is given by: 
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2

2

1

1
GPNd

d
m mn mn n

n ,n mm

L g g
 
  

   
   (8.36) 

One can retrieve the local elastic-damage stiffness when the intrinsic length scale is set 

to zero (i.e. 0 ). Furthermore, Eq. (8.35) defines the nonlocal continuous operator 

ed
tE . However, as mentioned earlier, small time increments should be used with the 

nonlocal elastic-damage tangent stiffness tensor in order to ensure the convergence. To 

increase the rate of convergence for large time increments, the nonlocal consistent 

(algorithmic) tangent stiffness modulus is more appropriate. Differentiating Eq. (8.32) at 

integration point m  and noting that ( m md d ε ε  and m md d   ), one can write the 

following expression: 

 

   

 

2
1 2 1

        2 1 1
1

m m m m m

m
m m m m

m

d : d

: : d

  

 


        
  

         

σ E ε

E ε E ε
 (8.37) 

Substituting Eqs. (8.12) and (8.27) into Eq. (8.33) and then differentiating the resulting 

expression, the following equation for md    at integration point m   can be obtained: 

 
1

: : : :m m m m m
m

d d d
L

       N E ε N E ε  (8.38) 

where 

 : : : :m
m m m m

m m

d d d


   
 

σN
N ε T E ε

σ ε
 (8.39) 

where  T  is expressed in components format as follows: 

 

 

1 2 1
2 2

2 3 1 1 1 2
2 3 2 3 2 2 2 2

3 1 1 9 1
1 1

4 2 4

2 2
6 2

3 3

/ I II
ijkl ijkl ijkl

I II III III III IV IV
ijkl ijkl ljik ijkl iljk klij ijkl

T J P J P
d d

J J P J J J P J P P P J P J P

 

     

                   
            

(8.40) 

with the forth-order tensors IP , IIP , IIIP , and IVP  defined as follows: 

 
1

3
I

ijkl ik jl ij mnP       (8.41) 
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 II
ijkl ij klP S S  (8.42) 

 III
ijkl ij klP S   (8.43) 

 IV
ijkl ij km mlP S S S  (8.44) 

Substituting Eqs. (8.38) and (8.39) into Eq. (8.37) gives: 

 alg
m t ,m md : d  σ E ε  (8.45) 

where alg
t ,mE  is the nonlocal consistent (algorithmic) tangent modulus and is given by: 

 

 

   

alg 1 1
1

2 1

edm
t ,m t ,m m m

m

m
m m m m m

m

: : : : : :
L

  




 
      


    

E E E

E ε ε E T E E ε N E

 (8.46) 

This concludes the necessary steps for the numerical implementation of the nonlocal 

gradient-dependent damage model in a finite element code. This proposed numerical 

approach is implemented in the well-known finite element code Abaqus (2008) through 

the user material subroutine UMAT. It is noteworthy that the majority of the existing 

numerical implementation approaches of gradient-dependent damage and plasticity 

theories require the use of two subroutines in Abaqus; namely, UMAT, which is used for 

material constitutive modeling, and UEL, which is used for formulating a new element 

with additional degrees of freedom. In the current approach the use of UEL subroutine is 

avoided which saves a lot of time and effort for those who are interested in 

implementing gradient-dependent theories. 

One of the most challenging issues of the proposed algorithm is the nonlocal 

integration of the damage model using only the UMAT subroutine in Abaqus. UMAT 

provides an access only to the local integration point and not all the integration points 

that are needed to calculate the damage gradient. To implement the proposed algorithm 

using UMAT, the coordinates of all integration points are saved globally when Abaqus 

calls UMAT at increment zero. As a result, at the beginning of the first increment the 

coordinates of all integration points are available. Hence, by using Eqs.(8.19) and (8.26), 

the nonlocal coefficients mng  are calculated and saved globally at the beginning of the 
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first increment. It is noteworthy to mention that at each increment Abaqus calls UMAT 

for all integration points at least twice. This makes the nonlocal implementation easier. 

In other words, all the required local variables, including the damage force, are updated 

at the end of the first UMAT call. Therefore, at the end of the first UMAT call, C  and 

F  matrices [Eqs. (8.28) and (8.29)] are calculated; then, the nonlocal damage variables 

for all integration points are calculated at once by solving Eq. (8.30). Then, at the second 

UMAT call the nominal stresses and continuum or consistent tangent moduli are updated 

using the updated nonlocal damage variables and the effective local variables. For 

convenience, a step-by-step description of the discussed algorithm is illustrated in Figure 

8.1. 

However, it should be emphasized that the above description of the numerical 

implementation of the proposed nonlocal algorithm within the commonly used 

commercial finite element software Abaqus can be adapted to implement nonlocal 

damage theories in any other finite element codes. In the following, the robustness of the 

proposed numerical approach in solving the mesh-dependency problem when simulating 

damage localization is demonstrated. 

8.5. Numerical Examples 

In the absence of a physically motivated length scale which would govern the width of 

the shear band, the numerical solutions are susceptible to mesh densification. In other 

words, damage density and as a result strain localization within the shear band changes 

dramatically with refining the mesh. Incorporating an internal length scale in the 

continuum description can remedy the mesh sensitivity of the numerical results. The 

potential of the current gradient-dependent damage computational approach as presented 

in the previous section in solving the mesh sensitivity problem associated with the 

formation of damaged localized shear bands is demonstrated through the following 

numerical examples. 
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Figure 8.1. Flow chart of the numerical integration algorithm for the proposed nonlocal 
gradient-dependent damage model. 

8.5.1. Fixed Plate in Tension 

Mesh-dependent results of finite element predictions can be easily shown by the 

example of plane strain plate subjected to tensile loading at the top edge and fixed 

boundary condition at the bottom edge as shown in Figure 8.2. The bottom edge of the 

plate is fixed and the upper edge is constrained to remain horizontal while a vertical 

deformation equivalent to a tensile force is applied. The forces per unit area at both sides 

Calculate n ,  1 2 GPn , ,...,N  at time t t by solving the 
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Update n  and 2
n  at time t t .  
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tE  (8.46); End.  
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Known n , n , n , 2
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nv (8.14). Calculate H (8.19) and 
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zero. 
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NO 

Calculate n  and nY  at time t t . 
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of the specimen are set to zero. Dimensions of the specimen are  10 20m m  , and a 

strain equal to 3.5% is applied at its upper edge in the positive -direction. The Young’s 

modulus and Poisson’s ratio are assumed to be 200GPaE   and 0 49.  , respectively. 

Moreover, the values for 0   and 0 1.   are assumed. First the local elastic-damage 

model is used to conduct the simulations with a zero length scale parameter (i.e. 0 ). 

Simulations are performed for four different mesh densities. Four-node plane strain 

quadrilateral element with four integration points is used in this example. The fixed 

boundary condition causes the damage and strain to localize within a band and forms 

two crossed shear bands as shown in Figure 8.3. 

 

 

Figure 8.2. Uniaxial tension test configuration with dimensions 10 20m m   and fixed 
boundary condition at the bottom edge. 

Figure 8.3 shows that the localized zone and shear band tend to occupy the 

minimum possible area. As mesh density increases the width of shear band decreases 

and tends to become a line which is not realistic and physical. Damage Localization of 

deformation in a narrow band is caused by the accumulation of micro-cracks and micro-

voids; hence, very similar to strain localization, damage also localizes within a shear 

y

x
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band which is shown in Figure 8.4. Furthermore, Figure 8.4 shows clearly the mesh-

dependency through the width of the localized damage band and the damage distribution 

being more severe for the fine meshes. 

 

 

Figure 8.3.  Mesh-dependent deformation patterns for four mesh densities when using the local 
damage model with 0 . Non-physical response; the finer the mesh the smaller the shear 

band’s width. 

Figures 8.5 and 8.6 illustrate the damage density distributions across the shear 

band and the load-displacement diagrams, respectively, for the different meshes when 

0 .  

 It is obvious from Figure 8.5 that increasing the mesh density causes the shear 

band width to become narrower and the damage density to become larger, which is a 

nonphysical phenomenon upon mesh densification. In other words, more damage 

accumulates within smaller area. Figure 8.6 shows that the local damage model predicts 

very sudden failure after the peak load, where different post-peak responses are 

predicted for different mesh densities. 

 

 

 

 



 305

 

 

              

 

Figure 8.4. Mesh-dependent damage density contours for four mesh densities when using the 
local damage model with 0 . Non-physical response; damage tends to localize over the 

smallest possible area. 
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Figure 8.5. Mesh-dependent results of damage density across the shear band (along path ‘a-a”) 
when using the local damage model with 0 . Non-physical response; damage tends to localize 

over the smallest possible area. 

 

Figure 8.6. Mesh-dependent results of the load-displacement diagram when using the local 
damage model with 0 . Responses are not the same in the softening region. 

Now, in order to show the potential of the gradient-enhanced algorithm in 

eliminating the mesh-sensitivity problem, the same boundary value problem is simulated 

using the nonlocal damage algorithm with a material length scale equal to 1 m . The 
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results are shown in Figures 8.7-8.10. Figures8. 7 and 8.8 illustrate the deformation 

patterns and the damage density contours, respectively, for the different mesh densities. 

  

 

Figure 8.7. Mesh-independence deformation patterns for the nonlocal damage when 1 m . 

It is obvious that the incorporation of an intrinsic material length scale through 

the gradient damage theory has alleviated to a great extent the mesh-dependent problem 

such that the width of the shear band remains approximately the same and does not 

change much with changing the mesh density. The same observation can be seen for the 

damage density contours shown in Figure 8.8. The damage density across the shear band 

is also plotted in Figure 8.9, where it can be seen that the width of the damage 

localization zone is to a great extent independent of the mesh density as compared to the 

local simulations in Figure 8.5. Furthermore, Figure 8.10 shows the most interesting 

results, where the post-peak response is completely independent of the mesh density. In 

fact, by introducing the gradient of damage density in the current simple damage model, 

the nonlocality does not allow few elements to undergo excessive deformation that 

results in a sudden decrease of the specimen loading capacity, but the deformation and 

damage density within the integration points change smoothly which results in 

regularizing the numerical results. 
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Figure 8.8. Mesh-independent results of the damage density contour on deformed configuration 
using the nonlocal damage model when 1 m . Damage accumulation and width of shear band 

are mesh insensitive. 
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Figure 8.9. Mesh-independent results of damage density distribution across the shear band, 
along the path ‘a-a’, when 1 m . 

 

Figure 8.10. Mesh-independent results of the predicted load-displacement diagrams when 
1 m . 
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8.5.2. Strip in Tension 

In the previous section, damage localization and evolution of a shear band in a plane 

strain plate under tension was studied, and the ability of the nonlocal damage algorithm 

in successfully providing mesh-objective results is demonstrated. In this section, the 

same material properties are considered; however, the geometry is changed and 

enhanced with an imperfection in order to enforce the formation of a shear band in a 

specific direction. This is a common benchmark problem that is used to assess the ability 

of damage/plasticity theory in achieving mesh-objective results. The problem geometry, 

loading, and boundary conditions are shown in Figure 8.11. The strip is constrained at 

the bottom and a displacement of  1 m  is applied at the upper edge of the strip. Similar 

to the previous section, four different meshes of 200, 512, 1152, and 5000 elements are 

considered. A four-node plane strain quadrilateral element with four integration points is 

used in the following simulations. Due to the specimen’s geometric imperfection, the 

shear band initiates at the bottom left corner and evolves with an inclination of 45o. In 

this case, the nonlinearity in geometry is investigated in the formation of a shear band 

and in the distribution of the damage density across the shear band. 

 

 

Figure 8.11. The geometry of the strip in tension. 
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 In Figure 8.12 the obtained deformation patterns for all meshes when setting 

0  are plotted. It can be observed easily that the width of the shear band is determined 

by the element size when utilizing the classical continuum damage mechanics. 

Deformation is localized almost within one element width.  

 

 

Figure 8.12.  Mesh-dependence of deformation patterns for the strip with an imperfection under 
tension when  0 . Non-physical response; deformation localizes within one element. 

 
Mesh-dependence is also obvious from the damage density contours plotted in Figure 

8.13 and the damage density across the shear band presented in Figure 8.14, where the 

width of the shear band is strongly dependent on the mesh density.  
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Figure 8.13. Mesh-dependent results of damage density contour on deformed configuration 
using the classical continuum damage model with . 

It should be noted that damage density value could not be more than one; hence, 

the localization phenomenon appears in the form of width of the shear band not the 

maximum value for damage density. 

0

1152 
elements 

5000 
elements 

200  
elements 

512 
elements 



 313

 

Figure 8.14. Damage density across the shear band when 0 . Width of the localized zone 
depends on the mesh density. 

Nonlocal damage gradient algorithm is employed to remedy the mesh sensitivity 

problem. Material properties of the specimen are assumed to be the same in both 

examples. Hence, the same length scale of 1 m  is also considered here to keep the 

field equations well-posed. Figures 8.15 and 8.16 illustrate respectively the deformation 

patterns and damage density contours for different mesh densities. As it is obvious from 

the figures, the nonlocal damage algorithm solves the mesh-dependency problem to a 

great extent. Moreover, a damage density across the shear band is depicted in figure 

8.17, which also confirms mesh-independent shear band width. In order to show the 

effect of nonlocal damage on the post-peak response, the load-displacement diagrams for 

all mesh densities for both local, 0 , and nonlocal, 1 m , cases are plotted in 

Figure 8.18. It is very clear from this figure that the current nonlocal damage model with 

the proposed computational algorithm predicts mesh-independent post-peak response 

whereas the local damage model is mesh-dependent. Also, it is obvious from this figure 

that a non-zero length scale delays damage and smooth it out during the deformation 

process.  
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Figure 8.15.  Mesh-independent deformation patterns when 1 m . 

 

 

Figure 8.16. Mesh-independent results of damage density contour on deformed configurations 
when 1 m .Width of the shear band is almost the same for all mesh densities. 
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Figure 8.17. Mesh-independent results of damage density across the shear band when 1 m . 

 
 

Figure 8.18.  Load-Displacement diagrams showing the results for 0  and 1 m . 
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8.6. Effect of Different Parameters on Damage Localization 

8.6.1. Effect of Parameters   and   

In this section, the effect of material constants   in the damage force equation Eq. (8.3)

and   in Eq. (8.8), on the location and width of shear band is investigated. The 

parameter   defines the material sensitivity to confinement whereas the parameter   

represents the rate of damage growth. These parameters are selected as 0   and 

0 1.   in the previous examples. To study the effect of these parameters on the 

development of damage localization, the nonlocal damage case for 1 m  is simulated 

for the intermediate mesh density for the fixed plate in tension examples.  

 The parameter   in Eq. (8.3) controls the material sensitivity due to confinement 

and mean stress. In other words,   describes the fact that specimen with higher 

compressive mean stress can tolerate more load without going to a damaged state. 

However, in this problem the applied stress is tensile, so it is expected that the regions 

with higher tensile stresses become damaged faster. The simulation results presented in 

Figure 8.19(a) confirms the pressure sensitive results.  

One can explain that due to Poisson’s effect, regions that are closer to the bottom 

edge boundary undergo higher tensile stresses which can be characterized by the 

negative mean stress. Hence, these regions should go to the damage region earlier. As it 

is obvious from Figure 8.19(a), increasing the value of  causes the shear band to move 

slightly toward the bottom edge and for large values of  the damaged region is very 

close to the bottom. Furthermore, the load displacement diagram for different values of 

 is also shown in Figure 8.19(b). This figure shows that increasing the parameter  

induces a softening effect and causes the specimen to go to the softening region faster. 
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               0                       0 1.                    0 2.                   0 25.   

(a) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) 
Figure 8.19. Model predictions using the nonlocal damage model when . (a) Damage 

density contour on the deformed shape for different values of ; (b) load-displacement 
diagrams for different values of .  

 The effect of the damage growth rate parameter   is shown in Figure 8.20. The 

damage density contours are plotted in Figure 8.20(a). It can be seen that the width of 

shear band increases as the damage growth rate increases. To clarify the change in the 

shear band width, damage variable across the shear band is plotted in Figure 8.20(b), 

which confirms the increase in shear band width upon the increase in damage growth 
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rate. As it is expected, damage grows and distributes within the specimen faster for 

larger damage growth rates. This effect can be seen clearly in the load-displacement 

diagrams shown in Figure 8.20(c). Thus, higher damage growth rates make the specimen 

to undergo the softening region faster and exhibits higher degree of softening. 

 

          
               0 1.                       0 2.                    0 3.                   0 5.   

(a) 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

(b) 
Figure 8.20. The effect of  on (a) damage density contour on deformed shape, (b) damage 

density across the shear band, (c) load-displacement diagram. Results are for .  
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(c) 

Figure 8.20. Continued. 

From Figures 8.19 and 8.20, one can conclude that   controls the location of shear 

band and causes the shear band to form in regions with smaller confinement, whereas   

controls the width of the shear band and rate of softening behavior. 

8.6.2. Length Scale Effect 

In this section, the effect of the length scale value on the width of shear band, 

deformation pattern, and damage distribution across the shear band is presented. To this 

aim, the fixed plate in tension with 1152 elements is selected. The specimens are loaded 

until complete failure. Deformation patterns, damage density across the shear band, and 

load-displacement diagrams are shown in Figures 8.21(a), 8.21(b), and 8.21(c), 

respectively, for different values of  . Figure 8.21(a) clearly shows that the width of the 

shear band depends on the length scale value such that the larger the length scale value 

the broader the shear band width as also clearly shown in Figure 8.21(b), which is a 

known result (Pamin, 1994). This shows that the proposed computational algorithm yield 

reasonable and physically known behavior. The damage distribution across the shear 

band and the load-displacement diagrams for various length scales are shown in Figures 
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8.21(b) and 8.21(c), respectively. Figure 8.21(b) shows that increasing the length scale 

value causes the damage density to regularize more in the specimen. Figure 8.21(c) 

shows that the length scale value is the parameter that delays damage initiation and 

growth. Hence, materials with larger length scale values tolerate higher stresses 

compared to the materials with smaller length scale values. 

 

         
            1 m                   3 m                   6 m                10 m  

 
(a) 

 
Figure 8.21. Effect of  on (a) deformed pattern, (b) damage density across the shear band, (c) 

load-displacement diagram. Nonlocal damage for . 
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(b) 

 

 
 

(c) 
Figure 8.21. Continued. 

8.7. Conclusions 

Localization of deformation and damage is associated with the softening behavior in the 

stress-strain response. Unfortunately, when using classical continuum damage theories, 

this softening behavior in the stress-strain diagram causes instabilities that result in the 
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loss of well-posedness of the governing partial differential equations and in turn lead to 

mesh-dependent results and non-physical description of damage evolution and failure. 

As shown by many authors, a very effective way to remedy this problem is through the 

nonlocal gradient-enhanced damage theory. However, one of the most challenging issues 

when dealing with this type of theories is their implementation in the finite element 

codes. In this work, a simple and straightforward computational approach is presented 

for numerically integrating the nonlocal constitutive equations with little effort required 

to modify an existing finite element code. Hence, by using this approach, one can avoid 

the common practice in introducing high-order continuous shape functions (e.g. C1 class 

or penalty-enhanced C0 class functions) with additional degrees of freedom in a finite 

element code to calculate the gradient terms, which is computationally difficult and 

expensive. A simple algorithm for satisfying damage consistency condition is proposed 

which can be implemented easily in a finite element code. Numerical algorithm 

presented in this paper is implemented in the well-known finite element code Abaqus via 

the user material subroutine UMAT. The effectiveness and robustness of the proposed 

approach in alleviating the mesh-dependency problem when simulating damage 

localization and the post-peak response are illustrated through two numerical examples. 

The examples show that results of the shear band converge to a unique solution upon 

mesh densification and clearly show that the proposed computational algorithm works 

well in integrating the nonlocal damage theories. Moreover, a parametric study on the 

effect of the material constants associated with the presented elastic-damage model is 

conducted with special emphasis placed on their effect on the size of the localized 

damage zone and the post-peak response. Finally, the proposed numerical algorithm can 

be easily adapted by more complex constitutive models that incorporate the effect of 

higher-order gradients. 

 The proposed general numerical technique along with the developed constitutive 

model will be employed in the next chapter to investigate the best way for predicting the 

performance simulation of asphalt pavements.  
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CHAPTER IX 

FINITE ELEMENT AND CONSTITUTIVE MODELING 

TECHNIQUES FOR PREDICTING RUTTING IN ASPHALT 

PAVEMENTS 

9.1. Introduction 

This chapter focuses on a comprehensive evaluation of the effects of different finite 

element (FE) modeling techniques and material constitutive models on predicting rutting 

in asphalt pavements under repeated loading conditions. Different simplified two-

dimensional (2D) and more realistic three-dimensional (3D) loading techniques are 

simulated and compared for predicting asphalt rutting. This study also evaluates and 

compares the rutting performance predictions using different material constitutive 

behaviors such as viscoelastic-viscoplastic, elasto-viscoplastic, and coupled viscoelastic, 

viscoplastic, and viscodamage behaviors.  

Rutting is one of the most serious distresses in asphalt pavements affecting the 

pavement performance and service life. Therefore, the accurate simulation of rutting in 

asphalt pavements is essential for improving their performance and management. The 

main mechanism of rutting is the accumulation of permanent deformation that increases 

progressively with increasing number of loading cycles. However, the complex nature of 

the applied loading conditions, very large number of loading cycles (millions of loading 

cycles), and complex constitutive behavior of asphaltic materials make the accurate 

prediction of rutting a very difficult and challenging task. Even with the current state-of-

the-art in computational power, conducting 3D finite element (FE) rutting performance 

simulations for pavements subjected to millions of wheel loading cycles and considering 

realistic wheel tracking and environmental loading conditions is almost impossible. 

Therefore, an evaluation of a simplified numerical model with efficient and realistic 

loading conditions and material constitutive models that can simulate the pavement 

rutting performance for a very large number of loading cycles is desirable. In order to 

accurately simulate the pavement response, the computer simulations should have the 
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capability to capture the response by considering structural loading, boundary 

conditions, and material constitutive behavior. Therefore, realistic loading and boundary 

conditions should be imposed, and an accurate material constitutive model should be 

utilized. The material model should be able to describe the inelastic-damage behavior of 

asphalt under different stress levels, loading rates, and temperatures. 

At the material level, experimental measurements show that the deformation 

response of asphaltic materials is time-, rate-, and temperature-dependent such that the 

accurate constitutive model should at least consider the couplings between the 

temperature, viscoelasticity, viscoplasticity, and viscodamage models. Therefore, the 

constitutive model presented in Chapter II is used here to investigate the effect of each 

component of the constitutive model on rutting performance simulation of asphalt 

pavements.  

In terms of the FE modeling of asphaltic pavements under simplified loading 

conditions, several FE studies have been conducted in order to predict the rutting 

performance. Lu and Wright  (1998) constructed a two-dimensional (2D) plane strain FE 

model to represent a three layers pavement structure and employed the Perzyna’s 

viscoplastic model to predict the permanent deformation under large number of loading 

cycles assuming a pulse loading. Pulse loading is commonly used to represent a wheel 

moving load. However, the implicit assumption in conducting 2D plane strain FE 

simulations is that the loading condition is represented as an infinite load strip in the 

traffic direction (see Table 9.1). Similarly, Hunter et al. (2007) have also conducted 2D 

plan strain FE simulations of the Wheel Tracking Test in order to predict rutting 

performance assuming a pulse loading. However, Hunter et al. (2007) have used a power 

law viscoplasticity constitutive model and neglected viscoelasticity and damage 

evolution. Their simulations show that the shape of rutting is significantly different than 

that obtained experimentally. Kettil et al. (2007) have conducted 2D axisymmetric FE 

simulations and compared two different loading assumptions; pulse loading and 

equivalent loading (see Table 9.1).  
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Table 9.1. Summary of simulated loading assumptions. 

Mode Loading approach Loading Area Schematic representation of loading modes 

1 (2D) 
Pulse loading 
(plane strain) 

One wheel 

 

2 (2D) 
Equivalent loading 

(plane strain) 
One wheel 

 

3 (2D) 
Pulse loading 

(axisymmetric) 
One wheel 

 

4 (2D) 
Equivalent loading 

(axisymmetric) 
One wheel 

 

5 (3D) Pulse loading One wheel 

 

6 (3D) Equivalent loading One wheel 

 

7 (3D) Pulse loading Whole wheel path 

 

8 (3D) Equivalent loading Whole wheel path 

 

9 (3D) Pulse loading 
Circular loading 

area 
 

10 (3D) Equivalent loading 
Circular loading 

area 
 

11 (3D) Moving loading One wheel 

 

The equivalent loading assumption, which is another commonly adapted loading 

assumption to represent a wheel moving load, applies the wheel loading over the 

Moving Direction 
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respective accumulative loading time neglecting the unloading time periods. Results 

from this study showed that the equivalent loading assumption gives comparable rutting 

performance predictions from the pulse loading assumption such that by assuming an 

equivalent loading one can save significant amount of computational time. However, this 

conclusion is based on assuming an elasto-viscoplastic material behavior neglecting the 

viscoelastic and damage behavior of asphaltic materials. Cho et al. (1996) compared the 

rutting predictions from 2D plane strain, 2D axisymmetric, and 3D FE simulations 

assuming a linear elastic behavior of the asphalt material. Huang et al. (2001) conducted 

2D and 3D axisymmetric simulations of asphalt pavement sections using an elasto-

viscoplastic model. Results of this research showed that the 3D FE analysis gives more 

accurate predictions as compared to field measurements. Huang (1995) proposed a step 

loading function to simulate a large number of loading cycles of a moving load in 3D FE 

simulations. This loading function accumulates each wheel pass time to produce a total 

cumulative loading time and then applies a single load step to a set of elements in the 

middle of the whole wheel path. Hua (2000) improved the cumulative loading time 

approach by Huang (1995). The improved approach also accumulates each single 

loading time, and then applies a single step loading on the whole wheel path to represent 

the moving wheel loading in 3D simulations. However, in both of these works [i.e. 

Huang (1995) and Hua (2000)] an elasto-viscoplastic model is used for validating the 

proposed loading models. Huang (2001), Hua and White (2002), and Park et al. (2005) 

used an elasto-viscoplastic model along with the cumulative loading time approach to 

represent a large number of loading cycles. Saleeb et al. (2005) used a visco-elasto-

plastic model to conduct a 3D FE simulation with a moving loading model by applying 

the loading on one set of elements and then moving forward to the next set of elements. 

However, most of the aforementioned FE simulations have focused on the effect of 

loading modes. To the authors’ best knowledge, no study yet has used a comprehensive 

constitutive model incorporating nonlinear viscoelasticity, viscoplasticity, and 

viscodamage for simulating rutting performance of asphalt pavements. 
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The main objective of this work is to study the effect of different simplified 

wheel loading assumptions on 2D and 3D FE rutting simulations of asphalt layers using 

different constitutive behaviors; namely, elasto-viscoplastic, viscoelastic-viscoplastic, 

and coupled viscoelastic-viscoplastic-viscodamage constitutive behaviors. Different 

simplified two-dimensional (2D) and more realistic three-dimensional (3D) finite 

element (FE) loading techniques that represent the commonly conducted Wheel 

Tracking Test are simulated and compared to predict asphalt rutting performance.  

The simulations show that the assumption of the equivalency between a pulse 

loading and an equivalent loading, which are commonly used as simplified loading 

assumptions for predicting rutting, is reasonable for viscoelastic-viscoplastic and elasto-

viscoplastic constitutive behaviors. However, these loading assumptions and material 

constitutive models overestimate rutting as damage grows. Results show that the 2D 

plane strain FE simulations significantly overestimate rutting as compared to the rutting 

performance predictions from more realistic 3D FE simulations (Abu Al-Rub et al., 

2011). 

9.2. Material Constitutive Model 

The coupled thermo-viscoelastic-viscoplastic-viscodamage constitutive model presented 

in Chapter II is used to conduct this study. This constitutive model is not presented in 

this chapter in order to avoid the repetition. Please refer to Chapter II for a 

comprehensive and detailed description of the constitutive model.  

9.3. Description of the Finite Element Simulations 

This section presents the description of 2D and 3D FE rutting simulations of a test 

asphalt slab in a Wheel Tracking Test, and the description of the employed wheel 

loading assumptions for simplifying the FE simulations. 
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9.3.1. Geometry of the Finite Element Model 

This study simulates the Wheel Tracking Test as an example to investigate the effect of 

various commonly adapted loading assumptions on rutting predictions. Based on this 

analysis, one can draw conclusions about the suitability and computational cost of each 

loading assumption in predicting the rutting in asphaltic layers. The geometry of the 

Wheel Tracking Test is illustrated in Figure 9.1.  

 

 
Figure 9.1. The geometry of the simulated Wheel Tracking Test. (a) X-Y plane; (b) Y-Z plane. 

The wheel tracking test consists of an asphalt slab of dimensions of 305280

100 mm3 in length, width, and depth, respectively. A wheel load is applied at the middle 

of the slab along the width and moved bake and forth along the length of the slab. The 
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wheel moves with a speed of 40 passes per minute over a wheel path of 230mm length, 

which is equivalent to a 0.55 km/hr speed. The wheel loading area is assumed as a 

rectangular shape with dimensions of 2050 mm2 in width and length, respectively. The 

employed asphalt layer, dimensions of the loading area, and the wheel speed are from 

the Wheel Tracking Test conducted by Hunter et al. (2007). The loading is applied as a 

step load within each loading cycle. Because of the symmetric nature of the wheel 

loading condition and the slab’s geometry, the finite element model can be reduced to a 

half of the slab by constraining the horizontal direction on the vertical edge of the model 

to represent the middle of the slab. 

The 3D and 2D finite element meshes showing the applied wheel loading are 

shown in Figures 9.2(a) and 9.2(b), respectively. 

 

 

(a)                                                                                 (b) 
Figure 9.2. The FE mesh in (a) the 3D simulations and (b) the 2D simulations. 

The boundary conditions in both 2D and 3D FE models are imposed such that the 

horizontal direction on the opposite side of the symmetric boundary is fixed; while the 

bottom of the slab is fixed in the vertical direction. The used element types in the 2D FE 

simulations in Abaqus are plane strain four-node element with reduced integration 

(CPE4R) for plane strain analysis, and axisymmetric four-node element with reduced 
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integration (CAX4R) for axisymmetric analysis; whereas, 3D eight-node element with 

reduced integration (C3D8R) is used for conducting 3D FE simulations. Moreover, a 

maximum element aspect ratio of 2 is used for the 2D and 3D elements, respectively. 

According to the performed convergence studies for the 2D simulations, 2.52.5 mm2 

elements are used under and close to the loads, whereas, the maximum element size of 5

5 mm2 is used for the area far from the loading path. For the 3D simulations, 2.52.5

2.5 mm3 elements are used under the load and close to loading path, whereas, the 

maximum element size of 555 mm3 is used for the regions that are far from the 

loading path. From a convergence study that is not reported here, the constructed 2D and 

3D meshes were sufficient to get converged results that are independent of the mesh 

density. The loading level is 770 kPa and is applied on the top of the asphalt layer with 

different loading scenarios as described in the next section. For simplicity, the shape of 

the applied load is assumed rectangular. Moreover, frictional and tangential loadings 

from the contact of the wheel with the asphalt top surface are neglected in this study.  

9.3.2. Applied Wheel Loading Assumptions 

The loading modes (or loading assumptions) can be categorized into two main types (see 

Table 9.1): (1) loading duration such as pulse loading, equivalent loading, and moving 

loading; and (2) loading area such as applying the loading on one wheel area, on the 

whole wheel path, and on a circular loading area that represents the axisymmetric 

analysis. Considering the combination of those loading categories, four loading modes 

can be considered in the 2D simulations; whereas seven loading modes can be 

considered in the 3D simulations (see Table 9.1). Those loading modes are applied to the 

2D and 3D FE models and then the results are compared in terms of the rutting 

performance in order to find an efficient loading mode, but simple enough, for the 

prediction of rutting under very large number of repeated loading cycles. Therefore, the 

objective from simulating these loading scenarios is to identify a loading assumption that 

allows one to predict effectively and with minimum computational cost the rutting 

performance of asphaltic layers over a large number of repeated loading cycles without 

the need of complicated and computationally expensive rutting performance simulations.  
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9.3.2.1. Wheel loading assumptions in 2D simulations 

In the 2D FE simulations, two cases are considered for the area on which the loading is 

applied: (1) the loading is applied on an infinite stripe bar along the length of the 

pavement; (2) the loading is applied on a circular area at the middle of the pavement. 

The first case is simulated using 2D plane strain FE models, whereas the second case is 

simulated using 2D axisymmetric FE models. Moreover, two loading durations are 

assumed for each of the cases. The first loading duration is a pulse loading in which the 

wheel load is applied with a loading time period of 0.109 sec and then the load is 

removed for 0.109 sec as shown in Table 9.1 and Figure 9.3.  

 

 

Figure 9.3. The sketch of equivalent and pulse loading modes. Equivalent loading is obtained by 
substituting pulse loading by a one step equivalent loading whose duration is equal to the 

summation of loading times in pulse loading. 

The simulated total loading-unloading cycles in this case are 1000 cycles. The 

loading scheme is shown in Figure 9.3(a). The second loading duration is the equivalent 
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loading mode (Mode 2) as shown in Table 9.1 and Figure 9.3(b). This loading 

assumption represents the equivalent loading time by accumulating the loading time 

from all loading cycles and then applying the wheel loading at once in one loading cycle 

for the period of accumulated time such that the unloading or resting time is neglected. 

The advantage of this loading model is that only one step loading is applied instead of 

applying large number of loading steps, and thus reducing greatly the computational 

cost. Hence, four loading assumptions are considered in the 2D simulations (see Table 

9.1). 

9.3.2.2. Wheel loading assumptions in 3D simulations 

In the 3D FE simulations as compared to the 2D simulations, one can specify the loading 

location and apply more realistic loading conditions. In the 3D simulations, seven wheel 

loading scenarios can be simulated. The fifth loading assumption (Mode 5) as shown in 

Table 9.1 assumes a pulse loading (as described in Modes 1 and 3) where the load is 

applied at the center of the asphalt layer (position B in Figure 9.1) with one wheel 

loading area. As shown in Figure 9.3 the loading duration is 0.109 sec and also 0.109 sec 

for the unloading within each cycle. A 1000 loading-unloading cycles are applied in this 

case. The sixth loading scenario (Mode 6) assumes an equivalent loading time (as 

described in Modes 2 and 4) where one wheel loading area is applied at position B in 

Figure 9.1 Loading modes 7 and 8 assume a pulse loading (loading time of 0.109 sec and 

unloading time of 0.109 sec) and an equivalent time loading, respectively. Both modes 7 

and 8 assume the loading over the whole wheel path (shown in Figure 9.1). Moreover, a 

circular loading area is assumed for modes 9 and 10. A pulse loading and an equivalent 

time loading are assumed for loading modes 9 and 10, respectively. Finally, the last 

loading mode is the moving loading (Mode 11) where the wheel movement is simulated 

by applying the wheel loading on one set of elements (one loading area) at the beginning 

of the wheel path (position A in Figure 9.1). This load remains on the shaded area shown 

in Figure 9.4(a) for 0.109 sec ( 2 1t t ) and then moving it forward to the next set of 

elements shown in Figure 9.4(b). The load remains on the same set of elements shown in 

Figure 9.4(b) for the same loading duration of 0.109 sec ( 3 2t t ) and then moves to 
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another set of elements shown in Figure 9.4(c) until it reaches to the end of the wheel 

path (position C in Figure 9.1). This loading mode, which is illustrated in Figure 9.4, is 

the most realistic one as compared to the aforementioned loading modes. This approach 

of simulating the moving load is followed in the current study due to its simplicity and 

the significant reduction in the computational cost as compared to explicitly simulating a 

real tire with considering dynamic effects. 

 

 
(a) 

 
(b) 

 
(c) 

Figure 9.4. A schematic representation of the simplified wheel moving loading scenario. The 
shaded area is the region at which the wheel load is applied over a set of elements and then 

moved in the traffic direction to a new set of elements. 

It should be noted that one would expect different rutting results using plane 

strain simulations (loading modes 1 and 2) or using their 3D counterparts (loading 

modes 7 and 8) comparing to the realistic loading conditions. However, the qualitative 

comparison of the changes in the results using these simplifications is of great 

importance in deciding on when to use these simplifications depending on the problem 

under study. 

9.4. Material Parameters 

The asphalt mix used in the Wheel Tracking test is the same as the asphalt mix used in 

Chapter II.  Therefore, the viscoelastic, viscoplastic, and viscodamage model parameters 

3t t

2t t

1t t
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along with the time-temperature shift factors reported in Chapter II are used to simulate 

the rutting performance in this section. However, during some preliminary simulations, 

it is found that the identified viscodamage material parameters in Darabi et al. (2011c) 

did not cause noticeable amount of damage at the largest number of loading cycles 

simulated in this study. Therefore, in order to investigate the effect of damage evolution 

on rutting performance predictions, the material parameters for the viscodamage model 

are modified in such a way that signifies the effect of damage. These assumed material 

parameters are listed in Table 9.2. 

 

Table 9.2. Assumed viscodamage model parameters for inducing early damage growth. 

 -1secvd   0 kPaY  q  k  

5 10-5 500 10-5 300 
 

9.5. Rutting Predictions 

Three different constitutive behaviors; elastic-viscoplastic, viscoelastic-viscoplastic, and 

viscoelastic-viscoplastic-viscodamage, are considered here in order to conduct a 

comprehensive study on the effects of: (1) different simplified loading assumptions as 

listed in Table 9.1, and (2) different material constitutive behaviors on the 2D and 3D 

rutting performance predictions of asphaltic layers. The elasto-viscoplastic behavior is 

simulated by turning off the viscoelastic and viscodamage constitutive models, whereas 

the viscoelastic-viscoplastic behavior is simulated by turning off the viscodamage 

constitutive model. 

Since permanent (viscoplastic) displacement is not considered as a degree of 

freedom at the element’s nodes in the classical finite element method, it is not possible 

to calculate the permanent surface deformation (i.e. rutting) directly. However, the 

magnitude of rutting can be calculated numerically by integrating the magnitude of the 

viscoplastic deformation through the pavement’s thickness. This can be achieved by 
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dividing the thickness of the asphalt layer into a number of sub-layers, such that the 

rutting depth can be calculated as follows: 

    

1

k
vp i i

rutting
i

u h


   (9.1) 

where  ruttingu  is the permanent displacement (rutting),  vp i  is the vertical viscoplastic 

strain at ith layer through the depth of the asphalt layer, and  ih  is the ith layer thickness. 

In the following, the rutting is only calculated at the center of the slab (position B in 

Figure 9.1) for the purpose of conducting the numerical comparisons. 

9.5.1. 2D Simulation Results 

As it was mentioned, four loading scenarios can be assumed for performing the 2D FE 

simulations for predicting rutting as shown in Table 9.1 (i.e. Mode 1: plane strain-pulse 

loading; Mode 2: plane strain-equivalent loading; Mode 3: axisymmetric-pulse loading; 

and Mode 4: axisymmetric-equivalent loading). In the 2D plane strain simulations, it is 

assumed that the loading is applied as an infinite strip along the length of the asphalt 

layer. The corresponding 3D loading modes for the 2D loading modes 1 and 2 are 

loading modes 7 and 8, respectively. Furthermore, for the 2D axisymmetric simulations, 

the loading is assumed to be applied on a circular area. Hence, the corresponding 3D 

loading modes for the 2D loading modes 3 and 4 are loading modes 9 and 10. Figures 

9.5 and 9.6 show the rutting versus loading cycles assuming a viscoelastic-viscoplastic 

constitutive behavior at temperatures 20 oC and 40 oC, respectively. Figures 9.5 and 9.6 

show that the rutting values obtained from the pulse and equivalent loading cases are 

comparable. However, the difference depends on the employed constitutive model and 

decreases as the temperature increases. The 2D simulation results assuming an elasto-

viscoplastic material behavior are shown in Figure 9.7. This figure shows that an elasto-

viscoplastic constitutive behavior leads to prediction of the same rutting values for pulse 

and equivalent loading cases when the only difference is the loading duration (i.e. pulse 

loading versus equivalent loading).  
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Figure 9.5. The rutting results for 2D plane strain and axisymmetric and their corresponding 3D 
FE simulations at temperature 20 oC assuming a nonlinear viscoelastic and viscoplastic material 

constitutive behavior. 

 
Figure 9.6. The rutting results for 2D plane strain and axisymmetric and their corresponding 3D 
FE simulations at temperature 40 oC assuming a nonlinear viscoelastic and viscoplastic material 

constitutive behavior. 
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Figure 9.7. The rutting results for 2D plane strain and axisymmetric and their corresponding 3D 

FE simulations at temperature 20 oC assuming an elasto-viscoplastic material constitutive 
behavior. 

The 2D simulation results for loading modes 1-4 when damage is activated are 

shown in Figure 9.8. Figure 9.8 shows that when damage is activated the simulation 

results for loading modes 1 and 2 could be very different. This is attributed to the 

viscous behavior of the damage law. In other words, changing the loading duration has a 

significant effect on the value of damage density since the damage law is time-

dependent. These observations clearly show that the differences in rutting values using 

different simplified loading assumptions are also model-dependent. For example, these 

differences are magnified when the damage component of the model is added to the 

viscoelastic-viscoplastic constitutive model. Also, one may expect greater differences if 

other material mechanisms such as the viscoplastic softening (i.e. decrease levels of 

viscoplastic hardening during each loading cycle due to rearrangements in the material’s 

microstructure) which is related to the loading history is considered. In other words, any 

material mechanism which is related to the loading history could magnify the differences 

in calculated rutting values using the simplified loading assumptions and realistic 

loading scenarios since the simplified loading assumptions do not capture the real 

loading history. Therefore, it should be emphasized that the rutting predictions from a 
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specific simplified loading assumption completely depends on the employed constitutive 

model and one cannot generalize the conclusions from a specific loading assumption 

independent of the employed constitutive model. 

 

 
Figure 9.8. The rutting results for 2D plane strain and axisymmetric and their corresponding 3D 

FE simulations at temperature 20 oC using the coupled viscoelastic-viscoplastic-viscodamage 
material constitutive model. 

The same trend is also obtained from the simulation results of loading modes 3 

and 4. The results of loading modes 7 and 8, which are the 3D counterparts of loading 

modes 1 and 2, respectively, are also presented in Figures 9.5-9.8. These figures show 

that the results of loading modes 1 and 7, and the results of loading modes 2 and 8 are 

very similar. Details of the 3D simulations are presented in the following section.  

As an example, the viscoplastic strain and damage contours at different loading 

cycles for loading mode 1 is plotted in Figures 9.9 and 9.10, respectively, for the 

viscoelastic-viscoplastic-viscodamage model. Figure 9.9 shows that the maximum 

viscoplastic strain occurs at the half top portion of the pavement. Figure 9.10 shows that 

the maximum damage occurs at the top of the middle part of the asphalt layer which is 

exactly the region where the maximum viscoplastic strain occurs. However, as it is clear 
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from Figure 9.10, damage does not distribute toward bottom part of the asphalt layer 

instead it localizes at the top of the middle part of the asphalt layer that eventually causes 

macro-cracks at that region. These macro-cracks then propagate toward the surface of 

the asphalt layer. 

It is noteworthy that due to the large computational cost the rutting simulations of 

this study are conducted up to 1000 loading cycles which is much lower than the actual 

number of loading cycles in the wheel tracking tests. Hence, it is not a surprise that the 

predicted values for the surface rutting is lower than the actual rutting values in the 

wheel tracking tests which are conducted for huge number of cycles. 

 

 

 
Figure 9.9. Viscoplastic strain distribution contours at different loading cycles for the 2D FE 
analysis when using the coupled viscoelastic-viscoplastic-viscodamage constitutive model at 

20oT C  when simulating the pulse loading (loading mode 1). 
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Figure 9.10. Damage distribution contours at different loading cycles for the 2D FE analysis 

when using the coupled viscoelastic-viscoplastic-viscodamage constitutive model at 20oT C  
when simulating the pulse loading (loading mode 1).  

However, the main purpose of this study is qualitative comparisons of rutting 

values obtained from different simplified assumptions on the constitutive model and on 

the imposed loading scenario with the most realistic constitutive model and loading 

scenario, which are viscoelastic, viscoplastic, viscodamage model and the moving load 

scenario, respectively, are used as a reference for qualifying the rutting predictions. 

Although this study provides a qualitative comparison between different assumptions for 

low number of loading cycles, the trend for larger number of loading cycles is expected 
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to be similar. The authors are currently working on developing an extrapolation 

technique that could be used to extrapolate the 3D simulation results obtained from low 

number of loading cycles to the simulation results for a large number of loading cycles.  

9.5.2. 3D Simulation Results 

Seven simplified loading scenarios are simulated for the 3D case. Figures 9.11 and 9.12 

show the rutting predictions versus the number of loading cycles at temperatures 20 oC 

and 40 oC, respectively.  

 

 
Figure 9.11. The rutting simulation results from 3D FE analysis at temperature 20 oC assuming a 

nonlinear viscoelastic and viscoplastic material constitutive behavior. 

These results are obtained assuming that asphalt material behavior is 

viscoelastic-viscoplastic with no damage. Since the rutting predictions from the moving 

load (Mode 11) are the closest to the real loading in a Wheel Tracking Test, these figures 

show that applying the loading over the whole wheel path (Modes 7 and 8) results in a 

significant error in predicting rutting as compared to the moving load (mode 11). Figures 

9.11 and 9.12 show that the axisymmetric assumption also overestimates the rutting 

value as compared to the most realistic loading mode (mode 11). However, these figures 
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show that cases when the wheel loading is only applied on one wheel loading area 

(Modes 5 and 6) reasonably predict the simulation results of loading mode 11. Due to 

the very large computational cost in conducting the moving load simulations, the results 

are obtained up to about 400 and 500 cycles at temperatures 20 oC and 40 oC, 

respectively. In terms of the effect of the pulse and equivalent loading conditions (Mode 

5 versus 6; Mode 7 versus 8; Mode 9 versus 10), one can notice from Figures 9.11 and 

9.12 that the rutting predictions are close when applying Mode 5 versus Mode 6, Mode 7 

versus Mode 8, and Mode 9 versus Mode 10. 

 

 
Figure 9.12. The rutting simulation results from 3D FE analysis at temperature 40 oC assuming a 

nonlinear viscoelastic and viscoplastic material constitutive behavior. 

Figure 9.13 shows the relationship between the rutting predictions and the 

number of loading cycles when assuming an elasto-viscoplastic material constitutive 

behavior with no viscoelasticity and no damage. Figure 9.13 shows that using pulse and 

equivalent loading modes give comparable predictions when assuming that the loading 

area is the same. This observation is compatible with the 2D simulation results shown in 

Figure 9.7. As inferred from the results in Figures 9.11 and 9.12, the rutting predictions 

from the loading Modes 5 and 6 are close to that from the moving loading mode (Mode 
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11). However, when assuming loading Modes 7, 8, 9, and 10 the rutting is over predicted 

significantly. 

 

 
Figure 9.13. The rutting simulation results from 3D FE analysis at temperature 20 oC assuming 

an elasto-viscoplastic material constitutive behavior. 

In order to study the effect of damage on rutting using different loading modes in the 3D 

simulations, the viscoelastic-viscoplastic-viscodamage constitutive model is now used. 

Figure 9.14 shows the corresponding results at temperature 20 oC. 

It is clear from Figure 9.14 that the rutting predictions are different for each 

loading mode and the difference increases as damage grows. Figure 9.14 also shows that 

when damage is activated, results from loading mode 11 (i.e. moving load) significantly 

deviates from the results of loading modes 5 and 6 as compared to that in Figures 9.11-

9.13. This is attributed to the viscous behavior of the damage law. In other words, 

changing the loading duration has a significant effect on the value of damage density 

since the damage law is time-dependent. Moreover, it is found that the identified 

viscodamage material parameters in Darabi et al. (2011c) did not cause noticeable 

amount of damage at the largest number of loading cycles simulated in this study. 
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Figure 9.14. The rutting simulation from 3D FE analysis at temperature 20 oC using the coupled 

viscoelastic-viscoplastic-viscodamage material constitutive model. 

Therefore, in order to investigate the effect of damage evolution on rutting 

performance predictions, the material parameters for the viscodamage model are 

modified in such a way that signifies the effect of damage. These assumed material 

parameters also contribute in magnifying the differences in the predicted rutting values 

using loading modes 5 and 6. The total loading duration for loading mode 11 is larger 

than the loading duration for other loading modes and, therefore, the rate of rutting 

accumulation and damage density from loading mode 11 are greater than those from 

other loading modes (i.e. modes 5-10). Figure 9.15 shows the evolution of the maximum 

damage density (occurring at the center of the loading and 30 mm from the top surface) 

for different loading modes, where the damage density evolves differently depending on 

the loading model and loading duration, but is much more important for loading mode 

11 which causes the noticeable deviation from loading modes 5-10. Hence, one can 

conclude that it is not accurate to substitute the pulse loading with equivalent loading in 

the presence of significant damage. Also, substitution of loading mode 11 (moving load) 

with loading modes 5 and 6 may cause significant error when damage is activated. 
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constitutive models are used. These results show that the effect of using different loading 

assumptions totally depends on the material constitutive model adapted for conducting 

the rutting simulations. 

 

 
Figure 9.15. The evolution of the damage density from 3D FE analysis at temperature 20 oC 

using the coupled viscoelastic-viscoplastic-viscodamage material constitutive model. 

 
Figure 9.16. Comparing the rutting predictions from the 3D FE simulations using different 

constitutive models at temperature 20 oC for loading mode 11. 
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  As an example, the evolution of viscoplastic strain distribution at different 

loading cycles for the loading mode 7 is plotted in Figure 9.17. Figure 9.17 shows that 

the maximum viscoplastic strain occurs at the top of the middle part of the asphalt layer 

which is consistent with the 2D predictions in Figure 9.9 and previous studies. 

Moreover, it also shows that as the number of loading cycles increases, the compressive 

viscoplastic strain extends toward both top and bottom of the pavement which 

contributes to more permanent deformation.  

 

 
 

 

Figure 9.17. Viscoplastic strain distribution contours at different loading cycles for the 3D FE 
analysis when using the coupled viscoelastic-viscoplastic-viscodamage constitutive model at 

20oT C  when simulating the pulse loading (loading mode 5). 
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Also, damage distribution contours are plotted for the same problem in Figure 

9.18 which shows that the maximum damage occurs at the top of the middle part of 

asphalt layer which is exactly the region where the maximum viscoplastic strain occurs. 

The results in Figure 9.17 and 9.18 are consistent with the 2D viscoplasticity and 

damage contours (Figures 9.9 and 9.10). 

 

 

 
Figure 9.18. Damage distribution contours at different loading cycles for the 3D FE analysis 

when using the coupled viscoelastic-viscoplastic-viscodamage constitutive model at 20oC when 
simulating the pulse loading (loading mode 5).   

N=400 
cycles 

N=600 
cycles 

N=100 
cycles 

N=200 
cycles 



 348

From the 3D FE predictions of rutting (Figures 9.11-9.14), one can conclude that 

the simplified loading and constitutive assumptions can significantly affect the rutting 

predictions. The difference between the rutting values using the moving load (Mode 11), 

which is the most realistic one, and using the equivalent loading mode (Mode 8), which 

is the most common loading assumption in the literature, exceeds 100% in some cases. 

Moreover, assuming the equivalency between the pulse loading modes (Modes 7 and 9) 

and the equivalent loading modes (Modes 8 and 10) totally depend on the assumed 

constitutive model. This assumption yields almost similar results for an elasto-

viscoplastic constitutive model. It could also be reasonable for a viscoelastic-viscoplastic 

constitutive mode; however, special care should be taken in the presence of damage 

since the results of these two loading cases could be totally different; depending on the 

damage level. 

The conducted simulations show that rutting predictions in asphaltic pavements 

using the simplified assumptions such as the 2D analysis instead of the 3D analysis and 

using the equivalent loading assumption instead of the pulse loading assumption will 

significantly overestimate rutting, but, on the other hand, significantly reduce the 

computational cost. However, due to the very large computational cost needed to predict 

the rutting using 3D FE simulations with a complex coupled viscoelastic, viscoplastic, 

and viscodamage constitutive mode, it is imperative that an extrapolation technique to 

very large number of cycles is developed based on 3D FE simulations. 

9.6. Extrapolation of the Rutting in 3D 

The conducted simulations show that rutting predictions in pavements using the 

simplified assumptions such as the 2D analysis instead of the 3D analysis and using the 

equivalent loading mode instead of the pulse loading mode will significantly 

overestimate rutting, but will significantly reduce the computational cost. However, the 

2D simulations as well as the equivalent load assumption give qualitative agreements 

with the 3D simulations and the pulse load assumption. Therefore, in this section a 

simple yet accurate method for extrapolating the results of 3D FE analysis based on the 
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results of 2D FE analysis is proposed. The extrapolation equation is expressed as 

follows: 

 
3 ,

3 , 2 ,
2 ,

ref

ref

D N
D N D N

D N

Rutting
Rutting Rutting

Rutting
   (9.2) 

where  3 ,D NRutting  is the extrapolated rutting at N  cycles for 3D, 3 , refD NRutting  and 

2 , refD NRutting  are the calculated rutting at a reference cycle in 3D and 2D simulations, 

respectively. The reference cycles are chosen as 20, 100, 300, 400, and 500 for 

comparison. 2 ,D NRutting  is the calculated rutting after N  cycles in the 2D simulation. 

 For the purpose of extrapolation, the loading mode in the 2D simulations is 

chosen as the equivalent loading (Mode 2) since it is computationally inexpensive. The 

loading mode in the 3D simulations is assumed to be the moving loading (Mode 11) 

since it is the most realistic one as compared to the actual loading condition of the Wheel 

Tracking Test. Figures 9.19 (a) and 9.19(b) show the extrapolated results at temperatures 

20 oC and 40 oC, respectively, when assuming a nonlinear viscoelastic and viscoplastic 

constitutive behavior. Figure 9.19(c) shows the extrapolation results at temperature 20 oC 

when assuming an elasto-viscoplastic constitutive behavior. These figures show that 

using the reference rutting at low number of cycles (20th cycle) does not yield accurate 

extrapolation comparing to the calculated rutting from 3D. Moreover, for the 

viscoelastic-viscoplastic constitutive model at temperature 20 oC, using the reference 

rutting at 100th cycle yields an accurate extrapolation such that increasing the reference 

cycle does not affect the extrapolated rutting. Generally, the extrapolated rutting using 

the reference rutting at 400th cycle yield accurate extrapolations to the calculated rutting 

from the 3D simulations at cycle 500th for the viscoelastic-viscoplastic model at 

temperature 40 oC and the elasto-viscoplastic model at 20 oC. The errors are around 

1.2%. Hence, the proposed extrapolation technique based on the 2D rutting predictions 

gives an efficient method to predict and to extrapolate the rutting from the 3D 

simulations to large number of loading cycles. 
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(a) 

 
(b) 

Figure 9.19. The extrapolation of the 3D rutting predictions based on the 2D predictions for: (a) 
the viscoelastic and viscoplastic model at temperature 20 oC, (b) the viscoelastic and viscoplastic 

model at temperature 40 oC, and (c) the elasto-viscoplastic model at temperature 20 oC. 
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(c) 

Figure 9.19. Continued. 

9.7. Comparison with Experimental Results 

In this section, the Wheel Tracking Test is modeled using the viscoelastic-viscoplastic-

viscodamage constitutive model and the results are compared with experimental 

measurements. Since the experimental data are available at temperature 35 oC, the 

simulation is performed at temperature 35 oC. The asphalt mixture is described as 10 mm 

Dense Bitumen Macadam (DBM) which is a continuously graded mixture with asphalt 

binder content of 5.5%. Granite aggregates and an asphalt binder with a penetration 

grade of 70/100 are used in preparing the asphalt mixtures. The material parameters 

associated with the nonlinear viscoelastic, viscoplastic, and viscodamage constitutive 

equations are presented in Chapter II. The slabs of DMB materials with the dimensions 

of 305280100 mm3 are manufactured using a roller compactor. Materials are 

compacted in rigid molds using a roller compactor designed to simulate the action of the 

site compaction plant. The mold was moved back and forth under the rolling compactor 

to simulate a rolling action. The steel wheel applies 770 kPa moving load to the center of 

the slab with the frequency of 40 passes per minute. The total number of 96000 loading 

cycles is applied to the slab and the rutting depth is measured every five minutes. Figure 
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9.20 shows the comparison between the experimental measurements and the 2D 

simulation results and the 3D extrapolation results. The 2D finite element simulates the 

rutting up to 96000 cycles; while the 3D finite element only simulates the rutting up to 

1000 cycles (i.e. 1000refN  ). Then, the extrapolation technique [Eq.(9.2)] is employed 

to predict the rutting in 3D up to 96000 cycles. The results show that the rutting from the 

2D simulation significantly overestimates the experimental measurements.  However, 

the extrapolated results are with reasonable agreement with the experimental 

measurements where the error at loading cycle 96000 is about 10%. Moreover, the rate 

of rutting from the 3D extrapolation is comparable to the experiment measurements. 

 

 
Figure 9.20 Comparing 2D FE rutting predictions and extrapolated results with experimental 

data from a Wheel Tracking Test (from Nottingham database) at temperature of 35 oC. 
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as 64oC, one does not expect nucleation of cracks and voids under compressive loading 
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modes. Instead, the material undergoes viscoplastic softening. Figure 9.21 schematically 

represents the asphalt layer section for the ALF rutting performance tests. 

 

 

 Figure 9.21. Schematic representation of the half of the asphalt layer model for the ALF rutting 
performance data. 

The simulation results with and without the viscoplastic softening model is 

compared with the experimental measurements on ALF data in Figure 9.22. 

 

 
Figure 9.22. Experimental measurements and model predictions of the rutting performance for 

the ALF data. 
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Figure 9.22 clearly shows that the model without the viscoplastic softening significantly 

underestimates the experimental data. However, when the viscoplastic softening is 

included, the model predicts reasonable results for the rutting depth which agrees well 

with the experimental results. It should be noted that the same model parameters listed in 

Chapter VII are used to conduct the model predictions. 

9.8. Conclusions 

This chapter thoroughly investigates the FE prediction of the rutting in asphalt 

pavements which is one of the most challenging and important distresses in asphalt 

pavements. 

The effect of different loading and constitutive behavior assumptions that greatly 

simplify the rutting performance predictions in asphalt pavements are systematically 

investigated. Three material constitutive behaviors are considered for studying the 

effects of viscoelasticity, viscoplasticity, and viscodamage models on the rutting depth in 

the Wheel Tracking Test. 2D and 3D FE simulations with different loading assumptions 

are simulated to study the difference between 2D and 3D simulations and to study the 

effect of different performance loading assumptions (e.g. pulse loading and equivalent 

loading) on the predicted rutting depth.  

Simulation results show that certain simplified loading scenarios significantly 

overestimate the rutting performance. It is shown that the 2D simulations significantly 

overestimate the rutting depth as compared to the 3D moving loading case which is the 

most realistic case considered in this study. It is also shown that the accuracy of the 

assumption of equivalency between the pulse loading and the equivalent time loading, 

which have been extensively assumed by many researchers in predicting rutting, totally 

depends on the assumed material constitutive behavior (i.e. elasto-viscoplastic, 

viscoelastic-viscoplastic, or viscoelastic-viscoplastic- viscodamage). Therefore, one 

cannot generalize the conclusions from a specific loading assumption independent of the 

employed constitutive model. The pulse loading and equivalent time loading 

simplifications give comparable rutting predictions when the wheel loading is applied on 
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the same area of the wheel’s path and the damage evolution is neglected. Therefore, 

depending on the level of damage, the results can deviate progressively as damage 

grows.  

 Moreover, an extrapolation technique is proposed to extrapolate the rutting 

performance simulation results to large number of loading cycles. The model predictions 

are finally compared to the experimental measurements for Nottingham and ALF mixes.  
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CHAPTER X 

CONCLUSIONS AND RECOMMENDATIONS 

As mentioned and shown in different chapters of this work, bituminous materials and 

asphalt mixes clearly show time-, rate-, and temperature-dependent responses. This 

makes the constitutive modeling of these materials very challenging and difficult. 

However, the main objectives of such constitutive modeling are: (1) to obtain a robust 

model that considers the main mechanisms contributing to the response of asphalt mixes 

subjected to mechanical, thermal, and mechanical loading conditions; and (2) to 

effectively use the derived constitutive model to predict the performance of asphalt 

pavements during their service lives.  

10.1. Summary of the Findings 

 It is shown that thermo-viscoelastic, thermo-viscoplastic, thermo-viscodamage, 

micro-damage healing, and viscoplastic softening are the necessary mechanisms for 

predicting the thermo-mechanical response of asphalt mixes. 

10.1.1. Thermo-Viscoelasticity 

It is shown that the Schapery’s nonlinear model can effectively be used to capture the 

thermo-viscoelastic response of asphalt mixes over a range of temperatures. It is shown 

that the viscoelastic model parameters can be effectively identified using either dynamic 

modulus tests or creep-recovery tests at different temperatures. It is also argued, 

however, that the dynamic modulus test yields more promising model parameters for the 

asphalt mixes since it these tests are usually conducted at several loading frequencies, 

and therefore, can capture the response at different loading rates. 

10.1.2. Thermo-Viscoplasticity 

This work used the Perzyna’s viscoplasticity model to capture the irrecoverable strain 

response of asphalt mixes. It is shown that the Perzyna’s viscoplastic model can be used 

to predict the viscoplastic response of asphalt mixes over a range of temperatures, 
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excluding high temperatures, using the same time-temperature shift factors identified 

from the dynamic modulus tests. However, the time-temperature shift factor should be 

introduced in both flow rule and viscoplastic dynamic yield surface. Moreover, this work 

uses a modified Drucker-Prager type yield surface and plastic potential that distinguishes 

between the loading conditions in compression and extension. This modified yield 

function introduces one more model parameter and enables the model to capture the 

viscoplastic response in both extension and compressive loading modes using the same 

model parameters. Furthermore, a straightforward procedure for identifying the 

viscoplastic model parameters based on the creep part of the creep-recovery test is 

introduced. 

10.1.3. Thermo-Viscodamage 

It is shown that the inclusion of the damage component in the constitutive models is 

crutial in accurate prediction of the mechanical response of bituminous materials. 

Distinct responses such as secondary and tertiary creep; post peak response in the stress-

strain diagram; and fatigue life of bituminous materials and asphalt mixes cannot be 

predicted without the damage component of the constitutive model. 

 Moreover, it is shown that the damage response of asphalt mixes is time-, 

temperature-, and rate-dependent such that a delay-damage (viscodamage) model is 

required to accurately model the damage response of asphalt mixes. 

Therefore, the continuum damage mechanics framework is used to propose a 

viscodamage model for asphalt mixes in Chapter II. The proposed viscodamage model is 

implemented using the concept of the effective stress space along with a transformation 

hypothesis to relate stress and strain tensors in the nominal and effective configurations. 

The use of the effective stress concept in continuum damage mechanics greatly 

simplifies the numerical implementation of the highly nonlinear constitutive models 

presented in this study. However, a physically-based transformation hypothesis is also 

required to relate the stress and strain tensors in the effective configuration to the 

associated quantities in the nominal (damaged configuration). It is argued that the best 

transformation hypothesis for the asphalt mixes is the power equivalence hypothesis. 
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Postulating the power equivalence hypothesis along with using the continuum damage 

mechanics based on the effective stress space are both numerically and physically 

interesting. In other words, the effective stress space significantly simplifies the 

numerical implementation and at the same time the power equivalence hypothesis makes 

these simplifications physically sound since it allows the accurate estimation of the 

dissipated energy in the effective configuration. 

Analysis of extensive experimental data shows that the viscodamage response of 

asphalt mixes should be sensitive to the stress level, strain level, temperature, loading 

path, confinement level, and loading modes. The stress dependency of the damage model 

is captured using a damage force with a modified Drucker-Prager-type function. The 

advantage of using this form of damage force is that it makes the damage model 

sensitive to the confinement level and also distinguishes between the damage response in 

compression and extension loading modes. Moreover, it is shown that the damage 

evolution function is not independent of the loading history. In other words, different 

loading paths damage the material differently. This history effect is captured by 

incorporating a simple history term in the viscodamage evolution function.  

Extensive experimental data are analyzed to decide on the form of the damage 

evolution function. The analysis show linear relationship between the rate of the damage 

density variable versus the damage force when plotted in log-log scale. It is shown that 

the slope of the rate of the damage density versus damage force in log-log scale is almost 

constant regardless of the strain level. Therefore, a power law form is selected for the 

dependency of the damage evolution function on the damage force. The same procedure 

is used to develop proper function for the dependency of the damage evolution function 

on the effective total strain level. It is shown that for different damage forces in the 

effective configuration the damage evolution function changes linearly with the effective 

total strain in the log-log scale. The slope of this depency was also constant which 

suggests a power law relation between the damage evolution function and the effective 

total strain level. It should be noted that including the total effective strain enhances the 

couplings between the damage model and the rest of the constitutive model. Moreover, 
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the viscodamage model is coupled to temperature using an exponential multiplicative 

term in the viscodamage evolution law. Also, it is shown that the incorporation of the 

damage history in the viscodamage evolution function adds interesting features to the 

viscodamage model. 

 Systematci and simple procedures are developed to identify the viscodamage 

model parameters based on either two creep tests at different stress levels which show 

secondary and tertiary creep responses or several constant strain rate tests, whichever are 

available in the experimental data. 

 The proposed viscodamage model along with the identified model parameters are 

used to predict the response of asphalt mixes against other sets of experimental data 

which have not been used in calibration processes. Experimental data from the 

Nottingham and NCSU database are used to validate the viscodamage model. Results 

show that the viscodamage model is capable of capturing damage response of asphalt 

mixes subjected to different loading conditions in tension and compression loading 

modes, different temperatures, stress levels, strain rate levels, and loading/unloading 

times. It is shown that both secondary and tertiary creep can be captured at different 

stress levels and temperatures. Also, the model predicts the uniaxial constant strain rate 

tests at different temperatures and strain rates reasonably well. Reasonable predictions 

are also resulted for the repeated creep-recovery data. The experimental data on cyclic 

stress-controlled and strain-controlled loading conditions verify the capability of the 

proposed viscodamage model in capturing the fatigue life of asphalt mixes under 

realistic loading conditions. 

10.1.4. Micro-Damage Healing 

A novel continuum damage mechanics-based framework is proposed in this work to 

enhance the continuum damage mechanics theories in modeling the micro-damage 

healing phenomenon in materials that tend to self-heal. This framework is proposed by 

extending the concept of the effective configuration and effective stress to the healing 

configuration.  Three well-known transformation hypotheses of the continuum damage 

mechanics theories (i.e. strain, elastic strain energy, and power equivalence hypotheses) 
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are also extended for the materials with healing ability. Analytical relations are derived 

for each transformation hypothesis to relate the strain tensors, secant stiffness moduli, 

and tangent stiffness moduli in the damaged (nominal) and healing configurations. 

 The developed general micro-damage healing framework is then applied to 

asphalt mixes to model the healing phenomenon in asphalt mixes which occurs under 

different loading conditions. The proposed micro-damage healing model is coupled with 

temperature-dependent nonlinear viscoelastic, viscoplastic, and viscodamage 

constitutive models that can predict the highly nonlinear mechanical responses of asphalt 

mixtures subjected to repeated loading conditions.  

 Moreover, motivated by previously developed micromechanical- and fracture-

based healing models, a phenomenological healing equation is proposed for the 

evolution of the micro-damage healing internal state variable. The healing evolution 

equation is time, temperature, and loading/unloading history dependent model that 

explicitly affect the stress state and the viscoelastic, viscoplastic, and viscodamage 

response of the material while undergoing micro-damage healing. Moreover, an attempt 

is made to relate the material parameter that controls the rate of healing to the surface 

energy and bond strength of the material. Finally, a straightforward procedure to identify 

the healing model parameters using the repeated creep-recovery tests with different rest 

periods is proposed. 

10.1.5. Viscoplastic Softening 

It is shown that the classical plasticity/viscoplasticity models are not sufficient to explain 

the viscoplastic response of asphalt mixes subjected to repeated loadings at high 

temperatures.  

It is argued that the microstructure of the asphalt mixes rearranges during the 

unloading and rest period especially at high temperatures. This rearrangement of the 

microstructure (i.e. relocation of the aggregates) changes the mechanical properties of 

the asphalt mixes such that they can undergo more viscoplastic deformation during the 

next loading cycle. However, the classical viscoplastic models show that the material 

only undergoes more viscoplastic deformation when the applied stress exceeds its 
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applied maximum level. This distinct behavior of the asphalt mixes is referred to as the 

viscoplastic softening.  

Alternative methods to model the viscoplastic softening response of asphalt 

mixes at high temperatures are discussed. A novel method to simulate the viscoplastic 

softening model is then proposed. This method is based on the introduction of a 

viscoplasticity memory surface in the viscoplastic strain space. This surface is 

formulated very similar to the viscoplastic dynamic yield surface in the stress space 

which allows the application of the well-known procedures for identifying the yield 

surface in the stress space for the identification of the viscoplasticity memory surface in 

the strain space. An internal state variable, viscoplastic softening internal state variable, 

that memorizes the maximum experienced viscoplastic strain during the last unloading is 

introduced. This internal state variable is then used to construct a robust viscoplastic 

softening model for asphalt mixes.  

10.1.6. Thermodynamic Consistency of the Proposed Model 

This work presents a general and comprehensive thermodynamic based framework with 

especial attention to the decomposition of the thermodynamic conjugate forces into 

energetic and dissipative components to derive a temperature-dependent viscoelastic, 

viscoplastic, viscodamage, and healing constitutive model for time- and rate-dependent 

materials. 

 The healing configuration as the extension of the well-known Kachanov’s 

effective (undamaged) configuration is defined to enhance the continuum damage 

mechanics in modeling the healing phenomenon. Hence, the constitutive models are 

presented in the healing configuration which substantially simplifies the numerical 

implementation by avoiding the complexities associated with the direct couplings of 

viscoelastic and viscoplastic models to the viscodamage and healing models. The power-

correlating hypothesis is used to relate stress and strain tensors in the healing and 

damaged configurations. This hypothesis allowed one to present the constitutive model 

in the healing configuration (for simplicity) and yet to estimate the dissipated energy in 

the healing stress space accurately. 
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 Moreover, it is shown that the thermodynamic formulation naturally enforces the 

decomposition of the thermodynamic conjugate forces into energetic and dissipative 

components. Energetic components are derived using the Helmholtz free energy. A 

systematic procedure based on the principle of maximum dissipation (or maximum 

entropy production) is presented for deriving dissipative components directly from rate 

of the energy dissipation. The thermodynamic framework is then used for deriving a 

more comprehensive version of Schapery-type viscoelastic model, Perzyna-type 

viscoplastic model, and a viscodamage model analogous to the Perzyna-type viscoplastic 

model, and a healing model for bituminous materials and asphalt mixes. Moreover, all 

the derived constitutive models are coupled to temperature. It is shown that the presented 

thermodynamic framework yields a simpler and more comprehensive form for 

temperature-dependent viscoelastic models where there is no need for using the 

temperature shift factor in the definition of the reduced time. Instead, a temperature 

coupling term can be used for making the viscoelasticity model temperature-dependent. 

 Furthermore, it is shown that the principle of virtual power can be used for 

deriving generalized non-associative viscoplasticity theories without further needs to 

assume a viscoplastic potential function independent from the yield loading condition. It 

is also shown that the rate-dependent terms in viscoplasticity dynamic yield surface are 

identical to the dissipative components of the hardening function and can be derived 

directly from the rate of energy dissipation. 

 For the first time, the viscoelastic model is derived using the viscoelastic 

microforce balance, obtained directly from the principle of virtual power. Similarly, the 

viscodamage and healing loading conditions and evolution laws are derived using the 

viscodamage microforce balance and healing microforce balance, respectively.  

 Finally, equations for the thermo-mechanical coupling terms are derived which 

can be used to investigate the temperature evolution during the deformation. 

10.1.7. Model Validation 

The presented thermo-viscoelastic-viscoplastic-viscodamage-healing constitutive 

model is validated against extensive experimental measurements. This model is first 
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validated against the Nottingham data base over creep, creep-recovery, repeated creep-

recovery, and constant strain rate tests at different stress levels, strain rates, loading 

times, unloading times in both tension and compression at 10, 20, and 35oC. It is shown 

that the model is capable of predicting time-, rate-, and temperature-dependent response 

of asphalt mixes. 

The model is also validated against the ALF data. These data include 

compression tests at 55oC. It is shown that the classical plasticity/viscoplasticity models 

cannot predict the viscoplastic response of asphalt mixes at high temperatures. 

Therefore, a viscoplastic softening model is proposed to capture the viscoplastic 

response of asphalt mixes at high temperatures. The model is then validated against 

different kinds of repeated creep-recovery tests with different stress levels, loading 

times, and rest periods. Experimental measurements and model predictions clearly show 

that the model is capable of predicting the viscoplastic response of asphalt mixes at high 

temperatures. 

The model is also validated against constant strain rate tests, dynamic modulus 

tests, cyclic stress controlled tests, and cyclic strain controlled tests at different 

temperatures in tension. It is shown that the viscoelastic-viscoplastic-viscodamage-

healing model yield reasonable predictions of the experimental data.  

10.1.8. Performance Simulations 

This work presents a thorough investigation of the FE prediction of rutting, one of the 

most challenging and important distresses in asphalt pavements. The effect of different 

loading and constitutive behavior assumptions that greatly simplify the rutting 

performance predictions in asphalt pavements are systematically investigated. Three 

material constitutive behaviors are considered for studying the effects of viscoelasticity, 

viscoplasticity, and viscodamage models on the rutting depth in the Wheel Tracking 

Test. 2D and 3D FE simulations with different loading assumptions are simulated to 

study the difference between 2D and 3D simulations and to study the effect of different 

performance loading assumptions (e.g. pulse loading and equivalent loading) on the 

predicted rutting depth.  
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Simulation results show that certain simplified loading scenarios significantly 

overestimate the rutting performance. It is shown that the 2D simulations significantly 

overestimate the rutting depth as compared to the 3D moving loading case which is the 

most realistic case considered in this study. It is also shown that the accuracy of the 

assumption of equivalency between the pulse loading and the equivalent time loading, 

which have been extensively assumed by many researchers in predicting rutting, totally 

depends on the assumed material constitutive behavior (i.e. elasto-viscoplastic, 

viscoelastic-viscoplastic, or viscoelastic-viscoplastic- viscodamage). Therefore, one 

cannot generalize the conclusions from a specific loading assumption independent of the 

employed constitutive model. The pulse loading and equivalent time loading 

simplifications give comparable rutting predictions when the wheel loading is applied on 

the same area of the wheel’s path and the damage evolution is neglected. Therefore, 

depending on the level of damage, the results can deviate progressively as damage 

grows.  

Finally, the presented techniques and extrapolation techniques are used to predict 

the rutting performance of Wheel Tracking tests for the Nottingham and ALF mixes. 

Model predictions and experimental measurements show that the model is capable of 

predicting the rutting performance in asphalt pavements within a reasonable accuracy.  

10.2. Recommended Areas of Future Research 

 Development of multiphysics constitutive models that include aging and moisture 

induced damage as well: The ultimate goal of such constitutive models is to predict 

the response of asphalt pavements subjected to realistic loading and environmental 

conditions. Therefore, it is extremely important to include the effect of 

environmental conditions such as moisture induced damage and aging in the 

constitutive models. 

 Including statistical analysis and probabilistic and stochastic approaches into the 

constitutive models: Experimental measurements show high variability even for the 

same test and same mix in some cases. The constitutive models as discussed in this 
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work predict one determined response under the loading conditions. However, the 

experimental measurements show a range for the response of the materials. 

Therefore, the constitutive model will be more robust and realistic if it can also 

predict a range instead a determinant response under a specific loading condition. 

This important issue can be incorporated into the constitutive models by considering 

statistical analysis and probabilistic approaches. 

 Extending the constitutive model for the anisotropic cases: This study presents the 

isotropic damage and healing response of asphalt mixes. However, the asphalt mixes 

are highly heterogeneous and anisotropic. Therefore, extension of the proposed 

healing configuration to the anisotropic cases and subsequently proposing 

anisotropic damage and healing models will be helpful in ensuring the robustness of 

the constitutive model for different loading paths and conditions. 

  Extending the constitutive model to the large deformation theories: This study 

postulates the small deformation theories for asphalt mixes. This assumption is 

reasonable for asphalt mixes under a range of temperatures. However, at high 

temperatures, the asphalt mixes may undergo finite deformations such that the small 

deformation theories may fail in predicting reasonable predictions of the mechanical 

response of asphalt mixes. Moreover, even at low and intermediate temperatures, the 

asphalt mixes may experience finite strains as high damage densities. Furthermore, 

even though the experienced strain level at mixture level is small, the strain at the 

binder phase could be large due to the strain localization. Therefore, extending the 

current formulation to large deformation theories will be helpful in analyzing the 

asphalt mixes at high temperatures and high damage densities as well as conducting 

the micro-mechanical simulations considering binder, aggregate, and FAM phases. 

 More investigation of the viscoplastic softening response of asphalt mixes: This 

study presents a robust and theoretically sound framework for the modeling of the 

viscoplastic softening in asphalt mixes using the viscoplastic memory surface. The 

viscoplastic memory surface provides a sound framework for modeling such 

phenomena. However, more experimental data should be analyzed to obtain the 
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proper evolution equation for the viscoplastic softening model based on the 

viscoplastic memory surface.  

  Investigation of the healing mechanism of asphalt mixes and binders during the 

cyclic strain controlled tests: Investigations on the cyclic response of asphalt mixes ( 

see Chapter VII) reveals that the asphalt mixes have the capability to heal partially 

during the cyclic strain controlled tests. The careful investigation of the healing 

mechanism of asphalt mixes subjected to such loading conditions will be, therefore, 

of significant importance. 

 Investigation of the couplings between the Environmental conditions and mechanical 

loadings:  As mentioned in the introduction chapter, the environmental conditions 

might have significant effect on the mechanical response of asphalt pavements 

during its service life. For example, aging makes the pavements more prone to 

cracking and damage. Subsequently, more micro-cracks increases the porosity of the 

pavement which allows more oxygen and moisture diffusion. Obviously, this 

coupling accelerates the aging and moisture damage in pavements progressively. 

Therefore, considering the couplings between these mechanisms through robust 

constitutive models will significantly enhance the more accurate prediction of the 

asphalt pavement performance. 

 Considering more realistic loading conditions such as shear loading for the rutting 

and fatigue damage performance of asphalt mixes: This study only considers the 

normal stress for the prediction of the rutting in asphalt mixes. However, the 

measurements of the force interaction between the wheel and the pavement surface 

shows that the shear stresses could be dominant in some cases which can 

significantly affect the prediction of the rutting and fatigue damage performance 

simulations in asphalt mixes. 

 Development of the robust and simple extrapolation techniques: Another important 

issue in the performance simulation of the rutting and fatigue damage in pavements 

is the number of loading cycles. Pavements are subjected to millions of loading 

cycles during their service lives. Even with the state of the art computational 
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capacities, it is not possible to simulate the 3D performance simulations using 

realistic constitutive models. Therefore, development of robust and simple 

extrapolation techniques will be of crucial importance in enabling the realistic 

simulation of the pavements performances. 
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