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ABSTRACT

New Algorithms for Uncertainty Quantification and Nonlinear Estimation of
Stochastic Dynamical Systems. (August 2011)
Parikshit Dutta, B.Tech.; M.Tech., Indian Institute of Technology, Kharagpur

Chair of Advisory Committee: Dr. Raktim Bhattacharya

Recently there has been growing interest to characterize and reduce uncertainty in
stochastic dynamical systems. This drive arises out of need to manage uncertainty
in complex, high dimensional physical systems. Traditional techniques of uncertainty
quantification (UQ) use local linearization of dynamics and assumes Gaussian prob-
ability evolution. But several difficulties arise when these UQ models are applied to
real world problems, which, generally are nonlinear in nature. Hence, to improve per-
formance, robust algorithms, which can work efficiently in a nonlinear non-Gaussian
setting are desired.

The main focus of this dissertation is to develop UQ algorithms for nonlinear
systems, where uncertainty evolves in a non-Gaussian manner. The algorithms devel-
oped are then applied to state estimation of real-world systems. The first part of the
dissertation focuses on using polynomial chaos (PC) for uncertainty propagation, and
then achieving the estimation task by the use of higher order moment updates and
Bayes rule. The second part mainly deals with Frobenius-Perron (FP) operator the-
ory, how it can be used to propagate uncertainty in dynamical systems, and then using
it to estimate states by the use of Bayesian update. Finally, a method to represent the
process noise in a stochastic dynamical system using a finite term Karhunen-Loeve
(KL) expansion is proposed. The uncertainty in the resulting approximated system

is propagated using FP operator.
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The performance of the PC based estimation algorithms were compared with
extended Kalman filter (EKF) and unscented Kalman filter (UKF), and the FP oper-
ator based techniques were compared with particle filters, when applied to a duffing
oscillator system and hypersonic reentry of a vehicle in the atmosphere of Mars. It
was found that the accuracy of the PC based estimators is higher than EKF or UKF
and the FP operator based estimators were computationally superior to the particle

filtering algorithms.
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CHAPTER I

INTRODUCTION
A. Background

Uncertainty quantification in stochastic dynamical systems is a challenging field that
has received attention for over a century. Understanding the impact of uncertainty
in complex physical system has become a primary topic of research over the years.
Problems due to uncertainty may arise in myriad areas of application ranging from
robotics (e.g. path planning in an uncertain environment) and astrodynamics (eg.
trajectory estimation of 99942 Aphophis) to structural engineering (e.g. excitation of
a building caused by siesmic events) and petroleum engineering (eg. study of flow of
oil through a reservoir with uncertain porosity). A large class of such problems deal
with uncertainty in physical model and system parameters. Estimation of parame-
ters in this scenario is typically a hard problem due to lack of frequent measurements
and underlying nonlinearities in system dynamics. Thus the evolution of uncertainty,
which can be non Gaussian, needs to be predicted over longer intervals of time. These
issues undermine the validity of the classical linear Gaussian theory. Sequential es-
timation algorithms, based on Monte Carlo (MC) simulations are most commonly
used in such cases. However for systems having three or more dimensions, MC based
techniques may be computationally expensive as ensemble size required to guarantee
convergence, increases exponentially with number of states. Hence a nonlinear esti-
mation algorithm, superior to the existing methods in terms of convergence of errors
and computational complexity is desired.

Estimation of states and parameters for dynamical systems in general, are gen-

The journal model is IEEE Transactions on Automatic Control.



erally performed in the Bayesian framework, where uncertainty is represented as
probability density functions (PDF). For linear Gaussian systems, it is possible to get
exact analytical expressions for evolving sequence of moments, which characterizes
the PDF completely. This method is widely know as Kalman filter [1]. For nonlinear
systems exhibiting Gaussian behavior, the system is linearized locally, about the cur-
rent mean, and the covariance is propagated using the approximated linear dynamics.
This method is used in extended Kalman filters (EKF) [2]. It is well known that this
approach performs poorly when the nonlinearities are high, resulting in an unstable
estimator [3, 4, 5, 6]. However, the error in mean and covariance can be reduced if the
uncertainty is propagated, using the nonlinear dynamics, for a minimal set of sample
points, called sigma points. The PDF of the states, characterized by sigma points,
capture the posterior mean and covariance accurately to the third order (Taylor series
expansion) for any nonlinearity with Gaussian behavior. This technique has resulted
in the unscented Kalman filter (UKF) [7]. The aforementioned filters are based on
the premise of Gaussian PDF evolution. If the sensor updates are frequent then EKF
and UKF may yield satisfactory results. However, for nonlinear systems, if the sensor
updates are slow, these filters result in inaccurate estimates [8].

Recently, simulation-based sequential filtering methods, using Monte Carlo sim-
ulations, have been developed to tackle nonlinear system with non-Gaussian uncer-
tainty [9, 10]. Monte Carlo methods involve representing the PDF of the states using
a finite number of samples. The filtering task is obtained by recursively generat-
ing properly weighted samples of the state variable using importance sampling [11].
These filters, based on sequential MC methods are known as Monte Carlo filters [12].
Amongst them, the most widely used is the particle filter [13, 14, 15, 16]. Here en-
semble members or particles are propagated using the nonlinear system dynamics.

These particles with proper weights, determined from the measurements, are used



to obtain the state estimate. However, particle filters require a large number of en-
sembles for convergence, leading to higher computational costs [17]. This problem is
tackled through resampling [13, 18, 8|. Particle filters with resampling technique are
commonly known as bootstrap filters [8]. It has been observed that bootstrap filters
introduce other problems like loss of diversity amongst particles [15], if the resampling
is not performed correctly. Recently developed techniques have combined importance
sampling and Markov-Chain-Monte Carlo (MCMC) methods to generate samples to
get better estimates of states and parameters [19]. Several other methods, like reg-
ularized particle filter [20], and filters involving MCMC move step [21], have been
developed to improve sample diversity. At the same time, even with resampling, due
to the simulation based nature of these filters, the ensemble size scales exponentially
with state dimension for large problems [22]. To circumvent this problem, particle
filters based on Rao-Blackwellization have been developed to partially solve the esti-
mation problem analytically [23]. However, its application is limited to systems where
the required partition of the state space is possible. An excellent comparison of the
various nonlinear filtering algorithms is available in ref. [24].

Nonlinear estimation algorithms based on polynomial chaos theory [25] and
Frobenius-Perron operator [26] has been proposed in this work. Polynomial chaos
(PC) is used to approximate any random process as linear combination of orthog-
onal basis functions. The advantage of using PC is that an alternate deterministic
dynamical system can be created from the stochastic system, which is then used to
propagate uncertainty. Polynomial chaos was first introduced by Wiener [27] where
Hermite polynomials were used to model stochastic processes with Gaussian random
variables. According to Cameron and Martin [28], such an expansion converges in the
Lo sense for any arbitrary stochastic process with finite second moment. This applies

to most physical systems. Xiu et al. [29] generalized the result of Cameron-Martin



to various continuous and discrete distributions using orthogonal polynomials from
the so-called Askey-scheme [30] and demonstrated £, convergence in the correspond-
ing Hilbert functional space. This is popularly known as the generalized polynomial
chaos (gPC) framework. The gPC framework has been applied to various applications
including stochastic fluid dynamics [31, 32|, stochastic finite elements [25], and solid
mechanics [33, 34]. In the context of nonlinear estimation, polynomial chaos has been
applied by Blanchard et al. [35, 36], where uncertainty prediction was computed us-
ing gPC theory for nonlinear dynamical systems, and estimation was performed using
linear output equations and classical Kalman filtering theory. It has been shown that
PC is computationally more efficient than Monte Carlo simulations [29]. Hence, it is
expected that, the estimation algorithm presented here will be computationally more
efficient than particle filters. However, such an analysis has not been performed, and
is a subject of our future work. Here we have applied gPC theory to estimate states
of a Duffing oscillator and hypersonic vehicle reentering Mars’ atmosphere.

The Frobenius-Perron operator determines the time evolution of probability den-
sity function (PDF) through a system, and as shown later is computationally efficient
than particle filters. The Frobenius-Perron operator has been used in the physics
community to study evolution of uncertainty in dynamical systems [26]. In contin-
uous time, the Frobenius-Perron operator is defined by the Liouville equation [37],
which is the Fokker-Planck equation [38] without the diffusion term. It has been
shown that the Frobenius-Perron operator or the Liouville equation, predicts evolu-
tion of uncertainty in a more computationally efficient manner than Monte Carlo [39].
Based on this fact, we can expect a nonlinear filtering algorithm in this framework
to be computationally more efficient than particle filters. However, it is important to
note that the Frobenius-Perron operator only addresses parametric uncertainty. Use

of Liouville equation to develop a nonlinear filtering algorithm was first presented



by Daum et al. [40], where the process of the filtering algorithm has been outlined.
In this work we have applied Frobenius-Perron operator theory to a state estimation
problem arising in hypersonic flights and perform a direct comparison with particle
filters.

The above mentioned uncertainty propagation methods are applicable only when
the dynamical system has initial state or parametric uncertainty. In presence of
process noise, the evolution of densities are given by the Kramers-Moyal expansion
[41]. This is a partial differential equation which characterize PDF propagation in any
nonlinear system having process noise. A special case arises when we limit ourselves
to additive Gaussian white noise as stochastic forcing. Then, the first two terms of
the Kramers-Moyal expansion is sufficient to describe the evolving densities. This
is referred to as the Fokker-Planck equation or Kolmogorov forward equation [42].
There are several methods, by which we can approximately determine the solution
of the Fokker-Plank equation. A brief treatise of the most popular methods can
be found in the book by Riskin [38]. Several methods which deal with numerical
solutions of the Fokker-Planck equation have been developed over the years [43, 44,
45]. The numerical algorithms, intend to solve the Fokker-Planck equation using grid
based methods like FEM, to evaluate the densities in a structured grid [46, 47, 48],
or by using meshfree methods, by evaluating densities at randomly selected points
to get the final PDF [49, 50]. Several researchers have used Monte Carlo based
techniques to get an approximation of the solution of Fokker-Planck equation using
finite number of samples [51, 50]. Another popular technique of solving Fokker-Planck
equation involves approximating the PDF as linear combination of known functions.
Researchers have often used known densities as the basis functions for approximation.
This method is popularly known as kernel density estimation [52]. There are several

techniques which solve the Fokker-Planck equation using this method [53, 54]. One



can also use known functions to get a finite dimensional approximation of the operator
generated by the Fokker Planck equation. This method is useful as it converts the
Fokker Planck partial differential equation into an approximate ordinary differential
equation. Kumar et al. presents a method of solving the Fokker Planck equation using
this technique [49, 55]. It has been observed that most of the solution methodologies
perform poorly when the dimensionality of the state space involves is high [56]. This
has been proved for grid based method as the complexity in solving the problem
increases exponentially with dimension [57]. The problem is partially resolved by
the use of sparse grids where a structured grid is used to evaluate the solution at
lesser number of points than the grid based methods [58]. But even with sparse grids,
accuracy of solution become worse with increase in dimensions [59]. For methods using
approximating basis functions, finding the correct basis for evolution is challenging
when one has to deal with high dimensional problem [59]. Hence most of the solution
methods of the Fokker Planck equation suffer from the curse of dimensionality [60].
In this dissertation, we use a methodology based on Frobenius-Perron operator
theory and Karhunen Loeve expansion, to determine the sequence of evolving den-
sities in a stochastic dynamical system. Karhunen Loeve (KL) expansion has been
developed independently by researchers to represent a random process as linear com-
bination of orthogonal functions [61, 62]. KL expansion, expands any random process
as homogeneous products of functions of deterministic and stochastic variables. It is
widely used in physics and fluid mechanics to represent noise in a Langevin equation
and turbulence models [63, 64]. In the context of dynamical systems, it has pri-
marily been used in model reduction and data analysis of complex high dimensional
systems [65, 66, 67]. KL expansion has also found applications in the areas of non-
linear vibrations [68], wavelet analysis [69, 70|, and signal processing [71]. However,

its application to problems involving uncertainty propagation in dynamical systems



has been limited. Here we use a methodology where the process noise in a system
is represented as a KL expansion of the underlying random process, and then use
Frobenius-Perron operator to propagate uncertainty. We have applied the resulting
uncertainty propagation method, to an estimation problem where we estimate states
of a hypersonic reentry vehicle. The results have been compared with particle filtering

methods.

B. Contribution of This Dissertation

In this dissertation we mainly focus on developing new, efficient algorithms for un-
certainty quantification of dynamical systems and apply them to state estimation
problems. In particular we assume that the uncertainty in the system dynamics is
dependent on random variable, governed by a known PDF. Throughout the disser-
tation our focus is representing the PDF as a continuous function of the underlying
random variable. Although it is possible to extend these results to discrete distribu-
tions, these have not been treated.

The main contribution of this dissertation lies in the application of the proposed
estimation algorithms to real-world problems. The problem that we focus on here is
hypersonic reentry of a vehicle in the atmosphere of Mars. Entry, descent, landing
of a hypersonic vehicle on the surface of Mars is a topic of research receiving much
attention in recent years. The expected mass of the next Mars science mission lab-
oratory is approximately 2800 kilograms at entry, which is required to land within
few kilometers of robotic test sites. The requirement of high accuracy when landing
in proximity of the target region is a key challenge of high mass entry. It is therefore
necessary to estimate states and parameters of the reentry vehicle when uncertainties

are present in initial conditions. High nonlinearity of reentry dynamics, coupled with



lack of frequent sensor updates make the estimation problem difficult to solve. In the
subsequent chapters, we develop algorithms to effectively quantify uncertainty for the
reentry vehicle and to estimate states of the reentry vehicle.

In Chapter II, we discuss some of the commonly used state estimation methods.
We first introduce Kalman filter, which is optimal for linear Gaussian systems. Next
we discuss some of the suboptimal algorithms for estimation of nonlinear systems.
Finally we show, through an example how these estimation algorithms perform when
applied to a nonlinear system.

In Chapter III, we introduce polynomial chaos (PC) and develop two relevant
estimation algorithms; one that uses higher order moment updates and other using
Bayesian update. We apply the proposed estimation methodologies to estimate states
of a Duffing oscillator and eventually apply them to state estimation of a hypersonic
reentry vehicle. We compare our results with estimators based on EKF and UKF.

Chapter IV deals with, uncertainty propagation using Frobenius-Perron (FP)
operator theory. We first develop the methodology of uncertainty propagation, and
then we apply the estimation scheme to hypersonic reentry vehicle and compare our
results with particle filters.

In Chapter V, we propose a methodology for uncertainty quantification when
the dynamical system has process noise in it. We use Karhunen Loéve (KL) expan-
sion to represent process noise and then use Frobenius-Perron operator to propagate
uncertainty. We show how the proposed methodology can be used to estimate states
and parameters of a stochastic dynamical system. We apply the methodology to
hypersonic reentry problem and compare the results with particle filter.

Finally in Chapter VI we summarize our conclusions and highlight some future

directions of research.



CHAPTER II

SEQUENTIAL STATE ESTIMATION METHODS

State estimation methods is a topic of research that has gained popularity over the
years. The development of estimation methods was pioneered by Gauss, in 18" cen-
tury, when he proposed the method of least squares [72]. In the sequential estimation
setting, Gaussian least squares method used to reduce the estimation error sequen-
tially with each observations, by incrementally correcting the measurements. This
is known as Gaussian least square differential correction (GLSDC) [73]. For nonlin-
ear systems, the dynamics can be linearized about the current estimate, which can
then be used for state estimation purposes. This method is known as nonlinear least
squares [73]. In a probabilistic setting, this method in turn minimizes the variance
of the state estimate from the true value, and hence is called the minimum variance
estimator [74]. However, Gauss did anticipate the need of the most probable esti-
mate of the state rather than one which minimizes the variance [75]. This was first
introduced by R. A. Fisher, in 1912, as the mazimum likelihood estimator [76]. It
is interesting to note that if the states follow a Gaussian distribution the minimum
variance and the maximum likelihood estimates are the same.

The first concepts of estimating states of a system, as a consequence of a filtering
problem was proposed independently by Wiener and Kolmogorov, which became pop-
ularly known by the name of Wiener-Kolmogorov filter [77]. In this framework, the
objective was to filter out noise from a signal by minimizing the mean square error.
The filter was formulated both for continuous and discrete observations, which made
it different from the least squares technique, where observations arrived in discrete
time intervals. All these contributions were significant towards the development of

Kalman filter which will be discussed in detail, in the subsequent sections [1].
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State estimation of dynamical systems is generally done in two steps: a for-
ward step, where the PDF of the states is propagated forward in time, to get the
prior PDF; and an inverse step, where the prior is updated based on observations
to get the posterior PDF. The forward step, generally reduces to propagation of un-
certainty through the stochastic dynamical system, and the inverse step reduces to,
using Bayesian inference [78]. The state estimate is obtained as a result of applying
a desired optimization criterion on the posterior PDF.

In this chapter, we will cover, methodologies for state estimation of dynamical
systems. We will begin with a brief overview of the techniques that are popularly
used and then we will describe in brief the methodologies that has been proposed
in this framework. Finally we would present an example of application of the state

estimation methods discussed in this chapter.

A. Sequential State Estimation for Linear Systems

In this section, we propose a methodology where the dynamical system in question
is a linear system. We consider systems with dynamics and measurements described

by following sets of equations,

#(t) = A{)x(t) + Bb)u(t) + G(t)w(t) (2.1a)

g(t) = H(t)z(t) +v(t) (2.1b)

where x € R"™ are states, u € R™ are controls and § € RP are observations. A € R"*"
is the state transition matrix, B € R™*™ is the input coefficient matrix, and H € RP*"
is the matrix relating states to output. w € R? and v € R? are zero mean Gaussian
white noise processes, and G € R"*? is the process noise coefficient matrix.

We will now describe the formulation of linear state estimation algorithms. We



11

will consider only continuous-discrete cases i.e. the stochastic dynamical system is

propagated continuously and the measurements arrive at discrete time intervals.

1. Kalman Filter

Kalman filter is a sequential state estimation method which gives us exact sequence of
evolving densities for a linear systems with Gaussian uncertainties. It was developed
by R.E. Kalman in 1960 for discrete systems [1]. The continuous time version of this
filter is called the Kalman-Bucy filter which was developed in 1961 [79]. Kalman filter
gives us optimal state estimate for a linear system which takes Gaussian densities to
initially, and the density of the states remains Gaussian throughout the propagation
time. It postulates a dynamical equation for covariance and mean, for the under-
lying Gaussian density function. Thus, the PDF of the states can be completely
characterized evolving sequence of moments.

Given the system in Eqn. (2.1a) and Eqn. (2.1b), we assume that the pro-
cess noise w(t) and the measurement noise v(t) are uncorrelated. Moreover in a
continuous-discrete formulation, the measurement equation is assumed to be discrete.

Hence Eqn. (2.1a) and Eqn. (2.1b) in this case is modified to,

#(t) = A@)x(t) + B)u(t) + Gt)w(t) (2.2a)

U = Hpxp+ v (2.2b)

The subscript k represents the time instant ¢, when the measurement is available.
Also E [v,] = 0,VEk € N, E [vgvj] = R 6y, and E [w(t)] = 0,Vt € RY, E [w(ty)w(ts)] =
Q 0(ty — t2). We will assume that R and ) remain constant.

In a continuous-discrete Kalman filter, the mean ju4, and the covariance Py, are
propagated forward in time from current time step, t; to the next step tx,1, when the

measurements are available, to get the prior mean fi;11)x, and covariance Pjqx. The
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prior mean and the covariance are then updated using the Kalman gain K to get the
posterior mean fig1jx+1 and covariance Py 1jx4+1, which is obtained by minimizing the
error covariance. It is interesting to note that regardless of the optimization criterion
used the optimal estimate for a Kalman filter is the mean of the posterior PDF, hence
Tpy1 = Mk+1)k+1-

The initial state estimate and covariance are the mean and the covariance of
the initial PDF, i.e. @ = E[z(t))] and Pyo = E[2%(to)] — E [x(to)]>. The forward
propagation step, for a Kalman filter essentially consists of two equations for mean

and covariance propagation, which are given by,

fu(t) = A(t)p(t) + B(t)u(t), with pu(ty) = i (2.3a)

A#)P(t) + POA®)" + Q, with P(ty) = Pux (2.3b)

-
—~
~
SN—
Il

The update step consists of solving an optimization problem to get the Kalman
gain Ky at step {41 and subsequently obtaining the state estimate and the covari-

ance of the posterior PDF. The update equations are given by,

—1
Kk+1 = Pk+1|ng+1 (Pk+1pk+1\ng+1 + R) (2-48“)
Pkt = etk T Krrr (Grrr — Hepapere) (2.4b)
Praprr = (U= Ky Hyg1) Prgagi (2.4c)

The state estimate is given by the posterior mean i.e. Tpy1 = fpy1jp1-

2. Linear Non-Gaussian Filter

In this section we briefly describe methodology of estimation when the given PDF of

initial states is not a Gaussian distribution. We still deal with linear system hence
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the PDF of states undergoes only linear transformation while it evolves. Hence then
structure of the PDF is conserved, but due to linear transformation the parameters
by which it is represented changes.

We do not have an optimal estimator for such systems. But we can design a filter
which is suboptimal by approximating the initial PDF using Gaussian Mixture Models
(GMM) [80, 81]. In this framework we represent any PDF as linear combination
of Gaussian PDFs. This method of approximating the density function of states
using other known PDFs is referred to as kernel density estimation (KDE) [52]. For
example, let us consider the set of PDF described of a r-parameter set, given by,
P(ai, a9, ...,a;), where {a;}/_, are the set of parameters. Using GMM this PDF

can be represented as,
P(a17a27"'7a7") :ZﬁjN(vazj) (25)
j=1

where (3; are constants and N (u;, ;) are Gaussian PDFs with y; and X; being mean
and covariance, form a basis for representing such PDFs.

For estimation purposes, if the initial density is given by P(ay, as, ..., a,), we
start be representing it in GMM framework using Eqn. (2.5). The expansion in
Eqn. (2.5) is truncated to IV; terms. Each Gaussian basis PDF is propagated using
Eqn. (2.3a) & Eqn. (2.3b) to get the prior mean and covariance, and the update step
involves using Eqn. (2.4a) through Eqn. (2.4c¢) for each Gaussian PDF. The posterior
state PDF is obtained by using a GMM model with posterior mean and covariance
from update step parameterizing each Gaussian PDF. The essential steps for state
estimation with non-Gaussian initial PDF is given in Table I. Detailed discussion of

estimation using GMM can be found in ref. [82].
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Table I.: Algorithm for linear non-Gaussian filtering

Step Equations

Initialization | P(aq, ag, ..., « Z BiN (115(to), X;(to))-

Propagation | Propagate ju;(ty) and Ej(tW) using Eqn. (2.3a) & Eqn. (2.3b) to

get iy (trrae) and 3 (teqapn)-
Update Update p1j(tgs1e) and 3;(tg41x) using Eqn. (2.4a) through Eqn.

(2.4c) to get gt (trq1jes1) and 2 (Tt rr1)-

Final PDF | P(a1, g, ..., 00) (L) = Zﬁg (15 (1) s 2 (Crrapern))-

B. Sequential State Estimation for Nonlinear Systems

In this section we will introduce some popular methods of state estimation for non-
linear systems. For nonlinear systems, there exist no estimator that is optimal with
respect to the established optimality criteria [73]. Hence, all the algorithms described
henceforth yield suboptimal solution, using some approximation methods. To judge
the performance of these solutions, there are several metrics that have become useful.
Towards the end of this chapter we will discuss in brief some of the criteria that are
used as a metric to judge the performance of the estimation algorithm, through an
example. We would begin with Kalman filter based methods and then go on to de-
scribe more robust methods which are also known as sequential Monte Carlo (SMC)
methods.

To give a generic flavor to the problem we define the dynamical system and the
observation model in a way such that they can be used in subsequent sections. Let us
consider two real valued functions which are at least once continuously differentiable,

fi(z,u) > R*and b : (z,u) — R™ where f, h € Cy, where x, u are states and controls
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and are given by, x : ¢ — R™ and u : t — RP, respectively. Let the measurements be
given by 3 : t — R™. Let us also consider a class of zero mean d-correlated Gaussian
noise w(t) and v(t) which are the process and the measurement noise respectively,
and have the autocovariance Qo(t — t') and Ro(t — t'), respectively; t, ¢ € R*. For
sake of simplicity, the () and R matrices are assumed to be constant. The dynamical

system and the measurement equations are given by,

i(t) = flz,u) +w) (2.62)

g(t) = h(z,u)+o(t) (2.6b)

As before, we consider the continuous-discrete formulation of the filter equations,
with measurements arriving at discrete intervals of time tq,%s, ..., tg, tx11,.... In such

case Eqn. (2.6a) & Eqn. (2.6b) are given by,

©(t) = flz,u)+w(t) (2.7a)

Equation (2.7a) & Eqn. (2.7b) will be used throughout the development of nonlinear

filtering methods.

1. Extended Kalman Filter

In estimation theory, the extended Kalman filter (EKF) is the nonlinear version of the
Kalman filter where the stochastic dynamics is linearized about the current estimate.
The linearized dynamics is propagated forward in time to get the sequence of evolving
mean and covariance.

EKF assumes linear behavior of the nonlinear system for sufficiently small propa-
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gation time, and hence uses the linearized dynamics to propagate uncertainty. Also it
assumes Gaussian PDF evolution, hence mean and covariance of the states are prop-
agated, and updated using Kalman update law. Here, as in the case of Kalman filter,
the mean is the state estimate. The mean and covariance propagation equations are

given by,

F(t) = F(@(0), u(t)) with, #(ty) = G (2.82)

P(t) = F(t)P(t) + P()F(t)" + Q with, P(t;) = Py (2.8b)

which are propagated from ¢ € [ty, tx11].
The update equations are same as that for the Kalman filter which are given by

Eqn. (2.4a) through Eqn. (2.4c), where F'(t) and H(t) are Jacobians given by,

of oh
F(t) = %!az(t),u(t) H(t) = £|gz(t),u(t)

f and h are functions that were defined in Eqn. (2.6a) & Eqn. (2.6b).

Due to linearization, EKF has been found to accrue errors if the propagation
times are long [83]. Hence for systems where the measurement update are infrequent,
estimation errors are observed to be divergent. Moreover, like its linear counterpart
EKF assumes the PDF evolution is Gaussian which is not always true for a nonlinear
system. It has also been observed that if the initial error estimates are large, the
covariance matrix underestimates the true covariance and the results of EKF are
found to be inconsistent. Though this error can be corrected marginally by selecting

R and @ properly.

2. Unscented Kalman Filter

The unscented Kalman filter (UKF) uses a deterministic sampling technique known as

the unscented transform to pick a minimal set of sample points, called sigma points,
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around the mean [7]. These sigma points are then propagated through the nonlinear
functions, from which the mean and covariance of the estimate are then recovered. It
has been shown that the result is a filter which more accurately captures the true mean
and covariance, than EKF [84]. In addition, this technique removes the requirement
to explicitly calculate the Jacobians, which, for complex functions, can be a difficult
task in itself.

We will assume the same nonlinear estimation setting as given in Eqn. (2.6a) &
Eqn. (2.6b). In the prediction step of UKF, the estimated state and covariance are

augmented with the mean and covariance of the process noise, i.e.

:v‘zak = [j;ak E[wgli*l] ]T (2.9a)
. Py 0
0 Q

A set of 2L + 1 sigma points is derived from the augmented state and covariance

where L is the dimension of the augmented state. The sigma points are given by,

Xk = T (2.10a)
%wzﬁm+( @+Aﬁm>ji:2mL+l (2.10D)
X2|k:$i|k—< (L—i-)\)Pk‘ﬁk)' L i=L+2,...,2L+1 (2.10c)

where < (L+ NPy

k“ﬂ)' is the 7" column of the matrix square root of (L + \) Pl

The quantity A, is defined as,
A=a*(L+kr)—L (2.11)

where o and & control the spread of the sigma points. Normal value of a = 1073 and

x = 1. However, one may change these constants according to application.
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The sigma points are propagated using the same equation as given in Eqn. (2.6a),

from time [ty, tx11] to get X, Let g(z, u,w) = f(2,u) +w(t), then
X =g(x(t)") i=1...204+1, with, x(tx)" = xj; (2.12)

The weighted sigma points are recombined to produce the predicted prior state and

covariance.

2L+1

Thylk = Z Winﬂ\k (2.13a)
i=1
2L+1

Pevipg = Y Wi haaip — Erenn] epae — Tl (2.13Db)
=1

where the weights for the state and covariance are given by,

A
1 _
W, = T x (2.14a)
A
=~ 4+ (1-0a? 2.14b
W=t -a 1) (2.14D)
. . 1
Wi=Ww!= (2.14c)

y © 2L+ N

B is a constant related to the distribution of the states. For example, if the underlying
distribution is Gaussian then § = 2 is optimal.

The predicted prior state and covariance are augmented as previously, except now

the estimated state vector and the covariance matrix are augmented by the mean and

covariance of the measurement noise.

1’2+1\k = [i£+1|k E[U?H] ]T (2.15a)

P 0
. 2.15b)

0 R
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As in the case of propagation step, a set of 2L + 1 sigma points is derived from
the augmented state and covariance (in Eqn. (2.15a) & Eqn. (2.15b)) where L is the

dimension of the augmented state.

Xllc+1\k = Thi1 (2.16a)
Nerie = S + (/T + )\)Pk‘}ﬂ‘k)i L i=2...L+1 (2.16b)
Nt = T — ( (L+ A)P,gH'k)i_L L i=L+2,...,20+1 (2.16¢)

One can also use the sigma points received after propagation in Eqn. (2.12), given

by,
Xettk = Wi Eloi] 17 £ V(L + MR (2.17)
where,
0 0
R® =
0 R

Let, h(xx) = h(xk,ug) + vy be the discrete observation process. Then we get the

weighted sigma points using the following equation,
Vip1 = D) i=1...20+1 (2.18)

The predicted measurements, and their covariance, and also the state covariance are

then received from the weighted sigma points using the equation,

2L+1

G = Y Wik (2.19a)
i=1

2L+1

Pyk+1yk+1 = Z VVCZ [711+1 - ?)k+!“711c+1 - ?Qk+1]T (2-19b)
i=1
2L+1

P

Tkt 1Ykl Z W, [Xi;ﬂ\k - 93"k+1\k][%i+1 — )" (2.19¢)
i=1
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The Kalman gain K} is then computed using the equation,

K1 =P pt (2.20)

Th41Yk+1" Yk+1Yk+1

The posterior state and covariance are then received using the Kalman gain and

the measurements.

Thrier1 = Thrre + Koo (Urg1 — Yrtr) (2.21a)
Prtajerr = Prrape — Kk+1Pyk+lyk+lKg+l (2.21b)

Though UKF provides us with a method, where we can avoid the disadvantages
due to linearization of dynamics but its main drawback is assumption of Gaussian
PDF evolution (i.e. use of Kalman update law). In most real-world situations PDF
evolution is non-Gaussian and UKF has been observed to perform unsatisfactorily in
such cases. The state estimated covariance and the true covariance don’t match and
so the estimator becomes inconsistent. Hence, a state estimation methodology where

the PDF evolution is assumed to be non-Gaussian, is desired.

3. Particle Filters

Particle filters (PF), also known as sequential Monte Carlo methods (SMC), are
sophisticated state estimation techniques based on Monte Carlo simulations. They
are based upon importance sampling theorem [11], where we draw random samples
from a “proposal distribution” based on their “weights”, and propagate using Eqn.
(2.6a) [10]. Particle filters are often used in scenarios where the EKF or UKF fail,
with the advantage that, with sufficiently large number of particles, they approach
the Bayesian optimal estimate, so they can be made more accurate than either the

EKF or UKF. However, when the simulated sample is not sufficiently large, they
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might suffer from sample impoverishment. The approaches can also be combined by
using a version of the Kalman filter as a proposal distribution for the particle filter.
Let us consider the system given in Eqn. (2.6a) & Eqn. (2.6b). Let the initial

states have the PDF P(z(t = 0)). We follow the following steps in particle filtering.

a. Step 1: Initialization of the Filter

We draw N particles from the domain of initial state z(t = 0) with replacement,
which are given by xo;, ¢ = 1,2,--- , N, where p(z(ty) = zo,) is the probability of

selection of the " particle. The initial weights are given by

p(x(to) = T4
oy = Pt =70

> pla(t =0) = wo,)

(2.22)

The state estimate at time ¢y is the weighted mean of all particles, i.e. 2z, =

Z@']L Wo ;%o,;. We now perform steps 2 to 4 recursively starting from k = 1.

b. Step 2: Propagation

We now get xy,—1, for each particle i, by integrating Eqn. (2.6a) over the interval
[te—1,tx], with initial states as xp_1jk—1.

The particles xy;_1,, represent weighted sample which is received from the prior
PDF p(x(t)|z(tg—1)). Generally it is very difficult to sample from the prior PDF
as its exact analytical representation is unknown. Let us assume a “proposal” PDF
7(x(tg)|z(tk—1)), which is close to the prior PDF and easy to sample from. We sample

N particles from the proposal PDF, which we represent as xy ;
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c. Step 3: Update

We update the weights wy_1; using Bayesian update rule [78]. We first construct
the likelihood function, p;(Jk|®(tx) = @k,) for each particle i, using the Gaussian

measurement noise, and the sensor model as shown in Eqn. (2.6b). It is defined as

1 1/~ Tp—1/~
~ _ — =5 (@ —h(zgk,))” B (G —h(zg)k,0)
Di x(ty) = i) = e 2 Ik, %, 2.23
(k| (r) klk,i) @) R| (2.23)

where |R| is the determinant of measurement noise covariance matrix.

The weights are then updated up to a normalizing constant using the equation,

- pilklr(te) = ) p(e(ty) |2 (te-1))
i = () o)) W1 (224)

Note if the proposal density is the prior then Eqn. (2.24) reduces to

Wi = Pi( Pl (k) = Tijpi)We—1,5

The weights are then normalized to get the final weights
Wy
N
D
i=1

The above method of using a proposal density to obtain the unbiased sample is

Wi (2.25)

)

often called importance sampling [11].

d. Step 4: State Estimate

We then statistically approximate the state estimate as, (e.g. [15, 16])

N
Ty = Zwk,ﬂ?km,z‘ (2.26)
=1

It should be noted that in the limit of infinitely large N, particle filter gives us
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asymptotically exact estimate of the state.

e. Resampling

In most practical applications, a large number of the weights, w;,; become negligible
after certain number of recursive steps. This phenomenon is called degeneracy. Hence
a large computational effort is wasted in updating weights making little contribution
towards state estimate. A measure of degeneracy at step k is the effective sample size

[13, 15], given by
1

- N
2
E W 4
i=1

If all but one weight is zero then N, = 1 indicating degeneracy. We set a threshold

Ne

value, N; for effective number of particles, and resample whenever N, < N;. The

resampling is done in following manner.

1. Draw N particles from the current particle set, xy;,; with probability of selection

as wy;. Replace the current particle set with the new one.
2. Set wy; =1/N fori=1,2,---  N.

Although resampling step eliminates degeneracy, it can artificially reduce the esti-
mated state variance thus giving erroneous state estimate.

Note that the algorithm presented above is one of the many particle filtering
algorithms in use, but is the most common one. There are several variants of the par-
ticle filtering algorithm depending on application. In next section, we will introduce

in brief, some of the particle filtering algorithms that are most commonly used.
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4.  Other Sequential Monte Carlo Methods

Researchers have developed several SMC methods that would suit their particular
application. These algorithms use Monte Carlo methods for propagation and then
use Bayesian update. They vary within themselves by the choice of proposal PDF or
the resampling method used. In this section we will discuss in brief some of the SMC
methods that are commonly used by practitioners. We will just introduce them and
explain the difference from the algorithm presented in the previous section, without
going into the details of each algorithm.

The algorithm presented in the previous section is often termed as generic particle
filter. There are several variants to this filtering method, namely in the resampling
step. All of them are known by the name of generic PF. For example Arulampalam
et al. , presents a new algorithm, which uses a MCMC based resampling technique
[9]. If we eliminate the resampling step entirely, the algorithm is called sequential
importance sampling (SIS) [85], and if we resample at each step, disregarding the
effective number of particles, the resulting filter is known as sequential importance
resampling (SIR) or bootstrap filter [8].

Resampling is seen to be a major step in particle filtering algorithms as most par-
ticle filters developed suffer from sample impoverishment [15]. Hence, a major effort
has been put to make the resampling step more robust to increase diversity amongst
particles. Hence particle filters like reqularized particle filter and MCMC Move step
particle filters have been developed, which use better resampling techniques. But par-
ticle filters, being a simulation based method suffer from the curse of dimensionality,
i.e. the computational cost increases exponentially with increase in state dimension
[22]. To solve this problem, particle filters based on Rao-Blackwellization have been

developed to partially solve the estimation problem analytically [23]. A description
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of the SMC techniques commonly in use can be found in ref. [15].

C. A Simple Example

We consider a Duffing oscillator system with dynamics and the discrete measurements

given by the equations,

(1) = —a(t) — %x(t)fﬂ — 3 (t) + w(t) (2.27a)
Ur = T3 + &% + g (2.27b)

where w(t) and v(t) are zero mean process noise with autocorrelation @ = 6 x 1072
and R = 6 x 107, respectively. The initial states of the system are assumed to have
Gaussian PDF with mean and covariance as [1,1] and diag(1, 1), respectively.

Figure 1 shows plots for estimation error and +3c¢ limits for EKF, UKF and
particle filter (PF), when used to estimate states of the system in Eqn. (2.27a)
& Eqn. (2.27b). The solid line represents error in estimation, i.e. how close are
the estimated states to the actual states of the system. The dashed lines represent
430 confidence intervals or +3¢ limits. This refers to the confidence level of the
estimated states. It says that the estimation algorithm is 60 percent confident that
the estimation error will lie within the limits. For a Gaussian distribution, this is a
very high number which is equal to 97.3% [73] . Hence, normal intuition suggests
that the estimation error should lie within the 43¢ limits if the PDF propagation is
assumed to be Gaussian. However, if Gaussian propagation is not assumed, the plots
can be inconclusive in some cases.

In Fig. 1, we assume that the update interval of each measurement is 0.1s. We
observe that the errors are within £30 limits, hence we can conclude that all the three

filters are successful in prediction of uncertainty. Moreover we can see that the +30
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Fig. 1.: Plot of estimation errors and £3c limits for a) EKF b) UKF ¢) particle filter
for the system in Eqn. (2.27a) & Eqn. (2.27b). The solid lines are estimation errors

and the dashed lines are +30 limits.
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limits and estimation error of the PF converge faster than EKF and UKF. Hence for
the given system PF is superior than EKF or UKF. This is because of the dynamics
is nonlinear and the evolution of PDF is non-Gaussian.

In Fig. 2, we increase the update interval to 0.3s. We can see that the perfor-
mance of PF is better than EKF and UKF. The poor performance of EKF and UKF
is more conspicuous in this case as the linear Gaussian assumption doesn’t hold for
sufficiently long propagation times. Hence for a nonlinear system where PDF evo-
lution is Gaussian particle filters perform the best. This is in agreement with the
theory about sequential state estimation.

As mentioned earlier, 43¢ limits do not provide conclusive evidence of efficacy of
an estimation algorithm if the PDF evolution is non-Gaussian. In such cases Cramer-
Rao bounds can be used as a metric to judge their effectiveness [9]. Cramer-Rao lower
bound (CRLB) gives us a bound for covariance minimization of an estimation algo-
rithm. It says that, given a suboptimal estimation algorithm, minimizing variance,
the posterior variance of that algorithm is lower bounded by CRLB. So better the
estimation algorithm closer the minimum variance solution is to CRLB. In Fig. 3 we
plot the square root of the difference between the Cramer-Rao lower bounds and the
variance for each estimator compared in this section for the system in Eqn. (2.27a) &
Eqn. (2.27b). Clearly it can be seen that PF has a smaller difference than the other
estimators assuming Gaussian PDF evolution. This shows the suitability of PF in a

nonlinear non-Gaussian estimation setting.

D. Summary of the Chapter

In this chapter, we have introduced sequential state estimation techniques for linear

and nonlinear systems, assuming both Gaussian and non-Gaussian PDF evolution.
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We have shown through an example that nonlinear non-Gaussian estimation tech-
niques are better for systems which are nonlinear in nature. In the following chap-
ters, we will discuss about the estimation algorithms proposed in this dissertation.
For the sake of comparison, we will continuously refer to the algorithms described in
this chapter, and show how the proposed algorithms perform when compared to the

estimation techniques described in this chapter.
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CHAPTER III

POLYNOMIAL CHAOS*
Polynomial chaos (PC) is a parametric method based on using orthogonal functionals
to represent random processes that are solutions of dynamic systems with uncertain-
ties. It utilizes families of orthogonal polynomials, which we will refer to as polynomial
chaoses, to approximate the both the functions of random variables which appear in
the equations of motion for a dynamic system as well as the actual solution. In this
chapter, we define the structure of these orthogonal polynomials and present some of
their properties, which will be applied to estimate states of dynamical systems having

uncertainty.

A.  Generalized Polynomial Chaos Theory

Let (€2, F, M) be a probability space, where € is the sample space, F is the o-algebra
of the subsets of 2, and M is the probability measure. Let A(w) = (Ay(w), -, Ag(w)) :
(Q,F) — (R4 B be an R%valued continuous random variable, where d € N,
and B? is the o-algebra of Borel subsets of RY. A general second order process

X (w) € Lo(Q2, F, M) can be expressed in polynomial chaos framework as

X(w) = Z%@(A(W)), (3.1)

where w is the random event and ¢;(A(w)) denotes the generalized polynomial chaos
(gPC) basis function of degree i, in terms of the random variables A(w). Henceforth,
A will be use to represent A(w).

*Reprinted from “Nonlinear Estimation of Hypersonic State Trajectories in
Bayesian Framework with Polynomial Chaos” by P. Dutta, R. Bhattacharya, 2010.

AIAA Journal of Guidance Control and Dynamics, vol. 33, no. 6, pp. 1765-1778,
Copyright [2010] by P. Dutta & R. Bhattacharya.
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1. Wiener-Askey Orthogonal Polynomials

To approximate a stochastic process, a set of orthogonal polynomials will be employed.
In this section, we will present an overview of how to generate such polynomials for
the gPC framework. Given the random variable A with probability density function

(PDF), p(A), let v = [1,A, A% ... oo]T. The family of orthogonal basis functions

{¢i(A)} are given by,

Po(A) = vg (3.2a)
| :U,_H (03, r (D) . -
A = 2 Gy M) T e B2
where
(0:,05) = | diesp(A)dA, (3.3)

where (-, -) denotes the inner product with respect to the weight function p(A), and
D, is the domain of the random variable A. Note that the weight function for the
inner product here is same as the PDF of A.

For example, we take a scalar case i.e. d = 1, let the PDF of A be a standard

normal PDF, then

1 anr
p(A) = 2’ 2878

where A € R. To find the orthogonal polynomials {¢;(A)}32,, we need to employ the
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scheme given in Eqn. (3.2a) & Eqn. (3.2b). Hence,

Po(A) = 1

_ Al L
»m(A) = A-— iy x1=A

_ A2 (A% (ALA) a2
Po(A) = A? - o < AA x A=A%-1
0i(A) = N—i (D) o).

2 T6u(B), (D))

The procedure in Eqn. (3.2a) & Eqn. (3.2b) is the classical Gram-Schmidt Orthog-
onalization [86]. The orthogonal polynomials thus obtained are the members of the
Askey-scheme of polynomials [30], which form a complete basis in the Hilbert space
determined by their corresponding support. Table IT summarizes the correspondence

between the orthogonal polynomials for a given PDF of A [29].

Table II.: Correspondence between choice of polynomials and given distribution of A

(Xiu and Karniadakis, 2002)

PDF of A | ¢;(A) of the Wiener-Askey Scheme

Gaussian Hermite
Uniform Legendre
Gamma Laguerre

Beta Jacobi




34

B. Approximation of the Solution of Ordinary Differential Equations with Uncer-

tainty

A dynamical system of the form & = f(z,A), where x € R" and random variable
A € R?, representing uncertainty in initial states and parameters, can be solved in the
gPC framework in the following manner. Assume solution of the differential equation
to be x(t, A). For second order processes, the solution for every component of = € R"

can be approximated as

A) = inj(t)gz)j(m; i=1--,n. (3.4)

The above series is truncated after V41 terms, which is determined by the dimension
d of A and the order r of the orthogonal polynomials {¢;}, satisfying N + 1 =
(d+r)!/d!rl. This expression gives the number of terms in a sequence of multi-variate
polynomials up to order r with d variables.

Substituting the approximate solution into equation of the dynamical system

results in errors which are given by,

The approximation in Eqn. (3.4) is optimal in the £y sense when the projection of

the errors on the orthogonal basis functions are zero, i.e.,

(ei(t, ), 9;(A)) = 0, (3.5)

for j = 0,---,N; i = 1,--- ,n. Equation (3.5) results in the following n(N + 1)

deterministic ordinary differential equations

bt (2 omm( ) )¢k<A>p<A>dA
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for v = 1,--- ,n and k = 0,---,N. Therefore, the uncertain dynamics in R"
has been transformed into deterministic dynamics in R+ Let us represent
Xpe = [T10 - TN T20 -+ Tan -+ Tpo -+ Tuy)?. Then Eqn. (3.6) can be written

in a compact form as

ch = FPC(XPC)7 (3-7)

where F),.(X,.) represents the right hand side of Eqn. (3.6). Equation (3.7) can be
solved using algorithms for ordinary differential equation, to obtain the approximate

stochastic response of the system under consideration.

This method of obtaining Eqn. (3.7) through Eqn. (3.6) is referred to as intrusive
method, and is difficult to compute when f(#,A) is a non-polynomial function [87].

For such cases, it is better to apply gPC on a suitable polynomial approximation of
f(@, A).
1. Getting the Moments of the States

Given the gPC expansion we can get the moments of the states of the dynamical

system using the gPC coefficients. For example, using gPC, the mean of any state is
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given by,
E[2(t)] = /D ot Ap(a)a
=Bl = [ éxiumz(A)p(A)dA
:i‘““) [ oamais
[ (61(8)) |
S E(0)] = [,z an] | ) 68)
| (on () |

We use a similar methodology to get the second moment of the states.

[ (0(A)6(A) . ((A)on(A) ] o
J(A)G(A)) . {d(A)by(A '
o] — (0. ot | >:¢< ) : (6 >:¢ ()
JZN(t)
| (v (A)61(A)) .. (on(D)n(A)) |
(3.9)

The third and higher order moments of the states can be found similarly using the
gPC coefficients, and the inner product of basis functions. Comprehensive derivation

of moments with explanation of each step can be found in [88].
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2. A Simple Example

We will now show, using an example, how gPC is used to solve ordinary differential

equations with uncertainty. Let us consider a Duffing oscillator with the following

dynamics,
jfl = T2 (310)
1
By =~ — = 7 (3.11)
Let the above dynamical system have initial state uncertainty, A := [z;(t = 0), 22(t = 0)]

with PDF p(A). Let the orthogonal polynomials found using Eqn. (3.2a) & Eqn.
(3.2b) be ¢;(A). Then the states at any time ¢ can be represented in gPC framework

as

t) = qu(t)@-(A) (3.12a)

t) = Z Lo ()5 (A). (3.12D)

Substituting the expressions in Eqn. (3.12a) & Eqn. (3.12b) in Eqn. (3.10) & Eqn.

(3.11), we get

Z xlz ¢Z Z x2z (bz (3 138“)
S ale(8) == 3 uloe >—}lzm<t>¢i<A—

=

D> w(Orn()eu(t)g;(A)gr(A)di(A). (3.13b)

7=1 k=1 [=1
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Taking inner product with respect to ¢;(A) in both sides of Eqn. (3.13a) and Eqn.

(3.13b) and using orthogonality of ¢;(A) we have
[L'h(t) :JTQl(t) Vi = 1, 2, c. ,N (314&)

DX wOmw(Ou(t)(6;(A)dr(A)du(A), 6i(A))

. 1 j=1 k=1 I=1
Falt) == nlt) = gralt) = (680 6()
Vi=1,2 ..., N. (3.14D)

Equation (3.14a) & Eqn. (3.14b) constitute the gPC dynamical system we used
during propagation.

For the Duffing oscillator in Eqn. (3.10) & Eqn. (3.11), we assume that the
initial states follows a standard Normal distribution (u(t = 0) = [0,0], X(t = 0) =
diag(1,1)). We plot the mean and variance of the states obtained from gPC and from

linearized dynamics. The state transition matrix of linearized system is given by

0 1
A:

—~1-322 —1/4

The linearized mean () and covariance () propagation equations are given by,

Alt) = An(t) (3.15a)
£(t) = AS(1) + £(1)A, (3.15b)
where
e E [z1] . E [22] — E [z,] E [2125]
E [z5] E [2122] E [22] — E [z5)?

We compare the results obtained after application of gPC and propagation of lin-

earized dynamics, to Monte Carlo (MC) simulations. Figure 4 shows the plots for
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(a) Mean. (b) Variance.
Fig. 4.: Plots for a) mean b) variance of the Duffing oscillator in Eqn. (3.10) & Eqn.
(3.11) obtained from gPC scheme (solid) and Monte Carlo (dashed) and linearized

dynamics (star-solid) simulations.

evolution of mean and covariance. It can be seen that results for gPC and MC match
closely, whereas the for the linearized dynamics, results diverge from that obtained
from MC simulations. Hence, it can be concluded that gPC scheme effectively cap-

tures the evolution of uncertainty in the given nonlinear system.

C. Nonlinear State Estimation Using Polynomial Chaos and Higher Order Moments

Update

Let us consider a nonlinear dynamical system being measured by a nonlinear mea-
surement model. The states are given by x € R" and the measured outputs are,

y € R™. The dynamics is governed by,

i = f(z,A), (3.16a)

y=nh)+v, (3.16b)
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where v is the measurement noise with v ~ A(0, R). The random parameters can
be written as A = [A,, A,]T, where A,, represents initial state uncertainty and A,
represents uncertainty in system parameters. Let p(A) be the distribution of A.
Estimation algorithms have essentially two steps, the propagation phase and the
update phase. It is assumed that p(A) is stationary during the propagation phase.
However, the distribution of x(¢, A) will not be stationary due to the dynamics.
Therefore, the distribution of A,, will change after every update phase. The dis-
tribution of A, will typically not change at all, unless updated externally. Without
loss of generality, here will will consider that the system has only initial state uncer-
tainty. Let us also assume that the measurement updates are available at discrete

time tk, tk+1, c

1. Step 1: Initialization of State

Given the probability density function of the parameters p*(A) at time ty, the initial

condition for X,,.(tx) at t; can be obtained using the following equation
zii(ty) = / Amoiqﬁj(A)pk(A)dA fori=1,---,n;7=0,---,N, (3.17)
Da

where Ay, = z(tx, A). The symbol A, represents the i'" component of A,,, which

is the random variable associated with initial condition uncertainty.

2. Step 2: Propagation of Uncertainty and Computation of Prior Moments

With initial condition defined by Eqn. (3.17), the system in Eqn. (3.7) is integrated

over the interval [tg,t5+1] to obtain X,.(tg+1), i-e.

Xpoltirs) = Xyelts) + / M (X (7)) (3.18)

2
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The moments of the random process z(t,A) at ¢ = tx.; can be computed from
Xpe(tit1) as follows. An outline of the derivation of the moments can be found in the

previous section.

M;™ =z, (3.19)
N N

ME =3 ) wipie(0y), (3.19b)
p=0 ¢=0
N N N

M = Z Z Z TipZ jqThr (PpPePr), (3.19¢)
p=0 ¢g=0 r=0

N

N N N
Mg =20 > > Tapigturtis(9pdyrs), (3.194d)

and so on; for i,j,k,l = 1,--- ,n. In the above equations x;; := x;;(tx4+1) and M*~
represents the it prior moment at #;,;. The inner products of the basis functions are

computed with respect to p*(A), i.e.
(Ppdydrds) = . Op(2)04(A) b, (D) s (A)p*(A)dA.

3. Step 3: Update Phase

We incorporate the measurements § := ¢(¢;) and the prior moments M*~ to get the
posterior estimates of the moments, M**. Here we consider the prior state estimate 2~
to be the expected value of z(t, A) at 3y, i.e. = = M'~ =E[z]. Also, §~ = h(i™).
Let

v=y—h(z")="h(z)+v—h@).

Using the approach used by Julier et al. [89, 90] and Park et al. [91], we use a linear
Kalman gain K to update the moments. Although updates with nonlinear gains are
also possible, but they were not considered in this dissertation. Linear update law

has also been used by Majji et al. [92] in their design of nonlinear estimators using
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higher order moment updates. The Kalman gain K is computed as
K = P™(P")™ !, (3.20)

where P’ = E [mzva] and P’ = E [U,vﬂ This gain is optimal in the minimum

variance sense. The update equations for the moments are therefore given by,

MY = M'™ + Kv (3.21a)
M** = M* — KP"K” (3.21b)
M3 = M3 + 3K?P™" — 3K P™ — K3pv (3.21c)
M = M4 — AR Praav 4 G2 prevy _ A3 pvove | 4 prove, (3.21d)

The work of Majji et al. [92] and Julier et al. [89], contains complete derivations of
these formula. The fifth and higher order moment update equations can be computed
in a similar fashion, using appropriate prior moments and Kalman gain [89, 92].

The tensors P*v, Pvv, prvv, prev pvev prrve prave s pvuvr and PY"YY can be com-
puted in terms of the gPC coefficients. Here we only the derivations for P*¥ and P,
the other tensors can be calculated in a similar manner. Using this derivation process,
the higher order tensors can be computed very easily. The expressions for P and

P are

P — E[(x— )5 —9)"] =E [25"] - 2E [§"]

—i /D hr (Z xjgbj(A)) PF(A)dA, (3.22)
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where x; = [11; Zo; -+ 2p]7. Similarly,

PY = /D h (Z xjgz;j(A)) nr (Z qusj(A)) PP(AYA+ R — g3, (3.23)

The above expressions for P* and P" are dependent on the output function
h(x). If h(x) is polynomial function, the above expressions become functions of M.
This is shown through an example in a later section, where we consider the output
equation h(x) = z7z. When h(z) is a transcendental function, computation of the
above integrals cannot be performed directly. One approach would be to expand
h(z) about E[z] in terms of the perturbations, using Taylor series expansion [87],
and obtain a polynomial approximation of h(x). While Taylor series approximation
is straightforward and generally computationally cost effective, it becomes severely
inaccurate when higher order gPC expansions are required to represent the physical
variability [87]. For example, a 5" order Taylor series approximation using 3"¢ order
gPC expansion would require tensor products of six 3" order basis functions. This
will result in 18" order polynomials. This will increase if higher order Taylor series
or gPC expansions are used to obtain better approximations. It is well known that
computation of higher order polynomials using finite significant digits representation
of real numbers have associated numerical errors. At the same time, for many non-
linear functions this Taylor series approximation is limited by the theoretical range
of convergence Taylor series. To tackle the problem of inaccuracies in the evaluation
of transcendental functions, using Taylor series expansions, a more robust algorithm
is presented by Debusschere et al. [87]. This method is valid for any non polynomial
function u(&) for which du/d¢ can be expressed as a rational function of &, u(§). The

same issues are encountered with f(z, A), which defin