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ABSTRACT

New Algorithms for Uncertainty Quantification and Nonlinear Estimation of

Stochastic Dynamical Systems. (August 2011)

Parikshit Dutta, B.Tech.; M.Tech., Indian Institute of Technology, Kharagpur

Chair of Advisory Committee: Dr. Raktim Bhattacharya

Recently there has been growing interest to characterize and reduce uncertainty in

stochastic dynamical systems. This drive arises out of need to manage uncertainty

in complex, high dimensional physical systems. Traditional techniques of uncertainty

quantification (UQ) use local linearization of dynamics and assumes Gaussian prob-

ability evolution. But several difficulties arise when these UQ models are applied to

real world problems, which, generally are nonlinear in nature. Hence, to improve per-

formance, robust algorithms, which can work efficiently in a nonlinear non-Gaussian

setting are desired.

The main focus of this dissertation is to develop UQ algorithms for nonlinear

systems, where uncertainty evolves in a non-Gaussian manner. The algorithms devel-

oped are then applied to state estimation of real-world systems. The first part of the

dissertation focuses on using polynomial chaos (PC) for uncertainty propagation, and

then achieving the estimation task by the use of higher order moment updates and

Bayes rule. The second part mainly deals with Frobenius-Perron (FP) operator the-

ory, how it can be used to propagate uncertainty in dynamical systems, and then using

it to estimate states by the use of Bayesian update. Finally, a method to represent the

process noise in a stochastic dynamical system using a finite term Karhunen-Loève

(KL) expansion is proposed. The uncertainty in the resulting approximated system

is propagated using FP operator.
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The performance of the PC based estimation algorithms were compared with

extended Kalman filter (EKF) and unscented Kalman filter (UKF), and the FP oper-

ator based techniques were compared with particle filters, when applied to a duffing

oscillator system and hypersonic reentry of a vehicle in the atmosphere of Mars. It

was found that the accuracy of the PC based estimators is higher than EKF or UKF

and the FP operator based estimators were computationally superior to the particle

filtering algorithms.
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CHAPTER I

INTRODUCTION

A. Background

Uncertainty quantification in stochastic dynamical systems is a challenging field that

has received attention for over a century. Understanding the impact of uncertainty

in complex physical system has become a primary topic of research over the years.

Problems due to uncertainty may arise in myriad areas of application ranging from

robotics (e.g. path planning in an uncertain environment) and astrodynamics (eg.

trajectory estimation of 99942 Aphophis) to structural engineering (e.g. excitation of

a building caused by siesmic events) and petroleum engineering (eg. study of flow of

oil through a reservoir with uncertain porosity). A large class of such problems deal

with uncertainty in physical model and system parameters. Estimation of parame-

ters in this scenario is typically a hard problem due to lack of frequent measurements

and underlying nonlinearities in system dynamics. Thus the evolution of uncertainty,

which can be non Gaussian, needs to be predicted over longer intervals of time. These

issues undermine the validity of the classical linear Gaussian theory. Sequential es-

timation algorithms, based on Monte Carlo (MC) simulations are most commonly

used in such cases. However for systems having three or more dimensions, MC based

techniques may be computationally expensive as ensemble size required to guarantee

convergence, increases exponentially with number of states. Hence a nonlinear esti-

mation algorithm, superior to the existing methods in terms of convergence of errors

and computational complexity is desired.

Estimation of states and parameters for dynamical systems in general, are gen-

The journal model is IEEE Transactions on Automatic Control.
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erally performed in the Bayesian framework, where uncertainty is represented as

probability density functions (PDF). For linear Gaussian systems, it is possible to get

exact analytical expressions for evolving sequence of moments, which characterizes

the PDF completely. This method is widely know as Kalman filter [1]. For nonlinear

systems exhibiting Gaussian behavior, the system is linearized locally, about the cur-

rent mean, and the covariance is propagated using the approximated linear dynamics.

This method is used in extended Kalman filters (EKF) [2]. It is well known that this

approach performs poorly when the nonlinearities are high, resulting in an unstable

estimator [3, 4, 5, 6]. However, the error in mean and covariance can be reduced if the

uncertainty is propagated, using the nonlinear dynamics, for a minimal set of sample

points, called sigma points. The PDF of the states, characterized by sigma points,

capture the posterior mean and covariance accurately to the third order (Taylor series

expansion) for any nonlinearity with Gaussian behavior. This technique has resulted

in the unscented Kalman filter (UKF) [7]. The aforementioned filters are based on

the premise of Gaussian PDF evolution. If the sensor updates are frequent then EKF

and UKF may yield satisfactory results. However, for nonlinear systems, if the sensor

updates are slow, these filters result in inaccurate estimates [8].

Recently, simulation-based sequential filtering methods, using Monte Carlo sim-

ulations, have been developed to tackle nonlinear system with non-Gaussian uncer-

tainty [9, 10]. Monte Carlo methods involve representing the PDF of the states using

a finite number of samples. The filtering task is obtained by recursively generat-

ing properly weighted samples of the state variable using importance sampling [11].

These filters, based on sequential MC methods are known as Monte Carlo filters [12].

Amongst them, the most widely used is the particle filter [13, 14, 15, 16]. Here en-

semble members or particles are propagated using the nonlinear system dynamics.

These particles with proper weights, determined from the measurements, are used
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to obtain the state estimate. However, particle filters require a large number of en-

sembles for convergence, leading to higher computational costs [17]. This problem is

tackled through resampling [13, 18, 8]. Particle filters with resampling technique are

commonly known as bootstrap filters [8]. It has been observed that bootstrap filters

introduce other problems like loss of diversity amongst particles [15], if the resampling

is not performed correctly. Recently developed techniques have combined importance

sampling and Markov-Chain-Monte Carlo (MCMC) methods to generate samples to

get better estimates of states and parameters [19]. Several other methods, like reg-

ularized particle filter [20], and filters involving MCMC move step [21], have been

developed to improve sample diversity. At the same time, even with resampling, due

to the simulation based nature of these filters, the ensemble size scales exponentially

with state dimension for large problems [22]. To circumvent this problem, particle

filters based on Rao-Blackwellization have been developed to partially solve the esti-

mation problem analytically [23]. However, its application is limited to systems where

the required partition of the state space is possible. An excellent comparison of the

various nonlinear filtering algorithms is available in ref. [24].

Nonlinear estimation algorithms based on polynomial chaos theory [25] and

Frobenius-Perron operator [26] has been proposed in this work. Polynomial chaos

(PC) is used to approximate any random process as linear combination of orthog-

onal basis functions. The advantage of using PC is that an alternate deterministic

dynamical system can be created from the stochastic system, which is then used to

propagate uncertainty. Polynomial chaos was first introduced by Wiener [27] where

Hermite polynomials were used to model stochastic processes with Gaussian random

variables. According to Cameron and Martin [28], such an expansion converges in the

L2 sense for any arbitrary stochastic process with finite second moment. This applies

to most physical systems. Xiu et al. [29] generalized the result of Cameron-Martin
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to various continuous and discrete distributions using orthogonal polynomials from

the so-called Askey-scheme [30] and demonstrated L2 convergence in the correspond-

ing Hilbert functional space. This is popularly known as the generalized polynomial

chaos (gPC) framework. The gPC framework has been applied to various applications

including stochastic fluid dynamics [31, 32], stochastic finite elements [25], and solid

mechanics [33, 34]. In the context of nonlinear estimation, polynomial chaos has been

applied by Blanchard et al. [35, 36], where uncertainty prediction was computed us-

ing gPC theory for nonlinear dynamical systems, and estimation was performed using

linear output equations and classical Kalman filtering theory. It has been shown that

PC is computationally more efficient than Monte Carlo simulations [29]. Hence, it is

expected that, the estimation algorithm presented here will be computationally more

efficient than particle filters. However, such an analysis has not been performed, and

is a subject of our future work. Here we have applied gPC theory to estimate states

of a Duffing oscillator and hypersonic vehicle reentering Mars’ atmosphere.

The Frobenius-Perron operator determines the time evolution of probability den-

sity function (PDF) through a system, and as shown later is computationally efficient

than particle filters. The Frobenius-Perron operator has been used in the physics

community to study evolution of uncertainty in dynamical systems [26]. In contin-

uous time, the Frobenius-Perron operator is defined by the Liouville equation [37],

which is the Fokker-Planck equation [38] without the diffusion term. It has been

shown that the Frobenius-Perron operator or the Liouville equation, predicts evolu-

tion of uncertainty in a more computationally efficient manner than Monte Carlo [39].

Based on this fact, we can expect a nonlinear filtering algorithm in this framework

to be computationally more efficient than particle filters. However, it is important to

note that the Frobenius-Perron operator only addresses parametric uncertainty. Use

of Liouville equation to develop a nonlinear filtering algorithm was first presented
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by Daum et al. [40], where the process of the filtering algorithm has been outlined.

In this work we have applied Frobenius-Perron operator theory to a state estimation

problem arising in hypersonic flights and perform a direct comparison with particle

filters.

The above mentioned uncertainty propagation methods are applicable only when

the dynamical system has initial state or parametric uncertainty. In presence of

process noise, the evolution of densities are given by the Kramers-Moyal expansion

[41]. This is a partial differential equation which characterize PDF propagation in any

nonlinear system having process noise. A special case arises when we limit ourselves

to additive Gaussian white noise as stochastic forcing. Then, the first two terms of

the Kramers-Moyal expansion is sufficient to describe the evolving densities. This

is referred to as the Fokker-Planck equation or Kolmogorov forward equation [42].

There are several methods, by which we can approximately determine the solution

of the Fokker-Plank equation. A brief treatise of the most popular methods can

be found in the book by Riskin [38]. Several methods which deal with numerical

solutions of the Fokker-Planck equation have been developed over the years [43, 44,

45]. The numerical algorithms, intend to solve the Fokker-Planck equation using grid

based methods like FEM, to evaluate the densities in a structured grid [46, 47, 48],

or by using meshfree methods, by evaluating densities at randomly selected points

to get the final PDF [49, 50]. Several researchers have used Monte Carlo based

techniques to get an approximation of the solution of Fokker-Planck equation using

finite number of samples [51, 50]. Another popular technique of solving Fokker-Planck

equation involves approximating the PDF as linear combination of known functions.

Researchers have often used known densities as the basis functions for approximation.

This method is popularly known as kernel density estimation [52]. There are several

techniques which solve the Fokker-Planck equation using this method [53, 54]. One
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can also use known functions to get a finite dimensional approximation of the operator

generated by the Fokker Planck equation. This method is useful as it converts the

Fokker Planck partial differential equation into an approximate ordinary differential

equation. Kumar et al. presents a method of solving the Fokker Planck equation using

this technique [49, 55]. It has been observed that most of the solution methodologies

perform poorly when the dimensionality of the state space involves is high [56]. This

has been proved for grid based method as the complexity in solving the problem

increases exponentially with dimension [57]. The problem is partially resolved by

the use of sparse grids where a structured grid is used to evaluate the solution at

lesser number of points than the grid based methods [58]. But even with sparse grids,

accuracy of solution become worse with increase in dimensions [59]. For methods using

approximating basis functions, finding the correct basis for evolution is challenging

when one has to deal with high dimensional problem [59]. Hence most of the solution

methods of the Fokker Planck equation suffer from the curse of dimensionality [60].

In this dissertation, we use a methodology based on Frobenius-Perron operator

theory and Karhunen Loève expansion, to determine the sequence of evolving den-

sities in a stochastic dynamical system. Karhunen Loève (KL) expansion has been

developed independently by researchers to represent a random process as linear com-

bination of orthogonal functions [61, 62]. KL expansion, expands any random process

as homogeneous products of functions of deterministic and stochastic variables. It is

widely used in physics and fluid mechanics to represent noise in a Langevin equation

and turbulence models [63, 64]. In the context of dynamical systems, it has pri-

marily been used in model reduction and data analysis of complex high dimensional

systems [65, 66, 67]. KL expansion has also found applications in the areas of non-

linear vibrations [68], wavelet analysis [69, 70], and signal processing [71]. However,

its application to problems involving uncertainty propagation in dynamical systems
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has been limited. Here we use a methodology where the process noise in a system

is represented as a KL expansion of the underlying random process, and then use

Frobenius-Perron operator to propagate uncertainty. We have applied the resulting

uncertainty propagation method, to an estimation problem where we estimate states

of a hypersonic reentry vehicle. The results have been compared with particle filtering

methods.

B. Contribution of This Dissertation

In this dissertation we mainly focus on developing new, efficient algorithms for un-

certainty quantification of dynamical systems and apply them to state estimation

problems. In particular we assume that the uncertainty in the system dynamics is

dependent on random variable, governed by a known PDF. Throughout the disser-

tation our focus is representing the PDF as a continuous function of the underlying

random variable. Although it is possible to extend these results to discrete distribu-

tions, these have not been treated.

The main contribution of this dissertation lies in the application of the proposed

estimation algorithms to real-world problems. The problem that we focus on here is

hypersonic reentry of a vehicle in the atmosphere of Mars. Entry, descent, landing

of a hypersonic vehicle on the surface of Mars is a topic of research receiving much

attention in recent years. The expected mass of the next Mars science mission lab-

oratory is approximately 2800 kilograms at entry, which is required to land within

few kilometers of robotic test sites. The requirement of high accuracy when landing

in proximity of the target region is a key challenge of high mass entry. It is therefore

necessary to estimate states and parameters of the reentry vehicle when uncertainties

are present in initial conditions. High nonlinearity of reentry dynamics, coupled with
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lack of frequent sensor updates make the estimation problem difficult to solve. In the

subsequent chapters, we develop algorithms to effectively quantify uncertainty for the

reentry vehicle and to estimate states of the reentry vehicle.

In Chapter II, we discuss some of the commonly used state estimation methods.

We first introduce Kalman filter, which is optimal for linear Gaussian systems. Next

we discuss some of the suboptimal algorithms for estimation of nonlinear systems.

Finally we show, through an example how these estimation algorithms perform when

applied to a nonlinear system.

In Chapter III, we introduce polynomial chaos (PC) and develop two relevant

estimation algorithms; one that uses higher order moment updates and other using

Bayesian update. We apply the proposed estimation methodologies to estimate states

of a Duffing oscillator and eventually apply them to state estimation of a hypersonic

reentry vehicle. We compare our results with estimators based on EKF and UKF.

Chapter IV deals with, uncertainty propagation using Frobenius-Perron (FP)

operator theory. We first develop the methodology of uncertainty propagation, and

then we apply the estimation scheme to hypersonic reentry vehicle and compare our

results with particle filters.

In Chapter V, we propose a methodology for uncertainty quantification when

the dynamical system has process noise in it. We use Karhunen Loève (KL) expan-

sion to represent process noise and then use Frobenius-Perron operator to propagate

uncertainty. We show how the proposed methodology can be used to estimate states

and parameters of a stochastic dynamical system. We apply the methodology to

hypersonic reentry problem and compare the results with particle filter.

Finally in Chapter VI we summarize our conclusions and highlight some future

directions of research.
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CHAPTER II

SEQUENTIAL STATE ESTIMATION METHODS

State estimation methods is a topic of research that has gained popularity over the

years. The development of estimation methods was pioneered by Gauss, in 18th cen-

tury, when he proposed the method of least squares [72]. In the sequential estimation

setting, Gaussian least squares method used to reduce the estimation error sequen-

tially with each observations, by incrementally correcting the measurements. This

is known as Gaussian least square differential correction (GLSDC) [73]. For nonlin-

ear systems, the dynamics can be linearized about the current estimate, which can

then be used for state estimation purposes. This method is known as nonlinear least

squares [73]. In a probabilistic setting, this method in turn minimizes the variance

of the state estimate from the true value, and hence is called the minimum variance

estimator [74]. However, Gauss did anticipate the need of the most probable esti-

mate of the state rather than one which minimizes the variance [75]. This was first

introduced by R. A. Fisher, in 1912, as the maximum likelihood estimator [76]. It

is interesting to note that if the states follow a Gaussian distribution the minimum

variance and the maximum likelihood estimates are the same.

The first concepts of estimating states of a system, as a consequence of a filtering

problem was proposed independently by Wiener and Kolmogorov, which became pop-

ularly known by the name of Wiener-Kolmogorov filter [77]. In this framework, the

objective was to filter out noise from a signal by minimizing the mean square error.

The filter was formulated both for continuous and discrete observations, which made

it different from the least squares technique, where observations arrived in discrete

time intervals. All these contributions were significant towards the development of

Kalman filter which will be discussed in detail, in the subsequent sections [1].
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State estimation of dynamical systems is generally done in two steps: a for-

ward step, where the PDF of the states is propagated forward in time, to get the

prior PDF; and an inverse step, where the prior is updated based on observations

to get the posterior PDF. The forward step, generally reduces to propagation of un-

certainty through the stochastic dynamical system, and the inverse step reduces to,

using Bayesian inference [78]. The state estimate is obtained as a result of applying

a desired optimization criterion on the posterior PDF.

In this chapter, we will cover, methodologies for state estimation of dynamical

systems. We will begin with a brief overview of the techniques that are popularly

used and then we will describe in brief the methodologies that has been proposed

in this framework. Finally we would present an example of application of the state

estimation methods discussed in this chapter.

A. Sequential State Estimation for Linear Systems

In this section, we propose a methodology where the dynamical system in question

is a linear system. We consider systems with dynamics and measurements described

by following sets of equations,

ẋ(t) = A(t)x(t) +B(t)u(t) +G(t)w(t) (2.1a)

ỹ(t) = H(t)x(t) + v(t) (2.1b)

where x ∈ Rn are states, u ∈ Rm are controls and ỹ ∈ Rp are observations. A ∈ Rn×n

is the state transition matrix, B ∈ Rn×m is the input coefficient matrix, and H ∈ Rp×n

is the matrix relating states to output. w ∈ Rq and v ∈ Rp are zero mean Gaussian

white noise processes, and G ∈ Rn×q is the process noise coefficient matrix.

We will now describe the formulation of linear state estimation algorithms. We
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will consider only continuous-discrete cases i.e. the stochastic dynamical system is

propagated continuously and the measurements arrive at discrete time intervals.

1. Kalman Filter

Kalman filter is a sequential state estimation method which gives us exact sequence of

evolving densities for a linear systems with Gaussian uncertainties. It was developed

by R.E. Kalman in 1960 for discrete systems [1]. The continuous time version of this

filter is called the Kalman-Bucy filter which was developed in 1961 [79]. Kalman filter

gives us optimal state estimate for a linear system which takes Gaussian densities to

initially, and the density of the states remains Gaussian throughout the propagation

time. It postulates a dynamical equation for covariance and mean, for the under-

lying Gaussian density function. Thus, the PDF of the states can be completely

characterized evolving sequence of moments.

Given the system in Eqn. (2.1a) and Eqn. (2.1b), we assume that the pro-

cess noise w(t) and the measurement noise v(t) are uncorrelated. Moreover in a

continuous-discrete formulation, the measurement equation is assumed to be discrete.

Hence Eqn. (2.1a) and Eqn. (2.1b) in this case is modified to,

ẋ(t) = A(t)x(t) +B(t)u(t) +G(t)w(t) (2.2a)

ỹk = Hkxk + vk (2.2b)

The subscript k represents the time instant tk when the measurement is available.

Also E [vk] = 0,∀k ∈ N, E [vkvj] = R δkj, and E [w(t)] = 0,∀t ∈ R+, E [w(t1)w(t2)] =

Q δ(t1 − t2). We will assume that R and Q remain constant.

In a continuous-discrete Kalman filter, the mean µk|k and the covariance Pk|k are

propagated forward in time from current time step, tk to the next step tk+1, when the

measurements are available, to get the prior mean µk+1|k, and covariance Pk+1|k. The
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prior mean and the covariance are then updated using the Kalman gain K to get the

posterior mean µk+1|k+1 and covariance Pk+1|k+1, which is obtained by minimizing the

error covariance. It is interesting to note that regardless of the optimization criterion

used the optimal estimate for a Kalman filter is the mean of the posterior PDF, hence

x̂k+1 = µk+1|k+1.

The initial state estimate and covariance are the mean and the covariance of

the initial PDF, i.e. x̂0 = E [x(t0)] and P0|0 = E [x2(t0)] − E [x(t0)]2. The forward

propagation step, for a Kalman filter essentially consists of two equations for mean

and covariance propagation, which are given by,

µ̇(t) = A(t)µ(t) +B(t)u(t), with µ(tk) = µk|k (2.3a)

Ṗ (t) = A(t)P (t) + P (t)A(t)T +Q, with P (tk) = Pk|k (2.3b)

The update step consists of solving an optimization problem to get the Kalman

gain Kk+1 at step tk+1 and subsequently obtaining the state estimate and the covari-

ance of the posterior PDF. The update equations are given by,

Kk+1 = Pk+1|kH
T
k+1

(
Pk+1Pk+1|kH

T
k+1 +R

)−1
(2.4a)

µk+1|k+1 = µk+1|k +Kk+1(ỹk+1 −Hk+1µk+1|k) (2.4b)

Pk+1|k+1 = (I−Kk+1Hk+1)Pk+1|k (2.4c)

The state estimate is given by the posterior mean i.e. x̂k+1 = µk+1|k+1.

2. Linear Non-Gaussian Filter

In this section we briefly describe methodology of estimation when the given PDF of

initial states is not a Gaussian distribution. We still deal with linear system hence
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the PDF of states undergoes only linear transformation while it evolves. Hence then

structure of the PDF is conserved, but due to linear transformation the parameters

by which it is represented changes.

We do not have an optimal estimator for such systems. But we can design a filter

which is suboptimal by approximating the initial PDF using Gaussian Mixture Models

(GMM) [80, 81]. In this framework we represent any PDF as linear combination

of Gaussian PDFs. This method of approximating the density function of states

using other known PDFs is referred to as kernel density estimation (KDE) [52]. For

example, let us consider the set of PDF described of a r-parameter set, given by,

P(α1, α2, . . . , αr), where {αi}ri=1 are the set of parameters. Using GMM this PDF

can be represented as,

P(α1, α2, . . . , αr) =
∞∑
j=1

βjN (µj,Σj) (2.5)

where βj are constants and N (µj,Σj) are Gaussian PDFs with µj and Σj being mean

and covariance, form a basis for representing such PDFs.

For estimation purposes, if the initial density is given by P(α1, α2, . . . , αr), we

start be representing it in GMM framework using Eqn. (2.5). The expansion in

Eqn. (2.5) is truncated to Nt terms. Each Gaussian basis PDF is propagated using

Eqn. (2.3a) & Eqn. (2.3b) to get the prior mean and covariance, and the update step

involves using Eqn. (2.4a) through Eqn. (2.4c) for each Gaussian PDF. The posterior

state PDF is obtained by using a GMM model with posterior mean and covariance

from update step parameterizing each Gaussian PDF. The essential steps for state

estimation with non-Gaussian initial PDF is given in Table I. Detailed discussion of

estimation using GMM can be found in ref. [82].
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Table I.: Algorithm for linear non-Gaussian filtering

Step Equations

Initialization P(α1, α2, . . . , αr)(t0) =
Nt∑
j=1

βjN (µj(t0),Σj(t0)).

Propagation Propagate µj(tk|k) and Σj(tk|k) using Eqn. (2.3a) & Eqn. (2.3b) to

get µj(tk+1|k) and Σj(tk+1|k).

Update Update µj(tk+1|k) and Σj(tk+1|k) using Eqn. (2.4a) through Eqn.

(2.4c) to get µj(tk+1|k+1) and Σj(tk+1|k+1).

Final PDF P(α1, α2, . . . , αr)(tk+1) =
Nt∑
j=1

βjN (µj(tk+1|k+1),Σj(tk+1|k+1)).

B. Sequential State Estimation for Nonlinear Systems

In this section we will introduce some popular methods of state estimation for non-

linear systems. For nonlinear systems, there exist no estimator that is optimal with

respect to the established optimality criteria [73]. Hence, all the algorithms described

henceforth yield suboptimal solution, using some approximation methods. To judge

the performance of these solutions, there are several metrics that have become useful.

Towards the end of this chapter we will discuss in brief some of the criteria that are

used as a metric to judge the performance of the estimation algorithm, through an

example. We would begin with Kalman filter based methods and then go on to de-

scribe more robust methods which are also known as sequential Monte Carlo (SMC)

methods.

To give a generic flavor to the problem we define the dynamical system and the

observation model in a way such that they can be used in subsequent sections. Let us

consider two real valued functions which are at least once continuously differentiable,

f : (x, u)→ Rn and h : (x, u)→ Rm where f, h ∈ C1, where x, u are states and controls
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and are given by, x : t→ Rn and u : t→ Rp, respectively. Let the measurements be

given by ỹ : t→ Rm. Let us also consider a class of zero mean δ-correlated Gaussian

noise w(t) and v(t) which are the process and the measurement noise respectively,

and have the autocovariance Qδ(t − t′) and Rδ(t − t′), respectively; t, t′ ∈ R+. For

sake of simplicity, the Q and R matrices are assumed to be constant. The dynamical

system and the measurement equations are given by,

ẋ(t) = f(x, u) + w(t) (2.6a)

ỹ(t) = h(x, u) + v(t) (2.6b)

As before, we consider the continuous-discrete formulation of the filter equations,

with measurements arriving at discrete intervals of time t1, t2, . . . , tk, tk+1, . . .. In such

case Eqn. (2.6a) & Eqn. (2.6b) are given by,

ẋ(t) = f(x, u) + w(t) (2.7a)

ỹk = h(xk, uk) + vk (2.7b)

Equation (2.7a) & Eqn. (2.7b) will be used throughout the development of nonlinear

filtering methods.

1. Extended Kalman Filter

In estimation theory, the extended Kalman filter (EKF) is the nonlinear version of the

Kalman filter where the stochastic dynamics is linearized about the current estimate.

The linearized dynamics is propagated forward in time to get the sequence of evolving

mean and covariance.

EKF assumes linear behavior of the nonlinear system for sufficiently small propa-
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gation time, and hence uses the linearized dynamics to propagate uncertainty. Also it

assumes Gaussian PDF evolution, hence mean and covariance of the states are prop-

agated, and updated using Kalman update law. Here, as in the case of Kalman filter,

the mean is the state estimate. The mean and covariance propagation equations are

given by,

˙̂x(t) = f(x̂(t), u(t)) with, x̂(tk) = x̂k|k (2.8a)

Ṗ (t) = F (t)P (t) + P (t)F (t)> +Q with, P (tk) = Pk|k (2.8b)

which are propagated from t ∈ [tk, tk+1].

The update equations are same as that for the Kalman filter which are given by

Eqn. (2.4a) through Eqn. (2.4c), where F (t) and H(t) are Jacobians given by,

F (t) =
∂f

∂x
|x̂(t),u(t) H(t) =

∂h

∂x
|x̂(t),u(t)

f and h are functions that were defined in Eqn. (2.6a) & Eqn. (2.6b).

Due to linearization, EKF has been found to accrue errors if the propagation

times are long [83]. Hence for systems where the measurement update are infrequent,

estimation errors are observed to be divergent. Moreover, like its linear counterpart

EKF assumes the PDF evolution is Gaussian which is not always true for a nonlinear

system. It has also been observed that if the initial error estimates are large, the

covariance matrix underestimates the true covariance and the results of EKF are

found to be inconsistent. Though this error can be corrected marginally by selecting

R and Q properly.

2. Unscented Kalman Filter

The unscented Kalman filter (UKF) uses a deterministic sampling technique known as

the unscented transform to pick a minimal set of sample points, called sigma points,
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around the mean [7]. These sigma points are then propagated through the nonlinear

functions, from which the mean and covariance of the estimate are then recovered. It

has been shown that the result is a filter which more accurately captures the true mean

and covariance, than EKF [84]. In addition, this technique removes the requirement

to explicitly calculate the Jacobians, which, for complex functions, can be a difficult

task in itself.

We will assume the same nonlinear estimation setting as given in Eqn. (2.6a) &

Eqn. (2.6b). In the prediction step of UKF, the estimated state and covariance are

augmented with the mean and covariance of the process noise, i.e.

xak|k = [x̂Tk|k E[wTk+1] ]T (2.9a)

P a
k|k =

 Pk|k 0

0 Q

 (2.9b)

A set of 2L + 1 sigma points is derived from the augmented state and covariance

where L is the dimension of the augmented state. The sigma points are given by,

χ1
k|k = xak|k (2.10a)

χik|k = xak|k +
(√

(L+ λ)P a
k|k

)
i
, i = 2 . . . L+ 1 (2.10b)

χik|k = xak|k −
(√

(L+ λ)P a
k|k

)
i−L

, i = L+ 2, . . . , 2L+ 1 (2.10c)

where
(√

(L+ λ)P a
k|k

)
i

is the ith column of the matrix square root of (L+ λ)P a
k|k.

The quantity λ, is defined as,

λ = α2 (L+ κ)− L (2.11)

where α and κ control the spread of the sigma points. Normal value of α = 10−3 and

κ = 1. However, one may change these constants according to application.
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The sigma points are propagated using the same equation as given in Eqn. (2.6a),

from time [tk, tk+1] to get χik+1|k. Let g(x, u, w) = f(x, u) + w(t), then

χ̇(t)i = g(χ(t)i) i = 1 . . . 2L+ 1, with, χ(tk)
i = χik|k (2.12)

The weighted sigma points are recombined to produce the predicted prior state and

covariance.

x̂k+1|k =
2L+1∑
i=1

W i
sχ

i
k+1|k (2.13a)

Pk+1|k =
2L+1∑
i=1

W i
c [χik+1|k − x̂k+1|k][χ

i
k+1|k − x̂k+1|k]

T (2.13b)

where the weights for the state and covariance are given by,

W 1
s =

λ

L+ λ
(2.14a)

W 1
c =

λ

L+ λ
+ (1− α2 + β) (2.14b)

W i
s = W i

c =
1

2(L+ λ)
(2.14c)

β is a constant related to the distribution of the states. For example, if the underlying

distribution is Gaussian then β = 2 is optimal.

The predicted prior state and covariance are augmented as previously, except now

the estimated state vector and the covariance matrix are augmented by the mean and

covariance of the measurement noise.

xak+1|k = [x̂Tk+1|k E[vTk+1] ]T (2.15a)

P a
k+1|k =

 Pk+1|k 0

0 R

 (2.15b)
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As in the case of propagation step, a set of 2L + 1 sigma points is derived from

the augmented state and covariance (in Eqn. (2.15a) & Eqn. (2.15b)) where L is the

dimension of the augmented state.

χ1
k+1|k = xak+1|k (2.16a)

χik+1|k = xak+1|k +
(√

(L+ λ)P a
k+1|k

)
i
, i = 2 . . . L+ 1 (2.16b)

χik+1|k = xak+1|k −
(√

(L+ λ)P a
k+1|k

)
i−L

, i = L+ 2, . . . , 2L+ 1 (2.16c)

One can also use the sigma points received after propagation in Eqn. (2.12), given

by,

χk+1|k := [χTk+1|k E[vTk+1] ]T ±
√

(L+ λ)Ra (2.17)

where,

Ra =

 0 0

0 R


Let, h̄(χk) = h(xk, uk) + vk be the discrete observation process. Then we get the

weighted sigma points using the following equation,

γik+1 = h̄(χik+1|k) i = 1 . . . 2L+ 1 (2.18)

The predicted measurements, and their covariance, and also the state covariance are

then received from the weighted sigma points using the equation,

ŷk+1 =
2L+1∑
i=1

W i
sγ

i
k+1 (2.19a)

Pyk+1yk+1
=

2L+1∑
i=1

W i
c [γik+1 − ŷk+!][γ

i
k+1 − ŷk+1]T (2.19b)

Pxk+1yk+1
=

2L+1∑
i=1

W i
c [χik+1|k − x̂k+1|k][γ

i
k+1 − ŷk+1]T (2.19c)
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The Kalman gain Kk is then computed using the equation,

Kk+1 = Pxk+1yk+1
P−1
yk+1yk+1

(2.20)

The posterior state and covariance are then received using the Kalman gain and

the measurements.

x̂k+1|k+1 = x̂k+1|k +Kk+1(yk+1 − ŷk+1) (2.21a)

Pk+1|k+1 = Pk+1|k −Kk+1Pyk+1yk+1
KT
k+1 (2.21b)

Though UKF provides us with a method, where we can avoid the disadvantages

due to linearization of dynamics but its main drawback is assumption of Gaussian

PDF evolution (i.e. use of Kalman update law). In most real-world situations PDF

evolution is non-Gaussian and UKF has been observed to perform unsatisfactorily in

such cases. The state estimated covariance and the true covariance don’t match and

so the estimator becomes inconsistent. Hence, a state estimation methodology where

the PDF evolution is assumed to be non-Gaussian, is desired.

3. Particle Filters

Particle filters (PF), also known as sequential Monte Carlo methods (SMC), are

sophisticated state estimation techniques based on Monte Carlo simulations. They

are based upon importance sampling theorem [11], where we draw random samples

from a “proposal distribution” based on their “weights”, and propagate using Eqn.

(2.6a) [10]. Particle filters are often used in scenarios where the EKF or UKF fail,

with the advantage that, with sufficiently large number of particles, they approach

the Bayesian optimal estimate, so they can be made more accurate than either the

EKF or UKF. However, when the simulated sample is not sufficiently large, they
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might suffer from sample impoverishment. The approaches can also be combined by

using a version of the Kalman filter as a proposal distribution for the particle filter.

Let us consider the system given in Eqn. (2.6a) & Eqn. (2.6b). Let the initial

states have the PDF P (x(t = 0)). We follow the following steps in particle filtering.

a. Step 1: Initialization of the Filter

We draw N particles from the domain of initial state x(t = 0) with replacement,

which are given by x0,i, i = 1, 2, · · · , N , where p(x(t0) = x0,i) is the probability of

selection of the ith particle. The initial weights are given by

w0,i =
p(x(t0) = x0,i)

N∑
j=1

p(x(t = 0) = x0,j)

(2.22)

The state estimate at time t0 is the weighted mean of all particles, i.e. x̂0 =∑N
i=1 w0,ix0,i. We now perform steps 2 to 4 recursively starting from k = 1.

b. Step 2: Propagation

We now get xk|k−1,i for each particle i, by integrating Eqn. (2.6a) over the interval

[tk−1, tk], with initial states as xk−1|k−1,i.

The particles xk|k−1,i, represent weighted sample which is received from the prior

PDF p(x(tk)|x(tk−1)). Generally it is very difficult to sample from the prior PDF

as its exact analytical representation is unknown. Let us assume a “proposal” PDF

π(x(tk)|x(tk−1)), which is close to the prior PDF and easy to sample from. We sample

N particles from the proposal PDF, which we represent as xk|k,i
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c. Step 3: Update

We update the weights wk−1,i using Bayesian update rule [78]. We first construct

the likelihood function, pi(ỹk|x(tk) = xk|k,i) for each particle i, using the Gaussian

measurement noise, and the sensor model as shown in Eqn. (2.6b). It is defined as

pi(ỹk|x(tk) = xk|k,i) =
1√

(2π)m|R|
e−

1
2

(ỹk−h(xk|k,i))
TR−1(ỹk−h(xk|k,i)) (2.23)

where |R| is the determinant of measurement noise covariance matrix.

The weights are then updated up to a normalizing constant using the equation,

ŵk,i =
pi(ỹk|x(tk) = xk|k,i)p(x(tk)|x(tk−1))

π(x(tk)|x(tk−1))
wk−1,i (2.24)

Note if the proposal density is the prior then Eqn. (2.24) reduces to

ŵk,i = pi(ỹk|x(tk) = xk|k,i)wk−1,i

The weights are then normalized to get the final weights

wk,i =
ŵk,i
N∑
i=1

ŵk,i

(2.25)

The above method of using a proposal density to obtain the unbiased sample is

often called importance sampling [11].

d. Step 4: State Estimate

We then statistically approximate the state estimate as, (e.g. [15, 16])

x̂k =
N∑
i=1

wk,ixk|k,i (2.26)

It should be noted that in the limit of infinitely large N , particle filter gives us
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asymptotically exact estimate of the state.

e. Resampling

In most practical applications, a large number of the weights, wk,i become negligible

after certain number of recursive steps. This phenomenon is called degeneracy. Hence

a large computational effort is wasted in updating weights making little contribution

towards state estimate. A measure of degeneracy at step k is the effective sample size

[13, 15], given by

Ne =
1

N∑
i=1

w2
k,i

If all but one weight is zero then Ne = 1 indicating degeneracy. We set a threshold

value, Nt for effective number of particles, and resample whenever Ne < Nt. The

resampling is done in following manner.

1. Draw N particles from the current particle set, xk|k,i with probability of selection

as wk,i. Replace the current particle set with the new one.

2. Set wk,i = 1/N for i = 1, 2, · · · , N .

Although resampling step eliminates degeneracy, it can artificially reduce the esti-

mated state variance thus giving erroneous state estimate.

Note that the algorithm presented above is one of the many particle filtering

algorithms in use, but is the most common one. There are several variants of the par-

ticle filtering algorithm depending on application. In next section, we will introduce

in brief, some of the particle filtering algorithms that are most commonly used.
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4. Other Sequential Monte Carlo Methods

Researchers have developed several SMC methods that would suit their particular

application. These algorithms use Monte Carlo methods for propagation and then

use Bayesian update. They vary within themselves by the choice of proposal PDF or

the resampling method used. In this section we will discuss in brief some of the SMC

methods that are commonly used by practitioners. We will just introduce them and

explain the difference from the algorithm presented in the previous section, without

going into the details of each algorithm.

The algorithm presented in the previous section is often termed as generic particle

filter. There are several variants to this filtering method, namely in the resampling

step. All of them are known by the name of generic PF. For example Arulampalam

et al. , presents a new algorithm, which uses a MCMC based resampling technique

[9]. If we eliminate the resampling step entirely, the algorithm is called sequential

importance sampling (SIS) [85], and if we resample at each step, disregarding the

effective number of particles, the resulting filter is known as sequential importance

resampling (SIR) or bootstrap filter [8].

Resampling is seen to be a major step in particle filtering algorithms as most par-

ticle filters developed suffer from sample impoverishment [15]. Hence, a major effort

has been put to make the resampling step more robust to increase diversity amongst

particles. Hence particle filters like regularized particle filter and MCMC Move step

particle filters have been developed, which use better resampling techniques. But par-

ticle filters, being a simulation based method suffer from the curse of dimensionality,

i.e. the computational cost increases exponentially with increase in state dimension

[22]. To solve this problem, particle filters based on Rao-Blackwellization have been

developed to partially solve the estimation problem analytically [23]. A description



25

of the SMC techniques commonly in use can be found in ref. [15].

C. A Simple Example

We consider a Duffing oscillator system with dynamics and the discrete measurements

given by the equations,

ẍ(t) = −x(t)− 1

4
x(t)3 − ẋ(t) + w(t) (2.27a)

ỹk = x2
k + ẋ2

k + vk (2.27b)

where w(t) and v(t) are zero mean process noise with autocorrelation Q = 6× 10−2

and R = 6× 10−1, respectively. The initial states of the system are assumed to have

Gaussian PDF with mean and covariance as [1, 1] and diag(1, 1), respectively.

Figure 1 shows plots for estimation error and ±3σ limits for EKF, UKF and

particle filter (PF), when used to estimate states of the system in Eqn. (2.27a)

& Eqn. (2.27b). The solid line represents error in estimation, i.e. how close are

the estimated states to the actual states of the system. The dashed lines represent

±3σ confidence intervals or ±3σ limits. This refers to the confidence level of the

estimated states. It says that the estimation algorithm is 6σ percent confident that

the estimation error will lie within the limits. For a Gaussian distribution, this is a

very high number which is equal to 97.3% [73] . Hence, normal intuition suggests

that the estimation error should lie within the ±3σ limits if the PDF propagation is

assumed to be Gaussian. However, if Gaussian propagation is not assumed, the plots

can be inconclusive in some cases.

In Fig. 1, we assume that the update interval of each measurement is 0.1s. We

observe that the errors are within ±3σ limits, hence we can conclude that all the three

filters are successful in prediction of uncertainty. Moreover we can see that the ±3σ
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(a) EKF. (b) UKF.

(c) Particle filter.

Fig. 1.: Plot of estimation errors and ±3σ limits for a) EKF b) UKF c) particle filter

for the system in Eqn. (2.27a) & Eqn. (2.27b). The solid lines are estimation errors

and the dashed lines are ±3σ limits.



27

limits and estimation error of the PF converge faster than EKF and UKF. Hence for

the given system PF is superior than EKF or UKF. This is because of the dynamics

is nonlinear and the evolution of PDF is non-Gaussian.

In Fig. 2, we increase the update interval to 0.3s. We can see that the perfor-

mance of PF is better than EKF and UKF. The poor performance of EKF and UKF

is more conspicuous in this case as the linear Gaussian assumption doesn’t hold for

sufficiently long propagation times. Hence for a nonlinear system where PDF evo-

lution is Gaussian particle filters perform the best. This is in agreement with the

theory about sequential state estimation.

As mentioned earlier, ±3σ limits do not provide conclusive evidence of efficacy of

an estimation algorithm if the PDF evolution is non-Gaussian. In such cases Cramer-

Rao bounds can be used as a metric to judge their effectiveness [9]. Cramer-Rao lower

bound (CRLB) gives us a bound for covariance minimization of an estimation algo-

rithm. It says that, given a suboptimal estimation algorithm, minimizing variance,

the posterior variance of that algorithm is lower bounded by CRLB. So better the

estimation algorithm closer the minimum variance solution is to CRLB. In Fig. 3 we

plot the square root of the difference between the Cramer-Rao lower bounds and the

variance for each estimator compared in this section for the system in Eqn. (2.27a) &

Eqn. (2.27b). Clearly it can be seen that PF has a smaller difference than the other

estimators assuming Gaussian PDF evolution. This shows the suitability of PF in a

nonlinear non-Gaussian estimation setting.

D. Summary of the Chapter

In this chapter, we have introduced sequential state estimation techniques for linear

and nonlinear systems, assuming both Gaussian and non-Gaussian PDF evolution.
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(a) EKF. (b) UKF.

(c) Particle filter.

Fig. 2.: Plot of estimation errors and ±3σ limits for a) EKF b) UKF c) particle filter

for the system in Eqn. (2.27a) & Eqn. (2.27b). The measurement update interval is

0.3s. The solid lines are estimation errors and the dashed lines are ±3σ limits.



29

Fig. 3.: Plot of square root of difference between evolving variance of each state and

CRLB. The solid line is EKF the starred line is UKF and the dashed line is particle

filter.



30

We have shown through an example that nonlinear non-Gaussian estimation tech-

niques are better for systems which are nonlinear in nature. In the following chap-

ters, we will discuss about the estimation algorithms proposed in this dissertation.

For the sake of comparison, we will continuously refer to the algorithms described in

this chapter, and show how the proposed algorithms perform when compared to the

estimation techniques described in this chapter.
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CHAPTER III

POLYNOMIAL CHAOS∗

Polynomial chaos (PC) is a parametric method based on using orthogonal functionals

to represent random processes that are solutions of dynamic systems with uncertain-

ties. It utilizes families of orthogonal polynomials, which we will refer to as polynomial

chaoses, to approximate the both the functions of random variables which appear in

the equations of motion for a dynamic system as well as the actual solution. In this

chapter, we define the structure of these orthogonal polynomials and present some of

their properties, which will be applied to estimate states of dynamical systems having

uncertainty.

A. Generalized Polynomial Chaos Theory

Let (Ω,F ,M) be a probability space, where Ω is the sample space, F is the σ-algebra

of the subsets of Ω, andM is the probability measure. Let ∆(ω) = (∆1(ω), · · · ,∆d(ω)) :

(Ω,F) → (Rd,Bd) be an Rd-valued continuous random variable, where d ∈ N,

and Bd is the σ-algebra of Borel subsets of Rd. A general second order process

X(ω) ∈ L2(Ω,F ,M) can be expressed in polynomial chaos framework as

X(ω) =
∞∑
i=0

xiφi(∆(ω)), (3.1)

where ω is the random event and φi(∆(ω)) denotes the generalized polynomial chaos

(gPC) basis function of degree i, in terms of the random variables ∆(ω). Henceforth,

∆ will be use to represent ∆(ω).

∗Reprinted from “Nonlinear Estimation of Hypersonic State Trajectories in
Bayesian Framework with Polynomial Chaos” by P. Dutta, R. Bhattacharya, 2010.
AIAA Journal of Guidance Control and Dynamics , vol. 33, no. 6, pp. 1765–1778,
Copyright [2010] by P. Dutta & R. Bhattacharya.
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1. Wiener-Askey Orthogonal Polynomials

To approximate a stochastic process, a set of orthogonal polynomials will be employed.

In this section, we will present an overview of how to generate such polynomials for

the gPC framework. Given the random variable ∆ with probability density function

(PDF), p(∆), let v = [1,∆,∆2, . . . ,∞]T . The family of orthogonal basis functions

{φi(∆)} are given by,

φ0(∆) = v0 (3.2a)

φi(∆) = vi −
i−1∑
k=0

〈vi, φk(∆)〉
〈φk(∆), φk(∆)〉

φk(∆) i = 1, . . . ,∞, (3.2b)

where

〈φi, φj〉 =

∫
D∆

φiφjp(∆) d∆, (3.3)

where 〈·, ·〉 denotes the inner product with respect to the weight function p(∆), and

D∆ is the domain of the random variable ∆. Note that the weight function for the

inner product here is same as the PDF of ∆.

For example, we take a scalar case i.e. d = 1, let the PDF of ∆ be a standard

normal PDF, then

p(∆) =
1

(2π)
e−

1
2

∆T∆,

where ∆ ∈ R. To find the orthogonal polynomials {φi(∆)}∞i=1, we need to employ the
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scheme given in Eqn. (3.2a) & Eqn. (3.2b). Hence,

φ0(∆) = 1

φ1(∆) = ∆− 〈∆, 1〉
〈1, 1〉

× 1 = ∆

φ2(∆) = ∆2 − 〈∆
2, 1〉
〈1, 1〉

× 1− 〈∆
2,∆〉

〈∆,∆〉
×∆ = ∆2 − 1

...

φi(∆) = ∆i −
i−1∑
k=0

〈∆i, φk(∆)〉
〈φk(∆), φk(∆)〉

× φk(∆).

The procedure in Eqn. (3.2a) & Eqn. (3.2b) is the classical Gram-Schmidt Orthog-

onalization [86]. The orthogonal polynomials thus obtained are the members of the

Askey-scheme of polynomials [30], which form a complete basis in the Hilbert space

determined by their corresponding support. Table II summarizes the correspondence

between the orthogonal polynomials for a given PDF of ∆ [29].

Table II.: Correspondence between choice of polynomials and given distribution of ∆

(Xiu and Karniadakis, 2002)

PDF of ∆ φi(∆) of the Wiener-Askey Scheme

Gaussian Hermite

Uniform Legendre

Gamma Laguerre

Beta Jacobi
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B. Approximation of the Solution of Ordinary Differential Equations with Uncer-

tainty

A dynamical system of the form ẋ = f(x,∆), where x ∈ Rn and random variable

∆ ∈ Rd, representing uncertainty in initial states and parameters, can be solved in the

gPC framework in the following manner. Assume solution of the differential equation

to be x(t,∆). For second order processes, the solution for every component of x ∈ Rn

can be approximated as

x̂i(t,∆) =
N∑
j=0

xij(t)φj(∆); i = 1, · · · , n. (3.4)

The above series is truncated after N+1 terms, which is determined by the dimension

d of ∆ and the order r of the orthogonal polynomials {φj}, satisfying N + 1 =

(d+r)!/d!r!. This expression gives the number of terms in a sequence of multi-variate

polynomials up to order r with d variables.

Substituting the approximate solution into equation of the dynamical system

results in errors which are given by,

ei = ˙̂xi − fi(x̂,∆); i = 1, · · · , n.

The approximation in Eqn. (3.4) is optimal in the L2 sense when the projection of

the errors on the orthogonal basis functions are zero, i.e.,

〈ei(t,∆), φj(∆)〉 = 0, (3.5)

for j = 0, · · · , N ; i = 1, · · · , n. Equation (3.5) results in the following n(N + 1)

deterministic ordinary differential equations

ẋik =

∫
D∆

f
(∑N

j=0 xij(t)φj(∆),∆
)
φk(∆)p(∆)d∆∫

D∆
φ2
k(∆)p(∆)d∆

, (3.6)
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for i = 1, · · · , n and k = 0, · · · , N . Therefore, the uncertain dynamics in Rn

has been transformed into deterministic dynamics in Rn(N+1). Let us represent

Xpc = [x10 · · · x1N x20 · · · x2N · · ·xn0 · · · xnN ]T . Then Eqn. (3.6) can be written

in a compact form as

Ẋpc = Fpc(Xpc), (3.7)

where Fpc(Xpc) represents the right hand side of Eqn. (3.6). Equation (3.7) can be

solved using algorithms for ordinary differential equation, to obtain the approximate

stochastic response of the system under consideration.

This method of obtaining Eqn. (3.7) through Eqn. (3.6) is referred to as intrusive

method, and is difficult to compute when f(x̂,∆) is a non-polynomial function [87].

For such cases, it is better to apply gPC on a suitable polynomial approximation of

f(x̂,∆).

1. Getting the Moments of the States

Given the gPC expansion we can get the moments of the states of the dynamical

system using the gPC coefficients. For example, using gPC, the mean of any state is
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given by,

E [x(t)] =

∫
D∆

x(t,∆)p(∆)d∆

⇒ E [x(t)] =

∫
D∆

N∑
i=1

xi(t)φi(∆)p(∆)d∆

=
N∑
i=1

xi(t)

∫
D∆

φi(∆)p(∆)d∆

⇒ E [x(t)] = [x1, x2, . . . , xN ]



〈φ1(∆)〉

〈φ2(∆)〉
...

〈φN(∆)〉


. (3.8)

We use a similar methodology to get the second moment of the states.

E
[
x(t)2

]
=

∫
D∆

x2(t,∆)p(∆)d∆

⇒ E
[
x(t)2

]
=

∫
D∆

N∑
i=1

N∑
j=1

xi(t)xj(t)φi(∆)φj(∆)p(∆)d∆

=
N∑
i=1

N∑
j=1

xi(t)xj(t)

∫
D∆

φi(∆)φj(∆)p(∆)d∆

⇒ E
[
x(t)2

]
= [x1(t), . . . xN(t)]



〈φ1(∆)φ1(∆)〉 . . . 〈φ1(∆)φN(∆)〉

〈φ2(∆)φ1(∆)〉 . . . 〈φ2(∆)φN(∆)〉
...

. . .
...

〈φN(∆)φ1(∆)〉 . . . 〈φN(∆)φN(∆)〉




x1(t)

...

xN(t)

 .

(3.9)

The third and higher order moments of the states can be found similarly using the

gPC coefficients, and the inner product of basis functions. Comprehensive derivation

of moments with explanation of each step can be found in [88].
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2. A Simple Example

We will now show, using an example, how gPC is used to solve ordinary differential

equations with uncertainty. Let us consider a Duffing oscillator with the following

dynamics,

ẋ1 = x2 (3.10)

ẋ2 = −x1 −
1

4
x2 − x3. (3.11)

Let the above dynamical system have initial state uncertainty, ∆ := [x1(t = 0), x2(t = 0)]

with PDF p(∆). Let the orthogonal polynomials found using Eqn. (3.2a) & Eqn.

(3.2b) be φi(∆). Then the states at any time t can be represented in gPC framework

as

x1(t) =
N∑
i=1

x1i(t)φi(∆) (3.12a)

x2(t) =
N∑
i=1

x2i(t)φi(∆). (3.12b)

Substituting the expressions in Eqn. (3.12a) & Eqn. (3.12b) in Eqn. (3.10) & Eqn.

(3.11), we get

N∑
i=1

ẋ1i(t)φi(∆) =
N∑
i=1

x2i(t)φi(∆) (3.13a)

N∑
i=1

ẋ1i(t)φi(∆) =−
N∑
i=1

x1i(t)φi(∆)− 1

4

N∑
i=1

x2i(t)φi(∆)−

N∑
j=1

N∑
k=1

N∑
l=1

x1j(t)x1k(t)x1l(t)φj(∆)φk(∆)φl(∆). (3.13b)
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Taking inner product with respect to φi(∆) in both sides of Eqn. (3.13a) and Eqn.

(3.13b) and using orthogonality of φi(∆) we have

ẋ1i(t) =x2i(t) ∀i = 1, 2, . . . , N (3.14a)

ẋ2i(t) =− x1i(t)−
1

4
x2i(t)−

N∑
j=1

N∑
k=1

N∑
l=1

x1j(t)x1k(t)x1l(t)〈φj(∆)φk(∆)φl(∆), φi(∆)〉

〈φi(∆), φi(∆)〉

∀i = 1, 2, . . . , N. (3.14b)

Equation (3.14a) & Eqn. (3.14b) constitute the gPC dynamical system we used

during propagation.

For the Duffing oscillator in Eqn. (3.10) & Eqn. (3.11), we assume that the

initial states follows a standard Normal distribution (µ(t = 0) = [0, 0], Σ(t = 0) =

diag(1, 1)). We plot the mean and variance of the states obtained from gPC and from

linearized dynamics. The state transition matrix of linearized system is given by

A =

 0 1

−1− 3x2
2 −1/4

 .
The linearized mean (µ) and covariance (Σ) propagation equations are given by,

µ̇(t) = Aµ(t) (3.15a)

Σ̇(t) = AΣ(t) + Σ(t)A, (3.15b)

where

µ =

 E [x1]

E [x2]

 Σ =

 E [x2
1]− E [x1]2 E [x1x2]

E [x1x2] E [x2
2]− E [x2]2

 .
We compare the results obtained after application of gPC and propagation of lin-

earized dynamics, to Monte Carlo (MC) simulations. Figure 4 shows the plots for
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(a) Mean. (b) Variance.

Fig. 4.: Plots for a) mean b) variance of the Duffing oscillator in Eqn. (3.10) & Eqn.

(3.11) obtained from gPC scheme (solid) and Monte Carlo (dashed) and linearized

dynamics (star-solid) simulations.

evolution of mean and covariance. It can be seen that results for gPC and MC match

closely, whereas the for the linearized dynamics, results diverge from that obtained

from MC simulations. Hence, it can be concluded that gPC scheme effectively cap-

tures the evolution of uncertainty in the given nonlinear system.

C. Nonlinear State Estimation Using Polynomial Chaos and Higher Order Moments

Update

Let us consider a nonlinear dynamical system being measured by a nonlinear mea-

surement model. The states are given by x ∈ Rn and the measured outputs are,

ỹ ∈ Rm. The dynamics is governed by,

ẋ = f(x,∆), (3.16a)

ỹ = h(x) + ν, (3.16b)
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where ν is the measurement noise with ν ∼ N (0, R). The random parameters can

be written as ∆ = [∆x0 ∆ρ]
T , where ∆x0 represents initial state uncertainty and ∆ρ

represents uncertainty in system parameters. Let p(∆) be the distribution of ∆.

Estimation algorithms have essentially two steps, the propagation phase and the

update phase. It is assumed that p(∆) is stationary during the propagation phase.

However, the distribution of x(t,∆) will not be stationary due to the dynamics.

Therefore, the distribution of ∆x0 will change after every update phase. The dis-

tribution of ∆ρ will typically not change at all, unless updated externally. Without

loss of generality, here will will consider that the system has only initial state uncer-

tainty. Let us also assume that the measurement updates are available at discrete

time tk, tk+1, . . ..

1. Step 1: Initialization of State

Given the probability density function of the parameters pk(∆) at time tk, the initial

condition for Xpc(tk) at tk can be obtained using the following equation

xij(tk) =

∫
D∆

∆x0i
φj(∆)pk(∆)d∆ for i = 1, · · · , n; j = 0, · · · , N, (3.17)

where ∆x0 = x(tk,∆). The symbol ∆x0i
represents the ith component of ∆x0 , which

is the random variable associated with initial condition uncertainty.

2. Step 2: Propagation of Uncertainty and Computation of Prior Moments

With initial condition defined by Eqn. (3.17), the system in Eqn. (3.7) is integrated

over the interval [tk, tk+1] to obtain Xpc(tk+1), i.e.

Xpc(tk+1) = Xpc(tk) +

∫ tk+1

tk

Fpc(Xpc(τ))dτ. (3.18)
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The moments of the random process x(t,∆) at t = tk+1 can be computed from

Xpc(tk+1) as follows. An outline of the derivation of the moments can be found in the

previous section.

M1−
i = xi0, (3.19a)

M2−
ij =

N∑
p=0

N∑
q=0

xipxjq〈φpφq〉, (3.19b)

M3−
ijk =

N∑
p=0

N∑
q=0

N∑
r=0

xipxjqxkr〈φpφqφr〉, (3.19c)

M4−
ijkl =

N∑
p=0

N∑
q=0

N∑
r=0

N∑
s=0

xipxjqxkrxls〈φpφqφrφs〉, (3.19d)

and so on; for i, j, k, l = 1, · · · , n. In the above equations xij := xij(tk+1) and M i−

represents the ith prior moment at tk+1. The inner products of the basis functions are

computed with respect to pk(∆), i.e.

〈φpφqφrφs〉 =

∫
D∆

φp(∆)φq(∆)φr(∆)φs(∆)pk(∆)d∆.

3. Step 3: Update Phase

We incorporate the measurements ỹ := ỹ(tk) and the prior moments M i− to get the

posterior estimates of the moments, M i+. Here we consider the prior state estimate x̂−

to be the expected value of x(t,∆) at tk+1, i.e. x̂− = M1− = E [x]. Also, ŷ− = h(x̂−).

Let

v = ỹ − h(x̂−) = h(x) + ν − h(x̂−).

Using the approach used by Julier et al. [89, 90] and Park et al. [91], we use a linear

Kalman gain K to update the moments. Although updates with nonlinear gains are

also possible, but they were not considered in this dissertation. Linear update law

has also been used by Majji et al. [92] in their design of nonlinear estimators using
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higher order moment updates. The Kalman gain K is computed as

K = P xv(P vv)−1, (3.20)

where P xv
ij = E

[
xiv

T
j

]
and P vv

ij = E
[
viv

T
j

]
. This gain is optimal in the minimum

variance sense. The update equations for the moments are therefore given by,

M1+ = M1− +Kv (3.21a)

M2+ = M2− −KP vvKT (3.21b)

M3+ = M3− + 3K2P xvv − 3KP xxv −K3P vvv (3.21c)

M4+ = M4− − 4KP xxxv + 6K2P xxvv − 4K3P vvvx +K4P vvvv. (3.21d)

The work of Majji et al. [92] and Julier et al. [89], contains complete derivations of

these formula. The fifth and higher order moment update equations can be computed

in a similar fashion, using appropriate prior moments and Kalman gain [89, 92].

The tensors P xv, P vv, P xvv, P xxv, P vvv, P xxvx, P xxvv, P vvvx, and P vvvv can be com-

puted in terms of the gPC coefficients. Here we only the derivations for P xv and P vv,

the other tensors can be calculated in a similar manner. Using this derivation process,

the higher order tensors can be computed very easily. The expressions for P xv and

P vv are

P xv = E
[
(x− x̂)(ỹ − ŷ)T

]
= E

[
xỹT

]
− x̂E

[
ỹT
]

= E
[
x(h(x) + ν)T

]
− x̂E

[
(h(x) + ν)T

]
= E

[
xhT (x)

]
− x̂E

[
hT (x)

]
=

∫
D∆

(∑
i

xiφi(∆)

)
hT

(∑
j

xjφj

)
pk(∆)d∆

−x̂
∫
D∆

hT

(∑
j

xjφj(∆)

)
pk(∆)d∆, (3.22)
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where xi = [x1i x2i · · · xni]T . Similarly,

P vv =

∫
D∆

h

(∑
j

xjφj(∆)

)
hT

(∑
j

xjφj(∆)

)
pk(∆)d∆ +R− ŷŷT . (3.23)

The above expressions for P xv and P vv are dependent on the output function

h(x). If h(x) is polynomial function, the above expressions become functions of M i−.

This is shown through an example in a later section, where we consider the output

equation h(x) = xTx. When h(x) is a transcendental function, computation of the

above integrals cannot be performed directly. One approach would be to expand

h(x) about E [x] in terms of the perturbations, using Taylor series expansion [87],

and obtain a polynomial approximation of h(x). While Taylor series approximation

is straightforward and generally computationally cost effective, it becomes severely

inaccurate when higher order gPC expansions are required to represent the physical

variability [87]. For example, a 5th order Taylor series approximation using 3rd order

gPC expansion would require tensor products of six 3rd order basis functions. This

will result in 18th order polynomials. This will increase if higher order Taylor series

or gPC expansions are used to obtain better approximations. It is well known that

computation of higher order polynomials using finite significant digits representation

of real numbers have associated numerical errors. At the same time, for many non-

linear functions this Taylor series approximation is limited by the theoretical range

of convergence Taylor series. To tackle the problem of inaccuracies in the evaluation

of transcendental functions, using Taylor series expansions, a more robust algorithm

is presented by Debusschere et al. [87]. This method is valid for any non polynomial

function u(ξ) for which du/dξ can be expressed as a rational function of ξ, u(ξ). The

same issues are encountered with f(x,∆), which defines the dynamics of the system.
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4. Step 4: Estimation of Posterior Probability Distribution

After the update step, we only have the moments of the of the posterior PDF, pk+1(∆)

at time tk+1. Hence it is difficult to estimate pk+1(∆), except when Gaussian behavior

is assumed [93]. In this estimation algorithm, the posterior PDF, is determined using

maximum entropy estimation theory, subject to constraints defined by the posterior

moments M i−. This is the solution of the following optimization problem,

J := max
pk+1(∆)

−
∫
D∆

pk+1(∆) log(pk+1(∆)) d∆, (3.24)

subject to

C1 :=

∫
D∆

∆pk+1(∆) d∆ = M1+, (3.25a)

C2 :=

∫
D∆

Q2(∆)pk+1(∆) d∆ = M2+, (3.25b)

C3 :=

∫
D∆

Q3(∆)pk+1(∆) d∆ = M3+, (3.25c)

and so on. The symbols Qi(∆) are tensors of polynomials defining the moments cor-

responding to M i+. The functional space of pk+1(∆) is approximated using Gaussian

mixture models (GMM) [80]. GMM are dense in the space of continuous functions

and a sufficiently large mixture can exactly approximate pk+1(∆) [94]. In general,

any parameterization of pk+1(∆) is possible, which is known under the name of kernel

density estimation [95]. Under GMM approximation, pk+1(∆) is parameterized as
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pk+1(∆) =
M∑
i=1

αiN (µi,Σi), (3.26)

with αi ∈ R, µi ∈ Rn, Σi = ΣT
i ∈ Rn×n and Σi ≥ 0. For computational simplicity, Σi

is assumed to be diagonal, i.e. Σi = diag(σi1 · · · σin). For pk+1(∆) to be a PDF the

following constraints need to be satisfied:∫
D∆

pk+1(∆)d∆ = 1⇒
M∑
i

αi = 1, (3.27)

pk+1(∆) ≥ 0⇒ αi ≥ 0. (3.28)

Equation (3.27) and Eqn. (3.28) together implies

0 ≤ αi ≤ 1. (3.29)

With GMM approximation of pk+1(∆), the integrals in Eqn. (3.24) and Eqn. (3.25a)

through Eqn. (3.25c) can be analytically computed and expressed in terms of the

unknowns αi, µi and Σi. For a given term in the summation in Eqn. (3.26), and

for x ∈ R3, the cost function Ji and the constraints Ci,j, are given by the following

expressions.
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Ji = αi(log(2)− log(αi) + log(σi1) + log(σi2) + log(σi3) + log(π) + 1)

Ci,1 = µi1αi,

Ci,2 = µi2αi,

Ci,3 = µi3αi,

Ci,4 = µ2
i1αi + αiσ

2
i1,

Ci,5 = µi1µi2αi,

Ci,6 = µ2
i2αi + αiσ

2
i2,

Ci,7 = µi1µi3αi,

Ci,8 = µi2µi3αi,

Ci,9 = µ2
i3αi + αiσ

2
i3,

Ci,10 = µ3
i1αi + 3µi1αiσ

2
i1,

Ci,11 = µ2
i1µi2αi + µi2αiσ

2
i1,

Ci,12 = µi1µ
2
i2αi + µi1αiσ

2
i2,

Ci,13 = µ3
i2αi + 3µi2αiσ

2
i2,

Ci,14 = µ3
i3αi + 3µi3αiσ

2
i3,

Ci,15 = µi1µ
2
i3αi + µi1αiσ

2
i3,

Ci,16 = µi2µ
2
i3αi + µi2αiσ

2
i3,

Ci,17 = µ2
i1µi3αi + µi3αiσ

2
i1,

Ci,18 = µi3µ
2
i2αi + µi3αiσ

2
i2,

Ci,19 = µi3µi2µi1α

The expressions in the above equations can also be obtained analytically for

x ∈ Rn. The number of constraints Ci,j needed for x ∈ Rn, is given by the following
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expression.

dim(Ci,j) =
3∑

k=1

(
n+ k − 1

k

)
∀i = 1, · · · ,M (3.30)

Detailed derivation of the above formula has been omitted here, and can be found in

the literature [96].

If the moments are represented in column form as,

M1+ = [M1+
1 ,M1+

2 ,M1+
3 ]T

M2+ = [M2+
11 , · · · ,M2+

13 ,M
2+
21 , · · · ,M2+

23 , · · · ]T

M3+ = [M2+
111, · · · ,M3+

113,M
3+
121, · · · ,M3+

123,M
3+
131, · · · ,M3+

133, · · · ]T .

The cost J in Eqn. (3.24) and constraints Cj in Eqn. (3.25a) through Eqn. (3.25c)

are given by,

J =
M∑
i=1

Ji

C1 :=
M∑
i=1

Ci,j = M1+
j j = 1, · · · , 3

C2 :=
M∑
i=1

Ci,j = M2+
j−3 j = 4, · · · , 9

C3 :=
M∑
i=1

Ci,j = M3+
j−9 j = 10, · · · , 19.

It can be seen that the cost function is convex in αi and concave in σij. The

constraints are convex in αi and σij, and not all the constraints are convex in µij.

The problem can be made convex by restricting µij ≥ 0, which will require affine

transformation of the state variables and rewriting the dynamics and output equation

in terms of the new variables. The optimization problem, as presented here, can also

be solved as a nonlinear programming problem.
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5. Step 5: Generation of Basis Functions

Once pk+1(∆) has been estimated using GMM approximations, the basis functions

{φi(∆)} need to be generated so that they are orthogonal with respect to the new

probability density function. If {φi(∆)} are orthogonal, the gPC approximations

have exponential convergence and thus are optimal. For any other basis functions,

the approximation is worse than optimal. However, for some applications use of the

same basis functions for all the time steps may provide acceptable results. We use

the Gram-Schmidt procedure to generate the set of basis functions {φi(∆)} that are

orthogonal with respect to pk+1(∆). Consequently, all the inner products, in the es-

timation algorithm presented, need to be recomputed at every time step.

The estimation algorithm proceeds by repeating steps one to five as described

above.

D. Nonlinear Estimation Using Polynomial Chaos and Update Using Bayesian In-

ference

The estimation algorithm presented in th previous section was based on updating

higher order moments and estimating the posterior PDF. Since, the prior moments

is available, we can directly estimate the prior PDF from moments and then use

Bayesian inference to get the posterior PDF.

In section we use the Bayesian inference to develop the nonlinear estimation al-

gorithm using polynomial chaos theory. At time tk+1, let xk+1(∆) be the random

variable associated with the state, let x̂k+1 be the state estimate and ỹk+1 be the

measurement. The objective is to incorporate ỹk+1 to determine x̂k+1 , using the

classical Bayesian approach (pg. 377, in ref.[97]). In this framework we first calculate
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p(ỹk+1|xk+1(∆) = x̂k+1), the conditional probability density function of ỹk+1 , given

the current state estimate x̂k+1. This function is the likelihood function. Next,we find

the conditional PDF of the state, given ỹk+1, i.e. p(xk+1(∆)|ỹk+1), which is the poste-

rior PDF, from the prior PDF and the likelihood function. The state estimate x̂k+1 is

then determined using the maximum likelihood, minimum-variance or minimum error

criterion from p(xk+1(∆)|ỹk+1). The algorithm in the context of polynomial chaos is

described next.

1. Step 1: Initialization of State and Propagation of Uncertainty

The first two steps in the Bayesian estimation algorithm using polynomial chaos

theory is the same as the previous algorithm. Given the PDF pk(∆), the initial

states for Xpc(tk) are determined using Eqn. (3.17) . The propagation of uncertainty

is achieved by integrating the system in Eqn. (3.7) over the interval [tk, tk+1] to

obtain Xpc(tk+1). With Xpc(tk+1), higher order moments are obtained as described in

the previous algorithm. With these moments, the prior probability density function

pk+1−(∆) is determined using the Gaussian mixture model, also as described in the

previous algorithm. Polynomial chaos is used only to determine pk+1−(∆). The

following steps are standard steps in Bayesian estimation and have been presented

here for completeness.

2. Step 2: Calculating the Posterior Probability Density Function

First, the likelihood function p(ỹk+1|xk+1(∆) = x̂k+1), is constructed assuming Gaus-

sian measurement noise and the sensor model as shown in Eqn. (3.16a) & Eqn.

(3.16b). It is defined as

p(ỹk+1|xk+1(∆) = x̂k+1) =
1√

(2π)m|R|
e−

1
2

(ỹk+1−h(x̂k+1)TR−1(ỹk+1−h(x̂k+1), (3.31)
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where |R| is the determinant of measurement noise covariance matrix.

The posterior probability density function of the states is determined next.

It is given by the density function of the states given the current measurement,

p(xk+1(∆)|ỹk+1). Using the classical Bayes rule we can write it as,

p(xk+1(∆)|ỹk+1) =
p(ỹk+1|xk+1(∆) = x̂k+1)pk+1−(∆)∫

D∆

p(ỹk+1|xk+1(∆) = x̂k+1)pk+1−(∆)d∆
, (3.32)

where pk+1−(∆) is the prior PDF.

3. Step 3: Getting the State Estimate

Depending on the criterion function for state estimation, we can compute the estimate

x̂k+1 from p(xk+1(∆)|ỹk+1) The commonly used criterion are:

1. Maximum likelihood estimate: maximize the probability that x̂k+1 = xk+1(∆).

This translates to,

x̂k+1 = mode of p(xk+1(∆)|ỹk+1).

2. Minimum variance estimate, which translates to,

x̂k+1 = min
xk+1(∆)

∫
D∆

||xk+1(∆)− x̂k+1| |p(xk+1(∆)|ỹk+1)d∆ = E [xk+1(∆)] .

3. Minimum error estimate, which translates to,

x̂k+1 = min
xk+1(∆)

sup |xk+1(∆)− x̂k+1| = median of p(xk+1(∆)|ỹk+1).
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4. Step 4: Regeneration of Basis Functions

With pk+1(∆) := p(xk+1(∆)|ỹk+1), the basis functions {φi(∆)} should be generated

so that they are orthogonal with respect to the new PDF. This step is identical to

Step 5, in the previous algorithm. The estimation algorithm proceeds by repeating

steps one to four as described above.

Here, two algorithms have been proposed based on gPC, which differ in their

update methodology. Flowcharts of the PC based estimation algorithms are shown

in Fig. 5.

E. Application to Duffing Oscillator

We apply the estimation algorithm presented here to the classical Duffing oscillator.

It is a two state system, x = [x1, x2]T , whose dynamical equations are given by Eqn.

(3.10) & Eqn. (3.11). After application of gPC scheme on the dynamical system, the

gPC dynamical system is given by Eqn. (3.14a) & Eqn. (3.14b).

In this example, we consider initial condition uncertainty in x with Gaussian

distribution, i.e. ∆x0 ∼ N (µ,Σ). We use a scalar measurement model for the Duffing

oscillator which is given by

ỹ = xTx+ ν, (3.33)

with E [ν] = 0 and E
[
ννT

]
= 0.006. First, we will show results when we apply higher

order moments update. Results for the estimation algorithm using Bayesian inference

will be discussed next.

1. Results for Estimation with Higher Order Moments Update

In this example we update up to third order moments. Therefore, we only need

to compute the tensors P xv, P vv, P xvv, P xxv, P vvv, which for this system are given in
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(a) Estimation with higher order moments update.

(b) Estimation using Bayesian inference.

Fig. 5.: Flowchart of polynomial chaos based estimation algorithms.
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Fig. 6.: Evolution initial condition uncertainty for Duffing oscillator. Probability

density functions were obtained using high fidelity Monte Carlo simulations.

Appendix C, Eqn. (C.1).

The prior moments M i−, for i = 1, · · · , 6 are computed from the gPC coefficients

Xpc and the probability density function pk(∆). Using the tensors P xv, P vv, P xvv, P xxv, P vvv,

we obtain the posterior moments M i+, for i = 1, 2, 3, and subsequently obtain the

estimate of the PDF for the next time step, i.e. for pk+1(∆). In this example, we

solved the associate optimization problem as a nonlinear programming problem, using

SNOPT [98]. In our future work we will solve this problem in the convex optimization

framework.

Figure 6 shows the evolution of initial condition uncertainty for the Duffing

oscillator. We can observe that the probability density function for the state evolve

in a non Gaussian manner. Intuitively, we can say that Gaussian assumption of PDF

will not perform well here.

Figure 7 and Fig. 8 illustrate the performance of the EKF based estimator and

the proposed gPC based estimator. The true initial condition for the system is taken

to be [2 2]T and the uncertainty is assumed to be Gaussian with µ = [1 1]T and
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(a) EKF based estimator with 0.2s update. (b) EKF based estimator with 0.3s up-
date.

Fig. 7.: Performance of EKF estimators. Dashed lines represent ±3σ limits and the

solid line represents error in estimation.

Σ = diag(1, 1). Therefore, the initial error in the state estimation is [1 1]T . Figure

7a shows the performance of the EKF based estimator with 0.2 seconds measurement

update. We observe that the errors in estimates go to zero rapidly. However, when

the measurement update interval is increased to 0.3 seconds, the EKF based estimator

performs poorly and the errors do not converge to zero. Figure 8a shows the plots

of the estimator when gPC theory is used to propagate the uncertainty and only the

first two moments are updated, using standard Kalman update law. We observe that

this combination achieves better results than the EKF estimator but is inconsistent

as the errors escape the ±3σ bounds. Figure 8b shows the performance of the gPC

based estimator with third order moment updates, performed every 0.5 seconds. We

observe that errors in the estimates converge to zero rapidly and are within the

±3σ bounds. The EKF based estimator for this case diverges. This highlights the

importance of using nonlinear dynamics for uncertainty propagation along with higher

order moments update for solving nonlinear estimation problems.
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(a) gPC based estimator with first two moments updated every 0.3s.

(b) gPC based estimator with first three moments updated every 0.5s.

Fig. 8.: Performance of gPC estimators. Dashed lines represent ±3σ limits and the

solid line represents error in estimation.
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2. Results for Estimation Using Bayesian Inference

In this section we discuss the results of the application of estimation algorithm that

uses Bayesian inference for update, to the Duffing oscillator in Eqn. (3.10) & Eqn.

(3.11). The true initial states of the system were taken to be [2.5, 2.5]. The initial

state uncertainty was assumed to be Gaussian with mean and covariance matrix given

by

µ =

 1

1

 Σ2 =

 3 0

0 3

 .
Hence, the initial error in estimation and the initial state uncertainty is larger than the

previous case. Time between each measurement update was taken to be 1s. Figure 9

shows plots for estimation error and ±3σ bounds for minimum covariance, maximum

likelihood and minimum error estimators, and EKF based estimator. It can be seen

that for the PC based estimators, errors converge and are within the ±3σ limits,

whereas for EKF errors diverge and escape outside the ±3σ bounds.

F. Application to Hypersonic Reentry

We apply the estimation algorithm, that uses Bayesian inference for PDF update, to

reentry of a hypersonic vehicle in the atmosphere of Mars. We assume only longi-

tudinal motion of the reentry vehicle here. The simplified dynamics of reentry are

represented by Vinh’s equation [99], in three states - the distance from planet’s cen-

ter r, velocity v, and the flight-path angle γ, or x = [r v γ]T . The equations can be
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(a) Minimum covariance estimator.

(b) Maximum likelihood estimator.

Fig. 9.: Plots for time (x-axis) vs. ±3σ limits (dashed lines) and estimation error

(solid lines) (y-axis) for gPC based estimators and EKF based estimator.
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(c) Minimum error estimator.

(d) EKF based estimator.

Fig. 9.: Continued.
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Table III.: Explanation and values of the constants for Martian atmosphere (Sengupta

and Bhattacharya, 2008)

Description of Constants Value

Radius of Mars Rm = 3397× 103 m

Acceleration due to Gravity of Mars g = 3.71 m/s2

Ballistic Coefficient of the Vehicle Bc = 72.8 kg/m2

Lift-to-Drag Ratio of the Vehicle L
D

= 0.3

Density at the Surface of Mars ρ0 = 0.0019 kg/m3

Scale Height for Density Computation h1 = 9.8 km h2 = 20 km

Escape Velocity of Mars vc = 5.027 km/s

written as

ṙ = vsin(γ) (3.34a)

v̇ = − ρv
2

2Bc

− gsin(γ) (3.34b)

γ̇ =
(v
r
− g

v

)
cos(γ) +

ρ

2Bc

(
L

D

)
v, (3.34c)

where g is the acceleration due to gravity, Bc is the ballistic coefficient, L
D

is the

lift-to-drag ratio of the the vehicle, ρ is the atmospheric density given by

ρ = ρ0e
(
h2−h
h1

)
,

where ρ0, h1 and h2 are constants depending on the planet’s atmospheric model,

h = r − Rm is the height above planet’s surface and Rm is the radius of the planet.

Choices of the constants in Eqn. (3.34a) through Eqn. (3.34c) used to simulate

reentry in Martian atmosphere are given in Table III [100].
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The measurement model, ỹ, consists of the dynamic pressure q̄, the heating rate

H [101], and the flight path angle, or ỹ = [q̄ H G]T , whose expressions are,

q̄ =
1

2
ρv2 (3.35a)

H = kρ
1
2v3.15 (3.35b)

G = γ, (3.35c)

where k = 4.47228× 10−9 is the scaled material heating coefficient.

Here, initial state uncertainty with Gaussian distribution has been considered,

i.e. x(0,∆) = ∆ ∼ N (µ0, σ
2
0) where, µ0 and σ0 are mean and standard deviation,

respectively and have the values,

µ0 = [Rm + 54 km, 2.4 km/s,−9o]T (3.36a)

σ0 =


5.4 km 0 0

0 240 m/s 0

0 0 0.9o

 . (3.36b)

To achieve consistency in dimensions, every constants in Eqn. (3.34a) through

Eqn. (3.34c) are scaled appropriately, to create a non-dimensionalized system. The

constants scaling the base units are given in Table IV.

Table IV.: Scaling constants for base units

Units Scaling Constants

Mass Mass of the vehicle = 2800 kg

Length Radius of Mars (Rm)

Time Radius of Mars
Escape Velocity of Mars

= 675.7 s
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The measurements are normalized to lie within [−1, 1], so that they have con-

sistent magnitude. The normalization factors used for measurements are given in

Table V. The measurement noise ν is assumed to have mean and covariance as,

Table V.: Normalization factors for measurements

Measurement Normalization Factors

Dynamic Pressure 1.97× 103 N
m

Heating Rate 0.0231 J
m-s

Flight Path Angle 19.13o

E [ν] = [0, 0, 0]T and R = E
[
ννT

]
= 6× 10−5I3.

As mentioned before, gPC theory works best, when the nonlinearities are in the

form of polynomials [87, 102]. In this case, the trigonometric and exponential terms

in Eqn. (3.34a) through Eqn. (3.34c) are approximated, with cubic polynomials in

γ and h respectively. For example, let S(γ) be a suitable approximation of sin(γ),

then,

S(γ) = a0 + a1γ + a2γ
2 + a3γ

3,

and

S ′(γ) = a1 + 2a2γ + 3a3γ
2.

The coefficients of S(γ) are obtained by equating the values of sin(γ) and its deriva-

tive, with S(γ) and S ′(γ) respectively, at the boundaries of γ’s domain. For the



62

present case, γ ∈ [−90o, 0], which yields a system of linear equations given by,

1 −1.57 2.47 −3.88

1 0 0 0

0 1 −3.14 7.40

0 1 0 0





a0

a1

a2

a3


=



−1

0

0

1


,

which can be solved for a0, a1, a2 and a3. The approximation of cos(γ) can be found

in a similar manner.

The approximation of sine and cosine terms for the present case are,

sin(γ) ≈ S(γ) := γ + 0.0574γ2 − 0.1107γ3

cos(γ) ≈ C(γ) := 1− 0.5792γ2 − 0.1107γ3.

Assuming h ∈ [0, 100 km], the exponential density term, is approximated by cu-

bic polynomials, in three different intervals. The approximated density term D(h) ≈

ρ, is given by,

D(h) :=


0.0146− 1.50× 10−6h+ 5.93× 10−11h2 − 8.45× 10−16h3 h ∈ [0, 25km)

0.0080− 4.72× 10−7h+ 9.59× 10−12h2 − 6.61× 10−17h3 h ∈ [25km, 50km)

0.0015− 5.2× 10−8h+ 5.90× 10−13h2 − 2.20× 10−18h3 h ∈ [50km, 100km)

.

The approximated system can be written as

ṙ = vS(γ) (3.37a)

v̇ = −D(h)v2

2Bc

− gS(γ) (3.37b)

γ̇ =
(v
r
− g

v

)
C(γ) +

1

2Bc

(
L

D

)
v. (3.37c)

Monte Carlo simulations were performed to validate the approximated model.
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(a) Mean vs. time.

(b) Standard deviation vs. time.

Fig. 10.: (a) Mean and (b) standard deviation of the true system (solid) and the

approximated system (dashed) obtained from Monte Carlo simulations.
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Fig. 11.: Percentage error in states of the approximated system from true system.

A Gaussian distribution for initial states was assumed, with mean and standard

deviation as given in Eqn. (3.36a) & Eqn. (3.36b). Figure 10 shows the trajectories of

mean and the standard deviations for systems in Eqn. (3.34a) through Eqn. (3.34c)

and Eqn. (3.37a) through Eqn. (3.37c). It can be seen that they are almost identical

for both the systems, although some variation is observed for longer propagation

time. Figure 11 shows the percentage error in approximation of the systems’ states.

From this analysis it can be concluded that the system in Eqn. (3.37a) through Eqn.

(3.37c) is a good approximation of the actual system in Eqn. (3.34a) through Eqn.

(3.34c), for estimation purposes. Clearly a better approximation could be performed

that reduces the growth of error over long time integration. However, with this model,

good results were obtained, for the estimation algorithm. The approximated model is

used to propagate the uncertainty. The “measurements” were obtained by simulating

the actual nonlinear system.
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To construct the deterministic dynamical system via polynomial chaos as defined

in Eqn. (3.7), inner products of up to six basis functions were required. Detailed

derivation of the augmented dynamics has been omitted from this dissertation and

can be found in Prabhakar et al. [102].

Up to fourth order moments were used, to compute the prior probability density

function from GMM. The prior moments, M i− for i = 1, . . . , 4 were computed from

the gPC coefficients XPC and the inner products 〈φiφj . . .〉 as in Eqn. (3.19a) through

Eqn. (3.19d).

The performance of the proposed estimator was then compared with EKF and

UKF based estimators. For the current analysis, the covariance of the posterior PDF

was minimized to get the state estimate (MCE criterion), which is the mean of the

posterior density function. The initial states of the true system were assumed to be

x(t = 0) = [Rm + 61 km 2.42 km/s − 8.91o]T . Therefore the initial error in state

estimation was [−7 km − 0.02 km/s 0.09o]T . Figure 12 and Fig. 13, show the plots

for error in state estimation where the measurement update interval is 20s. It can

be observed that the errors for gPC based estimator goes to zero rapidly and are

within the ±3σ limits. The EKF based estimator performs poorly and the errors

don’t converge to zero. Also the EKF based estimator is inconsistent as the errors

escape outside ±3σ limits. In case of UKF, the errors for γ and v starts to increase

after a while and the ±3σ limits are divergent.

In Fig. 14 and Fig. 15 the update interval was increased to 40s. It can be seen

that, the errors and the ±3σ bounds for the gPC based estimator converges. The

errors for the EKF based estimator for this case diverges. Although the ±3σ limits

of the UKF based estimator converge, but convergence is slower than gPC based

estimator. The estimation errors for UKF is divergent.

The gPC based estimator works well even for larger errors in initial state es-
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(a) EKF based estimator.

(b) UKF based estimator.

Fig. 12.: Performance of (a) EKF and (b) UKF based estimator with true initial

states as [Rm + 61 km 2.42 km/s − 8.91o]T and update interval of 20s. The dashed

lines represent ±3σ limits and the solid line represents error in estimation.
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Fig. 13.: Performance of the gPC based estimator with true initial states as [Rm +

61 km 2.42 km/s − 8.91o]T and update interval of 20s. The dashed lines represent

±3σ limits and the solid line represents error in estimation.
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(a) EKF based estimator.

(b) UKF based estimator.

Fig. 14.: Performance of (a) EKF and (b) UKF based estimator with true initial

states as [Rm + 61 km 2.42 km/s − 8.91o]T and update interval of 40s.The dashed

lines represent ±3σ limits and the solid line represents error in estimation.
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Fig. 15.: Performance of the gPC based estimator with true initial states as [Rm +

61 km 2.42 km/s − 8.91o]T and update interval of 40s. The dashed lines represent

±3σ limits and the solid line represents error in estimation.
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timation. For plots in Fig. 16 and Fig. 17, the true initial states were [Rm +

61 km 2.64 km/s − 8.1o]T , with v and γ having 10%(= σ) errors in initial estimate.

It can be observed that gPC based estimator achieves convergence of error and re-

mains within ±3σ bounds. For EKF, the errors diverge and escape outside the ±3σ

limits. Hence the EKF based estimator here is inconsistent. The errors for the UKF

based estimator converge but briefly remain outside the ±3σ bounds. For this ex-

ample, the ±3σ limits for UKF are observed to be divergent. This highlights the

advantage of using polynomial chaos for propagation in Bayesian estimation frame-

work over traditional filters based on Gaussian theory.

Figure 18 compares the performance of the three criterion functions used to get

the state estimate. It is observed that ±3σ bounds of MEE criterion converges faster

than MCE and MLE criteria, although the bounds for MLE based estimate diverges

towards the end. The error convergence for MEE is slower MCE and MLE, but errors

are within ±3σ limits for all the criteria. When compared to EKF and UKF, the gPC

based estimators outperform both of them when convergence of errors and ±3σ limits

are considered.
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(a) EKF based estimator.

(b) UKF based estimator.

Fig. 16.: Performance of (a) EKF and (b) UKF based estimator with true initial

states as [Rm + 61 km 2.64 km/s − 8.1o]T and update interval of 20s. The dashed

lines represent ±3σ limits and the solid line represents error in estimation.
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Fig. 17.: Performance of the gPC based estimator with true initial states as [Rm +

61 km 2.64 km/s − 8.1o]T and update interval of 20s. The dashed lines represent

±3σ limits and the solid line represents error in estimation.
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(a) MCE criterion. (b) MLE criterion.

(c) MEE criterion.

Fig. 18.: Performance of (a) MCE, (b) MLE and (c) MEE criterion for state estimates.

The true initial states are [Rm + 61 km 2.42 km/s − 8.91o]T and update interval is

20s. The dashed lines represent ±3σ limits and the solid line represents error in

estimation.
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G. Limitations of Polynomial Chaos

Polynomial chaos is a good methodology to propagate uncertainty specially in systems

where nonlinearities are in the form of polynomials. But there are certain limitations,

when we use gPC to propagate uncertainty in systems which have non-polynomial

nonlinearities. This is well documented and can be found in the paper by Debusschere

et al. [87]. Moreover polynomial chaos gives us inaccurate results when the statistics

is to predicted for longer durations.

For example Fig. 19 shows first and second moment plots for the system given

by Eqn. (3.10) & Eqn. (3.11) with Gaussian initial state uncertainty have mean and

covariance, µ = [1, 1] and σ = diag(1, 1) respectively. It can be seen that after a while

the PC trajectory diverges from the MC solution, thus proving that PC incurs error

when long term statistics are to be predicted.

Uncertainty propagation using PC is a method, which is based on parameterizing

the random variable, and then approximating the density using a density kernel.

However, a method which propagates density directly without requiring any kind

of parameterization is more desired. Intuitively this nonparametric method should

perform better than PC as it is approximation free. In the next chapter, we present

a methodology to propagate uncertainty in a nonparametric sense.
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(a) First moment.

(b) Second moment.

Fig. 19.: Long term statistics, up to 10 seconds predicted by Monte Carlo (dashed

line) and polynomial chaos (solid line) for the system in Eqn. (3.10) & Eqn. (3.11).

The x-axis represents time and y-axes are the states.
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CHAPTER IV

THE FROBENIUS-PERRON OPERATOR∗

In this chapter, we propose a nonlinear estimation technique based on Frobenius-

Perron (FP) operator theory. The Frobenius-Perron operator, also known by the

name of transfer operator or Stochastic Liouville equation (SLE) is a linear operator

that dictates the flow of probability densities in a dynamical system. We introduce

FP operator, then develop theories related to how densities evolve in a dynamical

system with uncertainties present in it. Finally we describe the estimation algorithm,

and apply it to hypersonic reentry problem, while comparing its performance with

particle filters.

A. Analysis of Densities in State Space Using Frobenius-Perron Operator

In this section we introduce the concept of the FP operator and demonstrate, how it

can be used to study evolution of densities of state trajectories. The presentation of

the background on FP operator is deliberately kept informal as the associated theory

is well developed. The interested reader is directed to [26] for a rigorous treatment

of the material presented in this section.

1. Discrete-Time Systems

To establish an intuitive view of the evolution of densities, let us consider one di-

mensional discrete-time system defined by the transformation xk+1 = S(xk), where

S : A 7→ A, and A ⊂ R. Let us pick a large number of N initial states x0
1, · · · , x0

N

∗Reprinted from “Hypersonic State Estimation Using Frobenius-Perron Operator”
by P. Dutta, R. Bhattacharya, 2011. AIAA Journal of Guidance Control and Dy-
namics , vol. 34, no. 2, pp. 325–344, Copyright [2011] by P. Dutta & R. Bhattacharya
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and apply the map S(x) to obtain new states x1
1 = S(x0

1), · · · , x1
N = S(x0

N). Let us

define an indicator function for A as

1A(x) =

 1 if x ∈ A,

0 if x 6∈ A.

Also any function f0(x) is a density function. for initial states x0
1, · · · , x0

N , if for every

interval D0 ⊂ A and µ(D0) 6= 0, the following is true,∫
D0

f0(u)du = lim
N→∞

1

N

N∑
i=1

1D0(x0
i ), (4.1)

Similarly the density function f1(x) for states x1
1, · · · , x1

N satisfies, for D1 ⊂ A ,∫
D1

f1(u)du = lim
N→∞

1

N

N∑
i=1

1D1(x1
i ), (4.2)

The FP operator relates f1 and f0. To define the FP operator, we first introduce the

notion of counterimage of any interval D ⊂ A under transformation operator S. This

is the set of all points that will be in D after one application of S, i.e.,

S−1(D) = {x : S(x) ∈ D}.

We note that ∀D1 ⊂ A, we have

x1
j ∈ D1 ⇐⇒ x0

j ∈ S−1(D1).

Hence D0 = S−1(D1) as x0
j ∈ D0. We thus have an important relation, ∀D ⊂ A.

1D(S(x)) = 1S−1(D)(x). (4.3)
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With Eqn. (4.3) we can write Eqn. (4.2) as∫
D1

f1(u)du = lim
N→∞

1

N

N∑
i=1

1S−1(D1)(x
0
i )

=

∫
S−1(D1)

f0(u)du.

The above relation tells us how density of initial states f0 will be transformed to

new density f1 under the transformation S.

Let D1 = [a, x] then, ∫ x

a

f1(u)du =

∫
S−1[a,x]

f0(u)du,

and differentiating the above relation with respect to x, we have

f1(x) =
d

dx

∫
S−1[a,x]

f0(u)du

Clearly, f1 depends on f0, and is usually indicated by writing f1 = Pf0. In general,

the deformation of the density function f(x) defined over [a, x] under transformation

S is given by

Pf(x) =
d

dx

∫
S−1[a,x]

f(u)du (4.4)

If the transformation S is invertible and differentiable in A, then it must be monotone

in A. In such case Eqn. (4.4) can be written as

Pf(x) =
d

dx

∫
S−1[a,x]

f(u)du

= f(S−1(x))

∣∣∣∣dS−1(x)

dx

∣∣∣∣ , (4.5)

where absolute value takes into account cases where S−1 is increasing or decreasing.

Equation (4.5) can be generalized for x ∈ Rn by noting that |dS−1(x)/dx| is the

determinant of the Jacobian of dS−1(x)/dx. Time evolution of f(x) can be determined

by recursively applying Eqn. (4.4).
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2. Continuous-Time Systems

In contrast to discrete time systems, we have uncountably many mappings from initial

to final states, in case of continuous time systems. We will start by defining some

preliminary concepts, on which the development of FP operator theory is based.

Let X be a Hausdorff space and A be the σ−algebra generated by Borel sets of

X .

Definition 1 A dynamical system {St}t∈R on X is the family of transformations

St : X → X , t ∈ R, satisfying

• S0(x) = x ∀x ∈ X

• St(St‘(x)) = St+t‘(x) ∀x ∈ X and t, t‘ ∈ R, and

• The mapping (t, x)→ St(x) from R×X → X is continuous.

It is also clear from the properties of {St}t∈R that St(S−t(x)) = x and S−t(St(x)) =

x, ∀t ∈ R. Thus, ∀t0 ∈ R, any transformation St0 of the dynamical system {St}t∈R,

is invertible.

Remark 1 A semidynamical system is same as a dynamical system except for t ∈

R+.

Let us consider a semidynamical system of the form {St}t≥0. Assume a measure

µ(·) on X is given and all transformation St of {St}t≥0 are nonsingular, i.e.,

F = {A ∈ A : µ(S−1
t (A)) = 0} then µ(A) = 0 ∀A ∈ F .
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Definition 2 The Frobenius-Perron operator Pt : L1(X )→ L1(X ), corresponding to

the transformation St is uniquely defined by∫
A

Ptf(x)µ(dx) =

∫
S−1(A)

f(x)µ(dx),

where f : X → R is any arbitrary function such that
∫
X |f(x)|µ(dx) <∞.

We can show [26] that {Pt}t≥0 is continuous. To show this, note that since

St is invertible, S−1
t = S−t. Let J−t be the determinant of the Jacobian of the

transformation S−t. Then, using Eqn. (4.5)

Ptf(x) = f(S−t(x))J−t(x).

Thus, for every continuous f , with compact support,

lim
t→t0

f(S−t(x))J−t(x) = f(S−t0(x))J−t0(x),

uniformly with respect to x. This implies that,

lim
t→t0
||Ptf − Pt0f || = lim

t→t0

∫
X

|Ptf(x)− Pt0f(x)|dx = 0,

Since the integrals are computed over the a bounded set X ⊂ A. Now, because

continuous functions with compact support form a dense subset in L1, this implies

that {Pt}t≥0 is continuous.

From a computational point of view, this property is important as we will be

using space of continuous functions to approximately solve for {Pt}t≥0 in R×X .

For a dynamical system of the form

ẋ = F (x); x ∈ X ∈ B(Rn), F : X → X , (4.6)

where B(Rn) refers to Borel sets of Rn and F (x) = [F1(x), · · · , Fn(x)]T . It can
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be shown that, the definition of the FP operator reduces to the following partial

differential equation (pg. 213, [26]).

∂u

∂t
+

n∑
i=1

∂(uFi(x))

∂xi
= 0, (4.7)

where u(t, x) = Ptf(x).

3. Properties of Frobenius-Perron Operator

Both continuous and discrete time Frobenius-Perron operators have the following

properties, shown here using the notation for continuous time FP operator,

1. Pt(λ1f1 + λ2f2) = λ1Ptf1 + λ2Ptf2, ∀f1, f2 ∈ L1, λ1, λ2 ∈ R.

2. Ptf ≥ 0, if f ≥ 0.

3.
∫
X Ptf(x)µ(dx) =

∫
X f(x)µ(dx), ∀f ∈ L1.

Thus for a fixed t, Pt is a Markov operator.

B. Method of Characteristics for Solving First Order Linear Partial Differential

Equations

Equation (4.7) is a first order linear partial differential equation that can be solved

using method of characteristics. Equation (4.7) can be written as

∂u

∂t
+

∂u

∂x1

F1(x) + · · · ∂u
∂xn

Fn(x) + u

n∑
i=1

∂Fi(x)

∂xi
= 0.

Defining G(x, u) := −u
n∑
i=1

∂Fi(x)

∂xi
, we get

∂u

∂t
+

∂u

∂x1

F1(x) + · · · ∂u
∂xn

Fn(x) = G(x, u), (4.8)
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which is in the standard form. Assuming G(x, u) 6= 0, Eqn. (4.8) can be solved by

solving (n+ 1) coupled ordinary differential equations given by

dx1

dt
= F1(x), · · · , dxn

dt
= Fn(x), (4.9a)

du

dt
= G(x, u). (4.9b)

Substituting the value of G(x, u) in Eqn. (4.9b), we get

du

dt
= −u

n∑
i=1

∂Fi(x)

∂xi
(4.10)

where
n∑
i=1

∂Fi(x)

∂xi
is the trace of the Jacobian of F (x).

Equation (4.9a) & Eqn. (4.9b) trace out a trajectory in the (n+ 1) dimensional

space spanned by (x1, · · · , xn, u). To make the solution unique, the value of u(t, x)

has to be specified at a given point x(t0) at time t0. The evolution of u(t, x) over

R×X can be determined by specifying u(t, x) over several points in X at time t0. The

trajectories x(t) are called characteristics and Eqn. (4.9a) & Eqn. (4.9b) determine

evolution of u along x(t) [103].

C. Uncertainty Propagation in Dynamical Systems Using FP Operator

Given a dynamical system of the form,

ẋ(t) = g(x(t),∆) (4.11)

where x : R+ → Rn are states and g : Rn × Rq → Rn is a real valued function.

Let ∆ ∈ Rq be the vector of initial and parametric uncertainty. Without loss of

generality, we assume that ∆ represents the set of initial state uncertainty, hence

∆ := x(t = 0) ∈ Rn, and let ∆ ∼ p(∆) = p(x(0)). Using the method of characteristics

to get the equation for evolution of densities as presented in the previous section in
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Eqn. (4.10), we augment the dynamical system in Eqn. (4.11). The final dynamical

system is given by,

ẋ(t) = g(x(t)) (4.12a)

ṗ(t) = − div [g(x(t))] p(t), (4.12b)

where p : R+ → R denotes the joint density of the states x(t) at a given time t.

The augmented equation has states [x(t), p(t)], which are to be solved with initial

conditions [x(t = 0), p(t = 0)]. Equation (4.12a) & Eqn. (4.12) dictate the evolution

of probability density along the trajectories of a dynamical system with uncertainties.

For example, consider uncertainty propagation due to initial condition uncer-

tainty for the Duffing oscillator model. As shown in Fig. 20, consider the case where

there is initial condition has the mean (1, 1) and standard deviation diag(1, 1). The

distribution is considered to be Gaussian. The initial distribution is sampled using

500 points. The system considered is the same one as used in Eqn. (3.10) & Eqn.

(3.11) . The corresponding differential equation for uncertainty propagation is given

by,

ẋ1 = x2, (4.13a)

ẋ2 = −x1 − x3
1 −

1

4
x2, (4.13b)

ṗ = −p(0 +−1

4
) =

1

4
p. (4.13c)

The initial conditions for (x1, x2) are given by the locations of the samples. The

initial conditions for p are given by the values of the Gaussian distribution function

at those points. With these initial conditions the above equations are integrated

to obtain (x1(t), x2(t), p(t)). Figure 20 shows the initial values of (x1(t), x2(t), p(t))

and their values at time t = 1s,2s and 3s. The magnitude of p is color coded, with
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Fig. 20.: Method of characteristics. Number of samples = 500. System is Duffing

oscillator. The black circle shows the location and the PDF value (color coded) of an

arbitrary sample point at different time instances.

red corresponding to large and blue corresponding to small. It can be observed,

this method determines the value of p(t) at the sample locations, (x1, x2) exactly.

However, for intermediate points, the value of p(t) is not known. Several methods

like scattered data interpolation [104] may be used to find the density at intermediate

points, but such an analysis has not been performed in this dissertation. Also, note

that value of p determined at (x1, x2), at some time t, is independent of the number

of samples. Although, increasing the number of samples will improve the accuracy of

the subsequent interpolation. However, in case of Monte Carlo, since the value of p

is approximated using histograms, the accuracy depends on the number of samples.
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1. Accuracy in Prediction of Uncertainty

Since this method requires selection of points in the state space, one may argue that

this approach is similar to Monte Carlo. The main difference is that in FP operator

the value of the density function is determined along the trajectory and at final time

the value of the density function is known at certain discrete locations. These loca-

tions are values of the state vector at that final time. The value of the density function

over the domain can be then determined using interpolation. In Monte Carlo, same

idea is used except only state equations are integrated. The density function at final

time is determined using histogram techniques, which are sensitive to the number of

sample points taken. Thus for comparable accuracy, many more points will have to be

taken for Monte Carlo based method than for FP based method. As an illustration,

consider Fig. 21. It can be seen that a good approximation of the Gaussian density

function is achieved by taking 25 points and linear interpolation in the case of FP

operator. Whereas for Monte Carlo, at least 1000 points were needed to get the same

level of accuracy. Thus for this one dimensional case, there is a reduction of two orders

of magnitude in the number of sample points required for FP based uncertainty prop-

agation. For higher dimensional case, the benefits will be even more significant. For

high dimensional problems, discrete points can be generated using Halton sequence

[105], and concentrating them in regions with higher importance/features will further

reduce the growth of computational complexity. Other methods for generating smart

samples from a given distribution include sparse grids [106, 107, 58] and mesh-free

adjoint methods [108, 109, 110, 111].
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(a) PF: 25 samples.

(b) MC: 25 samples.

Fig. 21.: Comparison of FP and Monte Carlo based approximation of density func-

tions.
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(c) MC: 100 samples.

(d) MC: 1000 samples.

Fig. 21.: Continued.



88

D. Nonlinear Estimation Using Frobenius-Perron Operator

The nonlinear estimation setting in this scenario is same as one in Chapter III. We

have an uncertain dynamical system being measured by a nonlinear measurement

model which are given by,

ẋ = g(x,∆), (4.14a)

ỹ = h(x) + ν. (4.14b)

where x ∈ RN are the states and ỹ ∈ Rm are the measurements.

It is assumed that measurements are available at discrete times t0, · · · , tk, tk+1, · · · .

At a given time tk, let xk, yk and pk(·) be the state, measurement and the probabil-

ity density function. Let p−k (·) and p+
k (·) denote the prior and the posterior density

functions at time tk. The estimation algorithm is described next, which is similar to

that presented by Daum et al. [40].

1. Step 1: Initialization Step

To begin, the domain D∆ of the initial random variable x0 is discretized. From the

discretized domain, N particles are chosen at random based on the PDF p0(x0) of

the random variable x0. Let the particles be represented by x0,i for i = 1, 2, · · · , N ;

and p0(x0,i) be the value of p0(x) at these particles. The following steps are then

performed recursively starting from k = 1.

2. Step 2: Propagation Step

With initial states at k − 1th step as [xk−1,i pk−1(xk−1,i)]
T Eqn. (4.9a) & Eqn. (4.9b)

are integrated for each particle over the interval [tk−1, tk] to get [xk,i, p
−
k (xk,i)]

T . Note

that p−k (xk,i) obtained by integration are the prior PDF values for xk,i, and hence the
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superscript.

3. Step 3: Update Step

First the likelihood function, p(ỹk|xk = xk,i), is determined for each particle i, using

Gaussian measurement noise and sensor model in Eqn. (4.14b). It is defined as

l(ỹk|xk = xk,i) =
1√

(2π)m|R|
e−

1
2

(ỹk−h(xk,i))
TR−1(ỹk−h(xk,i)), (4.15)

where |R| is the determinant of the covariance matrix of measurement noise.

The posterior probability density function of the states is constructed next, for

each particle i, using classical Bayes rule [78]. It is defined as the density function

of the states given current measurement, i.e. p+
k (xk,i) := pk(xk = xk,i|ỹk). For a

particular particle, xk,i it is given by,

p+
k (xk,i) := p(xk = xk,i|ỹk) =

l(ỹk|xk = xk,i)p
−
k (xk = xk,i)

N∑
j=1

l(ỹk|xk = xk,j)p
−
k (xk = xk,j)

. (4.16)

4. Step 4: Getting the State Estimate

The state estimate for the kth step is then computed depending on the desired com-

putation as given in Bryson and Ho[97]. As in the previous section the commonly

used criteria are the same, which are given by,

1. Maximum-Likelihood Estimate: maximize the probability that xk,i = x̂k. This

results in x̂k = mode of p+
k (xk,i).

2. Minimum-Variance Estimate: here x̂k = arg minx
∑N

i=1 ||x − xk,i||2 p+
k (xk,i) =∑N

i=1 xk,i p
+
k (xk,i). The estimate is the mean of xk,i.
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3. Minimum-Error Estimate: minimize maximum |x − xk,i|. This results in x̂ =

median of p+
k (xk,i).

Note that though the criteria are the same, their definition in this case are

different, as we have particles selected from discretized domain of the random variable.

Hence we do a Monte Carlo integration [112] to get the state estimate.

5. Step 5: Resampling

Degeneracy of particles can be detected by looking at values of xk,i for which p+
k (xk,i) <

ε, where ε� 1 and is pre-specified. Existing methods for resampling can be used to

generate new particles from the new distribution p+
k (xk,i). For the k + 1th step, new

points and the corresponding posterior density p+
k (xk,i) serve as initial states. Qual-

itatively, since we have the exact density information for each particle, this method

is less sensitive to the issue of degeneracy, as, rather than using histograms, we can

directly use the density information. Although, a rigorous analysis of this has not

been done in this dissertation.

E. Application of Nonlinear Estimation Using FP Operator

In this section we apply the estimation algorithm using FP operator to estimate states

of a nonlinear estimation problem. First we will apply the estimation algorithm to

a Duffing oscillator, the will first present results for application to the simplified

hypersonic reentry problem given by three state Vinh’s equation model. Finally the

results of application to the full reentry dynamics will be shown.
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1. Application to a Duffing Oscillator System

In this section we consider the Duffing oscillator given in Eqn. (3.10) & Eqn. (3.11).

Augmented dynamical system, after application of FP operator, is given by Eqn.

(4.13b) & Eqn. (4.13c). We consider initial state uncertainty in x with Gaussian

distribution, i.e. ∆x0 ∼ N (µ,Σ), where,

µ = [1, 1]T Σ =

 3 0

0 3

 .

We use scalar measurement model for the Duffing oscillator which is given by,

ỹ = xTx+ ν, (4.17)

with E [ν] = 0 and E
[
ννT

]
= 6× 10−2. Throughout the analysis, the initial states of

the true system is assumed to be x̄0 = [2, 2]T .

Figure 22 compares the performance of the FP operator based filter with generic

particle filters which is described in Chapter II, when the measurement update interval

is 0.3s. We plot the estimation error and the ±3σ bounds here. It can be seen that

to achieve similar performance as the FP operator based filter, number of particles

needed for the particle filter is more than that of FP operator based filter. In Fig. 23,

the update rate is decreased such that each measurement comes after 0.6s interval. It

is observed that even in this case, to achieve similar performance the generic particle

filter requires more particles. Hence, it can be concluded that for this particular

application, FP operator based estimator is computationally better than the generic

particle filter. Now we are ready to apply the FP operator based estimation framework

to more practical, real-world problems, which has been presented in the subsequent

sections.
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(a) Particle filter with 100 particles. (b) Particle filter with 400 particles.

(c) FP operator based filter with 100 particles.

Fig. 22.: Performance of the estimators with measurement update interval as 0.3s.
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(a) Particle filter with 100 particles. (b) Particle filter with 400 particles.

(c) FP operator based filter with 100 particles.

Fig. 23.: Performance of the estimators with measurement update rate as 0.6s.
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2. Application to Three State Vinh’s Equation

We consider the dynamical system given in Eqn. (3.34a) through Eqn. (3.34c), with

states x = [r, v, γ], where r is distance from Mars’ center, v is the total velocity

of the reentry vehicle and γ is the flight path angle. The constants have the same

value as given by Table III. The measurement model consist of dynamic pressure

q̄, heating rate H and the flight path angle γ, whose expressions are given by Eqn.

(3.35a) through Eqn. (3.35c). Initial state uncertainty is assumed to be Gaussian

with mean µ and standard deviation σ given by Eqn. (3.36a) & Eqn. (3.36b). For

consistency in dimensions of the system in Eqn. (3.34a) through Eqn. (3.34c), the

base units of mass, length and time are scaled. The scaling factors used are given

in Table IV. The measurements are normalized such that they lie in [−1, 1], for

consistency in magnitude. The normalization factors used are given in Table V. The

measurement noise ν is assumed to have mean and covariance, E [ν] = [0, 0, 0]T and

R = E
[
ννT

]
= 6× 10−5I3, respectively, in scaled units.

The performance of the Frobenius-Perron operator based nonlinear estimator is

now compared with generic particle filter and bootstrap filter described in Chapter II,

when applied to hypersonic reentry dynamics. The initial states of the actual system

is taken as [Rm + 61 km 2.64 km/s − 8.1o]T , in this case, with v and γ having 10%

errors in state estimate. The measurement update rate was taken to be 20 seconds.

Figure 24, Fig. 25, and Fig. 26 show the plots for particle filter, the bootstrap filter

and the Frobenius-Perron filter respectively. Figure 27 shows the Cramér-Rao bounds

for the three filters. From these plots it can be seen that all three filters perform

equally well and the errors are within the ±3σ limits. The number of particles used

in these simulations for particle filter, bootstrap filter and the Frobenius-Perron filter

are 25000, 20000 and 7000 respectively.
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Fig. 24.: Generic particle filter. True initial states are [Rm+61 km 2.64 km/s −8.1o]T

and update interval is 20s. The dashed lines represent ±3σ limits and the solid line

represents error in estimation.

Fig. 25.: Bootstrap filter. True initial states are [Rm + 61 km 2.64 km/s − 8.1o]T

and update interval is 20s. The dashed lines represent ±3σ limits and the solid line

represents error in estimation.
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Fig. 26.: Performance of the Frobenius-Perron estimator with true initial states as

[Rm+61 km 2.64 km/s −8.1o]T and update interval of 20s. The dashed lines represent

±3σ limits and the solid line represents error in estimation.

Fig. 27.: Plots for
√
σ2 − CRLB vs. time. In the legend, ’BPF’, ’gPF’ and ’FP’,

represent bootstrap filter, generic particle filter and Frobenius-Perron operator based

estimator respectively.
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Fig. 28.: Generic particle filter with 7000 particles. True initial states are [Rm +

61 km 2.64 km/s −8.1o]T and update interval is 20s. The dashed lines represent ±3σ

limits and the solid line represents error in estimation.

Fig. 29.: Bootstrap filter with 7000 particles. True initial states are [Rm +

61 km 2.64 km/s − 8.1o]T and update interval is 20s. The dashed lines represent

±3σ limits and the solid line represents error in estimation.
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The particle and the bootstrap filter did not perform as well as the Frobenius-

Perron filter with lesser number of particles. Figure 28 and Fig. 29 show plots for

error covariance and estimation errors for generic particle filter and bootstrap filter

respectively with 7000 particle points. It can bee seen that they do not perform as

well as FP operator based estimator (Fig. 26). In Fig. 30 and Fig. 31 the number

of particles were increased to 10,000 for the particle filter based estimators. Even

then, the performance of the particle filters do not match with FP operator based

estimator’s performance. To substantiate our claim, percentage error vs. time of the

three estimators has been compared here. Figure 32 shows plots when the number

of particles for each estimator is fixed at 7000. It can be seen that the percentage

error in state estimate for FP operator based estimator is lower than the particle filter

based estimators. The performance of the particle filters matches the FP operator

only when the number of particles for generic particle filter is 25000 and for bootstrap

filter is 20000, the percentage error plots for which is shown in Fig. 33.

Thus, it can be said that the Frobenius-Perron filter can achieve the same result

as particle filters using significantly lower number of particles. These simulations were

performed in a Linux machine with Intel R© Pentium D processor. The superiority of

the Frobenius-Perron filter is in the computational time. For each filtering algorithm,

the computational time taken for one filtering step is presented in Table VI. It

can be seen that due to fewer number of particles the Frobenius-Perron filter takes

significantly less computational time.

The FP operator based estimator captures the non-Gaussian PDF evolution al-

most accurately. To show this, time evolution of 3rd and 4th moments of the posterior

PDF for the FP operator based estimator with 7000 particles and a particle filter

with large number of particles (100,000) has been plotted in Fig. 34. It can be seen

that moments for FP operator matches exactly with the particle filter. If, the generic
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Fig. 30.: Generic particle filter with 10000 particles. True initial states are [Rm +

61 km 2.64 km/s −8.1o]T and update interval is 20s. The dashed lines represent ±3σ

limits and the solid line represents error in estimation.

Fig. 31.: Bootstrap filter with 10000 particles. True initial states are [Rm +

61 km 2.64 km/s − 8.1o]T and update interval is 20s. The dashed lines represent

±3σ limits and the solid line represents error in estimation.
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Fig. 32.: Percentage error in estimation with 7000 particles. True initial states are

[Rm + 61 km 2.64 km/s − 8.1o]T and update interval is 20s. In the legend, ’BF’,

’gPF’ and ’FP’, represent bootstrap filter, generic particle filter and Frobenius-Perron

operator based estimator respectively.

Table VI.: Computational time taken per filtering step for each estimation algorithm.

Listed times are in seconds

FP operator based filter Generic particle filter Bootstrap filter

57.42 s 207.96 s 168.06 s
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Fig. 33.: Percentage error in estimation with number of particles for FP based oper-

ator (FP), generic particle filter (gPF) and bootstrap filter (BF), 7000, 20000, and

25000 respectively. True initial states are [Rm+61 km 2.64 km/s −8.1o]T and update

interval is 20s.
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(a) 3rd order moments.

(b) 4th order moments.

Fig. 34.: Plots for 3rd and 4th order moments for particle filter with 100,000 particles-

(dashed line) and FP operator based filter with 7000 samples- (solid line).
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(a) Percentage error in 3rd order moments.

(b) Percentage error in 4th order moments.

Fig. 35.: Plots for percentage error in 3rd and 4th order moments for bootstrap filter

(BF), generic particle filter (gPF) and FP operator based filter (FP), all with 7000

particles. Percentage deviation taken from particle filter with 100,000 particles.
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particle filter and bootstrap filter with 7000 particles are compared, it is observed that

they fail to predict non-Gaussian PDF evolution as accurately as the FP operator

based estimator. To show this percentage deviation of the 3rd and 4th order moments

of three estimators from the particle filter with 100,000 particles has been plotted in

Fig. 35. It can be seen that percentage error for the FP operator based estimator

lower than the particle filter based estimators.

a. Sensitivity Analysis

In this section, we perform sensitivity analysis of the FP operator based filter and

the particle filters with respect to measurement noise and measurement update rate.

Figure 36 and Fig. 37 show plots of error covariance and state estimate error for the

FP operator based filter when the measurement noise is 6 × 10−4I3 in scaled units,

and when the measurement update rate is 40 seconds, respectively. The number of

particles taken here is 7000. To achieve similar performance the generic particle filter

and the bootstrap filter needed 20000 and 25000 particles respectively. The plots for

particle filter are shown in Fig. 38 and Fig. 39 and for the bootstrap filter in Fig. 40

and Fig. 41.
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Fig. 36.: FP operator based filter with measurement noise 6× 10−4I3 in scaled units

(number of samples = 7000). True initial states are [Rm + 61 km 2.64 km/s −8.1o]T .

The dashed lines represent ±3σ limits and the solid line represents error in estimation.

Fig. 37.: FP operator based filter measurement update interval is 40s (number of

samples = 7000). True initial states are [Rm + 61 km 2.64 km/s − 8.1o]T . The

dashed lines represent ±3σ limits and the solid line represents error in estimation.
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Fig. 38.: Generic particle filter with measurement noise 6 × 10−4I3 in scaled units

(number of samples = 25000) True initial states are [Rm+ 61 km 2.64 km/s −8.1o]T .

The dashed lines represent ±3σ limits and the solid line represents error in estimation.

Fig. 39.: Generic particle filter measurement update interval is 40s (number of samples

= 25000). True initial states are [Rm + 61 km 2.64 km/s − 8.1o]T . The dashed lines

represent ±3σ limits and the solid line represents error in estimation.
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Fig. 40.: Bootstrap filter with measurement noise 6× 10−4I3 in scaled units (number

of samples = 20000) True initial states are [Rm + 61 km 2.64 km/s − 8.1o]T . The

dashed lines represent ±3σ limits and the solid line represents error in estimation.

Fig. 41.: Bootstrap filter measurement update interval is 40s (number of samples =

20000). True initial states are [Rm + 61 km 2.64 km/s − 8.1o]T . The dashed lines

represent ±3σ limits and the solid line represents error in estimation.
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3. Application to Six-State Vinh’s Equation

The estimation algorithm presented, is then applied to reentry of a hypersonic vehicle

in Mars’ atmosphere, with dynamics governed by six-state Vinh’s equation [101]. The

equation of motion are given by,

ṙ = v sin γ, (4.18a)

θ̇ =
v cos γ cos ξ

r cosλ
, (4.18b)

λ̇ =
v cos γ sin ξ

r
, (4.18c)

v̇ = − ρv
2

2Bc

− g sin γ − Ω2r cosλ(sin γ cosλ− cos γ sinλ sin ξ), (4.18d)

γ̇ =
(v
r
− g

v

)
cos(γ) +

ρ

2Bc

(
L

D

)
v cosσ + 2Ω cosλ cos ξ

+
Ω2r

v
cosλ(cos γ cosλ+ sin γ sinλ sin ξ), (4.18e)

ξ̇ =
ρ

2Bc

(
L

D

)
v sinσ − v

r
cos γ cos ξ tanλ+ 2Ω(tan γ cosλ sin ξ − sinλ)

− Ω2r

v cos γ
sinλ cosλ cos ξ, (4.18f)

where θ is the geocentric longitude, λ is the geocentric latitude and ξ is the hypersonic

vehicle’s heading angle. Ω is the angular velocity of Mars given by 7.0882×10−5 rad/s,

and σ is the bank angle which is taken as 0o in this case.

The measurement model, ỹ, consists measurements of geocentric latitude and

longitude, θ and λ, along with dynamic pressure q̄, heating rate H, and flight path

angle, γ, whose expressions are given in Eqn. (3.35a) through Eqn. (3.35c). Hence,

the measurement model is given by ỹ = [q̄ H G θ λ]T .

The vehicle’s heading angle ξ, is assumed to have no initial state uncertainty, and

has initial value of 0.0573o. Gaussian initial condition uncertainty, along r, θ, λ, v,&γ
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is considered, with mean, µ0 and standard deviation σ0 given by

µ0 = [Rm + 54 Km,−60o, 30o, 2.4 Km/s,−9o]T (4.19a)

σ0 =



5.4 Km 0 0 0 0

0 3o 0 0 0

0 0 3o 0 0

0 0 0 240 m/s 0

0 0 0 0 0.9o


. (4.19b)

A nondimensionalized system is created, scaling each constants in Eqn. (4.18a)

through Eqn. (4.18f), using scaling constants given in Table IV. The normalization

factors used for measurements are given in Table VII.

Table VII.: Normalization factors used for measurements

Measurement Normalization Factors

Dynamic Pressure 1.97× 103 N
m

Heating Rate 0.0231 J
m-s

Flight Path Angle 19.13o

Geocentric Longitude 60.6o

Geocentric Latitude 30.3o

The performance of FP operator based filter is then compared with generic par-

ticle filter and bootstrap filter, when applied to the six-state Vinh’s equation model.

The initial states of the actual system are assumed to be,

[Rm + 61 km,−60.6o, 30.3o, 2.42Km/s,−9.09o, 0.0573o]

in this case, with θ, λ, v, and γ having 1% error in initial state estimate. The
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measurement update interval is kept fixed at 20 seconds. Figure 42 shows the plot

for FP operator based filter with 9000 samples. Figure 43 and Fig. 44 shows plots for

generic particle filter and bootstrap filter respectively, with same number of particles.

It can be seen that FP operator based estimator performs better than particle filter

based estimators. The errors for the generic particle filter and bootstrap filter diverge

and are not inside the ±3σ limits. Hence, these filters are inconsistent, when same

number of particles as FP operator are taken.

The best performance that was achieved using particle filter and bootstrap filter

is shown in Fig. 45 and Fig. 46 respectively. The number of particles needed for

generic particle filter is 30000 and bootstrap filter is 25000. For particle filter, it

is observed that although the ±3σ bounds converge, the estimation errors escape

outside these limits. For the bootstrap filter, the errors and the ±3σ limits converge,

but for γ the ±3σ bounds diverge towards the end of estimation period.

F. Limitations of Using Frobenius-Perron Operator

Although FP operator provides us with an exact methodology to propagate uncer-

tainty in nonlinear dynamical systems, it has certain limitations. Throughout the

analysis, we have dealt with systems that have only parametric or initial condition

uncertainty. We have neglected the presence of process noise in a system.

For a system with process noise, evolution of densities are governed by the Fokker

Planck operator. Thus Eqn. (4.7) consists of not only the first order, but second order

derivatives too. The next chapter presents a complete treatise of such systems, and

develops a methodology to propagate uncertainty in dynamical systems with process

noise.
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(a) Plots for r, v and γ.

(b) Plots for θ and λ.

Fig. 42.: Performance of FP operator based filter with 9000 particles, when applied

to six state Vinh’s equation. The dashed lines represent ±3σ limits and the solid line

represents error in estimation.
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(a) Plots for r, v and γ.

(b) Plots for θ and λ.

Fig. 43.: Performance of generic particle filter with 9000 particles, when applied to

six state Vinh’s equation. The dashed lines represent ±3σ limits and the solid line

represents error in estimation.
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(a) Plots for r, v and γ.

(b) Plots for θ and λ.

Fig. 44.: Performance of the bootstrap filter with 9000 particles, when applied to

six state Vinh’s equation. The dashed lines represent ±3σ limits and the solid line

represents error in estimation.
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(a) Plots for r, v and γ.

(b) Plots for θ and λ.

Fig. 45.: Performance of generic particle filter with 30000 particles, when applied to

six state Vinh’s equation. The dashed lines represent ±3σ limits and the solid line

represents error in estimation.
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(a) Plots for r, v and γ.

(b) Plots for θ and λ.

Fig. 46.: Performance of the bootstrap filter with 25000 particles, when applied to

six state Vinh’s equation. The dashed lines represent ±3σ limits and the solid line

represents error in estimation.
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CHAPTER V

THE KARHUNEN LOÈVE EXPANSION

Up until this point, we have developed theories for uncertainty propagation in dy-

namical systems, which have only parametric or initial state uncertainty. However,

the given model in a dynamical system may not match actual state evolution of the

system. There may be uncertainties coming from unmodeled dynamics, modeling

uncertainties and other phenomena which may be difficult to incorporate in the true

system. Moreover, there may be some uncertainties in the actuation system, which

was ignored during model development. Generally all the above mentioned uncertain-

ties are coupled as one term, in the dynamical equation, which is called stochastic

forcing term or the process noise term.

In this chapter, we will deal with the methodology applied to characterize the

process noise term in an dynamical system. At first we will introduce such dynamical

systems, methodology of solution, and how uncertainty propagates through such sys-

tems. Then, we will describe the Karhunen Loève (KL) expansion and how it can be

used to represent the process noise term in a stochastic dynamical system, followed

by some applications. Finally we will assess the convergence of the solution of the

dynamical system, to the true solution, when the process noise term is expanded

using a finite term KL expansion.

A. Stochastic Dynamical Systems

Consider the dynamical system given by,

dx (t) = f (x (t) , δ) dt+ g (x (t) , δ) dW (t) , (5.1)
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where x (t) ∈ Rn is the state vector at time t, δ ∈ Rp is the vector of uncertain

parameters, and dW (t) ∈ Rq, is a random process denoting process noise. The

function f (., .), g (., .) represent the dynamics while the function-valued matrix, g (., .)

denotes noise coupling.

Equation (5.1) is referred to as stochastic dynamical system, or often stochastic

differential equation. We will provide a brief overview of the solution methodologies

of this equation, next.

1. Solution Methodology

Over the years, researchers have done a lot of work regarding solutions of stochastic

differential equations [113, 114, 115, 116, 117]. A complete treatise of the solution

methodology can be found in Øksendal [116]. Most commonly, dW (t) is considered

as a Wiener process [118] with E [W (t)] = 0 and E [W (t)W (t′)] = Qδ(t − t′) for all

t > t
′

with t, t
′ ∈ R+, where Q ∈ Rq×q is the correlation matrix of the noise. Hence

Eqn. (5.1) can be written as

dx(t)

dt
= f (x (t) , δ) + g (x (t) , δ) η(t). (5.2)

Here η(t) is called the Gaussian white noise which is the derivative of the Wiener

process. It has been seen [116], that there exists no process with continuous paths

that satisfy η(t). In other words the Gaussian white noise process is a nowhere

differentiable process. Hence, solving Eqn. (5.2) is a hard problem. In the remainder

of the section, we will try to avoid using Eqn. (5.2), but get some sense of the solution

of the differential equation in Eqn. (5.1).

For general nonlinear systems, the state and the parametric uncertainty can be

expressed as in an extended framework with states z := [x, δ]T ∈ Rn+p. Without loss

of generality, it is assumed that the dynamical system in Eqn. (5.1) has only state
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uncertainty, hence z = x. The modified equation is given by

dx (t) = f (x (t) , t) dt+ g (x (t) , t) dW (t) . (5.3)

Integrating Eqn. (5.3) till time T , we get

x(T ) = x(0) +

∫ T

0

f (x (t) , t) dt+

∫ T

0

g (x (t) , t) dW (t) . (5.4)

Integral of the type

∫ T

0

g (x (t) , t) dW (t) is called the Ito integral [116]. It is difficult

to solve this integral as the normal rules of Riemann-Stieltjes integration do not hold.

Hence a distance preserving map is done to a space where it can be integrated.

Let x(t) : (Ω,F)→ (Rn,B(Rn)), given t, where B(Rn) is the Borel σ-algebra on

Rn. Then the Ito integral can be written as

∫ T

0

g (ω, t) dW (t), where ω ∈ Ω.

Definition 3 Let V = V (S, T ) be a class of function

f(ω, t) : Ω× [0,∞)→ R,

such that

1. (ω, t) → f(ω, t) is F × B − measurable, where B is the Borel σ-algebra on

[0,∞).

2. f(ω, t) is Ft-adapted.

3. E
[∫ T

S

f(ω, t)2dt

]
<∞.

Using Ito Isometry (Chapter 3 of [116]), it can be shown that

E

[(∫ T

S

f (ω, t) dW (t)

)2
]

= E
[∫ T

S

f 2 (ω, t) dt

]
∀f ∈ V (S, T ). (5.5)

It can also be shown under certain boundedness conditions, Eqn. (5.3) has unique

solutions. Detailed discussion of this topic has been omitted here and can be found
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in Øksendal [116].

2. Uncertainty Propagation in Stochastic Dynamical Systems

Given the stochastic dynamical system in Eqn. (5.3), let the initial state random

variable be x(0). Also let us assume that the states x(t) admit a probability density

function (PDF) ρ(x, t), where (x, t) ∈ Rn × [0,∞], with the following properties.

1. Positivity : ρ(x, t) > 0,∀ t & x ∈ Rn.

2. Normalization constraint :

∫ ∞
−∞

ρ(x, t)dV = 1,∀t ≥ 0 where dV = dx1dx2 . . . dxn.

Further let the initial state PDF ρ(x, 0) = ρ0 and the PDF at x = ∞, ρ(∞, t) = 0

be known. Then the evolution of uncertainty can be described by the following

linear parabolic partial differential equation which is also called the Fokker Planck

Kolmogorov (FPK) equation,

∂ρ(x, t)

∂t
= −

n∑
i=1

∂

∂xi
(fiρ(x, t)) +

n∑
i=1

n∑
j=1

∂2

∂xi∂xj

((
gQgT

)
ij
ρ(x, t)

)
. (5.6)

This equation is to be solved with the boundary conditions ρ(0, x) = ρ0 and ρ(t,∞) =

0. Solving the above partial differential equation is computationally hard [55, 38].

Researchers have tried to solve this problem either numerically [119, 120, 44, 43], or by

using some basis function approximation [55, 45]. But all the solution methodologies

suffer from curse of dimensionality [60].

But if there is no stochastic forcing term Eqn. (5.6) reduced to stochastic Li-

ouville equation or Frobenius-Perron operator, whose solution methodology was pre-

sented in previous chapter. Here, we have used an approach of approximating the

process noise term in Eqn. (5.3) using KL expansion. The advantage of such repre-

sentation is that, the PDF evolution in the stochastic dynamical system can be found

using the FP operator. In the following section, we describe the methodology using
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KL expansion to represent noise in Eqn. (5.3) and solving for the PDF using FP

operator.

B. The Karhunen Loève Expansion Applied to Stochastic Dynamical Systems

The Karhunen Loève (KL) expansion is a representation of a stochastic process as

an infinite linear combination of orthogonal functions [61, 62]. The theory of KL

expansion was developed from expanding any random process as a homogeneous

product of functions of deterministic and the stochastic variable. This framework was

first used in physics [63], to represent noise term in the Langevin equation. We will

discuss about this specific application in subsequent sections. In this framework the

class of such functions are chosen from the L2 space, such that the they span the whole

space and are linearly independent. Moreover, such a framework is advantageous as

it helps us analyze the random process in an space where inner product is defined.

Given the random process X(ω, t) where (ω, t) ∈ Ω× [0,∞), Ω being the sample

space, let us define the class of functions φi(t) ∈ L2 satisfying the following properties.

1. 〈φi(t), φj(t)〉 = δij,∀ i, j = 1, 2, . . . ,∞, 〈·, ·〉 represent inner product in L2.

2. span(φ1(t), φ2(t), ...) = span(L2).

Due to the fact that the φi(t) form the basis in L2 space, there are certain

restrictions on the random processes that can be represented in such a framework.

Here, we require that the random process is of second order, or E [X(ω, t)2] <∞,∀ t ∈

[0,∞), and that it is centered, i.e., E [X(ω, t)] = 0,∀ t.

Now, as we have specified the class of approximation functions to be used, we

will define the homogeneous representation of any random process. It is given by,

X(ω, t) =
∞∑
i=1

ξi(ω)φi(t), (5.7)
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where ξ(ω) are random variables which are pairwise uncorrelated i.e. E [ξi(ω)ξj(ω)] =

E [ξi(ω)]E [ξj(ω)] , ∀ i, j = 1, 2, . . . ,∞. Our aim here is to use a finite term approxi-

mation of Eqn. (5.7), and to assess convergence in some sense.

Given the covariance function of the random process X(ω, t) as CXX(t1, t2), with

eigenvalues and eigenvectors as {λi}∞i=1 and {ψi(t)}∞i=1, the random process X(ω, t),

can be expanded in a similar manner as Eqn. (5.7), in terms of the eigenvalues and

eigenfunctions of its covariance function. It is given by,

X(ω, t) =
∞∑
i=1

√
λiξi(ω)ψi(t) (5.8)

where ξi(ω) are pairwise uncorrelated random variables. The expansion in Eqn. (5.8)

is the representation of the Karhunen Loève expansion. It can be proved that a finite

term KL expansion converges to the true random process uniformly in t and in mean

square sense in ω [121]. In other words, if number of terms in the KL expansion is

N , then

E

[
X(ω, t)−

N∑
i=1

√
λiξi(ω)ψi(t)

]
→ 0, uniformly in t as N →∞.. (5.9)

1. KL Expansion of Wiener Process

LetW (ω, t) be a Wiener process, then the covariance function is given by, CWW (t1, t2) =

Q×min(t1, t2), where Q ∈ Rq×q, is the real valued matrix representing the autocor-

relation of the process. Here, we have t ∈ [0, T ] where T <∞, hence the eigenvalues

and eigenvectors are given by,

λi =
4T 2

π2 (2i− 1)2 , (5.10a)

ψi (t) =
√

2 sin

((
i− 1

2

)
πt

T

)
. (5.10b)
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Hence,

W (ω, t) =
√

2
∞∑
i=1

ξi(ω)
sin
(
i− 1

2

)
t
T(

i− 1
2

)
t
T

, (5.11)

where, ξi(ω) ∼ N (0, Q). The KL expansion of a Gaussian white noise can be found

by differentiating Eqn. (5.11) with respect to t (page 548 of [122]). If η(ω, t) is a

Gaussian white noise, then

η(ω, t) =
√

2
∞∑
i=1

ξi(ω) cos

(
i− 1

2

)
t

T
(5.12)

The above expansion will be used next to represent noise in Eqn. (5.2).

2. KL Expansion Applied to Langevin Equation

Consider the stochastic dynamical system in Eqn. (5.2), with g(x(t), δ) = 1. We will

incorporate the sample space of the Gaussian white noise ω ∈ Ω in its argument.

Important point to note is, Ω is independent of the sample space of X(t). Without

loss of generality, we consider only state uncertainty in the system. Therefore, Eqn.

(5.2) can be written as,

ẋ(t) = f(x, t) + η(ω, t) (5.13)

Here we will consider integrating Eqn. (5.13) up to a finite time T , hence, η(ω, t) :

Ω × [0, T ] → Rn is a Gaussian white noise having autocorrelation Q. The above

equation is often referred to as Langevin equation [123]. Utilizing the framework

described in the previous section, we use KL expansion of white noise given by Eqn.

(5.12). Hence Eqn. (5.13) can be written as,

ẋ(t) = f(x, t) +
√

2
∞∑
i=1

ξi(ω) cos

(
i− 1

2

)
t

T
. (5.14)
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Here we will use a finite term approximation of the Eqn. (5.14) and then assess

the convergence of solutions of approximated system to the actual solution. Let the

number of terms in the KL expansion in the RHS of Eqn. (5.14) be N , and the

approximate solution of Eqn. (5.14) be given by xN(t). The approximated system is

then given by,

ẋN(t) = f(xN , t) +
√

2
N∑
i=1

ξi(ω) cos

(
i− 1

2

)
t

T
. (5.15)

C. Convergence of Solutions

Due to finite term approximation of the process noise in Eqn. (5.13), the solution

obtained after propagation is not error-free. It is well known that, KL expansion

converges in mean square sense, to the underlying stochastic process as N → ∞.

But, same argument cannot be extended regarding the convergence of states xN (t) of

the dynamical system in Eqn. (5.15). To obtain a meaningful solution, there should

be some notion of convergence of the states in Eqn. (5.15) to states in Eqn. (5.13).

Hence, verification of the obtained solution is important in this scenario. Here, first

we will try to verify a weaker notion of convergence, before proving to a stronger

condition on the solutions. We first verify that the solution of Eqn. (5.15) and Eqn.

(5.13) converge in distribution. Then we have proved that under certain conditions,

the solutions converge in mean square sense.

1. Verification of Convergence in Distribution

In this section we have verified that the solution of the approximated dynamical

system converge to the true solution in distribution. Our approach here is mainly ap-

plication specific. Therefore, we have verified that given a dynamical system whether

the solution of the approximated system and the actual system converge in distribu-
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tion. The application focused on here is a Vanderpol’s oscillator. The methodology

for verification used is statistical hypothesis testing [124].

We have used the Kolmogorov-Smirnov (KS) test to verify the solution of ap-

proximated dynamics. The Kolmogorov-Smirnov test [125] is a statistical test used to

compare a sample with a reference probability distribution. It quantifies a distance

DM , between reference cumulative distribution function (CDF), π(x), and empirical

CDF of the sample being tested, πM(x), which is given by

DM = sup
x
|πM(x)− π(x)|. (5.16)

Here, M refers to sample size of the given sample. The null hypothesis is that

the sample comes from the reference distribution. Given a significance level α, the

null hypothesis is accepted if,

√
MDM ≤ Kα, (5.17)

where Kα can be found from ,

Pr (K ≤ Kα) = 1− α. (5.18)

Here, K is a random variable which follows Kolmogorov distribution, with CDF,

Pr (K ≤ x) =

√
2π

x

∞∑
i=1

e−
(2i−1)2π2

8x2 . (5.19)

If Eqn. (5.17) is satisfied, then the KS test is passed and it can be concluded that

the given sample comes from the reference CDF.

As the sample size M is increased the empirical measure πM approaches the true

measure π0. Hence, if the sample is from π0, DM should go to zero. This can be
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shown using the Glivenko-Cantelli lemma which states that,

sup
x∈R
|πM − π0| → 0 almost surely. (5.20)

Due to the fact that M <∞, DM is a random variable, and each sample will give us

different DM values. The empirical distribution of
√
MDM is given by,

πMs (x) =
1

Ms

Ms∑
i=1

Ix<√MDiM
, (5.21)

where Ms is the number of samples and Di
M is the DM value for ith sample. Dvoretzky

Kiefer Wolfowitz inequality [126] states that,

Pr

(
sup
x∈R
|πMs(x)− πK(x)| > ε

)
≤ 2e−2Msε2 ∀ε > 0, (5.22)

where πK(x) is the Kolmogorov CDF in Eqn. (5.19). Hence as Ms → ∞ the test

statistic
√
MDM exponentially converges in distribution to a Kolmogorov random

variable with rate 2e−2Msε2 . Detailed discussion of KS test can be found in ref.

[125, 127].

In the present case, the analytical representation of CDF at time t = T is not

known. Hence to verify our solution, we back-propagate the sample obtained after

propagation of Eqn. (5.15) at final time T to time t = 0 using the original dynamics

in Eqn. (5.13); and check if the back-propagated sample belongs to the initial CDF.

For simplicity of comparing CDFs we have used inverse transform sampling [128] to

convert the initial samples and samples obtained after back-propagation to uniformly

distributed samples in [0, 1].

Let the initial state, x(0) = x0 ∈ D0, have a CDF π0. Let the elements of

the sample; sampled from the initial CDF be x0,i, i = 1, . . . ,M , and elements after

propagation of Eqn. (5.15) be xT,i. Let the back-propagated sample obtained by
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propagating Eqn. (5.13) from [T, 0] be x̂0,i. Here, we claim that, x̂0,i is a sample

from the initial CDF. Hence, using the KS test, the sample x̂0,i, is compared with

the initial CDF, for statistical significance. Here, we have used a multivariable KS

test, which is similar to the one presented in [125]. The verification methodology

employed, is described in algorithm 1.

We apply the proposed verification methodology to verify states of the Vander-

pol’s oscillator given by,

ẋ1 (t) = x2 (t) (5.23a)

ẋ2 (t) =
(
1− x2

1 (t)
)
x2 (t)− x1 (t) + η (ω, t) . (5.23b)

We assume, the initial conditions are normally distributed, with CDF given by,

π0 ∼ N ([0, 0], diag [1, 1]), and the process noise has the autocorrelation Q = 2π. We

obtain Ms = 100 samples, each of sample size M = 500 from π0. The number of

terms in the KL expansion is fixed to N = 21. At first, we pick a sample from the 100

available samples and perform KS test on it. Figure 47 shows plot for the location

of elements initially (x0) and after back-propagation (x̂0), for the particular sample.

It is observed that the back-propagated sample, is clustered around the origin and

sparseness increases as we move away. This is in agreement with the physical intuition

of random samples drawn from π0 which is a standard normal distribution.

Using the methodology in [125] we obtain uniformly distributed sample ŷ0 =

F (x̂0) using inverse transform sampling theory [128]. Figure 48 shows the plot of

empirical CDF of ŷj0 and the uniform CDF for the selected sample. It can be seen

that, visually the CDFs are close to each other. Hence, the value of DM for the

particular sample is expected to be less.
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Algorithm 1 Verification of solutions of approximated dynamical systems using KL

expansion

Require: Domain D0, CDF π0, of initial parameters, significance level α, sample

size M , number of samples Ms, number of terms in KL expansion N .

1: Calculate Kα using Eqn. (5.17).

2: for j = 1 to Ms do. . Sample number counter.

3: Draw M elements xj0,i at random from D0. . Use Markov Chain Monte

Carlo.

4: Create null hypothesis H0 : π = π0 for the current sample

5: for i = 1 to M do. . Sample element counter.

6: Propagate xj0,i, from t = [0, T ], using Eqn. (5.15) to get xjT,i. . Use of KL

approximated dynamics with number of terms N .

7: Backward propagate xjT,i, from t = [T, 0] using Eqn. (5.13) to get x̂j0,i. .

Use of original stochastic dynamics.

8: Get ŷj0,i ← π0(x̂j0,i) . From inverse transform sampling theory, ŷj0 is

uniformly distributed in [0, 1].

9: end for

10: Calculate empirical CDF of the current sample ŷj0, Gj
M(y)← 1

M

M∑
i=1

Iy≤ŷj0,i .

11: Calculate Dj
M ← sup

y∈[0,1]

|Gj
M(y)−G(y)|. . G(y) is the uniform CDF in [0, 1].

12: if Dj
M ≤ Kα√

M
then.

13: Accept H0 for the jth sample.

14: else

15: Reject H0 for the jth sample.

16: end if

17: end for . Repeat the same test for the next sample
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Fig. 47.: Scatter plot of initial and the back-propagated elements for a given sample.

Blue circles are the original sample and the red ones are the back-propagated sample.

For the KS test, the value of α is fixed to 0.05. Hence, using Eqn. (5.18) and

Eqn. (5.19), we get Kα/
√
M = 0.0607. For the given sample, the value of DM was

0.0455. Hence, the null hypothesis, that the sample is drawn from a standard normal

distribution, is accepted with a significance level α = 0.05. Figure 49 shows plots for

DM values for all the 100 samples drawn. The samples above red line fail the test if

α = 0.05 and the samples above the black line fail, if α = 0.01. It is observed that 23

samples fail the test when α = 0.05 and 5 samples fail when α = 0.01. It can be seen

that, as the significance level α, is decreased, the chances that the null hypothesis is

accepted increases.

To get an idea of rate of convergence in solution with number of terms in KL

expansion, N , we plot the DM values by increasing N . Figure 50 shows plot for DM

values for 76 and 91 terms in KL expansion. It was found that with an α = 0.05,
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Fig. 48.: Plot of empirical CDF of ŷj0 and uniform CDF for a given sample.
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Fig. 49.: Plot DM value for all the 100 samples. The samples above the red and black

lines fail when α = 0.05 and 0.01 respectively.
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(a) N = 76.
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(b) N = 91.

Fig. 50.: Plot DM value for all the 100 samples for a. N = 76 and b. N = 91. The

samples above the red and black lines fail when α = 0.05 and 0.01 respectively.

22 samples fail the test when N = 76 and 20 samples fail with N = 91. With an

α = 0.01, number of samples failing the test for N = 76, 91 are 4 and 5 respectively.

Next, we vary M and plot the DM values for variation in M . Figure 51 shows plots for

M = 1000 with N = 21 and 76. It is observed that number of samples failing the KS

test with α = 0.05 is 20 for N = 21 and 18 for N = 76. Hence we can conclude that,

there is some sense of convergence in solution, though for the particular application,

the convergence is very slow.

Now we will verify, the consistency of the test statistic DM , i.e. if it follows

the prescribed distribution and assess its convergence. As mentioned before in Eqn.

(5.22), the value of DM obtained after KS test is a random variable, whose CDF

converges to Kolmogorov distribution exponentially. Figure 52 shows plots for the

empirical CDF of DM given by Eqn. (5.21) and the Kolmogorov CDF in R[0, 1], for

a fixed N = 21. We vary the the number of samples, Ms and observe the convergence
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Fig. 51.: Plot DM value for all the 100 samples for a. N = 21 and b. N = 76, with

increased M = 1000. The samples above the red line fails when α = 0.05.
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Fig. 52.: Plot of empirical CDF of
√
MDM (red) and Kolmogorov CDF (blue).
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Fig. 53.: Plot of sup
x∈R
|FMs(x)− FK(x)| vs. Ms .

in sup
x∈R
|FMs(x) − FK(x)|. The variation is plotted in Fig. 53. It can be seen that

sup
x∈R
|FMs(x)−FK(x)| decreases exponentially as we increaseMs, which is in compliance

with the theory. Due to the fact that the convergence is in probability but only

one realization of sup
x∈R
|FMs(x) − FK(x)| has been plotted here, we do not observe a

monotonic behavior in convergence. But, there are very few outliers, as the probability

in the left hand side of Eqn. (5.22) can be decreased arbitrarily by varying ε.

2. Convergence in Mean Square Sense

In the last section, we have shown that there is some sense of convergence between

solutions of the approximated system in Eqn. (5.15) and the actual system in Eqn.

(5.13). We will here prove a stronger notion of convergence that the solutions actually

converge in mean square sense. Before, showing that we state the following theorem,

Theorem 1 Let x (ω, t) be the solution of the nonlinear stochastic differential equa-
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tion (SDE),

dx(t) = f(x, t)dt+ dW (ω, t) (5.24a)

⇒ dx (t)

dt
= f (x, t) + η(ω, t), (5.24b)

where f : Rn × [0, T ]→ Rn satisfies the following conditions

1. Non-explosion condition: there exists D ≥ 0, |f (x, t)| < D(1 + |x|) where

x ∈ Rn.

2. Lipschitz condition: there exists C ≥ 0, and x, y ∈ Rn |f (x, t)− f (y, t)| <

C |x− y|.

Let xN (t) be solution of the differential equation, formed by N−term approximation

of η(ω, t) in Eqn. (5.24b), using orthonormal basis, which is given by

dxN (t)

dt
= f (xN , t) + ηN(ω, t), (5.25)

where ηN(ω, t) is the N-term approximation and E
[∫ T

0

ηN(ω, t)dt

]
<∞. Then

lim
N→∞

E
[
|x (t)− xN (t)|2

]
→ 0, (5.26)

uniformly in t, iff xN (t) is the Karhunen Loève (KL) expansion of x (t).

Proof Throughout the proof, we will write x(t) as x(ω, t) where ω ∈ Ω is the sample

space of the random process x(t). First we will prove that if Eqn. (5.26) holds then

xN (ω, t) is the KL expansion of x (ω, t).

Let φm(t) be the set of any orthonormal basis, then x (ω, t) can be written as a

convergent series as,

x (ω, t) =
∞∑
m=1

am(ω)φm(t),
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without loss of generality we assume am(ω) = bmcm(ω). Hence the above expansion

becomes

x (ω, t) =
∞∑
m=1

bmcm(ω)φm(t). (5.27)

Let the solution in Eqn. (5.25) be a N−term approximation of x (ω, t) which converge

to true solution in mean square sense, given by

xN (ω, t) =
N∑
m=1

bmcm(ω)φm(t). (5.28)

Hence the error eN is given by

eN (ω, t) =
∞∑

m=N+1

bmcm(ω)φm(t). (5.29)

Projecting x (ω, t) in φm we get

cm(ω) =
1

bm

∫ T

0

x(ω, t)φm(t)dt. (5.30)

Hence,

E [eN (ω, t)] =
∞∑

m=N+1

∞∑
k=N+1

φm(t)φk(t)

∫ T

0

∫ T

0

E [x (ω, t1)x (ω, t2)]φm(t1)φk(t2)dt1dt2

=
∞∑

m=N+1

∞∑
k=N+1

φm(t)φk(t)

∫ T

0

∫ T

0

Cxx(t1, t2)φm(t1)φk(t2)dt1dt2, (5.31)

where Cxx(t1, t2) is the covariance function of x(ω, t). For uniform convergence of

error in t, the orthonormal basis φm(t) should minimize

∫ T

0

E [eN (ω, t)] dt. So taking

into account orthonormality of φm(t) we get∫ T

0

E [eN (ω, t)] dt =
∞∑

m=N+1

∫ T

0

∫ T

0

Cxx(t1, t2)φm(t1)φm(t2)dt1dt2, (5.32)
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which is to be minimized subject to∫ T

0

φm(t)φk(t)dt = δmk ∀m, k ∈ N. (5.33)

So using the method of Lagrange multipliers our objective function is

F (φm(t)) = min
φm(t)

∞∑
m=N+1

∫ T

0

∫ T

0

Cxx(t1, t2)φm(t1)φm(t2)dt1dt2

−b2
m

(∫ T

0

φm(t)φm(t)dt− 1

)
, (5.34)

where b2
m are the Lagrange multipliers. Differentiating above equation with respect

to φm(t) and setting the derivative to zero we get∫ T

0

[∫ T

0

Cxx(t1, t2)φm(t1)dt1 − b2
mφm(t2)

]
dt2 = 0 (5.35)

which is satisfied when∫ T

0

Cxx(t1, t2)φm(t1)dt1 = b2
mφm(t2) (5.36)

which is the Fredholm integral equation for the random process x (ω, t). Hence φm(t)

and b2
m are the eigenfunctions and eigenvalues of Cxx(t1, t2) respectively, which com-

pletes our proof.

Now we will prove that, if xN(ω, t) is the KL expansion of x(ω, t), then to ensure

that solution of Eqn. (5.25) converge to solution of Eqn. (5.24b) in mean square

sense, xN(ω, t) should be the solution of Eqn. (5.25). To prove this, we propose the

following uniqueness conditions on solution of Eqn. (5.24b) and KL expansion of a

random process.

Proposition 1 Given the non-explosion condition and the Lipschitz condition are

satisfied for f (·, ·) in Eqn. (5.24b). Let Z be a random variable, independent of
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the σ-algebra Fm∞ generated by η(ω, t), t ≥ 0 and E [|Z|2] ≤ ∞. Then the stochastic

differential equation in Eqn. (5.24b) where t ∈ [0, T ], X(ω, 0) = Z has a unique t-

continuous solution x(ω, t) with the property that x(ω, t) is adapted to the filtration

FZt generated by Z and η(ω, t), t ≥ 0 and E
[∫ T

0

|x(ω, t)|2dt
]
≤ ∞.

Proof See [116], Chapter 5.

Proposition 2 The Karhunen Loève expansion of the random process x(ω, t) given

by x(ω, t) =
∞∑
m=1

√
λmξm(ω)φm(t) is unique.

Proof See [25], Chapter 2.

Let us assume that yN(ω, t) is the KL expansion of x(ω, t). Furthermore assume

that yN(ω, t) 6= xN(ω, t), which is the solution of Eqn. (5.25). Hence, we assume

that although yN(ω, t) is the KL expansion of x(ω, t) it does not satisfy Eqn. (5.25),

whose solution converge to the solution of Eqn. (5.24b) in mean square sense.

Proposition 1 and 2 says that the solution of SDE is unique and any random

process has an unique KL expansion. Also Eqn. (5.25) has unique solution as RHS

of Eqn. (5.25) satisfies Lipschitz condition. This can be proven as follows: for right

hand side of Eqn. (5.25) to be Lipschitz we must have

|f(x, t) + ηN(ω, t)− f(y, t)− ηN(ω, t)| ≤ C |x− y|

⇒ |f(x, t)− f(y, t)| ≤ C |x− y| .

which is true as f(·, ·) satisfies Lipschitz condition.

Hence Eqn. (5.24b) has unique solution which has an unique KL expansion.

Also according to our assumption, the solution of Eqn. (5.25) converge to solution of

Eqn. (5.24b) in mean square sense. This contradicts our assumption that yN(ω, t) 6=

xN(ω, t) as we have proved that Eqn. (5.25) has unique solutions, and for mean
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square convergence in solutions of Eqn. (5.25) and Eqn. (5.24b), xN(ω, t) must be

the KL expansion of x(ω, t), which completes our proof.

Special Case Let ηN(ω, t) be the N -term KL expansion of η(ω, t). Given by,

ηN(ω, t) =
N∑
m=1

√
ληmξ

W
m (ω)φWm (t). (5.37)

Since ηN(ω, t) is the KL expansion, we have E
[∫ T

0

ηN(ω, t)dt

]
<∞ [25]. Hence the

solutions of Eqn. (5.25) converge to the solution of Eqn. (5.24b) in mean square

sense. So, we suggest a corollary.

Corollary 2 Given the stochastic differential equation in Eqn. (5.24b), where f(·, ·)

satisfies the non-explosion and the Lipschitz condition, if the N-term approximation

of η(ω, t) in Eqn. (5.25), ηN(ω, t), is given by the KL expansion of η(ω, t) then the

solution of Eqn. (5.25) converges to the solution of Eqn. (5.24b) in mean square

sense.

Using corollary 2 we have showed that if the non-explosion and Lipschitz con-

ditions are satisfied then the solution of Eqn. (5.25) converge to solution of Eqn.

(5.24b) in mean square sense. In other words, if the process noise term in Eqn. (5.13)

is approximated using KL expansion, then the solutions of Eqn. (5.15) and Eqn.

(5.13) converge in mean square sense.

This proof gives us a framework to apply KL expansion to stochastic dynamical

systems. In the next section, we will describe the methodology employed to predict

evolution of probability density in stochastic dynamical systems using this framework.
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D. Karhunen Loève Frobenius-Perron Formulation

Let us consider the dynamical system given in Eqn. (5.13) where x ∈ Rn are the

states, having initial CDF π(x, 0) = π0. Let us also assume that the initial CDF

admits a PDF given by ρ0. The stochastic forcing term η(ω, t) in Eqn. (5.13) is

approximated using KL expansion having finite number of terms (N). In the present

case, where η(ω, t) is a Gaussian white noise, the approximation reduces to,

η (ω, t) =
√

2
N∑
i=1

ξi (ω) cos

((
i− 1

2

)
πt

T

)
, (5.38)

After substituting the expression in Eqn. (5.38) in Eqn. (5.13) we get the differential

Eqn. (5.15).

Using the methodology given in [129, 130] and as presented in the previous

section, MOC is applied to Eqn. (4.7), and an augmented dynamical system is formed,

with states [xN (t) , ρ (x, t)]T , where ρ (x, t) is the probability density of the states at

time t, and xN (t) = [x1
N (t) , . . . , xnN (t)]T . The augmented system is given by,

ẋN (t) = f (xN , t) +
√

2
N∑
i=1

ξi (ω) cos

((
i− 1

2

)
πt

T

)
, (5.39a)

ρ̇(xN , t) = − div f (xN , t) ρ(xN , t), (5.39b)

where div f (x, t) =
n∑
i=1

∂f (x, t)

∂xi (t)
. Equation (5.39a) & Eqn. (5.39b) can be solved

to get the value of ρ (xN , t) along the characteristic curves of Eqn. (4.7). Detailed

discussion of the solution methodology has been presented in the previous section.
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1. Illustrative Examples

The proposed methodology is applied to a Vanderpol’s oscillator, whose dynamics is

governed by,

ẍ (t) =
(
1− x2 (t)

)
ẋ (t)− x (t) + ξ (t) , (5.40)

and to a Duffing oscillator, with dynamics,

ẍ (t) = 10x (t)− 30x3 (t)− 10ẋ (t) + ξ (t) , (5.41)

with ξ (t) having zero mean and autocorrelation 2πI. The initial state uncertainty,

has a PDF ρ0(z) ∼ N
(
[0, 0]T , diag (1, 1)

)
for both the systems in Eqn. (5.40) and

Eqn. (5.41).

Let x1 (t) = x (t) and x2 (t) = ẋ (t), the augmented dynamical system for the

Vanderpol’s oscillator is given by,

ẋ1 (t) = x2 (t) (5.42a)

ẋ2 (t) =
(
1− x2

1 (t)
)
x2 (t)− x1 (t) + ξ (t) (5.42b)

ρ̇ (x (t)) = −
(
1− x2

1 (t)
)
ρ (x (t)) , (5.42c)

and for the Duffing oscillator, is given by,

ẋ1 (t) = x2 (t) (5.43a)

ẋ2 (t) = 10x1 (t)− 30x3
1 (t)− 10x2 (t) + ξ (t) (5.43b)

ρ̇ (x (t)) = 10ρ (x (t)) . (5.43c)

Next, the initial PDF, ρ0 is sampled, with sample size of M = 500. For the Vander-

pol’s oscillator, final time T is 1s, for the Duffing oscillator T = 3s. Number of terms

in the KL expansion is fixed to N = 7. Figure 54 shows the evolution of probability
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densities with time for the two oscillators. The density value ρ (x, t) is color coded

with red representing high density value and blue representing low. It is observed

that, for the Vanderpol’s oscillator the probability mass accumulates along the limit

cycle and for the Duffing oscillator, we get a bimodal PDF at final time. This is in

agreement with the physical intuition of behavior of these systems.

E. State Estimation Using Karhunen Loève Expansion and Frobenius-Perron Oper-

ator

We apply the proposed methodology of using Karhunen Loève and Frobenius-Perron

(KLFP) operator, for uncertainty propagation to estimate states of a nonlinear sys-

tem. The nonlinear estimation algorithm used is same as the one described in the

previous chapter, that uses FP operator. First, we apply this to a Vanderpol’s oscilla-

tor system, then we use the proposed methodology to estimate states of a hypersonic

reentry vehicle. Here, we draw random particles (elements) from the domain D0 of

x(t = 0). Propagation of uncertainty is done using Eqn. (5.39a) & Eqn. (5.39b).

By using this framework for nonlinear estimation purposes, we get the exact value of

prior PDF after propagation. This gives us significant advantage over particle filters

where, generally the prior PDF is approximated using histograms. Bayesian inference

is used to update the posterior PDF from prior for each particle.

1. State Estimation of Vanderpol’s Oscillator

In the present work, the system used is the Vanderpol’s oscillator described by Eqn.

(5.40). We use a nonlinear measurement model which is given by

y (t) = x2
1 (t) + x2

2 (t) + ζ (t) (5.44)
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(a) Perspective view of the PDFs along direction
(
π
4
, π

4
, π

4

)
.

(b) Top view of the PDFs along direction
(
π
2
, π

2
, 0
)
.

Fig. 54.: Uncertainty propagation for Vanderpol’s oscillator Eqn. (5.40) in top row

of each figure, and Duffing oscillator Eqn. (5.41) in bottom row of each figure.
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where ζ (t) is zero mean Gaussian measurement noise with autocorrelation R =

6× 10−2. The process noise, η (x, t) also considered to have zero mean and an auto-

correlation of Q = 6× 10−1.

We consider the initial state uncertainty to be normally distributed with E [x(0)] =

[0, 0]T and E [x(0)2] = diag (1, 1). It is assumed that the initial states of the actual

system is [0.25, 0.25], with initial error in estimation being [0.25, 0.25]. The measure-

ment update interval was fixed to 0.1s and final time T was assumed to be T = 1s.

The performance of the proposed filter is compared with the generic particle

filter given in [9]. The sample size for each estimator is fixed to 500 elements. The

simulations were performed on a Linux machine with Intel R© Pentium D processor.

Figure 55 shows the ±3σ plots for the estimators. No major difference can be ob-

served in the performance of the estimators as the errors in estimation are within the

±3σ limits and converge. But if we compare the computational time, KLFP-based

estimator takes 58.46s per filtering step, whereas the generic particle filter the time

taken is 284.19s. Thus it can be concluded, given same sample size and the same

processing environment, KLFP-based estimator achieves similar performance as the

generic particle filter, and is almost five times faster than the particle filter based

estimator.

2. Application to Hypersonic Reentry

The state estimation methodology is now applied to estimate states of a hypersonic

reentry vehicle. The equations of motion are described by a six state Vinh’s equation

which is similar to the equations used in the previous section. Here we add process
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(a) KLFP-based estimator. Magenta: Error
in estimation, black: ±3σ bounds.

(b) Generic particle filter. Blue- Error in esti-
mation, red- ±3σ bounds.

Fig. 55.: ±3σ plots for a) KLFP-based estimator and b) Generic particle filter.

noise to states r and v. The equations with process noise are given by,

ṙ =v sin γ + ηr, (5.45a)

θ̇ =
v cos γ cos ξ

r cosλ
, (5.45b)

λ̇ =
v cos γ sin ξ

r
(5.45c)

v̇ =− ρv2

2Bc

− g sin γ − Ω2r cosλ(sin γ cosλ− cos γ sinλ sin ξ) + ηv (5.45d)

γ̇ =
(v
r
− g

v

)
cos(γ) +

ρ

2Bc

(
L

D

)
v cosσ

+ 2Ω cosλ cos ξ +
Ω2r

v
cosλ(cos γ cosλ+ sin γ sinλ sin ξ) (5.45e)

ξ̇ =
ρ

2Bc

(
L

D

)
v sinσ − v

r
cos γ cos ξ tanλ

+ 2Ω(tan γ cosλ sin ξ − sinλ)− Ω2r

v cos γ
sinλ cosλ cos ξ, (5.45f)

where ηr and ηv are zero mean, Gaussian white noises with autocorrelation Q =

6×10−2, in scaled units. The other constants have the same values as in the previous
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section. The initial condition uncertainty is assumed to be Gaussian with mean and

covariance given by,

µ0 = [Rm + 54 Km,−60o, 30o, 2.4 Km/s,−9o, 0.0573o]T (5.46a)

σ0 =



5.4 Km 0 0 0 0 0

0 3o 0 0 0 0

0 0 3o 0 0 0

0 0 0 240 m/s 0 0

0 0 0 0 0.9o 0

0 0 0 0 0 0.0057o


. (5.46b)

A nondimensionalized system is constructed by scaling each term in Eqn. (5.45a)

through Eqn. (5.45f) with scaling constants. We use the same scaling constants as

used in previous two section which are given in Table IV.

The measurement model consists of the dynamic pressure q̄ the heating rate H,

the flight path angle γ, and measurements along geocentric longitude and latitude

θ and λ. Here we add another observation where we observe the azimuth angle ξ.

Hence

ỹ =

(
q̄ H γ θ λ ξ

)
(5.47)

The constants scaling the measurements are given in Table VIII. We assume mea-

surement noise added to each state with constant autocorrelation R = 6× 10−1.

The true states are assumed to be [Rm+61 km,−60.6o, 30.3o, 2.42 km/s,−9.09o,

0.0573o], hence the estimation algorithms start with an initial error. The measurement

update interval is kept fixed at 10 seconds.

Figure 56 shows plots for ±3σ limits and estimation error for particle filter. We

can see that the errors diverge and the ±3σ limits do not converge, for all the states
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Table VIII.: Normalization factors used for measurements (six state Vinh’s equation

with noise)

Measurement Normalization Factors

Dynamic Pressure 1.97× 103 N
m

Heating Rate 0.0231 J
m-s

Flight Path Angle 9.6422o

Geocentric Longitude 60.6o

Geocentric Latitude 30.3o

Azimuth Angle 1.9966o

except for r. Figure 57 uses the proposed estimation methodology with KL expansion

and FP operator, it can be observed that the proposed method performs better than

the particle filter in minimizing the covariance and reducing the estimation errors.

Hence it can be concluded that for the particular application, the proposed estimator

performs better than particle filter. However, it can be observed that variance of ξ

for both the estimator increase, and though the proposed estimator is better than the

particle filter in minimizing variance its performance can not be said to be optimal.

As mentioned in Chapter II the ±3σ do not reveal much regarding the efficacy

of a filtering algorithm when we have a nonlinear system with non-Gaussian PDF

evolution. Hence we plot the univariate and bivariate posterior marginals obtained

after state estimation by the two estimation methods. For particle filter, we use

histogram technique to calculate the joint PDF and then integrate out all other states

except for the state for which marginal is to be calculated [131]. For the proposed

estimator using KL expansion and FP operator, we first divide the domain of the

random of the random variable into equally sized bins. Then we use the average of
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(a) Plots for r, v and γ.

(b) Plots for θ, λ and ξ.

Fig. 56.: Estimation errors (solid lines) and ±3σ limits (dashed lines) for particle

filter based estimator.
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(a) Plots for r, v and γ.

(b) Plots for θ, λ and ξ.

Fig. 57.: Estimation errors (solid lines) and ±3σ limits (dashed lines) for estimator

using KL expansion and FP operator.



148

Fig. 58.: Plot for univariate marginal density for particle filter (dashed line) and KL

expansion and FP operator based estimator (solid line). Here h = r − Rm and the

y-axis denotes PDF value.

the density values of points, obtained after using FP operator, in a bin, to get the

PDF value for that particular bin. Detailed description of this method can be found

in ref. [129].

Figure 58 and Fig. 59 show plots for univariate and bivariate marginal density

respectively, for the two estimators compared in this chapter. There can be 15 state

combinations for bivariate densities, of which we show four combinations. It can be

observed that the dispersion of the particle filter based estimator is more than the

proposed estimator as the histogram approximation of PDF tend to smear out the

probability mass, whereas the proposed estimator captures the concentration of the

probability mass well. Hence it can be seen that proposed estimator is more successful

in capturing the actual reduction uncertainty than the particle filter.



149

Fig. 59.: Plot for bivariate marginal density for particle filter (top row) and KL

expansion and FP operator based estimator (bottom row) for 4 state combinations.

Here h = r −Rm. The PDF value is color coded, red is high PDF and blue is low.

F. Summary

In this section, we present an uncertainty quantification methodology, where the

process noise term is expanded using KL expansion and uncertainty is propagated

using FP operator. We have shown that if in a stochastic dynamical system if the noise

term is approximated using finite term KL expansion the solution of the approximated

dynamics converge to the actual solution in mean square sense. Moreover, we propose

an estimation technique based on Kl expansion and FP operator, and show that the

proposed estimator outperforms particle filter in terms of performance.
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CHAPTER VI

CONCLUSIONS AND SCOPE OF FUTURE WORK

This dissertation has presented novel methods of uncertainty quantification of non-

linear system with emphasis on state estimation problems. Most of the real-world

systems deal with the problems of high dimensionality, nonlinearity and high uncer-

tainty. Hence, characterization of uncertainty is a difficult task in practice for these

systems. One of the major problems in this scenario is estimation of states and pa-

rameters. Most commonly used estimation algorithms, involve local linearization of

dynamics and assume Gaussian PDF evolution. But due to high nonlinearity of the

real-world systems, estimation becomes a difficult task to achieve.

There are estimation algorithms, based on Monte Carlo methods which alleviate

the problem of nonlinearity. But they have been observed to fail if the state space

dimension is high.

In this work we use the uncertainty quantification methods developed to esti-

mate states and parameters of a nonlinear system. We first present two methods

based on polynomial chaos framework. Polynomial chaos is a method where the any

random process is expanded as a linear combination of orthogonal polynomials of

the underlying random variable. The estimation algorithms use polynomial chaos for

forward propagation of uncertainty, and the update step or the inverse problem is

solved using higher order moment updates, and Bayesian inference. The proposed

method was applied to estimate states of a duffing oscillator and vehicle reentering

the atmosphere of Mars, and its performance was compared with EKF based esti-

mators. It was found that the performance of the PC based estimators was superior

than EKF for the particular application.

Next we presented an algorithm which uses Frobenius-Perron (FP) operator the-
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ory for propagation of uncertainty. The FP operator given by a partial differential

equation, which dictates the evolution of densities in a dynamical system with para-

metric uncertainty. The power of FP operator is that we know the exact density

values at each sample points after propagation. We have formulated an estimation

algorithm based on FP operator and compared the results to particle filters. It was

found that the FP operator is computationally superior than the particle filtering

based estimators.

Finally we have proposed an estimation algorithm, when the dynamical system

has process noise in it. We use the Karhunen Loève (KL) expansion to represent pro-

cess noise and then use FP operator based methodology to propagate uncertainty. We

have proved that the solutions of the stochastic differential equation when the noise

is approximated using KL expansion converge in mean square sense to the actual so-

lutions. Finally we have applied the proposed estimation algorithm to estimate states

of a duffing oscillator and Vinh’s equation. It was found that the proposed estimation

method is superior to the particle filtering method for the particular application.

A. Future Work

There are several directions in which one can work towards, from the methodologies

and algorithms developed in this dissertation. In this section we will discuss in brief

some of the future directions of research.

1. Stochastic Control

One of the main use of the methodologies of uncertainty quantification developed in

this dissertation is control of stochastic dynamical system. Up until now, stochastic

control methodologies mainly focus on minimizing the expectation of the underlying



152

cost function, amongst them the linear quadratic Gaussian formulation is widely used

[132]. But there are several systems for which it is difficult to minimize a cost function

based on expected value. In such cases, one can resort to providing performance

guarantees in a weaker sense like in distribution or probabilistic guarantees. The FP

operator technique can play an important role in such cases. One may use the fact

that the uncertainty propagation is exact in this case.

2. Multiphysical Dynamical Systems

More often than not we are faced with systems which are multiphysical in nature.

Dynamics in such systems evolve in different scales and are spatially and temporally

varying. The dynamical system in such cases is described by a partial differential

equation (PDE) [133]. Uncertainty management in such systems in a difficult prob-

lems and faces a lot of challenges, as the measurements are available in different scales

and of different quantities than which we want to estimate. Most of the methods for

quantification of uncertainty involve Monte Carlo (MC) simulations and suffer from

the curse of dimensionality [134]. We have observed that FP operator based method is

computationally superior than MC methods and predicts the uncertainty accurately.

The use of FP operator for parameter estimation and sensitivity analysis of dynami-

cal systems may help reduce the computational burden due to use Monte Carlo and

PDF approximation using histograms.

3. Dimensional Scaling

Almost all of the uncertainty quantification (UQ) algorithms suffer from the curse of

dimensionality. For MC methods the number of sample points needed to obtain a suf-

ficiently good estimate of the quantity of interest increase exponentially with increase

in dimension. Though FP operator was found to better than MC methods for UQ
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in the particular application discussed in this dissertation, it fails if the dimension-

ality of the state space is very high. We can use dimensional scaling or dimensional

interpolation in such cases.

Dimensional scaling generalizes any system into a N dimensional representation,

and has been widely used in chemical physics [135]. It has been successfully applied to

solve the Schrödinger’s equation to find the ground state energy of a hydrogen atom

[136]. A technique has been intuitively proposed by Daum [137], where dimensional

scaling is used alongside FP operator for UQ in high dimensional systems. We can

use this technique for parameter estimation and uncertainty quantification of several

nonlinear systems, with large state space and high uncertainty.
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[61] K. Karhunen, “Über lineare methoden in der wahrscheinlichkeitsrechnung,”

Ann. Acad. Sci. Fennicae. Ser. A. I. Math.-Phys., , no. 37, pp. 1–79, 1947.
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APPENDIX A

ANALYSIS OF THE EIGENVALUES OF A POLYNOMIAL CHAOS

APPROXIMATED SYSTEM

In this appendix, we present an eigenvalue analysis of a linear system with para-

metric uncertainty when polynomial chaos (PC) is used to approximate the random

parameter. The main goal here is to show if the eigenvalues of a system are properly

captured through using PC expansion.

We consider a linear system whose dynamics is given by the following equations ẋ1

ẋ2

 =

 ∆ −3

4 −5


 x1

x2

 (A.1)

where x = [x1, x2]> are the states. ∆ is a random parameter having standard normal

distribution. Our aim here is to get an approximation of the system in Eqn. (A.1) and

to check if the deterministic system have the same eigenvalues as the actual system.

We use Monte Carlo simulation for comparison of eigenvalues.

We start by expanding the states using finite term PC expansion, which are given

by,

x1(t,∆) =
N∑
i=1

x1i(t)φi(∆) (A.2a)

x2(t,∆) =
N∑
i=1

x2i(t)φi(∆) (A.2b)

where x1i, x2i, i = 1 . . . , N are PC coefficients. φi(∆) are orthogonal polynomials

which in this particular case are Hermite polynomials. The first ten Hermite polyno-

mials are shown in Table IX.
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Table IX.: The first ten Hermite polynomials

Number Polynomial

φ0 1

φ1 ∆

φ2 ∆2 − 1

φ3 ∆3 − 3∆

φ4 ∆4 − 6∆2 + 3

φ5 ∆5 − 10∆3 + 15∆

φ6 ∆6 − 15∆4 + 45∆2 − 15

φ7 ∆7 − 21∆5 + 105∆3 − 105∆

φ8 ∆8 − 28∆6 + 210∆4 − 420∆2 + 105

φ9 ∆9 − 36∆7 + 378∆5 − 1260∆3 + 945∆

φ10 ∆10 − 45∆8 + 630∆6 − 3150∆4 + 4725∆2 − 945
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Let

A =


∫
D∆

∆φ2
1(∆)p(∆)d∆ · · ·

∫
D∆

∆φ1(∆)φN(∆)p(∆)d∆

...
. . .

...∫
D∆

∆φN(∆)φ1(∆)p(∆)d∆ · · ·
∫
D∆

∆φ2
N(∆)p(∆)d∆

 ,

and,

G =


∫
D∆

φ2
1(∆)p(∆)d∆ · · · 0

...
. . .

...

0 · · ·
∫
D∆

φ2
N(∆)p(∆)d∆

 ,

where D∆ is the domain of ∆ and p(∆) is the standard normal density. After applying

PC to the dynamical system and taking inner products with respect to the basis

functions, the PC dynamical system for Eqn. (A.1) is given by,

d

dt



x11

...

x1N

x21

...

x2N


=


G−1A

... −3I

· · · · · ·

4I
... −5I





x11

...

x1N

x21

...

x2N


. (A.3)

We plot the eigenvalues for the dynamical system in Eqn. (A.1) by varying ∆

between its 3σ limits and overlay the eigenvalues of the PC dynamical system in

Eqn. (A.3) on it. Figure 60 shows distribution of eigenvalues for the system in a

complex plane, when 5 terms in the PC expansion are taken. It can be seen that the

eigenvalues of PC dynamics match the eigenvalues of the actual dynamical system.

Next, we increase the number of terms to N = 10. We see that the PC dynamical

system is able to capture the eigenvalue distribution better than the previous case. We

can conclude that, number of eigenvalues represented by PC in the complex plane
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increases as N is increased. Hence, as N → ∞ the PC dynamical system would

completely represent the eigenvalue distribution of the actual dynamics.

In Fig. 61 we plot the PDF of the eigenvalues in the complex plane with the

color denoting the corresponding density. It can be seen that the densities are sym-

metric about the real line, which is because complex conjugate eigenvalues have same

density. We can not infer the density information from PC approximation. One of

the drawbacks of using the PC to get eigenvalues of a linear system is that we do not

have any PDF information after applying PC.
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(a) N = 5.

(b) N = 10.

Fig. 60.: Locations of eigenvalues of the system in Eqn. (A.1), when Monte Carlo

approximation is used (red circles) and when PC approximated dynamics in Eqn.

(A.3) is used (blue).
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Fig. 61.: PDF of the eigenvalue distribution on the complex plane. Blue represents

low probability regions and red is high probability region. Eigenvalues represented in

black.
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APPENDIX B

COMPARISON OF FROBENIUS-PERRON BASED ESTIMATION TO

PARTICLE FILTERS

In this appendix, we compare the FP operator based estimation method to parti-

cle filters, by investigating the posterior PDF obtained by the two methods. We use a

linear system with Gaussian uncertainty for comparison, as we have the exact repre-

sentation of evolving sequence of posterior PDFs through Kalman filter. We compute

the Wasserstein metric [138] of the two posteriors from the posterior obtained from

Kalman filtering.

The Wasserstein metric is a metric comparing the distance between the shapes

of two distributions. Let (M,d) be a metric space. For p ≥ 1, let Pp(M) denote the

collection of all probability measures µ on M with finite pth moment, i.e. for some x0

in M , ∫
M

d(x, x0)pdµ(x) <∞

Then the pth Wasserstein distance between two probability measures µ and ν in Pp(M)

is defined as

Wp(µ, ν) =

(
inf

γ∈Γ(µ,ν)

∫
M×M

d(x, y)p dγ(x, y)

)1/p

, (B.1)

where, Γ(µ, ν) is the set of all pairing of measures (µ, ν) on M × M . Important

property of this metric is that it is commutative i.e. Wp(µ, ν) = Wp(ν, µ). For the

sake of brevity detailed discussion about the Wasserstein metric has been omitted

here and can be found in ref. [139]. If both µ and ν are Gaussian measures, and if

we consider p = 2, requiring the 2nd moment to be finite, then there is an analytical
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expression of Wasserstein metric given by,

W2(µ, ν) =

√
||µ1 − µ2||2 + tr(Σ1) + tr(Σ2)− 2 tr(

√
Σ1Σ2

√
Σ1)

1
2 , (B.2)

where µ1, µ2, Σ1 and Σ2 are the means and covariances of each Gaussian measure,

respectively. The Wasserstein metric can be normalized by dividing W2(µ, ν) in Eqn.

(B.2) by the diameter of the Ω space.

Let us consider the linear system given by the following dynamical equations.

ẋ(t) =

 −0.05 0

0 −0.05

x(t), (B.3)

where x(t) ∈ R2 are the states. We consider a scalar measurement model given by,

ỹk = [1 1]xk + vk, (B.4)

where ỹk are measurements coming at discrete times, and vk is a zero mean delta

correlated discrete Gaussian noise with autocorrelation R.

We assume that the system has Gaussian initial condition uncertainty with mean

and covariance as,  1

1

 and

 1 0

0 1

 ,

respectively. The true system is assumed to have initial states [2, 2], hence we start

with an initial error in estimation. We fix the measurement update interval with each

measurement coming every 1s. We run the estimation algorithms for 10s.

Initially, we fix the value of R to 2. Figure 62 shows plots for estimation error

for the Kalman filter, FP operator based filter and particle filter. We can see that

performance of FP operator based estimator is similar to that of the Kalman filter,

in this case.
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(a) Kalman filter. (b) FP operator based estimator.

(c) Particle filter.

Fig. 62.: Plots for estimation error and ±3σ limits for a) Kalman filter b) FP operator

based estimator c) particle filter.
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Fig. 63.: Normalized Wasserstein distance between posterior PDFs of Kalman filter

and FP operator based estimator (solid line) and Kalman filter and particle filter

(dashed line). The value of R = 1/2.

Figure 63 shows the plot for normalized Wasserstein metric for posterior PDFs,

generated by particle filter and FP operator based estimator, from the posterior PDF

of the Kalman filter when R = 1/2. The propagation time is fixed to 20s. We can

see that the posterior PDF of the FP operator based estimator is closer to Kalman

filter’s posterior than the particle filter. If autocorrelation of noise is increased to

R = 2, the difference in performance of the two estimators become even clearer, as it

can be seen in Fig. 64.

However, if the value of R is increased the estimators perform equally. Figure

65 shows the Wasserstein distance between posterior PDFs of Kalman filter and FP

operator based estimator and Kalman filter and particle filter, when value of R = 4.

It can be seen that the distance from Kalman filter’s posterior PDF increases for both

filters, even if FP operator is nearer than particle filter.
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Fig. 64.: Normalized Wasserstein distance between posterior PDFs of Kalman filter

and FP operator based estimator (solid line) and Kalman filter and particle filter

(dashed line). The value of R = 2.

Fig. 65.: Normalized Wasserstein distance between posterior PDFs of Kalman filter

and FP operator based estimator (solid line) and Kalman filter and particle filter

(dashed line). The value of R = 4.
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APPENDIX C

TENSOR CALCULATIONS

This appendix shows the tensor calculations for for finding the prior moments of the

system in Eqn. (3.10) & Eqn. (3.11). After applying gPC to the system, the gPC

dynamical system is given by Eqn. (3.14a) & Eqn. (3.14b). To get the prior higher

order moments, we need to evaluate tensors which are given in section 3 in chapter

III. The tensor calculations for the given problem are as follows.

P xv =

(
M3−

111 +M3−
122

M3−
211 +M3−

222

)
−
(

M1−
1 M2−

11 +M1−
1 M2−

22

M1−
2 M2−

11 +M1−
2 M2−

22

)
, (C.1a)

P vv = R+M4−
1111 +M4−

2222 + 2M4−
1122 − 2

(
(M1−

1 )2 + (M1−
2 )2

) (
M2−

11 +M2−
22

)
+
(
(M1−

1 )2 + (M1−
2 )2

)2
, (C.1b)

P xvv =

(
M5−

11111 + 2M5−
11122 +M5−

12222

M5−
21111 + 2M5−

11222 +M5−
22222

)
− 2

(
M3−

111 +M3−
122

M3−
211 +M3−

222

)(
(M1−

1 )2 + (M1−
2 )2

)
−
(

M1−
1

M1−
2

)
(M4−

1111 + 2M4−
1122 +M4−

2222) + 2

(
M1−

1

M1−
2

)(
(M1−

1 )2 + (M1−
2 )2

) (
M2−

11 +M2−
22

)
−R

(
M1−

1

M1−
2

)
, (C.1c)

P xxv =

(
M4−

1111 +M4−
1122 M4−

1112 +M4−
1222

M4−
1112 +M4−

1222 M4−
2211 +M4−

2222

)
−
(

M3−
111 +M3−

122

M3−
211 +M3−

222

)(
M1−

1

M1−
2

)T
−
(

M2−
11 M2−

12

M2−
21 M2−

22

)(
(M1−

1 )2 + (M1−
2 )2

)
−
(

M1−
1

M1−
2

)(
M3−

111 +M3−
122

M3−
211 +M3−

222

)T
+

(
M1−

1

M1−
2

)(
M1−

1

M1−
2

)T (
M2−

11 +M2−
22

)
+

(
M1−

1

M1−
2

)(
M1−

1

M1−
2

)T (
(M1−

1 )2 + (M1−
2 )2

)2
,

(C.1d)

P vvv = M6−
111111 + 3M6−

111122 + 3M6−
112222 +M6−

222222 − 3
(
(M1−

1 )2 + (M1−
2 )2

)
(M4−

1111

+ 2M4−
1122 +M4−

2222)− 3
(
(M1−

1 )2 + (M1−
2 )2

)
R− 3

(
(M1−

1 )2 + (M1−
2 )2

)2
(M2−

11 +M2−
22 )

−
(
(M1−

1 )2 + (M1−
2 )2

)3
. (C.1e)
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Here, M i− are the prior moments which are calculated from the gPC coefficients.

The superscript is the order of the moment and the subscript is the element of the cor-

responding moment tensor. For example M6−
112222 represents (1, 1, 2, 2, 2, 2)th member

of the 6th order moment, which happens to be a 6th order tensor.
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