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ABSTRACT 

 

Adaptive Reliability Analysis of Excavation Problems. (August 2011)  

Jun Kyung Park, B.S.; M.S., Korea University, Seoul, Korea 

Co-Chairs of Advisory Committee: Dr. Giovanna Biscontin 
       Dr. Paolo Gardoni 

 

Excavation activities like open cutting and tunneling work may cause ground 

movements.  Many of these activities are performed in urban areas where many 

structures and facilities already exist.  These activities are close enough to affect 

adjacent structures.  It is therefore important to understand how the ground movements 

due to excavations influence nearby structures.   

The goal of the proposed research is to investigate and develop analytical 

methods for addressing uncertainty during observation-based, adaptive design of deep 

excavation and tunneling projects.  Computational procedures based on a Bayesian 

probabilistic framework are developed for comparative analysis between observed and 

predicted soil and structure response during construction phases.  This analysis couples 

the adaptive design capabilities of the observational method with updated reliability 

indices, to be used in risk-based design decisions.   

A probabilistic framework is developed to predict three-dimensional deformation 

profiles due to supported excavations using a semi-empirical approach.  The key 

advantage of this approach for practicing engineers is that an already common semi-

empirical chart can be used together with a few additional simple calculations to better 



 iv

evaluate three-dimensional displacement profiles.  A reliability analysis framework is 

also developed to assess the fragility of excavation-induced infrastructure system 

damage for multiple serviceability limit states.   

Finally, a reliability analysis of a shallow circular tunnel driven by a pressurized 

shield in a frictional and cohesive soil is developed to consider the inherent uncertainty 

in the input parameters and the proposed model.  The ultimate limit state for the face 

stability is considered in the analysis.  The probability of failure that exceeding a 

specified applied pressure at the tunnel face is estimated.  Sensitivity and importance 

measures are computed to identify the key parameters and random variables in the model. 
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1. INTRODUCTION 

 

1.1 Background 

Excavation activities like open cutting and tunneling work may cause ground 

movements.  Many of these activities are performed in urban areas where many 

structures and facilities already exist.  These activities are close enough to affect 

adjacent structures.  It is therefore important to understand how the ground movements 

due to excavations influence nearby structures.  This mechanism can be explained in the 

following figure for each type of different excavation. 

 

              

(a) Supported excavation                                (b) Tunnel excavation 

Figure 1.1 Ground movements and building damages due to excavation  

(Modified from Cording 1985) 

 

 

____________ 
This dissertation follows the style of the Journal of Geotechnical and Geoenvironmental 
Engineering. 

① Source of Ground Loss or Movement
② Ground Loss or Movement
③ Distribution of Movements and Volume Changes
④ Surface Settlements
⑤ Structure Displacement and Distortion
⑥ Structural Damage
⑦ Utility

①

②

③

④

⑤

⑥

①

②

③

④

⑤

⑥

①

②

③

④

⑤

⑥

⑦ ⑦



 2

Construction of supported excavation systems inevitably causes horizontal wall 

deflections and ground movements including surface settlement as shown in Figure 

1.1(a).  A major concern with deep excavation projects is the potentially large ground 

deformations in and around the excavation, which might cause damage to the adjacent 

buildings and utilities.  The observational method (Peck 1969) of design in geotechnical 

engineering is a valuable tool for addressing soil and structural uncertainties during 

subsurface construction projects.  In the observational method, project design and 

construction sequences are evaluated and revised as necessary based on comparisons 

between observed and predicted responses.  Traditionally, several empirical and semi-

empirical methods have been used to estimate the excavation-induced maximum wall 

deflection (Mana and Clough 1981; Hashash and Whittle 1996; Kung et al. 2007) and 

the surface settlement profile (Mana and Clough 1981; Hashash and Whittle 1996; Kung 

et al. 2007).  It is, however, not practical to incorporate all possible factors in a 

simplified empirical and semi-empirical model for excavation-induced wall and ground 

deformations.  Additionally, past works have suffered from important limitations; some 

of them are related to the difficulties of implementing an automated inverse analysis 

technique during execution of the geotechnical works.  

 In terms of tunneling-induced ground movements, the relationship between 

surface settlements which affect adjacent structures and tunnel depth is neither simple 

nor linear.  In reality, ground movements due to tunnel excavation depend on a number 

of factors including geological and geotechnical conditions, tunnel geometry and depth, 

excavation methods, and the quality of workmanship.  It is however clear that a shallow 
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tunnel tends to have a greater effect on surface structures than a deep one.  In weaker 

ground conditions, the failure zone may propagate towards the ground ahead of the 

tunnel face.  A good appreciation of the probability of  failure at the tunnel face is 

essential, both from the standpoint of providing a safe working environment and of 

evaluating the probability for large settlements to occur, given that ground movement at 

the face accounts for the majority of tunneling induced surface settlements.  Analytical 

and limit based methods have been developed (Atkinson and Potts 1977; Davis et al. 

1980; Leca and Dormieux 1990) to calculate the optimum supporting pressure, which 

avoids face collapse (active failure) and surface ‘blow-out’ (passive failure).  A 

reasonable agreement was found between the theoretical upper bound estimates and the 

measured face pressures at failure from centrifuge tests in frictional soil (Leca and 

Dormieux 1990).  However, general solutions that consider the strength characteristics 

of normally consolidated (NC) clays and the influence of seepage forces have not been 

reported. 

 Furthermore, supported excavation and tunneling projects related to urban 

redevelopment and infrastructure improvement are often governed by serviceability-

based criteria, rather than failure prevention.  However, recent applications of reliability 

concepts toward excavation system design have mainly focused on assessing the stability 

of the structure itself (Schweiger and Peschl 2005; Xu and Low 2006; Goh et al. 2008). 

 The goal of the proposed research is to investigate and develop analytical 

methods for addressing uncertainty during observation-based, adaptive design of deep 

excavation and tunneling projects.  Computational procedures based on a Bayesian 
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probabilistic framework are developed for comparative analysis between observed and 

predicted soil and structure response during construction phases.  This analysis will 

couple the adaptive design capabilities of the observational method with updated 

reliability indices, to be used in risk-based design decisions.   

 

1.2 Research Objectives 

The main goal of this study is to develop analytical methods to assess the reliability and 

account for the uncertainties during deep excavation and tunneling projects.  In 

particular, the following objectives are addressed: 

 

Objective 1: Develop a probabilistic framework for estimating soil properties and 

deformations for supported excavation 

Develop a Bayesian probabilistic framework to assess soil properties and better predict 

excavation-induced deformations using field information data.  Probabilistic models to 

provide an accurate and unbiased model will be developed to account for the underlying 

uncertainties. 

 

Objective 2: Develop reliability assessment technique considering both stability and 

serviceability performance 

Combine a system reliability analysis technique with the finite element method to assess 

both stability and serviceability performance of braced excavation wall systems in 

probabilistic terms. 
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Objective 3: Assess fragility estimates for the staged excavation systems 

Develop an adaptive reliability analysis framework based on a semi-empirical method to 

assess the fragility of infrastructure adjacent to deep excavations for multiple 

serviceability criteria.  

 

Objective 4: Validate probabilistic model and reliability estimates using case histories 

Validate all newly developed probabilistic frameworks with measurements of field 

deformation data for several supported excavation sites. 

 

Objective 5: Develop upper bound solution for tunnel face stability 

Develop a general upper bound solution for the pressurized shield tunnel face stability 

that combines both the depth-dependence of the effective cohesion ( )c  of normally 

consolidated (NC) clays and the influence of seepage into the shallow circular tunnel. 

 

Objective 6: Assess fragility estimates for tunnel face stability 

Develop a probabilistic stability analysis for tunnel face stability and a reliability 

analysis framework to assess the probability that specified threshold design stability 

criteria are exceeded. 

 

1.3 Organization of Dissertation 

The dissertation is composed of the eight sections, each containing a journal paper.   
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In Section 2, a probabilistic methodology is developed to estimate soil properties 

and model uncertainty to better predict deformations during supported excavations.  A 

Bayesian approach is used to assess the unknown soil properties by updating pertinent 

prior information based on field measurement data.  The proposed method provides up-

to-date predictions that reflect all sources of available information, and properly account 

for of the underlying uncertainty.  The title of the corresponding paper is “Estimating 

Soil Properties and Deformations during Staged Excavations ― I. A Bayesian 

Approach” and submitted to the Computers and Geotechnics. 

In Section 3, the application of a newly developed Bayesian probabilistic method 

to estimate the soil properties and predict the deformations in two supported excavation 

case histories is presented.  The two well documented case histories are the Lurie 

Research Center excavation project in Evanston, Illinois and the Caobao subway 

excavation project in Shanghai.  The title of the corresponding paper is “Estimating Soil 

Properties and Deformations during Staged Excavations ― ΙΙ. Application to Case 

Histories” and submitted to the Computers and Geotechnics. 

In Section 4, a Bayesian framework is proposed to predict the ground movements 

using a semi-empirical approach and to update the predictions in the later stages of 

excavation based on recorded deformation measurements.  The predictions are 

probabilistic and account for the relevant uncertainties.  As an application, the proposed 

framework is used to predict the three-dimensional deformation shapes at four 

incremental excavation stages of an actual supported excavation project.  The developed 

approach can be used for the design of optimal revisions of supported excavation 
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systems based on simple calculations rather than complex finite element analysis.  The 

corresponding paper titled “A Bayesian Framework to Predict Deformations During 

Supported Excavations Using a Semi-empirical Approach” is currently under 

preparation for submission. 

In Section 5, an approach to conduct a probabilistic assessment of infrastructure 

damage including buildings, bridges, and utility pipelines due to excavation works in a 

complex urban area.  A Bayesian framework based on a semi-empirical method 

developed in Section 4 is used to update the predictions of ground movements in the 

later stages of excavation based on the field measurements.  The system fragility of 

infrastructure adjacent to excavation works is computed by Monte Carlo Simulation 

(MCS) employing the component fragility of each infrastructure and the identified 

correlation coefficients.  An example is presented to show how the system reliability for 

multiple serviceability limit states can be assessed.  Sensitivity and importance measures 

are also computed to identify the key components, unknown parameters and random 

variables in the model for an optimal design of the excavation works.  The 

corresponding paper titled “Reliability Analysis of Infrastructure Adjacent to Deep 

Excavations” is currently under preparation for submission. 

In Section 6, a system reliability analysis technique with the finite element 

method to assess both stability and serviceability performance of braced excavation wall 

systems in probabilistic terms is developed.  The title of the corresponding paper is 

“Reliability assessment of excavation systems considering both stability and 

serviceability performance” and was published in the Georisk, 1(3). 
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In Section 7, a general upper bound solution for the pressurized shield tunnel 

face stability that combines both the depth-dependence of the effective cohesion ( )c  of 

normally consolidated (NC) clays and the influence of seepage into the shallow circular 

tunnel is developed.   The reliability analysis framework to assess the probability that 

specified threshold design stability criteria are exceeded is developed.  The 

corresponding paper titled “Reliability Analysis of Tunnel Face Stability Considering 

Seepage and Strength Increase with Depth” is currently under preparation for submission. 

Finally, in Section 8, the conclusions are included. 
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2. ESTIMATING SOIL PROPERTIES AND DEFORMATIONS 

DURING STAGED EXCAVATIONS ― I. A BAYESIAN APPROACH 

 

Numerical simulation of staged construction in excavation problems is generally used to 

estimate the induced ground deformations.  During construction it is desirable to obtain 

accurate estimates of anticipated ground deformations especially in later construction 

stages when the excavation is deeper.  This section presents a Bayesian probabilistic 

framework to assess soil properties and model uncertainty to better predict excavation-

induced deformations both in the horizontal and vertical directions.  A Bayesian 

updating is used to assess the unknown soil properties based on field measurement data 

and pertinent prior information.  The proposed approach properly accounts for the 

prevailing uncertainties, including model, measurement errors, and statistical 

uncertainty.  The potential correlations between deformations at different depths are 

accounted for in the likelihood function, which is needed in the Bayesian approach, 

using unknown model parameters.  The posterior statistics of the unknown soil 

properties and model parameters are computed using an adaptive Markov Chain Monte 

Carlo (MCMC) simulation method.  Markov chains are generated with the likelihood 

formulation of the probabilistic model based on initial points and a prior distribution 

until a convergence criterion is met.  As an illustration of the proposed approach, the soil 

properties and deformations during an example supported excavation project are 

estimated. 
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2.1 Introduction 

Construction of supported excavation systems inevitably causes horizontal wall 

deflections and ground movements including surface settlements.  The observational 

method (Schweiger and Peschl 2005; Xu and Low 2006; Goh et al. 2008) has been used 

to address the uncertainties associated with design and construction of geotechnical 

projects.  In the observational method, project design and construction sequences are 

evaluated and revised as necessary based on comparisons between observed and 

predicted responses. 

 Once soil properties are estimated, the induced ground movements due to the 

excavation are typically predicted by empirical/semi-empirical methods or numerical 

simulations.  Several empirical/semi-empirical methods have been used to estimate the 

excavation-induced maximum wall deflection (Peck 1969) and surface settlement profile 

(Mana and Clough 1981; Hashash and Whittle 1996).  It is, however, not possible to 

incorporate all influential factors, such as excavation width/depth, strut spacing, wall 

stiffness/preloading, adjacent surcharge, soil stiffness, and groundwater, in a simplified 

empirical/semi-empirical model for excavation-induced wall and ground deformations.  

More recently, numerical simulations have become more common since they can be 

more accurate and they can better capture the effect of the main influential factors.  

Finno and Calvello (Clough and O'Rourke 1990; Hsieh and Ou 1998) developed an 

automated inverse method to evaluate soil properties based on field measurements from 

previous excavation stages for a finite element analysis of a deep excavation.  This 

procedure allows engineers to revise predictions of soil response and determine the 
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influence of individual constitutive parameters based on an optimization technique that 

uses a weighted least-square objective function. 

Although the observational method has been successfully implemented in actual 

geotechnical engineering projects, it still has limitations.  The observational method (1) 

cannot objectively account for engineering judgment and experience, and information 

from previous excavations, (2) might be biased because of the bias inherent in the 

calculations, and (3) is deterministic and does not capture the underlying uncertainties.  

Because of the last two limitations, the observational method cannot be used to assess 

probabilities of failure and for a reliability-based design. 

A field engineer would benefit from having a prediction method that (1) properly 

account for all sources of information, objective and subjective, (2) can provide unbiased 

predictions of deflections and settlements of excavation system, and (3) incorporates the 

underlying uncertainty, and provides credible intervals around these predictions to assess 

the confidence the field engineer should have in the predictions.  Such method would 

allow for the assessment of the probability of failure of supported excavations and for a 

reliability-based design. 

This section addresses these needs by developing a Bayesian framework to assess 

soil properties accounting for the available sources of information and the underlying 

uncertainties.  The soil properties are updated after each excavation stage.  The updated 

properties are then used to develop new and more accurate predictions of the excavation-

induced horizontal deformations and surface settlements in the subsequent stages until 

the end of the excavation project.  The posterior statistics of the unknown properties and 
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additional model parameters are computed using the DRAM (Delayed Rejection 

Adaptive Metropolis) method, which is an adaptive Markov Chain Monte Carlo (MCMC) 

simulation technique that combines the Delayed Rejection (DR) method and the 

Adaptive Metropolis (AM) method.   

This section is composed of five subsections.  Following this introduction, we 

discuss the formulation of the probabilistic framework and the Bayesian model updating.  

Next, we introduce the MCMC method to calculate the posterior statistics of the 

unknown properties and model parameters.  Finally, as an application, the proposed 

framework is used to assess the moduli of elasticity of multiple soil layers for an 

example excavation, using both horizontal displacement and surface settlement data at 

different locations for four incremental excavation stages. 

 

2.2 Probabilistic Model Formulation 

A probabilistic model to predict the deformation of the soil for the k th excavation stage 

at the i th location, kiD , at a depth/location, iz , can be written as 

      ˆ ; , 1, , , 1, ,ki i ki i ki V HD z d z k m i n n    θ    (2.1) 

where ˆ
kid  the mean of the deformation estimate, 1(θ , ,θ )n θ  a set of unknown 

model parameters, ki  the model error,   the unknown standard deviation of the 

model error, ki a random variable with zero mean and unit variance, Vn  the number 

of points where the surface settlement is predicted, and Hn  the number of points where 
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the horizontal displacement is predicted.  The correlation coefficients between ki  and 

kj  of any two horizontal displacements, H , any two surface settlements, V , and an 

horizontal displacement and a surface settlement, VH , all within the same excavation 

stage k , are additional unknown model parameters.  Therefore, the correlation matrix for 

the k th excavation stage with ( )V Hn n  prediction points can be written as 

 
( ) ( )V H V H

V VH

HV H
n n n n  

 
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R R
R

R R
 (2.2) 
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 
   

 
  


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 (2.3) 

The covariance matrix of the model errors, Σ , can be written as Σ SRS , where 

S the diagonal matrix of standard deviations  .  Finally, ( , )Θ θ Σ  denotes the set of 

all unknown parameters in Eq. (2.1).  Note that for given iz , θ  and  , 

2Var[ ( )]ki iD z   is the variance of the model.  In assessing the probabilistic model, 

three assumptions are made: (a) the model variance 2  is independent of iz  
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(homoskedasticity assumption), (b) ki  follows the normal distribution (normality 

assumption), and (c) ki  and qj  at two different excavation stages ( )k q  are 

uncorrelated.  These assumptions are verified by using diagnostic plots (Rao and 

Toutenburg 1999) of the data or the residuals versus the model predictions. 

 

2.3 Uncertainties in Model Assessment and Predictions 

Uncertainties are present in formulating, assessing and using a model for prediction 

purposes (Gardoni et al. 2002).  Uncertainties can be classified as aleatory (which are 

not reducible and arise from the inherent randomness) and epistemic (which are 

reducible and arise from the limited available data and knowledge).  In our model 

formulation, aleatory uncertainty is present both in the soil/structural properties and in 

the error term ki .  The epistemic uncertainties can be eliminated by using improved 

models, increasing the number of data and introducing advanced measurements devices 

or procedures.  This uncertainty is present in the model parameters Θ  and partly in the 

error term ki .  Next, following Gardoni et al. (2002), we describe three specific types of 

epistemic uncertainties. 

 

2.3.1 Model inexactness 

This type of uncertainty arises when approximations are introduced in the estimation of 

the deformations.  It has two essential components: error in the form of the model (e.g., 

finite size of the finite element mesh) and missing variables (i.e., the estimate is 
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calculated by only a subset of the variables that influence the quantity of interest).  The 

error due to the inexact model form and the effect of the missing variables are captured 

by the error term ki .  The model inexactness has both an aleatory and an epistemic 

component. 

 

2.3.2 Measurement error 

This uncertainty arises from errors inherent in the measurement of the deformations 

during the excavation process.  For example, the measured values could be inexact due 

to human errors in following a measurement procedure or accuracy errors of the device(s) 

used.  In theory, the statistics of the measurement errors can be obtained through 

calibration of the measurement procedure.  The mean values of these errors represent 

biases in the measurements (systematic error), whereas their variances represent the 

inherent uncertainties.   

In our formulation, the model parameters Θ  are assessed or updated after each 

excavation stage by use of the measurements 1 ( )
ˆ ˆ ˆ( , , )

V Hk k k n nD D D   of the 

corresponding predicted variables at different locations 1 ( )ˆ ˆ ˆ( , , )
V Hn nz z z  .  These 

measured values, however, could be inexact due to errors in the measurements.  To 

model these errors, we let ˆ
k k k  DD D e  and ˆ  zz z e  be the true deformation and 

location values for the kth excavation stage, where ˆ
kD  and ẑ  are the measured values, 

and kDe  and ze  are the respective measurement errors.  In most cases, the random 

variables kDe  and ze  can be assumed to be statistically independent and normally 



 16

distributed.  The uncertainty arising from measurement errors is epistemic, and can be 

reduced by using more accurate measurement devices or procedures. 

 

2.3.3 Statistical uncertainty 

Statistical uncertainty is due to the sparseness of the data and can be reduced by 

gathering more data.  If additional data cannot be collected, then one must properly 

account for the effects of this uncertainty in all predictions and interpretations of the 

results.  In particular, the accuracy of a statistical inference depends on the observation 

sample size.  The smaller is the sample size, the larger is the uncertainty in the estimated 

values of the parameters. 

 

2.4 Bayesian Model Updating 

The proposed probabilistic approach uses a Bayesian formulation to incorporate all types 

of available information, including mathematical models, field measurements, and 

subjective engineering experience and judgment.  In the Bayesian approach, the 

likelihood function is used to update the prior distribution of a vector of unknown 

parameters Θ  using the following rule (Gardoni et al. 2002): 

      k kp L pΘ D Θ D Θ  (2.4) 

where ( | )kp Θ D  the posterior distribution of Θ  that incorporates all the information 

from the prior distribution and the likelihood function, ( | )kL Θ D the likelihood 

function representing the objective information on Θ  contained in a set of the 
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measurement data kD , ( )p Θ  the prior distribution reflecting our state of knowledge 

about Θ  before the measurement data is available, and   1[ ( | ) ( ) ]kL p d 
 Θ D Θ Θ  the 

normalizing factor. 

One significant virtue of the Bayesian framework is that updating a model can be 

repeated when new observations become available.  For staged excavation projects, this 

feature allows updating the estimates of Θ  as new deformation data from subsequent 

excavations stages become available.  For example, if an initial set of measurement data, 

1D , is available after the first excavation stage, then application of the Bayes’ formula 

gives 

      1 1p p LΘ D Θ Θ D  (2.5) 

If a second sample of measurements, 2D , becomes available, we can update 

1( | )p Θ D  to account for the new information as 

            1 2 1 2 1 2,p p L L p L Θ D D Θ Θ D Θ D Θ D Θ D  (2.6) 

Eqs. (2.5) and (2.6) are applications of Eq. (2.4) where the posterior distribution 

in Eq. (2.4) now plays the role of the prior distribution in Eq. (2.6).  In writing Eq. (2.6)  

we assumed that 2D  and 1D  are statistically independent sets of deformation 

measurements.  Given m  sets of independent deformation measurements, the posterior 

distribution can be updated after each new set of measurement data become available.  

That is, the likelihood associated with the k th sample is combined with the posterior 
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distribution of Θ  that accounts for the information content of the previous ( 1)k   

samples.  Mathematically, we can write 

      1 1 1, , , ,   =2, ,k k kp p L k mΘ D D Θ D D Θ D    (2.7) 

where 1( | )p Θ D   is given as in Eq. (2.5).  Eq. (2.7) can be used to repeatedly update our 

current knowledge about Θ , as the new set of measurement data become available. 

 

2.4.1 Objective information – likelihood functions 

The objective information is entered through the likelihood function, ( | )kL Θ D .  The 

likelihood function describes the probability of a set of measurement data kD  for given 

values of the model parameters Θ .  Here, we start by considering the case of exact 

measurements.  The effect of measurement error is then incorporated in an approximate 

manner.  Using Eq. (2.1) we can define 1 ( )( ) [ ( ), , ( )]
V Hk k k n nr r r θ θ θ  where ( )kir θ

ˆ[ ( ) ( ; )]ki i ki iD z d z θ .  The likelihood function can then be written as 

    
 

1

V Hn n

ki kik
i

L P r




      
  

Θ D θ   (2.8) 

Using the transformation rule (Ang and Tang 2007),  
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where [ ]f  E  the joint probability density function (PDF) of ki  for 1, , V Hi n n  , 

V Hn n   the sample size, | |   the determinant, [ ]T   the transpose, and ,J    the 

Jacobian defined as 
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  (2.10) 

Finally, the likelihood function can be written as 

            1/2/2 1
2

1
2 exp

2
V HV H

n nn n T
k kk

L  


       
Θ D R r θ R r θ   (2.11) 

 

2.4.2 Subjective information – prior distributions 

The prior distribution ( )p Θ  should be constructed using the knowledge available before 

the observations used to construct the likelihood function are made.  If there is no 
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existing information, a noninformative prior should be used reflecting that nothing or 

little is known a priori.  Assuming that θ  and Σ  are approximately independent, the 

prior distribution can be written as  

      p p pΘ θ Σ   (2.12) 

Gardoni et al. (2002) have shown that the noninformative prior for Σ  can be 

written as 

    
 

1 /2

1

1V H
V H

n n
n n

i i

p



    



 Σ R   (2.13) 

Furthermore, when the model is linear in θ , a uniform prior can be used as the 

noninformative prior for ( )p θ  so that ( ) ( )p pΘ Σ  (Box and Tiao 1992).  However, 

when a probabilistic model is a nonlinear function of θ , a uniform distribution might not 

be noninformative.  In this case, an approximate noninformative prior can be developed 

using Jeffreys’ rule (Jeffreys 1961).  According to Jeffreys’ rule, an approximate 

noninformative prior distribution of θ  is proportional to the positive square root of the 

determinant of the information matrix, ( )I θ .   

The information matrix is the expected value of the negative of the Hessian (the 

matrix of the second partial derivatives) of the natural logarithm of the likelihood 

function with respect to θ .  Hence, the Jeffreys’ approximate noninformative prior for θ  

can be written as 
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  (2.14) 

where [ ]
k

E  D θ
 the conditional expected value. 

2.4.3 Posterior distributions 

The prior distribution, ( )p Θ , is updated into the posterior distribution, ( | )kp Θ D , using 

the Bayes’ theorem in Eq. (2.4).  This updating combines the objective information in 

( | )kL Θ D  with the prior information in ( )p Θ  creating a compromise between the two 

sets of information.  As the sample size increases, this compromise is gradually 

governed by the observed data.  Obtaining the posterior distribution required integrating 

the Bayesian kernel, ( | ) ( )kL pΘ D Θ , over the range of Θ .  This integration is typically 

not possible in closed form and standard integral approximations perform poorly.  We 

discuss alternative solution strategies in a later subsection. 

 

2.5 Accounting for Measurement Errors 

Following Gardoni et al. (2002), measurement errors can be accounted for by modifying 

the likelihood function as described next.  In formulating the new likelihood function, 

each vector of measurement errors kDe  and ze  can be assumed to be jointly normally 
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distributed with zero means (i.e., the instrumentation has been corrected for any 

systematic error) and known covariance matrixes kDΣ  and zΣ , respectively.  

Accounting for the measurement errors, Eq. (2.1) can be rewritten as 

  ˆ ˆ ˆ;k k k k   D zD e d θ z e ε   (2.15) 

Defining 1 ( )
ˆ ˆˆ ˆ ˆ ˆ( ; ) [ ( ; ), , ( ; )] ( ; )

V Hk k k n n k kr r    z z z zr θ e θ e θ e D d θ z e , Eq (2.15) 

can be rewritten as ˆ ( ; )k k k  D zε e r θ e .  However, the computation of the likelihood 

function is more difficult than in the case without measurement errors, because ˆ ( ; )k zr θ e  

is a nonlinear function of the random variables ze .  We can use a first-order 

approximation to express ˆ ( ; )k zr θ e  as a linear function of ze  under the assumption that 

the errors ze  are small in relation to the measurements ẑ .  Using a Maclaurin series 

expansion around ze 0 , we have  

      ˆ ˆˆ ˆ, ,
ˆ ˆˆ ˆˆ; ;k k k kJ J      z z zr z r zr θ e D d θ z e r θ e   (2.16) 

where ˆ ˆˆ ˆ( ) ( ; )k k k r θ D d θ z . 

Eq. (2.15) can now be rewritten as ˆ ˆ,
ˆ ( )k k kJ    D zr zε e e r θ .  The left-hand 

side of this expression is a vector of jointly normal random variables with zero mean and 

covariance matrix ˆ ˆˆ ˆ, ,
ˆ T

k J J  D zr z r zΣ Σ Σ Σ , where k DΣ the covariance matrix for 

measurement device errors, zΣ the covariance matrix for the misplacement of the 

measurement device for vertical locations.  We can also write as ˆ ˆˆ ˆΣ SRS , where ˆ R  
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the revised correlation matrix, ˆ S  the diagonal matrix of new standard deviations ̂ ,  

are written as 

 

( ) ( )

ˆ ˆ
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ˆ ˆ
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where 

 

ˆ ˆ ˆ ˆ1 1

ˆ ˆˆ ˆ1      1

sym. sym.

1 1

ˆ ˆ ˆ

ˆ ˆ ˆ                            

sym.

ˆ

H HV V

V H

V V H H

V V H H

n nn n

VH VH VH

VH VH VH

VH n n

   

 

  

 







   
   
   
    
   
   

  
  

 
 
 
 
 
 
 
 

R R

R

   
     

 
   

 
  


 

  (2.18) 

The new correlation coefficients between ki  and kj  of any two horizontal 

displacements, ˆ
H , any two surface settlements, ˆ

V , and an horizontal displacement 

and a surface settlement, ˆVH , all within the same excavation stage k , are additional 

unknown model parameters.  The likelihood function can then be rewritten as 

    
 

1

ˆ ˆ ˆ
V Hn n

k ki ki
i

L P r




      
  

Θ D θ   (2.19) 

Using the transformation rule (Ang and Tang 2007),  
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2.5.1 Measurement error of deformation data 

Instruments for measuring deformation in the construction of supported excavation 

systems are installed to verify design assumptions and to effectively monitor ground 

response for the various construction activities.  The vertical inclinometer is generally 

used to measure the excavation-induced horizontal deformations, and the optical 

surveying method of pre-installed surface marker is used for the surface settlements. 

Vertical inclinometers are instruments used to measure relative horizontal 

displacements affecting the shape of a guide casing embedded in the ground or structure.  

Inclinometer probes usually measure displacement in two perpendicular planes to 

estimate both displacement magnitudes and directions.  The guide casing is installed 

vertically for most applications in order to measure horizontal ground movements.  The 

bottom end of the guide casing serves as a stable reference and must be embedded 

beyond the displacement zone.  However, the inclinometer probe does not provide 

horizontal movement of the casing directly.  The probe measures the tilt of the casing 

which is converted to a horizontal movement.  In Figure 2.1(a), the deviation from 

vertical, i.e., the horizontal displacement, is determined as sinl  , where    the angle 

of tilt measured by the inclinometer probe, and l   the measurement interval (Dunnicliff 

1988; Green and Mikkelsen 1988).  The total horizontal displacement profile of the 
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casing can be obtained by summing the individual horizontal displacements from the 

bottom of the casing to the top, and this summation process is shown as ( sin )p pl   in 

Figure 2.1(b).   

 

(a) Inclinometer configuration             (b) Illustration of inclinometer operation 

Figure 2.1 Schematic view of the inclinometer probe inserted in casing (Modified 
from Dunnicliff 1988) 

 

The cumulative horizontal displacement profile provides a representation of the 

actual deformation pattern.  The precision of inclinometer measurements depends on 

several factors, such as the design of the sensor and quality of the casing, probe, cable, 

and readout system.  Even if all of these factors are addressed, there still can be errors in 
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the readings.  Mikkelsen (2003) indicates that a random error, which is a form of 

aleatory uncertainty and irreducible, is typically no more than ±0.16 mm for a single 

reading interval and accumulates at a rate equal to the square root of the number of 

reading intervals over the entire casing.  On the other hand, the systematic error, which 

is related to the epistemic uncertainty and is reducible, is about ±0.11 mm per reading 

under controlled laboratory conditions, and it accumulates arithmetically.  Finally, the 

standard deviation of the total error for inclinometer measurements, kD , is defined as 

 0.16 0.11k H Hn n    D   (2.21) 

where, Hn  the total number of reading intervals.   

The measurement accuracy of the optical surveying method for the surface 

settlements is controlled by the choice and quality of surveying technique and by 

characteristics of reference datum and measuring points.  Even though Finno (2007) 

summarized the accuracy is ±3.0 mm for the ground surface settlements with optical 

survey, it is assumed that the error from the ground surface settlement measurements 

with optical survey is same with that from the inclinometer measurements because 

detailed information for the quality of surveying technique is not usually available. 

 

2.5.2 Structure of ΣDk 

Measurement errors are not independent for both inclinometer and optical survey 

observations along a line.  The value of the displacement – and the error associated with 



 27

it – is based on all the previously measured displacements.  It is useful to express the 

covariance matrix for inclinometer measurements as 

 2
k kD D xΣ E   (2.22) 

where 2
k D  the scale factor which represent the measurement errors, and xE  the 

error structure of the instrument which depends on the apparatus itself.  If the 

measurements are independent and have the same variance, xE  will be an identity 

matrix.  As discussed above, the inclinometer measures angle ( )p  representing the 

deviation from the vertical at fixed depth intervals, and these values are used to compute 

horizontal displacements.  The value p  is assumed to be small and the horizontal 

displacement ( )iD  is computed as 
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where, pl  the length between two consecutive points of measurement, and B  an 

integration constant representing the horizontal movement of the initial point.  Assuming 

that the value of B  is exactly known, the kDΣ  matrix for an inclinometer is 
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where ab  the Kronecker delta.  In this study, the 2
kD  for both inclinometer and the 

surface settlements is assumed to be constant with a value of 225mm  for each 30 reading 

intervals based on Mikkelsen (2003). 

 

2.5.3 Structure of Σz 

Since the influence of the inclination of the alignment of the guide casing is negligible 

( 0)  , only the effect of the misplacement of the inclinometer 
0

( )zΣ  is considered as 

summarized in Eq. (2.25).   
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  (2.25) 

The constant A  will depend on the stiffness of the guide casing.  It will be 1 if it 

is rigid, and will be a constant less than 1 if it is not rigid.  In this study, the 
0

2 z  is 

assumed to be as constant with value of 250mm  based on the literature for horizontal 

displacements and the surface settlements (Mikkelsen 2003).   
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2.6 Solution Strategies 

Since the proposed model is nonlinear in the unknown parameters, a closed-form 

solution is not available.  In this case, numerical solutions are the only option to compute 

the posterior statistics and the normalizing constant (Gelman et al. 2004).  There are 

numerous simulation methods in Bayesian inference.  Rejection sampling (Robert and 

Casella 2004) is a general method for simulating from an arbitrary posterior distribution, 

but it can be difficult to set up since it requires the construction of a suitable proposal 

density.  Importance Sampling (IS) and Sampling Importance Resampling (SIR) (Rubin 

1987) algorithms are also general-purpose methods, but they also require proposal 

densities that may be difficult to find for high-dimensional problems. 

In this study, a Markov Chain Monte Carlo (MCMC) algorithm is used for 

computing the posterior statistics as described in the following subsection.  MCMC 

algorithms are very attractive in that they are easy to set up and program and require 

relatively little prior input from the user.  Markov chains are generated with the 

likelihood formulation of the probabilistic models based on the initial points and a prior 

distribution until a convergence criterion is met.  Additional details about MCMC can be 

found in several references (Gilks et al. 1998; Gelman et al. 2004; Robert and Casella 

2004).   
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2.6.1 Markov Chain Monte Carlo simulation – Metropolis-Hastings (MH) 

algorithm 

MCMC methods are based on constructing a Markov chain of numerical samples 

representing the target distribution, so that each sample depends only on the previous 

value in the chain.  In Bayesian data analysis, the posterior distribution in question is set 

as the stationary target distribution towards which the chain converges.  The samples 

obtained from the simulation are representatives of the desired distribution.   

With an MCMC algorithm, we are generating a chain of values 

0 1 1, , , , , ,t t t N Θ Θ Θ Θ Θ   in such a way that it can be used as a sample of the target 

posterior density.  A MCMC simulation produces a sequence of values tΘ  that depend 

on the values at the previous step 1tΘ .  The algorithm used in the simulation ensures 

that the chain takes values in the domain of the unknown parameters Θ  and that its 

limiting distribution is the posterior distribution ( | )kp Θ D .  The basic idea is that 

instead of computing the values ( | )kp Θ D  we only compute the ratio of the posterior 

distribution at two distinct parameter values ( | ) / ( | )k t kp pΘ D Θ D .  In terms of the 

Markov chain theory, when using the Metropolis-Hastings algorithm, we generate a 

Markov chain that has a transition kernel according to 

      , , , ,  t t t tp q  Θ Θ Θ Θ Θ Θ Θ Θ   (2.26) 
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where, q  the transition density, and   an acceptance probability.  The density 

( ,   )q Θ , with Θ  being the current location of the chain, is called the proposal density.  

The chain is said to be reversible if we have 

            , , , ,t t t t tk k
p q p q Θ D Θ Θ Θ Θ Θ D Θ Θ Θ Θ   (2.27) 

Reversibility is a sufficient condition for the density ( | )kp Θ D  to be the 

stationary distribution of the chain, 

      ,k t t kp p d p Θ D Θ Θ Θ Θ D   (2.28) 

meaning that if the chain were to reach ( | )kp Θ D , it would also follow this distribution 

for the rest of the simulation.  This leads to the choice of the Metropolis-Hastings 

acceptance probability ( )  as 

      
   

,
, min 1,

,

t k t
t

tk

p q

p q
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    
  
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Θ Θ

Θ D Θ Θ
  (2.29) 

We formulate a general Metropolis-Hastings algorithm in the following way: 

(i) Start from an initial value 0Θ , and select a proposal distribution q . 

(ii) At each step where the current value is 1tΘ , propose a candidate for the new 

parameter tΘ  from the distribution 1( ,   )tq  Θ . 

(iii) If the proposed value tΘ  is better than the previous value 1tΘ  in the sense that 

1( | ) ( , ) ( | ) ( , )t k t t k tp q p qΘ D Θ Θ Θ D Θ Θ , tΘ  is accepted unconditionally. 
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(iv) If it is not better in the above sense, tΘ  is accepted as the new value with a 

probability   given by Eq. (2.29). 

(v) If tΘ  is not accepted, then the chain stays at the current value, that is, we set 

1t tΘ Θ . 

(vi) Repeat the simulation from Step (ii) until enough values have been generated. 

The proposal distribution from which we choose new values for the chain can be 

quite arbitrary, but choosing a distribution that most closely resembles the true target 

posterior distribution can accelerate the convergence of the values generated to the right 

distribution.  The closer the proposal distribution ( )q  is to the actual target posterior, the 

better the chain mixes and the better a short sequence represents a random draw from the 

posterior.  This is especially true in multidimensional cases and when there is a 

correlation between the components of the parameter vector.  The algorithm is 

constructed in such a way that the target posterior distribution is the stationary 

distribution of the Markov chain.  This means that the values generated will eventually 

follow the posterior distribution.   

 

2.6.2 Delayed Rejection Adaptive Metropolis (DRAM) method 

In the basic MCMC method based on Metropolis-Hastings, the problem is how to 

choose the proposal distribution so that the algorithm converges as quickly as possible.  

This normally requires a lot of manual tuning of the proposal.   
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When using a Gaussian proposal, the problem is to find a suitable covariance 

matrix for the proposal.  In Adaptive Metropolis (AM) algorithms, the adaptive method 

simply adds one step to the simulation loop of the basic MCMC algorithm.  Let us 

suppose that we are at step t  in the algorithm and already have created chain 

0 1( , , , )tΘ Θ Θ .  The proposal distribution is now at the current state tΘ  and new 

covariance matrix 1tΣ . 

  1 0 0, , ,  when t ts t t   Σ Σ Θ Θ   (2.30) 

where s  the constant scaling parameter that depends only on the dimension of the 

parameter space, 0t   the step at which the adaptation begins.  When 0t t , we can use a 

fixed initial covariance 0Σ .   

The Delayed Rejection (DR) algorithm is a modification of the standard 

Metropolis-Hastings algorithm that has been proved to improve the efficiency of MCMC 

estimators.  The idea in DR is that in case of rejection in the acceptance step we propose 

another move instead of storing the old parameter values in the chain.  The acceptance 

probability of this "second stage" acceptance step is chosen so that the reversibility 

conditions of the chain are preserved and thus the chain stays ergodic.  The second stage 

move depends on the current position and on the point that has been rejected in the 

previous stage.  The delayed rejection mechanism can be extended to any number of 

stages. 

Delayed Rejection Adaptive Metropolis (DRAM) combines adaptation to the DR 

procedure.  Here, after every AM step using an adapted covariance tΣ , DR is applied 
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upon rejection so that for stage   the proposal covariance t
Σ Σ .  The covariance at 

DR stage   can be computed simply by scaling the covariance produced by the AM 

step: t ts
  Σ Σ , where 1, ,u   , and u  the number of DR stages applied for every 

rejected point.  The purpose of the algorithm is to guarantee that at least one of the 

proposals is chosen.  Other second stage moves can be designed as well.  The DRAM 

algorithm improves the efficiency compared to standard MCMC and AM approaches, 

especially when the initial point is badly chosen and the parameters are not well 

identifiable. 

We adapted the Geweke’s convergence diagnostic to decide when to terminate 

the MCMC simulations. Geweke (1992) proposed a convergence diagnostic for Markov 

chains based on a test for equality of the means of the initial and final part of a Markov 

chain (by default the first 10% and the last 50%).  If the samples are drawn from the 

stationary distribution of the chain, the two means are equal and Geweke’s statistic has 

an asymptotically standard normal distribution.  The test statistic is a standard Z-score: 

the difference between the two sample means divided by its estimated standard error.  

We terminated the simulation when the Geweke’s convergence diagnostic is sufficiently 

large, i.e., larger than 0.95. 

 

2.7 Application 

This subsection is devoted to a simplified deep excavation example project through 

which detailed step-by-step procedures are illustrated and proposed probabilistic 

framework is verified.  The example consists of a two layer stratigraphy, with soil 
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modeled as an elasto-plastic Mohr-Coulomb material.  “Measurements” values are 

generated by assigning fixed elastic properties to the soils and performing a 

deterministic numerical analysis.  The proposed approach is then used to assess the 

moduli of the two soil layers, using both horizontal deformation and surface settlement 

data in multiple incremental excavation stages. 

The soil stratigraphy and the finite element mesh for this example are shown in 

Figure 2.2.  The entire mesh is fixed at the bottom and allowed to move vertically at both 

sides.  The mesh behind the sheet pile wall is extended to a distance five times the 

excavation depth to eliminate the influence of the boundary condition on the model.  The 

soils are modeled using 8-node biquadratic elements with reduced integration (CPE8R in 

ABAQUS (2003)), the sheet pile wall is represented by the 3-node quadratic beam 

element (B22), and the interfaces between the wall and soils are simulated by a small 

sliding contact pair.  The tiebacks are modeled by 2-D truss elements (T2D2) with axial 

stiffness.  In terms of materials, the soil layers are modeled using the Mohr-Coulomb 

model and the structural members using a linear-elastic model as summarized in Table 

2.1. 

 

 

Figure 2.2 Finite element mesh for example case 
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Table 2.1 Material properties of example case 

Types 3(kN/m )t  (MPa)E    (kPa)c  o( )  o( )  

Sheet Pile 
78 

(0.4m thick) 
8068 0.30 - - - 

Strut 1 78 69.60 0.30 - - - 

Strut 2 78 57.50 0.30 - - - 

Strut 3 78 17.20 0.30 - - - 

Layer 1 19 1E  0.39 0 35 5 

Layer 2 19 2E  0.39 0 35 5 

 

The elastic moduli of each layer are assumed to be unknown parameters 

1 2( ,  )E E   and estimated using the proposed probabilistic approach.  Tables 2.2−2.5 

show the posterior statistics of Θ  after each excavation stage.  In the first excavation 

stage, a non-informative prior distribution is assumed according to Eqs. (2.13) and (2.14)

.  After each subsequent excavation state, the posterior statistics are obtained by updating 

the posterior statistics from the previous stage with the observation from the current 

stage.  The proposed framework retrieves the unknown soil properties well from early 

excavation stages.  Furthermore, the standard deviation of the unknown parameters Θ  

gradually decreased as excavation steps increase.  This indicated that the uncertainty can 

be reduced by the proposed probabilistic framework.   
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Table 2.2 Posterior statistics of the unknown parameters using prior information 

 1E  2E    V  H  VH  

Mean 78.63 782.18 0.10 0.14 0.18 0.19 

St. dev. 45.29 287.56 0.07 0.09 0.08 0.09 

Correlation Coefficient 

1E  1      

2E    0.78 1     

    0.02 –0.05 1    

V    0.12 –0.09 –0.11 1   

H    0.06 –0.02 –0.13 –0.06 1  

VH  –0.11   0.09   0.08   0.04 0.08 1 

 

Table 2.3 Posterior statistics of the unknown parameters after 1st stage 

 1E  2E    V  H  VH  

Mean 78.76 784.16 0.08 0.18 0.13 0.12 

St. dev. 36.49 251.47 0.06 0.09 0.06 0.08 

Correlation Coefficient 

1E  1      

2E  0.82 1     

  0.06 –0.08 1    

V    0.12   0.11   0.09 1   

H  –0.16   0.09 –0.12 0.08 1  

VH  –0.03   0.08   0.03 0.09 –0.03 1 
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Table 2.4 Posterior statistics of the unknown parameters after 2nd stage 

 1E  2E    V  H  VH  

Mean 78.89 788.56 0.08 0.12 0.17 0.18 
St. dev. 28.64 214.76 0.04 0.08 0.06 0.07 

Correlation Coefficient 

1E  1      

2E  0.78 1     
  –0.03   0.12 1    

V    0.18 0.09 –0.13 1   

H    0.16 0.10 –0.09   0.08 1  

VH    0.08 –0.08 0.08 –0.17 –0.06 1 

 

Table 2.5 Posterior statistics of the unknown parameters after 3rd stage 

 1E  2E    V  H  VH  

Mean 78.92 789.58 0.07 0.08 0.14 0.18 
St. dev. 23.58 189.73 0.03 0.02 0.03 0.01 

Correlation Coefficient 

1E  1      

2E  0.72 1     
  0.12 –0.09 1    

V    0.08 –0.02 0.12 1   

H  0.09 0.04 0.13 –0.09 1  

VH  –0.12   0.12 –0.04 –0.06 –0.08 1 

 

Figure 2.3 shows the comparisons between the wall deflections based on the 

virtual measurements and the FEM results using the posterior means after each 

excavation stage.  The width of the credible interval decreases as the excavation 

proceeds because more available information help reduce uncertainties.   
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(a) Prediction after 1st stage 

 
(b) Prediction after 2nd stage 

 
(c) Prediction after 3rd stage 

Figure 2.3 Comparison of measured and predicted horizontal displacement based 
on posterior estimates without measurement error 
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(a) Prediction after 1st stage 

 

 
(b) Prediction after 2nd stage 

 

 
(c) Prediction after 3rd stage 

Figure 2.4 Comparison of measured and predicted settlement based on posterior 
estimates without measurement error 
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Figure 2.4 shows the comparisons between the settlements based on the virtual 

measurements and the FEM results using the posterior means after each excavation 

stage.  The predicted values capture accurately the overall settlement profile and the 

location of the maximum surface settlement.   

The accuracy of the model fit can be assessed using the Mean Absolute Percent 

Error (MAPE) defined as 

 
 

   
 
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100
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
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 
 


θ
  (2.31) 

The MAPE indicates the average relative error and is an intuitive measure of the 

accuracy of model predictions.  Table 2.6 lists the values of MAPE computed after each 

excavation stage.  The small values of MAPE indicate that the proposed probabilistic 

models are accurate.  The diagonal terms describe the quality of fit of the proposed 

probabilistic framework and show smaller values than the lower diagonal terms because 

the updated posterior estimates reflect both the information content of the old and the 

current excavation stage data in the probabilistic model.  The lower diagonal terms 

represents how accurate the prediction is.  As the excavation proceeds, more information 

is available and the accuracy increase means that the MAPE values decrease. 

Figure 2.5 and Figure 2.6 show the comparisons of wall deflections and 

settlements based on the virtual measurements and the FEM results using the posterior 

means after each excavation stage when measurement errors are present.  In this case, 

MAPE values are higher than in the previous case, without measurement error, as 
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summarized in Table 2.7 due to the effect of the additional error terms in the covariance 

matrix formulation.   

 

Table 2.6 MAPE values for all excavation stages without measurement error 

% Stage 1 Stage 2 Stage 3 Stage 4 

Stage 1 3.17    

Stage 2 15.24 2.66   

Stage 3 18.35 7.56 1.80  

Stage 4 22.95 13.46 0.91 0.75 

 

Table 2.7 MAPE values for all excavation stages with measurement error 

% Stage 1 Stage 2 Stage 3 Stage 4 

Stage 1 5.23    

Stage 2 18.67 4.56   

Stage 3 24.26 12.86 3.24  

Stage 4 26.68 21.07 2.38 1.37 
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(a) Prediction after 1st stage 

 
(b) Prediction after 2nd stage 

                     
(c) Prediction after 3rd stage 

 

Figure 2.5 Comparison of measured and predicted horizontal displacement based 
on posterior estimates with measurement error 
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(a) Prediction after 1st stage 

 

 
(b) Prediction after 2nd stage 

 

 
(c) Prediction after 3rd stage 

Figure 2.6 Comparison of measured and predicted settlement based on posterior 
estimates with measurement error 
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2.8 Conclusions 

A probabilistic methodology is developed to estimate soil properties and model 

uncertainty to better predict deformations during supported excavations.  A Bayesian 

approach is used to assess the unknown soil properties by updating pertinent prior 

information based on field measurement data.  The proposed method provides up-to-date 

predictions that reflect all sources of available information, and properly account for of 

the underlying uncertainty. 

This section presents a numerical illustration of the proposed approach.  In the 

example, the soils properties and the model parameters are updated after each excavation 

stage.  The updated parameters are then used to develop new and more accurate 

predictions of the deformations in the subsequent excavation stages.  This approach can 

be used for the design of optimal revisions for supported excavation systems.  By 

applying the proposed Bayesian approach to the reliability-based design of geotechnical 

engineering projects, engineers can combine the advantages of the observational method 

with the advantages of probabilistic methods. 
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3. ESTIMATING SOIL PROPERTIES AND DEFORMATIONS 

DURING STAGED EXCAVATIONS ― ΙΙ. APPLICATION TO CASE 

HISTORIES 

 

A general Bayesian probabilistic framework to assess soil properties and the model 

uncertainty to better predict excavation-induced deformations using field deformation 

data has been presented in the previous section.  The proposed framework can be used to 

assess the unknown soil properties of multiple soil layers using deformation data at 

different locations and for multiple incremental excavation stages.  This section 

describes an application of the developed method to two real case studies of staged 

excavation projects in Evanston, Illinois and Shanghai City, China.  Horizontal 

displacements and settlement profiles measured in the field are used as input data to 

estimate the elastic modulus and other plasticity parameters using the developed 

Bayesian approach.  The posterior statistics of the unknown soil properties and model 

parameters are computed using the Delayed Rejection (DR) method and the Adaptive 

Metropolis (AM) method. 

 

3.1 Bayesian Probabilistic Framework 

The observational method, formalized by Peck (1969) and recently further refined by  

Hashash et al. (2003), Calvello and Finno (2004), Finno and Calvello (2005), Chua and 

Goh (2005), Hashash and Finno (2008) and Hsiao et al. (2008), provides a motivation 

for employing adaptive design in geotechnical projects, including deep excavations.  
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Monitoring and continuously evaluating observed vs. predicted response during 

construction are the basic tenets of the observational method.  Although the method has 

been successfully implemented in actual geotechnical engineering projects, the feedback 

and revision concept can also be developed through a probabilistic analysis framework.   

A general Bayesian probabilistic framework to assess and refine soil properties 

for staged excavation problems was presented in a companion paper (Park et al. 2010a).  

The data or engineering judgment employed during initial design can be quantitatively 

updated based on additional information, such as support system responses or additional 

soil tests as they become available.   

As a demonstration of the applicability of the proposed procedure, the process of 

estimating soil properties and model parameters from field measurements obtained 

during the excavation is illustrated herein using previously published examples.  The 

first case illustrates the application of the developed methodology to the Lurie Research 

Center excavation project in Evanston, Illinois (Finno and Roboski 2005).  The second 

example is an application of the developed approach to the Caobao Subway excavation 

project in Shanghai, China (Shao and Macari 2008). 

The proposed Bayesian probabilistic approach is implemented through a 

MATLAB-based application program designed as a general purpose Bayesian 

probabilistic tool for the solution of inverse problems.  The flow chart shown in Figure 

3.1 illustrates the calculation procedure in the program as applied to deep excavations.  

The updating of soil properties and model parameters for the finite element analysis is 

carried out using the Delayed Rejection Adaptive Metropolis (DRAM) method as 
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described in the previous section.  This procedure allows engineers to revise soil 

response predictions and determine the influence of individual constitutive parameters 

and model parameters.  The feedback reduces the total uncertainty inherent in excavation 

projects due to soil variability, modeling methods, and construction procedures. 

 

 

Figure 3.1 Flow diagram for the processes in the MATLAB application 
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3.2 LURIE Research Center Case History 

3.2.1 Project description 

The developed probabilistic approach is applied to an actual supported excavation 

project for the Robert H. Lurie Medical Research Building in Evanston, Illinois (Finno 

and Roboski 2005).  Figure 3.2 shows a plan view of the approximately 80 m by 68 m 

excavation area.  Measurements of both lateral and vertical ground surface settlements 

were obtained from inclinometers and optical survey.  Because of the proximity of the 

utilities and the use of a relatively flexible excavation support system, extensive 

monitoring locations were established around the site.  The excavation consisted of a 

12.8 m deep cut for two basement levels and a flexible retaining system of PZ–27 sheet 

pile on all sides.  Detailed description and ground response of the excavation are 

provided in Finno and Roboski (2005).  

 

 

Figure 3.2 Plan view of the Lurie Center excavation (Modified from Finno and 
Calvello 2005) 
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3.2.2 Site conditions and measurement data 

Beneath the superficial medium dense to dense rubble fill lies a loose to medium dense 

beach sand as shown in Figure 3.3.  The granular soils overlie a sequence of glacial clays 

of increasing shear strength with depth.  Undrained shear strengths based on results of 

vane shear tests are 29–43 kPa in the soft to stiff clays and 105 kPa in the stiff clay. 

Excavation of the site and tieback installation took place simultaneously within the site.  

However, four distinct excavation stages were defined, corresponding to levels 

immediately below tieback elevations and the final excavated grade as described in 

Table 3.1.   

 

 

Figure 3.3 Stratigraphy and excavation support system of the Lurie Center 
excavation (Modified from Finno and Calvello 2005) 

Fill (SM)
N=3~7

N=15~26
Sand (SP)

w=28~30%

Soft to 
Medium Clay

PI=17~18

Stiff Clay

Hard Clay

EL. -2.8m

EL. -6.7m

EL. -10.1m

EL. -12.8m

EL. -4.3m

EL. -9.3m

EL. -16.8m

EL. -25.1m



 51

Table 3.1 Major construction stages for the Lurie Center case history 

Excavation Stage Activity 

0 Potholing and sheet-pile installation 

1 
Excavate to EL. –2.8 m and install/prestress first level of ground 
anchors at EL. –2.2 m 

2 
Excavate to EL. –6.7 m and install/ prestress second level of ground 
anchors at EL. –5.5 m 

3 
Excavate to EL. –10.1 m and install/prestress third level of ground 
anchors at EL. –9.5 m 

4 Excavate to EL. –12.8 m 
 

The largest portion of the movements occurred during Stage 3, described in 

Table 3.1. This is when the excavation reached 0.80 m into the soft to medium clay layer 

for the installation of the third tieback level.  The inclinometer responses indicated that 

the movements were relatively small while the excavation was proceeding through the 

fill and sand layers, and jumped from 20 to 60 mm of maximum displacement once the 

clay layer was reached. Afterwards, very little movement occurred.  The inclinometer 

measurement data from LR–8 in Figure 3.2 are identified as the approximate plane-strain 

zone based on the observations, so they were used as field measurement data for the 

calculation (Finno and Roboski 2005).  

 

3.2.3 Choice of constitutive models 

The material models used for soft clay vary from very simple ones, such as linear 

elasticity, to highly sophisticated stress-strain relationships capable of simulating 

anisotropy and nonlinear stiffness at small strain.  Generally, sophisticated material 

models are able to generate more realistic responses and their predictions are closer to 
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the actual behavior.  However, sophisticated constitutive models need more parameters 

and require more extensive laboratory investigation and computational effort.  For these 

reasons, it is preferable to use relatively simple models in this application. 

Since the input soil properties and model parameters in the probabilistic Bayesian 

analysis framework are updated continuously as the excavation proceeds, some 

shortcomings of a simplistic constitutive model can be somewhat counteracted by the 

newly updated parameters.  These parameters are used for the prediction of the next 

steps.  From this point of view, the selection of the soil constitutive model is not as 

critical as in conventional numerical analyses, as long as the model and its associated 

parameters work together to give a good prediction.  In this sense, the calculated 

parameters perhaps are not real soil properties in the conventional sense, but the 

properties which reflect overall effects (heterogeneity, anisotropy, boundary conditions, 

and stress state etc.) associated with the particular soil model and project. 

In terms of material modeling, the soil layers are modeled using the Mohr-

Coulomb model and the structural members using a linear-elastic model. 

 

3.2.4 Analysis 

Figure 3.4 shows the finite element mesh in relation to soil stratigraphy and excavation 

steps.  The entire mesh is fixed at the bottom and allowed to move vertically and freely 

at both sides.  The mesh behind the sheet pile wall is extended to a distance five times 

the excavation depth to eliminate the influence of the boundary condition on the model.   
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Figure 3.4 Finite element mesh for the Lurie Center case history 

 

Table 3.2 summarizes material properties for each soil layer.  In this case, the 

elastic Young’s modulus for each soil layer was assumed to be an unknown parameter.  

The soils are modeled using 8-node biquadratic elements with reduced integration 

(CPE8R in ABAQUS (2003)), the sheet pile wall is represented by the 3-node quadratic 

beam element (B22), and the interfaces between the wall and soils are simulated by the 

small sliding contact pair.  The tiebacks are modeled by 2-D truss elements (T2D2) with 

axial stiffness. 

 

Table 3.2 Material properties for the Lurie Center case history 

Types t (kN/m3) E (MPa)  c (kPa)  (°) ψ (°) 

Fill 18.8 1E  0.20 0 30 2 
Sand 
(up) 

19.0 2E  0.39 0 35 5 

Sand 
(down) 

19.0 3E  0.37 0 40 8 

Soft to 
Medium clay 

19.1 4E  0.49 50 0 - 

Stiff clay 20.4 5E  0.49 105 0 - 

Hard Clay 20.4 6E  0.49 383 0 - 
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In reality, we typically have information about some of the unknown parameters 

θ  , prior to the excavation.  To incorporate such information, the Bayesian approach 

requires that we formulate such prior information in the form of a prior distribution of 

the unknown parameter.  In this study, θ  are assumed to be independent.  Therefore, 

( )p θ  is written as the product of the prior marginal distributions, which are assumed to 

be lognormal based on the range of the each parameter.  The prior means are based on 

previous research (Tu 2007), and the standard deviations are based on an assumed value 

for the coefficient of variation (COV) of 0.2 as summarized in Table 3.3, which reflects 

a moderate degree of uncertainty about the actual values of θ .  The noninformative prior 

for Σ  is formulated following Gardoni et al.(2002). 

 

Table 3.3 Prior distributions for elastic Young modulus in the Lurie Center case 
history 

Parameter ranges Distribution models Mean (MPa) COV 

10 E    Lognormal 51 0.2 

20 E    Lognormal 79 0.2 

30 E    Lognormal 175 0.2 

40 E    Lognormal 250 0.2 

50 E    Lognormal 400 0.2 

60 E    Lognormal 677 0.2 

 

According to the developed Bayesian approach, the posterior estimates represent 

our updated state of knowledge about the unknown parameters.  Table 3.4–3.7 

summarize the posterior statistics of Θ  after each excavation step.  The updated 

posterior estimates reflect both the information content of the old and of the new data.  
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After each subsequent excavation state, the new posterior statistics are estimated by 

updating the posterior statistics from the previous state with the observations from the 

current stage.  As the excavation steps proceed, the uncertainty in the model parameters 

decreases.  This is because of the additional information content of the new data 

incorporated in the estimates of the model parameters.   

 

Table 3.4 Posterior statistics of the unknown parameters for the Lurie Center case 
history using prior information 

  θE1 θE2 θE3 θE4 θE5 θE6 σ  ρV ρH ρVH 

Mean 50.38 76.24 168.35 218.61 432.51 689.06 0.0189 0.09 0.15 0.11 

Standard 
deviation 

2.43 3.65 8.47 10.21 20.17 31.39 0.0029 0.08 0.07 0.07 

Correlation Coefficient 

θE1 1          

θE2 0.75 1         

θE3 0.46 0.34 1        

θE4 0.10 –0.18 0.56 1       

θE5 –0.11 –0.16 –0.19 0.33 1      

θE6 0.12 0.15 0.02 –0.08 –0.79 1     

σ  0.13 0.16 0.26 –0.15 0.13 –0.22 1    

ρV 0.22 –0.14 0.19 0.09 0.16 –0.21 –0.02 1   

ρH 0.03 0.07 0.04 –0.15 0.04 –0.06 0.03 0.04 1  

ρVH 0.01 0.08 –0.02 0.17 0.11 –0.10 –0.12 –0.19 0.02 1 
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Table 3.5 Posterior statistics of the unknown parameters for the Lurie Center case 
history after 1st stage 

  θE1 θE2 θE3 θE4 θE5 θE6 σ  ρV ρH ρVH 

Mean 50.79 77.35 170.38 234.35 382.65 680.35 0.0164 0.10 0.12 0.08 

Standard 
deviation 

2.12 3.59 6.78 10.78 18.22 29.60 0.0023 0.07 0.08 0.07 

Correlation Coefficient 

θE1 1          

θE2 0.69 1         

θE3 0.43 0.26 1        

θE4 0.14 –0.12 0.44 1       

θE5 0.08 0.05 –0.11 0.27 1      

θE6 0.08 0.10 –0.01 –0.06 –0.63 1     

σ  0.06 0.09 –0.16 –0.07 0.06 –0.19 1    

ρV –0.18 0.08 0.06 –0.07 0.13 –0.18 0.07 1   

ρH 0.07 –0.02 0.03 0.05 –0.08 0.15 0.14 0.13 1  

ρVH –0.01 0.10 0.07 0.09 0.11 –0.07 0.06 –0.11 0.05 1 

 

Table 3.6 Posterior statistics of the unknown parameters for the Lurie Center case 
history after 2nd stage 

  θE1 θE2 θE3 θE4 θE5 θE6 σ  ρV ρH ρVH 

Mean 51.13 80.35 170.32 238.05 411.57 679.48 0.0132 0.11 0.13 0.08 

Standard 
deviation 

2.33 3.58 5.71 9.83 18.16 28.33 0.0021 0.05 0.03 0.03 

Correlation Coefficient 

θE1 1          

θE2 0.71 1         

θE3 0.38 0.40 1        

θE4 –0.09 0.08 0.63 1       

θE5 0.08 0.13 –0.08 0.25 1      

θE6 –0.06 0.16 0.08 0.11 0.65 1     

σ  0.04 0.18 0.17 –0.13 0.15 –0.08 1    

ρV 0.13 –0.10 0.14 0.07 0.12 –0.16 –0.09 1   

ρH 0.04 0.03 –0.07 0.11 0.10 0.09 0.06 0.08 1  

ρVH 0.03 –0.06 0.08 –0.08 0.03 0.11 –0.14 –0.10 0.02 1 
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Table 3.7 Posterior statistics of the unknown parameters for the Lurie Center case 
history after 3rd stage 

  θE1 θE2 θE3 θE4 θE5 θE6 σ  ρV ρH ρVH 

Mean 51.08 79.69 176.89 251.38 403.21 677.08 0.0115 0.10 0.08 0.09 

Standard 
deviation 

2.15 2.81 4.66 8.17 17.52 28.51 0.0012 0.04 0.03 0.03 

Correlation Coefficient 

θE1 1          

θE2 0.67 1         

θE3 0.38 0.26 1        

θE4 –0.16 0.11 0.56 1       

θE5 –0.18 –0.10 0.09 0.27 1      

θE6 0.09 0.08 0.11 –0.13 –0.59 1     

σ  0.11 0.13 0.21 –0.14 –0.13 –0.22 1    

ρV 0.22 –0.14 0.19 –0.09 –0.08 –0.10 –0.07 1   

ρH –0.06 0.08 0.10 –0.15 0.04 –0.02 0.08 0.03 1  

ρVH 0.01 0.04 –0.03 0.07 0.11 –0.10 –0.17 0.09 0.01 1 

 

Figure 3.5 shows the comparisons between the horizontal wall deflections 

predicted using the proposed probabilistic method using the posterior means and the 

field measurements from the inclinometer.  It also shows the 90% credible interval of the 

predicted soil movement after each excavation.  The width of the credible interval 

decreases as the excavation proceeds because the additional information helps to reduce 

uncertainties.   
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(a)  2nd excavation stage                           (b) 3rd excavation stage 

 
(c) 4th excavation stage 

Figure 3.5 Comparison in the range of predicted soil movement after each 
incremental stage for the Lurie Center case history 
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Figure 3.6 compares predicted and measured surface settlements after each 

excavations stage.  The predicted values capture accurately the settlement profile and the 

location of the maximum surface settlement. 

 

Figure 3.6 Comparison of measured and predicted settlement based on posterior 
estimates for the Lurie Center case history 

 

The accuracy of the model fit is evaluated using the Mean Absolute Percent Error 

(MAPE) value (Pham 2006).  The MAPE indicates the average relative error and is an 

intuitive measure of the accuracy of model predictions.  The small values of MAPE in 

Table 3.8 indicate that the proposed probabilistic models become more accurate as the 
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excavation proceeds.  The diagonal terms in Table 3.8 describe the quality of the fit of 

the proposed probabilistic framework and show smaller values than the lower diagonal 

terms.  As the excavation proceeds, more information is available and the accuracy 

increase results in a decrease in MAPE values.  The lower diagonal terms represents how 

accurate the predictions of deformations in future stages of the excavations are.  As 

expected, the accuracy of the prediction degrades as the model is applied to increasingly 

more distant excavation steps.  As shown by increasing MAPE values along each column 

of Table 3.8.   

 

Table 3.8 MAPE values for the Lurie Center case history without measurement 
errors 

% Stage 1 Stage 2 Stage 3 Stage 4 

Stage 1 5.32     

Stage 2 7.49 3.47    

Stage 3 18.24 12.58 3.22   

Stage 4 23.67 19.61 11.53 5.39 

 

3.3 CAOBAO Subway Station Case History 

3.3.1 Project description 

The excavation for the subway station of Shanghai’s first metro line, located off Caobao 

Road, is the second application of the proposed probabilistic approach.  Because of the 

sensitivity of the project, a very dense instrumentation plan was devised as shown in 

Figure 3.7.  The project was presented in detail by Shao and Macari (2008).   
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Figure 3.7 Plan view of the Caobao subway station excavation (Modified from Shao 
and Macari 2008)  

 

Similarly to this study, Shao and Macari (2008) present a procedure integrating 

field information and a finite element model of the excavation with the goal to improve 

prediction of deformations during the course of the excavation itself.  An optimization 

scheme was used to minimize the objective function representing the discrepancy 

between the measured and calculated displacements.  The numerical analysis is able to 

account for unexpected activities or responses by feeding updated field data into the 

objective function.  Therefore, the prediction becomes more realistic as the excavation 

proceeds.  This feedback method, however, does not take into account possible 

measurement bias or random error.  More importantly, the method is purely 

deterministic and does not capture any underlying uncertainties.  The developed 

Bayesian probabilistic framework accounts for potential measurement errors, 

incorporates the underlying uncertainty, and is probabilistic providing credible intervals 

around the deflection predictions.   
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3.3.2 Site conditions and measurement data 

The project site is located in the eastern area of the alluvial plain of the Yangze River 

Estuary Delta.  Clay layers of marine origin are interbedded with sand layers of fluvial 

origin.  The soil within the first 30 m consists primarily of saturated clay and sand.  The 

typical subsurface soil profile and excavation support system are shown in Figure 3.8. 

 

 

Figure 3.8 Stratigraphy and excavation support system of the Caobao subway 
excavation (Modified from Shao and Macari 2008)  

 

The excavation is supported by a 0.6 m thick cast-in-place reinforced concrete 

diaphragm wall extending to a depth of 20 m below the ground surface. Final excavation 

depth was 12 m.  The diaphragm walls were braced internally by four levels of steel pipe 

struts with 3 m horizontal spacing, as shown in Figure 3.7.  Permanent reinforced 

concrete struts were constructed between the first and the second levels of steel pipe 

struts to avoid large surface deformation prior to the installation of the temporary steel 

pipe struts.  The soil in the 5 m below the final excavation depth was stabilized by 
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chemical grouting before excavating to increase stability against bottom heave and to 

reduce the embedment depth of the diaphragm wall.  The detailed construction sequence 

is described in Table 3.9, and was also used for the numerical simulation.   

 

Table 3.9 Major construction stages in the Caobao subway station case history 

Excavation Stage Activity 

0 Potholing and diaphragm wall installation 

1 Excavate to EL. –1.0 m without horizontal steel pipe strut 

2 
Excavate to EL. –2.25 m and install first level horizontal steel pipe 
strut at EL. –1.0 m 

3 
Excavate to EL. –5.02 m and cast horizontal reinforced concrete strut 
at EL. –2.25 m 

4 
Excavate to EL. –7.48 m and install second level horizontal steel pipe 
strut at EL. –5.02 m 

5 
Excavate to EL. –9.48 m and install third level horizontal steel pipe 
strut at EL. –7.48 m 

6 
Excavate to EL. –12.0 m and install fourth level horizontal steel pipe 
strut at EL. –9.48 m 
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Ground surface settlements were measured by optical survey and the horizontal 

displacement of the ground and the diaphragm wall were measured using inclinometers 

installed before the excavation, while the vertical displacements in the ground were 

measured by a telescoping tube with multilevel steel plates that allows measurement of 

bottom heave.  The detailed location of each measurement is shown in Figure 3.7.  The 

maximum settlement was 57 mm after the completion of Stage 6, and was measured 8–

10 m away from the excavation, or more than half of the total excavation depth.  The 

maximum horizontal displacement was about 30 mm after the completion of Stage 6, 

and did not occur at top of the wall because of the very large stiffness of the concrete 

and steel pipe struts.   

 

3.3.3 Choice of constitutive models 

In terms of material modeling, the soil layers are modeled using the Cam-Clay 

constitutive law and the structural members using a linear-elastic model with initial input 

parameters given in Table 3.10 and Table 3.11.  Parameters for other materials, such as 

steel, concrete, and soil–concrete interfaces are assumed constant throughout the entire 

analysis. 
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Table 3.10 Material properties for the Caobao subway case history 

Types t 
(kN/m3) eini 

G  
(kPa)     M  c 

(kPa) 
 

(°) 
k 

(m/day)

Soil 1 19.0 1.010 1G  1  1  1M  30.0 14.0 10-5 

Soil 2 21.0 0.720 2G  2  2  2M  28.0 18.0 10-5 

Soil 3 18.0 1.160 3G  3  3  3M  36.0 13.0 10-6 

Soil 4 17.0 1.440 4G  4  4  4M  36.0 22.3 10-4 

Soil 5 18.0 1.160 5G  5  5  5M  5.0 22.0 10-5 

Soil 6 18.0 1.020 6G  6  6  6M  5.0 32.0 10-4 

Soil 7 20.0 0.800 7G  7  7  7M  22.0 34.0 10-6 

Diaphragm Wall 

Area (m2/m) = 0.6, Moment of inertia (m4/m) = 0.018 

Young’s modulus (kPa) = 2.83E7 

Unit weight (kN/m3) = 25.0 

Poisson’s ratio = 0.16 

Steel strut 

Area (m2/m) = 0.02 

Young’s modulus (kPa) = 2.11E8 

Effective length (m) = 6.00 

Spacing (m) = 3.00 

Axial stiffness (kN/m) = 4.22E6 

Concrete strut 

Area (m2/m) = 0.36 

Young’s modulus (kPa) = 2.43E7 

Effective length (m) = 6.00 

Spacing (m) = 3.00 

Axial stiffness (kN/m) = 8.75E6 
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Table 3.11 Prior distributions for soil parameters of the Caobao case history 

Parameter 
ranges 

Distribution
models Mean (MPa) COV 

0< 1G <∞ Log-Normal 1.900 0.2 

0< 2G <∞ Log-Normal 4.100 0.2 

0< 3G <∞ Log-Normal 0.978 0.2 

0< 4G <∞ Log-Normal 5.860 0.2 

0< 5G <∞ Log-Normal 8.970 0.2 

0< 6G <∞ Log-Normal 10.560 0.2 

0< 7G <∞ Log-Normal 17.600 0.2 

0< 1 <∞ Log-Normal 0.038 0.2 

0< 2 <∞ Log-Normal 0.022 0.2 

0< 3  <∞ Log-Normal 0.040 0.2 

0< 4  <∞ Log-Normal 0.045 0.2 

0< 5 <∞ Log-Normal 0.032 0.2 

0< 6 <∞ Log-Normal 0.026 0.2 

0< 7 <∞ Log-Normal 0.015 0.2 

0< 1 <∞ Log-Normal 0.184 0.2 

0< 2 <∞ Log-Normal 0.165 0.2 

0< 3  <∞ Log-Normal 0.193 0.2 

0< 4  <∞ Log-Normal 0.190 0.2 

0< 5 <∞ Log-Normal 0.184 0.2 

0< 6 <∞ Log-Normal 0.171 0.2 

0< 7 <∞ Log-Normal 0.150 0.2 

0< 1M <∞ Log-Normal 0.940 0.2 

0< 2M <∞ Log-Normal 0.860 0.2 

0< 3M  <∞ Log-Normal 0.890 0.2 

0< 4M  <∞ Log-Normal 1.000 0.2 

0< 5M <∞ Log-Normal 0.980 0.2 

0< 6M <∞ Log-Normal 0.940 0.2 

0< 7M <∞ Log-Normal 1.100 0.2 
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3.3.4 Analysis 

Figure 3.9 shows the finite element mesh in relation to soil stratigraphy and excavation 

steps.  The soils are modeled using 8-node biquadratic pore pressure plane strain 

elements with reduced integration (CPE8RP in ABAQUS (ABAQUS 2003)), the 

diaphragm wall is represented by 8-node biquadratic plane strain elements (CPE8R), and 

the interfaces between the wall and soil are simulated by a small sliding contact pair.  

The concrete and steel pipe struts are modeled by 2-D truss elements (T2D2) with axial 

stiffness.  In order to minimize the influence of boundaries, the soil beyond a distance 

where the deformation could be ignored is modeled by infinite elements.  The 5-node 

quadratic one-way infinite elements (CINPE5R), which match the 8-node displacement 

element, were used. 

 

 

 

Figure 3.9 Finite element mesh for the Caobao subway excavation 
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Figure 3.9 Continued 

 

The elastic shear modulus ( )G , the logarithmic bulk modulus (the slope of 

unload/reload line,  ), the logarithmic hardening constant (the slope of isotropic 

compression line,  ), and the slope of the critical state line ( )M  for each soil layer were 

assumed to be unknown parameters.  In this study, θ  are assumed to be independent.  

Therefore, ( )p θ  is written as the product of the prior marginal distributions, which are 

assumed to be lognormal based on the range of the each parameter.  The prior means are 

based on previous research by Shao and Macari (2008), and the standard deviations are 

based on an assumed value for the coefficient of variation (COV) of 0.2 as summarized 

in Table 3.11. 

A total of 32 variables, including model parameters ( ,  ,  ,  )V H VH     , is 

estimated with the developed Bayesian probabilistic approach.  There are no available 
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data after the first excavation stage.  Therefore the Bayesian approach is applied starting 

from second excavation stage.  The posterior statistics of Θ  after each excavation stage 

are used as the prior information for the subsequent stage.  The calculation time to 

satisfy convergence criteria become exceedingly high for some excavation stages 

because of the large number of parameters involved, so a two-phase procedure was 

devised to accelerate convergence for each excavation step.  In the first phase, starting 

values for the parameters in the finite element simulation are determined by minimizing 

the residual sum of squares (RSS) between the measured and simulated deformations.  

The results of the first phase are then fed into the second phase, in which the Bayesian 

probabilistic calculations are carried out as described in Figure 3.1. 

After each subsequent excavation stage, the posterior statistics are obtained by 

updating the posterior statistics from the previous stage with the observations from the 

current stage.  Tables 3.12–3.13 summarize the posterior statistics of the soil properties 

and model parameters after each excavation step considering measurement errors.  As 

already observed for the previous case study, the uncertainty in the model parameters 

decreases as the excavation progresses. 
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Table 3.12 Posterior mean of the unknown soil parameters for the Caobao case 
history 

 Stage Soil 1 Soil 2 Soil 3 Soil 4 Soil 5 Soil 6 Soil 7 

G  
(MPa) 

2 1.900 4.100 0.978 5.860 8.970 10.560 17.600 

3 2.256 8.823 1.173 4.926 8.150 10.784 17.337 

4 2.458 7.581 1.271 4.525 7.968 10.815 17.215 

5 2.768 6.854 1.342 4.120 7.843 11.027 16.437 

6 3.579 5.576 1.348 4.056 6.975 11.486 15.684 

  

2 0.038 0.022 0.040 0.045 0.032 0.026 0.015 

3 0.032 0.024 0.036 0.036 0.030 0.024 0.016 

4 0.032 0.026 0.038 0.041 0.034 0.023 0.017 

5 0.033 0.025 0.039 0.040 0.037 0.022 0.018 

6 0.031 0.027 0.041 0.039 0.036 0.020 0.018 

  

2 0.184 0.165 0.193 0.190 0.184 0.171 0.150 

3 0.172 0.169 0.183 0.201 0.176 0.172 0.157 

4 0.173 0.170 0.182 0.203 0.177 0.176 0.160 

5 0.176 0.171 0.181 0.205 0.179 0.174 0.157 

6 0.178 0.169 0.179 0.204 0.181 0.176 0.158 

M  

2 0.940 0.860 0.890 1.000 0.980 0.940 1.100 

3 0.925 0.887 0.845 1.083 0.962 0.972 1.151 

4 0.963 0.884 0.866 1.128 0.913 1.018 1.218 

5 0.971 0.913 0.887 1.135 0.937 1.039 1.234 

6 0.984 0.934 0.862 1.169 0.954 1.054 1.266 
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Table 3.13 Posterior statistics of the unknown model parameters for the Caobao 
case history 

Stage  
  V  H  VH  

Mean Standard 
deviation Mean Standard 

deviation Mean Standard 
deviation Mean Standard 

deviation 

2 1.352 2.791 0.092 0.144 0.144 0.161 0.140 0.122 

3 3.473 2.151 0.104 0.132 0.113 0.132 0.132 0.162 

4 3.304 1.864 0.123 0.164 0.130 0.123 0.123 0.093 

5 4.182 1.640 0.112 0.123 0.081 0.091 0.154 0.074 

6 4.494 1.563 0.080 0.091 0.120 0.080 0.164 0.091 

 

Table 3.14 and Table 3.15 summarized the MAPE values for each excavation 

stage.  The MAPE values from the results based on RSS method in Shao and Macari 

(2008) are also reported in the table for comparison purpose  The diagonal terms in the 

tables describe the quality of the fit of the proposed probabilistic framework for the 

current stage, while the lower diagonal terms represent the quality of the prediction 

compared to the measurements in the following stages.  The diagonal terms are smaller 

than the others because the results were derived using also the measurements for the 

same stage.  The MAPE values are also affected by the chosen model’s ability to fully 

capture the complexity of the soil profile and soil-structure response to the excavation. 

This is evident when the MAPE values increase or decrease along each column of Table 

3.14 or Table 3.15.  Each time the excavation enters a new soil layer, which the data 

have not fully characterized yet, the prediction of future excavation stages becomes less 

accurate because the model parameters have not been adjusted based on the information 

specific to that particular soil layer.  As the excavation proceeds, more information is 
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available and the accuracy of the prediction increases and the MAPE values decrease.  

The MAPE values continue to decrease from left to right in the table as more data is 

integrated into the analysis.  Finally, when measurement errors are considered, the 

MAPE values increase due to the effect of additional uncertainty in the data. 

 

Table 3.14 MAPE values for the Caobao case history without measurement errors 

% Stage 2 Stage 3 Stage 4 Stage 5 Stage 6 

Stage 2 24.06 (31.39)1)     

Stage 3 33.58 (49.44) 34.86 (30.05)    

Stage 4 32.12 (37.87) 25.44 (28.44) 18.14 (15.61)   

Stage 5 16.18 (31.59) 16.20 (23.55) 11.28 (16.46) 11.54 (15.10)  

Stage 6 20.44 (21.07) 16.53 (16.83) 16.95 (11.22) 9.04 (9.62) 7.74 (8.63) 

1) (   ) = Shao and Macari (2008) results 

 

Table 3.15 MAPE values for the Caobao case history with measurement errors 

% Stage 2 Stage 3 Stage 4 Stage 5 Stage 6 

Stage 2 24.53     

Stage 3 37.04 38.52    

Stage 4 35.47 28.12 23.61   

Stage 5 20.18 19.73 15.67 17.20  

Stage 6 21.77 18.29 19.17 12.58 10.73 

 

Although MAPE values obtained with the proposed approach are generally, but 

not always, lower than those obtained by Shao and Macari (2008), the two methods 

could be considered roughly equivalent for the prediction of deformation profiles.  The 
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greatest advantage of the proposed method, however, is in its probabilistic framework, 

which gives predictions of deformations as well as the full probabilistic characterization 

of the variables.  This advantage allows the evaluation of credible intervals for each 

prediction and sets the stage for a reliability analysis.  Eventually, the framework can be 

used for the development of fragility curves, which can be used to make key decisions in 

the assessment of the excavation process and for a reliability-based optimal design of the 

excavation system. 

The MAPE values describe the quality of the fit in an average sense.  At each 

step, predictions of deformations for subsequent excavation stages calculated after 

measurements collected at stage 2, 3, 4, and 5, respectively, were considered in the 

analysis shown in Figures 3.10–3.13.  After each excavation stage, the figure is updated 

because new information is available.  The predicted values based on the Bayesian 

probabilistic framework capture accurately the overall settlement and horizontal 

displacement profiles, as well as the value and the location of the maximum surface 

settlement and horizontal displacement, which are closely monitored in excavation 

projects as indicators of overall performance.  These figures also show comparisons 

among deformations predicted using the proposed probabilistic method, previous 

research (Shao and Macari 2008), and field measurements.   
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Figure 3.10 Comparison of measured and predicted soil movement based on 
posterior estimates for the Caobao subway case history after stage 2 
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Figure 3.11 Comparison of measured and predicted soil movement based on 
posterior estimates for the Caobao subway case history after stage 3 
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Figure 3.12 Comparison of measured and predicted soil movement based on 
posterior estimates for the Caobao subway case history after stage 4 
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Figure 3.13 Comparison of measured and predicted soil movement based on 
posterior estimates for the Caobao subway case history after stage 5 

 

Credible intervals can be obtained in addition to the means of the predicted soil 

movements as shown in Figure 3.14 for the prediction results after each excavation stage. 

As the excavation proceeds, the width of the credible interval decreases because more 

available information reduces the uncertainties. 
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(a) 3rd excavation stage                                    (b) 4th excavation stage 

 

 
(c) 5th excavation stage                                      (d) 6th excavation stage 

Figure 3.14 Comparison in the range of predicted soil movement after each 
incremental stage for the Caobao subway case history 

 

3.4 Conclusions 

This section presents the application of a newly developed Bayesian probabilistic 

method to estimate the soil properties and predict the deformations in two supported 

excavation case histories.  The two well documented case histories are the Lurie 

Research Center excavation project in Evanston, Illinois and the Caobao subway 

excavation project in Shanghai.  A MATLAB-based application that can be connected to 

the general finite element software (i.e., ABAQUS 2003) was developed to automate of 
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the computer simulations.  The two case histories demonstrated the ability of the 

proposed Bayesian probabilistic method to provide accurate estimates of the 

deformations in supported excavation problems accounting for all source of information.  

The estimate of the soil properties and prediction of the deformations in future 

excavation stages are also updated as new data become available during the excavation 

process.   

It is noted that since the input soil properties and model parameters in the 

probabilistic Bayesian analysis are updated continuously as the excavation proceeds, 

some shortcomings of a simplistic constitutive model can be somewhat counteracted by 

the newly updated parameters.  These parameters are used for the prediction of the next 

steps.  From this point of view, the selection of the soil constitutive model is not as 

critical as in conventional numerical analyses, as long as the model and its associated 

parameters work together to give a good prediction.  In this sense, the calculated 

parameters perhaps are not real soil properties in the conventional sense, but the 

properties which reflect overall effects (heterogeneity, anisotropy, boundary conditions, 

and stress state etc.) associated with the particular soil model and project. 

The greatest advantage of the proposed method is in its probabilistic framework, 

which gives predictions of deformations as well as the full probabilistic characterization 

of the variables.  This advantage allows the evaluation of credible intervals for each 

prediction and sets the stage for a reliability analysis.  Eventually, the framework can be 

used for the development of fragility curves, which can be used to make key decisions in 
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the assessment of the excavation process and for a reliability-based optimal design of the 

excavation system. 
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4. A BAYESIAN FRAMEWORK TO PREDICT DEFORMATIONS 

DURING SUPPORTED EXCAVATIONS USING A SEMI-EMPIRICAL 

APPROACH 

 

Construction of supported excavation systems inevitably causes ground movements 

including horizontal wall displacement and surface settlement.  These ground 

movements are generally predicted in the design stage by deterministic empirical/semi-

empirical methods.  These methods, however, do not account for the site-specific 

conditions, the information that becomes available as the excavation proceeds, and the 

relevant uncertainties.  A Bayesian framework is proposed to predict the ground 

movements using a semi-empirical approach and to update the predictions in the later 

stages of excavation based on recorded deformation measurements.  The predictions are 

probabilistic and account for the relevant uncertainties.  As an application, the proposed 

framework is used to predict the three-dimensional deformation shapes at four 

incremental excavation stages of an actual supported excavation project.  The developed 

approach can be used for the design of optimal revisions of supported excavation 

systems based on simple calculations rather than complex finite element analysis. 

 

4.1 Introduction 

Evaluating the magnitude and distribution of ground movements adjacent to a supported 

excavation is an important part of the design process, particularly when excavating in an 

urban environment.  The performance of supported excavations is a function of a large 
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number of interdependent factors such as the ground conditions, type/stiffness of 

retaining wall, workmanship, construction sequencing, time effects and geometrical 

boundary conditions.  Structural design, empirical/semi-empirical, theoretical limit state 

soil mechanics methods, and numerical modeling have been used to design safe and cost 

effective excavation support systems.   

Although numerical modeling is a powerful tool, it can be time consuming, 

requires considerable training for implementation and interpretation of results, and needs 

values for several input variables for which information is often not available.  These 

issues make numerical analysis impractical for many applications.  Furthermore, it does 

not fully account for all factors involved in the design, construction, and resulting 

ground response (Moormann 2004; Fuentes and Devriendt 2010).  Therefore, 

empirical/semi-empirical methods are most commonly used to predict the induced 

ground movements due to a supported excavation.  Empirical/semi-empirical methods 

have five major limitations.  First, designs based on empirical/semi-empirical methods 

can be overly conservative, especially when dealing with layered soil conditions and 

complex geometries (Long 2001; Finno et al. 2007).  Second, much of the current 

empirical/semi-empirical methods evolved from important empirical observations 

collected since the 1940’s with the construction of the subway systems in Berlin, 

Chicago, New York, and Oslo (Terzaghi 1943; Peck 1969).  Construction materials and 

support systems have been improved to both enhance safety and reduce ground 

movements.  Third, the empirical/semi-empirical methods do not account for the site-

specific characteristics of the soil and loading conditions, and do not incorporate 
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information from the field measurement data as they become available during the 

excavation process.  Fourth, the empirical/semi-empirical methods do not provide three 

dimensional deformation profiles but only the magnitude of the maximum deformation 

with no indication of its location for the horizontal displacement.  Fifth, they do not 

account for the uncertainty in the estimates of the deformations and therefore, they 

cannot be used to assess the degree of safety of a design or for an optimal reliability-

based design.   

An adequate representation of model uncertainty is important for reliability 

analyses based on geotechnical analysis models.  A framework for characterizing model 

uncertainty using observation data has been proposed by several studies (Zhang et al. 

2009; Tang et al. 2010).  A Bayesian probabilistic framework was proposed to assess 

soil properties and model uncertainty and to better predict excavation-induced 

deformations by updating pertinent prior information using field measurement data (Park 

et al. 2010a).  This method calculated the predictions using the general finite element 

software ABAQUS embedded in a MATLAB®-based application for Bayesian updating 

of the material parameters and model uncertainty.  However, the predictions based on 

this method require significant computational effort, limiting the appeal of their use. 

This study presents a Bayesian framework that addresses these five limitations 

and the developed framework is used to provide a simple and straightforward 

formulation that allows updating empirical/semi-empirical charts based on site-specific 

deformation measurements.  The proposed approach continuously updates the model 

parameters as new measurements become available and provides unbiased predictions of 



 84

the three-dimensional deformation shapes during multiple construction stages of 

supported excavations.  The proposed approach can properly account for the relevant 

uncertainties, so that the actual reliability of the supported excavation system and of the 

adjacent structures can be assessed.  As an application, the proposed framework is used 

to predict the three-dimensional deformation shapes at four incremental excavation 

stages of an actual supported excavation project for the Robert H. Lurie Medical 

Research Building in Evanston, Illinois.  The proposed approach can also be used for an 

adaptive reliability-based optimal design of the excavation system in which the design is 

modified after each excavation stage to minimize costs and maintain a minimum 

reliability requirement. 

 

4.2 Excavation-induced Ground Movements by Empirical and Semi-empirical 

Methods 

Several empirical and semi-empirical methods are available to predict the excavation-

induced maximum horizontal displacement (Mana and Clough 1981; Wong and Broms 

1989; Clough and O'Rourke 1990; Hashash and Whittle 1996; Addenbrooke et al. 2000; 

Kung et al. 2007) and the surface settlement profile (Caspe 1966; Peck 1969; Mana and 

Clough 1981; Clough and O'Rourke 1990; Ou et al. 1993; Hashash and Whittle 1996; 

Hsieh and Ou 1998; Kung et al. 2007).  Analysis of excavation-induced ground 

movements generally consists of the following steps: (1) estimate the maximum 

horizontal displacement, ,maxh , (2) estimate the deformation ratio, ,max ,max/R v h   , 
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where ,maxv  is the maximum surface settlement, (3) calculate ,maxv , and (4) estimate 

the surface settlement profile.   

 For the estimation of ,maxh , Mana and Clough (1981) performed parametric 

finite element (FE) studies comparing 11 published case histories in soft to medium-stiff 

clays to evaluate the major factors affecting their response.  They found that strong 

correlations could be established between excavation system movement and the safety 

against basal heave.  They proposed nondimensionalized design charts to estimate ,maxh , 

,maxv , and the surface settlement profile as a function of: (1) the factor of safety against 

basal heave, (2) soil stiffness, (3) strut stiffness, (4) strut preloads, and (5) excavation 

width.  Wong and Broms (1989) suggested a simple procedure to estimate the horizontal 

displacement, h , of braced flexible sheet plie walls in clay.  They investigated the 

effects of undrained shear strength, depth and width of the excavation, penetration depth, 

depth to hard stratum beneath the excavation, and wall stiffness using FE analyses.   

 Clough and O'Rourke (1990) proposed the normalized semi-empirical chart 

shown in Figure 4.1 to estimate ,maxh  for excavations in soft to medium soft clay.  This 

chart provides curves of the normalized horizontal displacement, ,max /h eH , versus the 

system stiffness, 4/ w avgEI h , where eH  the excavation depth, EI  the wall stiffness, 

w  the unit weight of water, and avgh  the average support spacing.  The curves are 

parametrized with respect to the load-resistance ratio, RL , against basal heave given by 

Terzaghi (1943) as 
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where, Sub  and Suh  the undrained shear strength above and below the excavation, 

respectively, B  the width of the excavation,   the unit weight of the soil, and q  the 

surcharge load. 
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4/ w avgEI h  

Figure 4.1 Design charts for maximum horizontal displacements (Modified from 
Clough and O'Rourke 1990) 

 

Hashash and Whittle (1996) investigated the effects of wall embedment depth, 

support conditions, and stress history profile on the undrained deformations for a braced 

diaphragm wall in a deep clay deposit.  They proposed design charts to estimate ,maxh , 

,maxv , and the centerline heave as functions of avgh , eH , and the stress history profile.  

Addenbrooke et al. (2000) addressed the effects of different initial stress regimes and 
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various values of prop stiffness for the internal supports to the multipropped support 

excavation systems in stiff clay.  They showed that walls with different support span 

distances, avgh , and different values of system stiffness could have the same ,maxh  and 

the same surface settlement profile if support systems have the same displacement 

flexibility number, 5/ avgEI h .  More recently, Kung et al. (2007) developed a semi-

empirical equation based on a database of 33 case histories and artificial FE analyses 

through regression analysis to estimate ,maxh .   

To evaluate the surface settlements and their profiles due to excavations, Caspe 

(1966) proposed a procedure by which the surface settlements could be estimated 

provided that the horizontal displacements of the wall, h , were known.  He also related 

the total cross sectional area of the horizontal displacement profile to the total area of the 

surface settlement profile through Poisson’s ratio.  Peck (1969) suggested the 

deformation behaviour was primarily dependent upon the soil type through which an 

excavation was made.  The design chart was developed mostly on monitoring data 

adjacent to braced steel sheet piles and soldier pile walls with lower system stiffness.  He 

classified soil into three types according to their characteristics: (1) Sand and soft to stiff 

clay, (2) Very soft to soft clay to a limited depth below the bottom of the excavation, (3) 

Very soft to soft clay to a significant depth below the bottom of the excavation. 

Clough and O'Rourke (1990) proposed dimensionless settlement profiles for 

estimating surface settlements for the different soil types as shown in Figure 4.2.  They 

found that the ,maxv  due to the excavation could be conservatively taken to be equal to 
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,maxh .  Therefore, they also proposed that Figure 4.1 could be used to predict the 

maximum surface settlement as well as the maximum horizontal displacement. 

 

 

Figure 4.2 Design charts for estimating the profile of surface settlement for 
different soil types (Modified from Clough and O'Rourke 1990) 

 

Ou et al. (1993) proposed a trilinear line for predicting the spandrel-type surface 

settlement profile, based on the average value of the observed settlement profiles of 10 

excavation histories in Taipei.  Hsieh and Ou (1998) proposed a method for estimating 

the ground surface settlement for both spandrel and concave settlement profiles based on 

a regression analysis, given the deflection shape of the wall.  They suggested that ,maxv  

could be estimated based on the deformation ratio, ,max ,max/R v h   , and also noted that 

R  generally falls in the range of 0.5 to 1.0 for soft to medium clays based on excavation 

case-history data.  More recently, Kung et al. (2007) developed semi-empirical 
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regression equations to estimate ,maxv , R , and the surface settlement profile.  For the 

surface settlement profile, they proposed the following expressions 
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where, v  the vertical settlement at a distance, d , from an excavation.  In this study, 

we define the vector of unknown parameters ( , , )CO Sub Suh R  θ  to use Clough and 

O'Rourke chart for the estimation of ,maxh  and ,maxv . 

 

4.3 Analytical Formulation of Semi-empirical Chart 

To use the Clough and O’Rourke chart in a Bayesian framework, we need to define 

analytical expressions for the curves in the chart.  A mathematical description of these 

curves is needed to update the predictions of the ground movements in the later stages of 

excavation based on the recorded deformation measurements.  Since these curves are not 

defined by analytical relationships, the Box and Cox transformation (1964) is used to 

formulate the following analytical expression: 
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where, 1 8( , , )BC   θ  a set of unknown model parameters first estimated by fitting 

the model in Eq. (4.3) to the existing curves in the Clough and O'Rourke chart as shown 

in Figure 4.3, and later updated as deformation measurements become available.   
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Figure 4.3 Comparison between the original Clough and O’Rourke chart and after 
applying Box and Cox transformation 

 

4.4 Probabilistic Bayesian Semi-empirical Method 

4.4.1 The three-dimensional profile of ground movements 
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dimensional deformation profiles to compare predicted deformations with the field 

measurement data that might be available at multiple locations.   

This study adopts the shape of the three-dimensional deformation profiles 

perpendicular and parallel to an excavation as shown in Figure 4.4.  These shape 

functions are established after consideration of numerous alternatives with the objective 

of capturing the correct deformation shape while maintaining a relatively simple form.  

The three-dimensional ground movement distribution around an excavated area is 

predicted using a combination of these shape functions, an assessment of the maximum 

ground deformation, and knowledge of the geometry of the excavation.  After ,maxh  and 

,maxv  are computed, the following procedure is proposed to predict the three-

dimensional ground movements: 

 

Figure 4.4 Conceptual view of the three-dimensional ground movements around an 
excavated area 
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(1) The horizontal displacement profile at depth  is determined using the 

following double S-shape function (Gardoni et al. 2007): 
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where, ( )uf z  and ( )lf z  two S-shape functions defined one above and 

one below ,maxh  which is the unknown location of ,maxh  in the z  

direction, 
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and 1u , 2u , 3u , 1l , 2l , 3l  unknown model parameters.  The 

location of ,maxh  is assumed at the center of the excavation in the x  

direction.  The ,maxh  in the z  direction needs to be estimated and updated 

using the field measurement data.  When z  approaches ,maxh , the values 

of ( )uf z  and ( )lf z  gradually converge to ,maxh  under the following 

conditions, 
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(2) The horizontal displacement parallel to an excavation at depth z  is 

defined by the complementary error function (Finno and Roboski 2005), 

      1

2

21
, 1 erfc

2
h

h h
h

B x
f x z f z




        
    

  (4.7) 

where, 1h  and 2h   unknown parameters, and erfc( )x  the 

complementary error function which is defined as 
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where, erf ( )x  the error function. 

(3) The ground surface settlement profile in a direction perpendicular to the 

excavation at 0x   is estimated using a shifted truncated lognormal 

distribution, 
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where, 1v , 2v , and 3v  unknown parameters, and 
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The location of ,maxv  is assumed to be at the center of the excavation, 

and the distance from the excavation, ,maxv , needs to be estimated and 

updated from the field measurement data. 
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(4) The surface settlement parallel to the excavation at distance y  is 

described by the complementary error function 
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  (4.11) 

where, 4v  and 5v  unknown parameters. 

 

The four shape functions ( )hf z , ( , )hf x z , ( )vf y , and ( , )vf x y  which are defined 

by 1 1 2 2 3 3 1 2 1 2 3 4 5 ,max ,max( , , , , , , , , , , , , , , )SF u l u l u l h h v v v v v h v              θ describe the 

three-dimensional ground movements around the excavated area.  The four functions 

describing the deformation profiles are summarized in Figure 4.5.  Note that all the 

shape functions are mirrored about the centerline of the excavation to give a distribution 

along the full wall and they are constrained in such a way that when they meet at any 

locations the deformation value must be the same: ( 0, ) ( )h hf x z f z 
 
and 

( 0, ) ( )v vf x y f y  .  At the location of ,maxh  and ,maxv , the shape functions have 

maximum deformations and the derivatives should be zero: ,max ,max( 0,  )h h hf x z     , 

,max ,max( 0,  )v v vf x y     , ,max( 0, ) 0h hf x z      and ,max( 0, ) 0v vf x y     .  These 

additional conditions reduce the number of unknown parameters by eliminating 4 

unknown parameters from the following equations.   
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Figure 4.5 Different functions to describe the three-dimensional deformation 
profiles 

 

4.4.2 Probabilistic models for deformations 

A probabilistic model to estimate the deformations for the kth excavation stage at the ith 

location, kiD , at a depth/location, iz , is constructed as follows 
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kid  the predicted deformation, ( , , )CO BC SF θ θ θ θ a set of unknown model 

parameters, ki  the model error,   the unknown standard deviation of the model 

error, ki  a random variable with zero mean and unit variance, Vn  the number of 

points where the surface settlement is predicted, and Hn  the number of points where 

the horizontal displacement is predicted.  This general formulation also can be applied to 

x

y

z

Error function

Error function

Shifted truncated 
lognormal function

Double S-shape function

   
 

,max

,max

u h
h

l h

f z z
f z

f z z




  

 ,hf x z

 ,vf x y

 vf y
O

O

,maxh

,maxv



 96

estimate the ,maxh  or ,maxv  by using the Clough and O’Rourke chart.  In that case, 

( )ki i kD z D  ,maxh  or ,maxv ,    ˆ ˆ; ,ki i k CO BCd z d θ θ θ the predicted deformation ,maxh  

or ,maxv  using the Clough and O’Rourke chart.  Since the Clough and O’Rourke chart 

method do not provide the location of maximum deformation, iz  cannot be considered 

for the model formulation.  

The correlation coefficients between ki  and kj  of any two horizontal 

displacements, H , any two surface settlements, V , and an horizontal displacement 

and a surface settlement, VH , all within the same excavation stage k , are additional 

unknown model parameters.  Therefore, the correlation matrix for the k th excavation 

stage with ( )V Hn n  prediction points can be written as 
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The covariance matrix of the model errors, Σ , can be written as Σ SRS , where 

S the diagonal matrix of standard deviations  .  Finally, ( , ) Θ θ Σ  ( , , ,CO BC SFθ θ θ

)Σ  denotes the set of all unknown parameters in Eq. (4.13).  In assessing the 

probabilistic model, three assumptions are made: (a) the homoskedasticity assumption 

(the model variance 2  is independent of θ ), (b) the normality assumption ( ki  follows 

the normal distribution), and (c) ki  and qj  at two different excavation stages ( )k q  

are uncorrelated.   

The total deformation measurement and deformation estimate using the Clough 

and O’Rourke chart at the kth excavation stage can be written as 
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where 1m m mD D D     the incremental deformation at the mth excavation stage, 

1
ˆ ˆ ˆ( , ) ( , ) ( , )m CO BC m CO BC m CO BCd d d    θ θ θ θ θ θ the incremental deformation estimate at 

the mth excavation stage, and 0 0
ˆ ( , ) 0CO BCD d θ θ .  In our probabilistic model, the 

model error for each excavation stage is conditionally independent because the total 

deformation and deformation estimates at the current excavation stage are uncorrelated 

with those at the future excavation stage.  Using Eq. (4.13) we can define the prediction 

residual as 1 ( )( ) [ ( ), , ( )]
V Hk k k n nr r r θ θ θ  where ˆ( ) [ ( ) ( ; )]ki ki i ki ir D z d z θ θ .  When the 

Clough and O’Rourke chart is used for the estimation of ,maxh  and ,maxv , we can define 
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the prediction residual as 
ˆ( ) ( , ) [ ( , )]ki k CO BC k k CO BCr r D d  θ θ θ θ θ .  If the deformation 

has been recorded at the jth stage, the deformation at the kth stage where k j  can be 

obtained by adding the predicted incremental deformation 1jD  ,…, kD  to the 

measured deformation at the jth stage.  It follows that 

 
   

     1 1

ˆ, ,

ˆ ˆ                   , ,

k CO BC k k CO BC

j k j CO BC k CO BC

r D d

D D d d 

 

           

θ θ θ θ

θ θ θ θ 
  (4.17) 

In summary, there are 8 unknown parameters, BCθ , in Eq. (4.3), 3 unknown 

parameters, ( , , )CO Sub Suh R  θ , 11 unknown parameters, SFθ , in Eqs. (4.4)−(4.11), and 

4 unknown parameters, ( , , , )H V VH   Σ  for a total of 26 unknown parameters, 

( , ) ( , , , )BC CO SF Θ θ Σ θ θ θ Σ  that need to be estimated and updated for each excavation 

stage. 

 

4.5 Assessment of the Unknown Parameters 

4.5.1 Bayesian model updating 

The proposed probabilistic approach uses the Bayesian approach to incorporate the field 

measurements.  After each excavation, the Bayesian updating is used to assess the 

unknown model parameters and also provides a convenient way to update the model as 

the new set of measurement data becomes available.  In the Bayesian updating procedure, 

the posterior distribution, ( | )kp Θ D , is estimated using the following rule (Box and Tiao 

1992): 
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      k kp L pΘ D Θ D Θ   (4.18) 

where 1[ ( | ) ( ) ]kL p d 
 Θ D Θ Θ normalizing factor, ( | )kL Θ D likelihood function 

representing the objective information on Θ  contained in a set of measurement data kD , 

( )p Θ prior distribution of Θ  defined before the measurement data are available. 

Given n sets of independent deformation measurements, the posterior distribution 

can be updated after each new set of measurement data becomes available as 

      1 1 1, , , ,n n np p LΘ D D Θ D D Θ D    (4.19)  

Because the probabilistic model is nonlinear in the unknown parameter Θ , a closed-

form solution is not available and numerical solutions are the only option. 

 

4.5.2 Prior distribution 

The ( )p Θ  should be constructed using the knowledge available before the observations 

used to construct the likelihood function are made.  In reality, we typically have 

information about the unknown parameters, prior to the excavation.  The Bayesian 

approach requires such prior information in the form of a prior distribution of the 

unknown parameter. 

 

4.5.3 Likelihood function 

The objective information is entered through the likelihood function, ( | )kL Θ D .  The 

likelihood function describes the probability of a set of measurement data kD  for given 
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values of the model parameters Θ .  Following Gardoni et al. (2002), the likelihood 

function can then be written as 
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Based on the normality and homoskedasticity assumption, and independence at 

different excavation stages in addition to the transformation rule, we can write the 

likelihood function for the kth excavation stage as (Gardoni et al. 2002) 
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  (4.21)  

where ( )   and ( )   the standard normal probability density and cumulative 

distribution functions.  Because the Clough and O'Rourke chart only gives values of 

ˆ ( , )k CO BCd θ θ  for 0.9 3.0RL  , one of three possible outcomes can be realized: 
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(1) The measured kD  is an equality data if 0.9 3.0RL  .  In this case we 

can write ˆ ( , )k k CO BC kD d  θ θ  or ( , )k k CO BCr  θ θ ;  

(2) The measured kD  is a lower bound to the possible displacement if 

0.9RL  .  In this case, we have ˆ ( , )k k CO BC kD d  θ θ  or 

( , )k k CO BCr  θ θ ; 

(3) The measured kD  is an upper bound to the possible displacement if 

3.0RL  .  In this case we have ˆ ( , )k k CO BC kD d  θ θ  or 

( , )k k CO BCr  θ θ . 

 

4.5.4 Posterior estimates 

The ( | )kp Θ D  describes the distribution of Θ  incorporating both the prior information 

and the objective information from the measurement data.  Numerical solutions are the 

only option to compute the posterior statistics and the normalizing constant because the 

proposed model is nonlinear in the unknown parameters.  In this study, a Markov Chain 

Monte Carlo (MCMC) algorithm is used for computing the posterior statistics.  Markov 

chains are generated with the likelihood formulation of the probabilistic models based on 

the initial points and a prior distribution until a convergence criterion is met.  We adopt 

the Geweke’s convergence diagnostic to decide when to terminate the MCMC 

simulations (Geweke 1992).  We terminate the simulation when the Geweke’s 

convergence diagnostic is sufficiently large, i.e., larger than 0.95.  Additional details 
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about MCMC can be found in Gilks et al. (1998), Gelman et al. (2004), and Robert and 

Casella (2004).   

 

4.6 Application of the Proposed Bayesian Framework 

The proposed probabilistic framework is applied to an actual supported excavation 

project for the Robert H. Lurie Medical Research Building in Evanston, Illinois.  The 

excavation consisted of a 12.8 m deep cut and a flexible retaining system of PZ–27 sheet 

pile on all sides.  Detailed description and ground response of the excavation are 

provided in Finno and Roboski (2005).  Figure 4.6 shows a plan view of the 

approximately 80 by 68 m excavation area.  Measurements of both lateral and vertical 

ground surface settlements were obtained from inclinometers and optical survey.  

Because of the proximity of the utilities and the use of a relatively flexible excavation 

support system, extensive monitoring locations were established around the site.  To 

monitor the ground response to excavation activities, 150 surface survey points, 18 

embedded settlement points and 30 utility points were installed on three surrounding 

streets prior to wall installation.   

The soil profile consists of granular soils, including fill and sand layers, 

overlying a sequence of glacial clays of increasing shear strength with depth, as shown 

in Figure 4.7.  Undrained shear strengths based on the results of vane shear tests are 29–

43 kPa in the soft to medium clays and 105 kPa in the stiff clay.  Figure 4.7 also shows 

the four distinct excavation stages and their corresponding depth, in addition to the 

average support spacing.  Three levels of tieback anchors provided lateral support on the 
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south, west, and north walls.  Two levels of tieback ground anchors were installed on the 

east wall due to the presence of the basement of the Prentice Pavilion.   

 

Figure 4.6 General layout of Lurie Center site instrumentation (Modified from 
Finno and Roboski 2005) 
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Figure 4.7 Soil stratigraphy and excavation stages at the Lurie Center site 

 

Horizontal displacements measured by LR–2 on the north wall were not obtained 

because the inclinometer was damaged during the second stage of excavation.  There 

were also site-specific restrictions, which prevented retrieval of complete horizontal 

displacement measurement data for every excavation stage in some inclinometers (LR–1 

and LR–4).  The joint prior distribution of Θ  is constructed by assuming that the 

parameters are statistically independent and that the marginal prior distributions are 

assumed based on the ranges of the parameters summarized in Table 4.1.  The mean 

values for COθ  are based on previous research results (Finno and Roboski 2005).  The 

mean values for BCθ  are based on the initial fitting of the original Clough and O’Rourke 

chart, and the mean values for SFθ  are determined from the previous observations of a 

nearby excavation site also in Chicago glacial deposits (Tu 2007).  The standard 

deviations are based on an assumed value of 0.2 for the coefficient of variation (COV). 
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Table 4.1 Prior distributions, means, and standard deviations 

Physical meaning Parameter ranges Distribution 
models Mean COV 

Soil parameters 
( COθ ) 

0 Sub   Lognormal 50.00 0.20 

0 Suh   Lognormal 30.00 0.20 

0 R   Lognormal 0.50 0.20 

Shape function 
parameters 

( SFθ ) 

1u   Normal 10.00 0.20 

1l   Normal 4.00×107 0.20 

2u   Normal 0.10 0.20 

2l   Normal –2.00×107 0.20 

3u  Normal –5.00 0.20 

3l   Normal –5.00 0.20 

,maxh     Normal 10.00 0.20 

,maxv     Normal 1.40 0.20 

1h   Normal –0.20 0.20 

2h   Normal 10.00 0.20 

10 v   Lognormal 0.40 0.20 

2v   Normal –1.00 0.20 

3v   Normal 1.50 0.20 

4v   Normal –0.20 0.20 

5v   Normal 10.00 0.20 

Box and Cox 
transformation 

parameters for original 
Clough and O’Rourke 

chart 
( BCθ ) 

1   Normal –0.52 0.20 

2   Normal –0.18 0.20 

3   Normal 5.02 0.20 

4   Normal –1.79 0.20 

5   Normal –1.48 0.20 

6   Normal 0.36 0.20 

7   Normal –0.50 0.20 

8  Normal 0.22 0.20 
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Tables 4.2–4.5 summarize the posterior statistics of the unknown model 

parameters after each stage and for each side of the excavation.  The uncertainty in the 

model parameters decreases as the excavation progresses.   

 

Table 4.2 Posterior mean of the unknown soil parameters, θCO 

Stage Sub  Suh  R  

West 
side 

1 60.18 6.89 5.37 

2 63.51 7.37 1.84 

3 68.39 8.26 0.70 

4 72.16 9.71 0.95 

South 
side 

1 65.86 7.68 6.18 

2 66.16 8.75 1.62 

3 70.43 9.08 0.59 

4 75.77 10.85 0.73 

North 
side 

1 63.27 7.16 5.89 

2 65.16 8.03 1.37 

3 69.36 8.85 0.67 

4 73.89 10.17 0.75 
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Table 4.3 Posterior mean of the unknown shape function parameters, θSF 

Stage 1u  1l  2u  2l  3u *1) 3l  ,maxh  ,maxv  Notes 

West 
side 

1 10.00 4.88×107 0.10 –2.00×107 –7.56 –5.00 2.44 1.40 1) ,max ,max( 0,  )h h hf x z     ,  

3 ,max 1u h u   
 

2) ,max ,max( 0,  )v v vf x y     , 

   1 ,max 2 3 ,max 2 ,malnv v v v v v v           
3) ,max( 0, ) 0h hf x z     , 

1 22 2.8h hB    

4) ,max( 0, ) 0v vf x y     ,  

4 52 2.8v vB    
5) The eH  and avgh  are constant value for 

each excavation stage and can be found in 
Figure 4.7. 

2 53.51 1.17×108 –2.89 –1.92×107 –47.41 –4.68 6.10 3.35 
3 40.28 2.60×108 –3.26 –2.67×107 –30.53 0.94 9.75 5.05 
4 40.84 2.64×108 –2.91 –2.71×107 –31.08 0.28 9.76 6.40 

South 
side 

1 10.00 5.08×107 0.10 –2.00×107 –7.46 –5.00 2.54 1.40 
2 12.98 1.12×108 0.95 –1.84×107 –6.88 –5.33 6.10 3.35 
3 23.57 2.64×108 –0.42 –2.89×107 –14.43 1.44 9.14 5.05 
4 28.79 2.76×108 –2.01 –2.83×107 –19.04 0.54 9.75 6.40 

North 
side 

1 10.00 5.92×107 0.10 –2.00×107 –7.04 –5.00 2.96 1.40 
2 25.23 1.27×108 –1.39 –1.90×107 –18.52 –5.39 6.71 3.35 
3 26.28 2.29×108 –1.01 –2.21×107 –15.92 2.48 10.36 5.05 
4 26.51 1.66×108 –2.24 –1.51×107 –15.54 2.44 10.97 6.40 

Stage 1h *3) 2h  1v *2) 2v  3v  4v *4) 5v  

West 
side 

1 11.05 10.34 0.58 –1.24 1.28 11.24 10.27 
2 11.50 10.18 0.37 –3.23 2.07 10.74 10.45 
3 11.24 10.27 0.39 –4.37 2.45 11.50 10.18 
4 10.74 10.45 0.47 –5.54 2.73 11.44 10.20 

South 
side 

1 5.22 10.28 0.50 –1.26 1.24 4.49 10.54 
2 4.71 10.46 0.49 –3.01 2.11 4.94 10.38 
3 5.02 10.35 0.49 –4.54 2.52 4.54 10.52 
4 5.58 10.15 0.48 –5.76 2.76 4.66 10.48 

North 
side 

1 4.18 10.65 0.30 –1.30 1.15 5.05 10.34 
2 5.10 10.32 0.71 –3.15 2.24 4.68 10.47 
3 5.41 10.21 0.58 –4.59 2.57 4.57 10.51 
4 5.47 10.19 0.53 –5.68 2.77 4.85 10.41 
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Table 4.4 Posterior mean of the Box and Cox transformation parameters, θBC 

Stage 1  2  3  4  5  6  7  8  

West 
side 

1 –0.61 –0.24 4.98 –1.84 –1.51 0.31 –0.55 0.21 
2 –0.59 –0.25 5.17 –1.87 –1.49 0.40 –0.53 0.23 
3 –0.57 –0.21 5.06 –1.75 –1.52 0.38 –0.51 0.22 
4 –0.56 –0.22 5.07 –1.80 –1.46 0.37 –0.50 0.21 

South 
side 

1 –0.95 –0.37 5.02 –2.08 –1.38 0.29 –0.52 0.19 
2 –0.73 –0.48 4.95 –2.14 –1.34 0.28 –0.51 0.23 
3 –0.80 –0.26 5.03 –2.03 –1.46 0.35 –0.48 0.20 
4 –0.63 –0.23 5.42 –1.95 –1.48 0.33 –0.53 0.28 

North 
side 

1 –0.86 –0.30 5.13 –1.82 –1.50 0.38 –0.51 0.28 
2 –0.75 –0.34 5.04 –1.76 –1.47 0.41 –0.47 0.19 
3 –0.68 –0.25 5.10 –1.73 –1.48 0.36 –0.50 0.20 
4 –0.66 –0.27 4.96 –1.77 –1.35 0.33 –0.49 0.22 

 

Table 4.5 Posterior statistics of the unknown model parameter 

Stage 
  V  H  VH  

Mean 
Standard 
deviation 

Mean 
Standard 
deviation

Mean 
Standard 
deviation

Mean 
Standard 
deviation

West 
side 

1 2.76 2.98 0.13 0.11 0.17 0.09 0.09 0.10 
2 4.88 2.37 0.11 0.12 0.16 0.10 0.12 0.10 
3 5.84 1.64 0.12 0.08 0.13 0.06 0.11 0.07 
4 5.94 1.46 0.10 0.08 0.08 0.07 0.09 0.04 

South 
side 

1 2.25 2.85 0.14 0.10 0.15 0.13 0.11 0.14 
2 4.13 2.48 0.12 0.09 0.11 0.12 0.10 0.09 
3 5.32 1.97 0.13 0.09 0.14 0.08 0.10 0.07 
4 5.46 1.38 0.09 0.06 0.08 0.07 0.09 0.05 

North 
side 

1 3.45 3.98 0.18 0.12 0.18 0.07 0.11 0.07 
2 5.17 3.85 0.10 0.11 0.15 0.08 0.12 0.07 
3 6.46 2.68 0.11 0.07 0.13 0.04 0.09 0.03 
4 6.78 2.36 0.10 0.05 0.09 0.03 0.07 0.03 

 

Figure 4.8 compares the predicted horizontal displacements after each excavation 

stage for each side of the Lurie excavation site with the corresponding field 

measurements.  The proposed approach accurately captures the horizontal displacement 
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profile.  Figure 4.8 also compares the proposed method and predictions using a more 

sophisticated MATLAB®-based application for Bayesian updating using the general 

finite element software ABAQUS (Park et al. 2010a; Park et al. 2010b).  The 

formulation in Park et al. (2010a) predicts deformations under the assumption of plane 

strain conditions with a two-dimensional finite element analysis.  The case study 

presented in Park et al. (2010b) is based only on one set of inclinometer measurements  

(LR–8 at the south wall in Figure 4.6).  Away from LR–8 the accuracy of the prediction 

could deteriorate due to factors such as the spatial variability of the soil stratigraphy and 

the change in the geometrical boundary conditions, as shown in Figure 4.8.  Figure 4.9 

shows that predictions for future excavation stages improve if we incorporate the most 

recent measurements at each excavation stage.  This underscores the benefit of 

incorporating the deformation records as they become available.   

The Mean Absolute Percent Error (MAPE) is used to quantify the average 

accuracy of the model fit.   

 
1

ˆ1
100

n
i i

i i

e e
MAPE

n e

  
  

 
   (4.22)  

where îe  the fitted value for displacement ie , and n number of observations used to 

assess the model at each stage.  The MAPE indicates the average relative error and is an 

intuitive measure of the accuracy of the model predictions.   
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(a) South side 

(b) West side 

Figure 4.8 Comparison of measured and predicted horizontal displacements  
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(c) North side 

Figure 4.8 Continued 

 

 

Figure 4.9 Predictions for future excavation stages  
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Tables 4.6–4.8 lists the values of MAPE computed after each excavation stage.  

The lower diagonal terms in the tables represent the quality of the prediction compared 

to the measurements in the following stages. The diagonal terms describe the quality of 

the fit of the proposed framework for the current stage using data for the current stage.  

Therefore, it is expected, as is observed in Tables 4.6–4.8, that the main diagonal values 

are smaller than the off-diagonal values, which represent the true predictions.  The 

MAPE values continue to decrease from left to right in the table as more data is 

integrated into the analysis.  The more measurements are available, the more accurate 

the predictions for future excavations are.  Although the MAPE values in the proposed 

approach are relatively high compared to the predictions using the finite element 

analysis (Park et al. 2010b), the results may still be considered reasonable given the ease 

of the calculation process and the ability of this simplified technique to predict the three-

dimensional deformation profiles, which would require considerably larger 

computational resources and time in finite element simulations.   

 

Table 4.6 MAPE values for the example excavation (West Side)  

% Stage 1 Stage 2 Stage 3 Stage 4 

Stage 1 33.46 
(5.32)    

Stage 2 38.57 
(7.49) 

32.41
(3.47)   

Stage 3 68.22 
(18.24)

38.27
(12.58)

28.29
(3.22)  

Stage 4 78.24 
(23.67)

45.54
(19.61)

46.78
(11.53)

29.75
(5.39)

(  ) values from Park et al. (2010b) 
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Table 4.7 MAPE values for the example excavation (South Side) 

% Stage 1 Stage 2 Stage 3 Stage 4 

Stage 1 38.73 
(5.32)    

Stage 2 42.15 
(7.49) 

32.21 
(3.47)   

Stage 3 76.32 
(18.24) 

54.69 
(12.58) 

29.30 
(3.22)  

Stage 4 89.48 
(23.67) 

68.59 
(19.61) 

49.37 
(11.53) 

31.06 
(5.39) 

(  ) values from Park et al. (2010b) 
 

Table 4.8 MAPE values for the example excavation (North Side) 

% Stage 1 Stage 2 Stage 3 Stage 4 

Stage 1 48.16 
(5.32)    

Stage 2 56.24 
(7.49) 

42.59 
(3.47)   

Stage 3 82.13 
(18.24) 

58.43 
(12.58) 

38.24 
(3.22)  

Stage 4 93.26 
(23.67) 

72.36 
(19.61) 

59.19 
(11.53) 

33.18 
(5.39) 

(  ) values from Park et al. (2010b) 
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(a) South side 

 
(b) West side 

 
(c) North side 

Figure 4.10 Comparison of measured and predicted surface settlements 
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Similarly, Figure 4.10 compares the surface settlement profiles after each 

excavation stage.  The proposed approach gives good predictions of the maximum 

settlement and its corresponding location.  Due to the limitations mentioned above, the 

predictions under the assumption of plane strain condition at the south side cannot be 

extended to a different side of the excavation.   

Figures 4.11–4.13 show the complete three-dimensional horizontal deformation 

profiles and surface settlement profiles after each excavation stage.  Due to the site-

specific restrictions, only one inclinometer data (LR–3) measuring horizontal 

displacement was available for the north side.  These complete three-dimensional 

deformation profiles are important to predict the deformation at any locations close to 

the excavation and to be able to incorporate data collected at different locations.  The 

proposed method can also be used to calculate ground movements at the corners of the 

excavation.  The corner effects due to the increased stiffness of the retaining wall leads 

to a significant reduction in ground movements.  If, however, we have field deformation 

measurement data that already had the corner effects at the corner location, the ground 

movements at the corners can be calculated from the combination of both sides of 

complete three-dimensional deformation profiles. 
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(a) South side 

 
(b) West side 

 
(c) North side 

Figure 4.11 Comparison of measured and predicted horizontal displacements and 

surface settlements based on posterior estimates after stage 1 
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(a) South side 

 
(b) West side 

 
(c) North side 

Figure 4.12 Comparison of measured and predicted horizontal displacements and 

surface settlements based on posterior estimates after stage 2 
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(a) South side 

 
(b) West side 

 
(c) North side 

Figure 4.13 Comparison of measured and predicted horizontal displacements and 

surface settlements based on posterior estimates after stage 3 
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4.7 Conclusions 

A probabilistic framework is proposed to predict three-dimensional deformation profiles 

due to supported excavations using a semi-empirical approach.  A Bayesian formulation 

is used to assess the unknown model parameters by updating prior information based on 

site specific field measurements at different locations.  The updated model parameters 

are then used to develop new and more accurate predictions of the deformations in the 

subsequent stages, until the end of the excavation project.  The key advantage of the 

proposed approach for practicing engineers is that an already common semi-empirical 

chart can be used together with a few additional simple calculations to better evaluate 

three-dimensional displacement profiles.  This eliminates the need for constitutive laws, 

complex calculations and finite element models.  The developed approach provides a 

sound basis for making decisions about the design of excavation projects and can be 

used for optimizing the design of supported excavation systems.  The proposed approach 

can also be used for an adaptive reliability-based optimal design of the excavation 

system in which the design is modified after each excavation stage to minimize costs and 

maintain a minimum reliability requirement. 
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5. RELIABILITY ANALYSIS OF INFRASTRUCTURE ADJACENT TO 

DEEP EXCAVATIONS 

 

This section provides an approach to conduct a probabilistic assessment of infrastructure 

damage including buildings, bridges, and utility pipelines due to excavation works in a 

complex urban area.  In current practice, the assessment of excavation-induced damage 

has mainly focused on a deterministic approach to consider a single failure mode of each 

component of infrastructure.  However, the damage (or failure) of infrastructure is often 

a complex “system” event that is a function of each “component” event depending on 

the characteristic of each infrastructure.  For reasonable decision-making on excavation 

designs in the complex urban area, it is essential to accurately estimate the probability of 

the system failure event based on a probabilistic approach.  A Bayesian framework 

based on a semi-empirical method is used to update the predictions of ground 

movements in the later stages of excavation based on the field measurements.  The 

system fragility of infrastructure adjacent to excavation works is computed by Monte 

Carlo Simulation (MCS) employing the component fragility of each infrastructure and 

the identified correlation coefficients.  An example is presented to show how the system 

reliability for multiple serviceability limit states can be assessed.  Sensitivity and 

importance measures are also computed to identify the key components, unknown 

parameters and random variables in the model for an optimal design of the excavation 

works.   
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5.1 Introduction 

In the complex urban environment, ground movements induced by deep excavation 

works can cause damage on adjacent infrastructure including buildings, bridges, utility 

pipelines, and other structures.  The increasing rate of excavation projects related to 

urban redevelopment and improvement has contributed to a heightened level of concern 

regarding the effects of deep excavation on nearby infrastructures.   

The infrastructure damage potential due to an excavation is generally influenced 

by many factors, including the properties of the soil and infrastructure, the type and size 

of an infrastructure, the relative location between infrastructure and excavation, the 

magnitude and distribution of load of infrastructure in addition to the self-weight, the 

excavation induced deformation, and the foundation characteristics of an infrastructure.  

It is necessary to understand the complex nature of ground deformation characteristic 

and the extent to which excavation induced deformations are transferred from the ground 

surface, through the foundation, and to the superstructure to result in architectural or 

structural damage.   

The previous researches have shown that the damage potential (or failure) of 

each “component” of infrastructure is often governed by serviceability limit state (SLS) 

rather than ultimate limit state (ULS) (Zhang and Ng 2005; Babu et al. 2006; Park et al. 

2007).  However, applications of reliability concepts to the excavation design have 

mainly focused on assessing the stability of the each infrastructure itself, with limited 

research focusing on the component reliability assessment of the serviceability criterion 

(Son and Cording 2005; Hsiao et al. 2008; Schuster et al. 2008).  Furthermore, the 
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assessment of excavation-induced infrastructure damage to consider SLS has mainly 

focused on the component level of infrastructure (Becker 1996a; Becker 1996b; 

AASHTO 2007).  However, the damage (or failure) of infrastructure can be considered 

as a complex “system” event that is a function of each “component” event depending on 

the different probabilistic deformation characteristic of each infrastructure due to an 

excavation work.  For example, the bridge can be damaged even though the nearby 

building is safe under the different definition of limit state of each infrastructure, and 

which is mainly contingent upon both the relative location and the three-dimensional 

deformation shape due to the excavation work as shown in Figure 5.1. 

 

Figure 5.1 Various infrastructures adjacent to deep excavations in urban area 
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Although an assessment of the damage potential to each infrastructure could be 

conducted by providing certain ranges of the probability based on component reliability 

analysis, the system reliability that considers multiple limit state functions of all types of 

structures nearby an excavation site was not addressed.   

This section presents a system reliability analysis framework to assess the 

conditional probability (fragility) that specified threshold design criteria for multiple 

serviceability limit states are exceeded.  A comprehensive procedure for the analysis of 

infrastructure damage caused by an excavation involves five main components: (1) 

determination of the complete three-dimensional ground deformation profiles, (2) 

selection of major influential factors and corresponding performance functions for each 

infrastructure to interpret the damage potential effect of excavation works, (3) estimation 

of the responses of each infrastructure based on the excavation-induced ground 

movement and infrastructure characteristics, (4) assessment of component fragility of 

each infrastructure based on different SLS criteria, and (5) assessment of the 

infrastructure system fragility for multiple SLS criteria to estimate the probability of the 

infrastructure system failure due to the an excavation. 

A previously developed Bayesian framework is used to predict excavation-

induced deformations based on the updating semi-empirical design chart using field 

measurement data (Park et al. 2010c).  A Bayesian updating methodology is used to 

assess the three-dimensional deformation shape including maximum horizontal 

displacements, surface settlements and ground movement profiles at different locations 

and for each incremental excavation stage.  An example is presented to show how the 
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system reliability analysis for multiple serviceability limit states can be assessed.  The 

component reliability of each infrastructure based on a single limit function for each 

excavation step is assessed by the First Order Reliability method (FORM).  By 

considering multiple failure modes and corresponding performance functions of an 

infrastructure, the system reliability for each excavation step is assessed during the entire 

excavation process.  The system fragility of an infrastructure is computed by Monte 

Carlo Simulation (MCS) employing the component fragility of each infrastructure and 

the identified correlation coefficients.  Furthermore, sensitivity and importance measures 

are carried out to identify the key component, the contribution of the parameter(s) or 

random variable(s) to the reliability of an infrastructure adjacent to the excavation works.   

 

5.2 Damage Descriptions for Various Infrastructures 

Allowable serviceability criteria of each infrastructure depend on soil-structure 

interaction, desired serviceability level, harmful cracking and distortion, restricting the 

safety or use of the particular structure.  In current practice, deformation tolerance 

specifications are generally prescribed based on minimizing potential damage to 

adjacent infrastructures.  However, analytical solutions for allowable SLS criteria for 

infrastructures cannot be easily obtained and most criteria for infrastructure damage 

potential have been developed on the basis of empirical evidence from field observations 

and damages in existing infrastructures.  Because each infrastructure will have different 

performance characteristic due to the excavation-induced deformation, the existing 
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serviceability criteria for the various infrastructures in an urban area are reviewed and 

summarized for this study.   

 

5.2.1 Buildings 

Burland and Wroth (1974) proposed a set of definitions based on the displacements of a 

number of discrete points on a building foundation as shown in Figure 5.2. 

 

 

     (a) Building distortion parameters       (b) Relative deflection and deflection ratio 

Figure 5.2 Definitions of building deformation parameters 

 

The followings are used in this study: v   the total vertical settlement of a given 

point, v  the difference in total vertical settlement between any two points,   the 

angular strain which is the gradient between two successive points,   the angular 

distortion denoted by /v ijL  is the rotation of the line joining two points relative to the 
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tilt, ijL  the distance between points i and j,   the relative deflection which is the 

movement from a straight line joining two reference points, t  the tilt, DR  the 

deflection ratio denoted by / L  where L  is the distance between the two reference 

points defining   as shown in Figure 5.2(b).  The above definitions only apply to in-

plane deformations and no attempt has been made to define three-dimensional behavior.  

For this study, these definitions are applied to any two dimensional direction in the 

three-dimensional ground deformation.  Furthermore, the same definitions are used for 

the different type of infrastructure including bridges and utility pipelines. 

Recognizing that ground movements are inevitable consequence of excavation, 

the allowable movements within existing buildings can be considered under the 

following headings: (1) safety, (2) architectural or aesthetic damage, (3) functional 

damage, (4) structural damage, (5) prevention or repair.  Because of the complexity and 

difficulty in determining the allowable serviceability criteria for an individual building 

structure, the limit state of “allowable displacement” is primarily based on field 

observations of building damage as described before.  These criteria vary for the type of 

building depending on the relative displacement ratios as summarized in Table 5.1.  

Typical critical values of slope in settlement profile and maximum settlement of building, 

which have been used for planning and design purposes are summarized in Table 5.2. 
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Table 5.1 The threshold values of serviceability criteria for buildings 

Type of structure
Type of 

damage/concern 
Criterion 

Limiting 
value(s) 

Reference 

Framed 
buildings and 

reinforced load 
bearing walls 

Structural damage Angular distortion 1/150–1/250 

Poulos et al. 
(2001) 

Cracking in walls 
and partitions 

Angular distortion

1/500 
1/1000–

1/1400 (end 
bays) 

Visual appearance Tilt 1/300 

Connection to 
services 

Total settlement 

50–75 mm 
(sands) 

75–135 mm 
(clays) 

Tall buildings 
and structures 

with 
unreinforced 
load bearing 

walls 

Operation of lifts 
and elevators 

Tilt after lift 
installation 

1/1200–
1/2000 

Cracking by sagging Deflection ratio 
1/1250–
1/2500 

Cracking by hogging Deflection ratio 
1/2500–
1/5000 

Isolated 
foundation 

– Total settlement 25 mm 
Eurocode 1 

(Gulvanessian 
and Holický 

1996) 
 

These limiting 
values apply to 
foundation on 
sand.  Higher 

limiting values 
may be 

permitted for 
foundation on 

clay soil 

Raft foundation – Total settlement 50 mm 

Open frames – 

Differential 
settlement between 
adjacent columns

20 mm 

Frames with 
flexible cladding 

or finishes 
– 10 mm 

Frames with 
rigid cladding or 

finishes 
– 5 mm 

All foundations – 

Angular distortion 1/500 

Tilt 
To be 

determined by 
the designer 
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Table 5.2 Typical values of maximum building slope and settlement for damage 
risk assessment (Modified from Rankin 1988)  

Risk 
Category 

Maximum 
slope in the 
settlement 
profile of 
building 

Maximum
settlement
of building 

(mm) 

Description of risk Description of action required

1 
Negligible 

1/500 > 10 > 
Superficial damage 

unlikely 

No action, except for any 
buildings identified as 

particularly sensitive for which 
an individual assessment 

should be made. 

2 
Slight 

1/500–
1/200 

10–50 

Possible superficial 
damage which is 
unlikely to have 

structural 
significance. 

Crack survey and schedule of 
defects, so that any resulting 

damage can be fairly assessed 
and compensated. 

Identify any buildings and 
pipelines that may be 

particularly vulnerable to 
structural damage and assess 

separately. 

3 
Moderate 

1/200–1/50 50–75 

Expected superficial 
damage and possible 
structural damage to 
buildings, possible 

damage to relatively 
rigid pipelines 

Crack survey, a schedule of 
defects, and a structural 

assessment. 
Predict extent of structural 
damage, assess safety risk, 
choose whether to accept 
damage and repair, take 

precautions to control damage 
or, in extreme cases, demolish.

Buried pipelines at risk: 
identify vulnerable services, 
and decide whether to repair, 
replace with a type less likely 
to suffer damage, or divert. 

4 
High 

1/50 < 75 < 

Expected structural 
damage to buildings. 
Expected damage to 

rigid pipelines, 
possible damage to 

other pipelines. 

 

5.2.2 Bridges 

All bridge abutments and foundations nearby excavation works in urban area are likely 

to move due to the excavation-induced displacements, and the suggested damage criteria 
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for different types of bridges are established to maintain the safety, quality of ride and 

function of the bridge as summarized in Table 5.3.  As Moulton et al. (1985) suggested, 

the tolerable differential settlement and corresponding angular distortion increased with 

the span length in most previous studies.  The general span length of bridges is 

dependent on the bridge type as summarized in Table 5.4.  In this study, the typical 

prestressed concrete girders of spans in urban areas ranging from 25 to 40m are assumed 

(Du and Au 2005).   

 

Table 5.3 The threshold values of serviceability criteria for bridges 

Bridges 
Type of 

damage/concern 
Criterion 

Limiting 
value(s) 

Reference 

General 
Ride quality 

Structural distress 
Function 

Total settlement 
Total settlement 

Horizontal movement

100 mm 
63 mm 
38 mm 

Poulos et al. 
(2001) 

Multi span Structural damage Angular distortion 1/250 
Single span Structural damage Angular distortion 1/200 

Multi span Structural damage Angular distortion 1/250 
AASHTO LRFD 

Bridge Design 
Specifications 

(2007) 
Single span Structural damage Angular distortion 1/125 

General 

Design and construct
Total settlement ≤ 25mm 

WSDOT  
(2010) 

Differential settlementa ≤ 19mm 

Ensure structure can 
tolerate settlement 

Total settlement ≤ 100mm 
Differential settlementa ≤ 76mm 

Obtain Approval 
prior to proceeding 

with design and 
construction 

Total settlement ≥ 100mm 

Differential settlementa ≥ 76mm 

aDifferential settlement over 30m within pier or abutment, and differential settlement 
between piers. 
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Table 5.4 Types of bridges and applicable span length (After Chen and Lui 2005) 

Bridge type Span range (m) 
Leading bridge and span 

length 

Prestressed concrete girder 10–300 
Stolmasundet, Norway 

(301m) 
Steel I/box girder 15–376 Sfalassa, Italy (376m) 

Steel truss 40–550 Quebec, Canada (549m) 

Steel arch 50–550 
Shanghai Lupu, China 

(550m) 

Concrete arch 40–425 Wanxian, China (425m) 

Cable-stayed 110–1,100 Sutong, China (1,088m) 

Suspension 150–2,000 
Akasi-Kaikyo, Japan 

(1,991m) 
 

5.2.3 Utility pipelines 

Buried pipelines have applications in water supply, sewerage, and oil/natural gas 

pipelines in complex urban area.  Pipelines parallel to deep excavations undergo 

deformations due to the displacement of the surrounding soil; thereby impose the risk of 

damage to adjacent buried pipelines.  For most utilities that parallel a large excavation in 

an urban environment, the pipeline can be assumed to move with the soil according to 

the previous research results (Nath 1983). 

Piping materials are generally placed in one of two classifications: flexible or 

rigid.  Most flexible pipes can tolerate deflections in the range of 2–5% of the diameter 

of the pipe without developing any structural problem (Moser and Folkman 2008).  

Materials that do not meet this criterion are usually considered to be rigid.  Flexible 

pipes include steel, ductile iron, thermoplastics such as Polyvinyl Chloride (PVC) and 

High Density Polyethylene (HDPE), thermosetting plastics such as fiberglass-reinforced 
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polymer (FRP), bar-wrapped concrete cylinder pipe, and corrugated steel pipes.  Rigid 

pipes include reinforced non-cylinder concrete, reinforced concrete cylinder, prestressed 

concrete cylinder, vitrified clay, polymer concrete, cast iron, asbestos cement and cast-

in-place pipes.   

A preliminary assessment of the possible effect of excavation-induced movement 

could be based on the Table 5.5. 

 

Table 5.5 Preliminary assessment of ground movement on a buried pipeline (After 
Attewell et al. 1986)  

Maximum surface settlement 
(mm) 

Rigid pipe Flexible pipe 

,max 10v   
Pipe stress increase is not significant compared with other 
causes of stress such as installation, traffic load, seasonal 

movement 

,max 10v   The effects of movement 
should be assessed in detail

– 

,max 25v   

Significant stress increase 
virtually certain; possible 
failure of small-diameter 

pipes 

– 

,max 50v   Possible failure of large-
diameter pipes 

Significant stress increase 
likely; the effects of 
movement should be 

assessed in detail 
 

The behavior of the pipeline depends on the stiffness of the pipeline sections, the 

position and behavior of the pipe joints, and the nature of the excavation-induced ground 

deformations.  Each type of pipe has one or more performance limits which must be 

considered for the detailed assessment of the effect of excavation works depending on 

the pipe materials.  The design of flexible pipes is controlled by either ring deflection or 
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wall buckling as shown in Figure 5.3.  Because flexible pipes deform and derive strength 

from the supporting backfill and adjacent undisturbed soil, the understanding how the 

flexible pipe relates to the adjacent soil is a key to successful design.   

 

 
 

                      (a) ring deflection                                                  (b) wall buckling 

Figure 5.3 Possible failure modes of flexible pipes (Modified from Moser and 
Folkman 2008) 

 

Pipelines are assumed herein to deform along with the ground displacement 

profiles as rigid links connected by points that are free to rotate as shown in Figure 5.4.  

The effects of the ground movements on the pipe are concentrated in the joints as 

relative rotations between adjacent pipe sections.  The pipe sections are assumed to have 

a large flexural rigidity thus preventing any curvature to develop, and the joints are 

assumed to have no rotational rigidity allowing free rotation.  The rotation at the joints is 

assumed to be longitudinal due to bending of the pipeline.  The coordinate system for the 

joint rotation analyses is shown in Figure 5.5 and the suggested allowable joint rotations 

of pipelines for different types of joint are summarized in Table 5.6.   
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Figure 5.4 Assumed deformation patterns of pipelines 

 

 

Figure 5.5 Coordinates for joint rotation analyses 
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Table 5.6 Allowable joint rotations of pipelines due to excavation-induced 
movements 

Pipe material Joint type 
Allowable joint rotation 

(rad.) 
References 

Cast Iron 

Lead-Caulked 0.09–0.10 Attewell et al. (1986) 

Rubber-Gasket 0.07–0.09 Attewell et al. (1986) 

Mechanical 0.07 Attewell et al. (1986) 

Ductile Iron 

Rubber-Gasket 0.05–0.09 Bonds (2003) 

Mechanical 0.03–0.14 Bonds (2003) 

Ball and Socket 0.26 Bonds (2003) 

 

5.3 Establishment of Multiple Serviceability Limit State Functions 

5.3.1 Buildings 

Previous research results have concluded that damage to buildings caused by an 

excavation is a result of both settlement and horizontal movement of the ground 

(Bjerrum 1963; Boscardin and Cording 1989; Burland 1995; Son and Cording 2005).  In 

current practice, the excavation-induced maximum surface settlement, ,maxv , angular 

distortion,  , horizontal strain, h , and deflection ratio, DR , are often used as 

performance indicators for estimating the damage potential of buildings adjacent to an 

excavation.  Son and Cording (2005) developed a phased procedure to estimate the 

potential for building damage based on   and h  to express the strains induced in a 

building; and these two parameters can be combined into a single parameter termed as 

the principal tensile strain in the building.  The first limit state function, 11( , )g X Θ , can 

be described as 

    11 ,, ,p T pg   X Θ X Θ   (5.1) 
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where, ( , , )i i i iA S G x ( , , )i i i iA S G x the relative location, iA , size, iS , and 

geometry, iG  of adjacent infrastructures to an excavation, which in general are random, 

Θ the unknown  model parameters described in Section 4, and 1( , , )rx x x  for 

multiple infrastructures, ,p T  a specified principal tensile strain and 1/ 600  suggested 

by Schuster et al. (2008) is used in this study, but it can be changed to different number 

depending on the importance of the building, ( , )p X Θ the principal tensile strain and 

can be written as 

 
   

     

2

max max max

2

max max max

, sin cos cos

, ,
                sin cos cos

p h

v h

L L

     

 
  

 

 
 

X Θ

X Θ X Θ   (5.2) 

where  angular distortion as defined in Figure 5.6(a), h   lateral strain as defined in 

Figure 5.6(b),  ,v X Θ the difference in the vertical settlement between two points 

of the adjacent building,  ,h X Θ  the difference in the horizontal displacement 

between two points of the adjacent building, L  the length of adjacent building, and 

max  the angle of the plane on which p  acts and direction of crack formation 

measured from the vertical plane, 

       1 1
max 0.5 tan 0.5 tan , ,h v h        X Θ X Θ   (5.3) 
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               (a) angular distortion                                                          (b) lateral strain 

Figure 5.6 State of strain at the distorted portion of a building (modified from Son 
and Cording 2005) 

 

The second limit state function is in terms of a deflection ratio ( sagDR or hogDR ) 

proposed by Burland (1995).  By assuming no rigid rotation and a single deformation 

mode, the deflection ratio is equal to the angular distortion of the building and is often 

employed to assess the potential of damage of adjacent building.  An arbitrary ratio of 

1/600 is used in this study as the threshold value for the evaluation of this limit state 

function. 
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where TDR  the limiting deflection ratio. 

The third limit state function can be specified with respect to the maximum 

surface settlement to assess the excavation-induced building damage potential.  Even 

though more advanced evaluation criteria described above are available, the ,maxv  has 
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the advantage of being much easier to measure in the field than  , h  and DR .  The 

tolerable limit of the maximum surface settlement, max,v T , is assumed to be 75mm 

according to Hsiao et al. (2008).  The limit state function can be expressed as: 

    13 max,, ,v T vg   X Θ X Θ   (5.5) 

 

5.3.2 Bridges 

From the previous research results as summarized in Table 5.3, we have concluded that 

damage to bridges is a result of both settlement and horizontal movement of the ground.  

The performance indicators for estimating the damage potential of bridges adjacent to an 

excavation can be determined in terms of ,maxv , ( , )v X Θ ,  , ( , )v X Θ .   

The first limit state function, 21( , )g X Θ , employed in this study can be specified 

with respect to the maximum vertical settlement of the bridge foundations and could be 

expressed as 

    21 max,, ,v T vg   X Θ X Θ   (5.6) 

where max,v T  the tolerable limit of the maximum surface settlement, ( , )v X Θ the 

vertical settlement of each foundation of bridge pier.  In this study, the threshold value of 

the maximum surface settlement is chosen arbitrarily and limited to 25mm. 

In most cases, the differential settlement of bridge foundation results in more 

damage when compared to total settlement.  Thus, the second limit state function can be 

described as following equation 
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    22 ,, ,v T vg    X Θ X Θ   (5.7) 

where ,v T  the tolerable limit of the differential settlement, ( , )v X Θ the 

differential settlement between adjacent bridge piers.  In this study, the threshold value 

of the maximum surface settlement is chosen arbitrarily and limited to 19mm.  In a 

similar way, the third limit state function is a function of the angular distortion of the 

bridge piers, 

    
23

,
, v

T
s

g
L





 

X Θ
X Θ   (5.8) 

where, T  the tolerable limit of the angular distortion, ( , )v X Θ the differential 

settlement of each foundation of bridge pier, sL  the span length of bridge, and it is 

assumed 30m in this study.  In this study, the threshold value of the angular distortion is 

chosen arbitrarily and limited to 1/250. 

 

5.3.3 Utility pipelines 

The performance indicators for estimating the damage potential of pipelines adjacent to 

an excavation can be determined in terms of ,maxv , ( , )v X Θ , ( , )v X Θ , ( , )h X Θ .  

The first limit state function for the buried utility pipeline, 31( , )g X Θ , employed in this 

study can be specified with respect to the maximum vertical settlement and could be 

expressed as 

    31 max,, ,v T vg   X Θ X Θ   (5.9) 
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where max,v T  the tolerable limit of the maximum surface settlement, ( , )v X Θ the 

vertical settlement of each buried utility pipeline.  In this study, the threshold value of 

the maximum surface settlement is chosen arbitrarily and limited to 10mm for the rigid 

pipe and 50mm for the flexible pipe. 

Finally, we can define the limit state for the large rotation at a joint, possibly 

leading to excessive leakage or fracture at a joint.  The relative rotation between the two 

adjacent pipe sections needs to be calculated to determine if there is failure at a joint. 

    32 , ,T jg   X Θ X Θ   (5.10) 

where T  the tolerable limit of joint rotations depending on the characteristic of pipe 

material and joint type, j  the joint rotation increase due to an excavation as defined in 

Figure 5.5.  The excavation-induced joint rotation ( )j  and can be calculated by 

following equation (Molnar et al. 2003): 

 
2

, , , ,1

2 2 2 2 2 2
, , , ,

cos h ji h kj pr v ji v kj
j

h ji pr v ji h kj pr v kj

L

L L

   


   

       
         

  (5.11) 

where 
prL  the characteristic length for joint rotation analysis of pipelines, and 6.1m is 

used as suggested by Molnar et al.(2003). 

 

5.4 Fragility Assessment for Multiple Serviceability Criteria 

Fragility is defined as the conditional probability of failure, attaining or exceeding a 

prescribed limit states, of a component or system for a given set of demand variables.  
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The failure event for the system is described in terms of unions of componential failure 

events.  In this proposed work, we focused on the estimation of both component and 

system level fragility assessment of infrastructure.  We estimate the fragility of attaining 

or exceeding specified limiting criteria for the assumed values of each infrastructure 

including buildings, bridges, and utility pipelines.  The limit state function ( , )ij kg X Θ  is 

defined such that the event { ( , ) 0}ij kg X Θ  denotes the attainment or exceedance of the 

limit state at the kth excavation stage.  Using the model for three-dimensional profile of 

ground movement as described before and considering specified thresholds for multiple 

serviceability criteria, the system fragility can then be formulated as 

     , ,
1, ,3 1, ,3

, P , 0ij T k ij k ij T
i j

F C g C
 

 
  

 
Θ X Θ

 
    (5.12) 

where P[ | ]A s  the conditional probability of event A  for the given values of variables 

s , k  the excavation stage, , , max, ,( , , , , , )ij T p T T v T v T T TC DR         s a specified 

threshold constant value vector for each limit state function for the various 

infrastructures, ,  i j  the indices for each different infrastructure and failure mode.  The 

uncertainty in the event for the given ,,  ij Tk C  arises from the inherent randomness in the 

variables x , the inexact nature of the three-dimensional profile of ground movement 

model (or its sub-models to estimate ( , )p k X Θ , ( , )v k X Θ , ( , )h k X Θ ), and the 

uncertainty inherent in the model parameters kΘ .  If we know the detailed characteristics 

of multiple infrastructures adjacent to excavation works, the x vector can be treated as a 
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constant vector.  To incorporate the epistemic uncertainties inherent in the unknown 

model parameters kΘ , we only consider kΘ  as random variables.  The predictive 

estimate of system fragility, ( )F s , is then the expected value of ( , )kF s Θ  over the 

posterior distribution of kΘ  (Gardoni et al. 2002), i.e., 

    , ( )k k kF F f d s s Θ Θ Θ   (5.13) 

where ( )=kf Θ the posterior probability density function of kΘ .  The First Order 

Reliability Method (FORM) and the Monte Carlo simulation (MC) are used to estimate 

the component fragility, and MC is used to estimate the system fragility ( )F s  in this 

study, since a closed-form solution of Eq. (5.13) is generally not available.   

Figure 5.7 represents a conceptual three dimensional plot that shows the 

probability of exceedance versus k  and ,ij TC .  This figure shows that the probability of 

exceedance (fragility) decrease as ,ij TC  increases for a certain excavation stage, and the 

fragility increase as an excavation proceeds. 
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Figure 5.7 Schematic diagram for the fragility of an infrastructure 

 

5.5 Sensitivity and Importance Measures 

In this subsection, first we compute the sensitivity measures for the parameters used in 

the estimate of damage potentials in existing infrastructures caused by excavation works 

in an urban area.  Then, we assess the importance measures for all random variable in 

the probabilistic model.  We note that the sensitivity and importance measures are 

computed by FORM. 

 

5.5.1 Sensitivity measures 

In a reliability analysis, sensitivity measures are used to determine the effects on the 

reliability of changes in the parameters in the limit state function or in the distribution of 

the random variables.  In particular, we consider the influence on β( )s  and ( )F s  of 
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E( )kΘ .  The sensitivity measures can be computed following Hohenbichler and 

Rackwitz (Hohenbichler and Rackwitz 1986).  The gradient of the first-order reliability 

approximation of the fragility is obtained by using the chain rule of the differentiation as 

      E E
( ) β β( )

k k
F       

   
Θ Θ

s s   (5.14) 

where ( )   the standard normal probability of density function. 

Since we are interested in the sensitivities of β  with respect to the mean of each 

random variable, it is convenient to scale  E
β

k  


Θ
 to compare the sensitivity measures 

of all parameters.  On this basis, following Hohenbichler and Rackwitz (1986), we 

define the vector δ  

  E
β

k  
 

Θ
δ D   (5.15) 

where D the diagonal matrix with diagonal elements given by the standard deviation of 

each random variable.  We note that the vector δ  renders the element of these vectors 

dimensionless and makes the parameter variations proportional to the corresponding 

standard deviations, which are measures of the underlying uncertainties. 

 

5.5.2 Importance measures 

The random variables have different contributions to the variability of the each limit 

state function for each infrastructure.  Following Der Kiureghian and Ke (1995), a vector 

of importance measures can be defined as 
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  (5.16) 

where ( , ) z Θ ε the vector of all random variables, 1( , , )r ε  , ˆ α a row vector of 

the negative normalized gradient of the limit state function evaluated at the design point 

in the standard normal space, *, * u zJ the Jacobian of the probability transformation from 

the original space z  into the standard normal space with respect to the parameters z  and 

computed at the most likely failure point (design point) *u ,  D  the diagonal matrix of 

standard deviations of the equivalent normal variables z , defined by the linearized 

inverse transformation *, ** ( *)    z uz z J u u  at the design point.  Each element in D  

is the square root of the corresponding diagonal element of the covariance matrix 

, *   T
z* u z*,u*Σ J J  of the variables in z . 

 

5.6 Application 

The proposed reliability analysis approach is applied to an actual supported excavation 

project for the Robert H. Lurie Medical Research Building in Evanston, Illinois with an 

imaginary concrete building and bridge as shown in Figure 5.8.  The area surrounding 

the Lurie Center site is heavily populated with underground utilities transmitting water, 

waste, gas, electric lines, and telecommunication cables.  The analyses presented herein 

focuses on gas mains along the north, west, and south walls of the excavation as 

summarized in Table 5.7.  We note that the building and bridge are imaginary 

infrastructure but the gas mains are real one.  The dimensions of building are assumed to 
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be 20m (width), 15m (length) and 10m (height).  The span length of imaginary bridge is 

assumed to be 30m as shown in Figure 5.8. 

 

 

Figure 5.8 General layout of example site including imaginary infrastructures 

 

Table 5.7 Dimensions in utility pipeline adjacent to example site 

Pipe material 
Direction from 

excavation 
Distance from 
excavation (m) 

Pipe Diameter 
(mm) 

Cast Iron South 8.1 300 

Ductile Iron 
North 15.5 150 
West 5.5 500 
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Figure 5.9 shows a schematic representation of the cross-section with an 

excavation of 80m (width) and 12.8m (depth).  Detailed description and ground response 

of the excavation are provided in Finno and Roboski (2005).  Measurements of both 

horizontal displacements and vertical ground surface settlements were obtained from 

inclinometers and optical survey from every side of excavation except the east side as 

shown in Figure 5.10. 

 

 

Figure 5.9 Cross-section of example site 
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Figure 5.10 General layout of Lurie Center site instrumentation (Modified from 
Finno and Roboski 2005) 

 

We assume that the infrastructure including buildings, bridges, and utility 

pipelines adjacent to the excavation site moves with the ground displacement profiles 

and provides no restraint to the soil.  Furthermore, we assume that the initial 

displacement for the building and bridge after the construction, and initial joint rotations 

for the gas mains after installation before an excavation are relatively small and 

negligible when compared with the excavation-induced displacement and joint rotation. 
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 In this example, we can setup the 12 limit state functions to assess the system 

fragility as followings; 3 for building at the south side, 3 for bridge at the north side, and 

2 for gas mains for north, south and west sides. 

  
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  (5.17) 

For each kth excavation stage, the component reliability analyses are performed 

for each limit state function criterion.  Because the deformation will increase as 

excavation proceeds, we want to summarize the results for the 4th excavation stage that 

can be considered as the most dangerous during construction.  We also note that the 

component fragility at the 1st excavation stage is close to zero due to the small 

excavation-induced deformations. 

The component fragility curves for each limit function at the 4th excavation stage 

are shown in Figure 5.11, and the component fragility decrease as each ,ij TC  increases as 

we expected.   
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(a) , max,ij T v TC   case 

 
(b) ,ij T TC   case 

Figure 5.11 Component fragility curve of an infrastructure 
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(c) , ,ij T v TC    case 

 

(d) ,ij T TC   case 

Figure 5.11 Continued 
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(e) ,ij T TC DR  case 

 

(f) , ,ij T p TC   case 

Figure 5.11 Continued 
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The whole excavation is defined as a series system because system failure is 

defined by a failure of any individual component of different limit state function.  The 

system failure is defined as an event that at least one component exceeds its 

corresponding limit state.  The system fragility curve is computed by Monte Carlo 

Simulation (MCS) employing component fragility models and the identified correlation 

coefficients.  The correlation coefficients are assumed to be constant over the considered 

at the same excavation stage.  The correlation coefficients matrix for the 4th excavation 

stage is summarized in Table 5.8.   The system fragility curve for the 4th excavation in 

terms of the maximum vertical settlement is shown in Figure 5.12. 

 

 

Figure 5.12 System fragility curve of an infrastructure for the 4th excavation stage 
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Table 5.8 Correlation coefficient matrix for each component at stage 4 

   Buildings Bridges Pipelines 

  11g  12g  13g  21g  22g  23g  

North South West 

31g  32g  31g  32g  31g  32g  

Buildings 

11g  1            

12g  0.67 1           

13g  –0.74 –0.73 1          

Bridges 

21g  –0.31 –0.59 0.39 1         

22g  –0.11 –0.45 0.29 0.89 1        

23g  –0.06 –0.64 0.95 0.75 0.65 1       

Pipelines 

North 
31g  –0.01 0.99 0.99 0.98 0.99 0.94 1      

32g  –0.01 –0.12 0.12 0.12 0.13 0.18 0.13 1     

South 
31g  –0.01 –0.99 0.01 0.99 0.99 0.95 0.99 0.13 1    

32g  0.99 0.01 0.99 0.01 0.01 0.01 0.01 0.01 –0.01 1   

West 
31g  0.01 0.87 –0.93 –0.91 –0.94 –0.88 –0.97 –0.12 –0.94 0.01 1  

32g  0.01 –0.11 0.11 0.11 0.11 0.16 0.11 0.04 0.11 0.01 –0.11 1 

 

  

 
153
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Figure 5.13 shows the sensitivity measures of all random variables for the 

component fragility at stage 4.  It is observed that the parameters related to the surface 

settlements including 
,maxE( )v and 3E( )v  have larger effects on the component fragility 

for the settlement related limit state functions 12 13 21 22 23 31( ,  ,  ,  ,  ,  )g g g g g g for the various 

infrastructures.  Furthermore, the parameters related to the horizontal displacements 

including 2E( )u , 3E( )u  and 2E( )h  have larger effects on the component fragility for 

the horizontal deformation related limit state function 11 32( ,  )g g  for the building and gas 

mains.   

Similarly, Figure 5.14 shows the importance measures of all random variables for 

the component fragility at stage 4.  Observations similar to those made for the sensitivity 

analysis can be made for the importance measures.  We can see that 3v  is the most 

important variable and 
,maxv  is the second most important variable for the settlement 

related limit state functions.  The positive signs of the importance measures of 3v  and 

,maxv  indicate that these are “load” (demand) variables.  The negative sign of the 

importance measure indicates that this random variable acts as a “resistance” (capacity) 

variable in the each limit state function. 
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Figure 5.13 Sensitivity measures of all random variables for the system fragility at stage 4 
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Figure 5.14 Importance measures of all random variables for the component fragility at stage 4 
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Kang et al. (2008) proposed to use the conditional probability of the component 

event given the system failure as an importance measure of the component.  This 

conditional probability importance measure ( )CIM of the ijth component event, ijE  , is 

defined as 

    
 

ij sys

ij ij sys

sys

P E E
CIM P E E

P E
    (5.18) 

If ijE  denotes the event that the { ( , ) 0}ij kg x Θ  denotes the attainment or exceedance of 

the limit state, the system event ( )sysE  that at least one of the adjacent infrastructure fails 

is described by  

 
11 12 13 21 22

31 north 32 north 31 south 32 south 31 west 32 west           

sysE E E E E E

E E E E E E     

    
     

  (5.19) 

In order to identify important component events, the CIMs in Eq. (5.18) are 

computed by the matrix-based system reliability (MSR) method (Song and Kang 2009).  

Figure 5.15 shows the relative importance of component events at the 4th excavation 

stage.  We can see that the damage potential for the gas main at the west side 

31( west)g   is the most important component and the damage potential for the bridge at 

the north side 22( )g   is the second most important component for the excavation work.   
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Figure 5.15 Conditional probability importance measures of infrastructure 

 

5.7 Conclusions 

A reliability analysis framework is proposed to assess the fragility of excavation-induced 

infrastructure system damage for multiple serviceability limit states.  A Bayesian 

framework based on a semi-empirical method is used to update the predictions of ground 

movements in the later stages of excavation based on the field measurements.  The 

component and system fragility estimates for excavation works in an urban area are 

developed in this study along with sensitivity and importance measures. 
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Fragility estimates applied to the Lurie excavation site with imaginary 

infrastructure system including building, bridge and gas mains show that the probability 

of exceedance decrease as the specified threshold criteria increase. 

The sensitivity measures indicates that the parameters related to the surface 

settlements including 
,maxE( )v and 3E( )v  have larger effects on the component fragility 

than other shape function parameters for the settlement related limit state functions 

12 13 21 22 23 31( ,  ,  ,  ,  ,  )g g g g g g for the various infrastructures.  Furthermore, the parameters 

related to the horizontal displacements including 2E( )u , 3E( )u  and 2E( )h  have larger 

effects on the component fragility for the horizontal deformation related limit state 

function 11 32( ,  )g g  for the building and gas mains.   

The importance measures of all random variables for the component fragility at 

stage 4.  The similar trend can be observed for the importance measures.  The 3v  is the 

most important variable and 
,maxv  is the second most important variable for the 

settlement related limit state functions.   

The proposed approach can be used for an adaptive reliability-based optimal 

design of the excavation system in which the design is modified after each excavation 

stage to minimize costs and maintain a minimum reliability requirement.  This method 

can also be expanded to any type of excavation projects related to urban redevelopment 

and infrastructure improvement.  For example, additional limit state functions can be 

added to the system reliability analysis to consider the serviceability of tunnel for a deep 

excavation within the influence zone of an existing tunnel.  
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6. RELIABILITY ASSESSMENT OF EXCAVATION SYSTEMS 

CONSIDERING BOTH STABILITY AND SERVICEABILITY 

PERFORMANCE 

 

Excavation projects related to urban redevelopment and infrastructure improvement are 

often governed by serviceability-based design, rather than failure prevention criteria. 

Deformation tolerance specifications are often prescribed based on minimizing potential 

damage to adjacent structures. A risk-based approach to serviceability performance that 

systematically incorporates design parameter uncertainty will allow engineers to address 

soil uncertainty in performance-based design. This study demonstrates the use of various 

kinds of reliability methods, such as Response Surface Method (RSM), First Order 

Reliability Method (FORM), Second Order Reliability Method (SORM), Adaptive 

Importance Sampling (AIS), Monte Carlo Simulation (MCS), and system reliability, to 

assess the risk of stability and/or serviceability failure of an entire excavation support 

system throughout the entire construction process. By considering multiple failure 

modes (including serviceability criteria) of an excavation, the component and system 

reliability indices for each excavation step are assessed during the entire excavation 

process. Sensitivity analyses are conducted for the system reliability calculations, which 

demonstrate that the adjacent structure damage potential limit state function is the 

dominant factor for determining excavation system reliability. An example is presented 

to show how the serviceability performance for braced excavation problems can be 

assessed based on the system reliability index. 
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6.1 Introduction 

Recent conventional methods for assessing the stability of deep excavation system 

utilized computational tools such as the Finite Element (FE) method.  Various 

uncertainties, such as the variability of the loadings, geotechnical soil properties, and 

engineering and geometrical properties of the retaining structure, must be addressed 

when calculating the stability or serviceability performance of an excavation system.  

Much of the early development of reliability analyses in geotechnical 

engineering focused on slope stability applications, where the reliability index was 

calculated for one specific failure surface (Tang et al. 1976; Semih Yücemen and Al-

Homoud 1990; Chowdhury and Xu 1993; Chowdhury and Xu 1995).  For the calculation 

of reliability index, the deterministic critical failure plane was used (Vanmarcke 1977; 

Christian et al. 1994); however, the failure plane associate with the minimum reliability 

index does not always coincide with the deterministic critical failure plane (Li and Lumb 

1987).  Hence, extensive research has been conducted to find the probabilistic critical 

failure plane using limit equilibrium methods (Low and Tang 1997; Low et al. 1998; 

Low 2001; Low 2003).  In recent years, FE methods have been increasingly adopted to 

study slope stability and embankment problems (Smith and Hobbs 1974; Zienkiewicz et 

al. 1975; Griffiths 1980; Wong 1985; Ugai 1989; Jin-Zhang et al. 1995; Ugai and 

Leshchinsky 1995; Griffiths and Lane 1999; Smith and Griffiths 2004).  Griffiths and 

Fenton (2004) applied the random FE method toward a reliability analysis of a simple 

homogeneous slope, in which nonlinear FE analysis was combined with random field 

theory.  However, the application of FE-based probabilistic stability analyses of 
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embankments or slopes is still very limited because of time and cost restrictions.  Recent 

research has focused on probabilistic approaches to deformation-based design (e.g. 

Fenton and Griffiths 2002), which can be further extended to additional geotechnical 

applications with serviceability requirements, such as deep excavations. 

For deep-excavations in urban environments, the reliability analyses would be 

more complex because of uncertainties related to serviceability performance.  Phoon and 

Kulhawy (1999) have defined three primary sources of geotechnical uncertainties: 

inherent variability, measurement uncertainties, and transformation uncertainty.  

Because of these uncertainties, the serviceability performance of an excavation system 

cannot be determined precisely, and the computed lateral wall displacement does not 

reflect the degree of uncertainty of the underlying random variables (Goh and Kulhawy 

2005).  In this section, the uncertainties were limited to the coefficient of variation of the 

geotechnical engineering properties.  Spatial correlation uncertainties are not addressed 

in this study, as site investigation data are often too sparse to conduct spatial correlation 

analyses in deep excavation design.  Although spatial uncertainty is a significant factor 

in geotechnical engineer design, and, as such, should be included in reliability-based 

design, it is not within the scope of this research to include spatial correlation analyses.  

Because usual design stage for deep excavations, we cannot have enough information 

due to the limited amount of site investigation data. 

Several methods can be used to quantify the effect of engineering property 

uncertainties on the stability and serviceability limit state performance of the whole 

excavation system.  The first direct method would be to carry out Monte Carlo 
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simulations (MCS), using random variables with specified joint probability distributions 

to represent these geotechnical uncertainties and to perform a large number of 

deterministic simulations using a numerical methods (Harr 1987; Melchers 1999; 

Baecher and Christian 2003; Ang and Tang 2007).  A second method could be the use of 

a stochastic FE method, as described in an earlier section (Griffiths and Lane 1999; 

Griffiths and Fenton 2004).  Another method, which reduces calculation time and 

resources required for MCS, is the response surface method (RSM).  In this approach, 

the limit state surface is implicitly determined by polynomial regression models through 

a series of analyses using existing FE codes (Box and Wilson 1954; Bucher and 

Bourgund 1990; Goh and Kulhawy 2005; Xu and Low 2006).  The spreadsheet-based 

technique (Low and Tang 1997; Low and Tang 2004; Low 2005) could be used to 

determine the stability and serviceability limit state performance of the excavation 

system (Goh and Kulhawy 2005). 

Recent applications of reliability concepts toward excavation system design have 

mainly focused on assessing the stability of the structure itself, with limited research 

focusing on the reliability assessment of serviceability criteria.  A Point Estimate 

Method (PEM) combined with a FE model was used to assess the probability of the 

horizontal displacement of the top of a cantilever sheet pile wall exceeding an arbitrary 

threshold value (Schweiger et al. 2001).  Also, a comparison of probabilistic, stochastic, 

fuzzy set and random set methods for reliability analysis of excavation problems was 

performed (Peschl and Schweiger 2003; Schweiger and Peschl 2005).  Although an 

assessment of the probability of damage to an adjacent building could be conducted by 
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providing certain ranges of the probability, the system reliability, which considers 

multiple limit state functions, was not addressed. 

The overall objective of this study is to demonstrate the potential of integrating a 

system reliability analysis technique with the FE method to assess both stability and 

serviceability performance of braced excavation wall systems in probabilistic terms. By 

introducing basic structural reliability concepts that reflect the degree of uncertainty of 

the underlying random variables in the analyses, engineers can address the uncertainties 

and their effects on the probability of failure as the excavation progresses.  

This section will present the fundamental concepts of a reliability analysis, 

followed by a description of the basic components of the RSM and their incorporation 

into both component and system reliability analyses. An example is presented to 

demonstrate the assessment of the system reliability, considering both stability and 

serviceability performance of a braced excavation. 

 

6.2 Factor of Safety and Reliability Index in Excavation Systems 

6.2.1 Factor of safety by strength reduction technique 

For complex geotechnical structures, such as deep excavations and tunnels, the 

definition of a system factor of safety ( )FOS  is not straightforward because many 

components contribute to the failure mechanism.  In the case of a deep excavation, 

components include: soil strength, water table elevation, the interaction between soil and 

structural elements, and construction sequencing. 
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The shear strength reduction technique consists of a successive reduction of the 

shear strength parameters of the soil until the soil fails or a failure mechanism is 

developed.  The resulting   can be obtained by: 

 
tan

( )
tan * *

c
FOS

c




 X  (6.1) 

where X  is the collection of random input parameters, the shear strength parameters c  

and   refer to the initial input values, *c  and *  refer to the reduced values.  In this 

technique, the definition of the FOS  is the same as that adopted by the conventional 

limit equilibrium method (e.g. Dawson et al. 1999).  It has the advantage that no 

assumptions need to be made about the location of the failure surface.  This technique is 

a reasonable alternative to limit equilibrium methods (Zienkiewicz et al. 1975; Griffiths 

1980; Ugai 1989; Ugai and Leshchinsky 1995; Griffiths and Lane 1999). 

When performing strength reduction technique, it must always be determined if 

the calculation procedures are not terminated by local numerical instability problems.  

Close examination of failure mechanism, for example, the incremental shear strain 

distribution of the excavation system, will expose a termination due to numerical 

instability problems.  In this study, it is assumed that the final calculation step of strength 

reduction for each excavation construction step has resulted in a fully developed failure 

mechanism.  Since the strength of structural element is not influenced by the current 

strength reduction technique, it is assumed that the final calculation step of strength 

reduction for each excavation construction step has resulted in a fully developed failure 

mechanism. 
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6.2.2 Reliability analysis 

Xu and Low (2006) pointed out that the factor of safety calculated from conventional 

deterministic stability analysis is not a consistent measure of risk. Excavations with 

factors of safety larger than unity still have some chance of failure, due to the 

uncertainties involved in characterizing the soil properties, environmental conditions and 

model errors associated with the analytical technique adopted. Probabilistic stability 

analysis offers an additional tool to evaluate the stability and serviceability of 

excavations while accounting for these uncertainties. When a probabilistic stability 

analysis is conducted, the failure probability for an excavation can be defined as: 

    
  0

0
k

f k g
p P g f d


     X X X

X
 (6.2) 

where ( )kg X  are limit state functions, and ( )f X  is the joint probability density function 

of the basic variable vectors X .  This equation is difficult to evaluate because it is 

difficult to identify the joint density function and to perform the integration over the 

entire multidimensional failure domain.  A good approximation to Eq. (6.2) is to 

combine the RSM with the FORM (Xu and Low 2006) as described in section 6.2.4. 

 

6.2.3 Definition of multiple limit state functions 

To assess the systematic reliability of an excavation support system considering both 

stability and serviceability performance, it is suggested that the following three main 

criteria be considered simultaneously: (1) overall system stability, (2) lateral 

displacement of the soil and support system, and (3) differential settlement of adjacent 
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structures.  The first limit state function is the ultimate limit-state failure prevention 

criterion and can be described as following equation: 

 1( ) ( ) ( ) ( ) 1g C D FOS   X X X X  (6.3) 

where ( )C X  is the capacity of excavation, whch will be the factor of safety ( ( )FOS X ) 

obtained from the empirical equation to evaluate bottom heaving or finite element 

analyses.  ( )D X  is the demand and it will be unity in terms of the factor of safety.  

However, excavations related to urban redevelopment and infrastructure improvement 

are mainly governed by serviceability criteria.  Because there are often adjacent 

structures and utilities, as shown in Figure 6.1, predicting deformation is critical for 

excavation support design. 

 

 

 

Figure 6.1 Two components of deep excavation design: (1) horizontal wall 
deflection ( )xu  and (2) adjacent building deformation ( / )L  
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The second limit state function employed in this analysis can be specified with 

respect to the maximum displacement of the excavation walls, thus representing a 

criterion for the serviceability of the support structure.  If, for example, the maximum 

horizontal displacement is limited to 100 mm (chosen arbitrarily in this analysis), the 

limit state function could be expressed as: 

 2 ( ) ( ) ( ) 100 ( )xg C D u   X X X X  (6.4) 

where ( )xu X  is the maximum displacement obtained from the FE analyses.  In a similar 

way, the third limit state function is a function of the deflection ratio, ( ) / L X , of an 

adjacent structure (the ratio of the differential settlement between structural elements and 

the distance between the structural elements, assuming only one deformation mode, i.e. 

sagging only, and no rigid rotation).  By assuming no rigid rotation and a single 

deformation mode, the deflection ratio is equal to the angular distortion of the building 

and is often employed to assess the likelihood of damage of adjacent building.  For this 

analysis, the adjacent structure limit state function is defined as: 

 3( ) ( ) ( ) 1/ 600 ( ) /g C D L   X X X X  (6.5) 

According to Bjerrum (1963), angular distortion is the governing variable in the 

assessment of permissible deformations of the building (see Table 6.1).  An arbitrary 

ratio of 1/600 is used in this study as the limiting value for the evaluation of this limit 

state function in order to obtain the reliability in terms of serviceability. 
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Table 6.1 Damage criteria - limiting angular distortion for various structures 
(Modified from Bjerrum 1963) 

Angular Distortion Damage Assessment 

1/150 
Limit where structural damage of general buildings is to be feared. 

Safe limit for flexible brick walls with h/L<0.25. 
Considerable cracking in panel walls and brick walls. 

1/250 Limit where tilting of high, rigid buildings might become visible. 
1/300 Limit where difficulties with overhead cranes are to be expected. 
1/500 Safe limit for buildings where cracking is not permissible. 
1/600 Danger limit for frames with diagonals. 

1/750 
Limit where difficulties with machinery sensitive to settlements are 

to be feared. 
 

6.2.4 Response Surface Method (RSM) 

The concept of the RSM consists of approximating the unknown implicit limit state 

function by a simple and explicit function, which is usually an nth order polynomial.  

When a polynomial function is used to approximate the true limit state function ( ( ))kg X

, experiments or numerical analyses will be performed at various sampling points ( )ix  to 

determine the unknown coefficients in the approximate polynomial limit state function 

( ( ))kg X .  As discussed Xu and Low (2006), the effect of interaction terms on the 

reliability index will be negligible, such that those terms are ignored.  The following 

second-order polynomial function, without interaction terms, is adopted in this study as 

suggested by Bucher and Bourgund (1990): 

   2

1 1

r r

k i i i i
i i

g l m x n x
 

    X  (6.6) 

where ix  are random variables and the parameters l , im , and in  are coefficients that 

need to be determined.  By knowing the values of random variables at sampling points 
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selected for each variable, the value of the function at any point in the design space can 

be estimated by fitting a second-order polynomial, and only (2 1)N   sampling points 

are required to form the function for problems involving N  variables.  The procedure 

for a reliability analysis based upon RSM is also adapted from Xu and Low (2006).  This 

will be discussed in more detail in Section 6.4. 

In the first-order reliability method (FORM), an approximation to the probability 

integral in Eq. (6.2) is obtained by linearizing each limit state function in the standard 

normal space at an optimal point.  Once the approximate polynomial limit state function 

( ( ))kg X  is calculated, the first-order reliability procedures can be used to calculate the 

reliability index ( )HL  (Hasofer and Lind 1974) by following equation: 

          11min min ( ) / ( ) /
TT

HL i i i i i ix x    

 
     

X F X F
X M C X M R  (6.7) 

where X = vector of random variables, M = vector of mean values, C = covariance 

matrix, R = correlation matrix, F failure region and ,  i i   mean and standard 

deviation of random variable ix , respectively.  Eq. (6.7) forms a hyper-ellipsoid in n-

dimensional space (Low 1996) and HL  could be considered as the shortest distance 

from the mean value of random variables to the limit state function in standard normal 

space.  This can be calculated, for example, by using the built-in solver optimization tool 

on Microsoft Excel to minimize HL , with the constraint that   0kg X  (Low and Tang 

1997; Low and Tang 2004).  The probability of failure can be determined by Eq. (6.8) 

for Gaussian distributed random variables: 
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  f HLp     (6.8) 

where ( )   is the standard normal cumulative distribution function. 

 

6.3 Proposed Method for Reliability Assessment of Excavation Systems 

As mentioned in the previous subsection, the three limit state functions will be 

considered simultaneously for the reliability assessment of an excavation support system.  

Also, because the reliability index will be influenced by a staged construction process, a 

reliability index that considers multiple limit state functions should be updated for each 

excavation step.  For each limit state function, the corresponding reliability index ( )HL  

can be computed by RSM.  However, it should be checked with the first-order reliability 

method (FORM), the second-order reliability method (SORM), Adaptive Importance 

Sampling (AIS), and Monte Carlo simulations (MCS) because it will become impractical 

for problems involving a large number of random variables and non-linear limit state 

functions. 

NESSUS (Numerical Evaluation of Stochastic Structures Under Stress), a 

commercially available software package, was employed to calculate the limit state 

component reliability indices based on the FORM, SORM, AIS and MCS methods.  

These reliability indices were compared as verification of the reliability index computed 

using RSM and to improve the modeling of the limit state surface (Southwest Research 

Institute 2001; Southwest Research Institute. 2005).  
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Various methods for the evaluation of reliability index (or probability of failure, 

fp ) were described in the previous subsection, which were based on individual limit 

state functions.  However, to consider the probability of fulfilling several criteria at the 

same time, system reliability assessment methods are required.  For example, potential 

damage to adjacent buildings caused by an excavation might exceed the limit state 

surface even though the ( ) 1FOS X  limit state is has not been exceeded.  Therefore, the 

excavation problem can be summarized as the assessment of the probability of a series 

system failure involving multiple limit states due to multiple components and/or multiple 

failure modes.  There are several methods for system reliability calculations.  A common 

approach is to consider reliability bounds for the serial, parallel, and combined systems.  

However, these methods provide only approximate solutions. 

In NESSUS, a system failure is defined using a fault tree, which provides a 

systematic way to manage multiple failure modes.  Through a fault tree, all the failure 

modes can be defined.  A failure mode can involve one or more limit states.  By adding 

all the failure modes, and therefore all the limit states, the system limit surface can be 

constructed piece by piece.  The system reliability can be computed using the AIS 

method or MCS method in NESSUS.  The AIS procedure for system reliability analysis 

requires the construction of multiple parabolic surfaces.  In principle, it is a 

straightforward extension of the concept for one limit state.  The difficult part is to 

develop a procedure for adding failure regions for additional limit states.  This approach 

is ineffective for cases where system failure is governed by the joint effects from several 

limit states.  In such cases, no limit state can be considered dominant because the most 
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probable point (MPP) of the individual limit state is not a likely event for a system 

failure.  A more effective computational procedure adds samples progressively based on 

multiple failure modes.  

The probability of failure considering the three failure modes described in section 

6.2.3 can be presented in Eq. (6.9) as: 

      1 2 3( ) 0 ( ) 0 ( ) 0fp P g g g     X X X   (6.9) 

The AIS methods minimize sampling in the safe region by adaptively and 

automatically adjusting the sampling space from an initial approximation of the failure 

region.  The sampling space is defined using a limit state surface.  The performance of 

AIS depends on the quality of the initial failure region approximation.  

The sensitivity factors provide first-order information on the importance of the 

individual random variables in component reliability analyses.  Other sensitivity 

measures with respect to a distribution parameter (mean or standard deviation) or a limit 

state function parameter can be estimated based on the sensitivity factors and the 

distribution transformation (Wu 1994).  When a distribution parameter is changed, the 

sensitivity of fp   with respect to a distribution parameter ( )  can be evaluated using: 

 
( )fp f

dx
 

 


  
X  (6.10) 

Therefore, 

 
/ ( )  ( )

( )
/ ( ) ( )

fp p f f
f dx E
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 
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X X
  (6.11) 
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where the subscript   denotes that the expected value is evaluated using the joint PDF 

in the failure region.  In general, numerical differentiation methods can be used to 

compute the value within  E  .  The probabilistic sensitivities can be computed using 

AIS points within in the failure region.  No additional limit state function calculations 

are required.  Based on Eq. (6.11), two types of probabilistic sensitivity coefficients are 

proposed that are particularly useful for probabilistic design:  the standard deviation 

sensitivity coefficient ( )
i

S  and the mean sensitivity coefficient ( )
i

S .  The two 

sensitivity coefficients are defined as: 

 
/ln

ln /
i

i

ff

i

p pp
S   


 

 
 (6.12) 
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 (6.13) 

where i  and i  are the mean and the standard deviation, respectively, of the random 

variable ( )X .  In Eq. (6.13), the use of the standard deviation as a scale factor implies 

that the allowable design range of a mean value is limited to a local region characterized 

by the random variable variability.  When one or more i  values are very small (e.g., 

approaching zero) relative to their allowable i  design ranges, it may be more 

appropriate to replace i  with the allowable design ranges in Eq. (6.13).  The above 

coefficients are dimensionless and can take positive, negative, or zero values.  If desired, 

they can be normalized such that the sum of the normalized coefficients becomes one.  

When an 
i

S  is zero or relatively small, it implies that the random variable ( )X  can be 
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varied over a wide range without significantly changing fp .  This, in turn, implies that 

i
S  will be negligible.  On the other hand, when an 

i
S  is relatively large, the 

corresponding 
i

S  will also tend to be significant.  These trends suggest that 
i

S  and 
i

S  

are strongly related and both can be used to identify key contributing random variables. 

 

6.4 Applications 

This subsection presents an example in which the procedures described previously are 

used to evaluate the reliability index (or fp ) for braced excavations in soft clays.  Goh 

and Kulhawy (2005) pointed out that the accuracy of the wall movement predictions 

through FE analyses is heavily dependent on the constitutive soil model used, and how 

accurately the parameters (derived from laboratory and in-situ tests) for the soil model 

reflect the actual ground conditions.  In this example, the constitutive soil behavior was 

modeled with the Mohr–Coulomb elastic perfectly plastic model.  A more complex 

constitutive soil model is more preferable for clays, therefore this approach could be 

expanded to another type of constitutive soil model such as modified Cam-Clay model.  

Only four random variables of the upper soft marine clay were considered to simplify 

the computations in this research.  It is assumed that a first-story building is located 

adjacent to the site where excavation work takes place, located 4.5 m away from the 

sheet pile wall.  The dimensions of building are assumed to be 10m (width) and 4m 

(height).  The distribution pressure caused by imaginary concrete building was assumed 
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to be 40kN/m2.  Figure 6.2 shows a schematic representation of the cross-section with an 

excavation of 27m (width) and 7.4m (depth). 

 

 

Figure 6.2 Cross-section of braced excavation and soil stratigraphy (Modified from 
Goh and Kulhawy 2005, not to scale) 

 

Table 6.2 The engineering properties of each soil layer (modified from Goh and 
Kulhawy 2005) 

Depth(m) γ (kN/m3) υ Eu (kPa) E′ (kPa) Su (kPa) Ø Ko 

0-24.5 16 0.49 9000 - 30 0 1.0 

24.5-27.0 18 0.30 - 30000 2 35 0.43 

27.0-35.0 17 0.49 20000 - 50 0 1.0 

35.0-40.0 19 0.49 48000 - 80 0 1.0 
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Table 6.3 Summary of wall and strut properties (modified from Goh and Kulhawy 
2005)  

Type E(kN/m3) 
Moment of Inertia 

(m4/m) 
Cross-sectional 

Area (m4/m) 
Sheet Pile Wall 2.04×108 2.28×10-4 1.86×10-2 
Strut (at 1.00m) 2.04×108 6.80×10-4 2.96×10-3 
Strut (at 3.50m) 2.04×108 6.80×10-4 2.96×10-3 
Strut (at 5.25m) 2.04×108 1.13×10-3 3.72×10-3 

 

The soil profile and soil properties are summarized in Table 6.2.  The wall and 

strut properties are shown in Table 6.3 and the sheet pile wall was driven to a depth of 

22.6m.  A plane-strain FE analysis was conducted, using the commercial FE software 

suite PLAXIS.  The soil is modeled by 15-node triangular elements.  Linear elastic beam 

elements were used to model the sheet pile wall.  A plot of the mesh and major 

excavation steps are shown in Figure 6.3.   

(a) step 4 
 

(b) step 6 

(c) step 8  
(d) step 10 

Figure 6.3 Finite element mesh and major excavation steps 
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In this example, structural elements such as walls and foundation slabs have been 

also modeled as linear elastic materials, as shown in Table 6.4.   

Table 6.4 Parameters for building structure 

Structural element Type 
Axial stiffness (EA) 

(kN/m) 
Flexural stiffness (EI) 

(kN/m2/m) 
Foundation slab Elastic 2.2×107 1.173×106 

Walls Elastic 2.2×107 1.173×106 
 

Only half of the excavation was modeled, assuming symmetric conditions.  To 

simplify the computations, only four random variables were used in the analyses.  The 

variables were the undrained shear strength ( )uS , undrained elastic modulus ( )uE , soil 

unit weight ( ) , and coefficient of earth pressure at rest 0( )K  of the upper soft marine 

clay.  The means, standard deviations ( ,  )i i   and coefficients of variations (COV) of 

the parameters are summarized in Table 6.5.  As discussed in Goh and Kulhawy (2005), 

the typical geotechnical characteristics of the Singapore upper marine clay were used to 

simplify the computations.  Even though the undrained shear strength generally shows 

much more variability than unit weight, they indicated that the COV values in Table 6.5 

are typical of the Singapore marine clay.  In this study, we adapted their data to show 

how one can introduce a system reliability concept to assess excavation systems.  

However, the proposed approach can also be extended to account for the spatial 

correlation by use of a geostatistical approach or random field method. 
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Table 6.5 Summary of random variables and statistical data (modified from Goh 
and Kulhawy 2005) 

Variables Mean ( i ) Standard deviation ( i ) Coefficient of 
variation (COV) 

uS  (kPa) 30 4.5 0.15 

uE  (kPa) 9000 1800 0.20 
  (kN/m3) 16 2.1 0.13 

0K  1 0.15 0.15 

 

For simplicity, the random variables are assumed to be independent and normally 

distributed.  It is assumed that the other parameters in the problem are known 

deterministically.  It is also assumed that consolidation effects do not play a significant 

role for the excavation-induced movements.  Therefore, series of undrained analyses 

were performed and the computational steps have been defined as follows: 

 

1. Initial in-situ stresses. 

2. Activation of buildings, reset displacements after this step.  

3. Install the sheet pile wall. 

4. Excavate to a depth of 1.5m (Figure 6.3(a)). 

5. Install struts at 1.0m.  

6. Excavate to a depth of 4.0m (Figure 6.3(b)). 

7. Install struts at 3.5m.  

8. Excavate to a depth of 5.75m (Figure 6.3(c)). 

9. Install struts at 5.25m.  

10. Excavate to a depth of 7.4m (Figure 6.3(d)). 
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11. Execute shear strength reduction (SSR) technique in order to obtain factor 

of safety for each excavation steps (Figure 6.4(a) for step 4, Figure 6.4(b) 

for step 6, Figure 6.4(c) for step 8, Figure 6.4(d) for step 10). 

 

(a) Incremental shear strain by SSR for step 4 (b) Incremental shear strain by SSR for step 6 

(c) Incremental shear strain by SSR for step 8 (d) Incremental shear strain by SSR for step 10 

Figure 6.4 SSR results during construction process 

 

6.4.1 Conventional deterministic approach 

When a braced excavation is located in a soft clay stratum, the clay may flow beneath 

the wall and into excavation, producing basal heave.  Anticipated bottom heave in 
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braced excavations in clay soils can be estimated by simple limit equilibrium method as 

discussed in (Terzaghi 1943).  Terzaghi's method as presented in Eq. (6.14) is used for 

shallow or wide excavations where /H B , as illustrated in Figure 6.2, is less than one. 

 

0.7

c u

u

N S
FOS

S
H

B



  
 

 (6.14) 

where, cN  is a bearing capacity factor which is a function of geometry, B  is the 

excavation width and H  is the depth of excavation.  The calculation result for each 

excavation step is summarized in the last row of Table 6.6.   

 

Table 6.6 Input sampling points for approximation of limit state function based on 
FEM 

Calculation 
Number 

Su 
(kPa) 

Eu 
(kPa) 

Ko 
γ  

(kN/m3) 
FOS 

Step 4 Step 6 Step 8 Step 10 
1 34.5 9000.0 1.0 16.0 7.832 5.881 4.961 4.236 
2 25.5 9000.0 1.0 16.0 6.530 5.352 4.522 3.765 
3 30.0 10800.0 1.0 16.0 7.387 5.595 4.719 3.834 
4 30.0 7200.0 1.0 16.0 7.404 5.617 4.845 4.087 
5 30.0 9000.0 1.15 16.0 7.403 5.637 4.792 4.030 
6 30.0 9000.0 0.85 16.0 7.429 5.628 4.729 4.019 
7 30.0 9000.0 1.0 18.1 6.706 5.286 4.430 3.685 
8 30.0 9000.0 1.0 13.9 7.995 6.015 5.241 4.416 
9 30.0 9000.0 1.0 16.0 7.393 5.627 4.794 3.940 

Deterministic 
Analysis 
Results 

30.0 9000.0 1.0 16.0 7.910 2.966 1.977 1.582 

 

To simplify the calculation, the characteristics of upper soft clay were used.  

Even though there have been numerous modified approach to assess the stability against 

heaving, for example, Bjerrum and Eide (1956) and NAVFAC (1982), the effects caused 
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by both the stiffness of the wall and the embedment depth (denoted D in Figure 6.2) 

could not be considered in the conventional limit analysis approach.  Also, it cannot 

consider the complex stratified geometry of soil layers. 

 

6.4.2 Component reliability assessments by RSM 

When applying the RSM into the excavation problem, the serviceability limit state 

surface cannot be solved explicitly through one or more equations.  Instead, numerical 

procedures are employed to obtain an implicit solution.  Therefore, the failure domain 

only can be understood through repeated point-by-point numerical analyses with 

different input values.  A closed form limit state surface then is constructed artificially 

using response surface models.  Once the approximate limit state has been obtained, the 

first order reliability procedures can be used to calculate the reliability index.  For 

excavation stages 4, 6, 8, and 10 (as defined in the previous subsection), the component 

reliability analyses were performed for each approximate polynomial limit state function 

criterion (factor of safety, 1( )g X , maximum displacement of the wall, 2 ( )g X , and 

angular distortion of a building, 3( )g X ).  Based on the procedures described earlier, the 

sampling points and the resulting factors of safety are summarized in Table 6.6.  Also, 

the approximate limit state function (calculated by RSM) for each excavation step is 

summarized in Table 6.7. 
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Table 6.7 The calculated approximate limit state function by response surface 
method 

Excavation The approximate limit state function 1( ( ))g X  

Step 4 

1 0

2 2 2 2
0 0

( , , , ) ( ) 1

2.80E 00
  7.74E 01

1.56E 05
2.07E 00

1, , , , , , , ,   5.43E 03 1
1.05E 02

  6.02E 10
  9.91E 01

9.76E 03

u u

u u u u

g c E K FOS

c E K c E K



 
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  
 

  
  
        
 
 
   

X

 

Step 6 

1 0

2 2 2 2
0 0

( , , , ) ( ) 1

  7.20E 00
  9.09E 02
  1.13E 04

4.21E 01
1, , , , , , , , 3.39E 01 1

5.36E 04
6.62E 09

  2.24E 01
  5.17E 03

u u

u u u u

g c E K FOS

c E K c E K



 
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 
 

 
  
         
  
 
  

X

 

Step 8 

1 0

2 2 2 2
0 0

( , , , ) ( ) 1

  4.77E 00
  2.04E 01
  3.32E 05
  3.20E 00

1, , , , , , , , 4.91E 01 1
2.59E 03
3.80E 09
1.50E 00

  9.31E 03

u u

u u u u

g c E K FOS

c E K c E K



 
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 
 

 
 
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X

 

Step 10 

1 0

2 2 2 2
0 0

( , , , ) ( ) 1

  1.91E 01
1.26E 01
1.83E 04
7.51E 00

1, , , , , , , , 9.77E 01 1
  2.98E 03
  6.28E 09
  3.77E 00
  2.51E 02

u u

u u u u

g c E K FOS

c E K c E K



 

  

 
  
  
  
        
 
 
  

X
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Table 6.7 The calculated approximate limit state function by response surface 
method (continued) 

Excavation The approximate limit state function 2( ( ))g X  

Step 4 

2 0

2 2 2 2
0 0

( , , , ) 100 ( )

 2.70E 01
1.59E 02
4.63E 03

 4.00E 01
100 1, , , , , , , ,   8.57E 01

 2.47E 04
 1.71E 07
 0.00E 00
4.44E 16

u u X

u u u u

g c E K u

c E K c E K



 

  

 
  
  
 
       
 
 
   

X

 

Step 6 

2 0

2 2 2 2
0 0

( , , , ) 100 ( )

 1.89E 02
2.52E 01
1.21E 02
2.44E 02

100 1, , , , , , , ,   2.00E 00
 3.46E 03
 4.49E 07
 1.33E 02
 1.02E 02

u u X

u u u u

g c E K u

c E K c E K



 

  

 
  
  
  
       
 
 
  

X

 

Step 8 

2 0

2 2 2 2
0 0

( , , , ) 100 ( )

 6.88E 02
2.95E 00
1.67E 02
1.12E 03

100 1, , , , , , , , 4.25E 01
 4.42E 02
 6.16E 07
 6.08E 02
 1.27E 01

u u X

u u u u

g c E K u

c E K c E K



 

  

 
  
  
  
        
 
 
  

X

 

Step 10 

2 0

2 2 2 2
0 0

( , , , ) 100 ( )

 1.16E 03
1.07E 01
1.99E 02
1.69E 03

100 1, , , , , , , , 9.73E 00
 1.51E 01
 7.27E 07
 9.29E 02
 5.26E 01

u u X

u u u u

g c E K u

c E K c E K



 

  

 
  
  
  
        
 
 
  

X

 



 185

Table 6.7 The calculated approximate limit state function by response surface 
method (continued) 

Excavation The approximate limit state function 3( ( ))g X  

Step 4 

3 0

2 2 2 2
0 0

( , , , ) 1/ 600 ( ) /

1.92E 04
 6.85E 01
2.50E 08

 1.31E 05
1/ 600 1, , , , , , , ,   2.37E 05

1.23E 08
 1.05E 12
8.89E 06
5.67E 08

u u

u u u u

g c E K L

c E K c E K

 

 

  

  
 

  
 
        
 
  
   

X

 

Step 6 

3 0

2 2 2 2
0 0

( , , , ) 1/ 600 ( ) /

 2.65E 03
 1.30E 05
1.24E 07
5.39E 03

1/ 600 1, , , , , , , ,   7.64E 05
1.78E 07

 4.54E 12
 2.86E 03
6.35E 07

u u

u u u u

g c E K L

c E K c E K

 

 

  

 
 

  
  
        
 
 
   

X

 

Step 8 

3 0

2 2 2 2
0 0

( , , , ) 1/ 600 ( ) /

 1.24E 02
 1.99E 05
2.41E 07
2.40E 02

1/ 600 1, , , , , , , ,   3.52E 05
2.72E 07

 8.81E 12
 1.29E 02
 1.46E 06

u u

u u u u

g c E K L

c E K c E K

 

 

  

 
 

  
  
        
 
 
  

X

 

Step 10 

3 0

2 2 2 2
0 0

( , , , ) 1/ 600 ( ) /

 2.82E 02
2.28E 04
3.47E 07
3.89E 02

1/ 600 1, , , , , , , , 4.95E 04
 3.54E 06
 1.27E 11
 2.11E 02
 1.94E 05

u u

u u u u

g c E K L

c E K c E K

 

 

  

 
  
  
  
        
 
 
  

X
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For the case where the FE method is used, the approximate limit state function 

becomes a second-order polynomial function without interaction terms as described in 

section 6.2.4.  The reliability index is calculated using the ellipsoid method by (Low and 

Tang 1997; Low and Tang 2004), as summarized in Table 6.8.  From the above results, 

it can be concluded that the soil strength parameters of soil are large enough to prevent 

failure for all construction stages. 

 

Table 6.8 Results of the reliability analyses, with respect to 1( )g X , for excavation 

steps 4,6,8, and 10 

Excavation Reliability index ( HL )  Probability of failure ( fp ) (%) 

Step 4 24.079 0.00 
Step 6 20.240 0.00 
Step 8 15.515 0.00 
Step 10 12.839 0.00 

 

The same procedure is also applied to calculate the reliability index for the 

serviceability limit state functions, i.e. maximum horizontal displacement of the wall, 

2 ( )g X , and angular distortion of building structure, 3( )g X .  The results of both 

serviceability limit state function analyses are summarized in Table 6.9.  As shown in 

Table 6.9, the probability of failure caused by maximum horizontal displacement 

abruptly increases from step 6 to step 10.  The probability of failure would decrease with 

an increase in support system stiffness.  The continuous assessment of reliability index 

during the excavation sequence allows engineers to determine the depths at which the 

maximum probability of failure will occur. 
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Table 6.9 Results of the reliability analyses, with respect to 2 ( )g X , for excavation 

steps 4,6,8, and 10 

Excavation 
2 ( )g X  3( )g X  

Reliability 
index ( HL )  

Probability of 
failure ( fp ) (%) 

Reliability 
index ( HL )  

Probability of 
failure ( fp ) (%) 

Step 4 10.173 0.00 22.427 0.00 
Step 6 3.828 0.01 3.469 0.03 
Step 8 1.416 7.84 0.875 19.07 
Step 10 0.712 23.82 0.064 47.47 

 

The variation of the reliability index with excavation depth is roughly concave as 

shown in Figure 6.5(a), which in turn means a progressive increase of probability of 

failure with an increase in excavation depth.  For example, the probability of failure for 

an excavation depth of 1.5m ( 0.00(%)fp  ) is increased to for an excavation depth of 

7.4m ( 23.82(%)fp  ) as shown in Figure 6.5(b). 

 

 

Figure 6.5 Plot of reliability index and probability of failure for each excavation 
step 
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Reliability indices corresponding to different values of Xu  can be obtained by 

repeatedly evaluating HL   at closely spaced increments of Xu . The plot of HL  versus 

Xu  for this example is shown in Figure 6.6.  It is also possible to establish the 

relationship between HL  and fp  and to plot the results in the form shown in Figure 6.6.  

This plot allows the designer to evaluate the probability of exceeding Xu .  For example, 

if the maximum horizontal displacement is limited to 100 mm, the limit state function 

could be expressed as 2( ) 100 ( )Xg u X X , then Figure 6.6 shows that the probability 

of the maximum horizontal displacement exceeding 100mm is around 23.82%.  If the 

limit state function was changed to 2( ) 200 ( )Xg u X X , then the probability of the 

maximum horizontal displacement exceeding 200mm is around 2.63%. 

 

 

Figure 6.6 Reliability index versus assumed limiting horizontal wall displacement 
for excavation step 10 
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Finally, the component reliability index that considers potential damage to 

adjacent structures of excavation is summarized.  As shown in Table 6.9, the probability 

of failure defined as excessive deflection of an adjacent structure, also abruptly increases 

from step 6 to step 10.  Moreover, the amount of increase in the probability of failure as 

the excavation depth increases is much higher than that of 2 ( )g X .   

 

 

Figure 6.7 Reliability index versus assumed deflection ratio for excavation step 10 

 

Reliability indices corresponding to different values of / L  can be obtained by 

repeatedly evaluating HL  at closely spaced increments of / L .  It is also possible to 
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establish the relationship between / L  and the probability of failure fp  and to plot the 

results in the form shown in Figure 6.7.  This type of plot allows the designer to evaluate 

the probability of not exceeding / L .  

However, the solutions by RSM, which are described in this subsection, become 

computationally impractical for problems involving many random variables and non-

linear performance functions, particularly when mixed or statistically dependent random 

variables are involved.  Bauer and Pula (2000) have also found that the response surface 

method can sometimes lead to false design points.  Therefore, one needs to compare 

RSM solutions with solutions by other reliability methods for validation. 

 

6.4.3 Component reliability assessments by FORM, SORM, AIS and MCS 

Generally, there are time limitations for identifying and addressing design problems 

during construction.  One-thousand PLAXIS simulations were performed to obtain the 

probabilistic characteristic of each limit state function.  The probability density function 

(PDF) and the cumulative distribution function (CDF) for each limit state function and 

for each excavation stage were calculated.  Figure 6.8 shows one example the PDF and 

CDF for excavation step 10.  All limit state function parameters (factor of safety, 

maximum horizontal displacements, and deflection ratio) were well fitted to a normal 

distribution function type, as shown in the Figure 6.8.  Therefore, the distribution of each 

limit state function can be modeled in following Eq. (6.15): 
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1

2

3 / / /

( ) ( ) 1 [ ( ) ( ) ] 1

( ) 100 ( ) 100 [ ( ) ( ) ]

( ) 1/ 600 ( ) / 1/ 600 [ ( ) ( ) ]
X X X

FOS FOS FOS

X u u u

L L L

g FOS

g u

g L   

  
  

   

    

    

    

X X X X

X X X X

X X X X

 (6.15) 

where ,  i i   are constants and ~ (0,1)j N  is a normally distributed random 

disturbance (error term).  The number of simulation was determined by following 

relative error convergence criterion: 

 1

1

i i
r

i

 








  (6.16) 

where 1,  i i    are correlation coefficient of i th and ( 1)i th simulation and r  is 

tolerance of 5%.  As the number of simulation increases, the relative error of correlation 

coefficient converges to zero for all excavation stages as shown in Figure 6.9.  The 

minimum number of calculations to obtain the probabilistic characteristic of each limit 

state function was determined based on this criterion.  After 1,000 simulations, the final 

correlation coefficient of each limit state function parameter was also calculated for all 

excavation steps.  The calculated correlation coefficient for excavation step 10 is 

presented in Table 6.10. 

 

Table 6.10 The correlation coefficient of each limit state function for excavation 
step 10 

 1( )g X  2 ( )g X  3( )g X  

1( )g X  1 0.048 0.050 

2 ( )g X  0.048 1 0.015 

3( )g X  0.050 0.015 1 
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(a) Factor of safety 

 
 (b) Maximum horizontal displacement 

 
(c) Deflection ratio 

Figure 6.8 The relative error of correlation coefficient 
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   (a) Excavation step 4      (b) Excavation step 6 

 

   (c) Excavation step 8      (d) Excavation step 10 

Figure 6.9 The PDF and CDF for excavation step 10 by 1,000 PLAXIS simulations 

 

Based on information in Section 6.3, the FORM, SORM, MCS (1,000,000 

simulations), and AIS techniques were applied to calculate the reliability index or the 

probability of failure.  The results are summarized in Table 6.11, Table 6.12, and Table 

6.13.  Because the all limit state functions are expressed by linear equations, the plane-

based AIS technique was applied.  Also, due to the same reason, the FORM and SORM 

results were equal.  However, if one defines a nonlinear limit state function for each 

failure mode, one would obtain different results between the FORM and SORM.  The 

trend of the probability of failure is very similar to the results obtained using response 
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surface methods; however, the magnitudes of the reliability index (or the probability of 

failure) were quite different.  In this example, the probability of failure calculated by 

RSM gives higher value than other component reliability methods.  For example, the 

difference in the probability of failure for excavation step 10 for 2 ( )g X  is about 15%, by 

comparison between the Table 6.9 and Table 6.12.  Moreover, the difference in the 

probability of failure for excavation step 10 for 3( )g X  is about 19%, by comparison 

between the Table 6.9 and Table 6.13.  These results might be caused by:  the correlated 

effects of each random variable, the error in finding the optimal HL , or the shortage of 

the sampling range of response surface method.  It can be concluded that caution is 

required when adapting RSM for the purpose of a simplified calculation of the 

probability of failure. 

 

Table 6.11 Reliability analyses results for 1( )g X  

Excavation 
FORM SORM MCS AIS 

  (%)fp    (%)fp  (%)fp  (%)fp  

Step 4 24.03 0.00 24.03 0.00 0.00 0.00 

Step 6 20.24 0.00 20.24 0.00 0.00 0.00 

Step 8 15.51 0.00 15.51 0.00 0.00 0.00 

Step 10 12.84 0.00 12.84 0.00 0.00 0.00 
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Table 6.12 Reliability analyses results for 2 ( )g X  

Excavation 
FORM SORM MCS AIS 

  (%)fp    (%)fp  (%)fp  (%)fp  

Step 4 55.26 0.00 55.26 0.00 0.00 0.00 
Step 6 13.20 0.00 13.20 0.00 0.00 0.00 
Step 8 3.98 0.00 3.98 0.00 0.00 0.00 
Step 10 1.33 9.13 1.33 9.13 9.11 9.13 

 

Table 6.13 Reliability analyses results for 3( )g X  

Excavation 
FORM SORM MCS AIS 

  (%)fp    (%)fp  (%)fp  (%)fp  

Step 4 67.06 0.00 67.06 0.00 0.00 0.00 
Step 6 12.67 0.00 12.67 0.00 0.00 0.00 
Step 8 1.89 2.94 1.89 2.94 2.93 2.94 
Step 10 0.58 28.22 0.58 28.22 28.19 28.22 

 

Because most of sampling points in MCS are selected close to the failure region 

of each limit state function in NESSUS, the reliability index by MCS shows somewhat 

smaller value rather than FORM and SORM.  However, when using AIS method, which 

minimizes sampling in the safe region by adaptively and automatically adjusting the 

sampling space from an initial approximation of failure region, gives the almost same 

results with FORM and SORM. 

 

6.4.4 System reliability assessment 

The whole excavation system is defined as a series system because failure is defined by 

a failure of any individual component.  The probability of failure of a series system is the 

union of the probabilities of failure for three different failure modes, as described in Eq. 
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(6.9).  Using NESSUS, the MCS, AIS method could be used for the calculation of 

system reliability problem.  The AIS method resulted in somewhat smaller probability of 

failure than that of MCS, as summarized in Table 6.14.  In excavation step 10, a drastic 

increase (about 46%) of the probability of system failure was calculated, which is greater 

than the probability of failure calculated from each component reliability analysis as 

shown in Table 6.12 and Table 6.13.  For example, even if the excavation system is in 

the safe region of 2 ( )g X  (i.e. the maximum horizontal displacement will not exceed 

100mm), the failure point can be located in failure region of 3( )g X  (i.e. the angular 

distortion of a building could exceed 1/600). 

 

Table 6.14 The probability of failure by NESSUS for system reliability 

Excavation 
Monte Carlo Simulation Adaptive Importance Sampling 

(%)fp  (%)fp  

Step 4 0.00 0.00 
Step 6 0.00 0.00 
Step 8 2.94 2.94 
Step 10 74.23 69.63 

 

6.4.5 Sensitivity analysis 

System reliability sensitivity analyses are more complex than single limit state 

sensitivity analyses because there are multiple ‘most probable’ points.  The sensitivity 

factors derived from the individual limit state function cannot be used to derive the 

system reliability sensitivities because the contribution from the individual limit function 

cannot be quantified easily.  For the system reliability calculation, the sensitivity should 
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be checked to judge which limit state function most influences the probability of failure 

of the whole system.  The result of this sensitivity analysis is summarized in Table 6.15.  

For both MCS and AIS methods, the limit state function 3( )g X  has a predominant effect 

on the behaviour of whole system.  However, the role of the limit state function 2 ( )g X  

was greatly increased in the AIS method, as summarized in Table 6.15. 

 

Table 6.15 Sensitivity levels by MCS and AIS 

Limit state 
function 

MCS AIS 
S  S  S  S  

1( )g X  19.78  -403.68 0.07 -0.001 

2 ( )g X  4.10 -15.80 0.19 0.23 

3( )g X  2370.67 -1.24E7 1.20 -0.69  

 

6.4.6 Comparisons of various reliability assessment methods 

Figure 6.10 summarizes a comparison of the probabilities of failure computed using 

various methods described in the previous subsection.  In some cases, such as Figure 

6.10 (a), the probability of failure based on RSM will give larger values than system 

reliability approaches.  Although RSM has advantages due to simple calculation 

procedures, the proper sampling range for finding the failure point is critical.  Also, the 

correlated effects of each random variable should be checked. From Figure 6.10(b), (c), 

and (d), the system reliability approach always gives higher probability of failure than 

any other component reliability approach, which is caused by combination effects of all 

failure modes, as explained in Section 6.4.3. 
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   (a) RSM vs. System reliability analysis    (b) FORM vs. System reliability analysis 

 

   (c) MCS vs. System reliability analysis    (d) AIS vs. System reliability analysis 

Figure 6.10 Comparison between system probability of failure and component 
probability of failure 

 

6.5 Conclusions 

The serviceability performance of excavation systems is critically important in the 

design of many deep excavation projects because of liability for damage to existing 

adjacent infrastructure or buildings.  Because of uncertainties associated with most 

geotechnical material properties, the serviceability limit state performance of the wall 

and adjacent structure cannot be determined precisely, and the computed displacement 

does not reflect the degree of uncertainty of the underlying random variables. 
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This section presents a serviceability limit state function (i.e., 3( )g X  for damage 

potential of building) that considers the angular distortion of an adjacent structure.  In 

this study, the 1/600 criteria was arbitrarily selected for simple illustrative purposes 

because it is often selected as design criteria for limiting differential settlement (e.g. 

Burland 1977; Boscardin and Cording 1989).  However, the reliability index for another 

criteria, such as 1/500 for different type of structure, can be easily calculated by just 

changing the limit state function in the following equation as 3( ) 1/ 500 ( ) /g L X X .  

By adapting FEM analyses, the differential deformation of a structure can be considered 

in probabilistic terms using basic structural reliability concepts.  This section 

demonstrates that the reliability index can be assessed by using FORM and by 

incorporating RSM, using a numerical procedure such as the FE method.  An example 

was presented to demonstrate the feasibility and efficiency of this approach.  Also, 

system reliability can be calculated to assess the reliability of a staged excavation system 

by employing the probabilistic analysis program NESSUS.  The work presented herein 

consists of a new general method for assessing the probability of exceeding any 

excavation system design criteria.  The proposed approach accounts for both safety and 

serviceability limit states at the component and system level.  This method can be further 

developed into a design framework that will allow engineers to estimate the safety of 

excavation systems in terms of probability of fulfilling their criteria and might also be 

used as a decision tool on determining the support system properties during design and 

between construction stages.  In addition, a sensitivity analysis of the system reliability 

allows users to determine how reliabilities are influenced by different sources of limit 
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state functions. In the excavation example, it was demonstrated that the damage potential 

limit state function 3( ( ))g X  should be assessed to insure the stability of whole 

excavation system. 
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7. RELIABILITY ANALYSIS OF TUNNEL FACE STABILITY 

CONSIDERING SEEPAGE AND STRENGTH INCREASE WITH 

DEPTH 

 

The settlement profiles in shallow tunnel construction in an urban area are mainly 

affected by the face stability.  Face stability analyses provides the most probable failure 

mechanisms and the understanding about parameters that need to be considered for the 

evaluation of ground movements caused by tunneling.  The limiting tunnel collapse 

pressure in a Mohr-Coulomb ( ,  )c    soil is derived from the upper bound method 

(UBM) of limit analysis theory to maintain face stability.  The derived UBM solution 

can consider the effect of seepage into the tunnel face and strength increase with depth.   

The influence of seepage forces and depth-dependent effective cohesion is 

investigated for a dual-cone failure mechanism using the UBM implemented by 

numerical analysis.  The upper bound analytical derivation for depth-dependent effective 

cohesion and corresponding numerical results are presented and compared to those 

presented by previous authors.  In addition, the numerical analysis demonstrated the 

influence of tunnel diameter on required face supporting pressure.   

After the derived UBM solution is verified with the numerical experiments, the 

probabilistic model is proposed to calculate the unbiased limiting tunnel collapse 

pressure.  A reliability analysis of a shallow circular tunnel driven by a pressurized 

shield in a frictional and cohesive soil is presented to consider the inherent uncertainty in 

the input parameters and the proposed model.  The ultimate limit state (ULS) for the face 
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stability is considered in the analysis.  The probability of failure that exceeding a 

specified applied pressure at the tunnel face is estimated.  Sensitivity and importance 

measures are computed to identify the key parameters and random variables in the model. 

 

7.1 Introduction 

Face stability analyses are required to determine the proper pressure to be used for 

pressurized shield construction of shallow circular tunnels. Analytical, limit based 

methods have been developed (Atkinson and Potts 1977; Davis et al. 1980) to calculate 

the optimum supporting pressure, which avoids face collapse (active failure) and surface 

‘blow-out’ (passive failure).   

Active failure of the tunnel face is caused by surcharge and self weight exceeding 

the frictional resistance and tunnel face pressure.  Under passive conditions, the roles are 

reversed and the face pressure causes blow-out with resistance being provided by the 

surcharge, frictional resistance, and self-weight.  Three failure mechanisms which 

involve the movement of solid conical blocks with circular cross sections, proposed by 

Leca and Dormieux (1990), are shown in Figure 7.1.  MI and MII failure mechanisms 

are single-cone and dual-cone systems, respectively; where the cones move into the 

excavation.  An MIII failure mechanism is a single-cone, passive mechanism, where the 

cone moves outward to the surface. 
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(a) MI    (b) MII    (c) MIII 

Figure 7.1 Failure mechanisms 

 

In this section, the MII collapse failure mechanism, which is most common 

failure pattern in shield tunneling (Chambon and Corte 1994), is investigated by the 

upper-bound theorem.  Lee and Nam (2001) proposed that the seepage forces acting on 

the tunnel face under steady-state flow conditions should be considered if the tunnel is 

located under the groundwater table.  However, general solutions for the limiting tunnel 

collapse pressure in a Mohr-Coulomb ( ,  )c    soil which combine the depth-dependence 

of effective cohesion ( )c  of NC clays and the influence of seepage have not been 

reported. 

The stability analysis of tunnels and the computation of soil displacements due to 

tunnelling were commonly performed using deterministic approaches (Jardine et al. 

1986; Yoo 2002; Mroueh and Shahrour 2003; Wong et al. 2006; Eclaircy-Caudron et al. 

2007).  A reliability-based approach for the analysis of tunnels is more rational since it 

enables one to consider the inherent uncertainty in the input parameters and the models. 

In this study, a reliability-based analysis of a shallow circular tunnel driven by a 
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pressurized shield in a Mohr-Coulomb ( ,  )c    soil is presented.  After the derived UBM 

solution is verified with the numerical experiments using FLAC3D, the probabilistic 

model that accurately predicts the limiting tunnel collapse pressure and account for all 

the prevailing uncertainties is proposed.   

As an application, a reliability analysis of a shallow circular tunnel driven by a 

pressurized shield is presented to consider the inherent uncertainty in the input 

parameters and the proposed model.  The developed probabilistic model is used to assess 

the conditional probability (fragility) of exceeding a specified applied pressure at the 

tunnel face threshold.  Sensitivity and importance measures are carried out to identify 

the contribution of the random variable(s) to the reliability of the tunnel face stability.   

 

7.2 Kinematic Approach to Face Stability Analysis Based on Upper Bound 

Theorem 

7.2.1 Failure mechanism geometry 

The MII active failure state can be idealized by considering a circular rigid tunnel of 

diameter ( )D  driven under a depth of cover ( )C  in soil with an effective cohesion ( )c   

increasing at rate ( )  with depth.  A surcharge ( )S  is applied at the ground surface and 

a constant retaining pressure ˆ( )T  is applied to the tunnel face. 
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(a) 

(b) 

Figure 7.2 Collapse mechanism of tunnel face by the two conical blocks 

 

Figure 7.2(a) shows a schematic cross-section of the MII failure mechanism 

geometry.  Kinematically admissible failure mechanisms must be considered to obtain 

upper-bound solutions, initially developed by Leca and Dormieux (1990).  An MII 
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failure occurs as two conical blocks move vertically and into the tunnel face, as shown in 

Figure 7.2 (b).  The two conical blocks consist of: (1) 1B , a cone truncated by plane  , 

which is perpendicular to the page and represented as line ( )  in Figure 7.2 (b), (2) 

2B , a cone corresponding to the removed, upper section of the cone 1B , mirrored about 

a plane   , such that the axis of 2B  is vertical.  The mirror plane,   , is also 

perpendicular to the page and passes through the center of the ellipse created by the 

intersection between 1B  and 2B . 

As such, the orientation of initial plane,  , is defined by the requirement that the 

axis of 2B  be oriented vertically and that    pass through the center of the ellipse 

formed by the intersection of 1B  and 2B .  Therefore, the MII failure mechanism 

geometry can be characterized by the angle of the axis of 1B  from horizontal,  , as 

shown in Figure 7.2(b). 

For all three failure mechanisms, the intersection of the tunnel face and the 

adjacent block forms an ellipse, 1 , with a major axis length equal to / 2D .  For the MII 

failure mechanism, the intersection between blocks 1B  and 2B  is an ellipse, 12 , in 

plane  . 

 

7.2.2 Derivation of upper bound solutions 

This subsection summarizes the kinematic upper bound solutions to the MII failure 

mechanism, as originally reported by Leca and Dormieux (1990) and modified by Lee 
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and Nam (2001).  However, a new solution is derived to account for an increasing shear 

strength with depth for normally consolidated (NC) clays . 

The upper bound limit analysis solution is found by comparing the power of 

external applied loads, EP , to the dissipation power caused by system movement, VP .  

When the external power exceeds the dissipation power, an upper bound state exists.  

The following subsections describe the derivations of the upper bound solution, as 

introduced by Leca and Dormieux (1990), along with the modifications for increasing 

soil strength.  The reader is referred to Leca and Dormieux (1990) for additional 

geometric derivations. 

 

7.2.2.1 Dissipation power 

The dissipation power associated with the MII failure is calculated from the integration 

of plastic energy dissipation per unit area along block interfaces, 

 1 2 12V V V VP P P P    (7.1) 

where 1VP  is the contribution of the surface between 1B  and the surrounding soil, 2VP  is 

the contribution of the surface between 2B  and surrounding soil and 12VP  is the 

contribution of the interface between 1B  and 2B , represented as 12 .  The dissipation is 

a function of the resistance along the interface surface and the block velocity, therefore 

the dissipation power of the three interfaces are given as: 

  
1

1 0 1 1cos
y C D

V By k
P c y V S  


        (7.2) 
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where 1BS  and 2BS  are the perimeter surface areas of 1B  and 2B , respectively, 12A  is the 

area of 12 , 1V  and 2V  are the velocities of 1B  and 2B , and 12V  is the relative velocity 

between 1B  and 2B .  Leca and Dormieux (1990) derives the geometry of the surface 

areas and the velocity fields with the following equations: 
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 (7.9) 

where AR , CR , and DR  are simplified geometric coefficients, introduced by Leca and 

Dormieux (1990): 
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  is the angle between the intersection of 1B  and 2B  and vertical, and can be shown as: 

 45
2

     (7.13) 

 
7.2.2.2 Power of external loads 

The power of the external loads, EP , can be calculated as 

 . .E T S S FP P P P P     (7.14) 

where, 

 1 1ˆ cosT TP V A    (7.15) 

 2 2S SP V A  (7.16) 

 1 1 2 2sin B BP V V V V      (7.17) 
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TP  is the power of the tunnel face pressure ( )T , SP  is the power of the surcharge ( )S , 

P  is the power of the soil unit weight ( ) , and . .S FP  is the power of seepage pressure 

. .( )S F .  The contact areas 1A  and 2A  correspond to the surface 1  and the area of the 

intersection between the 2B  and the ground surface, respectively.  The areas are defined 

as: 
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The soil unit weight component of the external power depends on the volume of 

the failure blocks, B1V  and B2V , which are given as:  
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where AR  and CR  are given in equations (7.10) and (7.11) and BR  is defined as: 
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7.2.2.3 Upper bound theorem 

Using the upper bound theorem, an MII failure mechanism will be avoided if the 

external power is below the dissipative power, shown as: 

  E VP P  (7.24) 

Substitution of equations (7.1) through (7.23) into equation (7.24) will give an 

upper bound solution in the following form:  
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The three loading parameters ( , , )S TQ Q Q  and the coefficients ( , )SN N  are given in 

equations (7.26) − (7.30) as defined by Leca and Dormieux (1990) and Lee and Nam 

(2001).  A new parameter ( )FR  is introduced which accounts for the increase in soil 

effective cohesion, and is given in Eq. (7.32): 
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 (7.32) 

where, C  is the unconfined compression strength, pK  is the Rankine passive earth 

pressure coefficient, . .S F  is the seepage pressure acting on the tunnel face,   is the unit 

weight of the soil, D  is the tunnel diameter, 1k  is the apex of block 1 1(B ) , and 2k  is the 

lowest point of the intersection between 1B  and 2B .  Relation (7.32) provides the best 

upper bound associated with an MII failure mechanism when SN  and N  are maximized 

by optimizing  . 

The parameters SQ  and Q  are imposed geometric and loading conditions, and 

the supporting pressure ˆT  should be chosen such that failure of the tunnel during 

construction is prevented.  The selection of supporting pressure corresponds to: 
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which can be rewritten, after substitution, as: 
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The parameters in equations (7.33)−(7.35) correspond to geometry and Mohr-

Coulomb soil properties except for the seepage pressure acting on the tunnel face.  To 

calculate the seepage pressures acting on the tunnel face, the failure surface must be pre-

determined from the limit analysis.  Given this failure surface, seepage pressures acting 

on the tunnel face can be obtained from the difference of total head between the tunnel 

face and the failure surface.  The average predicted seepage pressure is calculated using 

numerical analyses by FLAC3D.   

 

7.3 Numerical Analysis of Face Stability using FLAC3D 

7.3.1 FLAC3D numerical modeling 

In order to investigate the behaviour of the tunnel face and to verify the newly developed 

UBM solutions, numerical analyses with the commercially available finite-difference 

code FLAC3D (FLAC3D 2009) are carried out.  In the numerical model, only one half is 

included due to symmetry condition.  The model is sufficiently large to allow for any 
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possible failure mechanism to develop and to avoid any influence from the boundary 

effects as shown in Figure 7.3. 

 

 

Figure 7.3 Numerical mesh for the tunnel face stability in FLAC3D 

 

The water table is assumed to be varied above the tunnel crown depending on the 

diameter of tunnel.  In order to focus the analysis on the face failure in front of the shield 

machine, the excavation process was simulated using a simplified single-step excavation 

scheme, assuming that the tunnel is excavated 13 m (the general length of the shield 

machine) instantaneously.  A uniform retaining pressure is applied to the tunnel face to 

simulate tunneling under compressed air.  The highest pressure applied to the tunnel face 
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for which soil collapse would occur is computed.  This collapse pressure is the one for 

which the soil in front of the tunnel face undergoes downward movement. It is called the 

tunnel active pressure. 

A circular tunnel of diameter D 5 m and various cover depth C  is driven in a 

c− '  soil is considered as shown in Figure 7.3.  The size of the numerical model is 20 m 

in the X direction, 60 m in the Z direction, and 40 m in the Y direction.  These 

dimensions are chosen so as not to affect the value of the tunnel collapse pressure.  A 

three-dimensional nonuniform mesh is used.  The tunnel face region is subdivided into 

100 separate zones since very high stress gradients are developed in that region.  The 

bottom boundary is assumed to be fixed and the vertical boundaries are constrained in 

motion in the normal direction.  A conventional elastic perfectly plastic model based on 

the Mohr-Coulomb failure criterion is adopted to represent the soil.  The soil elastic 

properties employed are Young’s modulus, E  240 MPa and Poisson’s ratio,  0.3.  

The value of the angle of internal friction and cohesion of the soil used in the analysis 

are 2 2
0 0 ~ 3 kN/m ,  35 ,  0.1 kN/m /mc      and 0c  variable, respectively.  

The soil unit weight is taken equal to 315.2 kN/m .  We have to note that the soil elastic 

properties have a negligible effect on the collapse pressure.  A concrete lining of 0.4m 

thickness is used in the analysis.  The lining is simulated by a shell of linear elastic 

behavior.  Its elastic properties are Young’s modulus E  15GPa and Poisson’s ratio  

0.2.  The lining is connected to the soil via interface elements that follow Coulomb’s 

law.  The interface is assumed to have a friction angle equal to two-thirds of the soil 

angle of internal friction and cohesion equal to zero.  Normal stiffness, nK 1011 Pa/m 
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and shear stiffness, sK  1011 Pa/m are assumed to this interface.  These parameters are a 

function of the neighboring elements rigidity and do not have a major influence on the 

collapse pressure.  In terms of the fluid property, the porosity and permeability are 

assumed constant as 0.3 and 12 210 m sec/Pa  , respectively  The fluid density is 

39.8 kN/m and fluid bulk modulus  assumed to be 2.0GPa.  For the computation of a 

tunnel collapse pressure using FLAC3D, we use a stress control method (Mollon et al. 

2009).  Figure 7.4 shows the collapse velocity field given by FLAC3D, and Figure 7.5 

shows the corresponding collapse displacement field at the time of failure.  Stability 

against tunnel face collapse is ensured as long as the applied pressure ( )applied  is greater 

than the tunnel collapse pressure ( )T .   

 

 

Figure 7.4 Contour of velocity (without seepage) 
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Figure 7.5 Contour of displacement (without seepage) 

 

7.3.2 Seepage into the tunnel 

Steady-state flow occurs when at any point in a flow field the magnitude and direction of 

the flow velocity are constant with time.  Transient flow occurs when at any point in a 

flow field the magnitude or direction of the flow velocity changes with time.  The 

steady-state approach is valid as long as the water table is not drawn down by the 

existence of the tunnel.  Steady-state groundwater flow condition is assumed in the 

analysis.  There are two different types of the drainage condition during a tunnel 

construction such as the drainage type and the water-proof type.  In the drainage type, 

ground water is drained through the tunnel wall as well as the tunnel face, while in the 
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water-proof type drainage is allowed only through the tunnel face.  After applying the 

hydrostatic heads to the domain as an initial condition, the pressure heads at the wall and 

the face of the tunnel are taken to be zero in the drainage type while only those of the 

face are taken to be zero in the water-proof type.  During tunnel construction below 

groundwater level, flow of groundwater into the tunnel leads to total head loss around 

tunnel, and causes the seepage pressure around the tunnel. 

Figure 7.6 and Figure 7.7 show the comparison in the pore pressure distribution 

between before and after tunnel excavation. Figure 7.8 and Figure 7.9 show the collapse 

velocity field with seepage pressure and the corresponding displacement vector at the 

time of failure.  We can see that the location of a failure plane in front of the tunnel face 

is somewhat changed after the consideration of seepage effect. 
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Figure 7.6 Pore pressure distribution before tunnel excavation 

 

 

Figure 7.7 Pore pressure distribution after tunnel excavation 
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Figure 7.8 Contour of velocity (with seepage) 

 

 

Figure 7.9 Displacement vector (with seepage) 
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7.3.3 Numerical analysis cases 

The analyses are conducted for 40 cases of ground conditions as summarized in Table 

7.1.  Each case involves analyses with both the drainage and the water-proof type for the 

seepage analysis. 

 

Table 7.1 Cases of analysis for the calculation of the limiting collapse pressure 

 
0c  

0 0.25 0.50 0.75 1.00 1.25 1.50 2.00 2.50 3.00 

  

0 
Case  

M01 

Case  

M02 

Case 

M03 

Case 

M04 

Case 

M05 

Case 

M06 

Case 

M07 

Case 

M08 

Case 

M09 

Case 

M10 

1.00 
Case  

M11 

Case  

M12 

Case 

M13 

Case 

M14 

Case 

M15 

Case 

M16 

Case 

M17 

Case 

M18 

Case 

M19 

Case 

M20 

1.50 
Case 

M21 

Case 

M22 

Case 

M23 

Case 

M24 

Case 

M25 

Case 

M26 

Case 

M27 

Case 

M28 

Case 

M29 

Case 

M30 

2.00 
Case 

M31 

Case 

M32 

Case 

M33 

Case 

M34 

Case 

M35 

Case 

M36 

Case 

M37 

Case 

M38 

Case 

M39 

Case 

M40 

 

7.3.4 Comparison with UBM solution 

The analyses cases are designed to understand the effect of strength increase with depth.  

The parameter ranges are chosen after considering the acceptable field condition.  The 

limiting collapse pressures by UBM for various cases are calculated as summarized in 

Table 7.2 and Table 7.3.  When the depth-dependent rate of change (represented as  ) 

of effective cohesion increases, the required face supporting pressure decreases.  The 

negative limiting collapse pressure values in both tables indicate that additional face 

supporting pressure is unnecessary to ensure the stability of the tunnel face. 
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Table 7.2 The calculation of the limiting collapse pressure by UBM (C  5m, D 
5m, H  5m, i.e., /C D  1, /H D 1) 

 
0c  

0 0.25 0.50 0.75 1.00 1.25 1.5 2.00 2.50 3.00 

  

0 14.15 13.80 13.44 13.08 12.73 12.37 12.01 11.30 10.58 9.87

1.00 14.15 11.85 9.54 7.23 4.93 2.62 0.31 −4.30 −8.92 −13.53

1.50 14.14 10.87 7.59 4.31 1.03 −2.26 −5.54 −12.10 −18.67 −25.23

2.00 14.14 9.90 5.64 1.38 −2.87 −7.13 −11.39 −19.90 −28.42 −36.93

 

Table 7.3 The calculation of the limiting collapse pressure by UBM (C  10m, D 
5m, H  10m, i.e., /C D  2, /H D 2) 

 
0c  

0 0.25 0.50 0.75 1.00 1.25 1.50 2.0 2.50 3.00 

  

0 17.29 16.93 16.58 16.22 15.86 15.51 15.15 14.43 13.72 13.01

1.00 17.28 13.77 10.25 6.73 3.21 −0.30 −3.82 −10.86 −17.90 −24.94

1.50 17.27 12.19 7.09 1.99 −3.11 −8.21 −13.31 −23.51 −33.71 −43.91

2.00 17.26 10.61 3.93 −2.75 −9.43 −16.11 −22.79 −36.16 −49.52 −62.88

 

 

7.4 Probabilistic Model Formulation 

A probabilistic model to predict the limiting collapse pressure of tunnel face can be 

written as 

    ˆ ( )T T s     X X X  (7.36) 



 223

where, T  the limiting collapse pressure by the FLAC3D , ˆT  the limiting collapse 

pressure by the upper bound theorem is defined in Eq. (7.35),  

1 2 0 . .( , , , , , , , , , , , )S S Fk k c C D        X the random variables, ( ) X the correction 

term for the bias inherent in the deterministic model that is expressed as a function of the 

variables X , s  the model error, s  the unknown standard deviation of the model 

error,   a random variable with zero mean and unit variance of standard normal 

distribution.  In assessing the probabilistic model, the following assumptions are made: 

(a) the model variance 2  is independent of X  (homoskedasticity assumption), and (b) 

  follows the normal distribution (normality assumption).  These assumptions are 

verified by using diagnostic plots of the data or the residuals versus the model 

predictions.  After reviewing the diagnostic plot of the residuals as shown in Figure 7.10, 

we introduce the constant correction term that is independent of the random variables, 

( ) X 0.075, to remove potential bias in the model.  The normality assumption is also 

checked in the Q-Q normal plot of the residuals as shown in Figure 7.11.  Figure 7.12 

shows the comparison in the limiting collapse pressure between by UBM solutions and 

FLAC3D numerical models. 
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Figure 7.10 Diagnostic plot of the residuals 

 

 

Figure 7.11 Q-Q normal plot of the residuals 
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Figure 7.12 Comparison in the limiting collapse pressure between UBM and 
FLAC3D numerical models 

 

7.5 Application 

7.5.1 Tunnel face stability by UBM solution 

The upper bound solution that accounted for the influence of seepage force and the 

depth-dependence of effective cohesion of NC clays for the limiting face collapse 

pressure is calculated using a spread sheet program created for this research.  As shown 

in Figure 7.13 in case of =35°,   15.2(kN/m3), C  10m, D 5m, the water level, 
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H  5m, when the depth-dependent rate of change ( )  of effective cohesion increases, 

the required face supporting pressure decreases.  A value of  =0 corresponds to a 

homogenous soil, with constant cohesion.  In Figure 7.13 in case of  =35°,  

15.2(kN/m3),  =0.1(kN/m2/m) and 0c =1 (kN/m2), the negative supporting pressure 

values indicate that additional face supporting pressure is unnecessary to ensure the 

stability of the tunnel face.  In this case, the surcharge ( )S  will have very little 

influence on face collapse because the tunnel is deep enough ( /C D =2).  This is because 

the results of failure shape and support pressure have the same values when the depth 

ratio ( / )C D  is greater than 0.2 as shown in Figure 7.14.  Figure 7.15 shows the required 

face supporting pressure as a function of tunnel diameter and effective cohesion.  As the 

tunnel diameter increases, the required face supporting pressure will also increase.  Even 

if the failure happens in the very shallow depth when depth ratio is larger than 0.2, the 

effect of surcharge is very small compared to the changes in the required supporting 

pressure by other parameters such as tunnel diameter, cover depth, effective cohesion as 

previously shown in Figure 7.14. 
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Figure 7.13 Change of support pressure with variation of the rate of change of 
effective cohesion with depth 

 

Figure 7.14 Change of support pressure with variation of surcharge and depth ratio 
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Figure 7.15 Change of support pressure with variation of tunnel diameter (D) 

 

The relationship between groundwater depth, tunnel depth, tunnel diameter, and 

required tunnel support pressure for a sand and an NC clay material is shown in Figure 

7.16. The cohesionless sand results are those reported by Lee et al. (2003) (=35º, c

=0).  The cohesive material results were computed using the spreadsheet, based on the 

derivation described herein ( 0c =10 kN/m2,  =35,  = 0.5 kN/m2/m).  Figure 7.16 

illustrates the large influence of ground-water conditions on required tunnel face 

supporting pressure for both soil types and for drained and waterproof tunnel 

construction methods.  Although, the influence of seepage pressure on the upper bound 

required supporting pressure is less for an NC clay material, this effect must be 

considered for this material type. 
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Figure 7.16 Change of support pressure with variation of the H/D 

 

7.5.2 Reliability analysis 

The limit state function,  g X , with respect to the collapse of tunnel face in the ULS 

can be described as 

    applied Tg   X X  (7.37) 

where, 
applied  the applied pressure on the tunnel face and ( )T X the limiting  

collapse pressure calculated by the FLAC3D as described in the previous subsection.   

When a probabilistic stability analysis is conducted, the failure probability for the 

tunnel face collapse can be defined as: 
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    
  0

0f g
p P g f d


      X

X X X  (7.38) 

where ( )f X  is the joint probability density function of the basic variable vectors 

1 2 0 . .( ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  )S S Fk k c C D       X .  The reliability analyses using 

first-order reliability method (FORM), the second-order reliability method (SORM), and 

Monte Carlo simulations (MCS) are performed based on the parameters summarized in 

Table 7.4.  In this case, some of the parameters . .( ,  ,  ,  )S S FC D    are assumed to be 

constant values.  

 

Table 7.4 Parameters for the reliability analysis 

Parameter ranges Distribution models Mean COV 

00 c   Lognormal 1.00 0.20 

0     Lognormal 35.0 0.20 

0    Lognormal 0.50 0.20 

0     Lognormal 15.2 0.20 

2 2
. .=10.0m,  =5.0m,  =10kN/m ,  =34.9kN/mS S FC D    

 

The reliability index for the different applied pressure values can be obtained as 

shown in Figure 7.17.  As the applied pressure on the tunnel face increase, the reliability 

index also increases and it also means that the probability of failure will decrease. 
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Figure 7.17 Reliability index for the different applied pressure values 

 

7.5.3 Sensitivity and importance measures 

In a reliability analysis, sensitivity measures are used to determine the effects on the 

reliability of changes in the parameters in the limit state function or in the distribution of 

the random variables.   

Figure 7.18 shows the sensitivity measures as a function of the applied pressure 

on the tunnel face.  It is observed that   have larger effects on the reliability. As the 

applied pressure increases, the tunnel face stability is most sensitive to  . 
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Figure 7.18 Sensitivity measures for the random variables 

 

Figure 7.19 shows the importance measures of all random variables for the tunnel 

face stability.  Observations similar to those made for the sensitivity analysis can be 

made for the importance measures.  We can see that   is the most important variable 

and    is the second most important variable.   
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Figure 7.19 Importance measures for the random variables 

 

7.6 Conclusions 

The limiting tunnel collapse pressure in a Mohr-Coulomb ( , )c    soil is derived from 

the upper bound method (UBM) of limit analysis theory to maintain face stability.  The 

derived UBM solution can consider the effect of seepage into the tunnel face and 

strength increase with depth.  The influence of seepage forces and depth-dependent 

effective cohesion is investigated for a dual-cone failure mechanism using the UBM 

implemented by numerical analysis.  The upper bound analytical derivation for depth-
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dependent effective cohesion and corresponding numerical results are presented and 

compared to those presented by previous authors.  In addition, the numerical analysis 

demonstrated the influence of tunnel diameter on required face supporting pressure.   

After the derived UBM solution is verified with the numerical experiments, the 

probabilistic model is proposed to calculate the unbiased limiting tunnel collapse 

pressure.  A reliability analysis of a shallow circular tunnel driven by a pressurized 

shield in a frictional and cohesive soil is presented to consider the inherent uncertainty in 

the input parameters and the proposed model.  The ultimate limit state (ULS) for the face 

stability is considered in the analysis.  The probability of failure that exceeding a 

specified applied pressure at the tunnel face is estimated.  Sensitivity and importance 

measures are computed to identify the key parameters and random variables in the model. 

 

  



 235

8. CONCLUSIONS AND RECOMMENDATIONS 

 

The main goal of this research is to investigate and develop analytical methods for 

addressing uncertainty during observation-based, adaptive design of deep excavation and 

tunneling projects.  In order to fulfill the objective, computational procedures based on a 

Bayesian probabilistic framework are developed for comparative analysis between 

observed and predicted soil and structure response during construction phases.   

 

8.1 Estimating Soil Properties and Deformations During Staged Excavations ― I. A 

Bayesian Approach 

A probabilistic methodology is developed to estimate soil properties and model 

uncertainty to better predict deformations during supported excavations.  A Bayesian 

approach is used to assess the unknown soil properties by updating pertinent prior 

information based on field measurement data.  The proposed method provides up-to-date 

predictions that reflect all sources of available information, and properly account for of 

the underlying uncertainty.  In the example, the soils properties and the model 

parameters are updated after each excavation stage.  The updated parameters are then 

used to develop new and more accurate predictions of the deformations in the 

subsequent excavation stages.  This approach can be used for the design of optimal 

revisions for supported excavation systems.  By applying the proposed Bayesian 

approach to the reliability-based design of geotechnical engineering projects, engineers 
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can combine the advantages of the observational method with the advantages of 

probabilistic methods. 

 

8.2 Estimating Soil Properties and Deformations During Staged Excavations ― ΙI. 

Application To Case Histories 

The two well documented case histories are the Lurie Research Center excavation 

project in Evanston, Illinois and the Caobao subway excavation project in Shanghai.  A 

MATLAB-based application that can be connected to the general finite element software 

(i.e., ABAQUS 2003) is developed to automate of the computer simulations.  The two 

case histories demonstrated the ability of the proposed Bayesian probabilistic method to 

provide accurate estimates of the deformations in supported excavation problems 

accounting for all source of information.   

The estimate of the soil properties and prediction of the deformations in future 

excavation stages are also updated as new data become available during the excavation 

process.  The greatest advantage of the proposed method is in its probabilistic 

framework, which gives predictions of deformations as well as the full probabilistic 

characterization of the variables.  This advantage allows the evaluation of credible 

intervals for each prediction and sets the stage for a reliability analysis.  Eventually, the 

framework can be used for the development of fragility curves, which can be used to 

make key decisions in the assessment of the excavation process and for a reliability-

based optimal design of the excavation system. 

 



 237

8.3 A Bayesian Framework to Predict Deformations During Supported Excavations 

Using A Semi-Empirical Approach 

A probabilistic framework is proposed to predict three-dimensional deformation profiles 

due to supported excavations using a semi-empirical approach.  A Bayesian formulation 

is used to assess the unknown model parameters by updating prior information based on 

site specific field measurements at different locations.  The updated model parameters 

are then used to develop new and more accurate predictions of the deformations in the 

subsequent stages, until the end of the excavation project.   

The key advantage of the proposed approach for practicing engineers is that an 

already common semi-empirical chart can be used together with a few additional simple 

calculations to better evaluate three-dimensional displacement profiles.  This eliminates 

the need for constitutive laws, complex calculations and finite element models.  The 

developed approach provides a sound basis for making decisions about the design of 

excavation projects and can be used for optimizing the design of supported excavation 

systems.  The proposed approach can also be used for an adaptive reliability-based 

optimal design of the excavation system in which the design is modified after each 

excavation stage to minimize costs and maintain a minimum reliability requirement. 

 

8.4 Reliability Analysis of Infrastructure Adjacent to Deep Excavations 

A reliability analysis framework is proposed to assess the fragility of excavation-induced 

infrastructure system damage for multiple serviceability limit states.  A Bayesian 

framework based on a semi-empirical method is used to update the predictions of ground 
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movements in the later stages of excavation based on the field measurements.  The 

component and system fragility estimates for excavation works in an urban area are 

developed in this study along with sensitivity and importance measures.  The proposed 

approach can be used for an adaptive reliability-based optimal design of the excavation 

system in which the design is modified after each excavation stage to minimize costs and 

maintain a minimum reliability requirement.  This method can also be expanded to any 

type of excavation projects related to urban redevelopment and infrastructure 

improvement.  For example, additional limit state functions can be added to the system 

reliability analysis to consider the serviceability of tunnel for a deep excavation within 

the influence zone of an existing tunnel. 

 

8.5 Reliability Assessment of Excavation Systems Considering Both Stability and 

Serviceability Performance 

The serviceability performance of excavation systems is critically important in the 

design of many deep excavation projects because of liability for damage to existing 

adjacent infrastructure or buildings.  This section presents a serviceability limit state 

function that considers the angular distortion of an adjacent structure.  By adapting FEM 

analyses, the differential deformation of a structure can be considered in probabilistic 

terms using basic structural reliability concepts.  This section demonstrates that the 

reliability index can be assessed by using FORM and by incorporating RSM, using a 

numerical procedure such as the FE method.  An example was presented to demonstrate 

the feasibility and efficiency of this approach.  Also, system reliability can be calculated 
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to assess the reliability of a staged excavation system by employing the probabilistic 

analysis program NESSUS.  The work presented herein consists of a new general 

method for assessing the probability of exceeding any excavation system design criteria.  

The proposed approach accounts for both safety and serviceability limit states at the 

component and system level.  This method can be further developed into a design 

framework that will allow engineers to estimate the safety of excavation systems in 

terms of probability of fulfilling their criteria and might also be used as a decision tool 

on determining the support system properties during design and between construction 

stages.  In addition, a sensitivity analysis of the system reliability allows users to 

determine how reliabilities are influenced by different sources of limit state functions.  

 

8.6 Reliability Analysis of Tunnel Face Stability Considering Seepage and Strength 

Increase with Depth 

The limiting tunnel collapse pressure in a Mohr-Coulomb ( ,  )c    soil is derived from 

the upper bound method (UBM) of limit analysis theory to maintain face stability.  The 

derived UBM solution can consider the effect of seepage into the tunnel face and 

strength increase with depth.  The influence of seepage forces and depth-dependent 

effective cohesion is investigated for a dual-cone failure mechanism using the UBM 

implemented by numerical analysis.  The upper bound analytical derivation for depth-

dependent effective cohesion and corresponding numerical results are presented and 

compared to those presented by previous authors.  In addition, the numerical analysis 

demonstrated the influence of tunnel diameter on required face supporting pressure.   
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After the derived UBM solution is verified with the numerical experiments, the 

probabilistic model is proposed to calculate the unbiased limiting tunnel collapse 

pressure.  A reliability analysis of a shallow circular tunnel driven by a pressurized 

shield in a frictional and cohesive soil is presented to consider the inherent uncertainty in 

the input parameters and the proposed model.  The ultimate limit state (ULS) for the face 

stability is considered in the analysis.  The probability of failure that exceeding a 

specified applied pressure at the tunnel face is estimated.  Sensitivity and importance 

measures are computed to identify the key parameters and random variables in the model. 

 

8.7 Future Research Areas 

Although the objectives of this research have been achieved, there are some limitations 

and valuable extensions that merit further study in the future. 

In this study, we did not consider the spatial correlation in the probabilistic 

Bayesian analysis to estimate the soil properties and predict the deformations, in a 

system reliability approach to assess excavation systems, and in a reliability analysis of a 

shallow circular tunnel to assess the tunnel collapse pressure.  However, the proposed 

approach can also be extended to account for the spatial correlation by use of a 

geostatistical approach or random field method. 

The proposed approach can be easily expanded to a system reliability approach 

for complex excavation projects related to urban redevelopment and infrastructure 

improvement.  For example, for a deep excavation within the influence zone of an 

existing tunnel, additional limit state functions can be added to the system reliability 
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analysis (for example, the allowable crown / sidewall displacement of tunnel or the 

allowable stress for secondary lining) to consider the stability and/or serviceability of 

tunnel.  

Also, this research is mainly focused on the most dangerous steps during the 

excavation. It is expected that the reliability indices after the installation of struts for 

each excavation step will somewhat increase.  However, the whole construction 

procedure, considering the time schedule of support installation, should be involved to 

assess the reliability of excavation. 

For the reliability analysis of the tunnel face stability, the ultimate limit state 

(ULS) is only considered in this study.  However, additional serviceability limit state 

(SLS) functions can be added to the system reliability analysis (for example, the 

settlement profiles due to an applied face support pressure) to assess the face pressure-

induced soil displacements for the infrastructure located tunnel excavation area. 
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