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ABSTRACT 

 

Labyrinth Seal Leakage Analysis.  

(August 2011) 

Gaurav Chaudhary, B.E., Panjab University 

Chair of Advisory Committee: Dr. Gerald L. Morrison 

 

 Seals are basic mechanical devices used in machinery to avoid undesired flow 

losses of working fluids. Particularly Annular seals are one of the most widely used in 

rotating machinery comprising turbines, compressors and pumps. Among all annular 

seals straight through rectangular labyrinth seals are the most commonly used ones. 

These seals provide resistance to the fluid flow through tortuous path comprising of 

series of cavities and clearances. The sharp tooth converts the pressure energy to the 

kinetic which is dissipated through turbulence viscosity interaction in the cavity. To 

understand the accurate amount of leakage the flow a matrix of fluid flow simulations 

carried out using commercially available CFD software Fluent
®
 where all parameters 

effecting the flow field has been studied.  

 The carry over coefficient is found to be a function of the geometry and non-

dimensional flow parameters of the labyrinth seal tooth configuration. Carry over 

coefficient increases with tooth clearance, tooth width and Reynolds Number. The 

variation with shaft speed does not follow a certain pattern always and varies with shaft 

speed.  
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 The discharge coefficient of the first tooth has been found to be lower and 

varying in a different manner as compared to a tooth from a multiple cavity seal. The 

discharge coefficient of is found to be increasing with increasing tooth width. Rest of the 

variation is similar to carry over coefficient variation.  

Further the compressibility factor has been defined to incorporate the deviation 

of the performance of seals with compressible fluid to that with the incompressible flow. 

Its dependence upon pressure ratio and shaft speed has also been established. Using all 

the above the mentioned relations it would be easy decide upon the tooth configuration 

for a given rotating machinery or understand the behavior of the seal currently in use.   
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NOMENCLATURE 

 

A -  Clearance area, πDc 

c -   Radial clearance, m 

C d -       Discharge coefficient for a given tooth 

C d
1tooth -          

Discharge coefficient for first tooth 

D –   Shaft diameter, m 

h –  Tooth height, m 

L   -   Axial length of the seal, m 

ṁ -   Mass flow rate of leakage flow (kg/s) 

Pi –  Tooth inlet pressure, Pa 

Pe -   Tooth exit pressure, Pa 

Pr –   Pressure ratio, pe/pi  

Re –   Reynolds number based on clearance, 
ṁ

   
 

s -   Tooth pitch   

w -   Tooth width 

x -     Axial distance along seal, m 

α -   Flow coefficient 

  –   Divergence angle of jet, radians 

γ -   Kinetic energy carry over coefficient 

 –   Dissipation of turbulent kinetic energy 
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  –   Turbulent kinetic energy 

–   Dynamic viscosity, Pa/s 

ρ
i
 –   Fluid density at seal inlet, kg/m

3
 

ρ
 
 –   Fluid density at tooth inlet, kg/m

3
 

χ-   Percentage of kinetic energy carried over 

ψ -   Expansion factor 
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1. INTRODUCTION 

 

 High Speed Turbo-machinery is a major source for power production from high 

pressure and temperature fluid flow. Consequently sealing of these machines to decrease 

the flow losses has been a major engineering challenge since the inception of steam 

turbines by C.J. Parsons [1]. Currently, various kinds of seals are in use including lip 

seals, alternative elastomer and plastic seals, mechanical seals, clearance seals, magnetic 

fluid seals etc. Each seal has its own unique advantages and disadvantages.  

 From engineering viewpoint seals are used to introduce the friction in the fluid 

flow path to reduce the flow leakage. They do so in two ways on the basis of which seals 

can be subdivided into contact and non-contact seals. Though contact seals are always 

engineers preferable choice as they fully constrict the losses between two parts and thus 

increase the efficiency of the machine effectively as desired.  However these seals are 

not suitable for relative high speed moving parts where contact forces not only degrade 

the rubbing parts but also possess excessive heat generation problem. Here non-

contacting seals come in to play which help to create a resistance to fluid flow by 

extensive turbulence generation through tortuous flow paths as described by C.J. Parsons 

[1]. Among various non-contacting seals available, honeycomb and labyrinth seals are 

most commonly used seals. 

 

 

 

 

_________ 

This thesis follows the style and format of Journal of Turbomachinery.



 

 

   

2
 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

    

Rotor 

    Stator 

Clearance (c) 

       

Tooth 

    Pitch 

(s) 

Tooth height (h) 

Tooth width (w) 

Fig 1.1 Labyrinth seal with tooth on rotor 
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Fig 1.2  Figure sowing energy conversion of energy in labyrinth seal 
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 Further labyrinth seals could be subdivided in to straight, stepped and staggered 

seals. On the basis of the tooth profile another sub-division could be done. Among all the 

above discussed seals straight through rectangular tooth labyrinth seals are the most 

popular type due to the ease manufacturing and effective sealing properties. These seals 

consist of a series of rectangular teeth over the length of a span of turbine blades or on 

the rotating shaft with cavities in between to dissipate the energy of fluid flow leakage as 

is shown in Figure 1.1. The sharp tooth clearance in geometry helps to increase the 

kinetic energy of the fluid flow by throttling and converting pressure energy to kinetic 

energy. Additionally it also create losses by generation of eddies and vena contracta 

effect. Further in the cavities fluid dissipate kinetic energy through turbulence-viscosity 

interaction. This has been shown in Figure 1.2. Thus effectively a labyrinth creates 3-D 

vortices in each chamber between two constrictions going all around the circumference 

of the rotating machinery.  

 Mathematically for the steady state operation of a Turbine (fixed RPM) the 

governing equations produce an elliptic problem with the governing equations described 

by basic conservation laws from thermal and fluid flow sciences. Due to this nature of 

the problem, various factors (geometry, flow and operating conditions) which constitute 

the boundary conditions need to be studied to determine the effect of each on the fluid 

flow leakage. The geometry of the labyrinth seal flow being one of those prominent 

parameters.  Among various other factors affecting the labyrinth seal leakage are the 

fluid flow boundary conditions and the relative movement of the shaft. 
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 During the last few years, the increasing demand for energy has fostered the 

development of more efficient turbo-machinery running at higher RPM‟s. This resulted 

with ever-tightening tooth clearances in labyrinth seals. The labyrinths currently in use 

have the ratio of the order of 1:100 (as compared to that of 1:1000 for fluid film 

bearings).  On the other hand due to their undesirable rotor-dynamic characteristics they 

have raised concerns about rotor-dynamic stability of the rotating machinery. Since the 

better prediction of fluid leakage corresponds to improvement in determining fluid 

forces damping coefficients for rotor-dynamic calculation of a Turbine, labyrinth seals 

leakage flow needs to be determined more precisely. Additionally Childs and Thorat [2] 

have shown that the inertia of the fluid generally neglected in low speed rotor-dynamic 

calculation up to now, could no longer be done due to the inertia of the fluid flow at high 

speed of shaft rotation. This further emphasizes the need of accurate empirical formula 

for labyrinth seals leakage so as to improve bulk flow models used to better estimate the 

fluid damping coefficients in the study of rotor dynamics. 
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Fig 1.3 Flow pattern in a labyrinth seal cavity 

 

 Fluid flow pattern though a typical labyrinth seal has been shown above in Figure 

1.3 using the streamlines. We could observe that a portion of fluid flows directly through 

the next constriction without involved in energy dissipation through eddy viscosity 

interaction while the other part goes for recirculation. This portion is further 

quantitatively defined by the terminology of angle β coined by Hodkinson [3]. 

β 

h 

c 

s w 
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 The main parameters used to define the fluid flow loss characteristics through 

labyrinth seals are carry over coefficient and discharge coefficient. The carry over 

coefficient stands for energy dissipation in the cavity. It is related to the percentage of 

kinetic energy carried over to the next cavity by the following relation: 

   
 

   
 

where the angle beta is defined by the relation: 

   ( )   
   

   
 

 

 

Fig 1.4 Figure showing the relationship between γ and χ 
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 From the Figure 1.4 it is clear that the ideal value of carry over coefficient should 

be 1 which denoted the complete dissipation of the energy in the cavity. As the value of 

the angle beta goes higher than lesser is the dissipation of the energy. The discharge 

coefficient as usually denoted defines the flow losses through each constriction. It is 

somehow similar to the flow losses through the orifice plate but not exactly same due to 

the flow conditions being much different. 
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2. REVIEW OF CURRENTLY EXISTING LEAKAGE MODELS 

 

 The first paper to describe the labyrinth fluid flow was by Becker [4]. He 

modeled the fluid flow through labyrinth seals as Poiseuille flow with an attempt to find 

a coefficient of friction as to treat the flow as a simple annular flow. He observed that 

smaller decrease in clearance has a greater effect rather than changing the fluid flow path 

by varying tooth and cavity geometry. 

 Shortly after Becker [4] in another pioneering paper in 1908, Martin [5] proposed 

to treat the problem in an entirely different manner by considering labyrinth seals as a 

series of throttling process similar to the flow through a series of orifices. His approach 

was purely analytical with various false assumptions. He treated the pressure drop to be 

linearly varying and flow to be isothermal.  Additionally he assumed the pressure across 

each constriction (tooth) to be very small or treated that the flow was always in sub-

critical state throughout the labyrinth seal. He did not compare his equations against any 

experimental data. In the subsequent papers mostly all authors tried to address the wrong 

assumptions made by Martin [5] and improved his formulae. 

 Stodola [6] in his book on steam and gas turbines considered flow leakage 

through staggered and radial seals. He presented two separate equations to calculate flow 

leakage one each for subsonic and sonic respectively.  He presented the experimental 

results on interlocking seals with clearances varying from 0.14 mm to 0.38 mm and 

pressure ranging from 43 to 143 psi. He carried out his experiments with a non-rotating 

shaft and thus neglected effects of shaft rotation on fluid flow leakage. He also assumed 
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that kinetic energy gets completely dissipated in the cavity and neglected the kinetic 

energy carry over coefficient. This leaded to a variation of about 14% in his formulas for 

calculating flow leakages. Additionally he also developed a graphical method for 

analyzing seals with varying areas those found in radial labyrinths.  

 Dollin and Brown [7] derived the Martin [5] analytical formulae for calculating 

the flow through labyrinth seals. They assumed the thermodynamic path function to be 

polytrophic (pv
k 

= constant) rather than isothermal and derived more general formula for 

fluid flow leakage. Martin leakage equation was a special case of their formula with k=1 

and for the incompressible flow its value reduced to be k=∞. They also neglected the 

kinetic energy carry over coefficient.       

 Gercke [8] derived his equation by considering the variable area. He gave 

importance to kinetic energy carry over between throttling. He assumed that the flow 

through flow through each throttling was adiabatic and that through each cavity is 

isothermal with constant pressure process. He also took into consideration the 

occurrence of vena contracta and defined discharge coefficient but neglected the shaft 

rotation. 

 Elgi [9] made another major contribution to the fluid flow through labyrinth seals 

through his paper on labyrinth seals in 1935. He examined both staggered and see-

through configuration of labyrinth seals theoretically and experimentally. His 

experiments included study for clearances in range of 15 to 40 mils. He used the same 

formula as stated by Martin [5] but used took in to consideration the occurrence of vena 

contract as the fluid goes through tooth clearances. He also considered the kinetic energy 
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carry over coefficient by defining a “carry-over” factor which he determined 

experimentally. Through experimental results and analytical study he also noticed that 

kinetic energy carry over coefficient decreases with increasing pitch between 

constrictions or by decreasing clearances. This effect could be attributed to the increases 

in the expansion of the jet emerging from tooth clearance in the subsequent cavity due to 

the above two factors. In non-dimensional he mentioned the result as a ratio clearance–

to-pitch ratio. The variation of discharge coefficient with the variation of pressure ratio 

was also observed. 

 Keller [10] through his experiments analyzed the leakage quantitatively. He did 

experiments on flow of water and air through labyrinth seals. His results showed how the 

interlocking blade configuration has much better sealing properties as compared to see 

through seals. He neglected the effect of shaft rotation on the fluid flow and conducted 

tests in a non-rotating test rig having rectangular and rounded shape blades with 

clearances in the form of long rectangular strips rather than annuli.  

 Hodkinson [3] analyzed the leakage problem analytically rather than 

experimentally. He stated that a portion of jet leaving the clearances was intercepted by 

the next clearance without any energy loss. He defined this portion of fluid by using a 

parameter beta (β). He took this effect in to consideration in the Stodola equation for 

orifice coefficient. He also discussed the effects of eccentricity and rotational speed on 

seal leakage. From the results of his experiments he showed that eccentricity is more 

pronounces in laminar flow than in case of turbulent flow where flow could increase up 

to 2.5 times. His study included low RPM (not true for modern turbo machinery realm 
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where shaft speed could go up to supersonic) of machines where he showed that rotating 

shaft has nominal difference on leakage of fluid as compared to a stationary shaft from 

viewpoint of labyrinth seal leakage. 

 Bell and Bergin [11] assumed that the labyrinth seal constrictions to follow the 

flow field as through annular orifices. They mentioned few interesting observations 

made during experiments done on orifice meter. They mainly divided the fluid flow in 

two main categories based on the Reynolds number. For the lower Reynolds molecular 

viscosity is the main cause of losses for fluid flow. While for the high Reynolds number 

turbulent viscosity is the major factor to be considered responsible for fluid flow losses. 

An equation to take into consideration the eccentricity of the shaft is also mentioned by 

them. It was also observed that undesirable recovery of kinetic energy to pressure energy 

(reverse of throttling process) occurs for turbulent flow through thicker orifices but it 

does not occur smooth orifices. Further for higher Reynolds number flow wall friction 

factor also comes into play for thick orifices or wider tooth of labyrinth constriction. 

From the experimental readings for high Reynolds number it was claimed that 

undesirable pressure recovery due to the occurence of vena contracta starts from 

thickness-to-clearance (w/c) ratio of 1 and increases up to 6. Further increasing thickness 

makes wall friction to be more dominant and which reduces the flow leakage by creating 

pressure losses through shear stress losses at the boundaries of labyrinth tooth clearance 

flow field. Contrastingly for low Re flow pressure recovery does and occurs and only 

wall helps to create a pressure loss.  
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 Kearton and Keh [12] performed experiments on single orifice with zero initial 

velocity. They determined the effects of pressure ratios on discharge coefficient. They 

also accounted for the compressibility of the fluid flow and used that in the correction 

for the for the leakage flow developed by Martin. However they neglected the kinetic 

energy carry over coefficients and avoided the rotation effect of the shaft on the fluid 

flow leakage. They did performed tests on a 14 throttle staggered labyrinth seals where 

their analytical formulae performed predicted flow leakage with a fair accuracy. 

 Zabriskie and Sternlicht [13] performed investigation on straight tooth labyrinth 

seals. They did not perform any experiments but used data gathered from previous 

studies. Their basic approach was to determine a friction factor and later correlate it with 

the seal geometry, mass flow rate and pressure ratio. 

 Heffener [14] use the formula given by Martin [5] and found the value of 

empirical data for Coefficient of discharge to take in to consideration the effects of wall 

losses and flow contraction at the throttling of the constriction. His neglected the kinetic 

energy carry over coefficient and the rotation effect of the shaft.  

 Komotri and Mori [15] treated the flow through constriction as adiabatic and 

entire leakage as isoenthalpic. They had n equations for n constrictions. These equations 

were solved together for finding the final function which is a function of carryover 

coefficient, number of teeth and thermodynamic process coefficient. 

 Rao and Narayanamurthi [16] took in to account the rotation of the shaft in their 

study of labyrinth seals. They performed experiments on two geometries: (1) 40 teeth 

seal with a pitch of 5 mm, (2) 20 teeth seal with pitch of 10 mm on a see through 
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labyrinth seals. The results from their experiments indicated that for a pressure ration in 

the range of 0.15 to 0.6 the leakage increases till the speed of 1100 rpm and decreases 

afterwards. This increment in the leakage was 4% for the 40 teeth as compared to the 10% 

increase for 20 teeth geometry.    

 From his investigations on labyrinth seals Stocker revealed the following facts 

about labyrinth seals. The data from his studies indicate that leakage decreased up to 

certain limit of surface roughness further roughness would tend to increase the flow 

leakage. Also he noticed that rotation of the shaft could affect the leakage up to 10%. 

Further he concluded that somewhere in between 50 to 70 degrees tooth angle leakage 

was minimum and pitch decreases for minimum leakage decreases with increasing tooth 

angle. 

 Deych [17] studied seals for steam turbine turbines. He conducted two 

experimental studies. In the first study he calculated leakage through seals as a function 

of pressure ratio and quality of steam.   He did not consider the carry over coefficient for 

kinetic energy and for the kinetic energy carried over the next cavity.         

 Vermes [18] covered all the issues that were either missing or lacking in the 

previous papers discussed above. Martin‟s formula was adjusted for non-isothermal fluid 

flow with flow coefficients adopted from Bell and Berglein [11]. A further major 

correction was derived by considering boundary layer theory of Schiliting [19] in the 

kinetic energy carry over coefficient. His flow coefficient is a function of pitch, tooth 

width and clearance. His equations varied from experimental results by 5%. 
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 Ahmed Gamal [20] further analyzed the above mentioned models and showed 

the variation of kinetic energy carry over coefficient. These results showed the 

fundamental dependence of the leakage problem upon factors other than geometry of 

labyrinth seals as expected from the elliptic nature of the governing equations for steady 

state flow. 

 Saikishan [21] discussed in his thesis how the variations of flow defining 

parameters are related to changing fluid flow characteristics. He did not consider the 

tooth on the rotating shaft seal nor the effect of that on the kinetic energy carry over 

coefficient.  
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3. COMPUTATIONAL FLUID DYNAMICS 

 

3.1 Computational Method 

 The current research work is done using CFD simulations of fluid flow through 

labyrinth seals. The effect of rotation of shaft on the flow pattern through seals is studied 

by varying the shaft surface velocity from zero to slightly above Mach 1. Apart from this 

the effect of geometric shapes of the labyrinth seal geometry is also being studied while 

keeping tooth height to pitch ratio as 1 and varying another geometrical parameters. 

There are few assumptions made which have helped to reduce the computational effort 

in terms of time for the current research. These assumptions are: 

1) The flow is axisymmetric which have helped to reduce the flow from three 

dimensional to two dimensional. 

2) The variations in the shapes of the geometry of metal (due to thermal and fatigue 

stress) defining the fluid flow path is negligible compared to the length of the tooth 

clearances. 

3) Fluid Surface interaction (FSI) has not been taken in to consideration to take into 

account the surface roughness of the seal geometry. Also impact of lateral surface 

vibrations due to dynamics of rotating shaft have not been considered to do negligible 

contribution to fluid turbulence intensity.   

 For the current turbulent flow simulations commercial solver FLUENT
®
 has 

been employed to solve the fundamental governing equations of thermo-fluid sciences. 

The partial differential equation have been discretized using Finite-Volume Method and 
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turbulence flow modeled using standard k-ε turbulence model along with enhanced wall 

function in the near wall region flow to resolve viscous sub-layer without additional 

effort in terms of more refined mesh. The choices of current turbulence model to 

simulate the current fluid flow have been verified by Morrison and Al-Ghasem [22] by 

comparison with experimental LDA data by Morrison and Johnson [23]. More 

mathematical details about these models and wall function could be found in the 

following subsections. 

 Grid independence study was performed was using refined mesh till the outlet 

pressure difference value across the seal value stabilizes with increasing grid resolution 

for a given mass inlet flow rate and pressure at the inlet. Adaption of grid was based on 

pressure gradient set to a maximum value of 1 and Y
+
 set as 5.  

 

3.2 Governing Equations of Fluid Mechanics 

 The governing equations of fluid mechanics include the conservation laws for 

mass, momentum, and energy, which are usually, expressed using the Eulerian 

description. Mechanical and thermodynamic property constitutive equations are needed 

to close the close these system of equations. The momentum conservation law for 

Newtonian fluids is also known as the Navier–Stokes equations, where the stress tensor 

T is given by: 

 

    (p  
 

 
      )         
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where   denotes the dynamic viscosity,   represents the velocity,   is the identity 

tensor, and D is the strain rate tensor 

  
 

 
        (  )    

 In the Navier–Stokes equations, the symmetric stress tensor T could be further 

decomposed into a volumetric stress tensor (−p ) representing the isotropic hydrostatic 

pressure and a deviatoric stress tensor   which describes the anisotropic viscous forces 

      
 

 
 (   )  

 The unsteady equations of mass, momentum, and energy conservation are given 

in equations below with the density , body force per unit mass g, thermal conductivity , 

and energy source SE. The energy conservation law is expressed in the form of total 

enthalpy htot to describe compressible flows.  

  

  
   (  )    

 (  )

  
    (    )               

 (     )

  
 

  

  
   (      )     (     )    (   )    ρ      

These system of equations need to be solved for v, p, and htot. Further for calculation of h 

(Static enthalpy) we need to use the relation h = htot − (v. v)/2 where the kinetic energy 

contribution to total enthalpy is subtracted. Finally static temperature T can be computed 

using the caloric constitutive relation of h = h (p, T) which further simplifies to  



19 

 

  

 

dh = cp(T)dT  for ideal gas behavior. Similarly, total temperature Ttot is calculated from 

htot using the similar relation, dhtot = cp(T)dTtot. In addition, total pressure ptot of ideal gas 

is evaluated with: 

        p   
 

 
 ∫

  ( )

 
    

    

 

 

 Finally to determine the density equation of state is required. For an ideal gas, this 

relationship is described by the ideal gas law 

  
 

  
 

 

3.3 Statistical Turbulence Models 

 Turbulent flow is characterized with random variation in temperature and 

velocity fields. These fluctuations cause further mixing of transport quantities such as 

momentum, energy etc. led to the fluctuations of these quantities. Alternatively these 

flows are often characterized with broad range of time and length scales fluctuating at 

high frequency which are computationally very expensive to simulate. Currently these 

kinds of flows are being commonly simulated with the following major turbulence 

models: 

1)  Reynolds Averaged Navier-Stokes Equations (RANS) equations. 

2)  Large Eddy Simulation (LES) 

3)  Direct Numerical Simulation (DNS)  

The computational effort for these kinds of flows is increases from top to bottom. For 

the current research work we are using RANS equations which are derived from 
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perturbation method. In this approach all the flow variables are considered to be 

constituting of average and variable quantity. 

  (    )    ̅(  )    
  (    ) 

where                                            ̅(  )   im    
 

 
  ∫   (    )   

 

 
 

here T is the time period over which the flow variable is averaged.  Due to the unsteady 

flow ensemble averaging is used. The basic idea behind ensemble averaging is to 

consider set of flows where all the variables such as energy, velocity are identical but 

initial conditions are varied. The mathematical definition for this kind of averaging is: 

  ̅(    )  
 

 
 ∑    (    )

 

   

 

where N stands for number of observations considered to accomplish the average. By 

decomposing the fluid variables into averaged and fluctuating components, for example, 

velocity v = v + v′, the original Navier–Stokes equations are modified, resulting in the 

Reynolds Averaged Navier–Stokes (RANS) equations. The momentum and enthalpy 

transport equations thus contain turbulent flux terms adding to the molecular diffusive 

terms. These additional turbulent fluxes are called Reynolds stress ρ v′ v′ and 

Reynolds flux ρ v′ h′, respectively. Turbulence models based on the RANS 

equations are known as statistical turbulence models due to the statistical averaging 

procedure. The equations used to model the Reynolds stresses and Reynolds 

fluxes define the type of turbulence model. 

 Eddy viscosity turbulence models are used in the current work. The eddy 

viscosity hypothesis assumes that the Reynolds stresses can be related to the mean flow 
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and turbulent viscosity µt in a manner analogous to molecular viscosity µ in laminar 

flows. In other words, the turbulent effect can be represented as an increased viscosity 

with the effective viscosity µeff = µ+µt.  

 

3.3.1 K-ε Turbulence Model 

 It is a type of eddy viscosity model based on analogy between laminar and 

turbulent flows based on Boussinesq hypothesis. The central idea of this model is that 

turbulent flow stresses behave similar to laminar fluid stresses which follow stokes law. 

Mathematically it could be written as: 
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Here: 

1)     = Turbulent Viscosity 

2) k = Turbulent Kinetic Energy 

3) kt = Turbulent conduction effect 
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 All the above enlisted quantities are not inherent fluid properties but defined by 

fluid flow. In the k-ε turbulence model these properties are calculated by using by two 

transport equations one each for Turbulent Kinetic Energy (k) and turbulent kinetic 

energy dissipation rate (ε). The former transport equation is derived analytically from 

momentum equation with the velocity and using Reynolds Averaging Technique as 

described above, while the latter is an empirically derived equation as suggested by Pope 

[27]. 
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where: 

1)    denotes the generation of turbulence kinetic energy from main flow field due to 

mean velocity gradients.  It is defined as: 

        
   

 ̅̅ ̅̅ ̅̅ ̅  
   

   
  

2)    defines the generation of turbulence due to buoyancy. It is calculated using the 

expression mentioned below: 
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3)    represents the contribution by dilation to the overall dissipation rate in 

compressible fluid flow. It is calculated using the expression below: 

    ρ   
  

4) ς  and ς  are the turbulent Prandtl numbers for   and  , and have default values of 1.0 

and 1.3 respectively.     and     are constants with default values of 1.44 and 1.92.  For 

this research these default values have been used. 
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4. RESEARCH OBJECTIVES 

 

 This work is aimed at understanding the effect of different parameters on the 

fluid flow leakage through labyrinth seals with the tooth mounted on the rotor. As 

mentioned earlier in this study we will explore the labyrinth tooth rectangular in shape 

and mounted on rotor. This study deals with exploring the effect of all the variables 

(including the flow parameters, geometry dimensions and moving boundaries) suspected 

to determine the carry over coefficients and discharge coefficients of a given labyrinth 

seal under consideration. Broadly it could be said that it comprises of the following main 

three tasks. 

 Firstly effect of flow parameters on the carry over coefficient was studied. This is 

done in a procedural manner starting from the effect of non-dimensional flow field 

parameter i.e. Reynolds Number. It is calculated for the current research study using the 

formulae mentioned below. 

    
 

   
 

̇
 

Further from this relation we conclude that, for a give shaft diameter 

      ̇ 

Also since                                              ̇                 

So from using the above mentioned two equations we deduce that: 

   
         

 
 

or                                                                    
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 To explore the effect of Reynolds number same geometry (at a given shaft RPM) 

is considered at different Reynolds Numbers. After that, the effect of geometrical 

parameters including the tooth clearance to the pitch (c/s) ratio and the effect of tooth 

width to pitch (w/s) is studied. Both these calculations are achieved by choosing 

different cases with same geometrical lengths (except clearances and tooth width) are 

studied for different Reynolds Numbers. Finally, effect of shaft RPM on the carry over 

coefficient was studied by varying the shaft speed for fixed Reynolds number and 

geometry. 

 Secondly, the effect of various parameters on discharge coefficient was evaluated 

using the same procedure as above. Here, the study mainly bifurcated into two different 

cases 1) for the first tooth of labyrinth seal 2) for the tooth having cavity prior to them. 

This division was done after considering the difference in the discharge coefficient of 

first teeth from the rest of the labyrinth seal tooth. 

 The third task comprised of determining the effect of various conditions 

considered above on the expansion factor. This factor is introduced to predict the 

deviation in the behavior of seals with compressible fluid as compared to the one with 

incompressible fluids.    
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5. COMPUTATIONAL METHOD 

 

 The current research work has chosen the path of CFD methodology to study the 

Labyrinth seal fluid flow. Further, in the present study the flow field has been simplified 

from three dimensional to axisymmetric two dimensional. This replication of 3D leakage 

characteristics from 2D turbulent flow within acceptable accuracy has been proven by 

various other research studies including that by Stoff [24] on labyrinth seals. This saves 

considerable time and effort required for expensive experimental methods. These 

simulations are used primarily to study the factors affecting kinetic energy carry over 

coefficient and discharge coefficient for the fluid flow leakage through labyrinth seals.  

Furthermore, various others factors have been studied to show their variance with the 

changing geometrical and fluid conditions. 

 Fluent
®
 is finite volume discretization based CFD solver used lot solve the 

Navier Stokes simulation. For this study, standard k-ε turbulence model has been used to 

solve the turbulent fluid flow field. The applicability of this model to accurately simulate 

the flow field has been studied by Morrison and Al-Ghasem [22]. The study mentions 

the similarity between labyrinth seal flow patterns obtained using k-ε modeling and the 

experimental data from Laser Doppler Anemometry (LDA) performed by Morrison and 

Johnson [23].  More details about the turbulence modeling have been mentioned in the 

previous section. 

 Gambit has been used as a preprocessor to generate the meshes required for the 

current simulations. Rectangular grid cells have been used for the current flow field as 
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shown in the Figure 5.1. It has been ensured in each simulation that the Y
+
 value remains 

below 5 to resolve the laminar sub layer as shown by Al-Ghasem [22]. This has been 

accomplished through further refinement in the near wall region as shown in the Figure 

5.1 below. 

 

 

 

 

Fig 5.1 Meshed labyrinth seal geometry 
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 Regarding the modeling in the near wall region in conjugation with k-ε model 

(which has been developed for free turbulence) a separate model needs to be defined. 

The standard wall function does not sufficiently resolve the viscous sub-layer, and is not 

very effective when the wall is moving rapidly or when there are high pressure gradient 

effects. Ideally the wall Y+ values should be below 1. Furthermore it has been suggested 

by Morrison-Al Ghasem [22] to use enhanced wall treatment in conjugation with 

standard k-ε model to accurately simulate the boundary layer flow with pressure 

gradients into consideration. The enhanced wall treatment is necessary to capture flow 

characteristics accurately in the viscous sub-layer next to the wall with lesser grid nodes. 

For this model Fluent allows wall y+ values as large as 5 given the first layer of the 

mesh lie in the viscous sub-layer.  

 Grid independency of the results has been confirmed using adaption based on 

pressure gradients. The pressure difference along a generic labyrinth is calculated by 

decreasing the pressure gradients value in the Adaptive Gridding Algorithm in each 

successive simulation till the pressure becomes independent of further refinement. In this 

process pressure gradient has sometimes even been reduced to 1 for some of the cases of 

incompressible fluid flow. A sample of the variation of checking grid independency in a 

simulation has been shown in the Figure 5.2 below. Here the grid refinement has been 

stopped after the pressure difference becomes constant for a given mass flow rate. 
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Fig 5.2 Convergence of the simulation with decreasing pressure gradient 
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6. CARRY OVER COEFFICIENT 

 

6.1 Introduction 

 The carry over coefficient is used to measure the effectiveness of the cavity in 

terms of flow losses. This factor is used to measure how much of the actual amount of 

the kinetic energy before the start of the cavity is actually dissipated through turbulence 

dissipation. The lower the carry over coefficient is the more effective is the seal. Ideally 

the desired value of the coefficient is one but it cannot be achieved due to the presence 

of the energy spectrum in of turbulent flow field. More details about this can be studied 

in a book on turbulent flow. The current work uses the definition proposed by 

Hodkinson [3] to calculate the carry over coefficient. The relationships provided are as 

mentioned below: 

   
 

   
 

   ( )   
   

   
 

 The angle beta (β) is used to define the mean streamline separating the 

recirculation zone from the fluid that passes over directly to the next clearance. In other 

words, this streamline is virtually acting as mass and energy transfer boundary between 

the recirculation zone and the mean flow field. This angle is calculated in the study using 

the post processing software Tec plot 360
®
. The required point is found by examining 

the point of zero velocity inside the cavity on the downstream tooth. However, in cases 

where the Taylor number to Reynolds number ratio is large, it is relatively hard the find 
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the point where the flow velocity becomes zero before the cavity wall as shown in the 

Figures 6.1 and 6.2 below. These conditions are particularly present for the cases with  

 

Fig 6.1 Streamlines for case with high (Ta/Re) ratio 

 

  

 

Fig 6.2 Streamlines for case with low (Ta/Re) ratio 
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high Taylor numbers. This occurrence of two vortices is confirmed by Demko [25] 

in his thesis on Labyrinth seals with the tooth on rotor configuration.   

 The labyrinth seal flow in the current study is an elliptic problem as mentioned in 

the introduction. Thus all the flow parameters used to characterize the given flow field 

under consideration are in general effected by both boundary conditions of the flow field 

and the geometry of the labyrinth tooth. The effect of both these parameters on the carry 

over coefficient has been investigated in a systematic manner. Firstly, the flow 

conditions are varied for the fixed geometry and later the geometry has been varied with 

different geometrical ratios. Finally, the shaft RPM has been varied in steps to increase 

the surface velocity from no rotation to slightly higher than Mach1.  

 

6.2 Effect of Flow Parameters 

 In this subsection the effect of flow parameters on the kinetic energy carry over 

coefficient are studied. To study this effect, all other geometric conditions are kept the 

same or in other words, the same the geometry is used throughout this study. Further, the 

water and air case are being considered separately to observe the effect of 

compressibility on all the carry over coefficients. In this subsection we will present all 

the results using water as the fluid flowing through the seal geometry. To evaluate the 

effect of compressibility in the results obtained, we will introduce another factor 

compressibility, which will show the difference between behaviors of seal for two 

different fluids.   
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6.2.1 Reynolds Number Variation Effect on the Carry over Coefficient  

 Once the seal geometry has been set, the Reynolds number is varied to study its 

effect on the carry over coefficients. To investigate this effect, geometry G4 (s=4, h=4, 

c=0.15, w=0.03) (all dimensions in mm) is chosen. This choice is purely random and any 

other geometry could be considered but their results won‟t be necessarily the same 

which will be considered in later subsections where the effects of geometry on carry 

over coefficient are analyzed.  

 

 

 

Fig 6.3 Variation of γ with Re for G4 (Wsh =0, water)   
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 From the Figure 6.3, it is observed that the variation of the carry over coefficient 

varies with the value of Reynolds number. This result confirms that the carry over 

coefficient is a function of Reynolds Number (which was neglected in many previous 

studies on labyrinth seals, including that of Hodkinson [3] and Gamal [20]). Additionally, 

this variation seems to be similar to the case of tooth on stator as studied by Saikishan 

[21] and can be explained as follows. At high Reynolds number, the inertia of the fluid 

flow coming from the wall jet, generated by seal tooth does not have much time before it 

encounters the next clearance. In other words, given two fluid particles moving at 

different axial speeds but similar radial velocities, the one moving slowly will have more 

time to traverse downwards into the cavity than the other having more velocity. This 

leads to a larger beta angle (β) as shown in the Figures 6.4 and 6.5 below. 

                                

 

 Fig 6.4 Water case with Re=1000 (G2, Wsh =0) 
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Fig 6.5 Water case with Re= 2500 (G2, Wsh =0) 

 

 

  The results are quite obvious since this case has been presented for zero shaft 

speed. Moreover, a sharp variation in the carry over coefficient as the Reynolds number 

increases from 1000 to 2000 is observed and after that the changes become more gradual 

because of the change of fluid flow field with increasing Reynolds number is lesser 

where other factors also comes into consideration. This shows that the there is a need to 

study the effect of changing other parameters such as the shaft speed once a geometry 

and Reynolds Number has been fixed upon.  
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6.3 Effect of Geometrical Parameters on the Carry over Coefficient 

 

6.3.1 Effect of Clearance on Carry over Coefficient 

 From the literature review it has been established that clearance has a major 

effect on the labyrinth seal leakage. Since Hodkinson [3], Saikishan [21] and Gamal [20] 

had used the non- dimensional form of this clearance as c/s to analyze its effect, the 

same parameter will be used in the current research work   Furthermore, this non-

dimensional parameter makes it easier to compare and evaluate the results. In this study, 

we will compare different seals with the same pitch but different clearances. 

 The results of the comparison can be seen in the Figure 6.6. A power law has 

been generated in the Figure 6.6 for each set of the different clearance to pitch ratios. 

From the Figure 6.6 it is can be seen that there is a great jump in the carry over 

coefficient with the corresponding changes in the clearances. The carry over coefficient 

reduces 1.6 times (from 1.8 to 1.1) by decreasing the clearance to pitch ratio by 80% 

(from c/s = 0.0375 to c/s = 0.0075) at a Reynolds number of 16000. Further, this 

decrease in carry over coefficient is fully dependent on the Reynolds number as is seen 

from graph. The value of γ increases by 21% by increasing the value of clearance by a 

factor of 2.5 at the Reynolds number of 15000. The observation of increasing carry over 

coefficient with increasing c/s ratio can also be explained from the hypothesis of 

Hodkinson [3]. In his theory, Hodkinson [3] has stated “For a given divergence angle a 

higher value of pitch results in a higher impingement point of the jet on the downstream 

tooth”. This results in a small portion of fluid flowing to the next clearance resulting in 
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decrease of γ. Therefore an increase of c increases γ or in other words increment in c/s 

ratio increases the carry over coefficient.   Note that as γ increases, the amount of kinetic 

energy dissipated in the seal cavity decreases indicating a seal design that is less 

effective at reducing leakage. It has to be noted that, in order to make physical 

significance the carry over coefficient should approach 1 as Re approaches 0. This has 

been further confirmed by the Figure 6.6. 

  

6.3.2 Effect of Tooth Width on the Carry over Coefficient 

 In the earlier subsections, the variation of the carry over coefficient with the 

clearance to pitch ratio and Reynolds Number for incompressible flow was examined. 

However, the other geometrical constants including the tooth width had been fixed. This 

is not always true in the real applications of the labyrinth seals. Here the effect of this 

parameter on the carry over coefficient will be analyzed which will provide a better 

insight in the variation of flow field while changing tooth width. The current study  

 

 

 

 



 

 

   

    

3
8

 

 

Fig 6.6 Variation of γ with Re for different c/s ratios, water  
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includes comparison between two flow fields having the same Reynolds Number and  

geometrical parameters (except the tooth width) for the flow field. The cases chosen for 

the current evaluation are from geometry G1 and G2 with c/s ratio of 0.0075 and tooth 

width increment from 0.03 mm to 1 mm using water as the working fluid. 

 It can be observed from the Figure 6.7 that the variation of the carry over 

coefficient with the tooth width is almost negligible until the Reynolds number is below  

700 but increases exponentially after that. This increment could be attributed to the fact 

that the axial distance to be travelled by the fluid element in the cavity is less for the 

geometry with a thicker tooth than those flowing in a comparatively less tooth width. 

Therefore the corresponding changes in the carry over are in the reverse order of the 

increment in tooth width. This becomes clear referring back to the following formulation 

of the Hodkinson [3] for the carry over coefficient. The formula he used for the carry 

over coefficient formulae is as mentioned below. 
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Fig 6.7 Variation of γ with Re for different w/s ratios, water  
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Since the c/s ratio is constant for the above comparison we could replace this factor with 

a constant    which further simplifies the above equation in the following expression as 

mentioned below.   

 

  √(
 

   ( )   
  ) 

 

 Thus from the above expression one can conclude that with increase of beta 

angle (  ) the carry over coefficient decreases. One more quick observation can be made 

from the above expression is that; ideal flow field should have the angle β value of 90
0
 

for maximum energy loss to occur.  

 

6.3.3 Effect of Pitch on the Carry over Coefficient 

 Traditionally, pitch has been chosen to be the factor to non-dimensionlize the 

geometrical features of a given labyrinth tooth configuration including clearance, tooth 

width and tooth height. This choice has been validated in many research works including 

that done recently by Saikishan [21]. Increasing the pitch for the same clearance will 
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decrease the carry over coefficient. This result should be opposite for increasing of 

clearance with fixed pitch.  Also this change should be more prominent at high Reynolds 

numbers. The same effect is expected to be observed with the tooth width. The carry 

over coefficient value should decrease with the increase in the tooth width and this effect 

should also be more prominent with higher Reynolds number. 

 

6.3.4 Effect of Shaft Speed Variation on Carry over Coefficient 

 Completing the analysis of observing the effect of flow parameters (i.e. Reynolds 

Number) and geometrical parameters (non-dimensional) parameters on carry over 

coefficient we study variation of carry over coefficient with changing speed of rotating 

boundary condition.  

 The rotation of shaft creates an additional introduction of swirl velocity. This 

makes it important to study effect of shaft speed on carry over coefficient. The effect of 

swirl velocity on the instability of the flow field is also defined by Taylor Number. To 

compare the effects of shaft speed, the forces involved in the variation of carry over 

coefficient must be considered.  
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Fig 6.8 Forces on the fluid in the cavity along the radial direction, First cavity  

 

 From Figure 6.8 the major forces affecting the angle β which is used in our 

definition of carry over coefficient can be observed. Effect of these forces on carry over 

coefficient could be summarized as mentioned in Table 1below. 

 

     Table 1 Variation of Cavity Forces   

Forces Effect on flow angle β Effect on Carry over Coefficient γ 

Centripetal Force Decreases Increases 

Pressure Force Increases Decreases 

Shear Force Increase Decreases 
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 For the fluid in the cavity (separated from the main flow by mean streamline) to 

be balanced normal force and centrifugal force should be equal to pressure and shear 

forces (here it refers to additional shear acting on the fluid in the cavity due to the 

rotation of the shaft). Since we are changing shaft speed in well-defined intervals, further 

discussion shifts to variation of pressure and shear forces as compared to centrifugal 

force. In other words we are comparing the rate of changes of shear and pressure forces 

effectively as compared to changes in the centrifugal forces. First cavity of geometry G1 

will be used to explain the effects for each different RPM. From the Figures (6.9,6.10 

&6.11) it can observed that for a low Reynolds number, changes in pressure force and 

shear forces are initially more than the increment in the centrifugal forces for low shaft 

RPM as indicated by carry over coefficient till their increment is same as the centrifugal 

forces. 

 

         

Fig 6.9 Variation of γ for cavity 1 with shaft surface speed at Re=1000 
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Fig 6.10 Variation of γ for cavity 1 with shaft surface speed at Re=1500  

 

 

 

 

 

Fig 6.11 Variation of γ for cavity 1 with shaft surface speed at Re=2000 
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     Fig 6.12 Variation of γ for cavity 1 with shaft surface speed at Re=2300 

 

 

 

     Fig 6.13 Variation of γ for cavity 1 with shaft surface speed at Re=2500 
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 Same is observed for Figures (6.12 & 6.13) This trend is observed in both the 

case with Re=1000 & Re=1500. For Re=2000 the increment is same till the shaft surface 

speed reaches 50 m/s. After that the increment in pressure force and shear forces is less 

than in centrifugal forces and this continues till shaft surface speed reaches 200m/s 

above which it becomes same as for low Re.   

From the above discussion it can be concluded that the variation of shear force and 

pressure forces are varying with shaft RPM. But the variation of pressure with shaft 

RPM is linear (for constant Reynolds number) as shown in the Figure 6.14 below. 

 

 

Fig 6.14 Pressure difference variation with shaft speed (G1& Re=1000) 
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surface contact remains same (neglecting the change of vortices at high Taylor Number), 

quantitatively the variation of these forces could be summarized as: 

1. Centrifugal Force ~  Wsh
2

  

2. Pressure Force     ~    Wsh 

3. Shear Force         ~    Wsh 

 This shows how forces are changing with shaft speed. So we could expect a 

situation as shown in the Figure 6.15 below ( drawn not from the cases simulated but 

used another set of data to draw it): 

 

 

Fig 6.15 Variation of forces with shaft speed (Not to scale) 
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From here, understanding of the variation of carry over coefficient for different cases is 

achieved. It may be explained as, for different Reynolds number the slope of the 

pressure force and shear force will be different from centrifugal forces which change the 

crossing points of two graphs.  Also if we further consider the variation of vortex 

formation in cavity at high Taylor Number there can be more variation in this graph by 

changing the slope of straight line at different shaft speed. This will lead to more points 

of intersections which correspond to ups and downs in the carry over coefficient graph 

for a given geometry and Reynolds number. Also for high clearance geometries this 

variation in forces is comparatively less as shown in the Figures (6.16, 6.17, 6.18, 6.19 

& 6.20) below. 

 

 

Fig 6.16 Variation of γ for cavity 1 with shaft surface speed for G4 

γ = -2E-12Wsh
5 + 2E-09Wsh

4 - 7E-07Wsh
3 + 0.0001Wsh

2 - 0.0093Wsh + 1.4047 

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

0 50 100 150 200 250 300 350 400

C
ar

ry
 O

ve
r 

C
o

ef
fi

ci
en

t 
 

Shaft Surface Speed 

Re=1000 



50 

  

                                                                                                                                                             

  

 

Fig 6.17 Variation of γ for cavity 1 with shaft surface speed for G4 

 

 

 

Fig 6.18 Variation of γ for cavity 1 with shaft surface speed for G4 
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Fig 6.19 Variation of γ for cavity 1 with shaft surface speed for G4  

 

 

 

Fig 6.20 Variation of γ for cavity 1 with shaft surface speed for G4 
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6.4 Cumulative Effect of Changing Various Factors on Carry over Coefficient 

 Finally we are going to analyze the cumulative effect of various parameters 

affecting the carry over coefficient all together. For this analysis, the complete data set 

has been divided in two main categories based on the tooth width to pitch ratio (w/s), 

one for (w/s= 0.25) and another for (w/s= 0.0075). Further for each (w/s) we have 

different clearance to pitch ratios.  Figure 6.21 shows there is very little variation in the 

carry over coefficient value for low c/s value of 0.0075. The maximum value of carry 

over coefficient is below 1.2 which implies a cavity effectively decreases the kinetic 

energy carried over into the next cavity. For c/s= 0.015 the variation similarly is not 

much with the maximum value of carry over coefficient limited to 1.4. As the c/s ratio is 

increased to 0.0375 there is more variation in carry over coefficient from 1.2 to up 1.8. 

The two largest c/s values show the general trend of carry over coefficient increasing 

with Reynolds number and decreasing with Taylor Number. Hence the cavity for a tooth 

on rotor seal is more effective at dissipating kinetic energy for a large shaft speeds and 

low Reynolds numbers (low pressure differentials across the seal). 

   Figure 6.22 shows the same results for w/s=0.0075. Almost the same observation 

can be made for that of w/s = 0.25. The variation of carry over coefficient with Taylor 

Number and Reynolds number is less for c/s =0.0075 as compared to the variation for c/s 

= 0.0375.  The variation of carry over coefficient of c/s 0.0075 is limited by 1.2 and for 

c/s=0.0375 there is a larger variation in carry over coefficient up to 1.7.  From the rest of 

figures in Appendix we also conclude that this trend is followed irrespective of cavity 

location in the labyrinth seal. 
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Cavity 1 

 

 

Fig 6.21 γ changes with Ta, Re and C/S for W/S =0.25 (G2, G3 & G5) 

5
3  
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Fig 6.22 γ changes with Ta, Re and C/S for W/S =0.0075 (G1 & G4) 5
4
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 Figures 6.23 and 6.24 show the streamlines inside the seal cavity for geometry 

G4, Re=10,000, Wsh= 0 and Wsh =350 m/s.  As observed by Demko [25], at the higher 

shaft speeds (Taylor number) a secondary recirculation zone appears due to the 

centrifugal forces generated by the induced tangential velocity. This is what causes the 

carry over coefficient to decrease with increasing Taylor Number. This shows that 

increasing shaft speed increases the efficiency of seals with high Reynolds number while 

the change for the low Reynolds number is not significant. Further these changes are 

more important for seals with high clearance to pitch ratios only. This observation is 

explained by seeing the streamlines below for low c/s ratio at different shaft RPM‟s. 

 

Fig 6.23 Mean flow streamlines for Re=10000 at Wsh =0 for G4 
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Fig 6.24 Mean flow streamlines for Re=10000 at Wsh =350m/s for G4 

 

 Comparing Figure 6.23 and Figure 6.24 it is observable that the carry over 

coefficient for Figure 6.23 is less than for Figure 6.24 because there is additional 

throttling occurring in the second case due to presence of two recirculation zones. This 

leads to additional head loss. So from the above discussion we came to the conclusion 

that for a given Shaft RPM and Reynolds Number increment in will increase carry over 

coefficient. The results are mentioned in Table 2 below and data used for Figures 6.21 

and 6.22 is shown in Table 3 underneath.  

 

Table 2 Effect of Tooth Width and c/s on Carry over Coefficient 

 Tooth width (w) Carry over coefficient (γ) 

Large (c/s=0.0375) G4 & G5 Increases Increases 

Small (c/s= 0.0075) G1 &G2 Increases Increases 



 

   

  

5
7
 

    Table 3 Reynolds Number and Shaft RPM used for simulation 

Geometry Reynolds 

Number 

Shaft RPM 

2 500 0 1666.65 3333.33 5000 6666.66 8333.35 9999.99 11666.65 

1,2,3,4,5 1000 0 1666.65 3333.33 5000 6666.66 8333.35 9999.99 11666.65 

1,2 1500 0 1666.65 3333.33 5000 6666.66 8333.35 9999.99 11666.65 

2 1800 0 1666.65 3333.33 5000 6666.66 8333.35 9999.99 11666.65 

1,2,3,4,5 2000 0 1666.65 3333.33 5000 6666.66 8333.35 9999.99 11666.65 

1 2300 0 1666.65 3333.33 5000 6666.66 8333.35 9999.99 11666.65 

1 2500 0 1666.65 3333.33 5000 6666.66 8333.35 9999.99 11666.65 

3 3000 0 1666.65 3333.33 5000 6666.66 8333.35 9999.99 11666.65 

3 3500 0 1666.65 3333.33 5000 6666.66 8333.35 9999.99 11666.65 

3 4900 0 1666.65 3333.33 5000 6666.66 8333.35 9999.99 11666.65 

4,5 5000 0 1666.65 3333.33 5000 6666.66 8333.35 9999.99 11666.65 

4,5 10000 0 1666.65 3333.33 5000 6666.66 8333.35 9999.99 11666.65 

4 14000 0 1666.65 3333.33 5000 6666.66 8333.35 9999.99 11666.65 

5 16000 0 1666.65 3333.33 5000 6666.66 8333.35 9999.99 11666.65 
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7. DISCHARGE COEFFICIENT 

 

 After obtaining an understanding about the carry over coefficient which 

describes the percentage kinetic energy being dissipated in a cavity, the next step is to 

define another coefficient used to calculate the total pressure loss in a labyrinth seal. In 

this work, these losses are represented with the symbol Cd and call it the discharge 

coefficient. This coefficient is used to represent both the losses under the tooth and in the 

cavity combined. The formulae for this coefficient is as mentioned below: 

 

    
 ̇

  √    (     )
  

 

where  ̇ is used to denote the mass flow rate through the labyrinth seal, while    and 

   represent the inlet and exit pressures across the tooth and   defines the density of the 

fluid (which is variable for compressible fluid such as air and constant for water). Both 

these pressures are supposed to be calculated from the center of the cavity to the center 

of the next cavity as shown in the Figure 7.1 below by the points P1 and P2. For 

compressible flow density   is the value where pressure value    is measured.  
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Fig 7.1 Carry over coefficient calculation points 

 

Once the value of the discharge coefficient and the external pressure field 

distribution is known, they can readily be used in the calculation of the mass flow 

leakage through the labyrinth seals. This has a great advantage in the loss estimation in 

the design of new turbo machinery or changing the worn out seals of a running turbine 

during its overhaul. It can also save time for the manufacturer and experimental persons 

involved in the design of these machines. Furthermore it can even be used to simulate 

the flow through turbines, compressors and pumps. Also it would be beneficial in rotor 

dynamic calculations where the accuracy of the damping coefficients for labyrinth seals 

entirely depends upon the correct prediction of the flow through the labyrinth seals.  

 In many of the previous investigations it has been shown that the discharge 

coefficient significantly varies for the first tooth from subsequent teeth. This change 

P1 P2 
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could be attributed to the carry over coefficient of the previous cavity which 

substantially changes the discharge coefficient of the intermediate teeth. This effect is 

not present for the first tooth so the change in the behavior of the discharge coefficient is 

obvious. The Figure 7.2 shown below further supports this statement.  

 

 

Fig 7.2 Variation of Cd with tooth (Water, G4, Re=2000,Wsh =0) 

 

 In this current research work all the geometries have 4 teeth. Therefore the 

effects of various geometrical and flow parameters on the first tooth Cd
1tooth

 are 

considered separately from that on the multiple downstream teeth. The first tooth will be 
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7.1 First Tooth 

 

7.1.1 Effect of Reynolds Number on Coefficient of Discharge 

 In this subsection the effect of Reynolds number on the discharge coefficient of 

the first tooth of water seals is analyzed. For this study, the geometry chosen is G3 (s=4, 

h=4, c=0.06, w=1) (all dimensions in mm) where the Reynolds number varies from 1000 

to 4900. 

  

 

Fig 7.3 Variation of Cd
1tooth

 with Re (Water, G3, 0 RPM) 

  

From the above Figure 7.3, it can be observed that the discharge coefficient is 

increasing with Reynolds number. This implies that the seal becomes less effective to 

fluid flow losses by decreasing its friction to fluid flow. This can be explained as follows. 

The value of carry over coefficient increases with increasing Reynolds Number, so 

Cd
1tooth = 1E-12Re3 - 1E-08Re2 + 7E-05Re + 0.5562 
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kinetic energy loss goes down. This implies there is less total pressure head loss. The 

values of Cd1tooth follow the same trend as carry over coefficient.  Also the value of 

coefficient of discharge for first tooth (Cd
1tooth

) is limited by 1 (Bernoulli‟s flow no loss).   

 

7.1.2 Effect of the Clearance Ratio on Coefficient of Discharge  

 The effect of the major geometrical parameter clearance on the coefficient of 

discharge is analyzed next. The dimensionless parameter, clearance to pitch ratio (c/s) is 

used to present the results in terms of non-dimensional numbers. This ratio used is the 

same as used for the subsection on carry over coefficient. This had been done 

intentionally to compare the effects of other losses parallel to the carry over coefficient 

while observing the trend for discharge coefficient variation on various parameters.     

 

 

Fig 7.4 Variation of coefficient of discharge with Re for different c/s ratio 
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 From the above Figure 7.4 it is observed that the Coefficient of Discharge 

asymptotically approaches the value of 1 while increasing the Reynolds number. This 

physically signifies no losses or the incapability of the seal to stop flow losses. On the 

other hand it decreases drastically with the decreasing clearance to pitch ratio. This 

follows the trend for the carry over coefficient becoming lower as c/s decreases which 

indicates more kinetic energy being dissipated which reduces the pressure recovery in 

the cavity which decreases the Coefficient of discharge .There is a decrease of 14% in 

the discharge coefficient with the decrease of the clearance to pitch ratio by 2.5 times 

(from 0.0375 to 0.015). Increasing the clearance by a factor of 5 (from 0.03 to 0.15) 

increases the discharge coefficient by 33%.  Also we could observe that higher Reynolds 

number and clearances have more deviation from the curve than the lower Reynolds 

number and clearances.   

 

7.1.3 Effect of Tooth Width on Coefficient of Discharge 

 In the previous subsection it was observed that both the discharge coefficient and 

carry over coefficient increases with increasing clearance to pitch (c/s) ratio. But those 

results are valid for a fixed tooth size. The effect of changing the tooth width to pitch 

ratio (w/s) parameter upon the variation of the discharge coefficient will be addressed 

now. In this comparison, geometry G1 and G2 with the same clearances but different 

tooth size (increment from 0.03mm to 1 mm, 97%) will be used.  
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Fig 7.5 Variation of coefficient of discharge with Re for different w/s ratio 

  

 From the Figure 7.5 it can be noted that the changes in the coefficient are more 

gradual for the small tooth width seals than for wide tooth seal geometry at the same 

Reynolds number. Also contrastingly while the change for the small tooth is opposite to 

that of the larger tooth.  This is an interesting fact which reveals the contrasting different 

effect of tooth width on coefficient of discharge as compared to carry over coefficient. 

The reason for smaller tooth decreasing discharge coefficient with increasing Reynolds 

number could be attributed to that fact that recirculation above the tooth flushes away 

with the increasing inertia of fluid. For the wider tooth geometry G2, the main parameter 

affecting the discharge coefficient is the shear stress loss which increases with the 

increase of Reynolds number due to increasing velocity gradients. Both the above 

reasons could be better understood by seeing the streamlines for the two geometries 

below in Figure 7.6 and Figure 7.7 respectively. 
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Fig 7.6 Streamlines for G1 ( Wsh =0 & Re=2000) 

 

 

 

Fig 7.7 Streamlines for G2 ( Wsh =0 & Re=2000) 
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7.1.4 Effect of Shaft Rotation on Coefficient of Discharge 

 In previous subsections the effects of the main geometrical parameters i.e. tooth 

width to pitch ratio (w/s) and clearance to pitch (c/s) ratio on the discharge coefficient 

were presented. The effect on shaft rotation on the discharge coefficient will be 

presented next. For this subsection the Reynolds number is fixed for a chosen geometry.  

 

 

 

 

Fig 7.8 Variation coefficient of discharge for different shaft surface speeds 
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intensity of the vortex formed upstream of the first tooth increases with the shaft speed. 

This increases resistance to the flow at the entrance of the first tooth. Additionally the 

occurrence of secondary vortex at high shaft speed also increases the flow losses by 

creating throttling of the fluid in the cavity. The shear stress losses also increase as the 

shaft RPM increases due to higher velocity gradients at the boundary layer and increased 

pressure gradient throughout the fluid which increases the forced vortex strength in the 

cavity. The above explanation is more evident from the Figures 7.9 & 7.10 below. 

 

 

Fig 7.9 Streamlines upstream of first tooth for Wsh =0 for G2 and Re=2000 

 

 

Fig 7.10 Streamlines upstream of first tooth for Wsh =350 for G2 and Re=2000 
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7.2 Intermediate Tooth of a Multiple Tooth Labyrinth Seal 

 

7.2.1 Effect of Reynolds Number on Coefficient of Discharge  

 In this subsection the variation of discharge coefficient for intermediate teeth 

with Reynolds number will be analyzed. This study is for the water seals with 

compressible effect being considered in the next section on compressibility factor. For 

better comparison of this study, second tooth of geometry G3 (s=4, h=4, c=0.06, w=1) is 

being used (same as used for the first tooth coefficient of discharge study). The Reynolds 

number varies from 1000 to 4900.  

 

 

Fig 7.11 Variation of Cd with Re, G3 (tooth2, water) 
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 The Figure 7.11 shows that the discharge coefficient increases with Reynolds 

Number. This trend is same as the carry over coefficient which increases with Reynolds 

Number. Other losses at the tooth also increase due to increasing pressure difference and 

velocity gradients which causes more losses. Also to note, this change is similar to the 

first tooth discharge coefficient variation only the Cd is larger. Thus the upstream tooth 

channeling the through flow to the region upstream of the next tooth increases the Cd for 

the downstream tooth. 

 

7.2.2 Effect of the Clearance Ratio on Coefficient of Discharge 

 The effects of the geometry on labyrinth seal flow are investigated next. This is 

done using the dimensionless parameter clearance to pitch ratio (c/s) for the ease of 

comparing different results.    
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Fig 7.12 Variation of Cd with Re for different c/s ratio (tooth2, water) 
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could perform well for small Reynolds numbers. There is a decrease of 11% in the 
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observable that at higher Reynolds number and clearances there is more deviation from 

the curve than the lower Reynolds number and clearances which could be attributed to 

the fact of increasing demand for computational accuracy as the mesh nodes requirement 

increases significantly at high Re.   

 

7.2.3 Effect of Tooth Width on Discharge Coefficient 

 In the previous subsection we observed that the discharge coefficient and carry 

over coefficient increases with increasing clearance to pitch (c/s) ratio. But those results 

are true only for fixed tooth size. The effect of changing the tooth width to pitch (w/s) 

ratio on the discharge coefficient will be considered now.  In this comparison the 

geometry used to study the variation of the first tooth will be used for easy comparison 

(with water as working fluid). G1 and G2 with the same clearances but different tooth 

sizes (from 0.25 to 0.03 mm (88%) will be used. 

 From Figure 7.13 it can be noted that the coefficient of discharge is less for the 

tooth with higher w/s ratio. This behavior is opposite to that suggested by the carry over 

coefficient. While the flow losses in the cavity decreases with increasing tooth width at 

the same time the total head loss increases as indicated by discharge coefficient. It can 

be concluded that there should be an optimum tooth width for a given pitch where the 

flow losses (seal performance) are maximized. A more detailed investigation in this area 

is required.    
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Fig 7.13 Variation of Cd with Re for different w/s ratio (tooth2, water) 
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    Fig 7.14 Variation Cd for different shaft speed, G2 (tooth2, water, Re=2000) 
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streamlines of this flow field in the cavity it is concluded that there is an additional 

throttling occurring for the partial flow going below the second vortex formed at high 

shaft RPM as shown in Figures 7.15 and 7.16 below.  

 

 

Fig 7.15 Mean flow streamlines for Re=2000 at Wsh =0 for G2, tooth 2 

 

 

Fig 7.16 Mean flow streamlines for Re=2000 at Wsh =350m/s for G2, tooth 2 
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7.3 Discharge Coefficient Dependence upon Tooth Position, W/S, C/S, Ta and Re 

 In this subsection we will study the effect on discharge coefficient for all 

different flow and geometric conditions considered. This study is done by dividing the 

simulations used for the current study into two categories based on the tooth width to the 

pitch ratio.  

 Figures 7.17 and 7.18 present the discharge coefficients for all cases considered 

using water as the working fluid. The range of Taylor Number decreases with decreasing 

c/s due to the definition of the Taylor number even though the shaft speeds are the same. 

The Reynolds numbers decrease with decreasing c/s since a maximum pressure drop of 

200atm was considered for all the cases. Thus the Reynolds number for small c/s is 

lower since the smaller clearance reduces the mass flow rate.  

 The discharge coefficient for the first tooth decreases with increasing Reynolds 

number and decreasing Taylor number for both w/s values. The opposite is true for all 

the interior teeth. The interior teeth all possess very similar discharge coefficient 

distributions. Discharge coefficient is very low (0.2) for low Reynolds number, high 

Taylor number flows. This is due to the centrifugal forces causing the secondary 

recirculation zone which causes most of the through flow to travel a path deep into the 

cavity. This enhances kinetic energy dissipation and lowers the value of discharge 

coefficient. As the Reynolds number increases, the value of discharge coefficient 

increases for all Taylor numbers. At the highest Reynolds number, the effect of shaft 

speed is reduced, appearing only at the maximum value Taylor number for the largest c/s. 

As c/s decreases, the range of discharge coefficient variation decreases. The smaller 



 

    

  

7
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Tooth 1 

 

Fig 7.17 Cd changes for Ta, Re and C/S for W/S =0.25 (G2, G3 & G5) 
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Fig 7.18 Cd changes for Ta, Re and C/S for W/S =0.0075 (G1 & G4)
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values of c/s have lower values of discharge coefficient indicating the release more 

effective with smaller values of c/s. The larger tooth width (w/s) reduces the value of 

discharge coefficient for the lower values of c/s. Thus for an optimal tooth on rotor seal 

design smaller clearances and larger tooth widths are desired.  The above effect of tooth 

width for a given shaft RPM and Reynolds Number can be concluded as shown in the 

Table 4 below: 

 

Table 4 γ variation with C/S and tooth width 

 Tooth 

width (w) 

Carry over 

coefficient (γ) 

Discharge 

Coefficient T1 

Discharge 

Coefficient 

T2 

Large (c/s=0.0375) 

G4 & G5 

Increases Increases Increases Increases 

Small (c/s= 0.0075) 

G1 &G2 

Increases Increases Decreases Decreases 

 

 From the above table we conclude that the tooth width could be useful only 

clearance to pitch ratio is low or for low clearance seals but for high clearance seals this 

effect is reversed. This phenomenon could be explained using the fact that for the same 

Reynolds number throttling is very less for high clearance geometries and the 

corresponding conversion of pressure to kinetic energy (to be dissipated) is negligible 

however, for the small clearance geometries we have high conversion of pressure energy 

to kinetic energy whose dissipation in the tooth clearance and boundary plays a major 

role in deciding the value for discharge coefficient.   
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8. COMPRESSIBILITY FACTOR 

 

 The earlier subsections basically dealt with water as the working fluid to 

determine the various effects of seal geometry and flow parameters on carry over 

coefficient and discharge coefficient. All the empirical relations mentioned in the graphs 

were basically used to define the variance of the primary factors i.e. carry over 

coefficient and discharge coefficient with different boundary conditions. This was done 

specifically because mathematically the problem is an elliptic problem defined by the 

Navier-Stokes equation. However, in the industry gas seals in Gas Turbines and 

Compressors are also as common as water seals in pumps. Therefore the study cannot be 

completed without understanding the effect of the compressibility on the various other 

factors studied. As Saikishan [21] said in his study that the compressibility factors need 

to be considered only when the pressure difference across the teeth goes below the factor 

of 0.7. To verify this pressure limit we will study the variation of the discharge 

coefficients when pressure across the gas seals goes below 0.7 and also the water seals at 

the same Reynolds Number and Geometry.  
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Fig 8.1 Variation of discharge coefficients at different pressure ratios 

  

 From the Figure 8.1 it is validated that the assumption of the pressure ratio of 

limit 0.7 is correct. From the Figure 8.1 it is visible that the dark black circles of air with 

Pressure ratio greater 0.7 coincide with the corresponding discharge coefficient of water, 

while the blue hexagonal symbol of air coefficient for pressure ratio less than 0.7 does 

not. 

 In this work the effect of compressible fluid is defining by the compressibility 

factor ψ, as was defined by Saikishan in his work. So following the same definition the 

compressibility for the current work is defined as the ratio of the discharge coefficient of 

air vs. the discharge coefficient of water.  
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 This definition by itself considers the effect on compressibility on carry over 

coefficient because we have included that in the definition of the discharge coefficient.  

In many other previous works we do find the definition of compressibility following the 

same trend as including here by Hodkinson [3], Vermes [18]. All the people who used 

the Martin‟s basic equation added different coefficients to determine the compressibility 

factor either empirically or on the basis of some hypothesis. Truly none of them 

accurately defined the compressibility factor earlier because either the assumptions made 

were wrong and also the disability to correctly solve the  turbulent flow regime whose 

accuracy cannot be more than the CFD solver code used to solve them. Further we are 

going to analyze the effects of various non- dimensional fluid and geometrical 

parameters on the compressibility factor as we did for the carry over and discharge 

coefficients earlier. 

 

8.1 Effect of Position of Tooth on the Compressibility Factor 

 Figure 8.2 shows the effect of compressibility for both the first tooth and the 

second tooth. The need for this study arises after coming across the difference in the 

value of the discharge coefficient. Also, as the absolute pressure in each seal cavity 

decreases in the downstream direction, the pressure ratio increases. The minimum value 

usually occurs at the last tooth where the flow may be choked.   

. 
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Fig 8.2 Variation of compressibility factor with tooth position 

  

 

 From the above Figure 8.2 it is clearly visible that the compressibility factor 

variation is negligible with the tooth position so it becomes valid that the relations that 

would be found between flow parameters and geometrical parameters on compressibility 

will be valid for the entire teeth series similarly. So this eliminates the need to separately 

analyze the first tooth from the other teeth on the labyrinth seals for all the parameters 

suspected to change it. 

 

8.2 Effect of Flow Parameters on Compressibility Factor 
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Fig 8.3 Variation of compressibility factor with pressure ratio 

  

 For the Figure 8.3 geometry, G2 has been chosen due to the similar Reynolds 

number simulation for air and water cases as compared to that for the other geometries. 

For the current graph, the pressure ratio across the last tooth has been chosen because of 

the pressure ratio increases across the tooth as the flow progresses from upstream to 

downstream as known from Gas Dynamics. From the above graph it is clear that there 

exists a linear relation between Pressure Ratio and Compressibility Factor. This fact is 

exactly the same as in the case of tooth on rotor cases except that it is more prominent 

for the tooth on rotor case than the tooth on stator labyrinth arrangement. This is because 

increasing Reynolds number increases the pressure ratio more in case of tooth on rotor 

than the tooth on stator. This fact can be attributed to the reason that the boundary layer 
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seal area is rotating along with the shaft. So there is more energy transfer to increase the 

pressure ratio of the fluid flowing through the latter case.  In other words we could say 

that for same geometry of both the teeth arrangement, tooth on rotor has more pressure 

difference across the seal so the compressibility is more prominent here.    

 

8.3 Effect of Clearance on Compressibility Factor 

 Three different clearances to pitch ratios will be examined to determine clearance 

effect upon the compressibility factor. This change is studied by considering geometries 

with same geometrical features apart from clearances. For this reason, the geometries G2, 

G3 and G5 qualify for this test. 

 

 

 

Fig 8.4 Variation of compressibility factor with c/s ratio 
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 From the above Figure 8.4 it is seen that the compressibility factor does not 

varies much with the clearance to pitch ratio. This implies there is negligible change 

with this factor on compressibility. 

 

8.4 Effect of Tooth Width on Compressibility Factor 

 In this subsection the effect of changing the tooth width to pitch ratios on the 

compressibility factor will be examined. This change is studied by considering 

geometries with same geometrical features and apart from tooth width will be considered. 

For this reason the geometries G1and G2 qualify for this test. Figure 8.5 shows that  

 

 

Fig 8.5 Effect of compressibility factor with w/s ratio 
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8.5 Effect of Shaft Rotation on Compressibility Factor 

 The effect of changing the shaft surface speed on the compressibility factor will 

be analyzed next. This change is studied by considering various shaft speeds without 

varying the Reynolds number or geometry. For this study geometry G1 and a Reynolds 

number of 1000 were chosen. This choice of geometry and Reynolds number is purely 

arbitrary and comparison could be done using other geometries as well.  

 

 

 

Fig 8.6 Effect on compressibility factor with shaft speed 
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water and air are same for same Reynolds Number and Geometry are same for 

increasing RPM. 

 

 

8.6 Contours of Compressibility Factor 

 

Fig 8.7 Contour of ψ for Re=1000, G1 

 

The Figures (8.7, 8.8, 8 9, 8.10 &8.11) gives an illustration of the variation of 

compressibility factor by varying tooth geometry and shaft speed. 
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                                              Fig 8.8 Contour of ψ for Re=1500, G1 

 

 

 

Fig 8.9 Contour of ψ for Re=2000, G1 
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 Fig 8.10 Contour of ψ for Re=500, G2 

            

 

 

Fig 8.11 Contour of ψ for Re=1000, G2 
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Fig 8.12 Contour of ψ for Re=1500, G2 

 

 

 

Fig 8.13 Contour of ψ for Re=1000, G3 
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Fig 8.14 Contour of ψ for Re=2000, G3 

 

 

Fig 8.15 Contour of ψ for Re=1000, G4 
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 Similarly Figures (8.12, 8.13, 8.14, 8.15, 8.16, 8.19 & 8.20) shows variation of 

compressibility factor by varying tooth geometry and shaft speed. 

 

 

      Fig 8.16 Contour of ψ for Re=2000, G4  

                                   

 

Fig 8.17 Contour of ψ for Re=5000, G4 
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Fig 8.18 Contour of ψ for Re=1000, G5 

 

 

Fig 8.19 Contour of ψ for Re=2000, G5 
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Fig 8.20 Contour of ψ for Re=5000, G5 
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dependence. This is due to the changing nature of the recirculation zone with the value 

of Reynolds number and Taylor number. 

 Increasing the tooth width to pitch ratio to 0.25 (G2, Figures 8.10 to 8.12) at 

same pressure ratio does not change the effects of compressibility (larger compressibility 

factor values) tremendously. The effect of Taylor Number is also decreased with this 

much wider tooth width. There is still a significant increase in compressibility factor as 

Reynolds number increases. This further confirms that the pressure ratio is the only 

governing factor which changes the compressibility.   

 Maintaining the large tooth width and increasing the seal clearance to pitch ratio 

(G3, w/s =0.25 and c/s=0.015) compressibility factors is decreases slightly. This implies 

an increment in compressibility. Taylor number dependence is further reduced.  

 The two geometries with largest clearance to pitch ratio cases G4 (w/s =0.0075 

and c/s=0.0375) and G5 (w/s =0.25 and c/s=0.0375) had minimized data obtained at 

lower Reynolds numbers as indicated by the small regions of contours.   The 

compressibility factor is also changing at a comparatively slower pace than that from the 

geometries with smaller clearance to pitch ratio cases G1 (w/s =0.0075 and c/s=0.0075) 

and G2 (w/s =0.25 and c/s=0.0075). Also to note that the effect of changing clearance to 

pitch (c/s) is more pronounced than by changing tooth width to pitch (w/s) as visible 

from Figures 8.7 and 8.15 for G1and G4 for Re=1000.  

 From the above discussions we conclude that compressibility is only a function 

of pressure ratio which change by varying Taylor Number and Reynolds Number for a 

flow field. Any change in geometry and boundary condition keeping pressure ratio 
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constant across tooth will not change the compressibility factor. This agrees well with 

definition of compressibility factor which has been defined to take care of changing fluid 

density (only a function of pressure and temperature for a given ideal working fluid. 

Further it has been also confirmed that density ratios and pressure ratios across a tooth 

are fairly same. This further supports the results obtained.    
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9. SUMMARY 

 

9.1 Carry over Coefficient 

 The carry over coefficient was calculated using the divergence angle of the seal. 

The definition given by Hodkinson was used to calculate the carry over coefficient. It 

was found that it depends upon flow conditions, geometry of the seal and the changing 

boundary conditions. It was found that for cases with water as working fluid carry over 

coefficient does increase with Reynolds number. This increase is same in nature for the 

case on stator arrangement. The tooth clearance to pitch (c/s) was determined to be the 

major geometrical parameter to determine the carry over coefficient. It was observed that 

the tooth width to pitch ratio (w/s) cannot be neglected at higher Reynolds number flow 

where its effect is a major consideration. Shaft RPM effect was very complex which 

suggests to study about the changing shear forces with changing flow field in the cavity 

from one vortex to the complete generation of secondary vortex at high Taylor number. 

By comparing all the factors it was concluded that Taylor number decreases at higher 

carry over coefficient.    

 

9.2 Discharge Coefficient 

 It is defined to calculate the total pressure loss in a labyrinth seal. This coefficient 

was found to vary with the position of the teeth on the shaft. While the first tooth was 

found to have more losses than the intermediate teeth as was for the teeth on stator 
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configuration. The discharge coefficient was found to increase with the Reynolds 

number for a given geometry and shaft speed. Among the geometrical factors relation of 

discharge coefficient with tooth clearance to pitch (c/s) was found at lower Reynolds 

number which dies away with the increasing flow inertia. Tooth width to pitch ratio (w/s) 

was also found to change discharge coefficient at low Reynolds number. Taylor number 

increment also found to change discharge coefficient in the opposite direction. 

 

9.3 Compressibility Factor 

 This factor is defined to correlate the flow losses of compressible fluid to 

incompressible flow. It is calculated using the ratio of discharge coefficient for air to that 

of water at the same Reynolds number for a given geometry and tooth. It was found to 

be mainly dependent on shaft RPM and pressure ratio. While for the tooth width to 

clearance ratio (w/s) and tooth width to clearance ratio (w/c) affects the compressibility 

factor negligibly less. It is also found that tooth position also does not effect this value 

but increases linearly with the shaft RPM. 

 

9.4 Suggestible Tooth Configuration 

 So from this study we conclude that the most efficient tooth geometry is decided 

by the shaft RPM in the following way. For stationary shaft we need to have small c/s 

and low Reynolds Number. Further it could be divided into two cases using the Table 5 

below: 
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Table 5 Cd and γ variation with c/s ratio 

 Tooth 

width (w) 

Carry over 

coefficient (γ) 

Discharge 

Coefficient 

T1 

Discharge 

Coefficient 

T2 

Large 

(c/s=0.0375)     

G4 & G5 

Increases Increases Increases Increases 

Small             

(c/s= 0.0075)     

G1 &G2 

Increases Increases Decreases Decreases 

 

 

For the lower clearance to pitch ratio (c/s) we need to have large tooth width but for the 

larger clearance to pitch ratio (c/s) we need to have small tooth width.  For the rotating 

shaft we need low Reynolds number for better performance of intermediate tooth and 

high Reynolds for first tooth (other ratios being same as earlier). This implies we need to 

adjust the shaft speed for a given mass flow rate to maximize the pressure difference 

across the seal. Additionally we also need more tooth width for small clearance to pitch 

ratio (c/s) but for the larger clearance to pitch ratio we need to have small tooth width.   
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10. RECOMMENDED FUTURE WORK AND CONCLUSION 

 

 The current research work has been done within few limitations and 

simplifications. So there is a need of study the effects of these additional factors on the 

flow field defining so that we could have a more versatile formulae for the application. 

 

1. This study involves the study of tooth on the same shaft diameter. So we need to 

further study the effect of changing the shaft diameter for the configuration of tooth on 

rotor.  

2. The current work involves the study of various teeth with different flow and geometric 

limitations. So there is a need to explore the same effect with the increasing tooth 

clearances and tooth width. This would help to understand more about the different seals 

used in the industry which are not limited by the geometric and flow criteria of this study. 

3. The current study uses ideal air as the compressible fluid for the study so we need to 

explore the effect of the different real gases on the losses through the seals. This should 

be incorporated with real gas equation where more accurate leakage results could be 

derived for the real gas in application in various turbines and the compressors. 

4. This study is limited to the straight through rectangular tooth on rotor. So there is a 

need to explore the seals with different tooth geometries and different arrangements. 

This includes staggered and stepped seals.  

5. Different papers have done the fluid analysis work using various CFD turbulence 

models. So there is a need to explore the changes in the results made by these different 
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turbulence models and compare them with the experimental results where shaft speed 

goes higher than Mach 1. This might suggest a change in turbulence models with the 

increasing shaft speed. 

6. The viscosity of the fluid under high pressures such as 200 atm for water has been 

considered to be constant. So an effort could also be made to see the variance in the 

mass flow leakages with the variation of the fluid viscosity.     
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APPENDIX  

                                                                                     Cavity 2 

 

Fig A.1 γ changes with Ta, Re and C/S for W/S =0.25 (G2, G3 & G5) 
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Fig A.2 γ changes with Ta, Re and C/S for W/S =0.0075 (G1 & G4) 
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Cavity 3 

 

Fig A.3 γ changes with Ta, Re and C/S for W/S =0.25 (G2, G3 & G5) 
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Fig A.4 γ changes with Ta, Re and C/S for W/S =0.0075 (G1 & G4) 
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Tooth 2 

 

Fig A.5 Cd changes for Ta, Re and C/S for W/S =0.25 (G2, G3 & G5) 
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Fig A.6 Cd changes for Ta, Re and C/S for W/S =0.0075 (G1 & G4) 
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Tooth 3 

 

Fig A.7 Cd changes for Ta, Re and C/S for W/S =0.25 (G2, G3 & G5) 
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Fig A.8 Cd changes for Ta, Re and C/S for W/S =0.0075 (G1 & G4) 
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Tooth 4 

 

Fig A.9 Cd changes for Ta, Re and C/S for W/S =0.25 (G2, G3 & G5) 
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Fig A.10 Cd changes for Ta, Re and C/S for W/S =0.0075 (G1 & G4) 
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  Table 6 Seal geometries used for simulation 

Geometry 
No. of 

Teeth 

Clearanc

e (mm) 

Pitch 

(mm) 

Tooth 

Width 

(mm) 

Tooth 

Height 

(mm) 

Shaft 

Diameter(mm) 

c/s 

Ratio 
w/s Ratio 

G1 4 0.03 4 0.03 4 60 0.0075 0.0075 

G2 4 0.03 4 1 4 60 0.0075 0.25 

G3 4 0.06 4 0.03 4 60 0.015 0.25 

G4 4 0.15 4 0.03 4 60 0.0375 0.0075 

G5 4 0.15 4 1 4 60 0.0375 0.25 
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Table 7 ∆P ( Pascal) variation with shaft surface speed Wsh (m/s) 

G1 

 
Wsh =0 Wsh =50 Wsh =100 Wsh =150 Wsh =200 Wsh =250 Wsh =300 Wsh =350 

Re ∆P ∆P ∆P ∆P ∆P ∆P ∆P ∆P 

1000 3413788.21 3582087.5 3849660 4220801 4605168 4880281 5367920 5815410 

1500 7618018.42 7777858 8046450 8388645 8849893 9120362 9572990 10155160 

2000 13335988.9 13339244.7 13645164 13869371 14048082 14725855 15181390 15548790 

2300 17609264.4 17521892.8 17883948 17974905 18057876 18507996 19189750 21876750 

2500 20732839.8 20930433.7 21319119 21620355 21796696 22344856 22814021 23653760 

  
 

      

G2 

 
Wsh =0 Wsh =50 Wsh =100 Wsh =150 Wsh =200 Wsh =250 Wsh =300 Wsh =350 

Re ∆P ∆P ∆P ∆P ∆P ∆P ∆P ∆P 

500 1881144.9 2123379.2 2667891 3289486 3925837 4558152 5163120 5865900 

1000 5693481.963 6040206.7 6814958 7733857 8693909 9733158 10745950 11870240 

1500 11547772.01 11923910.6 12806435 13713841 15112018 1653128 17878620 19309610 

1800 15399676.9 15759082.9 17145632 17854036 19401809 21246449 22731680 24397100 

2000 19238389.2 19597090.7 20383766 21187060 22732391 24707989 2641720 28063380 

 

 



 

    

  

1
1
7 

Table 5 Continued 

G3 

 
Wsh =0 Wsh =50 Wsh =100 Wsh =150 Wsh =200 Wsh =250 Wsh =300 Wsh =350 

Re ∆P ∆P ∆P ∆P ∆P ∆P ∆P ∆P 

1000 1067548.37 1278330 1642526 2115101 2550875 3120314 3716227 4266440 

2000 3586068.91 3859379.7 4390089 5045910 5762518 6649933 7548140 8552380 

3000 7231726 7859460 8485326 9285435 10144409 11083564 12052680 13006010 

3500 9551777.9 10662852.1 11239218 11981216 12931873 13946208 14832680 15380760 

4900 19190262.1 19560006 20222271 21196067 22281806 23731754 25142440 25887520 

  
 

      

G4 

 
Wsh =0 Wsh =50 Wsh =100 Wsh =150 Wsh =200  Wsh =250 Wsh =300 Wsh =350 

Re ∆P ∆P ∆P ∆P ∆P ∆P ∆P ∆P 

1000 149714.04 212518.4 372889 602588 895417 1239946 1670890 2190520 

2000 531987.14 606639.4 800710 1086246 1422267 1813900 2300910 2867710 

5000 2813623.2 3007869.1 3294635 3736807 4201751 4755694 5424090 6162240 

10000 10322883 11321274.4 11636887.92 12125717 12801673 13514839 14553730 15443910 

14000 2040130.6 21984314 22338780 22819598.2 23477846 24296908 26123339 25677100 

  
 

      

G5 

 
Wsh =0 Wsh =50 Wsh =100 Wsh =150 Wsh =200 Wsh =250 Wsh =300 Wsh =350 

Re ∆P ∆P ∆P ∆P ∆P ∆P ∆P ∆P 

1000 113718.33 202433.1 378622 577284 819587 1134888 1421010 1785780 

2000 385179.69 385179.69 748852 1034987 1448986 1906124 2382180 2917310 

5000 2113861.2 2281640.5 2618579 3070863 3588857 4218097 4899893 5736030 

10000 5892013 6393635 6912497.4 7491713 8230844 8999607 9777426 10643970 

16500 20960605 21063671 21692339 22466386 23437916 24376233 25322270 26468320 
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Fig A.11 Variation of pressure ratio across seal 
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Fig A.12 Variation of pressure ratio across seal 
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Fig A.13 Large teeth geometry 

 

 

 

Fig A.14 Small teeth geometry 
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 The above Figure (A.13 & A.14) shows the variation pressure ratios across 

different geometries for same Reynolds number/ mass flow rate. We could conclude 

from the Figure 12.1 that seals with small clearances and larger tooth width (G2) are 

performing better than the seals with lesser clearance and lower tooth width (G1).  

Further to notify from Geometries G4 & G5 (same clearance different tooth width) we 

note that the effect of tooth width is diminishing with increasing clearance where 

throttling process is not so effective. Figure 12.2 also shows the same result with more 

diminishing effect of tooth width with Reynolds number increasing where the pressure 

difference is coinciding each other. Another aspect to be noted is that pressure difference 

is increasing with shaft speed and the slope of increment does not matter change much 

with increasing shaft surface speed. 
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