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ABSTRACT 

 

A Genetic Algorithm Approach for Technology Characterization. (August 2012) 

Edgar Galvan, B.S., Texas A&M University 

Chair of Advisory Committee: Dr. Richard J. Malak 

 

It is important for engineers to understand the capabilities and limitations of the 

technologies they consider for use in their systems. Several researchers have investigated 

approaches for modeling the capabilities of a technology with the aim of supporting the 

design process. In these works, the information about the physical form is typically 

abstracted away. However, the efficient generation of an accurate model of technical 

capabilities remains a challenge. Pareto frontier based methods are often used but yield 

results that are of limited use for subsequent decision making and analysis. Models 

based on parameterized Pareto frontiers—termed Technology Characterization Models 

(TCMs)—are much more reusable and composable. However, there exists no efficient 

technique for modeling the parameterized Pareto frontier. The contribution of this thesis 

is a new algorithm for modeling the parameterized Pareto frontier to be used as a model 

of the characteristics of a technology. The novelty of the algorithm lies in a new concept 

termed predicted dominance. The proposed algorithm uses fundamental concepts from 

multi-objective optimization and machine learning to generate a model of the technology 

frontier. 
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1. INTRODUCTION 

 

It is important for engineers to understand the capabilities and limitations of the 

technologies they consider for use in their systems. Failure to appreciate what is 

achievable (or not achievable) by subsystem technologies can result in the selection of 

poor concepts, the derivation of poor design requirements (that are either unachievable 

or overly conservative), and excessive design iteration. However, it can be challenging 

for engineers to navigate the many competing considerations that arise in the 

development of large systems that have many interacting subsystems. 

Several researchers have investigated approaches for modeling the capabilities of 

a technology quantitatively with the aim of supporting technology selection, design 

space exploration, and trade-off analyses. A common thread among these works is that 

in order to model the capabilities of a technology, one abstracts away information about 

its physical form. Mathematically, the result is a model defined in the space of 

performance attributes for a given technology. With these models, designers can 

represent the abstracted capabilities, performance traits, or metrics of a component or 

system.  

It can be advantageous for engineers to use abstract models of competing 

technologies. Abstract models help engineers focus on the part of a problem most 

germane to decision making (i.e., what a technology can achieve rather than how it  

____________ 
This thesis follows the style of Journal of Mechanical Design. 
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achieves it). Abstract models can also provide engineers with the capacity to consider 

multiple physically heterogeneous technologies in the same variable space. For example, 

although batteries and fuel cells are very different physically, engineers can consider 

them both as energy storage technologies with the same performance attributes such as 

power density, energy density, and efficiency. Furthermore, abstract models can be 

desirable in a multi-organizational collaborative design setting. Because they abstract 

away low-level implementation details, they tend to hide proprietary information that 

collaborating organizations may not want to share. 

Several approaches have been proposed in the literature for capturing and 

modeling the capabilities of a component or system. Under set-based design approaches 

to technology characterization, one uses a mathematical representation of the set of 

performance attributes that are technically feasible [1, 2]. Initially, the components or 

designs are cataloged into a hierarchical structure. Then, the performance attributes of 

the feasible set of designs are abstracted to form descriptions for use in higher levels in 

the hierarchy. The union of the basic sets represents the achievable performance 

characteristics of the system. Designs are eliminated from consideration through 

propagation of interval constraints in the performance space [3]. Taking an engine 

design example, the constraints may be design specifications for air flow rate, 

horsepower, torque, and so on. Finally, a user provided cost function is used to select 

one of the remaining designs. A drawback of this approach is that designers must make 

restrictive assumptions about what is desirable in the performance space. When design is 

done by this approach, many degrees of freedom are removed from the design problem. 
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This can result in eliminating the most preferred design from consideration [4]. 

Furthermore, as the constraints are made more complex, the inherent computational 

complexity of propagating the constraints increases rapidly [3].  

Another approach involves the use of the Pareto-optimal frontier. Under this 

approach, one constructs a mathematical representation of the subset of performance 

attributes that are Pareto nondominated [5-7]. The benefits of this approach are that the 

dominance analysis step is relatively computationally inexpensive and will not eliminate 

the most preferred design [8]. The principle limitation of this approach is that designers 

must ensure that their preferences are monotonic in each attribute in order to perform 

dominance analysis. In many practical situations, a designer can formulate problems 

such that the monotonicity condition holds by defining the attributes appropriately. 

However, this reformulation is problem-specific and limits the reusability of the 

representation. This can be problematic since designers often wish to represent a system 

in terms of problem independent attributes, e.g., gear ratio, spring constants, etc. In these 

cases designers cannot apply Pareto dominance to eliminate designs from consideration. 

Malak and Paredis developed an extension of Pareto dominance—termed parameterized 

Pareto dominance—to address this limitation [9]. Using the concept of parameterized 

Pareto dominance, dominance analysis can be performed in the case where designers 

cannot determine a preference ordering for one or more attributes.  

The efficient generation of an accurate technical capabilities model remains a 

challenge. Set-based methods can be used, but require restrictive assumptions and 

computationally challenging constraint propagation methods. Pareto frontier methods are 
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more general in this respect, but yield models that are of limited use for subsequent 

decision making and analysis. Models based on parameterized Pareto frontiers—termed 

Technology Characterization Models (TCMs)—are much more reusable (can compose, 

etc.) [10]. However, there exists no efficient technique for generating an estimate of the 

parameterized Pareto frontier. The contribution of this thesis is a new algorithm for 

generating an approximation of the parameterized Pareto frontier for use in modeling the 

characteristics of a technology. The novelty of the algorithm lies in a new concept 

termed predicted dominance. The algorithm uses fundamental concepts from multi-

objective optimization and machine learning to search for solutions near the 

parameterized Pareto frontier. 

This thesis is organized as follows. Section 2 is an overview of technology 

characterization models. Section 3 contains a detailed definition and mathematical 

formulation of the problem of interest and prior methods. Section 4 is an introduction to 

multi-objective genetic algorithms in an engineering context. Section 5 is a detailed 

description of the proposed algorithm. Section 6 is an analysis of the performance of the 

algorithm on test problems followed by a demonstration. The thesis is concludes with 

Section 7 and 8 which are a discussion of the results and a summary, respectively.  
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2. TECHNOLOGY CHARACTERIZATION 

 

 Conceptual Foundation 2.1.

A Technology Characterization Model (TCM) is a mathematical representation 

of the capabilities of technology or component in the abstracted performance space [10]. 

The concept of abstraction involves mapping the feasible low-level design variable space 

to a higher level performance space using engineering analysis models. By abstracting 

the performance characteristics of a component or technology, designers can focus on 

those variables that relate component-level performance to system-level performance 

while ignoring low-level design variables and analysis models. A key benefit of using 

TCMs is the support of composability through abstraction; see [9] for proof of 

composability. Abstracting away the low level design variables allows designers to 

compare competing technologies that have different analysis models and design 

variables in the same performance space. For example, suppose automotive designers 

wish to explore various engine types. Engine concepts of interest might include a 

turbocharged inline 4-cylinder, a V6, and a V8 Diesel. Although these concepts have 

different design variables and analysis models, they can be compared in the same 

performance space in terms of fuel economy, horse power, cost, etc. Figure 1 is an 

example of abstraction and composition in the case where a designer has established a 

preference for every performance attribute. Through composition, the single TCM in 

Figure 1b can capture the capabilities and limitations of the competing technologies in 
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Figure 1a. A designer could then search a single unified model that captures the salient 

characteristics of the competing technologies.  
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Figure 1. Example of TCM composition for two competing technologies in the 
performance space. Figure (a) illustrates the separate TCMs before composition and 
figure (b) shows the composed TCM.  

 TCM Representation 2.2.

There are two principle methods for representing TCMs: (1) the entire feasible 

set of performance characteristic or attributes of a technology, and (2) a subset of the 

feasible set of performance attributes of a technology. The illustrations in Figure 1 are of 

TCMs that model the feasible set of performance attributes of a technology. However, 

many designs in the feasible space of performance attributes are provably inferior to 

others such that no rational designer would choose them. These designs are said to be 
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dominated, and the set of all nondominated designs is the nondominated frontier, 

illustrated in Figure 1 [11].  

Since a rational designer will always prefer designs on the nondominated 

frontier, the region to be modeled can be significantly reduced by eliminating the 

dominated designs from consideration. In the case where the designer has established 

preference direction for every performance attribute, classical Pareto dominance can be 

used to determine the nondominated designs. Minimization will be used throughout this 

thesis without loss of generality since maximizing   is equivalent to minimizing –  . 

Suppose designer preferences are monotonically decreasing in each performance 

attribute    for        . If                denotes a vector of performance 

attributes and      is the set of all feasible performance attributes, then classical 

Pareto dominance is defined as follows [12]:  

Definition 1. An alternative having attributes    is Pareto dominated by one with 

attributes    if and only if,   
                and   

              . 

Technology characterization models can also be generated in the case where a 

designer has established a monotonic preference direction for one or more performance 

attributes (termed dominators) but not others (termed parameters).For example, the 

designer of a transmission may know to reduce cost and increase reliability but may not 

have yet determined a preference direction for gear ratios. In this example, classical 

Pareto dominance cannot be used to eliminate undesirable (dominated) designs due to 

the presence of the parameter attribute [9]. Parameterized Pareto dominance, an 
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extension of classical Pareto dominance, can be used to eliminate designs that would 

never be preferred over the remaining designs [12]. For a system with attributes indexed 

      , let   denote the nonempty set of indices for the dominator attributes and   

denote the set of indices corresponding to the parameter attributes such that      

         and        The mathematical formulation of parameterized Pareto 

dominance is as follows [12]: 

Definition 2. An alternative having attributes    is parametrically Pareto dominated by 

one with attributes    if              ,   
            and   

           , where 

  is the set of parameter attribute indices and   is the (non-empty) set of dominator 

attribute indexes. 

In the case where there are no parameters,    , parameterized Pareto 

dominance reduces to classical Pareto dominance. It is important to note that an 

alternative can only dominate another if the parameter attributes are equal; one solution 

cannot dominate another if the parameter values are not equal. Using parameterized 

Pareto dominance, designers can identify and eliminate designs that cannot possibly be 

the most preferred and therefore do not need to be included in the TCM.  
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3. PROBLEM FORMULATION AND PRIOR METHODS 

 

 Search Problem Formulation 3.1.

In order to formalize the mathematical search problem for the parameterized Pareto 

set, it is helpful to first consider the case without parameters, i.e. the classical Pareto 

case. Suppose designer preferences are monotonically decreasing in each performance 

attribute,      ( )   ( )     ( ) , where   is the vector of optimization or decision 

variables. The search problem for the Pareto frontier is posed as follows: 

         
   

  ( )     ( )   ( )     ( )   

             ( )                   

                      ( )                   

(1) 

where   is the number of objective functions,   ( )                  are the 

inequality constraints, and   ( )                  are the equality constraints [8]. The 

set   is nonempty feasible region of the decision variable space. The optimization 

problem has multiple objectives,   ( )   ( )     ( ), that must be minimized 

simultaneously. The optimization problem has an infinite number of solutions that define 

the Pareto frontier.  

The search problem for the parameterized Pareto frontier is an extension of Eq. 

(1). Intuitively, this search problem can be thought of as an application of Eq. (1) at 

every combination of feasible parameter values. Consider the case with   performance 

attributes of which       are parameters such that               , where 
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         ( ). The feasible parameter region (set) is then               , where 

           ( )         . With this notation, Eq. (1) is extended to the case where one 

or more of the performance attributes are parameters as  

                        

        
   

  ( )     ( )   ( )       ( )   

                 ( )                  

                          ( )                  

      ( )              , 

(2) 

where   ( )   ( )       ( ) are the dominator objective functions and 

       ( )       ( )    ( )   are the parameter functions. This optimization problem 

has an infinite number of solutions that define the parameterized Pareto frontier. In the 

case where there are no parameters,    , the optimization problem reduces to the 

classical Pareto case in Eq. (1) since the set     and the constraint      ( ) is not 

present. The focus of this thesis is on an algorithm for approximating the set of solutions 

to Eq. (2). 

 Prior Methods 3.2.

In the parameterized Pareto dominance work in the literature, two main 

approaches for identifying design sites in the performance space have been reported: 

1. Using observational performance space data from part catalogs, data sheets, etc. 

2. Randomly sampling design space data and mapping those designs to the 

performance space using engineering analysis models. 
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Prior case studies have shown TCMs generated from observational performance data to 

be acceptable representations of the achievable range of performance [13, 14]. TCMs 

generated in this way approximate the information contained in a data base. The TCM 

can then be used to search the generalized space of capabilities to find solutions that are 

not in the data base but may be technically feasible. In this way, designers can leverage 

prior knowledge (e.g., catalog data) to describe the range of capabilities effectively and 

quantitatively. 

Observational data, however, is not always available to the designer. This is often 

the case for new innovative designs, highly complex components, and mass 

customization components. In order to address the case where observational data is not 

available, researchers have resorted to sampling engineering analysis models randomly 

or using design of experiments (DOE) procedure [10, 12, 15]. This work is significant 

because it extends the usefulness of TCMs. However, because random or DOE samples 

are unlikely to occur on or near the efficient set for many systems, this approach can 

require a very large number of samples. 

A possible alternative to random sampling is to directly apply multi-objective 

optimization (MOO) algorithms designed to solve Eq. (1) to Eq. (2). For an overview of 

MOO algorithms, see [8]. Recall from section 3.1 that Eq. (2) can be thought of as an 

application of in Eq. (1) at every combination of feasible parameter values. Therefore, 

MOO algorithms can be applied at various combinations of parameter values to 

approximate the space of solutions to Eq. (2). Suppose the problem of interest has a 

single parameter,    . In principle, a MOO algorithm could be applied at   different 
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parameter values to approximate the set     . The union of   solutions can then be 

used to define the parameterized Pareto frontier. However, a straightforward application 

of MOO algorithms to Eq. (2) may not be feasible for more complex problems. Suppose 

instead the search problem has   parameter attributes. The feasible space of parameter 

values is then               . In this case, the number of multi-objective search 

problems that must be solved grows according to   . If the required function evaluations 

are computationally expensive, this can become prohibitive even for low numbers of 

parameter attributes. Designers would benefit from a search algorithm that has a lower 

computational growth rate.  
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4. AN IMPROVED SEARCH ALGORITHM 

 

Genetic algorithms (GAs) are search and optimization procedures motivated by 

the principles of evolution and natural selection [16]. A GA typically begins its search 

with a random set of solutions, or members, called the population. Each member of the 

population is evaluated and assigned a fitness value using a fitness function. Then a 

termination condition is checked; if the termination criterion is not satisfied three main 

operators modify the population of the solutions: selection, crossover, and mutation. 

Each new population is termed a generation. Multi-objective Genetic Algorithms 

(MOGAs) are a type of MOO algorithm that uses the general GA strategy to solve the 

search problem in Eq. (1). The goals of a MOGA are to: 

1. Find a set of solutions close to the Pareto frontier. 

2. Maintain diversity in the solution set. 

Most MOGAs rely on the concept of dominance to assign higher fitness values to 

members closer to the Pareto frontier. In these algorithms, two members are compared 

on the basis of whether one dominates the other or not. The nondominated member is 

assigned a higher fitness value. The second goal is typically achieved through the use of 

diversity preservation operator. Several researchers have successfully approximated the 

set of solutions to Eq. (1) using MOGAs [17-19]. However, as discussed earlier, a 

straightforward application of MOGAs to Eq. (2) may not feasible due to the exponential 

computational growth pattern. Suppose that the problem of interest has     
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parameters, and that in order to approximate the parameter space, Eq. (1) is to be solved 

at      different parameter values. If the MOGA is to be run with a population size 

      and number of generations      . The total number of required function 

evaluations would be         . If each function evaluation takes just 5 seconds to 

evaluate the computational runtime would be over 3 years. Although this process is 

highly parallelizable, an approach with lower computational expense is desirable.  

In the proposed algorithm the general MOGA scheme and goals are adapted to be 

compatible with parameterized Pareto dominance. This way, the exponential 

computation growth pattern described above is avoided. An algorithm that solves the 

search problem in Eq. (2) should have similar goals as MOGAs does in solving Eq. (1). 

The principle difference being that rather than finding solutions close to the Pareto 

frontier, the algorithm must find solutions close to the parameterized Pareto frontier. The 

MOGA scheme is adapted by replacing the concept of classical Pareto dominance with 

parameterized Pareto dominance.  

However as stated in definition 2, parameterized Pareto dominance can only be 

performed on members with equal parameter values. Because GAs are variants of 

randomized search algorithms, this is unlikely to occur. Figure 2 illustrates this 

difficulty. Figure 2a is an illustration of classical Pareto dominance analysis in the case 

where the designer has monotonically decreasing preferences for attributes    and   . 

The nondominated members are those that have no other member within the rectangle 

created by the origin and itself. In Figure 2a, member   is dominated by   while 

members   and   are mutually nondominating. Figure 2b is an illustration of the case 
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where the designer has monotonically decreasing preference for attribute    but has not 

established a monotonic preference direction in   . In this case, a member can only be 

dominated by another with equal parameter values. In Figure 2b, none of the members 

can be said to be dominated since dominance can only occur along the dashed lines. 
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y1 y1

y2 y2

 
 

Figure 2. Illustration of dominance analysis on randomly generated design sites when 
classical Pareto dominance is (a) and is not (b) applicable. 

To overcome this difficulty we propose that dominance analysis be performed 

using design sites that are predicted to be feasible rather than current members of the 

population. In the proposed algorithm, a machine learning technique is used to predict 

the feasible domain in the performance space by using the current population as training 

data. A nondominated member is one that is not parametrically Pareto dominated by any 

point in the predicted feasible domain. The following section contains a more detailed 

explanation of this concept and introduces an algorithm for solving Eq. (2). 
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5. PREDICTIVE PARAMETERIZED PARETO GENETIC ALGORITHM 

 

Because of the reliance on predicted parameterized Pareto dominance, the 

proposed algorithm is called, Predictive Parameterized Pareto Genetic Algorithm 

(P3GA). The following is a high-level description of P3GA. 

1. Randomly initialize population. 

2. Determine predicted feasible domain based on the current population using 

machine learning. 

3. Assign fitness based on predicted parameterized Pareto dominance and a 

diversity preservation operator. 

4. If termination criteria have not been met, use selection, crossover, and mutation, 

operators to generate offspring and combine with parents. Else, terminate. 

5. Return to step 2. 

The procedure outlined closely parallels the general procedure of many MOGAs 

in the literature. The novelty of P3GA is in the concept of predicted parameterized 

Pareto dominance. The following subsections contain a detailed description of the 

procedures for accomplishing the above steps.  

 Determining the Predicted Feasible Set 5.1.

In order to determine the predicted feasible set, P3GA relies on the kernel based 

support vector domain description (SVDD) proposed by Tax and Duin [20]. The SVDD 

method is a machine learning technique for modeling the boundary of a set of data in a 
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Euclidian space. For a detailed description of the procedure for generating domain 

descriptions using this technique see [14, 20]. The SVDD method determines whether a 

new point is in the data domain by using a hypersphere that envelops the training data. 

One tries to find the minimum-radius hypersphere that contains a set of   data points, 

             . The domain can then be represented by a hypersphere center at   and 

radius  . Thus the most rudimentary constraint is 

 ‖    ‖         . (3) 

However, because a hypersphere is typically a poor representation of the domain, 

a kernel function is used to nonlinearly remap the training data into a higher-dimensional 

feature space where a hypersphere is a good model. There are several valid kernel 

functions common in the literature [21]. The proposed algorithm uses the Gaussian 

kernel function  

   (     )   (  )   (  )     ‖     ‖
 

  (4) 

where  ( ) is the nonlinear mapping from the data space to the feature space. The   

parameter determines how “tightly” or “loosely” the domain description is fit around the 

training data. The constraint in Eq. (3) becomes 

 ‖ (  )   ‖              (5) 

where   is the centroid of the feature space hypersphere and    are slack variables 

introduced that allow the exclusion of outliers. Rewriting in terms of the kernel function, 

the Wolfe dual problem can be developed from Eq. (5) as 

      
  ∑    (     )  ∑      (     )    , (6) 
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subject to the constraints            and ∑      . For a detailed method for 

formulating the Wolfe dual problem see [22]. For each data point,    for        , 

there are three possible classifications: 

 It is inside the hypersphere, which is indicated by     , 

 It is on the boundary of the hypersphere, which is indicated by       , 

 It is an outlier outside of the hypersphere, which is indicated by     . 

Data on the boundary of the hypersphere are called support vectors and are essential to 

the domain description representation. The squared distance of the feature space image 

of a point,  , to the centroid of the hypersphere is  

   ( )   (   )   ∑    (    )  ∑      (     )    . (7)  

A new test point is inside the domain description if the distance from the feature space 

image of test point to the hypersphere centroid and is less than the radius of the 

hypersphere. The expression for classification, Eq. (7), is a simple algebraic expression 

that is fast to evaluate. 

Outliers are data points for which     . The outliers are not part of the domain 

description. Choosing     yields no outliers. There must be at least one support 

vector, (i.e.,       ), which means      cannot occur for    . In the proposed 

algorithm     implying that the training data does not contain outliers. 

An important benefit of the SVDD method is that it can be constructed 

incrementally and decrementally [23]. This allows for a relatively inexpensive update 

procedure to be used when members are added or removed from the population (domain 
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description). For experimental analysis on the performance of the incremental SVDD 

procedure and the effects of the   parameter see [24]. 

 Assigning Fitness 5.2.

As stated in Section 4, multi-objective optimization algorithms have two goals: 

 Find a set of solutions close to the nondominated boundary. 

 Maintain diversity in the solution set. 

These goals were used to guide the development of P3GA. The proposed algorithm uses 

nondominated sorting to assign higher fitness to member close to the predicted 

parameterized Pareto frontier and a crowding distance metric to preserve diversity in the 

population. The following sections describe these procedures. 

 Predicted Parameterized Pareto Dominance 5.2.1.

Using the concept of predicted Parameterized Pareto dominance, a nondominated 

member is one that is not parametrically Pareto dominated by any member that is 

predicted to be feasible. For the remainder of this thesis, predicted parametrically 

Pareto nondominated members will be referred to simply as nondominated members and 

the nondominated frontier of predicted feasible members will be referred to as the 

nondominated frontier. 

In the proposed algorithm, any point in the domain description is considered a 

predicted feasible member. Therefore, any member in the interior of the domain 

description must be dominated. If every member in the population is part of the domain 

description, (   ) only members on the boundary of the domain description can be 
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nondominated, i.e., support vectors. Therefore, the non-support vectors can be ignored 

when performing dominance analysis. Recall from Section 5.1 that the support vectors 

are classified when solving the Wolf dual problem, Eq. (6). This is significant since for 

most data sets, only a small portion of the data will lie on the hypersphere boundary and 

be classified as support vectors.  

Using the SVDD approach, the nondominated members of the population are 

simply the support vectors that lie on the nondominated frontier. To test whether the 

support vector lies on the nondominated frontier, the space that dominates the support 

vector is sampled for feasibility. The space is bounded by the minimum bounding 

rectangle or envelope that contains the training data. If any member in that space is 

feasible, the member is classified as dominated. Figure 3 is an illustration of this 

procedure for two members in the population that are support vectors. As illustrated in 

Figure 3, the sampling procedure for a support vector can terminated as soon as a 

feasible member is found. The uniform sampling approach illustrated in Figure 3 is used 

to search the space that dominates the support vector in P3GA. Under this approach, if 

there are   support vectors,   dominator attributes, and   samples along each dominator 

attribute, determining the nondominated members requires at most     evaluations of 

Eq. (7). In practice the number of evaluations required is much lower than the upper 

limit since many of the support vectors are dominated after the first sample, see the 

dominated member in Figure 3. Furthermore, the number of samples along each 

dimension,  , is typically low since the nondominated members are likely near the edges 
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of the bounding rectangle, see the nondominated member in Figure 3. The pseudo code 

for determining the nondominated members is as follows: 

1. Set   as the set of all support vectors. 

2. Set the sample set   as the sites to be tested for set  . 

3. Find the set    corresponding to the feasible sites in  . 

4. Update         

5. Terminate if all sites have been tested, else return to step 2.  

The nondominated set are those members that remain in the set  . The sample set in   is 

updated using uniform sampling. Even though determining the feasibility of a site is a 

simple algebraic expression, for large numbers of dominator attributes,  , a uniform 

sampling approach can become prohibitive due to the exponential growth pattern. A 

sampling or search approach that reduces the computational growth pattern of this step is 

left for future work. 
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Figure 3. An illustration of predictive parameterized Pareto dominance. 
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 Nondominated Sorting 5.2.2.

In order to assign fitness to the population members, P3GA incorporates the 

Nondominated Sorting method developed by K. Deb[17]. In this method, before the 

selection operator is performed, the population is ranked on the basis of a member’s non-

domination. The pseudo code for the nondominated sorting procedure is as follows: 

1. Set all nondominated sets     for         as empty sets.  

2. Set non-domination rank counter      

3. Find the nondominated set    of population  . 

4. Update       ,       , and counter      . 

5. Return to step 3 if termination criteria is not met. 

The Nondominated Sorting method is not an integral part of P3GA. It is possible 

to use only on the best nondominated frontier in the population. However, nondominated 

sorting technique is widely used and has been shown to promote population diversity 

and improve convergence [17, 25, 26].  

 Diversity Preservation Operator 5.2.3.

In addition to being converged closely to the nondominated frontier, solutions 

must also be sparsely spaced along the nondominated frontier. Since P3GA deals with 

two space, decision variable space and performance space, ‘diversity’ among solutions 

can be defined in either of these spaces. Because the interest is in accurately representing 

the performance space, the focus is on diversity in that space. The diversity preservation 

operator assigns higher fitness to members that lie in less “crowded” regions of the 
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space. Several crowding distance metrics have been proposed in the literature. One 

example is Potential Pareto Region (PPR) proposed by Hallam [27]. In this approach, the 

nondominated set is sorted according to one objective and each two immediate 

neighbors delimit one PPR; an example is illustrated in Figure 4a. Another is the 

crowding-distance technique proposed for Nondominated Sorting Genetic Algorithm 

(termed NSGA-II) [17]. This technique sorts the set of solutions according to each 

objective function. The solutions are assigned distance values equal to the absolute 

difference of the objective values of the two adjacent solutions; an example is illustrated 

in Figure 4b.  
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Figure 4. An Example of crowding distance metrics (a) PPR and (b) NSGA-II Crowding 
distance. 
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Although these crowding distance metrics have desirable properties, especially in 

regards to low computational complexity, they are not suitable for P3GA because they 

are not extendable to the case where one or more objective is a parameter. These 

crowding metrics require sorting based on ascending or descending objective values and 

comparing each member to its immediate neighbors. Because of the introduction of 

parameter values the members cannot be sorted in way that would give the crowding 

metric any meaning. A crowding distance based on the  -nearest neighbor ( -NN) in the 

Euclidian space is applied in P3GA. In this approach the   nearest neighbors of the 

population in the design space are determined. The two members with the highest 

Euclidean 1st neighbor distance between them are assigned the best crowding distance 

values. Of these two members, the member with the highest 2nd neighbor distance is 

assigned a better crowding distance. This process is continued until each member of the 

population has been assigned a crowding distance. Although this approach is more 

computationally expensive than many diversity preservation operators proposed in the 

literature, it is extendable to the case where one or more objectives is a parameter.  

 Selection 5.3.

Once the population has been sorted into nondominated ranks, each rank is 

arranged in descending order of magnitude of the crowding distance values. Then the 

Crowded Tournament Selection operator proposed by Deb is used to determine the 

parents for the offspring [8]. The Crowded Tournament Selection operator is defined as 

follows. A solution   wins a tournament with another solution   if any of the following 

conditions are true: 
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1. If solution   has higher rank than  . 

2. If solution   and   have equal rank but solution   has better crowding distance 

than  . 

The first condition ensures that the chosen solution lies on the better nondominated 

frontier. The second condition resolves the tie that occurs when both solutions are on the 

same nondominated frontier. The solution in the less crowded area wins. Once the 

parents have been selected, the usual recombination and mutation operators are used to 

create offspring. 

 Main Loop 5.4.

The proposed algorithm, P3GA, differs from most MOGA principally in the way 

the nondominated members are identified. The selection, crossover, and mutation 

operators are adopted directly from MOGAs in the literature. Rather than performing 

dominance analysis with respect to the current members of the population, dominance 

analysis is performed using solutions that are predicted to be feasible.  

Initially, a domain description of the entire population is generated. Then the 

nondominated members are identified and temporarily removed from the population. 

The nondominated members are assigned rank 1. The crowding distance metric assigns a 

crowding distance value to each of the members in the nondominated rank. This process 

is continued until the entire population is classified into several fronts. The selection, 

crossover, and mutation operators reproduce the population according to the fitness 

value of the population members. This is continued until the termination criteria have 

been met. Figure 5 is a flow chart of the algorithm. 
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Figure 5. P3GA Flow Chart. 
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6. RESULTS AND ANALYSIS 

 

In this section, some of the performance characteristics of P3GA are investigated. 

The algorithm, P3GA, is tested on several test problems which exhibit features that are 

likely to cause a difficulty in converging to the nondominated frontier. The performance 

of the P3GA algorithm is compared to the random approach used in earlier works. An 

engineering example is used to demonstrate the use of the P3GA along with TCMs in a 

design scenario.  

 Classical Pareto Test Problems 6.1.

Recall from Section 3.1 that the search problem for parameterized Pareto frontier 

in Eq. (2), is an extension search problem for the classical Pareto frontier in Eq. (1). In 

the case where there are no parameters, the parameterized search problem reduces to the 

classical one. Consequently, P3GA can be applied to search problems without 

parameters, i.e., the classical Pareto case. Although P3GA was not developed for the 

purpose of searching for the classical Pareto frontier, examining its performance for this 

case can be used to help validate the concept of predicted dominance.  

The test problems used for the classical Pareto case are ZDT1 and DTLZ2 

proposed by K. Deb [28, 29] . These test problems are designed to exhibit features that 

may cause difficulty for MOGAs. Figures 6 and 7 are Illustration of the classical Pareto 

frontier for test problems ZDT1 and DTLZ2, respectively. The preference is to minimize 
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in all dimensions for both test problem. The mathematical formulation of the test 

problems and the Pareto frontier can be found in [28, 29]. 

 
 

Figure 6. Illustration of the classical Pareto frontier for test problem ZDT1. The arrows 
indicate preference direction. 

 
Figure 7. Illustration of the classical Pareto frontier for test problem DTLZ2. The arrows 
indicate preference direction. 
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 Parameterized Pareto Test Problems 6.2.

Although there are several widely used test problems for MOGAs in the classical 

Pareto case, they cannot be applied to the case with parameters in a straightforward 

manner. For this demonstration, new test problems were created that feature factors that 

may cause difficulty in converging to the nondominated frontier. The following factors 

have been identified by K. Deb [30]: 

1. Convexity or non-convexity in the nondominated frontier, 

2. Discontinuity in the nondominated frontier, 

3. Non-uniform distribution of solutions in the nondominated frontier. 

4. Multi-modality 

5. Deception 

The test problems were developed such that they exhibit a combination of these 

factors using the bottom-up approach outlined in [28]. Figures 8-11 illustrates the 

parameterized Pareto frontier of each of the test problems. The arrows in the figures 

indicate preference direction. The axes without preference directions are parameter 

attributes. Table 1indicates the features exhibited by each test problem. The 

mathematical formulation of the test problems and the true nondominated frontier are 

provided in the appendix. 
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Table 1. Features that may cause difficulty in converging to the true nondominated 
frontier in each test problem. 
Feature                   

Local parameterized Pareto attractors  X     

Discontinuous nondominated frontier    X   

Biased solution density away from frontier X X X X  X 

Non-convex nondominated frontier   X X X X 

Variable solution density along frontier X X   X X 

 

Figure 8. Illustration of the parameterized Pareto frontier for test problems    and   . 
The arrow indicates preference direction. Axes without preference directions are 
parameter attributes. 
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Figure 9. Illustration of the parameterized Pareto frontier for test problem   . The arrow 
indicates preference direction. Axes without preference directions are parameter 
attributes. 

Figure 10. Illustration of the parameterized Pareto frontier for test problem   . The 
arrows indicate preference direction. Axes without preference directions are parameter 
attributes. 
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Figure 11. Illustration of the parameterized Pareto frontier for test problems    and   . 
The arrow indicates preference direction. Axes without preference directions are 
parameter attributes. 

 Measuring Approximation Error 6.3.

In the literature, the performance of a MOGA is typically evaluated relative to 

the goals discussed in Section 4 [31]. However, because the purpose of P3GA and the 

focus of this thesis are on generating a model of the nondominated frontier, it is more 

appropriate to measure the quality of that model. For these simulations, mean Hausdorff 

distance error metric was used to measure the approximation error between the known 

nondominated frontier and the approximation. Mean Hausdorff distance has been 

proposed the standard measure of approximation error in the computer graphics 

community [32, 33]. The mean Hausdorff distance is a measure of the geometric 
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difference between two surfaces. The mean Hausdorff distance between two surfaces is 

be defined as follows. Given a point   and a surface  , the distance  (   ) is defined as 

  (   )          (    ), (8) 

where  ( ) is the Euclidean distance between two points in    and   is the number of 

dimensions. The one sided distance between surfaces    and    is then 

  (     )         
 (    ). (9) 

The two sided Hausdorff distance is the maximum of  (     ) and  (     ). The mean 

distance between the two surfaces is the surface integral of the distance divided by the 

area of    

   (     )  
 

    
∫  (    )  
  

. (10) 

The two sided mean Hausdorff distance is the maximum of   (     ) and   (     ).  

 Simulation Results For the Classical Pareto Case 6.4.

For the classical Pareto test problems three algorithms were compared 

1. RAND: A random search algorithm. 

2. NSGAII: The Nondominated Sorting Genetic Algorithm. 

3. P3GA: Predicted Parameterized Pareto Genetic Algorithm.  

The algorithms were executed 15 times on each test problem. The population was 

monitored and used as training data for the SVDD at various generation intervals. At 

each interval, the approximation error was determined by finding the mean Hausdorff 

distance between the Pareto frontier of the SVDD and the true Pareto frontier. For these 

results, RAND serves as an additional point of reference and randomly generates a 
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certain number of individuals per generation according to a uniform distribution in the 

input space. Hence, the number of fitness and function evaluations is the same as for the 

GAs.  

Independent of the algorithm and test function, each simulation was carried out 

using the following parameters 

Number of generations : 100 

Population size : 100 

Crossover rate : 0.8 

Mutation rate : 0.01 

Kernel function   parameter : 4 

No attempt was made to determine the best parameter settings. The simulation results are 

visualized in Figure 12. The figure illustrates the approximation error measured at various 

generations and for each algorithm. The error bars represent the 95% confidence interval. 

It can be seen that after 100 generations NSGAII and P3GA converge to a solutions with 

similar approximation errors for both test problems. As can be seen in the figure, NSGAII 

converges faster for test problem ZDT1. Figure 13 is an illustration of the P3GA Pareto-

optimal solutions for test problem DTLZ2 at (a) 10 generations and (b) 100 generations 

for a single trial. The black and white mesh represents the true nondominated frontier 

while the approximation is shown in grayscale. For test problem DTLZ2, the 

approximation is worse at 100 generations than it was at 10 generations; this agrees with 

the results in Figure 12b. However, the Pareto-optimal solutions are closer to the true 

nondominated frontier after 100 generations.  
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Figure 12. Hausdorff error as a function of number of generations for test problems 
ZDR1 (a) and DTLZ2 (b).  

 
Figure 13. Illustration of P3GA Pareto-optimal solution for test problem DTLZ2 at (a) 
10 generations and (b) 100 generations. The true Pareto frontier is shown in black and 
white the SVDD approximation is shown in grayscale.  
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 Simulation Results for the Parameterized Pareto Case 6.5.

For parameterized Pareto test problems, two algorithms were compared: RAND 

and P3GA. In this demonstration NSGAII was not considered because of the high 

computational expense of applying any traditional MOGA to case with parameters, see 

Section 4. The algorithms were executed 15 times on each test problem. Each simulation 

was carried out using the simulation parameters in the previous section. The test problem 

results are visualized in Figures 14-16. The figures illustrate the approximation error 

measured at various generations and for different values of the kernel function 

parameter  . The error bars represent the 95% confidence interval. Figure 17 is an 

illustration of the vertical distance between the true nondominated frontier and the 

approximations generated through (a) P3GA and (b) random approach for test problem 

   at 100 generations and    . The figure is provided for the benefit of the reader 

rather than as an accurate indication of the approximation error. 
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Figure 14. Mean Hausdorff distance as a function of number of generations for test 
problem 1, versions (a) and (b), at different values of the   parameter.  

 

 
Figure 15. Mean Hausdorff distance as a function of number of generations for test 
problem 2, versions (a) and (b), at different values of the   parameter. 
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Figure 16. Mean Hausdorff distance as a function of number of generations for test 
problem 3, versions (a) and (b), at different values of the   parameter. 

 

Figure 17. Illustration of the vertical distance between the true parameterized Pareto 
frontier and the approximations generated through (a) P3GA and (b) random approach 
for test problem    at 100 generations and    . 
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 Engineering Case Study 6.6.

In this section, a utility vehicle (UV) design problem is used to demonstrate the 

use of P3GA in a systems design scenario. The UV is a four wheeled vehicle intended 

for off road use. In this design scenario, a suspension manufacturer wishes to 

characterize a suspension system using a TCM. The TCM is then communicated to the 

customer, the UV manufacturer, who uses the TCM to optimize the UV design. Our 

focus here is to demonstrate how the P3GA algorithm along with TCMs can be used in 

the design process rather than on the design results. This design demonstration has three 

stages: (1) generate a TCM of the suspension using P3GA, (2) search the TCM for 

optimal target values, and (3) use engineering optimization techniques to search for the 

design variable settings that correspond to the target values.  

 TCM Generation 6.6.1.

In this demonstration it is assumed that the suspension designers have an 

implementation concept for the suspension and wish to characterize its achievable range 

of performance. Specifically, the designers wish to characterize a suspension system 

composed of a helical spring and a shock absorber. The designers have available a nearly 

continuous range of decision variables 

   Spring wire diameters    , 

   Spring coil diameters    , 

   Spring pitch   , 

   Number of active coils     
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available to them. They wish to determine the achievable range (or parameterized Pareto 

frontier) of  

    ( ) : Suspension cost        

      ( ) : Factor of safety    , 

    ( ) : Spring constant      , 

    ( ) : Damping ratio        . 

where             are the decision variables. The suspension cost is modeled as the 

sum of the component cost plus the assembly cost. The spring constant and factor of 

safety are determined using standard engineering models and an expected range of 

spring compression [34]. The available damping ratios are determined from catalog data. 

Given the set of component level attributes,                 , the designers knows 

they will always prefer to lower cost,  , and increase the factor of safety,   . However, 

the designers have no established preference direction for the spring constant,  , or the 

damping ratio,  , since they do not know the design details of the entire UV system. The 

parameter attributes are denoted as      ( )   ( ) . Suppose that   is nonempty 

feasible region of the decision variable space. The feasible parameter region is then, 

            where          ( )         . With this notation, the search problem 

for the nondominated frontier can be formulated as 

           

        
   

  ( )      ( )   ( )   

                 ( )                  

(11) 
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  ( )    , 

  ( )     

where   ( ) represents the physical constraints in the decision variable space, e.g. 

lengths must be nonnegative. Using P3GA, the designers are able to approximate the 

solution to this search problem in the form of a TCM.  

 Searching the TCM 6.6.2.

Once the designers have generated a TCM for the suspension, 

denoted  (     )   , they are able to communicate the achievable range of 

performance to their customers. In this scenario, the customer is the manufacturer of the 

UV. In the interest of scope, all design parameters not pertaining to the suspension are 

fixed, e.g. vehicle mass, moment of inertia, etc. The UV suspension is assumed to be 

identical on the left and right sides so that a half car model can be used to simulate the 

vehicle vibration response. The suspension system models,         , are not made 

available to the UV manufacture since they contain proprietary information that the 

suspension manufacturer does not want to divulge. The UV manufacturer wishes to 

tradeoff between component level attributes,      , for the front and rear suspensions 

        and        , respectively. The component level attributes of interest for the UV 

system are then                      . The environmental variables determined by the 

manufacturer are  

  : Mass of the UV     , 

    : Moment of inertia about the traverse direction      , 

   : Front hub displacement from driver    , 
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   : Rear hub displacement from driver   , 

      :  Expected road profile    . 

To simplify notation, let                      . Given the component level attributes 

and environmental variables, the UV manufacturer can compute three system level 

attributes: 

    (   ) : Risk of injury due to vibrations, 

       ( ) : Total cost of the suspension system, 

       ( ) : Minimum system safety factor. 

The risk of injury due to vibrations is determined according to the International Standard 

ISO 2631-5 which is a standard for quantifying whole-body vibration containing 

multiple shocks in relation to human health [35]. The cost of the suspension system is 

the total cost of the springs and dampers used in the four wheeled UV. The minimum 

system factor of safety is simply minimum factor of safety in the suspension system.  

To be compatible with optimization algorithms, the UV designers must formalize 

their decision-making preferences in a computer-interpretable form. This task can be 

accomplished by using a utility function. A utility function, denoted  ( ), is a scalar 

function that relates system-level attributes to a utility value that designers seek to 

maximize. In this scenario the designers wish to minimize risk of injury and cost, and 

maximize the minimum safety factor. Therefore, the system level attributes are   

   (   )   ( )   ( ) . Designers define a utility function such that attribute vectors 

that are more preferred lead to larger utilities. There are multiple approaches by which 

designers can do this [36]. Multi-attribute utility theory (MAUT) is suggested for this 
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step, where one elicits a utility function by answering a series of questions involving 

hypothetical choices involving lotteries [11]. However, the choice of decision rule is left 

to the designer. Once the designer has determined the utility function, the optimization 

problem can be formulated as follows: 

          
 

 (   (   )   ( )   ( ) ) 

                (       )   , 

                         (       )   , 

                             (   )             . 

(12) 

The constraint       (   )    is imposed on the component level attributes by the 

system level constraints of the problem, e.g. the vehicle must be leveled. The constraint 

function  ( )    represents the TCM generated using P3GA, where   is the 

hypersphere radius. The output of this search problem,   , are the target attribute values 

for the components during detailed design optimization.  
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Figure 18. Illustration of the general design scenario using TCMs. No iteration between 
component and system level. The initial guess to the system and component levels are    
and   , respectively. 

 Target Achievement 6.6.3.

Once the target attributes,       
      

    
      

  have been identified by the 

UV manufacturer, the suspension manufacturer can use standard engineering 

optimization techniques to identify the corresponding design variable settings. The 

search problem can be formulated as a target-achievement problem, where the design 
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objective is to minimize the deviation from the target attribute vector. The target-

achievement problem for the front suspension can be formulated as  

          
 

‖       
       ( )‖ 

                 ( )                   

(13) 

where       ( )     ( )    ( )   ( )   ( ) , and    corresponds to the vector of 

component level decision variables for the front suspension. This search problem can be 

repeated similarly for the rear suspension target attributes,        
 . Figure 18 is an 

illustration of this design procedure. Note that only the TCM (description of capabilities) 

and the targets are communicated across the component-system level boundary. Also, 

there is no iteration between the component and system levels. 

 Engineering Case Study Results 6.7.

The primary purpose of this engineering example is to demonstrate how P3GA 

and TCMs can be used to support design. However, the engineering example is also used 

to investigate the performance of P3GA. A TCM of the suspension was generated 

according to Eq. (11). The following parameter settings were used for P3GA: 

Number of generations : 100 

Population size : 200 

Crossover rate : 0.8 

Mutation rate : 0.01 

Kernel function   parameter : 6 

In the engineering case study, the true nondominated frontier is not known; 

consequently, the mean Hausdorff distance between the true and approximated 
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nondominated frontiers cannot be determined directly. The general approach used in this 

section is to first find a set of points,               , on the true nondominated 

frontier. Given a point,   on the true nondominated frontier and the approximated 

nondominated frontier  , distance,  (   ), is defined as 

  (   )          (    ), (14) 

where  ( ) is the Euclidean distance between two points in    and   is the number of 

dimensions. The mean distance between the points on the true nondominated frontier 

and the approximation S is 

   (   )  
 

 
∑  (    ) 

   . (15) 

This approximation error metric is similar to the forward mean Hausdorff distance 

between the true nondominated frontier and the approximation  .  

To find a point on the true nondominated frontier, the design problem was solved 

using the fully integrated approach. The fully integrated optimization (FIO) problem is 

an optimization of the combined suspension and UV systems; formulated as follows: 

         
    

      ( ) 

                 (  )                   

                          (  )                  

                 (   )   ( )   ( ) , 

                     [                 ], 

                    (  )   (  )  (  )   (  )], 

(16) 
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                    (  )   (  )  (  )   (  )], 

                          

where and    and    are the front and rear suspension decision variables          , 

respectively. Solving the scalar optimization problem at the system-level results in a 

single point on the Pareto frontier in the system-level attribute space. The corresponding 

component-level attribute vector,  , then lies on the parameterized Pareto frontier. 

In order to generate multiple points on the true nondominated frontier, an 

approach similar to the weighted sum method was used [37]. The weighted sum method 

scalarizes a set of objectives into a single objective by premultiplying each objective 

with a user specified weight. The weights are varied to generate multiple solutions on the 

nondominated frontier. A drawback of the weighted sum approach is that it is impossible 

to obtain points on non-convex portions of the Pareto frontier [38]. To address this issue, 

a more general multilinear utility function is used instead [11]. Yet another difficulty of 

this approach is that varying the weights consistently and continuously may not 

necessarily result in an even distribution of Pareto-optimal points and a complete 

representation of the Pareto frontier [38].  Das and Denis present the normal boundary 

intersection (NBI) method to address this limitation [39]. This method provides a means 

for obtaining an even distribution of Pareto-optimal points. However, an even 

distribution of Pareto-optimal points at the system level does not guarantee an even 

distribution of parameterized Pareto-optimal points at the component level. For this 

demonstration, it is assumed that the parameterized Pareto-optimal sites found using 

randomly generated multilinear utility functions are a sufficient representation of the 
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parameterized Pareto frontier. Developing a general approach for measuring the quality 

of a parameterized Pareto frontier approximation is outside of the scope of this thesis.  

For this demonstration, 200 multi-linear utility functions were generated 

randomly. Then the design problem, Eq. (16), was solved for each utility function using 

the FIO approach. Ten random restarts were performed for each optimization run. The 

component attribute vector,   [                 ], was recorded for each trial. The 

        attribute vectors combined with the         attribute vectors correspond to 400 

sites on the true parameterized Pareto frontier in the component attribute space. The next 

step is to determine the minimum distance,  (   ), from the point,  , on the true 

parameterized Pareto frontier to the suspension TCM boundary,  . It is important to note 

that the TCM boundary also includes dominated points, see Figure 3. However, the 

TCM boundary point nearest a true parameterized Pareto-optimal point is likely also on 

the predicted parameterized Pareto frontier. With this assumption, Eq. (14) is 

approximated as 

  (   )        (    ), 

                (  )   , 

(17) 

where  (  ) is the distance of the feature space image of point    to the centroid of the 

hypersphere that encompasses the training data, and   is the radius of that hypersphere. 

The constraint  (  )    forces the solution to be on the boundary of the hypersphere, 

i.e., approximate parameterized Pareto frontier. All of the data is centralized from [-1,1] 

prior to determining  (   ) using the upper and lower bounds of the training data. Not 

performing this step would give a disproportionate amount of importance to variables 
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with large magnitudes, e.g., cost, over ones with low magnitudes, e.g., risk of injury. 

Finally, the mean distance is found using Eq. (15). The results are illustrated in Figure 

19. The error bars represent the 95% confidence interval. Figure 19a illustrates the mean 

distance between the parameterized Pareto-optimal points and the approximated 

parameterized Pareto frontier at various generations. As can be seen in the figure, the 

error metric approaches zero rapidly. Figure 19b illustrates the corresponding mean 

constraint violation of Eq. (17). The low constraint violations—on the order of     —

indicate that the solutions found lie on the boundary of the domain description. 

 

 
Figure 19. Illustration of (a) the mean distance between the parameterized Pareto-
optimal points and the approximated parameterized Pareto frontier at various generations 
and (b) the corresponding mean constraint violation of Eq. (17). 
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7. DISCUSSION 

 

For the classical Pareto case, a comparison of NSGAII, RAND, and P3GA was 

performed using two test problems from the literature, i.e., ZDT1 and DTLZ2. For this 

comparison, RAND serves as a point of reference. The proposed algorithm, P3GA, 

draws extensively on concepts from NSGAII, i.e., nondominated sorting and Crowded 

Tournament Selection. The principle difference between these two algorithms is that 

P3GA relies on the concept of predicted dominance. The purpose of the comparison 

between P3GA and NSGAII is to help validate the use of predicted dominance rather 

than to determine whether one algorithm outperforms another in the classical Pareto 

case. The principle result from this comparison is that for the test problems considered, 

P3GA and NSGAII converged to solutions with similar approximation error. This result 

is strong evidence that the use of predicted dominance in GAs is valid. As can be seen in 

Figure 12a, the approximation error for both P3GA and NSGAII decreased with the 

number of generations until about 10 generations; after which, the error increased 

slightly before leveling off. This result agrees with the result illustrated in Figure 13. 

After 10 generations, adding more sites to the true nondominated frontier “pushes” the 

approximation further away from the true nondominated frontier. A potential solution is 

to simply increase the kernel function   parameter; however, a thorough investigation 

into the effects of the   parameter on the performance of P3GA is outside of the scope of 

this thesis. 
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For the parameterized Pareto case, P3GA was compared only to the random 

approach since no efficient algorithm for modeling the parameterized Pareto frontier has 

been proposed in the literature. Although it is possible to apply MOOs to this problem, 

(see Section 3.2) the computational expense of applying this approach can be prohibitive 

even for relatively simple problems. As expected, P3GA significantly outperformed the 

random approach in the test problems considered. The poor performance of RAND in 

each test problem is a result of the factors introduced to cause difficulty in converging to 

the nondominated frontier. As can be seen in Figures 14-16, adjusting the kernel 

function   parameter affects the performance of P3GA. In the test problems considered, 

P3GA converged more slowly with the larger  . parameter value. This was expected 

since increasing the   parameter results in a "tighter" domain description.  

In problem   , P3GA approaches the true nondominated frontier faster than in 

problem   . As can be seen in Table 1, the principle difference between    and    is 

that    features local parameterized Pareto attractors while    does not. This indicates 

that P3GA may have difficulty converging to the nondominated frontier in the presence 

of local parameterized Pareto frontier attractors. However, P3GA still significantly 

outperforms RAND.  

 In problems    and   , P3GA approaches the true nondominated frontier about 

the same rate. The mathematical formulation (see appendix) for    and    the same, the 

only difference being that problem    has two parameter values while    has only one. 

This causes the discontinuous frontier illustrated in Figure 10. This result indicates that 

the discontinuity in the frontier had little effect on the performance of P3GA in this case.  
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In problems    and   , P3GA again approaches the true nondominated frontier 

about the same rate. The principle difference between the two test problems is that 

   features biased solution density away from the nondominated frontier. This result 

indicates that biasing the solution density has little effect on the performance of P3GA in 

this case.  

The engineering example is provided primarily to demonstrate how P3GA along 

with TCMs can be used to support design space exploration. Using TCMs, component 

level designers are able to efficiently communicate their capabilities to the system level. 

At the system level, designers can search the space of capabilities in terms of only those 

variables that relate component performance to system performance. Once the system 

level designer has selected target component level attributes, the component designer 

solves a target achievement problem. This design approach eliminates the need for 

system-level and component-level designers to share complex engineering models and 

does not require potentially costly iterations between the component and system level 

designers. The results from the engineering problem indicate that P3GA is able to 

generate an accurate representation of the component capabilities for the engineering 

case study. 
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8. SUMMARY 

 

In this thesis, an approach for generating an approximation of the parameterized 

Pareto frontier is presented. The algorithm uses fundamental concepts from multi-

objective genetic algorithms and machine learning to search for solutions near the 

parameterized Pareto frontier. The algorithm borrows heavily from MOGAs in the 

literature but uses a novel update rule, i.e., predictive dominance. In the proposed 

algorithm, nondominated points are those that are not parametrically Pareto dominated 

by any solution that is predicted to be feasible. The algorithm may not be tractable for 

very large numbers of parameter attributes. The algorithm was demonstrated on two 

classical Pareto test problems from the literature and four parameterized Pareto test 

problems. In the classical Pareto case, P3GA performed similarly to NSGAII. In the 

parameterized Pareto test case, the P3GA algorithm significantly outperformed the 

random approach. These test cases provide evidence that the proposed approach can be 

effective in practice.  
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APPENDIX 

 

For all test problems, the inputs are bound         for          

Test Problem (  ) 

 (𝒙)     (𝒙)   (𝒙)   (𝒙)   
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Outputs    and    are parameter attributes The nondominated frontier is described by 

 ( )  Here,     . 
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Test Problem (  ) 
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 Outputs    and    are parameter attributes. The true nondominated frontier is described 

by  ( )  Here,     . 

Test Problem (  ) 

The mathematical formulation for this problem is identical to test problem    

except that only output   is a parameter attribute;    and    are dominator attributes. 

Test Problem (  ) 
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𝑤  𝑟  
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 (     )  
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  (𝒙)  (   ( )) ( ) 

Outputs    and    are parameter attributes. The nondominated frontier is described by 

 ( )        4  
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Test Problem (  ) 
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