

i

PARALLEL AND DISTRIBUTED MULTI-ALGORITHM CIRCUIT SIMULATION

A Thesis

by

RUICHENG DAI

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

August 2012

Major Subject: Computer Engineering

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&M Repository

https://core.ac.uk/display/13642442?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ii

PARALLEL AND DISTRIBUTED MULTI-ALGORITHM CIRCUIT SIMULATION

A Thesis

by

RUICHENG DAI

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Approved by:

Chair of Committee, Peng Li
Committee Members, Nancy Amato
 Jiang Hu
Head of Department, Costas N. Georghiades

August 2012

Major Subject: Computer Engineering

iii

iii

ABSTRACT

Parallel and Distributed Multi-Algorithm Circuit Simulation. (August 2012)

Ruicheng Dai, B.S., Zhejiang University

Chair of Advisory Committee: Dr. Peng Li

With the proliferation of parallel computing, parallel computer-aided design

(CAD) has received significant research interests. Transient transistor-level circuit

simulation plays an important role in digital/analog circuit design and verification.

Increased VLSI design complexity has made circuit simulation an ever growing

bottleneck, making parallel processing an appealing solution for addressing this

challenge. In this thesis, we propose and develop a parallel and distributed multi-

algorithm approach to leverage the power of multi-core computer clusters for speeding

up transistor-level circuit simulation.

The targeted multi-algorithm approach provides a natural paradigm for exploiting

parallelism for circuit simulation. Parallel circuit simulation is facilitated through the

exploration of algorithm diversity where multiple simulation algorithms collaboratively

work on a single simulation task. To utilize computer clusters comprising of multi-core

processors, each algorithm is executed on a separate node with sufficient system

resource such as processing power, memory and I/O bandwidth. We propose two

communication schemes, namely master-slave and peer-to-peer schemes, to allow for

inter-algorithm communication. Compared with the shared-memory based multi-

iv

iv

algorithm implementation, the proposed simulation approach alleviates cache/memory

contention as a result of multi-algorithm execution and provides further runtime

speedups.

v

v

DEDICATION

To my parents

vi

vi

ACKNOWLEDGEMENTS

 First and foremost, I would like to thank my advisor, Dr. Peng Li. Dr. Li has

supervised, advised and guided me from the very beginning stage of this work, as well as

gave me extraordinary experience throughout the research. His dedication to excellence,

encouragement to students, and enthusiasm for research, will leave a lasting imprint on

me.

 I would like to thank other professors as well, who are always willing to discuss

with me and give new ideas. Particular thanks to Dr. Amato and Dr. Hu, for their

constructive comments on this thesis. Thanks also to my colleagues, department faculty

and staff for making my time at Texas A&M University a great experience.

Finally, I am grateful for my family and friends. Thanks to my mother and father

for their encouragement and love.

vii

vii

TABLE OF CONTENTS

 Page

ABSTRACT ... iii

DEDICATION ... v

TABLE OF CONTENTS ...vii

LIST OF FIGURES ... ix

LIST OF TABLES .. xi

1. INTRODUCTION .. 1

1.1 Motivation .. 1
1.2 Previous Work and Limitations .. 2
1.3 Overview and Organization.. 3

2. BACKGROUND .. 5

2.1 Transistor-level Circuit Simulation .. 5

2.2 Parallel Computing ... 11

3. MULTI-ALGORITHM PARALLELISM ... 13

3.1 Multi-Algorithm Parallelism .. 13
3.2 Simulation Algorithms ... 16

3.2.1 Diversity in Nonlinear Iterative Methods .. 16
3.2.2 Diversity in Numerical Methods ... 20

3.2.3 Algorithm Selection .. 24

4. HIERARCHY OF PARALLEL AND DISTRIBUTED CIRCUIT SIMULATION ... 27

4.1 Multi-Algorithm Communication Structure ... 28
4.1.1 Master-slave Structure ... 28
4.1.2 Peer-to-Peer Structure ... 33

4.2 Multiple Threads in A Single Algorithm ... 36
4.2.1 Parallel Device Evaluation .. 36
4.2.2 Parallel Matrix Solver ... 37

viii

viii

5. RESULT AND ANALYSIS .. 39

5.1 Supercomputer .. 39
5.2 Result .. 40

5.2.1 MPI vs. Sequential Algorithm .. 40
5.2.2 MPI vs. HMAPS ... 43
5.2.3 Comparison Between MPI Methods ... 46
5.2.4 Accuracy .. 47

6. CONCLUSIONS .. 49

REFERENCES ... 50

VITA .. 53

ix

ix

LIST OF FIGURES

 Page

Figure 1. Transistor-level circuit simulation in digital/Asic design flow................... 6

Figure 2. A simple circuit. .. 8

Figure 3. Work flow of the transient circuit simulation. .. 10

Figure 4. A sample for circuit simulation result. .. 14

Figure 5. Illustration of the multi-algorithm parallelism .. 15

Figure 6. Newton-Raphson method. .. 18

Figure 7. Successive Chord method ... 19

Figure 8. Stability region of numerical integration methods. 26

Figure 9. Stability region of Absolute Stability. .. 26

Figure 10. A computer cluster .. 27

Figure 11. Global synchronizer node in Master-Slave structure. 28

Figure 12. Details of an algorithm node in the Master-Slave structure. 30

Figure 13. Flow chart of the algorithm node and global synchronizer in MasterSlave
scheme. ... 32

Figure 14. Peer-to-Peer communication scheme. ... 33

Figure 15. Flow chart of the algorithm node in peer to peer scheme. 35

Figure 16. A snapshot of the supercomputer Hydra. .. 39

Figure 17. Comparison between master-slave and peer-to-peer communication
structure. ... 46

Figure 18. Simulation results on Node1 ... 48

Ruicheng_thesis1_6_20.doc#_Toc327919159
Ruicheng_thesis1_6_20.doc#_Toc327919160

x

x

Figure 19. Simulation results on Node2 ... 48

xi

xi

LIST OF TABLES

 Page

Table 1. Comparison between sequential algorithm and MPI methods 41

Table 2. Resource allocation between HMAPS and MPI methods 44

Table 3. Comparison between HMAPS and MPI methods 44

1

1

1. INTRODUCTION

1.1 Motivation

As a fundamental technology in computer-aided design, circuit simulation provides

insights into electronic circuits by leveraging mathematical models to replicate the

behavior of an actual electronic device or circuit [1]. In transistor-level time-domain

circuit simulation, DC analysis is used to obtain quiescent operating point and transient

analysis is employed to compute the time-domain response of the circuit. Accurate, fast

and robust transistor-level circuit simulation plays a critical part in the design and

verification of digital/analog circuit.

Since 1965, Gordon E. Moore, the co-founder of Intel put forward that the

number of transistors on integrated circuits would double every two years. This

prophecy, also known as Moore’s law, became the guidance of the development of

integrated circuit technology for later decades. A typical Very Large Scale Integrated

(VLSI) Circuit may integrate millions of transistors and other components in a few

square millimeters on a chip. Simulation of large IC designs as well as inherent high

accuracy requirements places a heavy burden on circuit simulation. For instance, circuit

designers may have to spend several days or even weeks on expensive circuit simulation,

which greatly influences the design efficiency.

However, with the recent industry’s shift to multi- and many-core processor

This thesis follows the style of IEEE Transactions on Computer-aided Design of

Integrated Circuit and System.

2

2

technology, parallel computing is ubiquitous and changing the landscape of computing

and data processing. This change has made profound implications on the development of

compute-intensive applications. Leveraging the available parallel compute hardware

leaves new opportunities and challenges to large-scale circuit simulation.

1.2 Previous Work and Limitations

Parallel circuit simulation is not a new topic. The two key challenges of applying

parallelism to CAD area are parallel algorithm development and parallel program

implementation. Prior work attempted to realize more parallelism from several different

perspectives.

 Parallel device evaluation and matrix solve [2][3] are the most direct methods.

Device evaluation and matrix solve are the most time consuming parts in simulation and

dominate the total simulation time. It is straightforward to leverage more threads/CPUs

in these two parts to gain large parallelism. However, the speedup is not linear due to the

characteristic of the circuit and multi-core computers. Creating threads, terminating and

synchronization also will add some overhead to the system.

 There also have been attempts to realize parallel capabilities in a single

simulation algorithm. Waveform pipelining approach [4] simultaneously computes

circuit solutions at multiple adjacent time points in a way resembling hardware

pipelining. Circuit decomposition can divide a large circuit into several small sub-

circuits which can be solved in parallel. However, decomposition-based circuit

simulation algorithms like multilevel newton algorithm [5] and waveform relaxation

3

3

algorithm [6] have issues in terms of convergence. In addition, these two methods

exploit fine-grained parallelism, hence require large programming effort.

 The multi-algorithm parallel approach [7] exploits inter-algorithm parallelism by

running several simulation algorithms on a shared-memory multi-core machine

simultaneously.

 However, most of these works are carried on multi-core shared memory

machines. While the methods are gaining the benefits from these platforms, like low on-

chip communication overhead, they also have to pay a price for the drawbacks. For

instance, the memory on a multi-core machine is shared by all processes/threads and the

number of CPUs on one computer is limited due to the manufacture process and power

consumption. Hence, memory contention is inevitable as well as severe thread

contention when the number of threads is greater than the number of CPUs. The system

performance will suffer noticeable degradation.

 Computer clusters offer a promising computing solution to address ever complex,

computationally intensive simulation problems with sufficient computing resources and

high memory bandwidth.

1.3 Overview and Organization

In this thesis, we propose a distributed and parallel multi-algorithm circuit simulation

where multiple simulation algorithms are mapped on separated nodes in a supercomputer

and work on the same simulation task with effective communication schemes to realize

the on-the-fly synchronization and exploration of algorithm diversity. With sufficient

4

4

computing resource utilized for parallel device evaluations and parallel matrix solvers in

each algorithm, simulation runtime is further reduced. As a coarse-grained parallel

approach, the proposed distributed circuit simulation requires less programming effort

and is applicable for an increasing number of simulation algorithms.

 This thesis is organized as follows. In Chapter 2, we introduce the background

for time-domain circuit simulation and parallel computing. Then the principle of multi-

algorithm circuit simulation as well as the diversity of numerical integration methods

and nonlinear iterative methods will be discussed in Chapter 3. In Chapter 4, we will

present the details of the MPI based parallel and distributed circuit simulation. In

Chapter 5, the platform where the experiments are carried on and experimental results

will be given. Finally, conclusions are drawn in Chapter 6.

5

5

2. BACKGROUND

2.1 Transistor-level Circuit Simulation

Transistor-level time-domain circuit simulation, a computer-aided design tool, greatly

improves design efficiency and reduces the labor intensity in digital/Asic VLSI circuit

design. Figure 1 is a flow chart of digital/Asic circuit design.

 First, system specifications and requirements need to be completed. A graph

editor or text editor is used to describe the circuit’s structure and behavior. After the

behavioral description, synthesis realizes the automatic conversion from high level

abstraction to low level description where RTL code is translated to a gate-level circuit.

Physical design including floorplanning, placement and routing is then carried out to

generate the layout of the design. At last, manufacturing process fabricates designs onto

silicon dies which are packaged into ICs [1].

 Transistor-level circuit simulation can be performed at the circuit design level

based on pre-layout schematic. Also, it may be performed after the post-layout circuit

netlists are extracted out. It is not surprising that simulation plays a vital part in

predicting circuit performance and rejecting a failing design due to transistor-level

circuit simulation also plays an important role in the design of analog and RF circuits.

6

6

Figure 1. Transistor-level circuit simulation in digital/Asic design flow.

7

7

 In transistor-level circuit simulation, circuit analysis problem is formulated

according to circuit structure, device parameters and analysis requirements. KVL

(Kirchhoff's voltage laws) and KCL (Kirchhoff's current laws) are two basic principles

in simulation. Hence, an electronic circuit can be described as a differential-algebraic

equation,

)()()(tuxfxq
dt

d
 (2.1)

here,)(tu is the input vector,)(tx is the vector of nodal voltages and branch currents.

)(xq and)(xf corresponding to dynamic elements and static elements are nonlinear

functions. Regarding equation (2.1), the existence of nonlinear functions,)(xq and

)(xf is due to the fact that the transistors in the CMOS technology are nonlinear

elements with complex nonlinear characteristic. The differential operation represents the

behavior of energy storage components like capacitors and inductors which have delay

in following the changes of input sources.

For instance, a simple circuit in Figure 2 can be described as equation (2.2)














































0
*111

1111

4
2

1

322

2421
R

E

V

V

RRR

RRRR (2.2)

8

8

Figure 2. A simple circuit.

 To solve equation (2.1), DC analysis is used to obtain an initial operating point.

In DC analysis, all the dynamic circuit elements are removed and a nonlinear iterative

method is applied to get the solution converged in several iterations. Then a numerical

integration method is applied to calculate the transient solutions. At each time point,

transient analysis, similarly, needs to utilize the nonlinear iterative method to obtain a

converged solution. In other words, by adopting a numerical integration formula, the

time-domain transient response of the circuit is obtained by solving a sequence of

equivalent nonlinear DC problems sequentially at all time points [8]. The flow chart of

the circuit simulation is shown in Figure 3.

 In transistor-level circuit simulation, device evaluation and matrix solve are the

two most time consuming parts. At each iteration in a single time point, device

9

9

evaluation is performed to obtain equivalent mathematical models of circuit components.

The evaluation requires numerous computations, especially for nonlinear components

such as diodes, transistors, nonlinear resistances and nonlinear capacitances which have

a large amount of device model derivatives. For instance, a diode’s voltage and current

can be represented as

)1( T

D

V

V

SD eII (2.3)

Here, SI is the reverse bias saturation current and TV is the thermal voltage. The model

of the device has an important position in the whole procedure of circuit analysis

because the accuracy of simulation results depends on the precision of the model

significantly.

Matrix solve is then applied to obtain the solution for that specific iteration. We

LU decompose the matrix to solve the equations. When the coefficient matrix is a sparse

matrix, the time complexity of solving the equations will be approximately)(nO [9],

here n is the number of the nodes in the circuit.

10

10

Figure 3. Work flow of the transient circuit simulation.

11

11

2.2 Parallel Computing

From the perspective of computer architecture, symmetric multiprocessor (SMP)

machine is a system with two or more homogeneous processors on one chip, sharing

memory subsystem and bus structure. Although multiple CPUs are running at the same

time, they perform as a single machine. The system distributes the tasks in a queue

symmetrically over multiple CPUs, thus greatly improving data processing ability of the

whole system. Computer clusters emerged as a result of developments of low cost

microprocessors and high speed networks. Many independent computer nodes are

connected to each other in the cluster through fast local area networks. One computer

node can be a single processor or a multiple-processor system, which has memory, I/O

devices and operating system. The system can provide a fast and reliable service

solution, which can hardly be obtained even through a very expensive shared memory

system.

For these parallel platforms, Pthreads and MPI are two most popular parallel

programming APIs. POSIX threads [10], commonly known as Pthreads, specifies a set

of interfaces (functions, header files) for threaded programming where a single process

can create multiple threads. Every thread can be assigned different kind of work and run

independently. These threads share data and heap segments, but each thread has its own

stack to store automatic variables.

 MPI, a kind of Message Passing Interface released in May 1994, is actually a

standard of message passing function library [11]. It absorbs benefits from many existing

message passing function libraries and becomes one of the most popular parallel

12

12

programming environments, especially for distributed storage computers and network-

based workstations. MPI has many advantages in providing the necessary conditions for

the development of parallel software industry:

 portable and flexible

 complete asynchronous communication function.

 formal, detailed and precise definition

In the MPI based programming model, a fixed set of processes are created in the

initialization of the program. Processes receive and send massages by calling library

functions. These processes can execute the same or different code paths, correspondingly

called single program multiple data (SPMD) or multiple program multiple data (MPMD).

Communications between the processes can be point-to-point or collective.

13

13

3. MULTI-ALGORITHM PARALLELISM

3.1 Multi-Algorithm Parallelism

From the foregoing discussion, the transient circuit simulation problem can be

formulated as equation (3.1).

)())(())((tutxftxq
dt

d
 (3.1)

 In a circuit simulation algorithm, one nonlinear iterative method is utilized to

linearize the nonlinear functions and one numerical integration method replaces

differential operation with difference operation. Newton Raphson and Successive Chord

are typical nonlinear iterative methods while Backward Euler, Gear2 and DASSL are

classic numerical integration methods. A variety of simulation algorithms are then

generated within a set of combination between these two kinds of methods. SPICE

(Simulation Program with Integrated Circuit Emphasis) [12] is taking Newton-Raphson

and Backward Euler as its basic circuit simulation algorithm. It is a general-purpose,

open source electronic circuit simulator for integrated circuit and board-level design.

Compared to Newton-Raphson and Backward Euler algorithm, Successive Chord is a

higher speed simulation algorithm. While the algorithm pool provides a great diversity,

it also brings in the complexity in choosing an optimal algorithm for a specific circuit

because the algorithms behave quite differently for different kinds of circuits, even in

different stages on the same circuit during the whole simulation time.

http://en.wikipedia.org/wiki/Analogue_electronics
http://en.wikipedia.org/wiki/Electronic_circuit_simulation
http://en.wikipedia.org/wiki/Integrated_circuit

14

14

Figure 4. A sample for circuit simulation result.

 Figure 4 is simulation results obtained by using SC algorithm and Newton + BE

algorithm for inverter chain circuit. During the simulation, we find SC algorithm prints

out results much faster on part A and C but slower on part B. From the figure above, we

can see the waveform remains stable during parts A and C. Considering SC algorithm’s

advantage, it can converge very quickly and the cost for each iteration is very small by

using a constant Jacobian matrix. In part B, the waveform changes significantly, SC

algorithm needs a large number of iterations to converge to the final solution at every

time step. Although the cost for each iteration is still small, the time spent on one time

step is increasing significantly. When the waveform gets steeper, SC probably will

diverge. Inspired by this observation, we know an optimal solution will be obtained if

the benefit of SC algorithm on parts A and C is exploited as well as the benefit of

Newton + BE algorithm on part B.

 Consequently, we refer to the multi-algorithm approach in [7] and propose a

new approach that builds on a distributed memory platform to run multiple simulation

15

15

algorithms on multiple computer nodes in parallel to exploit the diversity of these

algorithms.

 To illustrate, we assume two algorithms are initiated on the same circuit

simulation. In Figure 5, part A is corresponding to the first time period while part B is

the second period. In the first period, algorithm SC is the fastest due to the reason

discussed, it can inform its results to algorithm BE + Newton at the end of the first

period. With this faster solution, Algorithms BE + Newton can skip its slow part and

begin its next period calculation. In part B, Algorithms BE + Newton turns out to be

faster and it shares the solution with algorithm SC. In this way, when we adopt more

algorithms, we are picking out the best performing algorithm for every small period

along the whole simulation and all algorithms’ benefits are explored and simulation

speed will be optimal.

Figure 5. Illustration of the multi-algorithm parallelism

16

16

 Concerning the communication granularity, if we set the interval as whole

simulation time, the system will perform as picking out the fastest simulation algorithm

for the simulation task. The diversity will not be fully exploited. However, if we choose

a small interval, the communication will be frequent and influence the calculation speed

as mutual memory access conflicts are increasing. Hence, there exist tradeoffs between

efficiency and communication frequency. In the implementation, we need to choose a

reasonable granularity and make the information sharing among all the algorithms

efficient. This will be discussed in Chapter 4.

3.2 Simulation Algorithms

In this section, we discuss the advantages and disadvantages of different nonlinear

iterative methods and numerical integration methods as well as their roles in simulation

algorithm selection.

3.2.1 Diversity in Nonlinear Iterative Methods

At a single time point, the equation (3.1) can be represented as equation (3.2).

 0)(xF (3.2)

A. Newton-Raphson

Newton-Raphson is an effective method in solving nonlinear equations [12]. The

solution at 1k iteration is determined by equation (3.3).

)())((1 kkkk xFxxxJ  (3.3)

here,)(kxJ is called the Jacobian matrix.

17

17





































































n

nnn

n

n

k

x

F

x

F

x

F

x

F

x

F

x

F

x

F

x

F

x

F

xJ

...

.

.

...

)(

21

2

2

2

1

2

1

2

1

1

1

 (3.4)

 Assuming k th iteration's solution is known, the Jacobian matrix and)(kxF can

be calculated by device evaluation, then)1(k th solution is extracted by solving the

equation (3.3). If the difference between solutions at iteration 1k and k is smaller

than a given threshold, it is accepted as the converged solution. If not, we need to

proceed to the next iteration. For instance, 1r is the root of equation 0)(xf in Figure 6.

The initial solution is assumed at point),(000 yxP , 1x is obtained by using the tangent

line 1 which is corresponding to equation (3.3). However, 1y is larger than expected.

The next solution 2x is calculated based on point 1P similarly.

18

18

Figure 6. Newton-Raphson method.

 When kx is close to the exact solution, it can be proved that [12]

2
1)(kk xCx   (3.5)

Here C is constant. Hence, Newton's method has a quadratic convergence rate.

 When Newton’s method is applied in circuit simulation, its Jacobian matrix

needs to be recalculated by evaluating all the devices and decomposed in each iteration.

There are a large number of expensive derivative computations. Although Newton

method is robust with the quadratic convergence rate, the cost for each iteration is really

high and the simulation time at one step is large.

B. Successive Chord method

Another nonlinear iterative method is Successive Chord method (SC) [13]. It can be

represented as

19

19

)()(1 kkksc xFxxJ  (3.6)

here, the Jacobian matrix scJ is constant. In the following Figure 7, we can get 1x by

using the tangent line 1 which is corresponding to equation (3.6). The final solution 2x

will be obtained in next iteration based on point 1P . The obvious difference is that the

tangent lines are parallel.

Figure 7. Successive Chord method

 Compared to Newton Raphson, SC method’s advantage is that it uses constant

Jacobian matrix scJ in simulation. The Jacobian matrix is constructed, decomposed at

the beginning and the lower upper triangular (LU) factors are stored to reuse efficiently.

So the method does not need to calculate the derivative of device equations during the

whole simulation. Consequently, the cost for each iteration in SC method is very small.

However, the convergence rate of the SC method is linear which means for every

20

20

time step, the method probably needs more iterations. The strict convergence criteria for

SC method is

1)(1   vJJI Fsc (3.7)

Here, I is identity matrix, scJ is chord value,)(vJ F is the exact Jacobian matrix.

Consequently, the scJ matrix should be selected wisely. Otherwise this method

will probably diverge. According to our research, SC method is hard to converge for

analog circuits which have greater changes compared to the combination circuits.

3.2.2 Diversity in Numerical Methods

In transient analysis, equation (3.1) may be represented as a first order differential

equation:

),(txfx 


 Ttt 0 (3.8)

with initial condition:

00)(xtx 

Here,


x is the derivative of x , t is the time variable. The initial solution 00)(xtx  is

solved by DC analysis. In order to solve the differential-algebraic equations, first we

need to discretize  Tt ,0 to several distinct time points),,,(210 Ttttt n  . Then we use

the difference equation to replace the differential equation to get the approximate values

at these points),,,(210 mn xxxx  . For the solution at 1nt , the number of the previous

21

21

solutions),,(1 nn xx used is determined by the numerical methods which can be

classified into one-step and multi-step methods.

A. One-step method

Backward Euler is a one step method [12] with

 11 
 nnnn xhxx (3.9)

The local truncation errors (LTEs) is

2
)(2 x

hLTE nBE


 (3.10)

here, nnn tth  1 . In circuit simulation, a fixed step-size method is adopted if nh is

fixed as a reasonable value. There also exists variable step-size method for Backward

Euler. After an acceptable value is decided as the bound for local truncation error  ,

variable nh is calculated as

)(
2




x
hn


 (3.11)

Here,)(x  is second order derivative. 1nx is calculated by equation (3.9). If the local

truncation error at 1nt is smaller than  , the solution is acceptable. Otherwise, it will be

abandoned and the solution needs re-computation with a smaller nh until the solution

satisfies the error tolerance  . The variable step-size method enhances Backward Euler

method with a larger time step.

 Forward Euler is also a one step method with

22

22

nnnn xhxx 1 (3.12)

It does not include 1nx so the calculation is explicit and simple. The solution at any time

can be obtained only by its previous solutions, which contributes to its fast speed as well

as low robustness.

 Another one step method is Trapezoidal [14]. The formula is

)(
2 11 

 nn
n

nn xx
h

xx (3.13)

with local truncation errors (LTEs) as

12
)(3 x

hLTE nTR


 (3.14)

It has smaller local truncation error and larger step size.

B. Multi-step methods

Muliti-step methods employ the solution),,(11   pnnn xxx at points),,(11   pnnn ttt in

numerical integration:











p

i

ini

p

i

inin xxx
0

1
1

11 
 (3.15)

p is the order of the integration method.

 Gear2 [15] method uses the following formula to get the solution at 1nt .

nn

nnn
n

nnn

nn
n

nnn

n
nn

hh

hhh
x

hhh

hh
x

hhh

h
xx




























1

11
1

1

2
1

1

2
1

11 2
)(

)2(
)(

)2(
 (3.16)

Here, 111 ,   nnnnnn tthtth , the local truncation error is

23

23

)(
)2(6
)(

1

2
1

2
1

2 x
hh

hhh
LTE

nn

nnn
Gear









 (3.17)

Here 1 nn tt  . Compared to Backward Euler, Gear2 has more complicated integration

formula and is much faster with smaller LTE and larger time step size.

 DASSL [16], a variable-order variable-stepsize method, uses the predictor and

corrector to solve the differential equation. The predictor for a k th order formula is

generated by interpolating the last 1k solutions.

 inin

P

n xt  )(1 .,...,1,0 ki  (3.18)

 Hence, the solution at time 1n can be predicted by using the predictor function P

n 1 ,

)()(11
）0（

11
）0（

11 


 n

P

nn

P

n txtx
nn


 (3.19)

The corrector polynomial C

n 1 is an interpolation of the predictor at last k time points

and can be solved by the equation (3.20) ,

0)()()0(
111

)0(
11   n

C

nnn

C

ns xhx  (3.20)

here 



k

j

s
j1

1
 , 1nh is predicted step size for 1nt .

 After the corrector C

n 1 at 1nt is obtained, the circuit solution is solved by

equation (3.21) with LTE applied to determine nx is accepted or not.

0))(),(,(11111 
 n

C

nn

C

nn tttF  (3.21)

 DASSL uses the LTE to control the step size and the integration order

dynamically. Before calculating nx , DASSL utilize the existing step size and the order

24

24

k to estimates the LTE at nt . With the estimated LTE, DASSL determines the order k 

for the next time step. After nx is solved with above equations, k  is used to solve the

next time point solution or recompute nx based on whether nx is accepted or not.

DASSL has very complex control scheme to maintain stability and is possible to achieve

significant speedup.

3.2.3 Algorithm Selection

About the nonlinear iterative methods, we will use the Newton-Raphson and Successive

Chord method.

 In the numerical methods, the values we got at),,,(210 Ttttt n  is

approximation to the exact values, they are actually),,,(210


 mn xxxxx . The errors

are introduced by two ways. First, local truncation error is brought in because at time

1nt , we abandon the high order differential item. Second, we get the solution at time 1nt

with the previous solutions),,(1 nn xx which we assume are exact values. However,

these solutions are approximations because of the LTE. Hence, the errors may

accumulate. If the influences of the previous errors on later time pointes do not increase

with time, this method is stable. If the errors are accumulated and exceed the error limit,

the method is not stable.

 In order to clarify this, we introduce a test equation,

xx  (3.22)

If we apply the Forward Euler to the test equation, we will get

25

25

n

nnnnnn hxhxhxxx)1()1(01   (3.23)

When error at the initial solution is assumed as 0 , the error at time 1nt is

n

n h)1(01   (3.24)

here 0 and real. Consequently, when 11  h or 20  h , 1n is bounded and

the method is stable. If we represent 11  h in the complex plane of h , it will be

like Figure 8(a). The shaded part is called stability region.

 A stability concept, called Absolute Stability, specifies that a method is

absolutely stable if the region of the absolute stability covers the entire left plane as in

Firgure 9. According to this concept, Forward Euler is unstable while Backward Euler,

Trapezoidal method and fixed step size Gear2 method in Figure 8(b)(c)(d) are

unconditionally stable.

 Actually, stability and local truncation error are two major considerations in

selecting numerical integration methods. BE is robust and easy to implement, with large

local truncation error and small time step size. Fixed step size Gear2 has much smaller

local truncation error and larger time step size. However, Gear2 is much more complex

to implement and brings in a large computation cost at every time point. The stability of

the DASSL method is more difficult to analyze. According to the experiments, DASSL

is stable in most cases as Figure 9 and potentially leads to the largest time step size.

 In practice, the performance index of a particular algorithm is determined by the

circuit type and input signal. It is difficult to tell which one is the optimal before

executing it one time. In the system, we choose Newton-Raphson method (Newton) as a

26

26

solid base for the system and Successive Chord method (SC), Gear2 + Newton and

DASSL + Newton as aggressive algorithms to speed up the whole system.

Figure 8. Stability region of numerical integration methods.

Figure 9. Stability region of Absolute Stability.

27

27

 4. HIERARCHY OF PARALLEL AND DISTRIBUTED CIRCUIT SIMULATION

The hierarchy of parallel and distributed circuit simulation, built on a computer cluster in

Figure 10, adopts two levels of parallelism, inter-algorithm parallelism and intra-

algorithm parallelism. At the higher level of parallelism, multiple simulation algorithms

are performed in parallel on separate computer nodes with MPI methods transferring

data between them to exploit the algorithm diversity. The cloud in Figure 10 represents

the communication structures between nodes. Two MPI communication structures are

proposed, namely master-slave structure and peer-to-peer structure, with different

characteristic corresponding to the type and size of circuit. At the lower level of

parallelism, each algorithm has full control of all resources like CPUs, memory

bandwidth and I/O, which allows it to reach to high intra-algorithm parallelism.

Figure 10. A computer cluster

28

28

4.1 Multi-Algorithm Communication Structure

4.1.1 Master-slave Structure

In the master-slave structure, a flexible global synchronizer is utilized. Each algorithm

communicates with the global synchronizer rather than talks to each other in the

simulation. The synchronizer broadcasts to inform all the algorithms the new solutions.

The communication between the synchronizer and algorithm nodes is as Figure 11.

Figure 11. Global synchronizer node in Master-Slave structure.

 In order to show a clear view of the hierarchy, we discuss the main roles that the

algorithm node side and global synchronizer side play.

 One algorithm node is demanded to send all circuit nodes’ information including

voltages or currents to the other algorithms to bring them to where it is standing. In

addition, some algorithms like Gear2, DASSL, not only need the information at most

recent time point, but also need several previous time steps solutions to calculate the new

result. Hence, every algorithm sends k time steps results to the global synchronizer. Here,

29

29

k is determined by the highest order among the numerical integration methods in the

system. From the foregoing discussion, Newton-Raphson needs previous one time step

solution; Gear2 needs previous two time steps solutions while DASSL needs previous

five time steps solutions. We keep k as 6 after taking the new solution into consideration.

 In addition, an algorithm node fully controls granularity of the communication

with the global synchronizer. In this implementation, we choose the granularity as one

time step for all the algorithms. Hence, the algorithm node signals a communication

thread to transfer the solution after it finishes one time step computation. The reason of

creating a new thread to take over the interaction task is to overcome the coupling

between communication and computation. Although the algorithm node can use the non-

blocking MPI send method to transfer its own solutions, the MPI broadcast method in

receiving the most recent solutions back is blocking. Figure 12 shows a computer node

with 4 cores on which the BE + Newton is mapped.

30

30

Figure 12. Details of an algorithm node in the Master-Slave structure.

 Because the communication load in the global synchronizer is impressively large,

the synchronizer is mapped to a single node to avoid memory contention. During

simulation, it monitors all algorithm nodes. As soon as one algorithm node is sending a

new solution, the synchronizer makes the connection and receives the solution.

 The synchronizer maintains the most recent solution data structure the system has

during the simulation. The data structure contains k time steps solutions. After the

synchronizer receives a new message, the message is merge-sorted with the stored data,

and the first k solutions are kept and the data structure is updated. If the new solution

provided by an algorithm is ahead of the existing solutions, after merge sort, the data

structure will be updated with the new solution by inserting it into the structure.

31

31

However, if the new solution is stale and lags behind the existing solutions, it will be

abandoned and the solution structure stays unchanged.

 After the global synchronizer processes one message and gets updated, it will

broadcast new solutions to all algorithm nodes. Hence, all algorithms will be updated

with the latest solutions and begin their next step calculation. In this way, the global

synchronizer will always keep the most recent solutions and algorithm nodes interact

with each other indirectly. The detailed work flow of the system is shown in Figure 13.

 In the master-slave structure, all algorithms will be synchronized continuously.

Slow execution of each of these algorithms is sidestepped by others and their advantages

will be fully exploited. However, the global synchronizer needs to process and transfer a

large amount of data since there are several nodes continuously sending messages to it.

Consequently, the synchronizer may easily be the bottleneck of the system and affect

system efficiency.

32

32

Figure 13. Flow chart of the algorithm node and global synchronizer in Master-Slave scheme.

33

33

4.1.2 Peer-to-Peer Structure

To avoid the bottleneck on the synchronizer, we come up with a peer-to-peer scheme. In

this structure, one algorithm node similarly creates two threads for computation and

communication, respectively. The communication thread receives messages from its

preceding node, processes the received message with its own solutions, then sends the

updated solution to the next node. The four algorithms form a loop and the most recent

solutions keep circulating in the loop to synchronize all algorithms and explore their

diversity. The communication structure is shown in Figure 14.

Figure 14. Peer-to-Peer communication scheme.

 Apparently, this structure saves the resource by abandoning the global

synchronizer and distributes the large amount of data processing work burden on the

global synchronizer to each algorithm node. It eliminates the effect of bottleneck and

also decreases the network load because in the master-slave structure the communication

is collective and algorithm node may be not aware the status of the global synchronizer

34

34

and sends a stale solution which will occupy the network bandwidth and hamper

effective communication. The main disadvantage is that in the peer-to-peer structure, all

algorithms will be updated only when one-loop data transfer is completed. However, in

the master-slave structure, all other algorithms will be informed immediately as soon as

any one algorithm gets a new effective solution.

 In this loop structure, deadlock, start and exit of the program needs additional

attention. For instance, deadlocks happen when the successor node waits on a blocking

MPI message from the precursor node which has reached the end of the simulation and

exited. In our implementation, algorithm BE + Newton which is the most stable and has

low computational cost for the initial time steps is used to trigger the transfer of data as a

loop. At the end of the simulation, a flag is used to track how many nodes have finished.

Every node will increment the flag before it exits. The flag is stored in the MPI message.

Hence, when a node receives a message with a flag value equal to the number of all

other algorithms, it knows all previous nodes have finished and it skips sending the

message to the next node and exits. This way, the system can exit correctly. Figure 15

shows the detailed work flow in this structure.

35

35

Figure 15. Flow chart of the algorithm node in peer to peer scheme.

36

36

4.2 Multiple Threads in A Single Algorithm

Transient analysis may be conducted over a large number of time steps. At every time

step, it needs several iterations to get convergence. Hence, the number of iterations can

be very high. Device evaluation and matrix solve carried on at every iteration are very

time consuming and take nearly the whole simulation time. In previous discussion, there

is a tradeoff between the number of the iterations per time step and the cost of each

iteration for different nonlinear iterative methods. Here we further made use of the

power of multi-core processor to expedite the device evaluation and matrix solve in a

single algorithm node. A distributed platform provides the possibility of fully realizing

intra-algorithm parallelism as one algorithm mapped on one node can exclusively access

all the compute and memory resources.

4.2.1 Parallel Device Evaluation

In the device evaluation, Jacobian matrix)(kxJ has a large number of partial differential

items. In parallelization, nonlinear elements are divided into several groups, and each

group is handled by one thread. The speedup for this can reach linear scaling when there

are sufficient nonlinear elements. However, because of the cost of spawning, execution

and termination of threads, the benefits of parallelization may be reduced especially

when nonlinear elements in the circuit are few.

37

37

4.2.2 Parallel Matrix Solver

 In our platform, SuperLU [17] is made use of as parallel matrix solver. SuperLU

is a general purpose library providing direct solution to large, sparse, non-symmetric

systems of linear equations on high performance machines. The library routines perform

LU decomposition with partial pivoting and triangular system solves through forward

and backward substitution. It exploits two sources of parallelism in the sparse LU

factorization. The coarse level parallelism comes from the sparsity of the matrix, and is

exposed by the column elimination tree of the matrix. The second level of parallelism

comes from pipelining the computations of dependent columns.

 The performance of matrix solve has bottleneck after the number of threads used

reaches a certain number due to the circuit’s and the computer node's characteristics. For

instance, when using more threads in SuperLU, accessing critical sections via locks will

increase and result in degradation of parallel performance. The more processors there

are, the larger communication loss there will be. Second, the solver needs to divide the

matrix into several parts and pipeline the operation on every part. Hence, the dense and

small matrix generated by device evaluation has more dependence and is hard to be

divided to several independent parts, making the parallel performance worse. On the

contrary, the speedup is large for the sparse and large matrices.

 The computer node on our platform is a symmetric multi-processor system with

8 dual core processors. The communication between the dual cores in one packaged

processor chip is twice as faster as the communication between the cores in different

processors chips. Hence, the performance of the parallel matrix solve has a degradation

38

38

when the number of the cores reaches to an odd number since the new added core needs

to transfer data to cores in other chips. We choose to use even number of threads for

parallel device evaluation and matrix solve which achieve better speedups.

39

39

5. RESULT AND ANALYSIS

5.1 Supercomputer

 Hydra (see Figure 16) is a 52-node, 832-processor IBM cluster. The 52 nodes are

further organized and housed into five physical frames [18]. The cluster uses IBM high-

performance communication switch for parallel processing and other communication

between the nodes. Each node connects to the HPS network using two adapters. HPS

routes a message packet to another node [18].

Figure 16. A snapshot of the supercomputer Hydra.

 On Hyrda, when running a Pthreads program, the number of threads during

execution can be set by the environment variable OMP_SET_NUM_THREADS. An

MPI program is executed under the Parallel Operating Environment (POE). When the

40

40

program is being executed, the number of tasks can be set by the environment variable

PROCS. Typically, tasks are mapped 1-to-1 on processors.

 In the batch file, we can specify how tasks to be assigned. We assign the MPI

tasks to 5 nodes with variable node. Every node can use 4 CPUs and 1.5gb memory by

setting ConsumableCpus as 4, ConsumableMemory as 1500mb where 1500mb is the

aggregate amount of memory taken up by 4 threads.

5.2 Result

5.2.1 MPI vs. Sequential Algorithm

First, we compare the MPI master-slave (MPI-MS) structure’s runtime results with the

four single sequential algorithms: Newton+BE, SC, Newton+Gear2, Newton+DASSL

for several circuits in Table 1. The runtime results are in seconds. MPI-MS 1 core means

that we use one core for one algorithm in the system. The speedup1 is MPI-MS 1 core

over Newton + BE, which is the basic SPICE setup. MPI-MS 2 cores is that we assign 2

cores for every algorithm. The speedup2 is its speedup over MPI-MS with 1 core. The

“N/A” in the table means the algorithms are not stable or diverge in the simulation.

41

Table 1. Comparison between sequential algorithm and MPI methods

size

/MB

No. of

Lin. ele.

No. of

FETs

No. of

nodes

Newton

BE/s
SC/s

Newton

Gear2/s

Newton

DASSL/s

MPI-MS

1 core/s

speed

up1

MPI-MS

2 cores/s

speed

up2

mesh4 100 3500 20 3500 178 53.5 78.5 68 52 3.42 49 1.06

mesh6 385 8500 40 8500 3960 86.2 1644 N/A 79 50.13 72 1.10

mesh18k 420 10k 50 10k 11060 213 4800 N/A 194 57.01 189 1.03

mesh28k 772 15k 50 15k 31000 429 12800 N/A 412 75.24 411 1.00

inv_chain1 71 1000 2000 1000 2311 632 826 431 395 5.85 205 1.93

inv_chain2 121 2000 4000 2000 2181 437 1040 491 428 5.10 240 1.78

grid20k 300 12k 0 8000 282 190 116 182 92 3.07 89 1.03

grid30k 600 18k 0 12k 441 316 180 285 150 2.94 135 1.11

4b_adder 22 50 200 250 140 749 74 106 60 2.33 32 1.88

lna_mixer 23 50 10 50 74 N/A 21 35 20 3.70 24 0.83

mixer 23 20 10 30 77 N/A 28 60 26 2.96 31 0.84

42

42

 For mesh circuits [19], which have lots of linear elements and few nonlinear

transistors, SC method is the fastest algorithm by avoiding repeatedly evaluating devices

and factorizing large matrix. It can get convergence at every time point quickly.

Compared to SC method, other algorithms cannot save this large amount of time and

needs longer time to finish the simulation. This situation is more obvious for larger mesh

circuits like mesh18k, and mesh28k which takes BE + Newton algorithm several hours

to complete. MPI master-slave structure takes advantage of SC method and reaches a

significant large speedup over Newton + BE.

 The invert-chain circuits have more nonlinear elements. SC algorithm demands a

lot of iterations to get convergence due to more complicated circuit operating condition

and its worse convergence rate. In this case, the number of iterations dominates the cost

for each time step even the cost for one iteration is still small. The multi-step integration

methods perform better in these circuits especially when the circuits are small. The MPI

master-slave structure which exploits the diversity of different algorithms and the

advantages of different algorithms in different stages, reaches the smallest simulation

time.

 Mixer circuits are one kind of analog circuits with small size, high accuracy

requirements and complex transistor operating condition changes. SC algorithm may not

get convergence for whole simulation time. The Newton + Gear2 algorithm is getting

results fast. The MPI master-slave method can run a little faster than Newton + Gear2

with other algorithms’ contributions.

43

43

 After applying more threads in single algorithm in the distributed system, we find

that speedup2 almost reaches the optimal for the inverter chain circuits. This may be due

to the fact that the inverter chain circuits consist of a large number of transistors which

can be divided equally into two groups and handled efficiently by two threads. In

addition, the size of the matrix obtained by device evaluation is suitable for the parallel

matrix solver. The speedup for other circuits is not as good as inverter chains. Even

worse, analog circuits have performance drop after being applied two threads for a single

algorithm. Analog circuits are either small or with a small number of nonlinear elements

and have large overhead in parallel device evaluation and matrix solve.

Creating/terminating threads introduces a relatively larger cost to these small circuits.

The benefits introduced by multiple threads are smaller than the overhead.

 These results demonstrate the benefits brought by the MPI based multi-algorithm

circuit simulation and multiple threads in a single algorithm for certain classes of circuits.

5.2.2 MPI vs. HMAPS

In this section, the results between HMAPS [20] and MPI based distributed simulation

are compared. HMAPS run in one node with 8 threads and 2 gigabytes memory while

MPI methods are using two threads for each algorithm on several nodes. The resource

allocation and results are in Table 2 and Table 3. The size/MB column shows the

memory size of one circuit data copy. Column HMAPS, MPI-MS and MPI-P2P show

the runtimes in second. The MPI-MS speedup is the MPI master-slave structure’s

44

44

speedup over HMAPS while the MPI-P2P speedup is the MPI peer-to-peer structure’s

speedup over HMAPS.

Table 2. Resource allocation between HMAPS and MPI methods.

Table 3. Comparison between HMAPS and MPI methods.

 Threads/algorithm Nodes Threads/node Memory

HMAPS 2 1 8 2GB

MPI master-slave 2 5 3 2GB

MPI Peer-to-Peer 2 4 3 2GB

Circuit size/MB HMAPS/s MPI-MS/s
MPI-MS

speedup
MPI-P2P/s

MPI-P2P

speedup

mesh4 100 56 49 1.14 51 1.10

mesh6 385 85 72 1.18 74 1.15

mesh8 420 226 189 1.20 196 1.15

mesh18 772 750 411 1.82 379 1.98

inv_chain1 71 236 205 1.15 214 1.10

inv_chain2 121 249 240 1.04 230 1.08

grid20k 300 107 89 1.20 92 1.16

grid30k 600 210 135 1.56 124 1.69

4b_adder 22 46 32 1.44 35 1.31

lna_mixer 23 42 24 1.75 25 1.68

mixer 23 81 31 2.61 32 2.53

45

45

 In HMAPS [20], multiple algorithms are mapped to a single shared-memory

system and every algorithm shares computing resources. In the results above, four

algorithms are running with their own copy of circuit data, with totally four copies on

one computer node. It requests 3 gigabytes for the mesh18 circuit and 2.5 gigabytes

memory for grid30k. On the 2 gigabytes shared-memory system, the memory contention

is large and the simulation takes longer time to finish. The MPI based distributed system

runs algorithms on separate nodes. The memory used on one node is 800 megabytes for

mesh18 circuit and 600 megabytes memory for grid30k. Hence, the memory contention

is smaller and speedup can reach as high as 1.98.

 The MPI based methods are about 15 percentages faster for mesh4, mesh6,

grid20k and inverter chain circuits. These circuits normally need about several hundred

megabytes memory but MPI structures have more communication overhead than

HMAPS where threads access shared local memory quickly and the communication

between the algorithms can be made frequent. In the distributed system, communication

speed is limited by the network bandwidth and the size of messages. The communication

cost and delay could be large when simulating large circuits. However, the MPI based

platform is capable of incorporating more algorithms to further exploit inter-algorithm

parallelism which is more difficult for HMAPS.

46

46

5.2.3 Comparison Between MPI Methods

The comparison between the MPI master-slave structure and the peer-to-peer structure is

shown in Figure 17. The speedups are the two MPI based methods’ speedups over

HMAPS.

Figure 17. Comparison between master-slave and peer-to-peer communication structure.

 For small circuits like mesh4, mesh6, mesh8 and grid20k, each algorithm updates

the global synchronizer quickly after getting its own solution in the MPI master-slave

structure. The synchronizer will also broadcast and inform every algorithm the most

recent solution immediately. It has little bottleneck due to the fact that the circuit size is

small and the data processing is quick. However, the MPI peer-to-peer structure has a

delay in updating all algorithms because the algorithms receive the latest solution only

after the solution experiences one loop transfer. This is demonstrated in the figure above

47

47

which show that the MPI master-slave structure is faster than the MPI peer-to-peer

structure.

 For large circuits, like mesh18 and grid30k, the speedup of the MPI master-

slave scheme is much smaller than the MPI peer-to-peer scheme. In these circuits, the

messages generated by the circuit have huge size and the synchronizer needs to receive a

large amount data from the algorithm nodes during the simulation as well as the data

processing time in synchronizer is increasing. These factors put a large work load on the

global synchronizer and cause a bottleneck. Moreover, the algorithms may send the stale

solutions to the synchronizer because they are not aware of the status of the synchronizer.

In this case, the network bandwidth is occupied and wasted by these kinds of useless

communication. In the peer-to-peer scheme, the processing and network load is

distributed among all the algorithm nodes and the bottleneck effect is alleviated. In

addition, one node resource which is occupied by the synchronizer is saved.

5.2.4 Accuracy

We compare the results between BE + Newton and the distributed circuit

simulation on two nodes of mesh4 circuit in Figure 18 and Figure 19. The BE + Newton

is the basic SPICE setup and accurate. We compare the two voltages from the two

methods on the same time points, and the standard deviation is smaller than 0.001 volt.

Hence, the simulation results are acceptable.

48

48

Figure 18. Simulation results on Node1

Figure 19. Simulation results on Node2

49

49

6. CONCLUSIONS

In this thesis work, we exploited parallel and distributed multi-algorithm circuit

simulation to alleviate the significant computational costs of parallel circuit simulation

on shared memory systems. We exploited inter-algorithm parallelism by developing the

master-slave structure and peer-to-peer structure and introducing intra-algorithm

parallelism through parallel device evaluation and matrix solve to improve runtime

efficiency. With the above techniques, our experimental results demonstrate that MPI

based distributed platform decreases memory contention and thread contention, reaches

a large speedup and is capable for incorporating more algorithms into the system.

50

50

REFERENCES

[1] Electronic circuit simulation [online]. Available: http://en.wikipedia.org/wiki/

Electronic_circuit_simulation. Accessed on Mar. 2012.

[2] G.Yang, “Paraspice: A parallel circuit simulator for shared-memory multiprocessor,”

in Proc. ACM/IEEE Design Autom. Conf., pp. 400-405, Jun. 1991.

[3] N. Rabbat, A. Sangiovanni-Vincentelli, and H. Hsieh, “A multilevel Newton

algorithm with macromodeling and latency for the analysis of large-scale

nonlinear circuits in the time domain,” in IEEE Trans. Circuits Syst., vol. 26, no.

9, pp. 733–741, Sep. 1979.

[4] W. Dong, P. Li, and X. Ye, "WavePipe: parallel transient simulation of analog

 and digital circuits on multi-core shared memory machines", in Proc. of

 IEEE/ACM Design Automation Conference (DAC), pp. 238-243, Jun. 2008.

[5] N. Rabbat, A. Sangiovanni-Vincentelli, and H. Hsieh, “A multilevel Newton

 algorithm with macromodeling and latency for the analysis of large-scale

 nonlinear circuits in the time domain,” IEEE Trans. Circuits Syst., vol. 26, no. 9,

 pp. 733–741, Sep. 1979.

[6] J. White and A. Sangiovanni-Vincentelli, Relaxation Techniques for the Simulation

of the VLSI Circuits, Boston, MA: Kluwer, 1987.

[7] X. Ye, W. Dong, P. Li, S. Nassif, "MAPS: Multi-algorithm Parallel Circuit

Simulation," in Proc. of IEEE/ACM Intl. Conf. on Computer-Aided Design

(ICCAD),pp. 73-78, Nov. 2008.

51

51

[8] P. Li, "Parallel Circuit Simulation: A Historical Perspective and Recent

Developments,” in Foundations and Trends in Electronic Design Automation,

vol. 5, no 4, pp 211-318, 2011.

[9] A. Jameson and E. Turkel, “Implicit Schemes and LU Decompositions,” in ICASE

Report, pp. 79-24, 1979.

[10] Pthreads [Online]. Available: http://en.wikipedia.org/wiki/Pthreads. Accessed on

Mar. 2012.

[11] Message Passing interface [Online]. Available: http://en.wikipedia.org/wiki/

Message_Passing_Interface. Accesssed on Mar. 2012.

[12] W. Nagel, and O. Pederson, “SPICE (Simulation Program with Integrated

 Circuit Emphasis),” memorandum no. ERL-M382, University of California,

 Berkeley, Apr. 1973.

[13] P. Li and L. Pilleggi, “A linear-centric modeling approach to harmonic balance

analysis,” in Proc. Design Autom. Test Europe, pp. 634–639, Mar. 2002.

[14] K. C. Yeh and K. C. Kwan, “A comparison of numerical integrating logarithms by

trapezoidal, Lagrange, and spline approximation,” in J. Pharmacokin, Biopharm.

6, pp. 79-98, 1978.

[15] W. Gear, “The numerical integration of ordinary differential equations,” in Math.

Comp., pp. 146-156, Apr. 1967.

[16] K. E. Brenan, S. L. Campbell, and L. R. Petzold, Numerical Solutions of Initial-

Value Problems in Differential-Algebraic Equations. New York: Elsevier, 1989.

[17] J. W. Demmel, J. R. Gilbert, and X. S. Li, “An asynchronous parallel supernodal

http://en.wikipedia.org/wiki/Pthreads
http://en.wikipedia.org/wiki/Message_Passing_Interface

52

52

algorithm for sparse Gaussian elimination,” in SIAM J. Matrix Anal. Appl., vol

20, no. 4, pp. 915–952, 1999.

[18] Hydra Super Computer [Online]. Available: http://sc.tamu.edu/help/hydra/

sysinfo.php. Accessed on Mar. 2012.

[19] P. J. Restle, T. G. McNamara, D. A. Webber, P. J. Camporese, K. F. Eng, and K. A.

Jenkins, “A clock distribution network for microprocessors,” in IEEE J. Solid-

State Circuits, vol. 36, no. 5, pp. 792–799, May 2001.

[20] X. Ye, W. Dong, P. Li, and S. Nassif, “Hierarchical Multialgorithm Parallel Circuit

Simulation,” in IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, volume 30, pp. 45-58, January 2011.

http://sc.tamu.edu/help/hydra/sysinfo.php

53

53

VITA

Name: Ruicheng Dai

Address: 214 Zachry Engineering Center,

 TAMU 3128

 College Station, TX 77843-3128

Email Address: dairc2009@gmail.com

Education: B.S., Telecommunication Engineering,

 Zhejiang University, China, 2009

 M.S., Computer Engineering, Texas A&M

 University, 2012

