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ABSTRACT 

 

Parallel and Distributed Multi-Algorithm Circuit Simulation. (August 2012) 

Ruicheng Dai, B.S., Zhejiang University 

Chair of Advisory Committee: Dr. Peng Li 

 

With the proliferation of parallel computing, parallel computer-aided design 

(CAD) has received significant research interests. Transient transistor-level circuit 

simulation plays an important role in digital/analog circuit design and verification. 

Increased VLSI design complexity has made circuit simulation an ever growing 

bottleneck, making parallel processing an appealing solution for addressing this 

challenge. In this thesis, we propose and develop a parallel and distributed multi-

algorithm approach to leverage the power of multi-core computer clusters for speeding 

up transistor-level circuit simulation.  

The targeted multi-algorithm approach provides a natural paradigm for exploiting 

parallelism for circuit simulation. Parallel circuit simulation is facilitated through the 

exploration of algorithm diversity where multiple simulation algorithms collaboratively 

work on a single simulation task. To utilize computer clusters comprising of multi-core 

processors, each algorithm is executed on a separate node with sufficient system 

resource such as processing power, memory and I/O bandwidth. We propose two 

communication schemes, namely master-slave and peer-to-peer schemes, to allow for 

inter-algorithm communication. Compared with the shared-memory based multi-
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algorithm implementation, the proposed simulation approach alleviates cache/memory 

contention as a result of multi-algorithm execution and provides further runtime 

speedups.  
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1. INTRODUCTION 

 

1.1 Motivation 

As a fundamental technology in computer-aided design, circuit simulation provides 

insights into electronic circuits by leveraging mathematical models to replicate the 

behavior of an actual electronic device or circuit [1]. In transistor-level time-domain 

circuit simulation, DC analysis is used to obtain quiescent operating point and transient 

analysis is employed to compute the time-domain response of the circuit. Accurate, fast 

and robust transistor-level circuit simulation plays a critical part in the design and 

verification of digital/analog circuit.    

Since 1965, Gordon E. Moore, the co-founder of Intel put forward that the 

number of transistors on integrated circuits would double every two years. This 

prophecy, also known as Moore’s law, became the guidance of the development of 

integrated circuit technology for later decades. A typical Very Large Scale Integrated 

(VLSI) Circuit may integrate millions of transistors and other components in a few 

square millimeters on a chip. Simulation of large IC designs as well as inherent high 

accuracy requirements places a heavy burden on circuit simulation. For instance, circuit 

designers may have to spend several days or even weeks on expensive circuit simulation, 

which greatly influences the design efficiency.  

However, with the recent industry’s shift to multi- and many-core processor  

____________ 
This thesis follows the style of IEEE Transactions on Computer-aided Design of 

Integrated Circuit and System. 
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technology, parallel computing is ubiquitous and changing the landscape of computing 

and data processing. This change has made profound implications on the development of 

compute-intensive applications. Leveraging the available parallel compute hardware 

leaves new opportunities and challenges to large-scale circuit simulation.  

 

1.2 Previous Work and Limitations 

Parallel circuit simulation is not a new topic. The two key challenges of applying 

parallelism to CAD area are parallel algorithm development and parallel program 

implementation. Prior work attempted to realize more parallelism from several different 

perspectives.  

 Parallel device evaluation and matrix solve [2][3] are the most direct methods. 

Device evaluation and matrix solve are the most time consuming parts in simulation and 

dominate the total simulation time. It is straightforward to leverage more threads/CPUs 

in these two parts to gain large parallelism. However, the speedup is not linear due to the 

characteristic of the circuit and multi-core computers. Creating threads, terminating and 

synchronization also will add some overhead to the system.    

             There also have been attempts to realize parallel capabilities in a single 

simulation algorithm. Waveform pipelining approach [4] simultaneously computes 

circuit solutions at multiple adjacent time points in a way resembling hardware 

pipelining. Circuit decomposition can divide a large circuit into several small sub-

circuits which can be solved in parallel. However, decomposition-based circuit 

simulation algorithms like multilevel newton algorithm [5] and waveform relaxation 
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algorithm [6] have issues in terms of convergence. In addition, these two methods 

exploit fine-grained parallelism, hence require large programming effort. 

 The multi-algorithm parallel approach [7] exploits inter-algorithm parallelism by 

running several simulation algorithms on a shared-memory multi-core machine 

simultaneously. 

  However, most of these works are carried on multi-core shared memory 

machines. While the methods are gaining the benefits from these platforms, like low on-

chip communication overhead, they also have to pay a price for the drawbacks. For 

instance, the memory on a multi-core machine is shared by all processes/threads and the 

number of CPUs on one computer is limited due to the manufacture process and power 

consumption. Hence, memory contention is inevitable as well as severe thread 

contention when the number of threads is greater than the number of CPUs. The system 

performance will suffer noticeable degradation.  

  Computer clusters offer a promising computing solution to address ever complex, 

computationally intensive simulation problems with sufficient computing resources and 

high memory bandwidth.  

 

1.3 Overview and Organization  

In this thesis, we propose a distributed and parallel multi-algorithm circuit simulation 

where multiple simulation algorithms are mapped on separated nodes in a supercomputer 

and work on the same simulation task with effective communication schemes to realize 

the on-the-fly synchronization and exploration of algorithm diversity. With sufficient 
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computing resource utilized for parallel device evaluations and parallel matrix solvers in 

each algorithm, simulation runtime is further reduced. As a coarse-grained parallel 

approach, the proposed distributed circuit simulation requires less programming effort 

and is applicable for an increasing number of simulation algorithms.  

  This thesis is organized as follows. In Chapter 2, we introduce the background 

for time-domain circuit simulation and parallel computing. Then the principle of multi-

algorithm circuit simulation as well as the diversity of numerical integration methods 

and nonlinear iterative methods will be discussed in Chapter 3. In Chapter 4, we will 

present the details of the MPI based parallel and distributed circuit simulation. In 

Chapter 5, the platform where the experiments are carried on and experimental results 

will be given. Finally, conclusions are drawn in Chapter 6.  
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2. BACKGROUND 

 

2.1 Transistor-level Circuit Simulation 

Transistor-level time-domain circuit simulation, a computer-aided design tool,  greatly 

improves design efficiency and reduces the labor intensity in digital/Asic VLSI circuit 

design. Figure 1 is a flow chart of digital/Asic circuit design. 

            First, system specifications and requirements need to be completed. A graph 

editor or text editor is used to describe the circuit’s structure and behavior. After the 

behavioral description, synthesis realizes the automatic conversion from high level 

abstraction to low level description where RTL code is translated to a gate-level circuit. 

Physical design including floorplanning, placement and routing is then carried out to 

generate the layout of the design. At last, manufacturing process fabricates designs onto 

silicon dies which are packaged into ICs [1]. 

  Transistor-level circuit simulation can be performed at the circuit design level 

based on pre-layout schematic. Also, it may be performed after the post-layout circuit 

netlists are extracted out. It is not surprising that simulation plays a vital part in 

predicting circuit performance and rejecting a failing design due to transistor-level 

circuit simulation also plays an important role in the design of analog and RF circuits. 
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Figure 1. Transistor-level circuit simulation in digital/Asic design flow. 
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  In transistor-level circuit simulation, circuit analysis problem is formulated 

according to circuit structure, device parameters and analysis requirements. KVL 

(Kirchhoff's voltage laws) and KCL (Kirchhoff's current laws) are two basic principles 

in simulation. Hence, an electronic circuit can be described as a differential-algebraic 

equation,    

                                                    )()()( tuxfxq
dt

d
                                                   (2.1) 

here, )(tu  is the input vector, )(tx  is the vector of nodal voltages and branch currents. 

)(xq  and )(xf  corresponding to dynamic elements and static elements are nonlinear 

functions. Regarding equation (2.1), the existence of nonlinear functions, )(xq  and 

)(xf  is due to the fact that the transistors in the CMOS technology are nonlinear 

elements with complex nonlinear characteristic. The differential operation represents the 

behavior of energy storage components like capacitors and inductors which have delay 

in following the changes of input sources.  

For instance, a simple circuit in Figure 2 can be described as equation (2.2)  
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Figure 2. A simple circuit. 

 

  To solve equation (2.1), DC analysis is used to obtain an initial operating point. 

In DC analysis, all the dynamic circuit elements are removed and a nonlinear iterative 

method is applied to get the solution converged in several iterations. Then a numerical 

integration method is applied to calculate the transient solutions. At each time point, 

transient analysis, similarly, needs to utilize the nonlinear iterative method to obtain a 

converged solution. In other words, by adopting a numerical integration formula, the 

time-domain transient response of the circuit is obtained by solving a sequence of 

equivalent nonlinear DC problems sequentially at all time points [8]. The flow chart of 

the circuit simulation is shown in Figure 3. 

  In transistor-level circuit simulation, device evaluation and matrix solve are the 

two most time consuming parts. At each iteration in a single time point, device 
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evaluation is performed to obtain equivalent mathematical models of circuit components. 

The evaluation requires numerous computations, especially for nonlinear components 

such as diodes, transistors, nonlinear resistances and nonlinear capacitances which have 

a large amount of device model derivatives. For instance, a diode’s voltage and current 

can be represented as  

)1(  T

D

V

V

SD eII                                                        (2.3) 

Here, SI  is the reverse bias saturation current and TV  is the thermal voltage. The model 

of the device has an important position in the whole procedure of circuit analysis 

because the accuracy of simulation results depends on the precision of the model 

significantly.  

Matrix solve is then applied to obtain the solution for that specific iteration. We 

LU decompose the matrix to solve the equations. When the coefficient matrix is a sparse 

matrix, the time complexity of solving the equations will be approximately )(nO  [9], 

here n  is the number of the nodes in the circuit.  
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Figure 3. Work flow of the transient circuit simulation. 



11 

 

11 

2.2 Parallel Computing 

From the perspective of computer architecture, symmetric multiprocessor (SMP) 

machine is a system with two or more homogeneous processors on one chip, sharing 

memory subsystem and bus structure. Although multiple CPUs are running at the same 

time, they perform as a single machine. The system distributes the tasks in a queue 

symmetrically over multiple CPUs, thus greatly improving data processing ability of the 

whole system. Computer clusters emerged as a result of developments of low cost 

microprocessors and high speed networks. Many independent computer nodes are 

connected to each other in the cluster through fast local area networks. One computer 

node can be a single processor or a multiple-processor system, which has memory, I/O 

devices and operating system. The system can provide a fast and reliable service 

solution, which can hardly be obtained even through a very expensive shared memory 

system. 

For these parallel platforms, Pthreads and MPI are two most popular parallel 

programming APIs. POSIX threads [10], commonly known as Pthreads, specifies a set 

of interfaces (functions, header files) for threaded programming where a single process 

can create multiple threads. Every thread can be assigned different kind of work and run 

independently. These threads share data and heap segments, but each thread has its own 

stack to store automatic variables.  

 MPI, a kind of Message Passing Interface released in May 1994, is actually a 

standard of message passing function library [11]. It absorbs benefits from many existing 

message passing function libraries and becomes one of the most popular parallel 
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programming environments, especially for distributed storage computers and network-

based workstations. MPI has many advantages in providing the necessary conditions for 

the development of parallel software industry:  

 portable and flexible 

 complete asynchronous communication function. 

 formal, detailed and precise definition 

In the MPI based programming model, a fixed set of processes are created in the 

initialization of the program. Processes receive and send massages by calling library 

functions. These processes can execute the same or different code paths, correspondingly 

called single program multiple data (SPMD) or multiple program multiple data (MPMD). 

Communications between the processes can be point-to-point or collective. 
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3. MULTI-ALGORITHM PARALLELISM 

 

3.1 Multi-Algorithm Parallelism 

From the foregoing discussion, the transient circuit simulation problem can be 

formulated as equation (3.1). 

)())(())(( tutxftxq
dt

d
                                           (3.1) 

  In a circuit simulation algorithm, one nonlinear iterative method is utilized to 

linearize the nonlinear functions and one numerical integration method replaces 

differential operation with difference operation. Newton Raphson and Successive Chord 

are typical nonlinear iterative methods while Backward Euler, Gear2 and DASSL are 

classic numerical integration methods. A variety of simulation algorithms are then 

generated within a set of combination between these two kinds of methods. SPICE 

(Simulation Program with Integrated Circuit Emphasis) [12] is taking Newton-Raphson 

and Backward Euler as its basic circuit simulation algorithm. It is a general-purpose, 

open source electronic circuit simulator for integrated circuit and board-level design. 

Compared to Newton-Raphson and Backward Euler algorithm, Successive Chord is a 

higher speed simulation algorithm. While the algorithm pool provides a great diversity, 

it also brings in the complexity in choosing an optimal algorithm for a specific circuit 

because the algorithms behave quite differently for different kinds of circuits, even in 

different stages on the same circuit during the whole simulation time.  

http://en.wikipedia.org/wiki/Analogue_electronics
http://en.wikipedia.org/wiki/Electronic_circuit_simulation
http://en.wikipedia.org/wiki/Integrated_circuit
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Figure 4. A sample for circuit simulation result. 

 Figure 4 is simulation results obtained by using SC algorithm and Newton + BE 

algorithm for inverter chain circuit. During the simulation, we find SC algorithm prints 

out results much faster on part A and C but slower on part B. From the figure above, we 

can see the waveform remains stable during parts A and C. Considering SC algorithm’s 

advantage, it can converge very quickly and the cost for each iteration is very small by 

using a constant Jacobian matrix. In part B, the waveform changes significantly, SC 

algorithm needs a large number of iterations to converge to the final solution at every 

time step. Although the cost for each iteration is still small, the time spent on one time 

step is increasing significantly. When the waveform gets steeper, SC probably will 

diverge. Inspired by this observation, we know an optimal solution will be obtained if 

the benefit of SC algorithm on parts A and C is exploited as well as the benefit of 

Newton + BE algorithm on part B. 

             Consequently, we refer to the multi-algorithm approach in [7] and propose a 

new approach that builds on a distributed memory platform to run multiple simulation 
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algorithms on multiple computer nodes in parallel to exploit the diversity of these 

algorithms. 

  To illustrate, we assume two algorithms are initiated on the same circuit 

simulation. In Figure 5, part A is corresponding to the first time period while part B is 

the second period. In the first period, algorithm SC is the fastest due to the reason 

discussed, it can inform its results to algorithm BE + Newton at the end of the first 

period. With this faster solution, Algorithms BE + Newton can skip its slow part and 

begin its next period calculation. In part B, Algorithms BE + Newton turns out to be 

faster and it shares the solution with algorithm SC. In this way, when we adopt more 

algorithms, we are picking out the best performing algorithm for every small period 

along the whole simulation and all algorithms’ benefits are explored and simulation 

speed will be optimal.  

 

Figure 5. Illustration of the multi-algorithm parallelism 
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  Concerning the communication granularity, if we set the interval as whole 

simulation time, the system will perform as picking out the fastest simulation algorithm 

for the simulation task. The diversity will not be fully exploited. However, if we choose 

a small interval, the communication will be frequent and influence the calculation speed 

as mutual memory access conflicts are increasing. Hence, there exist tradeoffs between 

efficiency and communication frequency. In the implementation, we need to choose a 

reasonable granularity and make the information sharing among all the algorithms 

efficient. This will be discussed in Chapter 4. 

 

3.2 Simulation Algorithms 

In this section, we discuss the advantages and disadvantages of different nonlinear 

iterative methods and numerical integration methods as well as their roles in simulation 

algorithm selection. 

 

3.2.1 Diversity in Nonlinear Iterative Methods 

At a single time point, the equation (3.1) can be represented as equation (3.2).  

  0)( xF                                                               (3.2) 

A. Newton-Raphson 

Newton-Raphson is an effective method in solving nonlinear equations [12]. The 

solution at 1k  iteration is determined by equation (3.3).  

)())(( 1 kkkk xFxxxJ                                                (3.3) 

here, )( kxJ  is called the Jacobian matrix.  
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 Assuming k th iteration's solution is known, the Jacobian matrix and )( kxF  can 

be calculated by device evaluation, then )1( k th solution is extracted by solving the 

equation (3.3). If the difference between solutions at iteration 1k  and k  is smaller 

than a given threshold, it is accepted as the converged solution. If not, we need to 

proceed to the next iteration. For instance, 1r  is the root of equation 0)( xf  in Figure 6. 

The initial solution is assumed at point ),( 000 yxP , 1x  is obtained by using the tangent 

line 1 which is corresponding to equation (3.3). However, 1y  is larger than expected. 

The next solution 2x  is calculated based on point 1P  similarly. 
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Figure 6. Newton-Raphson method. 

 

  When kx is close to the exact solution, it can be proved that [12]  

2
1 )( kk xCx                                                      (3.5) 

Here C is constant. Hence, Newton's method has a quadratic convergence rate.   

 When Newton’s method is applied in circuit simulation, its Jacobian matrix 

needs to be recalculated by evaluating all the devices and decomposed in each iteration. 

There are a large number of expensive derivative computations. Although Newton 

method is robust with the quadratic convergence rate, the cost for each iteration is really 

high and the simulation time at one step is large.  

 

B.  Successive Chord method 

Another nonlinear iterative method is Successive Chord method (SC) [13]. It can be 

represented as 
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)()( 1 kkksc xFxxJ                                               (3.6) 

here, the Jacobian matrix scJ  is constant. In the following Figure 7, we can get 1x  by 

using the tangent line 1 which is corresponding to equation (3.6). The final solution 2x  

will be obtained in next iteration based on point 1P  . The obvious difference is that the 

tangent lines are parallel. 

 

Figure 7. Successive Chord method 

 

 Compared to Newton Raphson, SC method’s advantage is that it uses constant 

Jacobian matrix scJ  in simulation. The Jacobian matrix is constructed, decomposed at 

the beginning and the lower upper triangular (LU) factors are stored to reuse efficiently. 

So the method does not need to calculate the derivative of device equations during the 

whole simulation. Consequently, the cost for each iteration in SC method is very small. 

However, the convergence rate of the SC method is linear which means for every 
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time step, the method probably needs more iterations. The strict convergence criteria for 

SC method is 

1)(1   vJJI Fsc                                                       (3.7) 

Here, I  is identity matrix, scJ  is chord value, )( vJ F  is the exact Jacobian matrix.  

Consequently, the scJ  matrix should be selected wisely. Otherwise this method 

will probably diverge. According to our research, SC method is hard to converge for 

analog circuits which have greater changes compared to the combination circuits.  

 

3.2.2 Diversity in Numerical Methods 

In transient analysis, equation (3.1) may be represented as a first order differential 

equation: 

                                             ),( txfx 


          Ttt 0                                               (3.8) 

with initial condition: 

00)( xtx   

Here, 


x  is the derivative of x , t  is the time variable. The initial solution 00)( xtx   is 

solved by DC analysis. In order to solve the differential-algebraic equations, first we 

need to discretize  Tt ,0  to several distinct time points ),,,( 210 Ttttt n  . Then we use 

the difference equation to replace the differential equation to get the approximate values 

at these points ),,,( 210 mn xxxx  . For the solution at 1nt , the number of the previous 
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solutions ),,( 1 nn xx  used is determined by the numerical methods which can be 

classified into one-step and multi-step methods. 

 

A.  One-step method 

Backward Euler is a one step method [12] with 

    11 
 nnnn xhxx                                                   (3.9) 

The local truncation errors (LTEs) is  

2
)(2 x

hLTE nBE


                                                (3.10) 

here, nnn tth  1 . In circuit simulation, a fixed step-size method is adopted if nh  is 

fixed as a reasonable value. There also exists variable step-size method for Backward 

Euler. After an acceptable value is decided as the bound for local truncation error  , 

variable nh  is calculated as 

)(
2




x
hn


                                                      (3.11) 

Here, )(x   is second order derivative. 1nx  is calculated by equation (3.9). If the local 

truncation error at 1nt  is smaller than  , the solution is acceptable. Otherwise, it will be 

abandoned and the solution needs re-computation with a smaller nh  until the solution 

satisfies the error tolerance  . The variable step-size method enhances Backward Euler 

method with a larger time step. 

 Forward Euler is also a one step method with 
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nnnn xhxx 1                                                        (3.12) 

It does not include 1nx  so the calculation is explicit and simple. The solution at any time 

can be obtained only by its previous solutions, which contributes to its fast speed as well 

as low robustness.  

 Another one step method is Trapezoidal [14].  The formula is  

)(
2 11 

 nn
n

nn xx
h

xx                                            (3.13) 

with local truncation errors (LTEs) as  

12
)(3 x

hLTE nTR


                                               (3.14) 

It has smaller local truncation error and larger step size.   

 

B. Multi-step methods 

Muliti-step methods employ the solution ),,( 11   pnnn xxx at points ),,( 11   pnnn ttt  in 

numerical integration:  
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p  is the order of the integration method.  

 Gear2 [15] method uses the following formula to get the solution at 1nt . 
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Here, 111 ,   nnnnnn tthtth , the local truncation error is 
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Here 1 nn tt  . Compared to Backward Euler, Gear2 has more complicated integration 

formula and is much faster with smaller LTE and larger time step size. 

 DASSL [16], a variable-order variable-stepsize method, uses the predictor and 

corrector to solve the differential equation. The predictor for a k th order formula is 

generated by interpolating the last 1k  solutions.  

      inin

P

n xt  )(1         .,...,1,0 ki                                    (3.18) 

 Hence, the solution at time 1n  can be predicted by using the predictor function P

n 1 , 
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The corrector polynomial C

n 1  is an interpolation of the predictor at last k  time points 

and can be solved by the equation (3.20) , 
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here 



k

j

s
j1

1
 , 1nh  is predicted step size for 1nt . 

 After the corrector C

n 1  at 1nt  is obtained, the circuit solution is solved by 

equation (3.21) with LTE applied to determine nx is accepted or not. 

0))(),(,( 11111 
 n

C

nn

C

nn tttF                                       (3.21) 

  DASSL uses the LTE to control the step size and the integration order 

dynamically. Before calculating nx , DASSL utilize the existing step size and the order 
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k  to estimates the LTE at nt . With the estimated LTE, DASSL determines the order k   

for the next time step. After nx  is solved with above equations, k   is used to solve the 

next time point solution or recompute nx  based on whether nx  is accepted or not. 

DASSL has very complex control scheme to maintain stability and is possible to achieve 

significant speedup. 

 

3.2.3 Algorithm Selection 

About the nonlinear iterative methods, we will use the Newton-Raphson and Successive 

Chord method. 

  In the numerical methods, the values we got at ),,,( 210 Ttttt n   is 

approximation to the exact values, they are actually ),,,( 210


 mn xxxxx . The errors 

are introduced by two ways. First, local truncation error is brought in because at time 

1nt , we abandon the high order differential item. Second, we get the solution at time 1nt  

with the previous solutions ),,( 1 nn xx  which we assume are exact values. However, 

these solutions are approximations because of the LTE. Hence, the errors may 

accumulate. If the influences of the previous errors on later time pointes do not increase 

with time, this method is stable. If the errors are accumulated and exceed the error limit, 

the method is not stable. 

  In order to clarify this, we introduce a test equation,  

xx                                                           (3.22) 

If we apply the Forward Euler to the test equation, we will get  
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n

nnnnnn hxhxhxxx )1()1( 01                         (3.23) 

When error at the initial solution is assumed as 0 , the error at time 1nt  is  

n

n h)1(01                                                   (3.24) 

here 0  and real. Consequently, when 11  h  or 20  h , 1n is bounded and 

the method is stable.  If we represent 11  h  in the complex plane of h , it will be 

like Figure 8(a). The shaded part is called stability region. 

  A stability concept, called Absolute Stability, specifies that a method is 

absolutely stable if the region of the absolute stability covers the entire left plane as in 

Firgure 9. According to this concept, Forward Euler is unstable while Backward Euler, 

Trapezoidal method and fixed step size Gear2 method in Figure 8(b)(c)(d) are 

unconditionally stable.   

 Actually, stability and local truncation error are two major considerations in 

selecting numerical integration methods. BE is robust and easy to implement, with large 

local truncation error and small time step size. Fixed step size Gear2 has much smaller 

local truncation error and larger time step size. However, Gear2 is much more complex 

to implement and brings in a large computation cost at every time point. The stability of 

the DASSL method is more difficult to analyze. According to the experiments, DASSL 

is stable in most cases as Figure 9 and potentially leads to the largest time step size. 

 In practice, the performance index of a particular algorithm is determined by the 

circuit type and input signal. It is difficult to tell which one is the optimal before 

executing it one time. In the system, we choose Newton-Raphson method (Newton) as a 
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solid base for the system and Successive Chord method (SC), Gear2 + Newton and 

DASSL + Newton as aggressive algorithms to speed up the whole system.  

 

 

 

Figure 8. Stability region of numerical integration methods. 

Figure 9. Stability region of Absolute Stability. 
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   4. HIERARCHY OF PARALLEL AND DISTRIBUTED CIRCUIT SIMULATION 

 

The hierarchy of parallel and distributed circuit simulation, built on a computer cluster in 

Figure 10, adopts two levels of parallelism, inter-algorithm parallelism and intra-

algorithm parallelism. At the higher level of parallelism, multiple simulation algorithms 

are performed in parallel on separate computer nodes with MPI methods transferring 

data between them to exploit the algorithm diversity. The cloud in Figure 10 represents 

the communication structures between nodes. Two MPI communication structures are 

proposed, namely master-slave structure and peer-to-peer structure, with different 

characteristic corresponding to the type and size of circuit. At the lower level of 

parallelism, each algorithm has full control of all resources like CPUs, memory 

bandwidth and I/O, which allows it to reach to high intra-algorithm parallelism.  

 
Figure 10. A computer cluster 



28 

 

28 

4.1 Multi-Algorithm Communication Structure 

4.1.1 Master-slave Structure 

In the master-slave structure, a flexible global synchronizer is utilized. Each algorithm 

communicates with the global synchronizer rather than talks to each other in the 

simulation. The synchronizer broadcasts to inform all the algorithms the new solutions. 

The communication between the synchronizer and algorithm nodes is as Figure 11.  

 

 

Figure 11. Global synchronizer node in Master-Slave structure. 

 

  In order to show a clear view of the hierarchy, we discuss the main roles that the 

algorithm node side and global synchronizer side play. 

  One algorithm node is demanded to send all circuit nodes’ information including 

voltages or currents to the other algorithms to bring them to where it is standing.  In 

addition, some algorithms like Gear2, DASSL, not only need the information at most 

recent time point, but also need several previous time steps solutions to calculate the new 

result. Hence, every algorithm sends k time steps results to the global synchronizer. Here, 
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k is determined by the highest order among the numerical integration methods in the 

system. From the foregoing discussion, Newton-Raphson needs previous one time step 

solution; Gear2 needs previous two time steps solutions while DASSL needs previous 

five time steps solutions. We keep k as 6 after taking the new solution into consideration. 

 In addition, an algorithm node fully controls granularity of the communication 

with the global synchronizer. In this implementation, we choose the granularity as one 

time step for all the algorithms. Hence, the algorithm node signals a communication 

thread to transfer the solution after it finishes one time step computation.  The reason of 

creating a new thread to take over the interaction task is to overcome the coupling 

between communication and computation. Although the algorithm node can use the non-

blocking MPI send method to transfer its own solutions, the MPI broadcast method in 

receiving the most recent solutions back is blocking. Figure 12 shows a computer node 

with 4 cores on which the BE + Newton is mapped.  
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Figure 12. Details of an algorithm node in the Master-Slave structure. 

 

  Because the communication load in the global synchronizer is impressively large, 

the synchronizer is mapped to a single node to avoid memory contention. During 

simulation, it monitors all algorithm nodes. As soon as one algorithm node is sending a 

new solution, the synchronizer makes the connection and receives the solution.  

  The synchronizer maintains the most recent solution data structure the system has 

during the simulation. The data structure contains k time steps solutions. After the 

synchronizer receives a new message, the message is merge-sorted with the stored data, 

and the first k solutions are kept and the data structure is updated. If the new solution 

provided by an algorithm is ahead of the existing solutions, after merge sort, the data 

structure will be updated with the new solution by inserting it into the structure. 
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However, if the new solution is stale and lags behind the existing solutions, it will be 

abandoned and the solution structure stays unchanged.  

  After the global synchronizer processes one message and gets updated, it will 

broadcast new solutions to all algorithm nodes. Hence, all algorithms will be updated 

with the latest solutions and begin their next step calculation. In this way, the global 

synchronizer will always keep the most recent solutions and algorithm nodes interact 

with each other indirectly.  The detailed work flow of the system is shown in Figure 13. 

  In the master-slave structure, all algorithms will be synchronized continuously. 

Slow execution of each of these algorithms is sidestepped by others and their advantages 

will be fully exploited. However, the global synchronizer needs to process and transfer a 

large amount of data since there are several nodes continuously sending messages to it. 

Consequently, the synchronizer may easily be the bottleneck of the system and affect 

system efficiency. 
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Figure 13. Flow chart of the algorithm node and global synchronizer in Master-Slave scheme. 
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4.1.2 Peer-to-Peer Structure 

To avoid the bottleneck on the synchronizer, we come up with a peer-to-peer scheme. In 

this structure, one algorithm node similarly creates two threads for computation and 

communication, respectively. The communication thread receives messages from its 

preceding node, processes the received message with its own solutions, then sends the 

updated solution to the next node. The four algorithms form a loop and the most recent 

solutions keep circulating in the loop to synchronize all algorithms and explore their 

diversity. The communication structure is shown in Figure 14.  

   

Figure 14. Peer-to-Peer communication scheme. 

 

  Apparently, this structure saves the resource by abandoning the global 

synchronizer and distributes the large amount of data processing work burden on the 

global synchronizer to each algorithm node. It eliminates the effect of bottleneck and 

also decreases the network load because in the master-slave structure the communication 

is collective and algorithm node may be not aware the status of the global synchronizer 
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and sends a stale solution which will occupy the network bandwidth and hamper 

effective communication. The main disadvantage is that in the peer-to-peer structure, all 

algorithms will be updated only when one-loop data transfer is completed. However, in 

the master-slave structure, all other algorithms will be informed immediately as soon as 

any one algorithm gets a new effective solution. 

 In this loop structure, deadlock, start and exit of the program needs additional 

attention.   For instance, deadlocks happen when the successor node waits on a blocking 

MPI message from the precursor node which has reached the end of the simulation and 

exited. In our implementation, algorithm BE + Newton which is the most stable and has 

low computational cost for the initial time steps is used to trigger the transfer of data as a 

loop. At the end of the simulation, a flag is used to track how many nodes have finished. 

Every node will increment the flag before it exits. The flag is stored in the MPI message. 

Hence, when a node receives a message with a flag value equal to the number of all 

other algorithms, it knows all previous nodes have finished and it skips sending the 

message to the next node and exits. This way, the system can exit correctly. Figure 15 

shows the detailed work flow in this structure. 
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Figure 15. Flow chart of the algorithm node in peer to peer scheme. 

 



36 

 

36 

4.2 Multiple Threads in A Single Algorithm 

Transient analysis may be conducted over a large number of time steps. At every time 

step, it needs several iterations to get convergence. Hence, the number of iterations can 

be very high. Device evaluation and matrix solve carried on at every iteration are very 

time consuming and take nearly the whole simulation time. In previous discussion, there 

is a tradeoff between the number of the iterations per time step and the cost of each 

iteration for different nonlinear iterative methods. Here we further made use of the 

power of multi-core processor to expedite the device evaluation and matrix solve in a 

single algorithm node. A distributed platform provides the possibility of fully realizing 

intra-algorithm parallelism as one algorithm mapped on one node can exclusively access 

all the compute and memory resources.  

 

4.2.1 Parallel Device Evaluation  

In the device evaluation, Jacobian matrix )( kxJ  has a large number of partial differential 

items. In parallelization, nonlinear elements are divided into several groups, and each 

group is handled by one thread. The speedup for this can reach linear scaling when there 

are sufficient nonlinear elements. However, because of the cost of spawning, execution 

and termination of threads, the benefits of parallelization may be reduced especially 

when nonlinear elements in the circuit are few. 
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4.2.2 Parallel Matrix Solver 

  In our platform, SuperLU [17] is made use of as parallel matrix solver. SuperLU 

is a general purpose library providing direct solution to large, sparse, non-symmetric 

systems of linear equations on high performance machines. The library routines perform 

LU decomposition with partial pivoting and triangular system solves through forward 

and backward substitution. It exploits two sources of parallelism in the sparse LU 

factorization. The coarse level parallelism comes from the sparsity of the matrix, and is 

exposed by the column elimination tree of the matrix. The second level of parallelism 

comes from pipelining the computations of dependent columns. 

  The performance of matrix solve has bottleneck after the number of threads used 

reaches a certain number due to the circuit’s and the computer node's characteristics. For 

instance, when using more threads in SuperLU, accessing critical sections via locks will 

increase and result in degradation of parallel performance. The more processors there 

are, the larger communication loss there will be. Second, the solver needs to divide the 

matrix into several parts and pipeline the operation on every part. Hence, the dense and 

small matrix generated by device evaluation has more dependence and is hard to be 

divided to several independent parts, making the parallel performance worse. On the 

contrary, the speedup is large for the sparse and large matrices. 

  The computer node on our platform is a symmetric multi-processor system with 

8 dual core processors. The communication between the dual cores in one packaged 

processor chip is twice as faster as the communication between the cores in different 

processors chips. Hence, the performance of the parallel matrix solve has a degradation 
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when the number of the cores reaches to an odd number since the new added core needs 

to transfer data to cores in other chips. We choose to use even number of threads for 

parallel device evaluation and matrix solve which achieve better speedups.  
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5. RESULT AND ANALYSIS 

 

5.1  Supercomputer 

 Hydra (see Figure 16) is a 52-node, 832-processor IBM cluster. The 52 nodes are 

further organized and housed into five physical frames [18].  The cluster uses IBM high-

performance communication switch for parallel processing and other communication 

between the nodes. Each node connects to the HPS network using two adapters. HPS 

routes a message packet to another node [18].  

  

 

Figure 16. A snapshot of the supercomputer Hydra. 

                  

  On Hyrda, when running a Pthreads program, the number of threads during 

execution can be set by the environment variable OMP_SET_NUM_THREADS. An 

MPI program is executed under the Parallel Operating Environment (POE). When the 
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program is being executed, the number of tasks can be set by the environment variable 

PROCS. Typically, tasks are mapped 1-to-1 on processors. 

 In the batch file, we can specify how tasks to be assigned.  We assign the MPI 

tasks to 5 nodes with variable node. Every node can use 4 CPUs and 1.5gb memory by 

setting ConsumableCpus as 4, ConsumableMemory as 1500mb where 1500mb is the 

aggregate amount of memory taken up by 4 threads.  

 

5.2 Result 

5.2.1 MPI  vs. Sequential Algorithm   

First, we compare the MPI master-slave (MPI-MS) structure’s runtime results with the 

four single sequential algorithms: Newton+BE, SC, Newton+Gear2, Newton+DASSL 

for several circuits in Table 1. The runtime results are in seconds. MPI-MS 1 core means 

that we use one core for one algorithm in the system. The speedup1 is MPI-MS 1 core 

over Newton + BE, which is the basic SPICE setup. MPI-MS 2 cores is that we assign 2 

cores for every algorithm. The speedup2 is its speedup over MPI-MS with 1 core. The 

“N/A” in the table means the algorithms are not stable or diverge in the simulation.  
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Table 1. Comparison between sequential algorithm and MPI methods 

 

   

  
 

size 

/MB 

No. of 

Lin. ele. 

No. of 

FETs 

No. of 

nodes 

Newton  

BE/s 
SC/s 

Newton 

Gear2/s 

Newton  

DASSL/s 

MPI-MS  

1 core/s 

speed

up1 

MPI-MS  

2 cores/s 

speed

up2 

mesh4 100 3500 20 3500 178 53.5 78.5 68 52 3.42 49 1.06 

mesh6 385 8500 40 8500 3960 86.2 1644 N/A 79 50.13 72 1.10 

mesh18k 420 10k 50 10k 11060 213 4800 N/A 194 57.01 189 1.03 

mesh28k 772 15k 50 15k 31000 429 12800 N/A 412 75.24 411 1.00 

inv_chain1 71 1000 2000 1000 2311 632 826 431 395 5.85 205 1.93 

inv_chain2 121 2000 4000 2000 2181 437 1040 491 428 5.10 240 1.78 

grid20k 300 12k 0 8000 282 190 116 182 92 3.07 89 1.03 

grid30k 600 18k 0 12k 441 316 180 285 150 2.94 135 1.11 

4b_adder 22 50 200 250 140 749 74 106 60 2.33 32 1.88 

lna_mixer 23 50 10 50 74 N/A 21 35 20 3.70 24 0.83 

mixer 23 20 10 30 77 N/A 28 60 26 2.96 31 0.84 
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   For mesh circuits [19], which have lots of linear elements and few nonlinear 

transistors, SC method is the fastest algorithm by avoiding repeatedly evaluating devices 

and factorizing large matrix. It can get convergence at every time point quickly. 

Compared to SC method, other algorithms cannot save this large amount of time and 

needs longer time to finish the simulation. This situation is more obvious for larger mesh 

circuits like mesh18k, and mesh28k which takes BE + Newton algorithm several hours 

to complete. MPI master-slave structure takes advantage of SC method and reaches a 

significant large speedup over Newton + BE. 

  The invert-chain circuits have more nonlinear elements. SC algorithm demands a 

lot of iterations to get convergence due to more complicated circuit operating condition 

and its worse convergence rate. In this case, the number of iterations dominates the cost 

for each time step even the cost for one iteration is still small. The multi-step integration 

methods perform better in these circuits especially when the circuits are small. The MPI 

master-slave structure which exploits the diversity of different algorithms and the 

advantages of different algorithms in different stages, reaches the smallest simulation 

time. 

  Mixer circuits are one kind of analog circuits with small size, high accuracy 

requirements and complex transistor operating condition changes. SC algorithm may not 

get convergence for whole simulation time. The Newton + Gear2 algorithm is getting 

results fast. The MPI master-slave method can run a little faster than Newton + Gear2 

with other algorithms’ contributions. 
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  After applying more threads in single algorithm in the distributed system, we find 

that speedup2 almost reaches the optimal for the inverter chain circuits. This may be due 

to the fact that the inverter chain circuits consist of a large number of transistors which 

can be divided equally into two groups and handled efficiently by two threads. In 

addition, the size of the matrix obtained by device evaluation is suitable for the parallel 

matrix solver. The speedup for other circuits is not as good as inverter chains. Even 

worse, analog circuits have performance drop after being applied two threads for a single 

algorithm. Analog circuits are either small or with a small number of nonlinear elements 

and have large overhead in parallel device evaluation and matrix solve. 

Creating/terminating threads introduces a relatively larger cost to these small circuits. 

The benefits introduced by multiple threads are smaller than the overhead. 

  These results demonstrate the benefits brought by the MPI based multi-algorithm 

circuit simulation and multiple threads in a single algorithm for certain classes of circuits. 

 

5.2.2 MPI vs. HMAPS   

In this section, the results between HMAPS [20] and MPI based distributed simulation 

are compared. HMAPS run in one node with 8 threads and 2 gigabytes memory while 

MPI methods are using two threads for each algorithm on several nodes. The resource 

allocation and results are in Table 2 and Table 3. The size/MB column shows the 

memory size of one circuit data copy. Column HMAPS, MPI-MS and MPI-P2P show 

the runtimes in second. The MPI-MS speedup is the MPI master-slave structure’s 
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speedup over HMAPS while the MPI-P2P speedup is the MPI peer-to-peer structure’s 

speedup over HMAPS. 

 

Table 2. Resource allocation between HMAPS and MPI methods. 

 

Table 3. Comparison between HMAPS and MPI methods. 

 

 Threads/algorithm Nodes Threads/node Memory 

HMAPS 2 1 8 2GB 

MPI master-slave  2 5 3 2GB 

MPI Peer-to-Peer 2 4 3 2GB 

Circuit size/MB HMAPS/s MPI-MS/s 
MPI-MS 

speedup 
MPI-P2P/s 

MPI-P2P 

speedup  

mesh4 100 56 49 1.14 51 1.10 

mesh6 385 85 72 1.18 74 1.15 

mesh8 420 226 189 1.20 196 1.15 

mesh18 772 750 411 1.82 379 1.98 

inv_chain1 71 236 205 1.15 214 1.10 

inv_chain2 121 249 240 1.04 230 1.08 

grid20k 300 107 89 1.20 92 1.16 

grid30k 600 210 135 1.56 124 1.69 

4b_adder 22 46 32 1.44 35 1.31 

lna_mixer 23 42 24 1.75 25 1.68 

mixer 23 81 31 2.61 32 2.53 
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    In HMAPS [20], multiple algorithms are mapped to a single shared-memory 

system and every algorithm shares computing resources. In the results above, four 

algorithms are running with their own copy of circuit data, with totally four copies on 

one computer node. It requests 3 gigabytes for the mesh18 circuit and 2.5 gigabytes 

memory for grid30k. On the 2 gigabytes shared-memory system, the memory contention 

is large and the simulation takes longer time to finish. The MPI based distributed system 

runs algorithms on separate nodes. The memory used on one node is 800 megabytes for 

mesh18 circuit and 600 megabytes memory for grid30k. Hence, the memory contention 

is smaller and speedup can reach as high as 1.98. 

  The MPI based methods are about 15 percentages faster for mesh4, mesh6, 

grid20k and inverter chain circuits. These circuits normally need about several hundred 

megabytes memory but MPI structures have more communication overhead than 

HMAPS where threads access shared local memory quickly and the communication 

between the algorithms can be made frequent. In the distributed system, communication 

speed is limited by the network bandwidth and the size of messages. The communication 

cost and delay could be large when simulating large circuits.  However, the MPI based 

platform is capable of incorporating more algorithms to further exploit inter-algorithm 

parallelism which is more difficult for HMAPS. 
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5.2.3 Comparison Between MPI Methods 

The comparison between the MPI master-slave structure and the peer-to-peer structure is 

shown in Figure 17. The speedups are the two MPI based methods’ speedups over 

HMAPS. 

 

Figure 17. Comparison between master-slave and peer-to-peer communication structure. 

 

  For small circuits like mesh4, mesh6, mesh8 and grid20k, each algorithm updates 

the global synchronizer quickly after getting its own solution in the MPI master-slave 

structure. The synchronizer will also broadcast and inform every algorithm the most 

recent solution immediately. It has little bottleneck due to the fact that the circuit size is 

small and the data processing is quick. However, the MPI peer-to-peer structure has a 

delay in updating all algorithms because the algorithms receive the latest solution only 

after the solution experiences one loop transfer. This is demonstrated in the figure above 
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which show that the MPI master-slave structure is faster than the MPI peer-to-peer 

structure. 

              For large circuits, like mesh18 and grid30k, the speedup of the MPI master-

slave scheme is much smaller than the MPI peer-to-peer scheme. In these circuits, the 

messages generated by the circuit have huge size and the synchronizer needs to receive a 

large amount data from the algorithm nodes during the simulation as well as the data 

processing time in synchronizer is increasing. These factors put a large work load on the 

global synchronizer and cause a bottleneck. Moreover, the algorithms may send the stale 

solutions to the synchronizer because they are not aware of the status of the synchronizer. 

In this case, the network bandwidth is occupied and wasted by these kinds of useless 

communication. In the peer-to-peer scheme, the processing and network load is 

distributed among all the algorithm nodes and the bottleneck effect is alleviated. In 

addition, one node resource which is occupied by the synchronizer is saved. 

 

5.2.4 Accuracy 

We compare the results between BE + Newton and the distributed circuit 

simulation on two nodes of mesh4 circuit in Figure 18 and Figure 19. The BE + Newton 

is the basic SPICE setup and accurate. We compare the two voltages from the two 

methods on the same time points, and the standard deviation is smaller than 0.001 volt. 

Hence, the simulation results are acceptable. 
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Figure 18. Simulation results on Node1 

       

 

 

 

Figure 19. Simulation results on Node2 



49 

 

49 

6. CONCLUSIONS 

 

In this thesis work, we exploited parallel and distributed multi-algorithm circuit 

simulation to alleviate the significant computational costs of parallel circuit simulation 

on shared memory systems. We exploited inter-algorithm parallelism by developing the 

master-slave structure and peer-to-peer structure and introducing intra-algorithm 

parallelism through parallel device evaluation and matrix solve to improve runtime 

efficiency. With the above techniques, our experimental results demonstrate that MPI 

based distributed platform decreases memory contention and thread contention, reaches 

a large speedup and is capable for incorporating more algorithms into the system.   
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