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ABSTRACT 

 

Joint Inversion of Production and Temperature Data Illuminates Vertical Permeability 

Distribution in Deep Reservoirs. (August 2012) 

Zhishuai Zhang, B.S., Nankai University 

Co-Chairs of Advisory Committee:    Dr. Behnam Jafarpour 
 Dr. Akhil Datta-Gupta 

 

 Characterization of connectivity in compartmentalized deepwater Gulf of Mexico 

(GoM) reservoirs is an outstanding challenge of the industry that can significantly 

impact the development planning and recovery from these assets. In these deep 

formations, temperature gradient can be quite significant and temperature data can 

provide valuable information about field connectivity, vertical fluid displacement, and 

permeability distribution in the vertical direction. In this paper, we examine the 

importance of temperature data by integrating production and temperature data jointly 

and individually and conclude that including the temperature data in history matching of 

deep GoM reservoirs can increase the resolution of reservoir permeability distribution 

map in the vertical direction. 

To illustrate the importance of temperature measurements, we use a coupled heat 

and fluid flow transport model to predict the heat and fluid transport in the reservoir. 

Using this model we ran a series of data integration studies including: 1) integration of 

production data alone, 2) integration of temperature data alone, and 3) joint integration 

of production and temperature data. For data integration, we applied four algorithms: 
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Maximum A-Posteriori (MAP), Randomized Maximum Likelihood (RML), Sparsity 

Regularized Reconstruction and Sparsity Regularized RML methods. The RML and 

Sparsity Regularized RML approaches were used because they allow for uncertainty 

quantification and estimation of reservoir heterogeneity at a higher resolution. We also 

investigated the sensitivity of temperature and production data to the distribution of 

permeability, which showed that while production data primarily resolved the 

distribution of permeability in the horizontal direction, the temperature data did not 

display much sensitivity to permeability in the horizontal extent of the reservoir. The 

results of these experiments were compelling in that they clearly illuminated the role of 

temperature data in enhancing the resolution of reservoir permeability maps with depth. 

We present several experiments that clearly illustrate and support the conclusions of this 

study. 
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NOMENCLATURE 

 

     K-SVD coefficients  

     Compressibility  

      Fluid compressibility 

      Solid compressibility  

      Covariance matrix of model parameters  

      Covariance matrix of model observations  

      Constant pressure heat capacity  

       Fluid constant pressure heat capacity  

       Solid constant pressure heat capacity  

     K-SVD trained dictionary 

        Observation data  

     Specific internal heat of heat of fluid  

      Specific internal heat of heat of fluid at source conditions  

     State functions  

     Sensitivity matrix  

     Model functions  

     Variogram  

     Specific enthalpy  

K    Number of dictionary elements 

     Thermal conductivity  
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      Fluid thermal conductivity  

      Solid thermal conductivity  

     Ajoint parameters  

          Prior model parameters 

        Posterior model parameters using MAP estimation 

     Viscosity  

N    Number of ensemble realizations  

     Pressure  

     Sparse transformation matrix  

     Porosity 

 ̃    Sources and sinks  

     Density  

      Density at standard condition 

      Density at source conditions 

S    Number of non-zero elements 

      Standard deviation of model parameter 

      Standard deviation of observation 

     Temperature  

      Temperature of sources 

     Time  

     Internal energy 

     Volume  
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 ⃗    Velocity  

     Diagonal Weighting Matrix 

 

 

 



 x 

TABLE OF CONTENTS 

 

              Page 

ABSTRACT ..............................................................................................................  iii 

DEDICATION ..........................................................................................................  v 

ACKNOWLEDGEMENTS ......................................................................................  vi  

NOMENCLATURE ..................................................................................................  vii 

TABLE OF CONTENTS ..........................................................................................  x 

LIST OF FIGURES ...................................................................................................  xii 

LIST OF TABLES ....................................................................................................  xiii 

CHAPTER 

 I INTRODUCTION AND LITERATURE REVIEW ............................  1 
 
 II THEORY AND METHODOLOGY ....................................................  7 

   2.1 Non-isothermal Reservoir Model .............................................  7 
   2.2 The Maximum A Posteriori (MAP) Estimation Method .........  10 
   2.3 Sensitivity Analysis and Adjoint Method ................................  12 
   2.4 Randomized Maximum Likelihood (RML) Method ................  14 
   2.5 Variogram, Ordinary Kriging and Sequential Gaussian  
                                 Simulation ................................................................................  15 
   2.6 The K-SVD Algorithm .............................................................  17 
   2.7 Sparse Regularization ...............................................................  19 
 

III MODEL SETUP AND EXPERIMENT RESULTS ............................  24 
 
  3.1 Model and Experiment Setup ...................................................  24 
  3.2 MAP Estimation Results ..........................................................  28 
             3.3 RML Estimation Results ..........................................................  31 
  3.4 K-SVD Estimation Results .......................................................  36 

                   3.5 K-SVD Constrained RML Estimation Results .........................  50 
 

 IV CONCLUSIONS ..................................................................................  54 



 xi 

                                                                                                                                       Page                           
  
REFERENCES ..........................................................................................................  57 

VITA .........................................................................................................................  65 



 xii 

LIST OF FIGURES 

 
                                                                                                                                       Page 
 
Figure 3-1   Initial Temperature Distribution ..........................................................  24 
 
Figure 3-2  True Permeability Distribution .............................................................  24 
 
Figure 3-3  Temperature Sensor Placement ............................................................  25 
 
Figure 3-4  Comparison of Characterization Results Conditioned on Various 

Observations .........................................................................................  29 
 
Figure 3-5  MAP Characterization Result with Downhole Temperature Sensors ..  30 
 
Figure 3-6  Production Data Match of Maximum A Posterior Characterization ....  31 
 
Figure 3-7  Randomized Maximum Likelihood Characterization Results .............  32 
 
Figure 3-8  Sample Realizations of Randomized Maximum Likelihood  
    Characterization ...................................................................................  34 
 
Figure 3-9  Production Data Match of Randomized Maximum Likelihood 

Characterization ...................................................................................  35 
 
Figure 3-10  K-SVD Constrained RML Results with Various  s ............................  37 
 
Figure 3-11  Data Misfit and Sparsity of Characterization Results with Various αs  42 
 
Figure 3-12  K-SVD Dictionary Training Samples ..................................................  43 
 
Figure 3-13  Characterization Results of Various K-SVD Dictionaries ...................  45 
 
Figure 3-14  K-SVD Constrained RML Characterization Results ...........................  51 
 
Figure 3-15  Sample Realizations of K-SVD Constrained RML .............................  52 
 
Figure 3-16  Production Data Match of Randomized Maximum Likelihood 

Characterization ...................................................................................  53 
 



 xiii 

LIST OF TABLES 

 

                                                                                                                                  Page 

Table 3-1  Discretization parameter, initial, boundary conditions, and general  
   parameters ..............................................................................................  26 
 
Table 3-2  Well setup ..............................................................................................  26 
 
Table 3-3  The properties of rock and fluid ............................................................  27 
 
Table 3-4  SGSIM parameters .................................................................................  27 



 1 

CHAPTER I 

INTRODUCTION AND LITERATURE REVIEW 

 

 Numerical reservoir simulations are widely used to predict the fluid flow and 

production behavior in subsurface environment. These simulations require knowledge of 

the property of porous media to determine the fluid behavior in the reservoir. The 

accuracy of the knowledge on porous media decides the confidence on the prediction of 

fluid flow and production behavior. One important property of rock is its permeability 

which is a measure of the ability of porous medium to transport fluid. Since the direct 

measurement of permeability at every point of the reservoir is costly and impossible, the 

spatial distribution of permeability is usually determined by integrating dynamic 

production data into prior knowledge of the reservoir, this process is called reservoir 

characterization, or history matching. Because of the limited number of observations 

comparing to the number of unknowns, the inverse problem is ill-posed. That is, more 

than one set of parameters are able to explain the observations equally well but only one 

set of them is true and can be used to predict the future behavior of the reservoir. There 

are two ways to solve the problem of ill-posedness and improve the accuracy of the 

solution. One is to seek for new observations and another is to add prior information on 

the reservoir to the inverse problem.  

 
 
 
 
____________ 
This thesis follows the style of SPE Journal.  
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 In traditional history matching, it is common to use production rate and 

saturation of produced fluid to estimate the reservoir properties. However, because of the 

sparsity of available observations (Carrera and Neuman 1986; Carrera and Neuman 

1986; Carrera and Neuman 1986), it is hard to determine the reservoir property 

accurately, especially in the case of estimation of heterogeneous distribution of 

permeability where the amount of unknown parameters is very large. In deepwater 

reservoir or geothermal reservoir, like deepwater Gulf of Mexico reservoirs (Hutchinson 

et al. 2007; Arnold et al. 2010), because of the geothermal gradient, temperature change 

with depth is significant. Due to this change in temperature, the fluid produced from the 

upper layer of the reservoir has a lower temperature while that produced from the lower 

layer of the reservoir has a higher temperature. Thus, production temperature carries 

information about hydraulic properties distribution with depth in the reservoir. In 

addition, the usage of modern monitor technology like permanent downhole distributed 

fiber optic sensors makes the accurate measurement of temperature of produced fluid 

possible (Brown et al. 2005; Fryer et al. 2005; Nath et al. 2006). The fiber optic sensor 

can be used in both oil gas reservoir and geothermal reservoir (Kragas et al. 2001; Ikeda 

Naotsugu 2002). So the integration of temperature into reservoir characterization is a 

promising method to improve the result of estimation. The inversions problem based on 

measurement of fiber optic sensor have been extensively studies (Yoshioka et al. 2009; 

Li and Zhu 2010). Li and Zhu (2010) presented a methodology for using downhole 

temperature measurement to improve the results of reservoir characterization. They used 
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a thermal model to estimate wellbore temperature distribution that gave large scale 

permeability trends. 

 The process of coupled fluid and heat flow in subsurface porous medium has 

been extensively studied for many years.  A couple of commercial software for 

numerical simulation of coupled fluid and heat flow in subsurface have been developed 

(Pruess et al. 1999). The characterization of non-isothermal reservoir model from 

various observations has been investigated with Maximum A Posteriori estimation, 

Monte Carlo approach, and Ensemble Kalman Filter (Rath et al. 2006; Kiryukhin et al. 

2008; Kühn and Gessner 2009; Mukhopadhyay 2009; Kosack et al. 2010). However, 

how much and why the temperature observation contributes to the characterization are 

unknown.  

 Adding prior knowledge on the reservoir properties is another way to improve 

the accuracy and reliability of the history matching results. The prior knowledge is 

usually incorporated as a regularization term into the objective function to regularize the 

inverse problem. The prior knowledge is usually about the structural properties of the 

reservoir, that is, enforce the solution to be spatially smoothed according to certain 

assumption on the spatial correlations between two points. 

 One way to incorporate the regularized term is to assume the reservoir is uniform 

before the process of integration of dynamic data, and use the covariance between each 

pair of grid point calculated from a certain variogram model to form a covariance matrix 

to enforce the smoothness of the reservoir. This results in a commonly used reservoir 

characterization method known as Maximum A-Posteriori (MAP) method (Tarantola 



 4 

and Valette 1982; Tarantola and Valette 1982; Oliver et al. 2008). However, the MAP 

estimation is based on the assumption of the Gaussian distribution and the linearity of 

the model. In practical application, the posterior variance given by the MAP estimation 

is unreasonable. To access the uncertainty of the posterior estimation result, we can 

generate multiple samples from a posterior probability density function. One way to 

generate realizations is Randomized Maximum Likelihood (RML) estimation(Oliver et 

al. 1996; Feng et al. 2009). RML is an approximation of Markov chain Monte Carlo so 

that it can sample from the posterior distribution even the problem is nonlinear and non-

Gaussian.  

 In both MAP estimation and RML estimation, we need the gradient of the 

objective function with respect to the unknown parameter to minimize the objective 

function. Because of the nonlinearity and complexity of subsurface process, it is difficult 

to evaluate the gradient of the objective function with respect to the permeability of 

heterogeneous reservoir. The traditional finite numerical methods like finite difference 

method require a huge amount of computation time for problem with many parameters 

to be estimated. To make things worse, the truncation error makes it may take several 

trials to choose a reasonable perturbation amount. One alternative is automatic 

differention (AD) technique. The principle idea behind AD is that every computer 

program executes a sequence of elementary arithmetic operations and elementary 

functions whose derivatives are known, so by applying the chain rule repeatedly to these 

operator and functions, the derivative can be obtained without truncation error. Tools for 

implementing AD are available for various programming languages like C++, C 
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(Griewank et al. 1996; Bischof et al. 1997), Fortran (Bischof et al. 1996; Giering and 

Kaminski 1998), and MATLAB (Bischof et al. 2002). The application of AD in 

subsurface inversion was done by Rath et al. (2006). A more efficient way to calculate 

the gradient is the adjoint method. The adjoint method is a method of evaluating the 

gradient by adjoining the constraint to the objective function (Neuman and Carrera 1985; 

Marchuk 1995; Marchuk et al. 1996; Bunge et al. 2003; Oliver et al. 2008). It is a very 

computational efficient method and with the implementation of adjoint method in the 

simulation code, one can do the characterization of heterogeneous reservoir with 

gradient based method in a very efficient way. Because of the difficulty of its 

implementation, the adjoint method is not widely used in research especially in joint 

inversion of production rate and temperature observations which leave a lot of 

interesting thing remained to be done.  

 Another way to incorporate the regularization is to enforce the solution to be 

sparse in certain sparse transformation domain (Khaninezhad et al. 2010; Li and 

Jafarpour 2010). Li and Jafapour (2010) proposed an iteratively reweighted least-squares 

inversion algorithm to incorporate the sparsity of the reservoir properties under DCT and 

DWT transformation. Then, Khaninezhad et al. (2010) applied this method to a 

geologically motivated sparse bases constructed by K-SVD which make the 

characterization of the reservoir more specialized and accurate. Both of these two works 

are demonstrated using an isothermal two dimensional reservoir model and the 

effectiveness of these methods under three dimensional non-isothermal reservoir models 

remains to be tested. 
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 In the remaining part of this paper is organized as follows. In chapter II, the 

principles and methodologies for the characterization of non-isothermal reservoir will be 

introduced including basic governing equations for forward model, estimation methods 

used in the reservoir characterization, adjoint method for gradient calculation, etc. In 

chapter III, the model and experiment setup will be presented and followed with the 

MAP, RML, K-SVD methods characterization results. In addition, a comparison on 

characterization results from various observations will be made. Chapter IV will 

conclude and summarize the paper. 
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CHAPTER II 

THEORY AND METHODOLOGY 

 

2.1  Non-isothermal Reservoir Model 

 Coupled fluid and heat flow in porous medium has been studied for many years, 

and a comprehensive model is presented by Bejan (Bejan 2004). According to Bejan, 

this process can be decided by a combination of mass conservation equation, energy 

conservation equation and darcy’s law. 

2.1.1  Mass conservation equation 

           ⃗     ̃ (2.1) 

where   is the density of fluid in reservoir condition while    is the density of fluid at 

standard condition.  ⃗    ̂    ̂    ̂ is the velocity of fluid.  ̃ is the volume of injected 

(+) or produced fluid (-) at standard condition in unit reservoir volume and unit time. 

     is material derivative defined as                          .  

2.1.2  Energy conservation equation 

 Using a similar approach with Bejan (Bejan 2004; Duru 2008), we can derive the 

energy conservation equation with sources and sinks as the Eq.2. 

             ̃    (   )       ̃    ̃          ⃗     (2.2) 

where,   are the temperature and pressure of fluid.   ,   are thermal conductivity and 

viscosity of fluid.   is a function of the spatial derivative of velocity. In two 

dimension,    [(     )  (     ) ]  (           ) .   is specific internal 
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heat of fluid at reservoir condition.    is specific internal heat of fluid at sources and 

sinks condition (sources or sinks temperature, pressure at the sources and sinks position). 

For a system of mass  , the internal energy change can be denoted as 

   (  )  (    )         (    )  

    (        )    (    )  (2.3) 

where   ,    and    are the changes in internal energy, specific internal heat and 

volume of the fluid.    and   are temperature of fluid goes into and out of the system 

respectively.    is the constant pressure heat capacity of liquid. From Eq. 3, we can get 

                  (    ) (2.4) 

So the energy conservation equation becomes 

           (   )     ̃       ̃  (    )      ̃     (2.5) 

To express the equation in terms of enthalpy, we use the thermodynamics 

definition of specific enthalpy 

         (2.6) 

Apply the material derivative, we get 

                                (2.7) 

Substitute the       with the Eq. 7. we get 

           (   )     ̃  (    )           (2.8) 

From thermodynamics, we can get 

         (    )       (2.9) 

where   is the coefficient of thermal expansion. For incompressible fluid,    . For 

ideal gas,     . 
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The temperature formulation of the energy conservation equation is therefore 

             (   )     ̃  (    )              (2.10) 

2.1.3  Darcy’s Law 

 

  ⃗         (2.11) 

2.1.4  Energy conservation equation for porous medium  

  We start with the energy conservation equation for solid and fluid parts and 

average these equations to get the energy equation for porous medium.  

For the solid part we have, 

               (    )            (2.12) 

  To make things simpler, we make the assumption that the solid is incompressible 

so            . 

  For the fluid part we have, 

               (    )      ̃   (    )               (2.13) 

  Combine energy equations for solid and fluid and then apply Darcy’s Law, we 

get 

     (         ⃗    ) 

    (   )      ̃   (    )                 ⃗      ( ⃗)
    (2.14) 

where    (       (        ))       . The overall thermal conductivity   

    (   )  . 
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The left hand side of the equation stands for the temperature change over time and the 

result of heat advection.   (   ) stands for the effect of thermal conduction and 

    ̃   (    ) is the sources and sinks term.                ⃗     is a result 

of thermal expansion and compression. And the last term is viscosity dissipation term. 

  But please notice this is valid only for One Dimensional problem in real 

applications (Bejan 2004); in general, the overall local thermal conductivity k can be 

decided by an extension of the model of Somerton (Somerton et al. 1973; Somerton et al. 

1974; Moridis et al. 2005) or measured experimentally. 

 

2.2  The Maximum A Posteriori (MAP) Estimation Method 

  The Bayesian framework allows one to combine observed production data and 

prior information on reservoir to obtain the a posteriori probability density function 

(PDF) of reservoir properties (Oliver et al. 2008; Zhang et al. 2003). Let  (      ) 

denote the posterior conditional PDF for model   given the observed    dimensional 

vector of data     and prior PDF for model       . Under the assumption that the prior 

PDF for the model   is Gaussian and that measurement and modeling errors are 

Gaussian, the posterior PDF can be obtained from the Bayes’ theorem, 

 (      )  

    [ (        )
 
  
  (        )   ( ( )      )

   
  ( ( )      )  ] 

  (2.15) 

where  is an   dimensional column vector,   is the normalizing constant,    is the 

      prior covariance matrix for the random vector  ,    is the       
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covariance matrix for data measurement errors and modeling errors,  ( ) is the 

assumed theoretical model for predicting data for a given  ,      is the an 

  dimensional column vector containing measured conditioning data, and        is the 

prior mean of the    dimensional column vector  . 

  However, because of the nonlinearity of the model, calculating the Eq. 14. is not 

easy even under the Gaussian assumption of the model. One method is to find the 

maximum a posteriori estimate of the model. The MAP estimate of the model which is 

denoted by      is the model that maximizes  ( ) or equivalently minimizes an 

objective function 

  ( )  (        )
 
  
  (        )   ( ( )      )

   
  ( ( )      )   

  (2.16) 

i.e. 

              ( ) (2.17) 

  The minimization can be done with the classical Newton approach. Take the 

derivative of the objective function with respect to  , take the transpose and then 

rearrange, the above minimization problem can be solved through the following 

iteration. 

     [(  
     

   )     (  
     

   )  ] 

  [(  
     

   )        
  (  

     
   ) (      ( 

 )      )] (2.18) 

    is the sensitivity which is variation of  ( ) as a result of a small change in   
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   [

                      
                      

    
                      

] (2.19) 

  Once the most probable model      is obtained, the a poster covariance matrix 

    can be approximated based on linearization about the MAP estimate point by 

        (    
   

         
  )   (2.20) 

 

2.3  Sensitivity Analysis and Adjoint Method 

  Sensitivity analysis is a way to measure the contribution of observed data to the 

estimation of the reservoir properties. The sensitivity   is the change of observation data 

because of a small perturbation on a reservoir property to be estimated. A higher value 

of the sensitivity coefficient means the observation is more sensitive to the 

corresponding reservoir property. Thus, it will result in a more accurate estimation of the 

corresponding parameter (Finsterle 1999). 

  However, because of the variation in unit and accuracy of observation and 

reservoir parameters, it is meaningless to compare the absolute value of sensitivity with 

each other. In order to make sensitivity coefficients comparable with one another, we 

can scale them by the standard deviation of the observation,   , and the posterior 

parameter standard deviation,    (Finsterle 1999). 

  ̃             (2.21) 

With the scaled sensitivity coefficients, we can compare the contribution of various 

observed data to the characterization of reservoir model. In addition, we can make the 
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summation of certain group of sensitivity coefficient to form composite sensitivity as a 

representation of the contribution of certain group of observations or the contribution to 

certain group of parameters. 

  One composite is the summation of the absolute values of the elements in a 

certain row of the scaled Jacobian matrix: 

     ∑ | ̃  |
 
    (2.22) 

  This composite sensitivity    is a measure of the contribution of observation   to 

the characterization of the whole reservoir model. 

  By making the summation of all the coefficients belonging to a certain group of 

observed data, the total contribution of these observations to the estimation of one 

unknown parameter   can be evaluated as the following composite sensitivity: 

     ∑ | ̃  |   
 
    (2.23) 

  Reservoir estimation based on optimization method and sensitivity analysis 

requires knowledge of the gradient of the objective function with respect to the 

parameter at each point    . For linear problem, sensitivity can be obtained easily. 

However, for realistic nonlinear flow and transport problems, the sensitivity need to be 

calculated by small perturbation on parameter or derived from the partial differential 

equations that govern flow and transport. The former method is straight forward but too 

computationally demanding to use in the characterization of subsurface heterogeneity. 

To make things worse, the determination of the perturbation amount may need several 

trials. Oliver presented the application of adjoint method in subsurface inversion which 

can be very efficient in deriving the sensitivity coefficients (Oliver et al. 2008). 
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  Suppose we wish to compute the derivative of the following function with 

respect to model parameter  . 

    ( ( )) (2.24) 

subject to 

   (         )    (2.25) 

where  ( ) are the reservoir states. 

  According to Oliver, we can obtain an adjoint function   by adjoining the 

constraint equations to the function   

     ∑ (    )      
    (2.26) 

where      [                    
   ]

 
 

  Take the total differential and rearranging the above equation, the derivative can 

be obtained by the following 

   

  
     ∑ [  ( 

 ) ](  ) 
    (2.27) 

        (2.28) 

 [   ( 
 ) ]    [   ( 

   ) ]          (2.29) 

 

2.4  Randomized Maximum Likelihood (RML) Method 

  The maximum a posteriori (MAP) estimation method is based on the assumption 

of Gaussian distribution of modeling and measurement errors and the linearity of the 

model. However, the linearity of subsurface fluid and heat flow model is not generally 

the case. For nonlinear case, the posteriori PDF is not necessarily Gaussian even though 
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the modeling and measurement errors are both Gaussian. To find multiple realizations 

from the a posteriori PDF to allow for local uncertainty analysis, we use the Randomized 

Maximum Likelihood calibrated realizations as trial states in a Markov chain Monte 

Carlo (McMC) method. The calculation of acceptance criterion is complex and we make 

an assumption to simply accept all the states that are the results of the calibration 

procedure. This assumption is demonstrated to be proper for a simple but highly 

nonlinear problem (Oliver et al. 1996). 

  Under this assumption, the RML method can be done in the following three 

procedures, 

1. Generate an unconditional realization of the model variable     . 

2. Generate an unconditional realization of the noise in the data and add the noise to 

the data to create     . 

3. Compute the model      that minimizes 

 ( )  (      )
 
  
  (      )  ( ( )      )

 
  
  ( ( )      )(2.30) 

Repeat the above procedures for N times.  

 

2.5  Variogram, Ordinary Kriging and Sequential Gaussian Simulation 

2.5.1  Variogram 

  Variogram is a measure of dissimilarity between two random variables, 

traditionally has been used to model spatial variability 

 ( ⃗⃗)     ( ( )   (   ⃗⃗))    
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   [( ( )   (   ⃗⃗))
 

]     [( ( )   (   ⃗⃗))]
 

   (2.31) 

  The covariance matrix of the prior permeability and conductivity distribution can 

be generated based on information on variogram model. If the variogram model   ( ) of 

the reservoir is known, the elements of the covariance matrix can be obtained according 

to 

  ( )         ( ) (2.32) 

  ( )   ( )   ( ) (2.33) 

 ( ) is auto-covariance which denotes the covariance between a random variable and its 

(time) space shifted version. Thus,  ( ) is the variance of a certain data point. 

2.5.2  Ordinary Kriging 

 Let  ( ) be a function of position. In kriging, we want to find a solution that 

honors data and spatial relationship between data and unknown as well as within data 

points (through variogram). 

   (  )     ∑    (  )
 
    (2.34) 

The desirable estimator properties are unbiasedness and minimum estimation 

error variance. In ordinary kriging, the stationary mean of the random field is unknown. 

Under these assumptions, the kriging weights can be obtained by 

      (2.35) 

 

[
 
 
 
 
 
              

          

          

   
       
      ]

 
 
 
 
 

[
 
 
 
 
 
  
  
 
 
  
 ]
 
 
 
 
 

 

[
 
 
 
 
 
   
   
 
 
   
 ]
 
 
 
 
 

 (2.36) 
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2.5.3  Sequential Gaussian Simulation 

Kriging has several limitations, like smoothness of the kriging result, the lack of 

information for representing local uncertainty, unable to reproduce extreme values, and 

the underestimation of variance. To address some of the limitation of kriging, we can 

generate multiple realizations that conditioned on variogram and observed data using 

Sequential Gaussian Simulation (SGSIM). 

The general procedure for SGSIM is 

1. Select a random path. 

2. Perform Kriging 

3. Draw a sample from the Gaussian distribution of the kriging results and add it 

to data 

4. Move to the next point in the random path and repeat the above procedure 

until one realization is generated 

  To generate another realization, repeat the above procedure.  

 

2.6  The K-SVD Algorithm 

When using a sparse constraint to regularize an ill-posed history matching 

problem, it is common to use generic transformation method like Discrete Cosine 

Transform (DCT) and Discrete Wavelet Transform (DWT). Even through these methods 

are general and easy to implement, it is hard to take the geology nature of the problem 

and the prior information into consideration by using DCT or DWT. K-SVD, one more 

effective and specialized method of constructing sparse base is recently developed 
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(Aharon et al. 2006) and applied into history matching problem (Khaninezhad et al. 

2010). Based on the geostatistical simulation methods such as Sequential Gaussian 

Simulation and Sequential Indicator Simulation, we can generate an ensemble of 

realization that are consistent with the prior information on the reservoir. With these 

prior realizations, we can construct a K-SVD dictionary. And this dictionary can be used 

in the sparse transformation to regularize the inverse problem. Since the dictionary is 

constructed from the prior information and the geology nature of the problem, it is more 

effective in the inverse problem than previous transformation methods. 

K-SVD is a generalization of the K-means algorithm. In K-means algorithm, a 

set of vectors is learned, and each sample will be represented by only one of these 

vectors by assigning the sample to its nearest neighbor. The K-means method may be 

regarded as an extreme sparse representation in which only one element in the dictionary 

is taken to decompose the sample. In this way, the corresponding coefficient has to be 

one. The K-SVD can be viewed a generalization of K-means in that the combination of 

multiple dictionary elements can be used to represent the sample. Then, the number of 

non-zero element does not have to be one even though it is still sparse. And the 

coefficients of these elements don’t have to be one. Sparse K-SVD bases can be 

generated from an ensemble of realizations that are consistent with the prior knowledge 

of the reservoir. 

In K-SVD, the training of the dictionary can be done by the minimization of the 

following problem (Aharon et al. 2006). 

       {‖    ‖ 
 } (2.37) 
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subject to 

 ‖  ‖     (2.38) 

for all  . 

In the K-SVD method, the minimization can be done iteratively (Aharon et al. 2006). 

The first step is using pursuit algorithm like matching pursuit and the orthogonal 

matching pursuit algorithm to find the approximate optimal coefficient matrix . One 

advantage of K-SVD is that all pursuit method as long as it can provide a solution with a 

determined number of non-zeros elements. In the first step, the Dictionary   will remain 

fixed. The second step is the searching of a better dictionary. The main difference of the 

step from other method is that K-SVD update one element as well as it’s correspond 

coefficient in the dictionary at one time. All other elements remain fixed during this 

process. The update of one element in the dictionary has a straight forward solution 

based on the singular value decomposition (SVD).  In addition, the update of dictionary 

element and its coefficient simultaneously improve the speed and stableness of 

convergence process. Carrying out the above two steps iteratively until the convergence 

criteria is meet will give a K-SVD learned dictionary. The detailed theory, 

implementation procedures, and experiments can be found in Aharon’s discussion 

(Aharon et al. 2006).  

 

2.7  Sparse Regularization 

In the process of history matching, because of the overwhelming number of 

unknowns and the limited number of observations, the inverse problem is usually ill 
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posed. That is, there are more than one set of unknown values can explain the observed 

data equally well. To solve this problem, we need to add prior information on the 

reservoir properties to regularize the problem. Because of the geology nature of the 

problem, the reservoirs properties are usually show a certain extent of continuity over 

spatial domain. So we can apply this spatial continuity as regularization to the inverse 

problem. One way to apply this continuity is to use prior variogram model of the 

reservoir properties to obtain the covariance between every set of two grid blocks. Then, 

we can use this generated covariance matrix to regularize the inverse problem as shown 

in the MAP estimation part of this paper. Another way to take the spatial continuity of 

reservoir properties into consideration is to apply a sparsity constraint into the inverse 

problem (Jafarpour et al. 2010). Li and Jafarpour (Li and Jafarpour 2010) applied the 

iteratively reweighted least-squares method into sparse regularized history matching 

problem. This method is effective and efficient in solving the subsurface heterogeneous 

inverse problem and works well in the DCT and DWT domain. 

The sparse reconstruction problem can be expressed by 

     ‖  ‖  (2.39) 

Subject to  

 ‖      ( )‖ 
    (2.40) 

where   is a transformation basis such as DCT or DWT.  is the measurement error 

variance.  

This is a constraint minimization problem in which we want to find the set of 

parameter   which can explain the observed data with the observation error and has the 
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minimum number of non-zero elements in the sparse transformation domain. However, 

the direction solution of this problem is impossible because of the solution require an 

exhaustive search over the whole possible parameter space. The extensive computation 

effort required to do this asks one to think about equivalent formulation to this problem. 

One approximate solution is to applying a convex relaxation and then solves the resulted 

optimization problem. 

     ‖  ‖ 
  (2.41) 

subject to  

 ‖      ( )‖ 
    (2.42) 

One equivalent expression of this constrained optimization problem is as the 

following, 

      ( )  ‖      ( )‖ 
   ‖  ‖ 

  (2.43) 

That is, the regularized inverse problem can be solved by the minimization of an 

objective function which incorporates a sparse constraint term to the ill-posed 

observation misfit term with a parameter   that balance the weight between the sparsity 

‖  ‖ 
  and the observation misfit term. 

According to Li and Jafarpour (Li and Jafarpour 2010), this minimization can be 

solved by an iteratively reweighted method as the following 

  ( )  ‖      ( )‖ 
   ‖  ‖ 

  (2.44) 

where ‖  ‖            . And the weighting matrix   is a diagonal matrix 

that that place less weight on the sparse term at early iterations and larger weights on the 

sparse term at later iteration.  
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At each iteration when solving this problem, the diagonal elements of the matrix 

     [(  
 ) 
    ]

 

 
   where    ‖      ( )‖   is a small parameter that to 

avoid the singularity of the matrix and adaptively control the weighting matrix during 

the iterations. A detailed discussion and derivation of the matrix   can be found in Li’s 

discussion (Li and Jafarpour 2010). 

The Newton method can be used for the minimization of the objective function; 

we can update the unknown vector   at each iteration according to the following, 

      [            ] (2.45) 

This approach was developed Li and Jafarpour (Li and Jafarpour 2010) with 

DCT and DWT transformation and implemented into the K-SVD method by 

Khaninezhad et al. (2010). Effectiveness of the sparse constraint was demonstrated in 

two Dimensional problems. When this sparse constraint method is done with the K-SVD 

dictionary, we can make a change on the notation to make the expression simpler. Let   

stands for the representation of the unknown parameters to be estimated in the K-SVD 

transformation domain, and   be the K-SVD trained dictionary which will transform the 

K-SVD representation to the spatial domain. 

That is 

      (2.46) 

So that the objective function to be minimized can be rewritten as  

  ( )  ‖      (  )‖ 
   ‖ ‖ 

  (2.47) 

Its minimization can be done in a way similar to the optimization of the problem 

before. 
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The determination of the weight parameter   is a little hard, and the current 

procedure for determine its value including L-curve method and the generalized cross 

validation method.  
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CHAPTER III 

MODEL SETUP AND EXPERIMENT RESULTS 

 

3.1  Model and Experiment Setup 

 We use a synthetic non-isothermal three-dimensional single phase flow system in 

the experiment. The governing equations are solved using the finite difference method to 

obtain the pressure and temperature at each grid cell. A fully implicit formulation is used 

to solve the governing equations. The sensitivity of observations with respect to the 

reservoir properties are obtained by adjoint method. The covariance matrix of the prior 

permeability and conductivity can be obtained from the prior information on variogram 

model.  

 The detailed properties of the reservoir model can be found in Table 3-1 through 

Table 3-3.  

 

         

 

       Figure 3-1. Initial Temperature Distribution                   Figure 3-2. True Permeability Distribution 
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 The initial temperature on the top layer of the reservoir is 100 °C and that on the 

bottom layer is 200 °C. The geothermal gradient is assumed to be constant within the 

reservoir. Water at about room temperature (20 °C) is injected through the injection well 

in the middle of the reservoir and water is produced at eight production wells as shown 

by Figure 3-1. The configuration of the reservoir model and the initial temperature 

distribution is given by Figure 3-1 and Figure 3-2. Figure 3-3 shows the placement of 

temperature sensors.  

 

 

 

Figure 3-3. Temperature Sensor Placement 

 

 The observations are pressure at injection well, production rate and temperature 

at two production wells. The observation is taken from the exact result of the forward 

simulation run but the relative observation error is taken as 2 % for pressure 

measurement and temperature measurement to generate the observation covariance 
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matrix   . In the experiment, we assume measurements are independent to each other so 

that    is a diagonal matrix.  

 

Table 3-1 Discretization parameter, initial, boundary conditions, and general parameters 
 
Properties Values Properties Values 

Simulation Time 1000 Days Observation Interval 50 Days 

Reservoir Dimension               feet Grid System          

Cell Dimension          feet Initial Pressure 2920 psi 

Boundary Conditions No Flow Boundaries Production Rate Error 2 % 

Production Temp Error 2 % Injection Pressure Error 2 % 

Gravity        (Neglected) Temp Sensor Error 2 % 

 
 
 
 
Table 3-2 Well setup 
 
Properties Values Properties Values 

Number of Injectors 1 Production Well Radius 0.583 feet 

Number of Producers 8 Production Well BHP 2900 psi 

Well Index Model Peaceman’s Model Injection Observation Pressure 

Total Injection Rate 66000 BBL/Day Production Observation Rate and Temperature 

Injection Temperature 20 °C   

 

 The injection well injects evenly at each grid block at a total rate of 66000 

BBL/Day along the vertical direction. The production rate at each well is a summation of 

the production rate with a constant bottom hole pressure of 2900 psi at each grid block 

along the vertical direction. And the production temperature is the rate weighted mean of 
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the production temperature at each production grid block. The well index of the 

production well is obtained from Peaceman’s model (Peaceman 1978).  

 

Table 3-3 The properties of rock and fluid 
 
Properties Values Properties Values 

Rock Porosity 0.2 Fluid Compressibility 3×10-6 (1/psi) 

Rock Heat Capacity 0.84 × 103 J/K Expansion Coefficient 207  (10-6/°C) 

Rock Density 2.7× 103 kg/m3 Reference Pressure  2800 psi 

Fluid Reference Density 1× 103 kg/m3 Reference Temperature 20 °C 

Fluid Heat Capacity 4.19× 103 J/K Fluid Viscosity Model Likhachev’s Model 

 

 The liquid properties in the experiment are taken as the properties of water. The 

fluid viscosity is calculated using Likhachev’s model (Likhachev 2003). 

 

Table 3-4 SGSIM parameters 
 
Properties Values Properties Values 

Kriging Type Ordinary Kriging Nugget Effect 0 

Max Conditioning Data 12 Permeability Sill 1    (  ) 

Search Ellipsoid Ranges 21×21×6 Conductivity Sill  0.09    (   )  

Search Ellipsoid Angles 0×0×0 Permeability Mean 1   (  ) 

Variogram Model Spherical Conductivity Mean 3   (   ) 

 

 The logarithm of true permeability map and the true conductivity map are 

generated by drawing two samples from the sequential Gaussian simulation based on the 

variogram parameter from Table 3-4. SGeMS (Remy et al. 2008) software which is the 



 28 

Stanford Geostatistical Modeling Software developed at Stanford University is used for 

SGSIM.  

 

3.2  MAP Estimation Results 

  The permeability characterization results using various observations are 

presented by Figure 3-4. We can see that the posterior permeability map characterized 

only on production rate (the 2nd column) shows homogeneity along the vertical 

direction. However, when conditioned on production temperature (the 1st and 3rd 

column), the posterior permeability shows a lot of heterogeneity along the vertical 

direction, and this heterogeneity is consistent with the true permeability map. This 

means production temperature conveys information on the vertical distribution of 

reservoir property and production rate convey information on the horizontal distribution 

of reservoir property. This can be interpreted as the following, because of the geothermal 

gradient, the temperature on the upper layer of the reservoir is much lower than that on 

the lower layer of the reservoir. So if the permeability on the upper layer is high, more 

hot water will be produced and this results in a higher production temperature, and vice 

versa. In this way, by observing the production temperature, we can tell how much water 

is from the upper layer and how much water is from the lower layer. The sensitivity 

analysis on the last two rows can further demonstrate this point. From the sensitivity 

analysis, we can see that the sensitivity of production rate have the same sign along 

vertical direction while those of production temperature have opposite signs. By 
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charactering permeability on both production rate and production temperature, we can 

get the best estimation of the permeability map (1st column). 

 

 

                    

                    

                                                           

                                                          

        

Figure 3-4. Comparison of Characterization Results Conditioned on Various Observations 
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Figure 3-5. MAP Characterization Result with Downhole Temperature Sensors  

 

  The data match of the production data at well 1 is presented by Figure 3-6. 

  The production data of the prior reservoir model differs significantly from the 

observed production data. However, when the model is characterized on production rate 

or both production rate and production temperature, the predicted production rate 

matches the observed production rate very well. When the model is characterized on 

production temperature or both production rate and production temperature, the 

predicted production temperature has a good match with the observed production 

temperature. 

Posterior Log-Perm Posterior Variance 
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Figure 3-6. Production Data Match of Maximum A Posterior Characterization 

 

  To study the effect of the data from downhole temperature sensors such as fiber 

optic sensor on characterization, we proposed a model with permanent downhole 

distributed fiber optic sensors as shown as Figure 3-3. The results characterization result 

is presented by Figure 3-5. The posterior permeability distribution is more 

heterogeneous than those without downhole temperature sensors, this is because these 

temperature sensors are vertically distributed and thus carry information on the vertical 

distribution of reservoir properties. 

 

3.3  RML Estimation Results 

  However, the MAP estimation gives only one realization of the posterior 

probability density function. In addition, it is under the assumption of Gaussian 

distribution and linearity of the model. In realistic case, these assumptions are usually 
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untrue. So instead of MAP estimation, we can use RML to generate multiple realizations 

of history matched models for uncertainty analysis and risk assessment. The RML 

estimation of the reservoir is done with a realization number of 100. The characterization 

results are shown as the following. Similar to the MAP estimation, the RML also give a 

pretty good characterization results. In addition, the multiple realizations dawned by 

RML make uncertainty analysis possible. Unlike the posterior variance of the MAP 

estimation which gives a smaller variance at the well locations, the uncertainty of the 

RML estimation is more uniform. 

  Three randomly selected realizations are shown by Figure 3-8. Every posterior 

permeability distribution presents more similarity with the true permeability distribution 

comparing to the prior one. 

 

 

 

 

Figure 3-7. Randomized Maximum Likelihood Characterization Results 

 

Prior Mean Prior Variance 
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Figure 3-7. Continued 

 

 

 

 

 

 

Posterior Mean (N=100) Posterior Variance (N=100) 

Posterior Mean (N=50) Posterior Variance (N=50) 
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Figure 3-8. Sample Realizations of Randomized Maximum Likelihood Characterization 
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Figure 3-9. Production Data Match of Randomized Maximum Likelihood Characterization 

 

  The data match for production rate and production temperature is shown in 

Figure 3-9. The production rate and production temperature of the prior realizations 

significantly differs from the observed production data. As expected, the production data 

converges to the observed production data after the RML estimation. 

  To verify that 100 is a sufficient number of realizations for RML 

characterization, we studied the effect of the number of realizations on posterior 

permeability and standard deviation. We used 50 realizations in the RML and the result 

including posterior permeability and posterior standard deviation is similar with that 

with 100 realizations. The requirement of number of realizations comparing to number 

of unknown parameters to be estimated is so small is because the correlations between 

each pair of unknown parameters, especially adjacent parameters are very strong. 
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3.4  K-SVD Estimation Results 

  Before the process of optimize the objective function, we need to specify the 

parameter   which regularize the weight between the data misfit and the sparsity. The 

determination of a proper value of parameter   is not simple. The proper value of     

depends on the accuracy and availability of the observation data, the number of the 

dictionary elements, the sparsity of the problem and the specific property the reservoir. 

So the proper value of   is case by case and cannot be determined before the actual 

process of characterization. The methods for determining   including L-curve (Hansen 

1999) and the generalized cross validation (GCV) methods. These methods are 

computationally inefficient. Li and Jafarpour (Li and Jafarpour 2010) proposed a 

multiplicative regularization method that multiply the regularization term to the data 

misfit term thus avoid the problem of determining parameter  . In the paper, we still use 

the normally additive regularization method and experiment on the effect of parameter   

on the sparsity and accuracy of the characterization results. We plotted the 

characterization results and K-SVD transformation coefficients for various  s.  
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Figure 3-10. K-SVD Constrained RML Results with Various  s 
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Figure 3-10. Continued 
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Figure 3-10. Continued 
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Figure 3-10. Continued 
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Figure 3-10. Continued 

 

  As the value of the parameter   increases, the sparsity increases, that is the 

number of non-zero elements of the reconstruction results in K-SVD transformation 

domain decreases. This is because larger   put more weight on the sparsity of the result. 

And the characterization result will be smoother and less variance in the spatial domain. 

  In addition, we plotted the dependence of data misfit of reconstructed results on 

the value of the parameter  . When of value of the        is in the range of      to 

    , the data misfit is approximately a monotonic increasing function of the parameter 

 . And the data misfit is pretty small in the range of       to     .However, the data 

misfit goes larger when the value of        goes below     . This is because of the ill-

condition of the matrix in the process of the minimization of the objective function. The 

value of the sparsity, that is the   -norm of the K-SVD coefficients, as a function of the 

value of the        is shown in Figure 3-11. This is a monotonic increasing function 
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since the larger   will put more weight on the sparsity term. The best value of    is a 

trade-off between the data-misfit and the sparsity. Here, based on the analysis of the 

reconstruction results, we take           is all of the following experiments.  

 

 

 

 

 

 

Figure 3-11. Data Misfit and Sparsity of Characterization Results with Various  s 

Data Misfit vs.      𝛼 Sparsity vs.      𝛼 

Data Misfit vs. Sparsity 
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Figure 3-12. K-SVD Dictionary Training Samples 
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Then we apply the regularization using the K-SVD basis. The training samples 

were generated using Sequential Gaussian Simulation using the same parameters with 

the RML example. The number of training samples is 1500 and they are consistent with 

the true permeability distribution that we want to reconstruct. This consistence makes the 

comparison between K-SVD constrained RML method and regular RML possible. 9 of 

the training samples are shown in Figure 3-12. The variance among these 9 realizations 

is a representation of the uncertainty of prior knowledge. 

Dictionaries with element number        and sparsity     , with   

     and     , with       and     , with       and     , and with   

    and      are trained with these 1500 training samples. 

We make a comparison on the characterization results using different K-SVD 

dictionaries with various dictionary sizes and sparsities. All the initial permeability 

distribution is uniform over the whole space. The results are shown as Figure 3-13. 
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Example1 K = 1000, S = 25 

K-SVD Dictionary Elements 

 

Reconstruction Results 

 

 

Figure 3-13. Characterization Results of Various K-SVD Dictionaries 
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Example1 K = 1000, S = 5 

K-SVD Dictionary Elements 

 

Reconstruction Results 

 

 

Figure 3-13. Continued 
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Example1 K = 500, S = 25 

K-SVD Dictionary Elements 

 

Reconstruction Results 

 

 

Figure 3-13. Continued 
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Example1 K = 500, S = 50 

K-SVD Dictionary Elements 

 

Reconstruction Results 

 

 

Figure 3-13. Continued 
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Example1 K = 250, S = 25 

K-SVD Dictionary Elements 

 

Reconstruction Results 

 

 

Figure 3-13. Continued 
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  We can draw the same conclusion on our three dimensional non-isothermal 

reservoir model with Khaninezhad et al. (2010). That is, when the number of dictionary 

element is decreased, the smoothness of the dictionary elements will be increased. This 

means that we will put more weight on the covariance between grid block pairs in the 

process of reservoir characterization. Another advantage of reducing the number of 

dictionary elements is the increasing in the computation burden in the training of the 

dictionary. However, if the available data is enough, the continuity of the dictionary 

elements may result in the underestimation of the variance along the space. So choice of 

the dictionary element number is a tradeoff between the reconstruction diversity and 

reservoir connectivity base on the availability and accuracy of data and the property of 

the reservoir to be reconstructed. 

 

3.5  K-SVD Constrained RML Estimation Results 

  Worse than the MAP estimation, the K-SVD method doesn’t even give a 

estimation on the posterior variance of the reconstructed permeability distribution. So 

again we can use RML to generate multiple realizations of history matched models for 

uncertainty analysis and risk assessment. The K-SVD constrained RML estimation of 

the reservoir is done with a realization number of 100. The characterization results are 

shown as the following. The K-SVD constrained RML also give a pretty good 

characterization results and the posterior variance distribution as shown in Figure 3-14. 
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Three randomly selected realizations are shown by Figure 3-15. Every posterior 

permeability distribution presents more similarity with the true permeability distribution 

comparing to the prior one. 

 

 

                       

 

                       

 

             

 

Figure 3-14. K-SVD Constrained RML Characterization Results 

Prior Mean Prior Variance 

Posterior Mean Posterior Variance 

Posterior Variance 
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Figure 3-15. Sample Realizations of K-SVD Constrained RML 
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Figure 3-16. Production Data Match of Randomized Maximum Likelihood Characterization 
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CHAPTER IV 

CONCLUSIONS 

 

In this thesis, we studied the joint inversion of production and temperature data 

on the illumination of vertical permeability distribution in deep reservoirs. This reservoir 

characterization method takes both production rate and production temperature data into 

consideration for the inversion. The general idea behind taking production temperature 

into consideration is that the geothermal gradient results in temperature difference 

between various layers of the reservoir. The temperature difference makes temperature 

act as a kind of ‘tracer’ in the reservoir characterization. And the function of this ‘tracer’ 

is to identify the depth of the reservoir that the produced fluid comes from. 

To achieve this goal, we first derived the governing equation for coupled fluid 

and heat flow which account for sources and sinks, viscosity dissipation, thermal 

expansion, heat convection and conduction. Then we built a non-isothermal reservoir 

simulator to simulate the fluid and heat flow in the reservoir. The adjoint method is 

incorporated into the simulator for efficient and accurate gradient calculation. The 

implementation of the adjoint method significantly reduces the burden of gradient 

calculation which is a barrier for fast reservoir characterization. Then, we use MAP 

estimation, RML estimation, K-SVD characterization, K-SVD regularized RML 

estimation separately to estimate the heterogeneous reservoir based on the only 

production rate, on only production temperature, and on both production rate and 

production temperature.  
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We used a three dimensional synthetic model to do the experiment. A full 

penetrating injection well is located at the center of the reservoir and eight full 

penetrating production wells are distributed uniformly on the boundaries of the reservoir. 

The permeability distribution is heterogeneity in the reservoir. The observations are 

production rate and production temperature and the unknown parameters to be estimated 

are the permeability at each grid block. 

In MAP estimation, we use the prior variogram model to obtain the covariance 

between the permeability of each pair of grid block. With these covariance, we built a 

covariance matrix with ensure the smoothness of the posterior permeability distribution. 

The prior permeability distribution in MAP estimation is taken as a uniform distribution 

and the characterization results are consistent with the true permeability distribution. In 

RML estimation, we used 100 realizations and did the uncertainty analysis on the 

posterior permeability distribution. The variance of the posterior permeability is different 

from the predicted results of MAP estimation. As to the K-SVD estimation, we use 

dictionaries with various numbers of dictionary elements and different sparsity trained 

by K-SVD to do the estimation. The effect of K-SVD dictionary on estimation results 

are presented and analyzed. The K-SVD transform term act as a regularization term in 

the objective function. And a parameter   is used to balance the weight of the sparisty of 

the results and the data match. We test the effect of the value of   on the sparsity and the 

data misfit of the results. And the development of the results for various   is shown. 

Again, we used the RML estimation to make the uncertainty analysis for K-SVD 

method. 
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We compared the characterization results on various observations. The 

comparison on reservoir characterization results conditioned on only production rate, 

only production temperature, both production rate and production temperature shows 

that production temperature indeed improve the result of estimation by conveying 

information on the vertical distribution of the reservoir permeability. . In addition, we 

made the sensitivity analysis which shows how the production results will change over a 

small change on the permeability at each grid block. This sensitivity further 

demonstrated this point. 
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