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ABSTRACT

Modeling Gene Regulatory Networks from

Time Series Data Using Particle Filtering. (August 2011)

Amina Noor, B.E., M.S., National University of Sciences and Technology

Co–Chairs of Advisory Committee: Dr. Erchin Serpedin
Dr. Mohamed Nounou

This thesis considers the problem of learning the structure of gene regulatory

networks using gene expression time series data. A more realistic scenario where the

state space model representing a gene network evolves nonlinearly is considered while

a linear model is assumed for the microarray data. To capture the nonlinearity, a par-

ticle filter based state estimation algorithm is studied instead of the contemporary

linear approximation based approaches. The parameters signifying the regulatory

relations among various genes are estimated online using a Kalman filter. Since a

particular gene interacts with a few other genes only, the parameter vector is expected

to be sparse. The state estimates delivered by the particle filter and the observed

microarray data are then fed to a LASSO based least squares regression operation,

which yields a parsimonious and efficient description of the regulatory network by

setting the irrelevant coefficients to zero. The performance of the aforementioned al-

gorithm is compared with extended Kalman filtering (EKF), employing Mean Square

Error as the fidelity criterion using synthetic data and real biological data. Extensive

computer simulations illustrate that the particle filter based gene network inference

algorithm outperforms EKF and therefore, it can serve as a natural framework for

modeling gene regulatory networks.
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CHAPTER I

INTRODUCTION

Gene regulation is one of the most intriguing processes taking place in living cells.

With hundreds of thousands of genes at their disposal, cells must decide which genes

to express at a particular time. As the cell development evolves, different needs and

functions entail an efficient mechanism to turn the required genes on while leaving the

others off. Cells can also activate new genes to respond effectively to environmental

changes and perform specific roles. The knowledge of which gene triggers a partic-

ular genetic condition can help us ward off the potential harmful effects by turning

that gene off. For instance, cancer can be controlled by deactivating the gene that

causes it. Fig. 1 gives a brief description of the gene regulation. Receptors located

outside of the cell-membrane receive signals from the environment which are passed

through the cytoplasm into the nucleus. This activates a protein called transcription

factor in the nucleus which on binding to the promoter region of the gene triggers the

enzyme, RNA polymerase. This enzyme transcribes the DNA into mRNA, which is

then translated into protein.

The amount of mRNA produced tells us how active or functional a gene is.

The level of gene functionality can be measured using microarrays or gene chips to

produce the gene expression data. Intelligent use of this data can help us get an

understanding of how the genes are interacting in a living organism. While the theo-

retical applications of gene regulation are extremely promising, it requires a thorough

understanding of this complex process. Different genes may cooperate to produce a

particular reaction while a gene may repress another as well. The potential benefits

The journal model is IEEE Transactions on Automatic Control.
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Fig. 1. Gene regulation mechanism.

of gene regulation can only be reaped if a complete and accurate picture of gene in-

teractions is available. A network specifying how different genes are interconnected

can go a long way in helping us understand the gene regulation mechanism.

A. Gene Regulatory Networks

A particular way to describe gene interactions is through a gene regulatory network.

Gene regulatory networks are a class of graphical models that serve to capture the

control and interactions taking place among biological components including mRNA,

proteins and DNA sequences. Genes constitute the nodes in this graphical network

while the relations between interacting genes are modeled by edges connecting the

related nodes. Such a network depicts various interdependencies among genes. A

typical gene network is shown in Fig. 2. The correlation among various genes in the

network is then determined by using the gene expression data. This quantitative anal-
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Fig. 2. A typical gene regulatory network.

ysis represents the extent to which a gene is affected by other genes in the network.

A key ingredient of this approach is an accurate and representative modeling of gene

networks. Precise modeling of a regulatory network coupled with efficient inference

algorithms can potentially pave the way for curing genetic diseases, improving diag-

nostic procedures and producing drug designs with greater impact.

Recent advances in DNA microarray technology coupled with their tremen-

dous applications has spurred significant research efforts in inferring gene regulatory

networks. A natural consequence of this improvement in technology is a deluge of bi-

ological data obtained through simultaneous monitoring of gene expression profiles of

large sequences. It is imperative that simple and computationally efficient algorithms

are developed which provide an insight into the regulatory and physical interactions

taking place among living cells. Inferring useful information from large amounts of

biological data by utilizing experimental techniques alone can incur significant costs

as well as consume time. With experimental resources coming at a premium, it is

precisely this idea of their economic use that advocates computational biology as a
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viable and attractive alternative [1], [2].

B. Literature Review

Modeling of gene networks is, in essence, a set of decision rules that describe the

activation and repression of each gene via various proteins. The proteins produced by

transcription and translation might serve as activators or repressors for other genes

resulting in feedback loops which can be both positive and negative. Depending upon

our prior knowledge about possible interactions and the amount of gene expression

data available, there can be different levels of gene network models.

Several methods of modeling gene networks have been reported in literature,

which vary from being very simple to very sophisticated [3], [4], [5]. The simplistic

class of models can be called a Parts list which includes models specifying various

components of gene network [6], [7]. Some modeling techniques establish the in-

teractions among the genes based on statistical dependence, e.g. clustering [8], [9].

Information-theoretic criteria have also been proposed to quantify the extent of cor-

relation between genes and infer the corresponding regulatory network [10]. This

approach can, however, model static relations only. A more precise and insightful

construction of a gene regulatory network can be obtained by incorporating the ran-

dom effects caused by perturbations and the evolution of gene reactions in time. To

facilitate the extraction of useful information from expression profiles time series data,

various dynamical models have been employed [11]. In particular, Bayesian networks

[12], factor graphs [13] are frequently used to model conditional dependencies among

genes in a network. Boolean networks [14], [15], neural network [16] etc., have also

been proposed as potential candidates to model the control of various components in

the cell and external factors. All of the aforementioned algorithms come with their
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respective advantages and short comings. A lot of research is being devoted to intro-

duce improvements in the working of these algorithms and enhance our understanding

of gene interactions.

Of the statistical techniques currently applied to model gene networks, dynamic

Bayesian networks have received the most widespread attention [17], [18]. Dynamic

Bayesian networks offer significant advantages in terms of incorporating our prior

belief about the system structure in stochastic modeling to identify the system pa-

rameters. State space models [19], [20], [21] and Kalman filter, which are specific

instances of dynamic Bayesian networks, have also been employed to model gene reg-

ulatory networks [3], [22]. Kalman filter suffers from an inherent drawback of being

applicable to linear Gaussian models only. However, the interdependencies among

various genes are rarely, if ever, linear [3]. In order to capture complex gene interac-

tions efficiently, it is crucial to alleviate the assumption of a necessarily linear model

and develop algorithms that produce desired results even in the presence of possible

nonlinearities in the system model [3]. Extended Kalman filter (EKF) is one such

method for estimation and prediction in case of nonlinearity and has been frequently

used to perform inference in gene networks [23], [24]. This approach works well in

the presence of steady state data and if the system presents slow dynamics. While

it offers some advantages in terms of simplicity and small data needs, it is, at best,

only an approximation since it relies on linearization of the nonlinearity. There is a

considerable degradation in the performance of EKF if either the initial estimate of

the state is wrong, or there are deficiencies in the modeling of the system. Clearly,

this loss in acceptable performance is a direct consequence of the linearizing opera-

tion. Therefore, advanced techniques that preserve any inherent nonlinear structures

in the state evolution and deliver performance guarantees with desired fidelity are

required.
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C. Major Contributions

To cope with nonlinearities, this thesis proposes the usage of particle filtering tech-

niques. A generalization of Kalman filter, particle filter can accurately model the

evolving dynamics of a system by catering for any possible nonlinearity, thus remov-

ing the sub-optimality caused by linearization approximations. The noise impairing

the physical system can arise due to intrinsic factors, such as translation and tran-

scription taking place in the cell, or due to extrinsic factors. In this scenario, particle

filtering offers another distinct advantage over extended Kalman filter in that it can

be used in the presence of arbitrary noise distributions whereas extended Kalman

filter assumes the noise to be Gaussian. This work proposes a method to reverse

engineer gene regulatory networks using time series data. The microarray data is as-

sumed to obey a linear model. To obtain a more accurate and precise picture of gene

interactions, a nonlinear model for gene expressions and a discrete time state space

system of equations are considered to model possible time variations. Our major

contributions in this work can be summarized as follows [25],[26].

1. A particle filter based approach is presented to model nonlinearities in a gene

network instead of relying on first order approximations. The gene regulatory

network is expressed as a state space model and a sigmoid squash function

is used to model the nonlinearity. The states are recursively estimated using

particle filter whereas the system parameters required in this estimation are

estimated online using a Kalman filter operation. This approach helps to create

a more accurate representation of the network by alleviating the sub-optimality

introduced by approximations used in contemporary methods [24].

2. A key observation in modeling a gene regulatory network is that a particular

gene interacts with a few other genes only and as such, many of the system
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parameters signifying these ‘weak’ relationships are irrelevant. The parameter

vector is thus, expected to be sparse. To capture this sparsity, the particle filter

is augmented with the well known Least Squares Shrinkage Selection Operator

(LASSO) based least squares regression operation. LASSO helps us to iden-

tify the ‘relevant’ subset of system parameters of the network. This yields a

parsimonious and concise description of the gene regulatory network.

3. The performance of the aforementioned algorithm is rigorously evaluated for

synthetic data as well as real biological data sets for Malaria and Worm time

series gene expression profiles. The results are contrasted with those reported in

[24]. It is demonstrated that particle filtering followed by LASSO outperforms

the nonlinear approximation based method proposed in [24] for synthetic as

well as real data. Our proposed algorithm, therefore, can serve as a natural

framework for modeling gene regulatory networks.

D. Organization

The remainder of this thesis is organized as follows.

• CHAPTER II outlines the underlying nonlinear state space system used to

model the gene regulatory network.

• CHAPTER III presents our main algorithm using a particle filter based state

estimation followed by LASSO operation to estimate the sparse parameter vec-

tor.

• CHAPTER IV tests the performance of this algorithm for synthetic as well as

real data and results are compared with the extended Kalman filter proposed

in [24].
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• CHAPTER V concludes the thesis along with some directions for future re-

search.
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CHAPTER II

SYSTEM MODEL

A. State Space Model

The dynamical gene system is modeled using a standard state space approach. As-

suming a system consisting of N genes, the model for the evolution of states at the

ith time instant can be expressed as

yi = g(yi−1,wi−1) (2.1)

where the function g(.) characterizes the regulatory relationship among various genes

and is not constrained to be linear in order to allow a complete generalization of the

model. The state vector yi represents the gene expression values at a particular time

instant i and the noise wi impairing the system is assumed to be i.i.d Gaussian such

that wi,n ∼ N (0, σ2
w). The microarray data is represented in terms of the variables zi

which also constitute a set of noisy observations. At the ith time instant, the states

yi are assumed to be related to the gene expression levels zi as

zi = h(yi,vi) (2.2)

where vi is considered Gaussian such that vi,n ∼ N (0, σ2
v). The system model is

depicted in Fig. 3 at the ith instant.

As discussed before, in order to capture the inherent nonlinearity relationships

existing among genes, a linear restriction of the function g(.) is alleviated. In partic-
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g(.)
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h(.)

vi

yi−1 yi zi

Fig. 3. System model block diagram.

ular, the following model is considered for the evolution of states [25]

yi,n =
N∑
m=1

bnmf(yi−1,m) + wi,n

i = 1, ..., I, n = 1, ..., N (2.3)

where the unknown constants bnm model the nonlinear regulatory relations among

various genes. The nonlinear function f(yi−1,m) is the sigmoid squash function given

by

f(yi−1,m) =
1

1 + e−yi−1,m
(2.4)

which is illustrated in Fig. 4. This function enables the conditional distribution of

the state to remain Gaussian, although the mean is now a nonlinear function of the

parents [3].

In most of the current literature, the microarray data is assumed to be fully

correlated with the gene expression. This assumption is maintained for simplicity

and ease of inference. However, microarray experiments are known to be noisy and it

is very important to incorporate the stochasticity in the microarray data model. In

this thesis, a linear Gaussian model for the microarray data is considered which can
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x
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Fig. 4. Sigmoid squash function.

be expressed at the ith time instant as [22], [24]

zi = yi + vi. (2.5)

The system model outlined above is complete in the sense that it captures all impor-

tant features of the gene regulatory network, e.g., nonlinearity, noise and dynamics.

B. Problem Statement

Given a set of noisy observations zi at various time instants, which is assumed to have

evolved through the state space model described in (2.3) and (2.5), our goal is to infer

the gene regulatory network by determining the unknown constants bnm. Accurate

estimates of bnm enable us to quantify the degree of interactions among genes.
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CHAPTER III

METHOD TO INFER GENE REGULATORY NETWORKS

“An algorithm must be seen to be believed”.

-Donald Knuth [27].

In this section, the methodology proposed to infer the system parameters in (2.3) is

described [25]. Our approach is best illustrated in Fig. 5. The algorithm is presented

in detail below.

A. Particle Filtering

Particle filtering, also known as Sequential Monte Carlo method, is a suboptimal

algorithm which uses point masses to approximate the probability densities [28], [29],

[30]. Particle filtering serves as a natural candidate for making inference in gene

regulatory networks since it is not restricted to linear state evolution models. In

addition, particle filter is also suitable for scenarios where the noise corrupting the

system can assume arbitrary probability distributions.

Let di denote the set of all observations up to time i, i.e., di
∆
= [z1, . . . , zi]

T .

Based on the measurements di and past state estimates y1:i−1, our objective is to

estimate the current state yi. This requires the posterior density p(yi|di) of the state

yi. The process is carried out in two steps which involve predicting the posterior

density given the past observations and updating it given the current observation [1].
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Fig. 5. Block diagram of gene regulatory network inference methodology.

The prediction step is given by

p(yi|di−1) =

∫
p(yi|yi−1)p(yi−1|di−1)dyi−1 (3.1)

where the posterior density p(yi−1|di−1) is assumed available from the previous iter-

ation. Based on the Markov model in (2.3), the conditional distribution of the state

yi can be expressed as

p(yi|yi−1; bnm) =

1

(2πσ2
w)N/2

exp

{
−||yi −

∑N
m=1 bnmf(yi−1,m)||2

2σ2
w

}
. (3.2)

The constants bnm are assumed to be available through an online estimation using

Kalman filter as described in the next section. At this point, we can utilize the

observation zi available at time i. The update step can be written as

p(yi|di) =
p(zi|yi)p(yi|di−1)

p(zi|di−1)
(3.3)
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where the normalization constant is conveniently expressed as

p(zi|di−1) =

∫
p(zi|di−1,yi)p(yi|di−1)dyi

=

∫
p(zi|yi)p(yi|di−1)dyi (3.4)

and p(zi|yi) is given by

p(zi|yi) =
1

(2πσ2
v)
N/2

exp

{−||zi − yi||2
2σ2

v

}
. (3.5)

The prediction and update stages for state yi are succinctly described in Algorithm

1. The process is initiated by drawing K particles {y0}Kk=1 for an initial state y0 from

a known prior density p(y0). At the ith iteration, particles {yi−1}Kk=1 sampled from

the posterior density p(yi−1|di−1) are assumed to be available.

In the prediction step, the particles {yi−1}Kk=1 and {wi−1}Kk=1, sampled from

p(wi−1), are used to predict the state yi. This is accomplished by using

y∗i = g(yi−1,wi−1) (3.6)

for all K particles. The unknown system parameters Θ needed in this prediction are

supplied by an online estimation using Kalman filter and its details are deferred to

the next section.

The observation zi available at time instant i necessitates an update of the state

estimate yi. The normalized likelihood for kth prior sample can be written as

ξk =
p(zi|y∗ki )∑K
k=1 p(zi|y∗ki )

. (3.7)

The updated estimate for state yi can now be obtained by drawing particles {yi}Kk=1 ∼

p(ξi). At the termination of the update stage, the particles {yi}Kk=1 are good approx-

imations of samples from the posterior distribution p(yi|di). This process is depicted
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weight update

resampling

Fig. 6. Weight update and resampling in particle filter.

in Fig. 6

Particle filtering suffers from the well-known problem of sample attrition. As

the algorithm proceeds, the variance of the importance weights can only increase.

Hence, after some iterations, there will only be a single particle carrying most of the

weight. This phenomenon is called the degeneracy effect. This problem is resolved

by resampling in which the particles with small weights are removed and those with

higher weights are replicated in proportion to their weights.

B. Kalman Filter

Kalman filter is an algorithm which is frequently employed to estimate the hidden

variables in a linear state space model observed in Gaussian noise. It is an online algo-

rithm which uses the noisy observations at each time instant to predict the unknown

states as depicted in Fig. 7. In our framework, particle filter works in conjunction

with the Kalman filter, with the former predicting the unknown states ym,i−1 and the
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Predict States:
Θi|i−1 = Θi−1|i−1 + ηi

Predict States Covariance:
P i|i−1 = P i−1|i−1 + Σηi

Innovation & covariance:
ui = zi − ΨfiΘi

Σu = ΨfiP i|i−1Ψ
T
fi + Σvi

Kalman gain:
KG = P i|i−1Ψ

T
fi(Σu)−1

Update estimates & covariance
Θi|i = Θi|i−1 + KGui

P i|i = (I −KGΨfi)P i|i−1

Fig. 7. Kalman filter flow chart.

latter estimating the constant system parameters [25]. It can be observed from the

system model described in (2.3) and (2.5) that given the states ym,i−1, the state space

model becomes linear in the unknown parameters. The linearity of this model and

Gaussian noise impairment makes Kalman filter a natural candidate for estimating

bnm. Define

Θ
∆
= [b11, . . . , b1N , b21, . . . , b2N , . . . , bN1, . . . , bNN ]T

f
′ ∆
= [f(yi,1) . . . f(yi,N)] (3.8)

Ψfi
∆
=



f
′

0 0 0

0 f
′

0 0

0 0
. . . 0

0 0 0 f
′


(3.9)

Then the state and output equations can be expressed as
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Θi = Θi−1 + ηi

zi = ΨfiΘi + vi (3.10)

where the parameters Θi are assumed to evolve from a Gauss-Markov process. The

noise ηi denotes the uncertainty in the unknown parameters and its variance is as-

sumed low so that the parameters are almost constant. The update equations for the

Kalman filter are as follows:

Θi|i−1 = Θi−1|i−1 + ηi

P i|i−1 = P i−1|i−1 + Σηi

ui = zi −ΨfiΘi

KG = P i|i−1Ψ
T
fi

(ΨfiP i|i−1Ψ
T
fi

+ Σvi
)−1

Θi|i = Θi|i−1 +KGui

P i|i = (I −KGΨfi)P i|i−1 (3.11)

where KG is the standard Kalman gain. It must be emphasized that estimate of

Θi is determined online. Once this estimate becomes available, it is fed back to the

particle filter which uses them to calculate the state yi. This process is depicted in

Fig. 5

C. Parameter Selection Using LASSO

The Least Absolute Shrinkage Selection Operator (LASSO), proposed by Tibshirani

in [31], is a solution to a least squares regression problem with an additional L1 norm

penalty on the parameter vector. The idea of introducing an L1 norm penalization

stems from some inherent short comings associated with an L2 regularization. While

L2 regularization provides numerical stability and high fidelity, it does not encourage
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a parsimonious description and interpretation of the system parameters. The L1 norm

regularization, while retaining many of the useful properties of L2 norm regularization,

provides an additional benefit in that it selects only a subset of parameters that matter

in system description. Unlike L2 penalization where all coefficients generally have non

zero values, the L1 norm regularization of the system parameters employed in LASSO

yields a sparse model consisting of only a subset of parameter values. In addition,

the subset of parameters so produced comes as close as subset selection schemes

do to an ideal subset selector [31]. Hence, LASSO provides an efficient means of

system selection. This algorithm has found increasing applications in areas where

the parameter vector to be estimated is expected to have a sparse structure e.g.,

compressed sensing.

In general, a LASSO based least squares regression problem with an L1 norm

penalization can be expressed as

min
x

1

2
||r−Φx||22 + λ||x||1

where r ∈ RN×1 denotes the received outputs, Φ ∈ RN×m is the matrix of regressors

and x ∈ Rm×1. The regularization parameter λ affects the trade-off between desired

fidelity and sparsity. Using the L1 norm regularization, the LASSO shrinks the un-

constrained least squares estimate and therefore, yields a subset of system parameters

while setting the irrelevant coefficients to 0. If ΦTΦ is invertible, the objective func-

tion in the above minimization is convex and finding the LASSO based solution x

amounts to solving a standard convex optimization problem. The selection of the

regularizer λ is critical. Several methods have been identified in literature to deter-

mine suitable values of λ [31].

After the particle filtering stage delivers the state estimates yi,n for i = 1, . . . , I

and n = 1, . . . , N , they are fed to a LASSO based regression operation Fig. 5. The
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LASSO identifies the system parameters bnm using the estimated states and the ob-

served data. A key rationale behind our LASSO based least squares data fitting is

that for a particular gene in question, it is related to only a few other genes and as

such, many of the constants bnm signifying the regulation relationship among various

genes are 0. LASSO allows us to identify only a subset of the system parameters

forcing the other irrelevant (or ‘weak’) interactions to zero. As a result, a more parsi-

monious and efficient description of the gene regulatory network is obtained [25]. For

the nth gene, its observations and estimated states can be stacked using (2.3) and

(2.5) as



zn1

zn2

...

znN


=



f(y0,1) . . . f(y0,N)

f(y1,1) . . .
...

...
. . .

f(yI−1,1) f(yI−1,N)





bn1

bn2

...

bnN


+



vn1

vn2

...

vnN


(3.12)

which can be compactly expressed as

zn = Φbn + vn (3.13)

LASSO operates on this overdetermined system of equations for the nth gene and

produces a parameter vector bn by solving

min
bn

1

2
||zn −Φbn||22 + λ||bn||1 (3.14)

The invertibility of the matrix ΦTΦ defined in (3.13) ensures that the objective

function is strictly convex and a globally optimal solution is guaranteed by using

standard convex optimization techniques [32]. The subset of system parameters so

obtained, highlight the relevant gene regulatory relationships among interacting genes

while setting others to zero, thus yielding a concise system description.
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D. Inference Algorithm

The operation of our algorithm to infer the gene regulatory network is graphically

depicted in Fig. 5 and the corresponding pseudocode formulation is summarized in

Algorithm 1 [25]. In essence, a particle filtering approach to estimate the states cou-

pled with an online Kalman filter based parameter estimation delivers the estimated

states to the LASSO operator. Since genes interact with only a few other genes, the

parameter vector is expected to be sparse for a particular gene. LASSO helps us in

identifying this subset by solving the constrained optimization problem (3.14).
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Algorithm 1 Gene Network Inference

1: Input time series data set z

2: Initialize I,K,Θ0

3: for k = 1, ..., K do

4: Draw yk0 ∼ p(y0|z0)

5: end for

6: for i = 1,...,I do

7: for k = 1,...,K do

8: Draw wki−1 ∼ p(wi−1)

9: Predict y∗ki ← g(yi−1,Θi−1, wi−1)

10: end for

11: for k = 1,...K do

12: Calculate normalized weight ξk using (3.7)

13: end for

14: for k = 1,...,K do

15: Update yki ∼ ξk

16: end for

17: Update Θi using Kalman filter (3.11)

18: end for

19: LASSO: Estimate parameters b from y and z using (3.14)

20: return
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CHAPTER IV

RESULTS

A. Application on Synthetic Data

In this part of the simulation, a 4-gene network is assumed. The data is generated

using the model given in (2.3). Table 1 gives the true values of the parameters bnm.

The values of the parameters contain various zeros which is also true for a real gene

network as we know that the gene network is sparse. The variance of the system

noise vn ∼ N (0, σ2
v) is taken to be 10−4. The gene interactions are estimated using

the proposed method and compared with the extended Kalman filter approach used

in [24]. K = 200 number of particles is used for particle filter simulation.

The values of estimated parameters using both the algorithms is shown in Table

I. It is observed that the proposed algorithm achieves a good estimate on the constant

parameters. The simulation is repeated for varying values of the system parameters

and number of genes and our approach gives better estimation performance than EKF.

To keep the thesis concise, the figures are not shown here. The estimated values of

synthetic time series data are compared using the Mean square error criterion for

both the algorithms and the results are shown in Fig. 8 It can be seen that particle

filter gives lower MSE than EKF for a wide range of values of measurement noise

variance.

B. Application on Real Biological Data

1. Network Modeling for Malaria Time Series Data

The proposed algorithm is now tested on real data using gene expression time series

data for plasmodium falciparum. This data set consists of 48 time points for 530
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Table I. True Parameters and Estimated Values Using EKF and PF+Lasso

Θ True Values EKF PFL

b11 3.2 2.8395 3.1471

b12 -4.13 -2.6341 -4.1460

b13 0.02 -10.2405 0.1036

b14 0.02 9.6628 -0.0304

b21 0.01 -1.5092 0.1911

b22 4 2.2126 4.0443

b23 -1.2 11.2065 -1.4836

b24 1.1 -10.4415 1.3312

b31 4.2 4.1983 4.2315

b32 0.02 -0.3805 0.0184

b33 0.01 4.0591 -0.0116

b34 -3 -7.5617 -2.9653

b41 4.05 5.3747 3.9680

b42 0.01 -0.4277 -0.0457

b43 0 2.5036 0.3070

b44 -5.5 -7.7780 -5.7107
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Fig. 8. MSE performance comparison between extended Kalman filter and particle

filter using synthetic data.
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genes [33]. For the purpose of this simulation, six genes data is considered. The

system noise is taken to be vn ∼ N (0, 10−4). By using the assumed system model,

the unknown states and parameters are estimated using the proposed algorithm and

the EKF approach [24]. The estimation of the observed values by both the algorithms

are compared using the Mean Square Error criterion. The observation noise wn ∼

N (0, σ2
w) variance ranges from 10−5 to 10−1. It is found that as the noise variance

increases, MSE for EKF starts increasing. Particle filter, however, shows very low

MSE for the entire range of observation noise variances as shown in Fig. 9 It can be

inferred that our method models the network efficiently and is robust to changes in

noise.

2. Network Modeling for Worm Time Series Data

The time series data obtained during C. Elegans embryo development is used in

this comparison [34], [35]. The data set consists of 123 time points. Eight genes

are considered for this simulation which are pal-1, tbx-8, elt-1, elt-3, nhr-25, cwn-1,

nob-1 and vab-7. The performance evaluation criterion is the same as before i.e.

Mean square error and it shown in Fig. 10,11. The variation of observation noise

wn ∼ N (0, σ2
w) is from 10−5 to 10−2. The system noise variance is kept the same as in

the previous simulation. Fig. 12,13 show the gene expression time series data and its

predicted values for observation noise variance of 10−3. It can be seen that particle

filter provides a very nice fit to the data.

The algorithm proposed in this thesis was tested on synthetic data and real

biological data. It shows promising results on all these data sets. We can thus

conclude, that particle filter can provides a viable alternative to EKF for modeling

gene regulatory networks while giving a better performance.
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Fig. 9. MSE performance comparison between extended Kalman filter and particle

filter using Malaria time series data.



27

10
−5

10
−4

10
−3

10
−2

0

0.5

1

1.5
Gene1

10
−5

10
−4

10
−3

10
−2

0

0.2

0.4

0.6

0.8
Gene2

measurement noise variance

M
S

E

 

 
Particle
Kalman

10
−5

10
−4

10
−3

10
−2

0

0.5

1

1.5
Gene3

10
−5

10
−4

10
−3

10
−2

0

0.1

0.2

0.3

0.4
Gene4

measurement noise variance

M
S

E

 

 
Particle
Kalman

Fig. 10. MSE performance comparison for gene 1-4, between extended Kalman filter

and particle filter for C. Elegans time series data.
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Fig. 11. MSE performance comparison for gene 5-8, between extended Kalman filter

and particle filter for C. Elegans time series data.
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Fig. 12. Observed and predicted gene expression for gene 1-4 of C. Elegans time series

data.
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Fig. 13. Observed and predicted gene expression for gene 5-8 of C. Elegans time series

data.
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CHAPTER V

CONCLUSIONS

“I can’t be as confident about computer science as I can about biology.

Biology easily has 500 years of exciting problems to work on. It’s at that

level”.

-Donald Knuth [27].

Precise modeling of a gene regulatory network is a critical component in understand-

ing complex gene interactions. As a clearer picture of this interactions emerges, several

potential applications can be realized. In particular, knowing which gene triggers a

specific genetical disorder can help us control it by deactivating this gene. It can also

have a tremendous impact on diagnosis and drug designs. Gene regulatory networks

are graphical models used to depict gene interactions. Quantifying the correlation

among genes is the next logical step that requires efficient network inference algo-

rithms. In order to extract useful information from large amounts of biological data,

it is important that computationally efficient algorithms are devised.

This thesis considers the modeling and learning of gene regulatory networks us-

ing a nonlinear model which is a more general characterization of gene interactions.

The gene network is modeled using a state space approach and particle filtering is

used for state estimation. The parameters regulating the interaction among genes are

supplied by an online Kalman filter. Since the parameter vector is frequently sparse,

a subset of these parameters signifying only the relevant system coefficients are iden-

tified via a LASSO based least squares regression process. Extensive performance
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evaluations demonstrate that this particle filtering based approach outperforms the

extended Kalman filtering in terms of MSE Criterion. The results are proved using

synthetic data as well as Microarray data for Malaria and C. Elegans gene expression

time series. Our algorithm can, therefore, serve as a natural framework for modeling

gene regulatory networks.

A. Future Work

Several avenues for further research can be identified.

• In future, we intend to use our algorithm to infer gene regulatory interactions

with the true experimental results reported in literature for both the malaria

and worm data.

• More sophisticated pruning techniques should be considered to infer gene con-

nections.

• It can also be interesting to study other nonlinear modeling techniques. In

addition, different nonlinear modeling functions can be investigated besides the

sigmoid squash function e.g., polynomial functions.
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