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ABSTRACT 

Determination of the Controls on Permeability and Transport in Shale  

by Use of Percolation Models. (August 2012) 

Ian Bernard Chapman, B.S., University of Virginia 

Chair of Advisory Committee: Dr. Michael King 

 

A proper understanding of reservoir connectivity is essential to understanding the relationship 

between the porosity and the permeability within it. Additionally, the construction of an accurate 

reservoir model cannot be accomplished without this information. While a great deal is known 

about the connectivity in conventional sandstone systems, little is understood about the 

connectivity and its resultant properties within shale systems.  Percolation theory is a method to 

describe the global properties of the shale system by understanding the nanometer scale 

interaction of pore space.   

 

In this study we use both analytical and empirical techniques to further understand shale pore 

scale interactions as well as global phenomena of the shale system. Construction of pore scale 

connectivity simulations on lattice and in the continuum allow for understanding relationships 

between pore topology, system porosity and system permeability. Additionally, questions 

regarding the role of Total Organic Carbon as well as natural fractures in contributing to shale 

permeability will be discussed. Analytical techniques are used to validate simulation results 

regarding the onset of percolation and related pore topology. Finally, time of flight simulation is 

used to further understand pressure transient behavior in the resulting topological models. 

 

High aspect ratio pores are shown to be the driver of shale permeability as opposed to the low 

aspect ratio pore space associated with organic matrix. Additionally, systems below the 

percolation threshold are likely able to produce because the wellbore will often encounter near 

infinite clusters. Finally, a characteristic volume growth profile is shown for a multi-porosity 

system whereby each level of porosity displays a corresponding stair step of volume growth in 

time.  
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NOMENCLATURE 

 

SEM       Scanning Electron Microscopy 

TEM       Transmission Electron Microscopy 

MICP      Mercury Injection Capillary Pressure 

NMR       Nuclear Magnetic Resonance 

TOF        Time of Flight 
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CHAPTER I 

INTRODUCTION 

 

The factors controlling permeability in shale gas formations are not currently well understood. 

While in general a porosity-permeability predictor can be built for most lithologies, shale 

systems present novel problems concerning local connectivity that in turn affect large scale 

permeability.  The industry currently does not have a firm understanding of how well a shale 

system’s pore space is interconnected nor does it have an understanding of which geologic 

factors and to what extent these factors affect that connectivity. A better understanding of pore 

scale connectivity can assist in solving problems ranging from estimated ultimate recoverable 

hydrocarbons to stimulated reservoir volume. 

Several tools are used to determine global properties of the shale system. Excluded volume is the 

first and is related directly to the topology of individual pore space (Balberg et al. 1984). The 

idea of excluded volume allows us to determine pore shape based solely on large scale 

permeability. The converse is also true whereby a determination of permeability can be made 

based solely on the knowledge of individual pore shapes. 

In addition to analytical methods, we employ percolation theory coupled with steady state 

pressure solving techniques to determine system permeability and its relation to pore geometry.  

By merging knowledge of inorganic matrix pore topology as well as organic matrix topology we 

are able to construct a method of permeability estimation as a function of pore shape, total 

system porosity and total organic carbon. 

 

 

 

___________ 
This thesis follows the style of the SPE Reservoir Evaluation and Engineering. 
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CHAPTER II 

THEORY 

GEOLOGIC FACTORS 

In the last several years a great number of attempts have been made to properly characterize both 

the pore network connectivity and fluid flow characteristics of shale systems (Passey et al. 

2010). One of the earliest and most common techniques was to look at optical images of shale 

thin sections. Quickly it was discovered that this method did not provide the proper resolution to 

understand the internal structure of a shale system because the optical wavelength was often 

greater than the pore sizes of the systems under examination. As a result, researchers moved to 

higher resolution procedures including the use of Scanning Electron Microscopy (SEM) as 

shown in Figure 2.1 and Transmission Electron Microscopy (TEM) as shown in Figure 2.2. With 

resolutions on the order of 1 nm, these techniques were able to determine internal shale 

structures not previously visible. As a result of this process several revelations on the pore 

structure and connectivity of shale systems were indicated. For instance, isolated pore space 

visible through SEM appeared to show some connectivity when viewed using TEM (Curtis et al. 

2012).  

 

 

Fig. 2.1 – SEM Image of Kerogen Pores from a Barnett Shale Sample, (Curtis et al. 2012) 
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However, with only qualitative studies being conducted, they could not say definitively whether 

their sample exhibited large scale connectivity. Additionally, petrophysical techniques were 

explored to characterize shale pore size distributions (Curtis et al. 2011). Both Mercury Injection 

Capillary Pressure (MICP) and Nuclear Magnetic Resonance (NMR) imaging were used; the 

former to explore pore throat size and the latter pore body radius. Once again, while the 

techniques accurately characterized pore throats and volumes, no mention is made of large scale 

connectivity. In other words, these techniques do not allow for the quantification of stranded 

pore volumes.  

Additionally, Curtis et al. mentions the prevalence of kerogen throughout the samples. Once 

again, while a quantitative description of kerogen pore size and overall porosity are given, no 

attempt is made to relate TOC to kerogen density in the system or to understand how the kerogen 

pore space is connected to the larger shale porosity  

 

Fig. 2.2 – TEM Image of Barnett Shale Kerogen (Curtis and Ambrose, 2011) 

Tests were performed to more accurately describe the shale system using high pressure mercury 

porosimetry analysis as well as SEM and X-Ray Diffraction. Using MICP indicates a median 

pore throat diameter of 30 nm with the majority of throats falling in the range of 10-60 nm for a 

Utica Shale sample (Elgmati et al. 2011). This can be contrasted to a later Haynesville sample 

showing pore throat diameters of approximately 4-20 nm. Previous studies have shown that 

MICP slightly underestimates throat sizes and comparison to SEM data is suggested to validate 

results (Elgmati et al. 2011).  
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Fig. 2.3- Equivalent Pore Diameter Histogram for Utica Shale Sample, (Elgmati et al. 2011) 

We can see in Figure 2.3 above a histogram showing that the largest component of pore 

diameters occurs slightly below the 0.02 micrometers. Additionally, there appears to be some 

mesoscopic pore space in the 15-20 micrometer range which may represent natural fracturing or 

vuggy porosity.  

From the pore size distribution, the authors attempt to construct a permeability profile from 

porosity and pore diameter data using Kozeny’s model of fluid flow through cylindrical channels 

by combining Darcy’s law and Poisueille flow where;  

                           

The equation above relates k, the permeability of the system to φ, the porosity to , the average 

pore diameter and τ, the tortuosity coefficient. Using this formula the previously described Utica 

shale sample has a permeability of roughly  md or 4.15 µd.  
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A similar Utica shale sample was also tested using SEM. “Intergranular pore sizes [of the Utica 

Shale sample] ranged from 15 to 50 nm” (Elgmati et al. 2011). Additionally, some intragranular 

pore space was recognized with pore throats diameters in the range of 5 nm. Combination of 

SEM and Energy Dispersive Spectroscopy (EDS) element mapping shows several vuggy pores 

2-8 micrometers in diameter with the potential ability to store free gas.  Additionally, kerogen is 

shown to have pore diameters of 5-100 nm and conductive natural fractures with throat openings 

of 25-50 nm.  

Serial sectioning of the Utica Shale sample was used to build a 3D model.  As can be seen in 

Figure 2.4 below, the most common pore size diameter occurred in the 0.03 micrometer size 

range with equivalent kerogen, permeability, and porosity calculations as shown below. 

 

 

Fig. 2.4- Equivalent Pore Diameter for Fayetteville Shale Sample, (Elgmati et al. 2011) 

The internal structure of the shale system contains four types of productive porous media in the 

gas-shale system: inorganic matrix, organic matrix, natural fractures, and hydraulic fractures 

(Wang and Reed 2009). Organic matrix in the system is the dominant factor in the storage of 

both free and adsorbed gas as well as the main transport mechanism for gas in the shale system. 

Because the organic matrix tends to be oil wet, it allows for single phase fluid flow and low 



6 
 

permeability to water. Despite the relatively small size of organic pores in shale (often as low as 

5 nm in diameter), the organic matrix may have porosities as high as 25% which could allow for 

large scale hydrocarbon transport for a given shale system.  

Figure 2.5 below demonstrates that a linear relationship can be derived between TOC and gas 

content of the shale. This is further broken down into percentages of gas stored as free gas in the 

inorganic matrix, free gas in the organic matrix and adsorbed gas in the organic matrix.  

 

 

Fig. 2.5 – Adsorbed and Total Gas Content with Respect to TOC in Barnett Shale, (Wang and 

Reed 2009) 

While free gas in the inorganic matrix remains relatively stable despite TOC weight percentages 

in the shale system, the amount of gas stored in the organic matrix increases dramatically with 

increases in TOC weight percentages. Despite understanding this relationship, organic matrix 

connectivity within the larger shale system is still poorly characterized. As a result, even though 

weight percentages of organic matrix within a system are well known, how well it is dispersed 

through the system is not. This makes large scale permeability difficult to determine.  

In the assessment of several shale samples, it is noted that many factors affect permeability 

including shale type, porosity, confining pressure and pore pressure (Wang and Reed 2009). 

While these factors appear to play a dominant role when systematically testing core sample 
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permeability, it is unclear by how much each factor is affecting the system. Two important notes 

come from this permeability study. The first is mention that the carbon rich shale systems may 

have in-situ permeability orders of magnitude greater than their organic lean counterparts. 

Additionally, the fact that pore networks in organic matter are most likely connected through 

micro-fractures is first noted (Wang and Reed 2009). Unfortunately, very little evidence is given 

to support this hypothesis. The authors believe that a bulk permeability including the effects of 

both micro-fractures and organic matrix is sufficient in the simulation of shale systems. It is our 

intent to expand on this to accurately describe the geology of the shale system. 

Perhaps the most important conclusion comes from the shale reservoir description. The authors 

describe a hierarchy of system porosity which in turn, leads to a hierarchy of permeability.  High 

permeability in gas shale can most likely form when nano-pores in the organic matter connected 

by natural micro- and macro-fractures are accessed by hydraulic fractures (Wang and Reed 

2009). Additionally, the poorly connected organic matter and diffusion of free gas from 

inorganic matrix allow for long lasting, relatively low production rates. 

As discussed previously, there are several different types of pore structures within a shale 

system. In general these structures can be divided into inorganic matrix, organic matrix and 

natural micro fractures. Inorganic matrix makes up the bulk of rock volume but most likely plays 

the least important role in shale system connectivity. Because shale grain sizes are generally less 

than 1/256 mm, inorganic matrix pore space is extremely limited. As a result it appears to be too 

compact for any large scale connectivity of inorganic pore space (Loucks et al. 2009).  

The second and perhaps most interesting pore structure to the shale system is the organic matrix. 

The organic matrix has been given a great deal of scrutiny as of late because of its large 

volumetric portion in shale samples (Passey et al. 2010). When shale first forms a certain amount 

of organic matter is deposited along with the inorganic particulate, during diagenesis within the 

shale, this organic matter turns to kerogen. It is the kerogen that is referred to when discussing 

organic matrix within the rock. This matrix can potentially make up a large portion of not just 

the total rock porosity, but also the total volume of the rock in general. 5% by weight total 

organic carbon shale, 10% of the shale volume is occupied by organic matter due to organic 

matter  density of approximately ½ that of the inorganic matrix (Passey et al. 2010). 

Additionally, as much as 50% of the space occupied by the organic matter is open pore space. 

This means that approximately 20% of the total rock volume could be organic matrix.  Through 
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SEM and TEM the pore sizes of this organic matrix have been shown to range from 5 to 1000 

nm (Passey et al. 2010). In addition to this very fine pore space, the organic matrix is likely to 

have different properties of wettability as well as gas storability. The large internal surface area 

of the organic matrix allows for a large amount of adsorbed gas as well as a large amount of 

stored free gas in the internal volume.  

The key dynamics to the development of carbon rich mudstone (shale) are that while shale 

appears rather homogenous it actually has a great deal of complexity in particle size and mineral 

type (Passey et al. 2010). Additionally, within a given shale system, there may be a great deal of 

vertical variability in Total Organic Carbon. This is due to the environment during which the 

shale was deposited. Having taken many thousands to millions of years to deposit, the separate 

layers often have many different characteristics. Maximum organic-carbon content occurs in the 

basal transgressive systems tract and decreases stepwise to background levels at the maximum-

flooding downlap surface (Passey et al. 2010). In other words, large amounts of organic matter 

tend to accumulate at the transition zones of continental basins where neither open ocean 

currents nor land based water outflows would prevent their buildup.  

Locating formations of interest requires not only knowledge of depositional environment, but 

also shale system kerogen types and maturity level. Due to their increased TOC, current targets 

for shale gas reservoir exploration are over mature oil-prone source rocks (Passey et al. 2010). 

Total organic carbon of the system is critical in the determination of suitability. Not only is TOC 

a good predictor of total porosity, it also is a good measure of gas saturation in the system.  In 

addition to shale TOC, mineralogy plays an important role in shale system production.  Shale 

systems vary widely in their mineral composition ranging from extremely quartz-rich in some 

parts of the Barnett, to largely carbonate in the Eagleford. The shale gas plays that contain 

greater than 50 wt.% quartz or carbonate tend to have a more brittle character that responds well 

to current well stimulation practices (Passey et al. 2010). 

Kerogen (organic matrix) in the shale system is important and as much as 50% of the volume of 

in-situ kerogen could be pore space and presents a good location for free gas as well as adsorbed 

gas to reside in the system (Passey et al. 2010). He also speculates that water and hydrocarbons 

are stored and move by two entirely separate mechanisms. Because the kerogen surfaces are 

likely oil-wet they can contain adsorbed gas; however, because of this, water appears to be 
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stored within clay minerals in the system. With two separate storage mechanisms, water and gas 

flows appear to be independent of one another.     

Finally, natural micro fractures make up the remainder of the pore volume. Several different 

ideas describe the role of micro fractures in shale in terms of both storability and hydrocarbon 

transmission. Some literature suggests micro fractures are a necessary condition to shale gas 

production and that without them, large scale connectivity would be impossible in the reservoir 

(Wang and Reed 2009). However, Passey contends instead that very few natural fractures exist, 

which has been shown in several SEM and TEM studies of thin section shale samples. This leads 

to two possible conclusions. The first is that any micro fractures in the shale system are induced; 

namely they are man-made. In this case, micro fractures cannot play a role in the storability of 

free gas in the system because they did not exist before the drilling process. On the other hand 

natural fractures could still be a necessary condition for large scale connectivity as they would 

act as conduits for fluid flow after the drilling process (Loucks 2012).   

The case for a lack of in-situ natural micro-fractures is further bolstered by two important pieces 

of reservoir evidence. The first is a question of fluids migration. If indeed diagenesis did fracture 

the shale and create conduits for fluid flow, why do these shale systems still contain a great deal 

of hydrocarbons? With proper flow channels, it would be expected that the fluids would have 

moved to a conventional reservoir of greater porosity. Additionally, it is difficult to account for 

the over pressurized state of many shale reservoirs. Once again, with proper channels for fluid 

flow, it should be expected that pressure would deplete over time to be in equilibrium with the 

surrounding rock system. This has not been the state of shale systems to this point. It appears 

then that large scale connectivity cannot exist in situ in the shale system in light of this evidence. 

The question then becomes what is the scale of connectivity with a shale system? 

PERCOLATION 

While several methods are used to determine connectivity in complex systems, percolation 

theory has proven very effective at describing their global characteristics (Stauffer and Aharony 

1994). The term “global characteristics” refers to the fact that every interaction of a system is not 

needed to understand the actions of the system as a whole. This theory, while common in the 

field of physics and materials science, has not frequently been applied to work in the hydrology 

or petroleum industries. What work has been done does not attempt to combine knowledge of 
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reservoir lithologies with that of percolation theory, but instead it is often a study of the nature of 

a particular, idealized system. Percolation theory at its basis is a system that describes the 

number and properties of nearest neighbor sites on a lattice (Stauffer and Aharony 1994). 

Individual lattice sites can then be either “on” or “off” with some associated probability for each. 

Percolation deals with the properties of nearest neighbor sites that are turned “on.” The 

fundamental question answered by percolation is whether or not a system can communicate 

across its area or volume. Namely, imagine a glass cylinder filled with both insulating and 

conducting balls. Percolation theory answers the question what percentage of those balls need to 

be conductors so that an electric current flows from one side of the cylinder to the other. This 

example can be applied to any type of flowing systems where a portion of the space allows flow 

and another portion is closed off to flow.  

More generally the percolation system does not require a lattice structure but instead can be 

randomly placed “porous” objects in a medium in what is termed continuum percolation. These 

systems tend to more closely mimic real physical systems as real systems rarely align themselves 

in perfect square or triangular grids (Ewing and Horton 2007).  

A great deal of characterization of the percolating system deals with the area right around the 

first time at which a system percolates, or communicates across opposing faces. This is a critical 

property of the system and is referred to as the percolation threshold,  and it refers to the 

percentage of “on” sites in the system that is required to allow system percolation. If a lower 

percentage of sites are “on” then the system will not percolate. If a higher percentage are “on” 

then the system will continue to percolate with a larger share of lattice sites being intersected by 

the main, percolating cluster.  

Additionally, questions regarding the average size of clusters below the percolation threshold 

can be answered. Knowing the geometry of a system and the average number of “on” sites is 

enough information to determine the average cluster size. 

The first key concept in percolation theory is that macroscopic flow (electric current, volumetric 

water flow, hydraulic conductivity) is governed by a power law relationship of the form 
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where  is the macroscopic flow rate,  the number of “on” segments in the system,  the 

number of “on” segments at the onset of percolation, and k the characteristic exponent of the 

system (Berkowitz and Balberg 1993). Additionally, they introduce the concept of universality 

whereby the solution for a simple problem allows for the solution of a more complex one. One of 

percolation theory’s greatest advantages is that the characteristic exponent is the same for many 

different systems. 

Several papers describe methods to apply the tenets of this model to hydraulic systems. For 

instance, a system was designed in both 2 and 3 dimensions to examine the relationship between 

local and global hydraulic conductivity (Berkowitz and Balberg 1992).  Their system employed 

the continuum model by randomly placing conducting spheres (or circles in 2 dimensions) in an 

insulating volume. If any two spheres were found to overlap, the transmissibility between 

spheres was a function of the degree of that overlap. An overall hydraulic conductivity for the 

system could then be determined as a function of the number of spheres placed in the system. 

The results of these simulations could then be compared to theoretical predictions for continuum 

percolation. 

The model described above employs a simplified porous media by using spheres of the same 

radius throughout the system. Additionally, there is no probability distribution associated with 

the placement of spheres as they are positioned randomly throughout the volume. Overlapping 

spheres are deemed to be communicating in the percolation system. Local conductivity is 

determined by the degree of overlap of the system, where the radius of the intersecting volume is 

the restriction on flow rate. Here, Hagan-Poiseuille flow is used to describe flow between 

adjoining spheres as pipe flow with the radius of the intersecting sphere region and length as the 

distance between two adjacent sphere centers (Berkowitz and Balberg 1992).  

Spheres are then added to the system one by one and a check of percolation is conducted. 

Once , the number of spheres in the system, reaches the percolation threshold a calculation of 

global hydraulic conductivity is made. This utilized Kirchhoff’s law as the sum of the fluxes 

across each sphere must equal zero (Berkowitz and Balberg 1992).  

The system required several assumptions which may cause deviation from real systems. The first 

is in regards to multiple overlapping spheres. Multiple overlaps are simply treated as separate 
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overlapping systems for ease of computation. Additionally, the cylindrical necks connecting 

individual spheres are treated as separate interacting components (Berkowitz and Balberg 1992). 

Several conclusions are made from this study. The first is that the hydraulic conductivity of the 

system, K, follows a power-law dependence defined by 

           

where  is that total number of spheres (or circles) in the domain,  is their concentration at 

the percolation threshold, and  is an exponent which depends on the dimensionality and the 

case (Berkowitz and Balberg 1992). From this, the critical exponent for hydraulic conductivity 

was experimentally determined. While the universal constant was determined for the 2 

dimensional case as 1.2, the 3 dimensional case lacked a universal constant. The critical 

exponent was a function of how the spherical spaces interacted with each other.   

There are two important characteristics to an experiment of this type. The first is that it is widely 

applicable to many types of porous media. Hence, by understanding the topology of a porous 

media, one can determine the critical exponent and properly characterize hydraulic transport 

properties. Unfortunately, because the critical exponent only provides proportionality between 

these features, it is difficult to determine hydraulic conductivity with greater precision than a 

single order of magnitude. The approximation may be too course for practical use (Berkowitz 

and Balberg 1992). 
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CHAPTER III 

INITIAL APPROACH 

MODEL THEORY 

We begin by mimicking the approach of Berkowitz and Balberg (1992) by modeling the 

interaction of conducting spheres in space through a connection spherical pipe. Our model has 

several key distinctions from their model. First, for proof of concept of the model, we examine 

spherical units in 2 dimensions (i.e. an X by Y by 1 construction)  as shown in Figure 3.1 below. 

Second, we align our spheres on a regular, square lattice in which distance between lattice sites 

can be prescribed. Third, we determine the exact degree of overlap between any two intersecting 

spheres. Finally, we attempt to measure permeability as a function of porosity as opposed to 

hydraulic conductivity in the case of Berkowitz and Balberg (1992). 

 

 

Fig. 3.1 – Model Example Showing Uniform, Overlapping Spheres 
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Fig. 3.2 - Pipe Flow Geometry Between Two Overlapping Spheres 

The cross sectional area of the pipe is easily determined and given by: 

 

 

 

 

(Wolfram, 2012) 

We look again at the 2D set of overlapping spheres and recognize that each set of overlapping 

spheres has the individual pore geometry show above in Figure 3.2. By using the basic Poiseuille 

equation governing pressure drop through a cylindrical pipe, we are able to construct a flow 

pattern through the system as shown in Figure 3.3 below. 
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Fig. 3.3 - Path Connecting Pipes from Sphere to Sphere in the Larger Scale Model 

If we assume a steady state condition for the system with constant pressure left hand and right 

hand boundaries as well as no flow boundaries on the top and bottom, we are able to determine 

both pressure and flow rate profiles for the system. Additionally, we are able to determine the 

porosity of the system. 

2D LATTICE SIMULATIONS 

Because system characteristics are intuitively understood, we begin with the simplest case where 

uniform sphere radii are used throughout the system. Radii are then increased incrementally from 

0 to d/2 in order to show the variation of permeability with porosity. The system moves through 

the percolation threshold at exactly  when adjacent spheres first touch. Above the 

percolation threshold we see the characteristic power law relationship  as 

shown below in Figure 3.4. 
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Fig. 3.4 – Uniform Radii semi-log Porosity-Permeability Profile  

Additionally, we are able to characterize the system by determining the constants a and b in the 

power law equation, . As shown below in Figure 3.5, regression analysis 

shows an exponent value of 2.3975 and a proportionality constant of 0.2564. This is consistent 

with the work of Berkowitz and Balberg who obtained exponent values of . 
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Fig. 3.5 – Uniform Radii log-log Percolation Threshold-Permeability Profile  

We move next to the bimodal radii distribution case in which individual pore space at each node 

exists and has radius 1 or does not exist (has radius 0) with a range of probabilities from 0.4 to 

1.0. We immediately see that this situation is tantamount to a regular 2 dimensional, square 

lattice percolation problem where adjacent “on” lattice points are able to communicate with one 

another.  Once again we can see the characteristic power law behavior as shown below in Figure 

3.6. 
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Fig. 3.6 – Bimodal Radii semi-log Porosity-Permeability Profile  

 

The points in this data set are noisier than the previous problem because of an increased finite 

size effect. Because we are in the finite size realm it is possible to be above the percolation 

threshold even though the data suggests we are below the infinite lattice percolation threshold. 

The previous problem did not have the same finite effects because every lattice point was 

essentially on, with only a question of degree. In addition to porosity we also compare 

permeability to (P-Pc) as before to discover the characteristic constants as shown below in 

Figure 3.7.  
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Fig. 3.7 – Bimodal Radii log-log Percolation Threshold-Permeability Profile  

 

Once again we use  to determine the shape of the equation and find 

 and . This result agrees nicely with those of Berkowitz and Balberg (1992) 

which give a characteristic exponent of . In this case, we also know the percolation 

threshold in the infinite lattice (as a percentage of occupied sites) to be Pc=0.5927 from the 

literature (Stauffer and Aharony, 1994) which equates to a percolation porosity of Pc=0.5485. 

This agrees roughly with the determined percolation porosity seen above of 0.45-0.50. Once 

again, finite size effects of the lattice can account for the small degree in variation. 

We next attempt to mimic the true pore size distribution as observed by Elgmati et al. (2011). 

We are able to overlay a Rayleigh distribution to the sample pore size information from this 

distribution. In  Figure 3.8 below we see a shifted Rayleigh distribution with standard deviation 

of 0.009 µm.  
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Fig. 3.8 – Rayleigh Distribution Overlain on a Pore Size Histogram (Elgmati et al. 2011)  

 

225 data points are randomly sampled from this distribution and used to populate the model. 

Distance between cell centers plays a large role in the permeability of these systems (i.e. larger 

distances between cells results in lower numbers of inter cell connections and lower porosities). 

As a result, we start with the mean cell radius from the distribution above as the distance 

between cells and move to a distance of twice the mean. The Rayleigh distribution mean is 

calculated as  (Weisstein 2012). Because our system is shifted, this mean is increased 

by 0.016 µm to achieve better data fit. The graphs below (Fig. 3.9 and Fig. 3.10) show 

permeability as a function of both porosity and distance between cells. Once again we see the 

characteristic power law shape for permeability as a function of porosity. 
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Fig. 3.9 – Rayleigh Distributed Radii Cell Distance – Permeability Profile 

 

Fig. 3.10 – Rayleigh Distributed Radii Porosity– Permeability Profile 
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 DISCUSSION OF RESULTS 

We see from the results graphs above that permeability is indeed a function of porosity. 

However, because porosity is in a turn a function of the distance between cell centers, we are not 

able to solely rely on the pore size distribution as a determinant for system permeability. We also 

must know system porosity. In other words, in the case of the pore size distribution given above, 

we must also know the system porosity in order to determine whether or not the system has large 

scale percolation and subsequent permeability. Permeability drops sharply around 50% porosity 

implying a percolation threshold at approximately that point. In contrast to this, we note that in 

situ shale porosities in similar systems are on the order of 4%-8%. We see then that while pore 

size distribution in the model mimics that of the shale system, pore density does not. In order to 

fulfill both of these conditions, we fix the both the pore size distribution as well as pore density 

in order to determine permeability. For instance, increasing the distance between cell centers 

from 5.5 (as above) to 11 to accurately reflect the porosity of 7% leads to a permeability of 0 and 

recognition that we are below the percolation threshold.  

This condition leads to several conclusions. First, because we know the shale system in question 

has large scale permeability and hence was above the percolation threshold, we know there must 

be inaccuracies in our model formulation. The first may occur as a result of the two dimensional 

nature of the model. The percolation threshold of a system is inversely related to its degrees of 

freedom. Hence, in a system such as described above, we are not accurately capturing the 

degrees of freedom in the system. Second, we may not be describing the pore geometry 

accurately. Higher aspect ratio and less uniform pore geometries tend to result in better 

connectivity. As the pore diameters used in our experiments were only equivalent pore diameters 

derived from non-uniform shapes, variation of pore shape may lead to more accurate results. The 

following sections describe solution to these problems. 
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CHAPTER IV 

EXCLUDED VOLUME 

THEORY 

We look to the analytical technique of excluded volume to address some of the questions of pore 

geometry. Excluded volume is defined as “the volume around an object into which the center of 

another similar object is not allowed to enter if overlapping of the two objects is to be avoided” 

(Balberg et al. 1984). The simplest example is that of a sphere because we can neglect any 

orientation effects. Analytical techniques can be used to determine an object’s excluded volume; 

however, these techniques require drawing the volume then averaging over angular distributions 

through which the object is rotated. Figure 4.1 below shows a sphere’s excluded volume and the 

integration required to determine its average excluded volume based on orientation.  

 

Fig. 4.1 – Excluded Volume Determination of a Sphere 

The original sphere whose excluded volume we are attempting to quantify is centered inside the 

larger green sphere. In order to circumscribe the excluded volume, we move a sphere congruent 
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to the original, inner sphere around the surface of the original, inner sphere while tracing its 

center point. The path drawn by this method will trace the excluded volume of the original, inner 

sphere and is shown by the larger, green sphere. The excluded volume given for this example is:  

 

where  is the excluded volume and  is the radius of the original, inner sphere. Integrating 

over the probability distribution for all orientations of the sphere  yields  

. 

Integrating over probability distribution, . This leaves . 

Hence, spherical pores have a  ratio of  

. 

In order to obviate the cumbersome, manual process of drawing an excluded volume and 

integrating of angular probability distributions, it is far more common to use an analytical 

approach for convex objects or to use a Monte Carlo method in the case of non-convex objects 

(Saar and Manga 2002).  

Saar and Manga (2002) present an equation for the determination of average excluded volume 

(average over all angular distributions) as 

 

where   is the average excluded volume, is the volume, is the area, and R is the 

mean radius of curvature for objects a and b (Saar and Manga 2002).  For example, in the case of 

average excluded volume of a sphere normalized by the volume of the original sphere we have  

 

where all variables are as before. 
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In the case where convex objects are not under investigation or arbitrarily high precision is 

needed, Monte Carlo methods are used. This method places the two identical objects in a box 

with an arbitrary orientation and determines whether or not they intersect. The ratio of 

intersections to non-intersection times the area of the box will give the excluded volume (Saar 

and Manga 2002). Because our investigation is working under the assumption of convex object 

interactions (both spheres and ellipses) whose excluded volume is already well defined in the 

literature, we refer to previous works when determining their characteristics. 

RELATION TO PERCOLATION POROSITY 

The geometric idea of excluded volume is combined with the work of Balberg (1985) to 

determine percolation porosity. Balberg (1985) lays out a simple argument for determining 

percolation porosity as a function of the ratio of volume to excluded volume. He begins with a 

unit volume of insulating space as shown below in Figure 4.2. He then adds a conducting 

volume, v, to the space as shown below.  

 

Fig. 4.2 – Basis for the Percolation Porosity by Excluded Volume Argument (Balberg 1986) 

A random point in this space then has probability (1-v) of being in the impenetrable volume and 

v of being in the conducting space assuming the insulating space is of unit volume. At the 

percolation threshold we know that  total conducting volumes are in place and hence the 

probability of a random point not intersecting any of the conducting spheres is . This 

probability is also related to the percolation porosity of the system by  
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 We then substitute the identity  in to the equation, which yields  

. 

 In the infinite limit where  and , the equation is of the form  

 

 where , which is constant for a particular system. C is determined experimentally, 

but has been shown to be of order 1. For instance, in the case of spherical pores c=2.8 and 

v/vex=8 as shown above yields a percolation porosity, . 

We see from the above equations that the  ratio largely determines the percolation porosity 

of the system. In fact, the Taylor series approximation of  

 ≈  ≈ (Wesstein 2012). 

As a result, the percolation porosity can be an arbitrary value for any  ratio . For example, 

shapes with large excluded volumes relative to their original volume begin to have vanishingly 

small percolation porosities. This situation occurs with shapes of large aspect ratios. For 

instance, elongated channels have a volume  and excluded volume 

. With , we see that the percolation porosity can be made arbitrarily small based on 

the aspect ratio  , of the elongated channels.  The graph below (Fig. 4.3) shows that percolation 

porosity approaches zero for smaller and smaller aspect ratios of v/vex.  The envelope 

represented by the region in blue represents the various likely c values for different shapes and 

realizations and ranges from c=1 to c=3. 
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Fig. 4.3-Percolation Porosity as a Function of v/vex Ratio 

For example, we see that if a shape under inspection had a  ratio of then the percolation 

porosity would range between 0.035 and 0.100 depending on the constant c which is a function 

of the system in question. Additionally, in the event that objects in the system are not the same 

size, we look at their average properties to determine the percolation porosity. Hence, for the 

spherical system examined earlier,  and , where 

<> denotes average radius length. In the case of the Rayleigh distribution observed in earlier 

shale sample (Initial Approach, Simulation Results), we know the average radius length is 

 , and hence see that the  is invariant with radial distribution. Additionally, 

Balberg et al. (1984) showed c to be constant under various pore size distributions. This shows 

that regardless of pore size distribution, percolation porosity is invariant in the spherical pore 

case.  

Additionally, because the porosity of shale reservoirs is frequently between 4%-8%, we know 

that the spherical pore description must be inaccurate. As was determined earlier, large scale 

permeability does not occur until 29% porosity regardless of pore size distribution. Therefore, 
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we must look to higher aspect ratio pore geometries with percolation porosity in the 5% region in 

order to explain large scale connectivity in the shale system.    

Work on percolation of soft core prisms indicates percolation porosity is related to shape 

anisotropy (Saar and Manga 2002). We can see in the graph below (Fig. 4.4) that as the aspect 

ratio (semi minor/semi major axes)1 of the ellipsoids increases in either direction, the percolation 

porosity decreases. The peak percolation porosity reaches a maximum for sphere at 29% as 

shown at the top of the graph.  

 

 

Fig. 4.4- Percolation Porosity as a Function of Pore Shape Aspect Ratio (Saar and Manga 2002) 

Using the formula for normalized excluded volume given by Saar and Manga (2002), we can 

determine the percolation porosity for an ellipsoid of any aspect ratio.  

 
                                                           
1
 Because an ellipsoid is 3 dimensional, 2 axes do not determine its extent. In the case of oblate 

ellipsoids, two of the axes are of the larger dimension and 1 is smaller. In the case of prolate ellipsoids, 
two of the axes are the smaller dimension and 1 is larger. The aspect ratio simply refers to large axis over 
small axis. See Figure 4.4 for visual representation.  
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Where  

With a, the long and b, the short axis respectively 

From previous derivations, , substituting in for  as given above and 

assuming a c value between 1 and 3, we can make an estimation of percolation porosity. For 

instance, for an oblate ellipsoid where the major axis is 10 times the length of the minor axis, 

using the formula above we find the normalized excluded volume equals 26.38. Substituting this 

into our formula for  we have yields  or 7.3% porosity. 

Additionally, Saar and Manga note the linear relationship between  and shape anisotropy at 

extreme ( ) levels of anisotropy 

 

where ξ is the shape anisotropy (larger side divided by the smaller side). This allows for the 

determination of  based solely on shape anisotropy. Hence, if a shale core sample has large 

scale connectivity and is only 1% porous, then the shale pore shape must have on average at least  

 

 

times greater length of the semi major than the semi minor axis. Remember that the linear 

relationship holds true only in the case of extreme shape anisotropy and hence cannot be applied 

at levels lower than ≈50. 
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CONCLUSIONS 

We finish the section on excluded volume by once again relating it to our knowledge of shale 

geology and discussing conclusions that can be drawn from those facts. First, we saw for a shale 

system with uniform pores that have an aspect ratio of 10 we can achieve large scale 

connectivity at only 7.3% porosity, which is within the porosity range of shale systems. 

Qualitative investigation of shale SEM and TEM images suggests that in general, pore shapes 

have an aspect ratio less than 10 for inorganic matrix, and certainly less than 10 in organic 

matrix, which generally has spherical pores. How then is large scale connectivity achieved in 

these systems? The ideas of excluded volume tell us that the onset of percolation is controlled by 

the highest aspect ratio objects in the system. Hence if a percolating system whose constituent 

objects have aspect ratios of 1000 is superimposed on a non-percolating system with aspect ratio 

10, the result is a percolating system with a much larger connected volume.    

Imagine percolating system 1 has constituent pore aspect ratios of 1000 and hence a percolation 

porosity of 0.6/1000=0.06%. Additionally, non-percolating system 2 has constituent pore aspect 

ratios of 10 and hence a percolation porosity of 7.3%. These two systems are then superimposed. 

The resulting system will continue to percolate as large scale connectivity is controlled by the 

high aspect ratio pores. However, the resulting system will be roughly 7.36% porous and have 

much higher levels of reachable pore space on the order of 5%. While we leave an analytical 

determination of connected pore space in dual porosity systems to later work, we note the 

analogy of this system to fracture networks in shale systems. It is the fracture network (high 

aspect ratio pores) that determine permeability while the high volume pores (low aspect ratio) 

determines fluids in place.  

While these tools are critical for describing features of the shale system including percolation 

porosity, they still are not able to analytically determine permeability at and directly above the 

percolation threshold. For that we must move to continuum percolation simulations. 
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CHAPTER V 

CONTINUUM MODEL 

MODEL THEORY 

We begin the development of the continuum model in 3 dimensions in much the same way the 

lattice model was constructed. First, we have an impermeable medium into which permeable 

spheres are placed. We then ask the question if any spheres intersect the left boundary of the 

system. If a sphere does intersect the left boundary, we determine if that sphere then intersects 

any other spheres. The system is then built out by connecting additional spheres that were in 

contact with the original. Finally we determine if any of the spheres in this set intersect the right 

boundary. If so, we are able to determine the percolation set (the set of spheres that constitute the 

percolation cluster).  The image below (Fig. 5.1) shows a percolation cluster in blue and 

unconnected pore space in red. In this example, 50 spheres were randomly added to a 10X10X10 

box all with equal radii of 1.3. The cluster must span the x direction from -5 to 5 to allow for the 

onset of percolation.  



32 
 

 

Fig. 5.1 – A 50 Sphere System with the Percolation Cluster Shown in Blue 

 

Additionally, we can determine the porosity of the system with Monte Carlo methods. A point is 

randomly placed in the system and then it is determined if this point intersects any of the 

permeable spheres. The test is repeated  times where the number of intersects divided by the 

number of total randomly placed points is equal to the system porosity. The example shown 

above has a porosity of approximately 31.88%. Additionally, we are able to determine the 

percentage of pore space invaded by the percolation cluster. With a similar Monte Carlo 

argument as given above, we insert a random point into the box then determine if it intersects the 

percolating cluster, the non-percolating spheres or neither. The ratio of those points intersecting 

the percolating cluster to those intersecting the non-percolating cluster gives us the percentage of 

pore space invaded. This test is conducted  times for accuracy and determined that 60.24% of 

the pore space was invaded in the example shown above. 
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We continue the construction of our 3D model with the development of a pressure solver for the 

continuum case. This method mimics that of our on-lattice model (we refer to Appendix A for 

model basics) with the exception of the development of transmissibility. Instead of an exact 

transmissibility derivation as was done previously, we use the method presented in Berkowitz 

and Balberg (1991) as shown below (Fig. 5.2). In their description of transmissibility, they 

determine the overlap between any two spheres as a distance 

 

 where r is the radius of each sphere and d is the distance between sphere centers. Additionally, 

from previous derivations of Poiseuille flow, we see that hydraulic conductivity is proportional 

to 

 

where d is the dimension of the system. 

Substitution of  and L =  yields, 

 

 

Fig. 5.2 – Overlapping Spheres Explanation of Pipe Flow (Berkowitz and Balberg 1992) 
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Because we are attempting to determine permeability as opposed to hydraulic conductivity, we 

factor μ out of the equation by setting it equal to 1. With this new basis, the transmissibility 

between any two spheres is simply determined by 

. 

In addition to sphere-sphere transmissibility, we must also determine transmissibility between 

spheres and systems boundaries. These are found in much the same manner as the sphere-sphere 

interactions. The system boundary is assumed to be the midpoint between two identical 

intersecting spheres. Hence, the distance between the center point of the sphere and the system 

boundary is assumed to be . Once again  applies, where r is the radius of the 

intersecting sphere.  

Additionally, we note the inherent limitation of this method is that no two spheres can exactly 

overlap nor can a sphere center lie exactly on the system boundary because the transmissibility 

calculation breaks down at . This is very unlikely in the case of randomly placed spheres; 

however, the possibility does exist for extremely large systems and is noted as such.  

Knowing the transmissibility between any two spheres allows us to determine the system wide 

pressure profile and subsequent flow rates. In addition to the Gauss-Seidel iterative scheme for 

determining pressures, we employ a direct method to increase computing time in the case that 

the transmissibility matrix in nonsingular. As in the lattice case, we are able to determine a 

macroscopic permeability for the system. We can then compare porosity and permeability to 

make a determination of percolation porosity as well as the characteristic power law exponents 

we saw in the lattice case. Additionally, we are able to compare analytical solutions to the 

percolation problem with the simulation results. 

CONTINUUM SIMULATIONS 

We begin with a simple percolating example to test code efficacy and display system features. In 

the figure below (Fig. 5.3), we see an aligned set of 11 spheres that represent a percolating 

cluster. The pressure at the left face  is held constant at 100 while the pressure at the 

right face  is held constant at 0. The pressure drop along the aligned spheres is visible in 

the figure below. 
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Fig. 5.3 - Pressure Solution Along a Straight, Percolating Cluster 

Additionally, we see the numerical values of the pressure profile in Figure 5.4 below. As is 

expected, there is a straight line pressure decrease from system boundaries through each sphere 

center.  
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Fig. 5.4 – Straight Line Pressure Profile for Horizontally Aligned Spheres 

We are also able to view the flow rate for each sphere. Flow rate is calculated as the 

transmissibility times the pressure drop between any adjoining pair of spheres. Flow rate is built 

in matrix form where the  entry shows the flow rate from sphere  to sphere . Flow into each 

sphere is negative where flow out of each sphere is positive. Figure 5.5 below shows the flow 

rate profile for the pressure profile shown above. 

 

Fig. 5.5 – Constant Flow Profile for Horizontally Aligned Spheres 
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In the case of larger systems, total flow rate is calculated as the sum of flow across the left or 

right system boundary. The left boundary will show flow rates as negative, or into the boundary 

cells. The right boundary will show flow rate as positive, or out of the boundary cells. Left and 

right boundary flows must them sum to zero to show conservation of mass in the system. 

Because only one sphere intersects each of the left and right boundaries in the system shown 

above, the boundary flow calculation is trivial. However, we see that the flow rate is equal to     -

9.912 on the left face and 9.912 on the right, which is the same for all constituent cells in the 

system (as shown in the graph above). These two values sum to zero showing conservation of 

mass and system consistency. 

In order to determine system permeability, we simply apply Darcy’s Law to the macroscopic 

system. With Darcy’s Law given below as  

 

where k is the system permeability, A is the area normal to the out system boundary,  the fluid 

viscosity and  the pressure drop per unit length. We rearrange the equation to solve for k 

where, for the system example above, Q = 9.912,   , , and As a 

result  

 arb. units. 

Permeability is left in arbitrary units and is useful for comparison purposes only at this point; 

however, it is a simple process to make an estimate in field units for system permeability as well. 

For the example, assuming a viscosity of µ =0.0244 cp, calculating the area normal to the outer 

boundary ,  and  psi,  ft, and  stb/d 

we find that . While this value appears high, it is consistent with the straight 

“pipe-like” geometry of the system (Darcy's Law and Applications  2012).  

We next examine a system similar to that of Figure 5.1. Once again, we place 50 spheres into a 

10X10X10 cubic region and demonstrate the percolation cluster pressure drop as shown in 

Figure 5.6 below. 
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Fig. 5.6 – A Percolating Cluster Shown in Blue with a 50 Sphere Realization 

The same method used to calculate pressure drop in the horizontally aligned system above is also 

used in the 50 sphere realization. We can see in Figure 5.7 below that those spheres intersecting 

the left boundary have a yellow hue and represent the high pressure region. As the system moves 

to the right boundary, we see the pressure drop to zero. Small transmissibility between adjacent 

cells represents choke points or poor connectivity and manifests itself as large pressure drops 

represented by large color variations in the figure below.  
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Fig. 5.7- Pressure Profile of the Percolation Cluster Shown in Figure 5.6 

LARGE NUMBER SIMULATIONS 

We now examine structures with large numbers of spheres in an attempt to mimic the porosity-

permeability profile for the infinite spherical system. We initially look at 1500 permeable 

spheres placed into the same 10X10X10 impermeable region as was done in the example above. 

Starting at uniform radii of 0.15, the radii are increased incrementally in steps of 0.025. These 

values allow the system to start below the percolation threshold and then to move through it with 

a reasonable number of radial size increases. In general, studies aim to determine , the critical 

number of spheres necessary for the onset of percolation (Berkowitz and Balberg 1992); 

however, our study is concerned with mimicking the radial distributions of pores seen in actual 

shale systems. As a result, we must vary the spherical radii in order to determine system 

properties.  

The initial results for the 1500 sphere system are presented below (Fig. 5.8). Unfortunately, due 

to finite size effects, there is a large distribution in permeability as the system moves through the 
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percolation threshold. In fact, the percolation threshold is not at all easily determined from the 

graph below. 

 

Fig. 5.8 - Porosity - Permeability Chart Showing Results of Finite Size Effects 

To account for finite size effects, we must run a series of simulations to determine the 

percolation porosity. Porosity in this case was once again determined by Monte Carlo methods 

as was explained in section 1 of this chapter. The figures below (Fig. 5.9 and Fig. 5.10) show 

comparable systems to the one above. In this case, 6 different realizations for the same porosity 

were conducted below and above the percolation threshold to give a total of 24 different 

realizations. We begin to see the convergence of permeability at different porosity levels and a 

clearer picture of where the percolation threshold is for the spherical system.  
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Fig. 5.9 – Blue Points are Experimentally Derived. Red Points Represent the Analytically 

Determined Percolation Threshold Porosity of 29% 

 

Fig. 5.10 – The Minimum, Maximum, and Mean of Experimentally Derived (Blue).  
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As is expected in the finite size case, we have a blending, as opposed to a sharp front at the 

percolation threshold. As the size of the system approaches infinity, the percolation front 

becomes sharper and sharper. This fact is displayed in the figure below where the probability of 

percolation is used as a proxy for permeability. We can see that for the finite size case, there is a 

reasonable expectation that there will be large scale connectivity in the system even when we are 

below the percolation porosity threshold in the infinite case. While the systems they represent 

are different and hence so are the percolation porosities, we see that the shape of our interpolated 

permeability profile in Figure. 5.9 above closely resembles that in Figure 5.11 below around the 

known percolation threshold. 

 

Fig. 5.11 – The Chances of Percolation in a Finite System as a Proxy for Permeability (Bob 

Sedgewick 2008) 

In order to mimic the shale reservoir, we once again match on pore size distribution as well as 

porosity. We use the same Rayleigh distribution for pore size shown earlier in Figure 3.8 to 

determine individual pore sizes. Figure 5.12 below shows the pressure profile for one realization 

of the 50 sphere 10X10X10 case. The porosity of this system is 31.1% and hence does not reflect 

the known topology of the shale system. 
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Fig. 5.12 – Rayleigh Distribution of Pore Radii at 31.1% Porosity. Demonstrates Large Scale 

Connectivity 

Next, we must match on total system porosity between 4%-8%. We see in Figure 5.13 below that 

when matching on both pore size distribution and total system porosity we do not reach the 

percolation threshold.  
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Fig. 5.13 – Rayleigh Distributed Pore Radii at 5.3% Porosity. Demonstrates a Lack of Large-

Scale Connectivity 

The result in Figure 5.13 above is consistent with our understanding of excluded volume 

discussed earlier. We recall that the ideas of excluded volume led us to conclude that percolation 

porosity of spheres is invariant under varying radial distributions. As a result, we would 

generally expect that systems below 29% porosity would not percolate, regardless of radial 

length distribution while those above 29% would percolate. This fact is anecdotally confirmed 

by simulation as shown in Figures 5.7 and 5.12 above. 

CONCLUSIONS 

The 3 dimensional continuum models demonstrate several key facts about the shale system. 

First, they allow us to confirm our finding with those from excluded volume. We saw that 

spherical systems do not percolate below 29% porosity as was shown by excluded volume and 

that the spherical system percolation porosity is invariant under any distribution in pore radius 

length.  
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Second, we see the effect percolation porosity has on total system permeability. In order for 

large scale connectivity to occur in the system, we saw that large pore shape anisotropy was a 

necessary condition. However, the increase in anisotropy caused a similar decrease in 

permeability. As the shale system is defined by extremely low permeability, the presence of 

large aspect ratio pore spaces would seem to explain the low permeability phenomenon.   

Finally, we are able to make estimates concerning the amount of connected pore volume to the 

percolating cluster. We saw in Figure 5.1 that even above the percolation threshold at 32% 

porosity for the spherical system, roughly 1/3 of the total pore space was stranded (unable to 

communicate with the percolation cluster).  In the case of higher aspect ratio shapes, which we 

determined were a necessary condition for percolation in a shale system, we see that this number 

gets even higher, leaving larger and larger percentages of pore space stranded.  

In terms of shale reservoirs, this fact has a profound impact on the amount of accessible fluids. 

Even if porosity is high, it appears likely that this is not effective porosity. Despite reservoirs 

having a large amount of fluids in place, a large portion of those will likely not be accessible.  
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CHAPTER VI 

TIME OF FLIGHT 

 

MODEL THEORY 

Time of flight (TOF) is a concept that describes the time it takes for an object or phenomena to 

move through a system. There are two types of TOF often utilized in the discussion of porous 

media. The first is convective TOF. This refers to the speed in length divided by time with which 

an individual particle moves in the system. The second, and the one we are generally concerned 

with when discussing reservoir characteristics, is diffusive TOF. This refers to the speed at 

which a pressure wave moves through a system or in our case, a shale reservoir. We apply both 

forms of TOF to the 3 dimensional continuum models constructed in the previous section.   

In order to construct a TOF profile it is first necessary to build what is termed a cost function. 

The function delineates the time it takes either a fluid particle or pressure wave to move from 

point A to point B or in our simulations, from sphere A to sphere B. This cost function is 

determined for every connected sphere pairing in the simulation.  

In order to determine arrival times for every sphere we employ Dijkstra’s algorithm whether we 

are examining convective TOF or diffusive TOF systems (Dijkstra 1959). Dijkstra’s algorithm is 

a shortest path algorithm that operates by constantly updating the arrival times of each node in 

the system. In our system, a node would be each sphere center. To begin, every node except the 

initial nodes is set to an arrival time of infinity while the initial nodes are set to arrival times of 

zero. The cost function then determines the arrival time to each node that is connected to the 

initial nodes. The node with the shortest arrival time is advanced to and each node’s arrival time 

is then updated as the arrival time of the previous node plus the cost of moving from the previous 

node to the current one. The process is then repeated. Once a node is advanced to, it can never be 

revisited. Through this method, all connected nodes’ arrival times are eventually calculated and a 

pressure wave arrival time profile can be determined. By employing Dijkstra’s algorithm with 

the cost function for diffusive TOF we obviate the need for a pressure solve, allowing for very 

fast calculation of arrival times. 
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In addition to the arrival time we also aim to determine the volume encompassed by the pressure 

wave as it moves through the system. This displays invaded reservoir volume as a function of 

time by adding the incremental volume for each new sphere, minus any sphere overlap, for each 

step in Dijkstra’s algorithm. As a result, we maintain a list of arrival time versus system volume 

that can later be examined. 

The construction of the more conceptually familiar convective TOF cost function is straight 

forward. We recall that by determining the pressure profile of the system, we were also able to 

determine the flow profile (i.e. the volumetric flow rate and flow direction are known for every 

sphere). Because convective TOF is based simply on the speed the fluid moves in a media, 

constructing a fluid velocity profile only requires dividing the volumetric flow rate between 

adjoining spheres by the cross sectional area of their overlap (i.e. the area of the pipe normal to 

the flow direction connecting the two spheres). The example below (Fig. 6.1) is used to validate 

the TOF simulator and demonstrate important simulator properties. We have seen a similar 

construction in the development of the pressure solver for the continuum case in earlier sections. 

Once again, we use a horizontally aligned set of 10 percolating spheres in the usual 10X10X10 

construction with sphere radii equal to 0.95.  

 

Fig. 6.1 – Validation of Convection TOF Model Using Horizontally Aligned Spheres 
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Figure 6.2 below shows volume growth in the system as a function of time. In other words, it 

displays the volume a fluid particle “sees” as it moves from the left to right outer boundaries of 

the system. We notice in this simplified example that volume growth is linear. This is expected 

because for each time step we are adding the volume of one more sphere. Additionally, all time 

steps are equal because the system is symmetric. 

  

Fig. 6.2 – Volume Growth Versus Time in Convective TOF Validation Model 

We can separately validate the volume results by calculating the volume of invaded pore space 

in the system. As done previously, we use Monte Carlo simulation to determine system porosity 

and percentage of invaded pore space. System porosity is 2.622% with 100% of pore space 

invaded. This yields a total invaded volume of . We 

compare this result to those shown graphically in Figure 6.2 where maximum volume occurs at 

approximately 26. They appear to be in good agreement. 

Additionally, we note the added time necessary to compute convective TOF. As stated earlier, 

convective TOF requires a pressure solve in order to calculate flow rates. This process becomes 

prohibitively expensive in large systems. As we will see below, diffusive time of flight does not 

require a pressure solve, and hence is far more efficient at determining reservoir properties. 

The derivation of the cost function for diffusive TOF is somewhat more involved. We derive our 

cost function from that of radius of investigation, where  
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 is time, is viscosity,  is total compressibility,  is permeability and  is the radius of 

investigation. In order to determine incremental distance, r, we take the square root of both sides 

which yields  

 

We can then determine the incremental time it takes to move between any two pore spaces in our 

model. For instance, assuming  leaves  

 

From here, k is determined as the transmissibility between any two spheres (as previously 

shown) and r the distance between sphere centers. We are then able to determine the time it takes 

a pressure wave to move the incremental distance r.  

This time is calculated for every connected sphere pairing in the system in the development of 

the cost function. The cost in this case is the time it takes the pressure wave to move from one 

sphere to the next.  

We note some general characteristics that result from this equation. The first is that any two non-

intersecting spheres have transmissibility zero, which leads to a transit time of infinity as one 

would expect. Spheres that never intersect the percolating cluster have infinite arrival times. 

Additionally, the larger the permeability the faster the transit time will be. Hence, spheres along 

the main cluster will quickly lose pressure while those along the outer edges will take longer 

times to reach pseudo steady state. Efficacy of the diffusive TOF simulator is shown below (Fig. 

6.3) as was with the convective case.  
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Fig. 6.3 – Validation of Diffusive TOF Model Using Horizontally Aligned Spheres 

Additionally, we look at volume growth in this system as shown in Figure 6.4. As is expected, 

total volume exactly matches that for the convective TOF case. Arrival time for each volume 

level and maximum volume is the only difference between the convective and diffusive case. 

 

Fig. 6.4 – Volume Growth Versus Time in Diffusive TOF Validation Model 
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TOF SIMULATIONS 

Convective 

We begin with a small 50 sphere system in the usual 10X10X10 construction. The figure below 

(Fig. 6.5) shows the arrival time profile for the system. Because transmissibility between 

adjacent spheres is not held constant, we see the volume growth over time is also not constant as 

shown below in Figure 6.6. Instead, because of the limited size of the system, we see a stair step 

increase in volume as each sphere volume is added to the system. Once again we are moving left 

to right along the x-axis where  is the high pressure, left boundary and  is the low 

pressure, right boundary. Spheres not connected to the percolating cluster are left as red. 

 

Fig. 6.5 – Arrival Time Profile for Convective TOF in a 50 Sphere Realization 
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Fig. 6.6 – Volume Growth as a Function of Time Using 50 Spheres. Stair Step Volume Growth 

is the Result of Finite Size Steps. 

Additionally, able to separately verify the total volume of the pore space invaded and compare it 

to the volume determined above. Using the same Monte Carlo methods given in the previous 

section we see approximate porosity is 23.23% with 89.5% of the pore space invaded. This 

results in an invaded volume of approximately 437.7.  When comparing this to the maximum 

volume value shown in the graph above as approximately 450, we see that they in good 

agreement. 

Due to the pressure solve requirement for convective TOF, determination of a TOF profile is 

computationally infeasible to examine extremely large systems.  However, the volume growth 

profile shown below (Fig. 6.7) shows a 500 sphere realization with radius 0.8 in the usual 

10X10X10 construction. 
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Fig. 6.7 – Volume Growth as a Function of Time Using 500 Spheres. Smoothing out of the Stair 

Step Occurs as the Number of Spheres Increases. 

Once again, we compare total volume in the chart with Monte Carlo solutions. This system is 

approximately 33% porous with 93% of the pore space invaded. As a result, the total volume is 

approximately 920 with Monte Carlo methods which is in good agreement with the graph above. 

 

Diffusive 

We begin in the same manner as we did for convective TOF models by showing a 50 sphere 

realization. The figures below show the TOF profile as well as the volume growth profile. Once 

again we see the characteristic stair step pattern due to finite size effects. 

Next, we look at a larger scale, single porosity model. By single porosity we are referring the 

fact that there is only one pore (sphere) size. The graph below (Fig. 6.8) shows the characteristic 

volume growth in a single porosity (conventional reservoir system) during the transient phase.  
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Fig. 6.8 -750 Spheres of Equal Size, 46.34% Porous 

We then move to two dual porosity models to examine the volume growth profile. Two different 

types of dual porosity systems are examined. The first, as displayed below (Fig. 6.9), shows 

large spheres as well as small spheres of 1/512 the volume randomly placed throughout the 

system.  

 

Fig. 6.9 - 750 Large Sphere, 3750 Small at 1/8 Radius, 47.1% Porous 
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Because of low transmissibility in the large-small sphere interaction and the small-small sphere 

interaction, we see a large amount of volume growth in late time. This is characteristic of a dual 

porosity system and expected as it is difficult for the pressure wave to move further into low 

permeability zones.  

The second dual porosity model has a fixed geometry as shown below (Fig. 6.10). This model 

shows a similar volume growth profile but has more defined periods of growth as shown in 

Figure 6.11 below. 

 

Fig. 6.10 – Geometry of the Dual-Porosity System. Smaller Spheres of 1/8 Radius 
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Fig. 6.11 - 750 Spheres, 4500 Small Attached Spheres. 33.93% Porous 

Once again this shape is characteristic of a dual porosity system. The pressure wave quickly 

moves through the relatively high permeability zones of the large, well connected spheres and 

takes much longer to move into the low transmissibility small spheres. 

CONCLUSIONS 

We begin by making several qualitative assessments of volume growth and its relation to 

pressure decline within the unconventional system and finish with suggestions for future work to 

better understand the nature of volume growth as it relates to rate decline in unconventional 

systems. 

 First, we see that volume growth is dominated by transmissibility. Hence, the larger the 

transmissibility the faster a pressure wave is able to move through the system. In a system right 

at the percolation threshold, the vast majority of connected pore space exists as the “backbone” 

of the percolating cluster. This “backbone” pore space is very well connected and generally 

allows for rapid pressure depletion. As the system moves away from the percolation threshold, 

more pore space is connected to the “backbone” through increasingly tortuous paths. The 

addition of these long path, long times of flight in high tortuosity clusters causes slower pressure 

depletion and as a result, slower rate depletion. 
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We see that large volume growth at late time is characteristic for the large scale, dual porosity 

simulations shown above. This late time volume addition is the result of tortuous paths having 

been taken in order to access additional pore space. This is likely the mechanism by which large 

volumes of relatively low, but stable rate gas come from unconventional resources in late time 

(Bowker 2007).  

A full comparison of the percolation model with empirical rate decline in unconventional 

reservoirs is left for later study; however, understanding the cluster characteristics of volume 

growth within a percolating or non-percolating system can shed light on the nature of rate 

decline. The following chapter examines the characteristic time for individual clusters to reach 

pseudo-steady state and that time’s relation to the stretched exponential function. 
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CHAPTER VII 

CONCLUSIONS 

RELATIONSHIP TO THE STRETCHED EXPONENTIAL 

The case was made earlier that the shale gas system is likely below the percolation threshold. As 

a result, there exists a distribution of finite cluster sizes that make up the connected space of the 

system. Within this distribution of clusters, a certain percentage will be connected to the 

reservoir’s induced fracture network and a certain percentage will be stranded. As the pressure 

wave moves down the fracture network or “backbone” of the percolation cluster it will encounter 

these clusters at varying times. Once a cluster has been reached by the pressure wave, 

exponential pressure depletion in that cluster will begin. Because the size and topology of each 

cluster will vary according to the connectivity of the reservoir in question, the time it takes the 

pressure wave to reach the boundary of each cluster will also vary. Assuming an average cluster 

size can be defined according to a certain distribution of cluster sizes within the system, then an 

average exponential time decay time can also be defined. Because of the varying arrival times of 

the pressure wave at each cluster and our ability to define an average decay time for each cluster, 

we see that the reservoir a system of exponential declines in pressure which are overlapping 

through time. This could be the basis for the stretched exponential decline curve as observed by 

Valko and Lee (2010), where the τ and η constants are a function of the average cluster size. 

Namely, it is possible that τ is the characteristic time for the average cluster size to move to 

pseudo steady state.  

CONCLUSIONS 

We saw that while the initial on-lattice models were accurate in measuring the characteristic 

exponent of several systems, it was difficult to properly simulate the shale geology. As a result 

the 3D continuum model was developed that could accurately mimic a shale system. The 3D 

continuum model allowed us to validate our findings from excluded volume concerning the 

percolation porosity of a system as well as the fundamental effect of shale pore shape anisotropy 

of percolation porosity. While we did not develop a continuum model that exactly matched those 

qualitatively seen in the shale SEM images, we were able to provide several possible solutions to 

how shale systems develop permeability.  
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Most striking in our exploration of excluded volume was the role pore shape anisotropy plays in 

percolation porosity. High aspect ratio pores determine connectivity and hence permeability in 

shale systems. One result of this is the likely fact that in-situ, pre-stimulation shale is below the 

percolation threshold. It is only by introducing high aspect ratio pores (fractures) to the system 

that large scale connectivity is obtained.  

Additionally, we saw that the dual or multiple porosity system is a likely candidate to describe 

the shale pore network. The volume growth profile of the dual pore system provides a possible 

mechanism by which shale gas wells have dramatic rate decline in the first few years, but still 

allow for large volume of relatively low rate gas for extended periods of time.  In addition to the 

dual porosity systems that were examined in this paper, it is likely that multiple porosity or 

fractal models provide a more accurate glimpse into the true volume growth within a shale 

reservoir. These questions however are left for later work. 

Additionally, we examine the likely cases that a shale system is just below or just above the 

percolation threshold. We want to know whether specific shale’s location just above or just 

below the percolation threshold has a profound effect on the deliverability of hydrocarbons from 

that formation. First, we examine the case where we are just below the percolation threshold. In 

this case, the average cluster size in the system in just below infinity. Even though we do not 

have large scale connectivity in the system, we will still encounter large cluster during the 

drilling and stimulation processes. This means that the well encounters near infinite clusters that 

will allow for pressure depletion and flow. As a result the system can be below the percolation 

threshold and hence have no permeability on a large scale, but still have access to large 

quantities of hydrocarbon.  Second, the system slightly above the percolation threshold yields a 

similar result. In this case, the cluster that drilling and stimulation encounter is likely to be of 

infinite number of pores and hence, have large amounts of accessible hydrocarbon. 

Even if we know where a certain shale reservoir exists in relation to the percolation threshold, 

can we predict how well that system will then produce? It seems likely that there are 3 

classifications of quality that the shale reservoirs can be lumped into in regards to their levels of 

connectivity. The first and best class would be those systems that are well above the percolation 

threshold. Generally, they would be characterized by high TOC and brittle shale that allows for 

large, high aspect ratio fractures. This group would nearly always be economically exploitable. 

The second group would be those shale systems right at the percolation threshold. These systems 
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would likely be characterized by more elastic shale that did not produce as high of levels of 

connectivity.  These systems may or may not be economically exploitable because of exactly 

how the fracture network is induced in the shale. Finally, a third group of shale well below the 

percolation threshold would be characterized by low TOC and elastic shale. Elastic shale does 

not allow for high enough aspect ratio pores to be generated as the fracture likely builds too 

much length in the direction normal to fracture propagation. As a result, these plays will likely 

never be economically exploitable. In summary, not all shale is created equal and several factors 

including TOC and more importantly fracture shape anisotropy play a large role in their 

economic viability. 
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 APPENDIX A 

Description of Flow Simulator 

The flow simulator determines pressure drop based on the transmissibility weighted average of 

pressures from surrounding cells in the steady state condition.  

We begin with by stating the sum of the fluxes for each sphere is equal to zero (Flow in = Flow 

out),  

 

where T is the transmissibility at each face. T as derived from Poiseuille flow is given below:  

 

By prescribing a pressure at the left and right system boundaries as well as an initial pressure for 

each cell we can build a linear system, solving for the pressure at each cell. 

Solving the above zero flux equation for P1 yields: 

 

Converting to matrix form for all cells we obtain: 

 

 

 

Finally, we employ the Gauss-Siedel iterative scheme until pressure convergence occurs.  

Flow rates are then solved for via Poiseuille flow where a pressure gradient and transmissibility 

are known for each cell.  
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We are looking at aggregate flow across the right face of the system and hence sum the flow 

across the entire right hand boundary. 
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