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ABSTRACT

Numerical Analysis on the Generation of Equilibrium Aeolian Sedimentary

Bed-forms from Random Surfaces. (August 2012 )

Chandan Tankala, B.Tech, National Institute of Technology, India

Co-Chair’s of Advisory Committee: Dr. Robert Weiss
Dr. Michael Tice

The formation of aeolian ripples have been modeled, quite successfully, using dis-

crete approaches like cellular automaton models. Numerical analysis of continuum

models to obtain similar success in modeling ripple evolution, however, has not been

studied extensively. A numerical model based on continuum theories expedites calcu-

lations , as opposed to discrete approaches which model trajectory of each and every

sand grain, and are hence relatively more economical. The numerical analysis strives

to contribute to the field of study of aeolian ripple migration by an extensive com-

parison and discussion of modeled ripple evolution results with those of a particular

laboratory based wind-tunnel experiment. This research also endeavors to under-

stand the physics behind ripple generation and what parameters to be modified to

account for multiple grain sizes. Incorporation of multiple grain sizes would enable us

to study the stratigraphy of the generated bed-forms. To obtain smoother and real-

istic ripple surfaces, a sixth-order compact finite difference numerical scheme is used

for spatial derivates and fourth-order Runge-Kutta scheme for time derivates. The

boundary conditions incorporated are periodic and the initial condition employed to

generate ripple is a rough sand surface. The numerical model is applied to study

the effect of varying the angle, at which the sand bed gets impacted by sand grains,

on the evolution of ripples. Ripples are analyzed qualitatively and quantitatively

by considering the contribution of processes involved in the evolution process. The

ripple profiles and the time taken to reach equilibrium state, obtained by numeri-
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cal experiments, are in close agreement with the ones obtained by the wind-tunnel

experiment.
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1. INTRODUCTION

1.1 Overview

Aeolian ripples can be found in deserts, geologic record of aeolian sandstones and

lately have also been found on Mars. The scale of wavelength of these ripples can

range from a centimeters to meters and correspondingly amplitudes from millimeters

to centimeters (Yizhaq et al., 2004). The study of these features enables us to com-

prehend the environmental conditions that produced them. Although wind energy

is required for the formation of ripples, the saltation of grains and the evolution is

self-organizational. Hence it is imperative to study how such a process generates

impressive ripple patterns observed in deserts, etc.

This research endeavors to analyze the physics and the spatial, temporal scales

at which the aeolian bed-forms are generated from initial random sand surface. An

analytical aeolian sediment transport model (Hoyle and Mehta, 1999) is modeled

numerically so as to understand how the analytical model relates to the actual phys-

ical processes behind aeolian sediment transport and the spacial, temporal scales at

which these processes occur. The analytical model developed by Hoyle and Mehta

(1999) is a continuum model and is solved numerically by implementing a compact fi-

nite difference scheme for the derivates. Progression of research in the field of aeolian

sediment transport is described in the following section.

1.2 Aeolian sediment transport

Wind blowing over a sand bed causes sand to re-organize and develop wave-like

patterns (Anderson, 1990). These wave-like patterns can occur at two major scales

of length which we commonly know as ripples and dunes. Fig. 1.1 shows an example

of a steady-state ripple pattern engraved on a aeolian sand bed. It is outside the

This thesis follows the style of Geophysics.
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Fig. 1.1.: A ripple field in North Panamint Dunes, eastern California (Anderson,
1990). The sand in this field is well sorted (D=0.3 mm) and the ripples have a
common equilibrium wavelength of approximately 8 cm.

scope of this research to study dunes but scientific inquiry about the physics behind

the formation of aeolian ripples is very much the objective of this research. Ripples

usually have wavelengths of a few centimeters and the ratio of height to length of

the ripples commonly ranges from 1:15 to 1:20 (Hoyle and Woods, 1997).

During the very early period of research on aeolian ripples, it was believed that a

sand bed buckles as a whole, behaving like a highly viscous fluid, and results in the

formation of ripples. In 1941, Bagnold put forth a completely different perspective on

understanding the formation of aeolian ripples. According to Bagnold (1941), it is the

interaction between grains, on a sand surface, which is responsible for the formation

of ripples. Bagnold (1941) introduced the concept of impacting grains which are

highly energetic, referred to as saltating grains, and argued that the length these

gains saltate is related to the wavelength of the ripples which we witness in nature.

Although Bagnold addressed the rolling of grains, caused as a result of saltation, he

did not discuss the role of rolling grains in the evolution of ripples.
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In the years to follow, Bagnold’s theory was challenged by many theories of

which Sharp (1963), Seppala and Linde (1978) were the eminent ones. According

to Sharp (1963), it is the ripple’s amplitude and the angle of saltation which affect

ripple wavelength rather than the length of saltation as proposed by Bagnold (1941).

Sharp (1963)’s theory was based on his argument that ripple wavelength is controlled

by the length of the side of the ripple which is not impacted by saltating grains

(referred to as “shadow-zone”), which in turn depends on the amplitude of the ripple.

Sharp (1963) disproved Bagnold (1941)’s theory by specifying that the generation

of equilibrium state of ripples which have higher wavelength and amplitude than

the initial ones from which they are produced over time cannot be be explained by

influence of saltation length but can be explained by the influence of “shadow-zone”.

Seppala and Linde (1978) calibrated the ripple wavelength as it evolved with time

by conducting wind tunnel experiments discussed later in subsection “Wind-Tunnel

Experiments”.

Later, Anderson (1987) proposed a theory that the saltation grains collide with

the sand bed and transfer momentum to the bed, causing the ejection of other

saltating grains and grains with low energy which tend to roll on the sand surface.

These grains, referred to as reptating grains, are believed to be responsible for the

evolution and the shape of ripples (Anderson, 1990). Thus, Anderson argued that

wind is not directly responsible in shaping up the ripple surface and in fact does not

play a major role in deciding the saltation lengths of the grains. Therefore, Anderson

(1990) suggested that the asymptotic wavelength of the ripples does not depend on

the wind energy function and the whole evolution process is self-organizational. The

interaction between the saltating and reptating grains has been accounted for by the

introduction of a new function, referred to as “Splash-function”, in Anderson (1990).

Cellular Automaton (CA) models, e.g. Werner and Gillespie (1993); Landry and

Werner (1994), described in detail later, have been extensively used to model the dy-

namics of ripples. The CA models, along with wind-tunnel experiments, have proven
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effective in modeling how grains of different sizes segregate and also the stratigra-

phy of the bed-forms seen in the field during ripple evolution (Baas, 2007). Concur-

rently, continuum models, e.g. Nishimori and Ouchi (1993); Hoyle and Mehta (1999);

Yizhaq et al. (2004), based on self-organisation (Anderson, 1990) and other analyti-

cal approaches, based on reducing the complex phenomenon of ripple formation into

separate interacting processes, have also been more or less equally successful. Both

CA and continuum models have their own advantages and disadvantages and are

discussed in detail later.

1.3 Research objectives

The objective of this research is to numerically solve the empirical equations of

aeolian sediment transport developed by Hoyle and Mehta (1999) so as to compre-

hend the contribution of different physical processes responsible in the evolution of

sand bed and to analyze the spacial and temporal scale of the ripples obtained by

results of the implemented numerical model. The numerical model is programmed

in FORTRAN (computer programming language) using a sixth-order compact finite

difference scheme for spacial derivatives and a fourth-order Runge-Kutta scheme for

time derivatives. Specific objectives are detailed below:

1.3.1 Objectives

1. To study the length of the time required to produce an equilibrium bed form

surface, if it exists at all, under steady-state conditions

2. To analyze the skill of Hoyle and Mehta (1999)’s model in reproducing the

ripple parameters as measured by laboratory based wind-tunnel experiments
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3. To interpret the contribution of each physical process towards the generation of

bed-forms by looking at the relative contribution of the terms of the equations

which correspond to the respective physical processes
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2. BACKGROUND

2.1 Wind tunnel experiments

Although aoelian ripples have been studied by various models over the years,

only a few controlled experiments have been conducted. This section discusses two

important experiments and the progress made over the years in wind-tunnel tunnel

experiments to better understand the evolution and steady state of ripples. Sep-

pala and Linde (1978), have conducted a wind-tunnel experiment to study ripple

formation with changing wind velocities and time. The wind-tunnel chosen was a

recirculating one and had dimensions of 0.6 × 0.6 × 4.0 m. The experiment setup

could vary speed of wind anywhere between 2ms−1 and 14 ms−1 (Seppala and Linde,

1978). Well sorted sand was used and Fig. 2.1 shows the structure of the wind tunnel.

There seems to be a minimum wind velocity required for the formation of ripples

which depends on the shear velocities required for grains to be ejected from their

stationary positions. A large number of ripples of smaller height and length are

observed at lower wind velocities and larger ripples at higher wind velocities.

Fig. 2.1.: Design of wind tunnel used by Seppala and Linde (1978). Numbers
indicate length in cm. The direction of wind is shown by arrows.



7

Fig. 2.2.: Wavelength of ripples against speed of wind used in the experiments.

Experiments are run for 5 mins. The equation of the straight line is constructed

based on average values of ripple wavelength (shown by crosses) with the co-relation

coefficient being 0.998 (Seppala and Linde, 1978).
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Fig. 2.3.: Wavelength of ripples versus time-period of an experimental run for chang-

ing speeds of wind (“v” stands for the speed of wind). The construction of curves is

based on average values of wavelength shown by crosses (Seppala and Linde, 1978).

Fig. 2.2 depicts a nearly linear rate of increase of wavelength of the ripples with

wind velocities for the same run time of 5 mins.
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Fig. 2.3 shows that at lower wind velocities, there is a nearly linear rate of increase

in the wavelength of the ripples with run-time of the experiment. But, at higher

velocities there seems to be a steep increase in the ripple wavelength during initial

times and then an equally steep decrease in the wavelength. According to the authors,

during the initial times the ripple height and wavelength increase as expected and

reach a point beyond which grains from the ripple crest wear away into the following

trough before an ensuing ripple is formed (Seppala and Linde, 1978).

Since the wind tunnel experiment described above, various other controlled ex-

periments have been conducted to study aeolian ripples in the non-linear regime.

Although Seppala and Linde (1978), described fully developed ripples they were not

studied in detail. It is commonly predicted that the wavelength of the ripples in-

creases with run-time continuously. Experiments need to be developed which inspect

the conditions responsible for generating a steady-state of ripples beyond which rip-

ples do not evolve in shape and size. Andreotti et al. (2006) made significant headway

in understand the aforementioned conditions and conducted an extensive investiga-

tion of the geometries aeolian sand ripples in steady-state both in a wind tunnel and

on the leeward side of a dune.

The wind tunnel used by Andreotti et al. (2006) has dimensions of 4.5 m × 1 m

× 0.5 m, and the sand used is angular in shape. On the other hand, grains used in

the dune field experiment are relatively more smooth. The two main objectives of

this study were to study the saturated states beginning from a flat sand surface and

from a nearly flat but random sand surface. Fig. 2.4(a) and (b) show the evolution

of ripples with time, both in the wind tunnel and in the dune field, from an initial

flat surface of sand. It is observed that in both of these cases, the initial surface gets

disturbed with the formation of very small ripples and eventually bigger ripples, in

terms of wavelength and height, are formed. Fig. 2.4(c) indicates that although there

is an increase in the wavelength initially, the growth in wavelength decreases with

time and a stage of saturation is attained where is there is no or very little growth in
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wavelength. Similar trends are observed for the amplitudes of these ripples as shown

in Fig. 2.4(d).

Fig. 2.4.: Transformation of a flat surface of sand with time both in the wind-
tunnel and in the dune field (a) Snapshots of a dune field at different times for wind
shear speed u∗ = 1.3uth (b) Ripple profile, in the wind-tunnel, along space and time
domain for wind-shear speed u∗ = 1.4uth (uth stands for critical saltation speed) (c)
Plot of wavelength of ripples against time (time in the inset graph is in log scale) for
multiple wind-shear speeds (d) Plot of amplitude of ripples against time for multiple
wind-shear speeds u∗ = 1.3uth(∆), u∗ = 1.4uth(N), u∗ = 1.8uth(◦), u∗ = 2.3uth
(•)(Andreottiet al., 2006)

The other part of the study by Andreotti et al. (2006) was to study ripples formed

from an initially disturbed sand bed. For this purpose, a periodic ripple chain on the

bed of sand was setup as an initial condition. Fig. 2.5 describes the evolution with

time similar to Fig. 2.4. It has been observed that if the initial wavelength of the

ripples is equal to that of the steady-state wavelengths obtained from a flat sand sur-

face, then ripples simply migrate without a change in the wavelength and amplitude

as seen Fig. 2.5(b) and (e). If the initial wavelength is significantly smaller or larger
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than the saturation wavelength, then either ripples merge or diffuse respectively and

reach a saturated stable ripple profile shown in Fig. 2.5(d) and (f).

Fig. 2.5.: Transformation of a random surface of sand with time both in the wind-
tunnel and in the dune field. Snapshots of a dune field at different times for wind-
shear speed u∗ = 1.3uth beginning with a wavelength of (a) λ=5 cm; (b) λ=13.5 cm;
(c) λ=30 cm. Ripple profile, in the wind-tunnel, along space and time domain for
for wind-shear speed u∗ = 1.3uth beginning with a wavelength of (a) λ=5 cm; (b)
λ=9.3 cm; (c) λ=19.5 cm (Andreotti et al., 2006)

Fig. 2.6 shows how relative amplitude and wavelength play a role in reaching

a stable ripple profile depending on the initial bed surface. If the experiment is

begun with the saturation wavelength but with a marginally (+/- 5 cm) different

amplitude, ripples develop in a way that the amplitude eventually gets adjusted

to the saturation amplitude. But, if the experiment is begun with the saturation

amplitude with a marginally different wavelength, then ripples preserve this initial

wavelength and evolve into a stable and new amplitude. Thus, it can be concluded
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that a range of stable saturated ripple states can exist all of which depend on the

initial conditions.

Fig. 2.6.: Amplitude (A) vs Wavelength (λ) relationship diagram spanning from
initial state to steady state for wind-shear speed u∗ = 1.3uth (Andreotti et al.,
2006). (•) indicates stable wavelength-amplitude combinations and (�) indicates
initial wavelength-amplitude combinations. Arrows show the direction from the ini-
tial state to the stable state. The zone outside the (◦) and the hatched region are
beyond the scope of this research.

2.2 Continuum and discrete models

Over the past two decades, during which a many studies have been published

on numerical modeling of aeolian ripples, scientists have adopted ideologically dif-

ferent approaches for modeling aeolian ripple migration. One of the approaches is

to formulate a discrete numerical method which basically meshes the sediment bed

using appropriate shapes and assign properties to each element of this mesh. The

properties that can be included are random sand grain interaction behavior which are

erosional or depositional of nature. Cellular automaton modeling is the most popular
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method among the discrete numerical methods. Although these models can accom-

modate an array of grain sizes, can help understand the stratigraphy and how grains

segregate during the evolution of ripples, they lack the basis of collisional dynamics

which are responsible for ripple migration and evolution (Yizhaq et al., 2004). On

the other hand, continuum models are based on deriving equations for transport of a

local mass of sediment (Anderson, 1987; Sauermann et al., 2001) based on the actual

physical processes that occur. Hence continuum models give a better understanding

of the contribution of different processes involved in the time evolution of ripples.

2.2.1 Cellular automaton models

One of the earliest cellular automaton simulation models was the one developed

by Forrest and Haff (1992). This model simulated the path of every moving sediment

particle. In this model, ripples with a significant difference in size were not observed

because ripples with a little difference in size merge as their windward and leeward

side zones overlap causing swapping of ripple speeds. Therefore, Forrest and Haff

(1992) came to the conclusion that the development of steady state of ripples, beyond

which ripples with do not grow in size and wavelength, is largely dependent on the

merging of ripples over time. Werner and Gillespie (1993) introduced a new model

to test the results produced by Forrest and Haff (1992). In the model by Werner and

Gillespie (1993), ripples were represented as bars of different lengths. The migration

of ripples was represented by the movement of these bars along a circular path

(Werner and Gillespie, 1993). It is assumed that probability of movement of these

bars decreases with an increase in the length of the bar. This allowed accounting

for the merging of ripples but could not simulate the real dynamics and processes

behind ripple merging.

Lately, Pelletier (2009) drew analogies between Werner (1995)’s dune dynamics

model and ripple dynamics by scaling the dune size and roughness experienced by a

dune because of wind to corresponding size and roughness experienced by a ripple.
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Pelletier (2009) applied a correction to the speed with which higher amplitude ripples

migrate arguing that these bigger bed-forms would be experiencing a higher shear

stress than the one used by Werner (1995) model. Thus, with this increased speed

with which ripples of higher amplitude move, Pelletier (2009) suggested that there

smaller ripples would merge with a decreasing rate and thus allowing a steady state

after which ripple wavelength does not change.

2.2.2 Continuum models

Anderson (1987)’s theory, as discussed in Introduction, was one of the first con-

tinuum models. Prigozhin (1999) furthered the work of Anderson (1987), introduced

orginally by Bouchaud et al. (1994), to describe and account for the flux of rolling

grains. Other models for rolling having been proposed by various authors and the

one proposed by Hoyle and Mehta (1999) is a fairly good representation of the actual

rolling process and hence the model by Hoyle and Mehta (1999) has been used in this

research. Although there are major differences in implementing the rolling phase of

grains, a majority of the continuum models seem to have a similar representation

for saltation component. Saltation and reptation are discussed in detail in the next

section.

2.3 Physical processes behind ripple migration

As described earlier, Anderson and Haff (1988) and Anderson (1990) had made a

significant advance in understanding the physical processes involved and developing

analytical models which describe the processes behind the evolution of ripples. A

robust understanding of the saltation process has been accomplished by studying

saltation path’s in the 1980’s (Jensen and Sorensen, 1986; Anderson and Hallet,

1986). It is now understood that highly energetic saltating grains eject grains on

the sand bed in two ways as they collide the sand bed (Anderson, 1990). One of
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those categories corresponds to those grains which have a speed of 1/2 to 1/3 of the

impinging saltating grains and these grains continue saltation. The other category

is the rolling grains whose speed is relatively less like 1/10 of the impinging saltating

grains and may be referred to as reptating grains (Anderson, 1990). The process of

sand grains beginning saltation because of the force exerted by excess shear speed

of blowing wind, the trajectories of saltating grains, the grains ejected from the bed

by these saltating grains, and the impact of the grains saltating on the wind regime

have been simulated by Anderson and Haff (1988).

One of the analytical models of aeolian ripples which has been considered to be

highly successful is by Hoyle and Mehta (1999). This model is an improvement over

Anderson (1990) because, in addition to the transfer of energy between the grains

in hopping and rolling phase, it also includes several other processes like diffusion

and relaxation mechanisms which help produce smoother and realistic ripple surface

profiles. This model and all other major subsequent continuum models compute

a saltation flux and have representation of rolling and sliding. The processes are

explained in detail in the following section.

2.3.1 Saltation or hopping

Wind causes sediment grains on the surface to hop with high speeds and impinge

upon the sand surface at small angles. Speeds can be as high as 1 ms−1 (Anderson

and Bunas, 1993) and the impact angles are commonly in the range of 10◦ -16◦.

Hoyle and Woods (1997) assumed that wind energy does not effect the saltation

trajectories described by the probability function p(a) based on the study by Jensen

and Sorensen (1986) and since Hoyle and Woods (1997) developed their model for

a single grain size, the angle of saltation is considered to be close to a constant.

Hoyle and Woods (1997) assumed that the saltating grains continue in saltation

after impacting the bed and do not stop. The grains ejected by the saltating grains,
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described in earlier sections as reptating grains, roll with much lesser velocities and

lengths than that of the saltating grains.

Fig. 2.7.: Description of saltation and reptation of sand grains (Hoyle and Woods,
1997)

N(x, t) represents the number of sand grains that are set into the saltation phase

per unit time and per unit length of the sand surface, at a point of co-ordinate x

and at time t on a sand surface. According to Hoyle and Woods (1997), N(x, t) is

considered directly proportional to the normal component of incoming saltation flow

at that point and hence

N(x, t) = J sin(α + β) (2.1)
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where J is a proportionality constant, α represents surface slope at that point and

β the saltation angle with the horizontal at that point as shown in Fig. 2.7. The

distance traversed horizontally a by the grains which continue in saltation is de-

scribed by a probability distribution function p(a) (Hoyle and Woods, 1997; Hoyle

and Mehta, 1999), where
∞∫

−∞

p(a)da = 1 (2.2)

If δn(x, t) represents the difference between the number of grains that land by salta-

tion and the number of grains that leave by saltation between co-ordinates x and

x+ δx within time δt, then (Hoyle and Woods, 1997):

δn(x, t) =

∞∫
−∞

p(a) [N(x, t)−N(x− a, t)] daδxδt (2.3)

Because of conservation of mass, the amount of change in height y(x, t) of the surface

of sand, in time δt, is evaluated by (Hoyle and Woods, 1997):

δxδy(x, t) = apδn(x, t) (2.4)

where ap represents a single sand grain’s mean area of cross-section. The rate of

change of height of the sand surface can be obtained by integrating the above two

equations and thus leading to (Hoyle and Woods, 1997):

∂y

∂t
(x, t) = −ap

∞∫
−∞

p(a) [N(x, t)−N(x− a, t)] da (2.5)

Hoyle and Woods (1997) evaluated the integral using Taylor’s series and ignored the

second-order terms of the Taylor’s series, by assuming the second-order terms to be
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very small compared to the first-order terms, the equation for rate of change of height

of sand surface, caused by hopping alone, is given by (Hoyle and Woods, 1997):

∂y

∂t
(x, t) = −Japā

∂2y

∂x2

(cos β − sin β( ∂y
∂x

))

1 + ( ∂y
∂x

2
)3/2

(2.6)

2.3.2 Rolling

As the sand bed re-organizes as a result of reptation caused by saltation, some

grains roll down because of gravity. There exists a critical slope on the sand bed

beyond which this rolling occurs referred to as the angle of repose. Angle of repose

is a function of the way sand is packed and is usually around 30◦ (Hoyle and Woods,

1997). In addition to the this angle of repose, Hoyle and Woods (1997) defined

another angle referred to as “dynamic angle of repose” γ and proposed that if the

slopes reach dynamic angle of repose, then slope failure occurs and the grains run

down as an avalanche instead of rolling. Hoyle and Woods (1997) assumed that as

the sand slope reaches γ, slope fails by an avalanche and that the grains fall down

in a way that the angle of slope remains constant at the angle γ.

At smaller sand surface slopes (less than tan γ), Hoyle and Woods (1997) assumed

that the sand particles roll down with a constant velocity u, which is given by:

u = −g
r

sinα = −g
r

∂y
∂x[

1 +
(
∂y
∂x

)2]1/2 (2.7)

where r is the frictional coefficient between the grains and this is assumed to be a

constant by Hoyle and Woods (1997). The flux of sand grains which roll horizontally

Q(x, t) is considered proportional to the above calculated rolling velocity by Hoyle

and Woods (1997). Hence,

Q(x, t) = −F g
r

sinα cosα = −F g
r

∂y
∂x[

1 +
(
∂y
∂x

)2] (2.8)
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where F is a proportionality constant. The problem of avalanching, which occurs at

slopes close to tan γ, has been addressed by (Hoyle and Woods, 1997):

Q(x, t) = −F g
r

tan2 γ ×
∂y
∂x[

1 +
(
∂y
∂x

)2] [
tan2 γ −

(
∂y
∂x

)2]1/2 (2.9)

and the rate of change of sand bed surface height is given by:

∂y

∂t
= −ap

∂Q

∂x
(2.10)

where ap represents a single grain’s average size. The rate of change of sand surface

height, caused by rolling alone, is given by combining the above two equations (Hoyle

and Woods, 1997):

∂y

∂t
= D

∂2y

∂x2
(2.11)

where

D = F (tan4 γ)ap
g

r

1− ( ∂y
∂x

)2

[1 + ( ∂y
∂x

)2]2[tan2 γ − ( ∂y
∂x

)2]1/2
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3. ANALYTICAL DESCRIPTION

3.1 Governing equations

An aeolian sediment transport model that incorporates all the significant phe-

nomenon responsible for aeolian transport and hence the formation and migration of

ripples, described in the section “Background”, have been described empirically by

Hoyle and Mehta (1999). The governing equations for the height of sand bed h(x, t)

and the density of sand grains ρ(x, t) with time, in Hoyle and Mehta (1999)’s model,

at varying sand surface slopes are as follows:

If 0 ≤ hx ≤ tanα
tan γ

, then

ht = (1 + κ̂ρ)hxx − ρ
tan β

tanα
(|hx| −

tanα

tan γ
)− f(x) (3.1)

ρt =
h0

ρ0

(−κ̂ρhxx+ρ
tan β

tanα
(|hx|−

tanα

tan γ
))+

h0

ρ0

∞∫
−∞

p (a) f (x− a) da+
Dρ

Dh

ρxx+χ̂ (ρhx)x

(3.2)

and if tanα
tan γ
≤ hx ≤ 1, then

ht = (1 + κ̂ρ)hxx −
υ̂(|hx| − tanα

tan γ
)

(1− h2
x)

1/2
− f(x) (3.3)

ρt =
h0

ρ0

(−κ̂ρhxx +

υ̂(|hx| −
tanα

tan γ
)

(1− h2
x)

1/2
) (3.4)

+
h0

ρ0

∞∫
−∞

p(a)f(x− a) da+
Dρ

Dh

ρxx + χ̂(ρhx)x
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f(x) = (hx +
tan β

tan γ
)[1 + hx

2tan γ2]
−1/2

(3.5)

Dρ and Dh are positive coefficients of diffusion. The description of all the constants

and derivation of these equations is given in the subsequent section.

3.2 Justification for Hoyle and Mehta (1999)’s model

Although Anderson (1990) was the first to introduce the importance of the repta-

tion phase in the development of bed-forms by means of a “splash” function, it was

based on several assumptions, one of which was that the splash function was inde-

pendent of the angle of saltation. This would have an impact in the results because

there would be a difference in the exchange of momentum between lower angles of

saltation against higher angles of saltation. This error in momentum exchange effects

the velocities and angles with subsequent grains get saltated. Improvements were

made in future years in understanding the reptation phase. Bouchaud et al. (1994)

introduced the concept of avalanche flows and Hoyle and Mehta (1999) came up with

a better model for rolling as discussed in background. Hoyle and Woods (1997)’s one-

species continuum model incorporated models for all the processes namely saltation,

hopping, rolling and avalanching.

Then, (Hoyle and Mehta, 1999) proposed an improvement over the Hoyle and

Woods (1997) model by incorporating the processes responsible for diffusion of both

the group of grain in saltation and in reptation referred to as “relaxations effects”

by Hoyle and Mehta (1999). This diffusion was implemented both within the groups

of grains and between the groups of grains which significantly improved ripple sur-

face profiles. The model by (Hoyle and Mehta, 1999) also allowed calculation of

wavelength of the ripples and speed with which they propagate (which the previous

models could not come up with explicitly).
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3.3 Presentation of Hoyle and Mehta (1999)’s model

This model has drawn analogies from sand piles by accommodating “bistability”

at the angle of repose which the Hoyle and Mehta (1999) believe has an important

effect on the evolution of ripples. Hoyle and Mehta (1999) define bistability as the

nature of sand to be either stable (at rest) or be flowing at slopes of the sand surface

above the angle of repose. The maximum angle above the angle of repose beyond

which sand can no longer be stable is defined as the maximum angle of stability γ

(Hoyle and Mehta, 1999). Beyond the maximum angle of stability γ, avalanching

occurs rapidly.

The height of the sand surface at a point with horizontal co-ordinate x at time

t is defined as h(x, t) and similarly the density of flowing grains as ρ(x, t). The

sand surface is subjected to a constant saltation flux at an angle β to the horizontal

which eject both saltating and reptating grains and then the relaxation mechanisms

come into play and create a smooth ripple surface on sand. α is the angle of repose.

The differential equations for h(x, t) and ρ(x, t) are described in equations 3.1- 3.4.

The derivation of these equations is similar to that of the Hoyle and Woods (1997)’s

model and is described below:

If N(x, t) represents the number of sand grains that are set into saltation phase

per unit length of sand bed and per unit time, then N(x, t) is considered directly

proportional to the normal component of the incoming flow of saltation at that point

(Hoyle and Mehta, 1999):

N(x, t) = J sin(α + β) =
J(sin β + hx cos β)

(1 + h2
x)

1/2
(3.6)

where J is a proportionality constant and tanα = (hx)

The trajectories of saltating grains is described by a probability distribution func-

tion p(a) where a sand grain has a probability of p(a) to saltate a distance a along

the horizontal direction. Hoyle and Mehta (1999) considered the duration of hop



23

of a grain to be negligible compared to the duration of the evolution of ripples. If

δn0(x, t) represents the number of grains on the surface of sand between co-ordinates

x and x+ δx that are set into saltation within time dt, then as per the definition of

N(x, t) (Hoyle and Mehta, 1999):

δn0(x, t) = N(x, t)δxδt (3.7)

If ap represents a single grain’s mean area of cross-section, then the area of grains

on the surface of sand between co-ordinates x and x+ δx that are set into saltation

is apδn0(x, t) which is also equal to −δxδh(x, t) (Hoyle and Mehta, 1999). Hence,

apδn0(x, t) = −δxδh(x, t) (3.8)

Derivative of h(x, t) can be defined by supposing δt→ 0 , and hence the change

of the surface height caused by saltation alone is (Hoyle and Mehta, 1999):

ht = −apN(x, t) = −apJ
sin β + hx cos β

(1 + h2
x)

1/2
(3.9)

Of the windward and the leeward side of a ripple, the sand grains on the leeward

side are not ejected by the saltation flux and hence the points on this side do not

contribute towards the ht equation described above. If δn(x, t) represents the number

of saltating grains that land between co-ordinates x and x+ δx on the sand surface

within time δt (Hoyle and Mehta, 1999), then:

δn(x, t) =

∞∫
−∞

p(a)N(x− a, t)daδxδt (3.10)

According to conservation of mass,

δxδρ(x, t) = apδn(x, t) (3.11)
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Hence by combining equation 3.10 and equation 3.11, the change in the surface

density of grains with time, by saltation alone, is given by (Hoyle and Mehta, 1999):

ρt = apJ

∞∫
−∞

p(a)
sin β + hx(x− a, t) cos β

[1 + h2
x(x− a, t)]

1/2
da (3.12)

Hoyle and Mehta (1999) adopted the processes which account for energy transfer

between the hopping grains and the group of grains which are in the rolling phase by

including transfer terms. In addition to this, Hoyle and Mehta (1999) also included

diffusive motion and computed ht and ρt shown in equations 3.13 and 3.14.

ht = Dhhxx − T (x, t)− apJ
(sin β + hx cos β)

(1 + h2
x)

1/2
(3.13)

ρt = Dρρxx + χ(ρhx)x + T (x, t) + apJ

∞∫
−∞

p(a)
sin β + hx(x− a, t) cos β

[1 + h2
x(x− a, t)]1/2

da (3.14)

where

1. Dρ and Dh are positive coefficients of diffusion

2. κ, χ are positive constants

3. T (x, t) represents terms which stand for energy transfer between the hopping

grains and group of grains in rolling phase

4. p(a) represents the probability distribution function with which grains saltate

a horizontal distance ’a’

The value of T (x, t), at different surface slopes, is described in equations 3.15

and 3.16 (Hoyle and Mehta, 1999):
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For 0 ≤ |hx| ≤ tanα,

T (x, t) = −κρhxx + λρ(|hx| − tanα) (3.15)

and for tanα ≤ |hx| ≤ tan γ,

T (x, t) = −κρhxx +
υ(|hx| − tanα)

(tan2 γ − h2
x)

1/2
(3.16)

where υ is a constant which is positive. The diffusion of the group of grains that

are in rolling phase and those in saltation are represented by Dhhxx and Dρρxx

respectively. χ(ρhx)x represents the the motion of grains on the bed caused by

gravitational forces. According to Hoyle and Mehta (1999), the excessive extrusions

on the crests or ditches on the troughs of ripples would be removed or filled out by

rolling grains which is represented by −κρhxx. If the slopes are not steep enough, i.e.

for slopes less than tanα, then the rolling grains would tend to adhere to the surface

of the ripple or roll at smaller speeds represented by the term λρ(|hx| − tanα). The

grains on the slopes less than tanα, thus, do not get ejected because of saltation flux.

But at slopes greater than tanα, grains on the ripples tend not to be stable and are

prone to avalanching which is modeled by the term υ(|hx| − tanα)(tan2 γ − h2
x)
−1/2.

This tendency increases with the value of slope and as the slopes approach tan γ,

avalanching occurs instantaneously (Hoyle and Mehta, 1999).

The equation’s 3.13 and 3.14 are non-dimensionalized by substituting x→ x0x̃,

t → t0t̃, a → x0ã, h → h0h̃, ρ → ρ0ã (Hoyle and Mehta, 1999). The final ana-

lytical equations for ht and ρt (equations 3.1, 3.2, 3.3, 3.4), at different slopes, are

thus obtained by ignoring the tildes and where the values of non-dimensionalization

constants are described in Table 3.1 (Hoyle and Mehta, 1999).
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Table 3.1: Non-dimensionalization constant values

Constant Values

h0 = Dh tan γ
apJ cos

β

ρ0 = apJ sinβ

tanα

x0 = Dh
apJ cosβ

t0 = Dh
(apJ cosβ

)2

κ̂ = κρ0
Dh

µ̂ = µt0
h0

χ̂ = h0

Dh

The term f(x), in the equations 3.1 and 3.3, represents the contribution to the

rate of change of height caused by saltation of the grains alone. These saltating

grains landing into the rolling group of grains is represented by this analytical term:
∞∫

−∞

p (a) f (x− a) da. Thus f(x) is not used in the ht equation for points on the

leeward side of the ripples because they do not get impacted by saltation flux.
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4. NUMERICAL EXPERIMENTS

4.1 Description of numerical model

A compact finite difference scheme has been used to numerically model the equa-

tions 3.1- 3.4 in FORTRAN programming language. The compact finite difference

scheme has been used for space derivates and a Runge-Kutta fourth order scheme for

time derivates in equations 3.1- 3.4. The finite differencing scheme for the derivates is

implemented by dividing space domain into parts of equal spacing δx = xi−xi−1 and

similarly time domain into parts of equal spacing δt = ti − ti−1. The compact finite

difference represents a sixth-order calculation formula for the spatial derivates and

less associated truncation errors (Gamet et al., 1999). First and second derivatives

of a random function g with respect to x, at any point k, using this finite difference

scheme, are as follows (Gamet et al., 1999):

1

3
g′i−1 + g′i +

1

3
g′i+1 =

14

9

gk+1 − gk−1

2δx
+

1

9

gk+2 − gk−2

4δx
(4.1)

2

11
g′′i−1 + g′′i +

2

11
g′′i+1 =

12

11

gk+1 − 2gk + gk−1

δx2
+

3

11

gk+2 − 2gk + gk−2

4δx2
(4.2)

The fourth-order Runge-Kutta scheme for a random function z described as z′ =

g(t, z), used in this research for time derivates of h and ρ in the model equations 3.1-

3.4, is as follows:

k1 = dt g(tm, zm) (4.3)

k2 = dt g(tm +
1

2
dt, zm +

1

2
k1) (4.4)

k3 = dt g(tm +
1

2
dt, zm +

1

2
k2) (4.5)

k4 = dt g(tm + dt, zn + k3) (4.6)
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zm+1 = ym +
1

6
(k1 + 2k2 + 2k3 + k4) (4.7)

where k1, k2, k3, k4 are the four terms used for estimating z(tm+1). tm+1 = tm + dt

and zm+1 is the fourth-order Runge-Kutta calculation of z(tm+1).

A comparison of sand surface, at t = 32 minutes, using a fourth order difference

scheme for spatial derivates and a forward difference scheme for time derivatives with

the ones used in this research is shown in Fig. 4.1. As can be seen from Fig. 4.1, ripple

profile obtained by the fourth-order difference scheme has sharp edges and also is not

successful in producing ripple shape asymmetry. On the other hand, the sixth-order

difference scheme ripple profile is a lot smoother and realistic and hence this scheme

is incorporated. For the purpose of comparison, the fourth-order difference scheme

used is described by the equations 4.8 and 4.9.

The first derivative of a function g, at a point x= k, using a fourth-order difference

scheme:

g′i = −gk+2 + 8.0× gk+1 − 8.0× gk−1 + gk−2 (4.8)

The second derivative of a function g, at a point x = k, using a fourth-order

difference scheme:

g′′i = −gk+2 + 16× gk+1 − 30.0× gk + 16.0× gk−1 − gk−2 (4.9)

The non-dimensional values of the constants, used for simulation runs, are shown

in Table 4.1.

A rough sand surface has been used as the initial condition. The initial condition

used for height of sand surface h is h = 1.0+0.01r and for density ρ is ρ = 2.6+0.01r,

where r is a random function used in fortran to generate random values between 0

and 1.
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Fig. 4.1.: A comparison between the ripple surfaces at time t = 32 minutes obtained
by using sixth-order difference scheme for spatial derivates, fourth-order Runge-
Kutta scheme for time derivates (green) and by using fourth-order difference scheme
for spatial derivatives, forward difference scheme for time derivatives (red)

Table 4.1: Values of numerical model constants

Constant Values
Dρ
Dh

1.0
h0

ρ0
20.0

χ̂ 0.1
µ̂ 1.0
κ̂ 0.1
β 25◦

α 30◦

γ 35◦
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The non-dimensional x co-ordinates are defined by dividing the total domain

space of length L = 50.0 (non-dimensional space) into equal discrete intervals of

dx = 0.05. Similarly, the total non-dimensional time domain T = 0.3 is divided into

equal discrete intervals of dt = 0.001. The boundary conditions used are periodic in

space with h(nx) = h(nx − 1) = h(nx − 2) and h(1) = h(2) = h(nx) at any time,

where nx is the endpoint of the domain space for the space variable.

A normal distribution has been used for the probability function p(a) with mean

= 3.1 and variance = 0.1 (Hoyle and Mehta, 1999). In the equations 3.1- 3.4, tildes

from t̃, x̃, h̃, ρ̃ have been ignored and hence t, x, h, ρ in the equations 3.1- 3.4 actually

represent t̃, x̃, h̃, ρ̃. The non-dimensional values t̃, x̃, h̃, ρ̃, used and obtained from

simulation runs, are then converted back to real physical values of time t, x-axis x,

height of the surface h, and density of grains ρ using average radius of sand grains as

0.12 µm (same size as the ones used by the wind-tunnel experiments by Andreotti

et al. (2006)). Dh, J , λ are calculated and substituted in the equations for t0, x0,

h0, ρ0 as stated in the table 3.1. The resulting values are t0 = 160, x0 = 14.2 and

h0 = 200. The real physical values of t, x, h, ρ are then obtained by using t = t0t̃,

x = x0x̃, h = h0h̃, ρ = ρ0ρ̃. Hence, t =160t̃, x =14.2 x̃ and h =200 h̃. Hence, the

real domain chosen is 710 mm for x-axis and 48 minutes for time.

The code, in FORTRAN, is run and the simulation results are described below.

4.2 Ripple evolution results

Evolution of ripples beginning from a randomly disturbed bed of sand into a

steady state of ripples is shown in Fig. 4.2. Fig. 4.2 also shows merging of ripple

crests, by lines, to form bigger and stable ripples. Fig. 4.3 shows a comparison

between the randomly disturbed sand bed at t = 0 and a steady-state ripple surface

at t = 32 minutes. Fig. 4.4(a) and 4.4(b) show ripple evolution during the initial

half of the evolution period and during later half over the whole length of the x-axis

domain.
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Fig. 4.2.: Spatio-temporal diagram of ripple evolution from t = 0 to t = 37 minutes
with a time increment of 29 seconds. Yellow line joins a ripple’s crestal point at
different times.

It can also be seen from Fig. 4.4(b) that the irregular extrusions or small ditches

on the bigger ripples get removed or get filled with time resulting in a smoother

ripple profile. These figures show that, as time progresses, small ripples are formed

on the disturbed sand surface and that these ripples coalesce to form steady-state

big ripples. A good example of merging of two smaller ripples to form a single large

ripple is shown in Fig. 4.9. Fig. 4.9(b) shows more snapshots of the merging ripples at

intermediate times and a plot of crest-crest distance divided by crest-trough distance,

at these times, is shown in Fig. 4.7. Fig. 4.7 shows that the ratio of crest-crest distance

and crest-trough distance increases steeply with time and Fig. 4.9(b) shows how the

original size of ripples changes as they merge with time. This observation reinforces
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Fig. 4.3.: Comparison of ripple surface profiles at time t = 0 and t = 32 minutes.
Sand surface at t = 0 is moved vertically up by 100 mm.

Forrest and Haff (1992)’s theory that as ripples merge, they interchange their size

and essentially their velocity.

After a point of time, it is observed that ripples no longer evolve with the ampli-

tude and wavelength remaining almost constant after this time. This time is referred

to as the steady-state or equilibrium state. It can be seen from Fig. 4.8 that the

steady-state is attained at about t = 32 minutes. The steady-state ripples, from

Fig. 4.8, have an amplitude range of about 3 mm to 8.8 mm and a wavelength range

of 8 cm to 16.4 cm. This wavelength and amplitude range is in reasonable agreement

with the steady state amplitude range of about 5 to 10 mm and within the wave-

length range of about 7 to 20 cm from the wind-tunnel experiments of Andreotti

et al. (2006). As discussed earlier, it is observed that ripples do not evolve beyond

t = 32 minutes and hence this time is chosen as the time taken to reach equilibrium

state. This time is very much within the range of 22 minutes-36 minutes, actual
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value being depending on the initial conditions, obtained from the wind-tunnel ex-

periments of Andreotti et al. (2006). A detailed wavelength and amplitude study

would aid in obtaining a stability diagram along the lines of Fig. 2.6.

A simulation run with a lower saltation angle β = 20◦ is tested and compared

with saltation angle β = 25◦ as shown in Fig. 4.6(a). For lower saltation angles,

the saltation lengths have not been changed and hence the initial wavelengths are

similar but then the length of the shadow zone increases and hence the wavelength

and height of the ripples are significantly different from those obtained originally as

shown in Fig. 4.6(a). This observation is in accord with Sharp (1963)’s theory that

the wavelength depends on the length of shadow zone. On the other hand, if the

saltation angle is above the angle of repose then all the points on the sand surface

are impacted by saltation and subsequently subjected to reptation. This prevents

the formation of shadow zones and hence the growth of ripples and eventually the

initially disturbed sand surface emerges as a flat sand surface as shown in Fig. 4.6(b).

With increase in time, the number of ripples appear to merge and the ripples

tend to become more asymmetrical as they evolve towards steady state which is in

accord with Anderson (1990). In Fig. 4.3, asymmetry of the steady-state ripples can

be confirmed as the wind-ward side, of the first ripple from left, has an average slope

of about 0.09 and the lee-ward side has an average slope of about 0.13. A similar

trend in asymmetry is observed for other ripples in stead-state. Ripple index of the

above mentioned ripple is about 16.54 which very much lies in the range of 15 to 20

as detected in the field by Cornish (1914). The distance between a local maximum

to the very next local maximum is considered to be one ripple for simulation runs.

Although, this is not a true definition of a ripple, this is chosen as a criteria for a

simplified quantification of the ripples over its course of evolution. Fig. 4.5 shows

how the number of ripples change with time.
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Fig. 4.4.: (a) Comparison between ripple surface profiles at initial times. (b) Com-
parison between ripple surface profiles at later times. Legend shows time.
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Fig. 4.5.: Number of ripples versus non-dimensional time. A moving average
smoothing has been applied to the original data. Non-dimensional time t̃=300 stands
for 48 minutes

The number of ripples decrease with time is because faster moving small ripples

merge with other such ripples to form big ripples. Also, the rate at which the

number of ripples decrease is much higher at beginning than at later times as shown

in Fig. 4.5. As time reaches t = 32 minutes, the number of ripples almost do not

decrease any more with time. This can be attributed to the steady state of ripples

beyond which the ripples do not evolve in shape and size.

4.3 Contribution of terms

In the equations 3.1 and 3.3, each term represents a physical process responsible

for the evolution of ripples from random bed surfaces. As discussed in the section

“Analytical Description”, −κρhxx simulates the removal of excessive extrusions on

the ripple crests and filling of ditches in the trough region of a ripple. This process is

represented by the first term (term 1), (1+ ˆκρ)hxx , of the equations 3.1 and 3.3. For
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ripple surface slopes less than tanα, the rolling grains would tend to adhere to the

surface of the ripple and flow very slowly which is represented by the term λρ(|hx| −

tanα). This process is modeled by the second term (term 2), ρ tanβ
tanα

(|hx| − tanα
tan γ

),

of the equation 3.1. But at surface slopes greater than that of the angle of repose

tanα, surface of a ripple is not stable as the grains are prone to avalanching which

is modeled by the term υ(|hx| − tanα)(tan2 γ − h2
x)
−1/2. This process is modeled by

the second term,
υ̂(|hx|− tanα

tan γ
)

(1−h2
x)

1/2 , of the equation 3.3. Both the aforementioned process

model rolling of grains under different scenarios but the contribution of hopping

of grains alone in ripple evolution is modeled by the third term (term 3), f(x) =

(hx + tanβ
tan γ

)[1 + hx
2tan γ2]

−1/2
, in both the equations 3.1 and 3.3. The contribution

of these terms with time is discussed in this section. As per equations 3.1 and 3.3,

If 0 ≤ hx ≤ tanα
tan γ

, then

ht = (1 + κ̂ρ)hxx − ρ
tan β

tanα
(|hx| −

tanα

tan γ
)− f(x) (4.10)

= (term 1) + (term 2) + (term 3)

dh

dt
= (term 1) + (term 2) + (term 3) (4.11)

dh = dt× term 1 + dt× term 2 + dt× term 3 (4.12)

= (Term 1) + (Term 2) + (Term 3)

and similar terms Term 1, Term 2, Term 3 are also defined for the ht equation 3.3

if tanα
tan γ

≤ hx ≤ 1. Term 1, Term 2, Term 3 are plotted at different times in the

Fig. 4.10- 4.12. At an initial time t = 3 minutes and 12 seconds, it appears as if

all the terms contribute more or less the same over the whole x-domain as shown in

Fig. 4.10. However, at a later time t = 16 minutes, it appears as if Term 2, Term
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3 are more or less similar in magnitude over the x-domain but Term 1 is lesser in

magnitude around 1/3 to 1/2 of Term 2 or Term 3 as shown in Fig. 4.11. Another

interesting observation made from Fig. 4.11 is that undulations in all the terms Term

1, Term 2, Term 3 begin to get localized and have major magnitude at the precise

location of the ripples. At the bigger ripple on left and one on the right, in Fig. 4.11,

the disturbances in Term 1, Term 2, Term 3 are still considerably consistent. This

probably shows that this ripple is still undergoing reworking by the different processes

and the other smaller ripples on the right are relatively more evolved. This inference

is confirmed by looking at Fig. 4.12, occurring at t = 32 minutes, wherein all the

terms Term 1, Term 2, Term 3 do not have much of a magnitude along the x-domain

except at the ripple crest. As shown in Fig. 4.11- 4.12, Term 1 is lesser in magnitude

than the Term 2 or Term 3 which can be attributed to a physical reasoning that at

later times rolling does not play a major role in evolution of ripples. This confirms

the generation of a steady state of ripples after which ripples do not evolve in shape

and size.



38

Fig. 4.6.: (a) A comparison between the ripple surfaces, obtained by β = 20◦ (green)
and β = 25◦ (red), at time t = 32 minutes. (b) A comparison between the ripple
surfaces, obtained by β = 35◦ (green) and β = 25◦ (red), at time t = 32 minutes.
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Fig. 4.7.: Crest-crest distance of the ripples divided by crest-trough distance against
Non-dimensional time (t̃). t̃=50 stands for 8 minutes and t̃=80 stands for 12 minutes

Fig. 4.8.: Comparison of ripple surface profiles at time t = 27 minutes and 12
seconds, t = 28 minutes and 48 seconds, t = 30 minutes and 24 seconds, t = 32
minutes, t = 33 minutes and 36 seconds, t = 35 minutes and 12 seconds
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Fig. 4.9.: (a) Ripple surface profiles between x = 180 mm and x = 260 mm. Yellow
lines join the crests of ripples at different times (b) Ripple surface profiles between
the same x co-ordinates but various intermediate times. Yellow lines show merging
of ripples and legend shows time.
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Fig. 4.10.: (a) Ripple surface profile at t = 3 minutes and 12 seconds (b) Contribu-
tion of Term 1, Term 2 and Term 3 at the same time t = 3 minutes and 12 seconds
over the whole x-domain. Term 2 is moved up by 0.32 mm and Term 3 is moved
down by 0.11 mm
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Fig. 4.11.: (a) Ripple surface profile at t = 16 minutes (b) Contribution of Term
1, Term 2 and Term 3 at the same time t = 16 minutes over the whole x-domain.
Term 2 is moved up by 0.33 mm and Term 3 is moved down by 0.12 mm
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Fig. 4.12.: (a) Ripple surface profile at t = 32 minutes (b) Contribution of Term 1,
Term 2 and Term 3 at the same time t = 32 minutes and over the whole x-domain.
Term 2 is moved up by 0.33 mm and Term 3 is moved down by 0.12 mm
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5. DISCUSSION

Wavelength and amplitude of the aeolian ripples consisting of a single grain size or

of a unimodal grain size distribution usually ranges between 10-15 cm (Yizhaq et al.,

2008) and less than 10 mm respectively. Amplitude range of the ripples obtained

from the numerical model is 3 mm to 8 mm which is well within 10 mm. However,

the numerical model assumes a single grain size. Sedimentary deposition record of

migrating aeolian ripples with different grain sizes (within a unimodal distribution)

have been observed to be inversely graded unlike subaqueous ripples. From the sim-

ulations, a hypothesis is that such sorting of grains with coarse grains on the crest

acts as a shield against impinging fine grains would affect the ripples to grow bigger

than subaqueous ripples producing higher ripple index values. Sand surfaces with a

bimodal sand size distribution, with distinct coarse and fine size components, evolve

into bed-forms which have much higher wavelength and amplitudes commonly re-

ferred to as “mega-ripples” (Tsoar, 1990). Mega-ripples have been found to have

wavelengths ranging from about 25 cm to as high as 18 m (observed by (Milana,

2005) in Argentina) and amplitudes ranging from from a few centimeters to 1.8 m.

Since the physical processes of transport remain the same for multiple grain sizes,

it is postulated that Hoyle and Mehta (1999)’s model can be extended for “mega-

ripples” with bimodal grain size distributions. Aeolian ripples which we observe

commonly in sand are of unimodal distribution and consist predominantly of fine

grains (Yizhaq, 2008). The reason is that, since the grains are more or less fine, the

wind energy is sufficient to cause saltation of all the grains and hence the sorting

of grains along the surface is not preserved. However, in case of “mega-ripples”,

wind-tunnel experiments by Walker (1981) have shown that coarse grains are less

probable to be brought into saltation by wind and by impacting fine grains in salta-

tion. This has been confirmed by field experiments conducted, by Jerolmack et al.

(2006) along a dune filed at White Sands, New Mexico, USA and the authors came
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to the conclusion that the threshold value of shear velocity for coarse grains would

be the upper threshold value on wind speeds needed to produce grain sorting and

growth of ripples. Jerolmack et al. (2006) also observed that reptation flux was much

less in magnitude than saltation flux. In addition to sorting along crests and troughs,

Tsoar (1990) observed, along aeolian ripples on a dune in the desert of Sinai, that

the body of mega-ripples is composed mainly of fine grains with a layer or two of

primarily coarse grains on the windward slope. This sorting and the formation of a

layer of coarse grains on the wind-ward side, using Hoyle and Mehta (1999)’s model

can be reproduced by making the flux of reptating grains dependent on the grain

size. This can be achieved by using varying κ, λ constant values and varying ρ dis-

tributions according to grain size in equations 3.15 and 3.16. However, further line

of inquiry is needed towards understanding how to change saltation flux. Enormous

mega-ripples, which take years to form, can be studied only by means of numerical

modeling and hence an extension of existing model to accommodate multiple grain

sizes would help better understand the complex physical processes involved.
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6. CONCLUSIONS

Numerical analysis of aeolian sediment transport helps in understanding the skill

of a numerical model’s in reproducing the bed-form geometries as obtained from lab-

oratory based experiments like wind-tunnel experiments and field based observations.

Thus, calibration of ripple evolution profiles help validate analytical models and an-

alyze the effectiveness of an analytical model in simulating the different processes

involved in development and evolution of ripples from random sand bed surfaces.

This research is an attempt to address the aforementioned problem by conducting

an elaborate validation of numerically obtained evolution results and understand the

amends needed in the empirical equations to account for multiple sand grain sizes.

The geometries of ripples produced, beginning from a random sand bed, from the

simulation runs are compared with that of a particular wind-tunnel experiment.

To look back at the objectives, it was one of the goals to visualize equilibrium

bed-forms and the time it takes to generate these conditions. The numerical model

was successful in developing equilibrium bed-form state under steady-state conditions

after about 32 minutes. Thus, the numerically modeled steady-state time lies very

much within the equilibrium time period range of 22 to 36 minutes obtained from the

wind-tunnel experiment, and hence proves the effectiveness in simulating equilibrium

conditions. The second objective was to comprehend how well the ripple geometries

reproduce those obtained by the wind-tunnel experiment. The wavelength of the

equilibrium state ripples, produced from the numerical model, is the range of 3 mm to

8.8 mm which is in reasonable agreement with the range of 5 mm to 10 mm obtained

from the wind-tunnel experiment. Wavelength, obtained from the numerical model,

is in the range of 8 cm to 16.4 cm which is also in reasonable agreement with the

range of 7 cm to 20 cm obtained from the wind-tunnel experiment. The numerical

model was also successful in mimicking the asymmetrical shape of ripples.
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Finally, the contribution of individual processes in shaping up the ripples with

time is studied. The three processes, involved in the evolution of the height of ripples,

are smoothing of ripple crests and troughs by rolling of grains, grains adhering to

the surface at lower slopes and the contribution of hopping grains. It appears as if

the three processes contribute more or less the same at initial times. However at

later times, the process involved with the rolling of grains has lesser contribution

compared to that of the hopping of grains and that of the grains adhering to the

surface. This is perhaps a valid observation because at the beginning stages when

smaller ripples merge, rolling plays an important role in shaping up and smoothing

the bigger ripples and at a later time at which ripples are fully developed, saltation

of grains from the crest and subsequent stable deposition is responsible for the fixed

shape of the equilibrium state ripples.

For multiple grain sizes, it is hypothesized that making κ, λ and ρ distribution

dependent on grain size would be a good methodology for achieving varying reptation

flux and hence grain segregation. However, for a holistic approach, an analysis on

how the saltation paths change with grain size and how it can be included in the

currently applied model needs to be conducted.
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