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ABSTRACT

Quantum Codes over Finite Frobenius Rings. (August 2012)

Anurupa Sarma, B.Tech, National Institute of Technology, Silchar, India

Chair of Advisory Committee: Dr. Andreas Klappenceker

It is believed that quantum computers would be able to solve complex prob-

lems more quickly than any other deterministic or probabilistic computer. Quantum

computers basically exploit the rules of quantum mechanics for speeding up computa-

tions. However, building a quantum computer remains a daunting task. A quantum

computer, as in any quantum mechanical system, is susceptible to decohorence of

quantum bits resulting from interaction of the stored information with the environ-

ment. Error correction is then required to restore a quantum bit, which has changed

due to interaction with external state, to a previous non-erroneous state in the cod-

ing subspace. Till now the methods for quantum error correction were mostly based

on stabilizer codes over finite fields. The aim of this thesis is to construct quantum

error correcting codes over finite Frobenius rings. We introduce stabilizer codes over

quadratic algebra, which allows one to use the hamming distance rather than some

less known notion of distance. We also develop propagation rules to build new codes

from existing codes. Non binary codes have been realised as a gray image of linear Z4

code, hence the most natural class of ring that is suitable for coding theory is given

by finite Frobenius rings as it allow to formulate the dual code similar to finite fields.

At the end we show some examples of code construction along with various results of

quantum codes over finite Frobenius rings, specially codes over Zm.
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CHAPTER I

INTRODUCTION

A. Introduction

Noise is a bane of information processing system. Error correction is an important

aspect of classical information processing that protects the classical bits against errors,

similarly quantum error correction is an important aspect of quantum information

processing. Quantum information is represented by the states of quantum mechanical

systems. Since the information carrying quantum systems will inevitably interact with

their environment, one has to deal with decoherence effects that tend to destroy the

stored information. Hence, it is infeasible to perform quantum computations without

introducing techniques to remedy this dilemma.

It is conjectured that quantum computers are able to solve certain problems

more quickly than any deterministic or probabilistic computer. For instance, Shors

algorithm is able to factor large integers in polynomial time on a quantum computer.

Therefore it is of considerable interest to build quantum computer. However, it is

a formidable task, since the quantum mechanical systems storing the information

unavoidably interact with their environment. Therefore, one has to mitigate the

resulting noise and decoherence effects to avoid computational errors.

The space in which quantum error correcting codes exist is the Quantum state

space of n quantum digits. The space is represented as Cqn and is a tensor product

of n copies of Cq where each copies corresponds to one qubit. The idea of Quantum

error correction is to encode k quantum digits to n quantum digit which is nothing

but a linear mapping of Cqn onto a qk dimensional subspace of Cqn .

The journal model is IEEE Transactions on Automatic Control.



2

B. Motivation and problem

1. As it is known that quantum computer are able to solve certain problems more

quickly than classical computer. However quantum computer is highly prone to noise

and decoherence which is a major hurdle in this field. Quantum Error correcting code

can save it from this problem and it is worth exploring.

2. The ability to correct quanutum errors without any cloning or disturbing the state

of computation was assumed to be close to impossible and hence coming up with a

good quantum code is a challenging and exciting area of research.

3. Stabilizer codes form an important class of quantum codes and have a close re-

lationship with classical codes. The first examples of quantum code found by Shor

[1] and Steane [2, 7] were quantum stabilizer codes. Binary stabilizer codes are well

established. Ashikman and Knill initiated the study of non binary stabilizer codes

over finite field [3]. This inspired me to verify whether the well established theory of

non binary stabilizer codes over finite fields can be extended for finite rings.

4. Currently in classical computing there is an upsurge of interest in codes over rings,

since non binary codes has been realised as the gray image of linear Z4 code. So the

most natural class of ring that is suitable for coding theory is given by finite Frobenius

rings as it allow to formulate the dual code similar to finite fields. So it is worth to

delve into codes over finite frobenius ring.

C. Outline of thesis

In the chapter II we include basic of quantum mechanics, basics of classical error

correction and quantum error correction and detection. We also include algebraic

preliminaries which is required for the rest of our thesis.
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In Chapter III we walk through the theory of binary and non binary stabilizer

codes. Here we also make our reader familiar with finite Frobenius rings, error bases,

error groups and discuss the theory of codes over finite Frobenius rings.

In Chapter IV we introduce quadratic algebra and explain how we establish

theory of stabilizer codes over quadratic algebra, relation to classical coding theory

and codes over ring with q2 elements.

In Chapter V we use the relation between classical and quantum codes and

derive propagation rules that allow one to obtain new codes from existing codes.

Lastly, product codes and how quantum codes can be built from product codes.

Furthermore in last chapter we show some examples of code construction along with

various results of quantum codes over finite Frobenius rings, specially codes over Zm.
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CHAPTER II

BACKGROUND ON QUANTUM AND CLASSICAL CODES

To make the thesis self contained we try to provide a general idea of quantum com-

puting. As this domain is vast it isn’t possible for us to include everything in detail.

We recommend the reader to go through the textbook by Nielsen and Chaung [4] and

lecture notes by Preskill [5].

Quantum Computer requires the control and manipulation of a large number of

sensitive quantum mechanical systems. A quantum computer would inevitably inter-

act with the environment which results in decoherence and eventually would decay

the quantum information stored in the device. So successfully combating decoherence

is a major need. But even though we can fix the decoherence by perfectly isolating

the computer from the environment, we have other hurdles to overcome. Quantum

gates are unitary transformation chosen from a continuum of possible values. It is

not possible to build quantum gates with perfect accuracy, so small imperfections

in the gates would accumulate resulting in serious failure. Therefore any practical

quantum computer would need the ability to fix not only errors due to noise but

also from the quantum gates that accompany it in its processing. Peter schor [6] and

Andrew Steane [7] independently proposed schemes to protect quantum information

from noise and operational errors. Gottesman [8] and indpendently Calderbank et al.,

[9] proposed methods to construct quantum codes from classical codes which added

up tremendously to the literature of quantum coding theory leading a lots of scholars

to research in this domain. These codes are known as stabilizer codes and are the

most studied class of quantum codes. We introduce this class of codes in the next

chapter.
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With this fundamental results in place the focus of quantum coding theory shifted

to the design of good codes with systematic methods of code construction.

A. Quantum computation

Classical computer works on the well understood laws of classical physics whereas

Quantum computer behaves according to quantum mechanics.

1. Qudits

Qudits are the mathematical models for quantum systems which are used to store

quantum information. General state of a quantum digit is represented as

|ψ〉 =

q∑
i=1

αi|xi〉

where αi are complex numbers satisfying

q∑
i=1

|αi|2 = 1. We define a orthonormal basis

{|x1〉, |x2〉, · · · , |xq〉} which is called computational basis. Each element xi belongs to

ring R with q elements.

For example, when q = 2 we call it qubit. The state of the qubit is a normalized

vector over C2. The computational basis over C2 as

|0〉 =

1

0

(ket zero), |1〉 =

0

1

(ket one)

which are simple column vectors.

The the state of a qudit must be a normalized vector and |ψ〉 is a superposition.

We know in classical information theory, we never have any problem in measuring the

state of a bit and measurement is not considered as a part of a classical information

theory. If the measurement gives us result 0 the digit we are measuring is in the state
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0 if it gives us 1 and then the digit is in state 1 etc. But things are not same in

the quantum domain. Not only we cannot trust the measurements results but mea-

surement is itself a essential part of quantum information theory. When we measure

|ψ〉 in computational basis we may obtain a measurement result corresponding to the

state |xi〉 with probability |αi|2 for all i ranging from 1 ≤ i ≤ q. The sum of the

probabilities should be equal to 1, thus we get the equation

q∑
i=1

|αi|2 = 1. This is the

reason why the state of a qudit must be a normalized vector. The sign ”+” in the

state |ψ〉 means ”or”, i.e the state is either in any of the state |xi〉. or in the state

|1〉. This is why we call the state |ψ〉 superposition. For example, suppose there is a

state in computational basis {|0〉, |1〉} over C2

ψ〉 =
1√
2
|0〉+

1√
2
|1〉.

Once we measure the state we will either get |0〉 with probability 0.5 or |1〉 with

probability 0.5. The state |+〉 =
1√
2
|0〉+ 1√

2
|1〉 along with the state |−〉 =

1√
2
|0〉 −

1√
2
|1〉 forms another orthonormal basis over C2. The coefficients of the state |ψ〉 can

be any values as long they satisfy the equation |α|2+|β|2 = 1. This means a qudit can

be in any of infinite possible states. However, after they are measured they collapses

to two possible states. The amount of information we can store on one qudit is given

by Schumacher [10], is one two-system’s worth.

In quantum information theory frequently used quantum systems to represent

are:-

1. Ground and excited states of ions stored in a linear ion trap, with interactions

between ions provided through a joint vibration mode.

2. Photons in either polarization, with interactions via cavity QED.

3. Nuclear spin states in polymers, with interactions provided by nuclear magnetic

resonance technique.
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In point 1 the ground state or the excited state corresponds to |0〉 or |1〉, re-

spectively. Radiating the atom with a ray of light with an appropriate frequency we

can force the electron to jump from |0〉 to the state |1〉. But we can also reduce the

duration of the radiation, the electron in the state |0〉 could then move to a middle

state between |0〉 and |1〉 which is |+〉

2. Quantum registers

An n-qudit register is just a name for the sequence of n qudits. Such a q-register has

qn different base states. Again as in the case of single qudit, any normalized linear

superposition of qn different base states can be in q-register. There is a significant

difference between classical and quantum register like classical register are all indepen-

dent of its digits, we can read or manipulate each digit without any inference to other

digits. Whereas in q-registers the situation is bit different. For example, consider a 3

qudit register over C2 in state |ψ3〉 =
1√
2

(|000〉+ |111〉) =
1√
2

(|00〉+ |11〉)⊗|1〉. The

operator ⊗ above is called tenser product. The tensor product is a way of putting

vector spaces together to form larger vector spaces. The notation |111〉 is shorter

form of exact notation: |1〉 ⊗ |1〉 ⊗ |1〉. Well we see a third qudit of |ψ3〉 in the form

|1〉 but we cannot interchange the third qudit to make it appear in the first place.

that is we cannot rewrite |ψ3〉 in the form |1〉⊗ 1√
2

(|00〉+ |11〉), we cannot say in what

state the first qudit is. Again the first and second qudits are entangled so we cannot

get any description of any one of them without mentioning the second. Though we

can get partial description of this qudits using the density operators [4].
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3. Hilbert space and linear operators

Hilbert space gives a mathematical apparatus need to describe and formulate opera-

tions in quantum computing. In general, it extends the methods of vector of algebra

and calculus from the two-dimensional euclidean plane and three-dimensional space

to spaces with any finite or infinite number of dimensions.

A Hilbert space H is a real or complex inner product space that is also a complete

metric space with respect to the distance function induced by the inner product. H

is a complex inner product space means that H is a complex vector space on which

there is a inner product 〈x, y〉 associating a complex number to each pair of element

x, y of H which satisfies the following properties:

1. 〈y, x〉 is a complex conjugate of 〈x, y〉

〈y, x〉 = 〈x, y〉

2. 〈x, y〉 is linear in first argument. For all complex number a and b

〈ax1 + bx2, y〉 = a〈x1, y + b〈x2, y〉〉

3. The inner product 〈., .〉 is positive definite:

〈x, x〉 ≥ 0,

where the case of equality holds precisely when x = 0.

In addition to measurements that can be done on quantum digit, there are op-

erators which transverse one normalized state to another normalized state [11]. This

operators tends to be normal. Let us assume there are two elements p and q in Cn,

the hermitian inner product is defined as 〈p|q〉 = p0q0 + p1q1 + · · · + pn−1qn−1. The

norm ||p|| of a vector p ∈ Cn is defined as ||p|| =
√
〈p|p〉. Suppose there is a linear
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operator U acting on the quantum bit as follows U |0〉 = |φ〉 and U |1〉 = |ψ〉, then

the linear operator transforms the quantum bit a|0〉+ b|1〉 to a|φ〉+ b|ψ〉. The linear

operator U is nothing but a 2 × 2 matrix. This kind of linear mapping which takes

a unit vector in Cn to unit vector in Cn is called unitary mapping. So, the operator

U is a unitary operator, the matrix U satisfies the condition UU † = I. This kind of

unitary matrix satisfies 〈Up|Uq〉 = 〈p|q〉 for p, q ∈ Cn.

An operator P which maps an Hilbert space to another Hilbert space is called

projection operator if it satisfies the following conditions i.e P = P †, P 2 = P

4. Density operators

Here we consider the quantum state space as C2. Suppose we have two vectors |ψ〉

and |φ〉, let us define the outer product of |ψ〉 and |φ〉 as |φ〉〈ψ|. So for instance

if |ψ〉 = |0〉 and |φ〉 = |1〉, then |1〉〈0| =

0 0

1 0

. If the outer product is formed

with itself then it is called the density matrix, which is denoted by ρ = |ψ〉〈ψ|. This

density matrix 〈ψ|ρ|ψ〉 ≥ 0 is positive definite and Tr(ρ) = 1, where Tr is the sum

of the diagonal matrix. The density operators are matrices of size 2n × 2n, which

allows to view the state as being operators on the Hilbert space. We can thus say if a

system can be found in any of the states |ψi〉 with probability pi, the density operator

associated to this system is given by

ρ =
∑
i

pi|ψ〉〈ψ|

A state is considered as pure if Tr(ρ2) = 1 and mixed otherwise.
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B. Linear algebra

In this section we review necessary mathematical knowledge for the study of quantum

mechanics and quantum error correction theory. Here we only scan through the

necessary results and conclusion by omitting the proofs.

Vector Space : Vector space over a field F is a set V which is closed under

finite vector addition and scalar multiplication.

Tensor products : Tensor product is important concept in the study of multi-

particle systems as it merges small vector space into large vector spaces. Let H1 and

H2 be two Hilbert spaces of dimension n1 and n2 respectively. Then H1 ⊗ H2 is a

Hilbert space of n1n2 dimension. So, if |x〉 is a vector of H1 and |y〉 is a vector of H2

then, |x〉 ⊗ |y〉 is a vector of H1 ⊗H2. Tensor product of two matrices is defined as

A⊗B =



a11B a12B · · · a1n

a21B a22B · · · a2n

· · · · · · · · · · · ·

an1 an2 · · · ann


Tensor product satisfies the following properties :

1)For any scalar z any element |x〉 of H1 and any element |y〉 of |H2〉 :

z(|x〉 ⊗ |y〉) = (z|x〉)⊗ |y〉 = |x〉 ⊗ (z|y〉)

2)For any |x1〉, |x2〉 in H1 and any |y〉 in H2

(|x1〉+ |x2〉)⊗ |y〉 = |x1〉 ⊗ |y〉+ |x2〉 ⊗ |y〉

3)For any |y〉 in H2 and |y1〉, |y2〉 in |H2〉:

|x〉 ⊗ (|y1〉+ |y2〉) = |x〉 ⊗ |y1〉+ |x〉 ⊗ |y2〉

4)Let A and B be two arbitrary linear operators defined on H1 and H2, respectively.

Let |xi〉 and |yi〉 be sets of vectors in H1 and H2. Then,



11

(A⊗B)(
∑

ai|xi〉 ⊗ |yi〉) =
∑

ai(A|xi〉)⊗ (B|yi〉)

The inner product in the space H1 ⊗ H2 can be defined by the inner products in

the H1 and H2. Suppose that {|xi〉} is an orthonormal basis for H1 and {|yk〉} is an

orthonormal basis for H2, then we can prove that {|xiyk〉} is an orthonormal basis

for H1 ⊗H2.

The inner product of two vectors |xiyk〉 and |xjyl〉 is:

〈xiyk|xjyl〉 = 〈xi|xj〉〈yk|yl〉 = δi,jδk,l

If i = j and k = l, the value is equal to 1. Otherwise the value is 0.

Let us consider A and B be two linear operators defined on spaces H1 and H2

respectively, then the following properties hold:

(A⊗B)∗ = A∗ ⊗B∗

(A⊗B)T = AT ⊗BT

(A⊗B)† = A† ⊗B†

where A∗ is the conjugate of a matrix A, AT is the transpose of matrix A and A† is

the hermitian conjugate of the matrix A. Suppose a be either a linear operator or

a state then, a⊗k means a tensor product with itself k times. For example, A⊗4 =

A⊗ A⊗ A⊗ A

Commutator : The commutator of two same size square matrices A and B is

defined as:

[A,B] ≡ AB −BA

If [A,B] = 0, then we say A commutes with B. Whereas the anti-commutator of two

matrices A and B is defined as:

{A,B} ≡ AB +BA
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If {A,B} = 0, we say A anti-commutes with B.

Pauli matrices : The four important matrices in quantum mechanics are Pauli

matrices which is frequently used in quantum information theory.

I =

1 0

0 1

X =

0 1

1 0

Y =

0 −i

i 0

Z =

1 0

0 −1


Important operators : Hermitian operator on a matrix M is denoted by M †

and is defined as M † = (M∗)T , where M∗ is the conjugate of matrix M . This operator

is also called adjoin operator. For square matrix M , N it has the following properties:

(MN)† = N †M † (M †)†) = M

For the outer products like |ψ〉〈ψ| , it is easy to prove that (|ψ〉〈ψ|)† = |ψ〉〈ψ|. If

M † = M , then a linear operator M is called self adjoin hermitian. Projectors are

important class of hermitian operators.

Gram-Schmidt procedure is a important tool to convert between inner product

space. Suppose V be a n-dimensional vector space and let W be a m-dimensional

subspace of V . It is easy to form a orthonormal basis {|gi〉}, 1 ≤ i ≤ m whose first

m elements are basis of W . The projector onto the subspace W is defined as

P =
m∑
i=1

|gi〉〈gi|

The P defined above is a hermitian operator and it acts as a filter. For example,

suppose |v〉 be a vector in the space V , now if we apply P |v〉, then the part of the

vector of |v〉 which is not in subspace W is been cut off and that only belong to W

remains. Thus the vector |v〉 has been filtered. So, the projector is only determined

by orthonormal basis of the subspace instead of the V .

For any non zero vector |v〉 if the inner product 〈v|M |v〉 is always > 0, then the

operator M is called positive definite. A normal operator is an operator satisfying
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MM † = M †M . Hermitian operator are a subclass of normal operator. A square

operator U is called a unitary operator if UU † = I. And the unitary operator preserves

the inner product of two vectors.

Eigenvectors : Let us consider a square matrix M , eigen value of the square

matrix is a non-zero complex value λ such that it satisfies the equation M |v〉 = λ|v〉,

where |v〉 is a non-zero vector. This vector is called the eigen vector of the linear

operator M associated with eigenvalue λ The equation c(λ) ≡ |M − λI| is called the

characteristic equation. The roots of this characteristic equation are the eigenvalues

of the linear operator M . To find eigenvector |v〉, corresponding to a eigenvalue λ,

we simply solve the systems of linear equations given by (M − λI)|v〉 = 0. The set

of all vectors |v〉 satisfying the equation M |v〉 = λ|v〉 is called the eigenspace of M

corresponding to λ.

C. Classical error correction

Important elements and concepts of classical error correction are explained in this

section.

Additive Code : Let Fq denote a finite field with q elements. We have q = pm

for some prime p. A subset C ⊆ F n
q is an additive code if for any x, y in C, x+ y also

in C. Additive code plays an important role in quantum computing. If in addition

to being additive, C also satisfies sc ∈ C for any s in Fq and c ∈ C, then C is called

Fq linear code.

Linear Code : Linear code is error correcting code for which any linear com-

bination of codewords is also a codeword. A linear code of length n and rank k is a

subspace of a vector space over F n
q , where k is the dimension of the code and d which

is the minimum difference between two codewords is the distance of the code.
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Block code : All codewords have the same length n, i.e. C ⊆ V n.

Error : While the message is transmitted through a binary symmetric channel,

it is probable that some codewords are changed. That is the receiver does not get the

same message as it has been transmitted. All codewords have the same probability

of being changed.

Error Detection : It is the technique by which we can detect the garbled

message.

Error Correction : Technique to correct the garbled message. The codewords

have to be ”suciently dierent” from each other so that we can still tell them apart

even when ”a few” errors occurred.

Hamming Distance : Hamming distance between two codewords is the number

of positions between two code words which differ and hamming distance between of

a code C is the minimum hamming distance between two codewords in the code.

Hamming weight : The number of non zero entries in a codeword.

Theorem C.1 A code with distance d is a d − 1 error detecting and bd− 1

2
c error

correcting code.

A classical (n,K, d)q code C ⊆ F n
q , is a code of size |C| = K and distance d = wt(C),

where wt is the hamming weight of C. If |C| = qk, then we denote it by [n, k, d]q. If

C is also Fq-linear code, then C is a k− dimensional subspace of F n
q . Linear codes

are also defined with the help of generator matrix. Generator matrix G is a basis of

codewords. A linear code consists of linear combination of G. When the generator

matrix is of the form [I|P ] we say that it is in the standard form.

Encoding : Suppose C contains qk codewords each of which are distinct mes-

sages that need to be transmitted. Each of these messages are identified as k− tuple

of F k
q . Each message m is encoded as codeword length n which is obtained by multi-
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plying the message with the generator matrix on the right. The encoded message is

then mG = (g0 + g1 + · · ·+ gi) where each gi are the rows of the generator matrix.

Parity check matrix and Dual Codes : Suppose C is an [n, k] code with

generator matrix G. Then C⊥ is defined as the set of the vectors in F n
q , such that

each vector is orthogonal to all the vectors in C. In other words, a vector v belongs

to C⊥ if and only if v is orthogonal to every row vector w of the generator matrix of

C, i.e vH = 0, where H is the transpose of G and the generator matrix of the dual

code C⊥. This is called as the parity check matrix. C⊥ has the parameters [n, n− k].

A code with minimum distance d has a parity check matrix in which any arbitrary

set of d− 1 columns are linearly independent.

The parity check matrix can be used for error detection as the parity check matrix

nullifies all the codeword in C, i.e Hc = 0, where c ∈ C Now suppose c is a vector

which is transmitted through a communication channel, that is corrupted with an

error e, then the vector or codeword becomes c
′

= c ⊕ e. When such a corrupted

vector is multiplied with the parity check matrix H, we get the error syndrome,

Hc′ = H(c⊕ e) = He. If the syndrome Hc
′
= 0, then c

′
is called valid codeword else

the codeword is corrupted.

D. Quantum error correction

Errors are the major factor which we need to address while building a quantum

communication device. Any qudit stored without any protection or one transmitted

in a communication channel will inevitably come out with slight change. The theory

of quantum error correcting code is to remove noise introduced in this way. Again we

cannot use the techniques used by classical error correction mechanism as we have two

hurdles in quantum computing. Firstly, we cannot clone quantum state. Secondly,
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it is quite likely that measurement of a quantum state would collapse the original

state and thus the original information would be lost. So the first fact restrains us

from adding the redundant information and the second fact seems to prevent us from

detecting the quantum state.

1. Independent error model

By independent error model, we mean the interactions between the qudits and the

channels are independent from qudit to qudit. In another words, each operator from

the operator sum representation for quantum noise is a tensor product of one qubit

operators. For example, an operator Ei for a two qudit system may be Ei = X ⊗ Y .

This error model is very often analogous to the one used in classical theory of error

correction.

2. Properties of quantum codes

As we have already mentioned a code to encode k qudits in n qudits will have 2k

basis codewords corresponding to the basis of original states. Linear combination of

these basis codewords is also a valid codewords. Subspace C of valid codewords is a

Hilbert space in its own right , a subspace of the full 2n dimensional Hilbert space.

We only need to consider whether a code can correct a basis of errors. Because if we

can correct errors E and F , we can correct αE + βF .

One very convenient basis which we have used in our work is the set of tensor

products of error operators. The set of all these tensor products with a possible

overall factor of −1 or ±i forms a group G under multiplication. In general, there

are three kinds of error which occurs in codewords. Let E be the error affecting the

codes pace and |v〉 and |w〉 be two code vectors.

1. The first kind is one which does not effect the codeword. i.e is E|v〉 = |v〉.
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2. Error which acting on a codeword produce invalid codeword.

3. Error which converts the codeword to a different codeword in the same codespace.

i.e E|v〉 = |w〉.

The first kind of errors does not produce any harm so it falls under detectable

error. The second kind of error is also detectable but the third kind of error is

not detectable as it is in the same space. Thus the condition for error detection is

E|v〉 6= |w〉. If |i〉 and |j〉 be two quantum digits then, an error Ea is detectable if and

only if Ea satisfies the condition 〈j|Ea|i〉 = Caδij. This is the necessary and sufficient

condition for an error Ea to be detectable.

In order for the code to correct error Ea and Eb, we must be able to distinguish

error Ea acting on one basis codeword |i〉 from error Eb acting on a different basis

codeword |j〉. That is,

〈i|E†aEb|j〉 = 0,

where i 6= j. However this is insufficient to guarantee a code will work as a quantum

error-correcting code. When we make a measurement to find out about the error,

we must learn nothing about the actual state of the code within the coding space.

Because if we did learn something, we will be disturbing superpositions of the basis

states, so while we might correct the basis states, we will not be correcting an arbitrary

valid codeword. We usually learn information about the error by measuring 〈i|E†aEb|i〉

for all errors Ea, Eb, where this quantity must be the same for all basis codewords:

〈i|E†F |i = 〈j|E†aEb|j

Therefore,

〈i|E†aEb|i〉 = Cabδij

for all i, j ranges in basis codewords and Ea, Eb be all possible errors. Cab is indepen-

dent of i, j [12] This is the necessary and sufficient condition for an error {E} to be
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correctable. By doing a linear transformation on the set of errors E, we can always

find a newer set or basis E ′ such that E ′iC are mutually orthogonal.

3. Quantum error correction

Suppose the quantum channel is transmitting encoded quantum digit |ψ〉 = α|0〉+β|1〉

over quantum state C2, subjected to error operator X which has following effect on

single qudit:

|ψ〉 = β|0〉+ α|1〉.

The error is called digit flip as it flips between |0〉 and |1〉 here. Simple idea how to

protect data against digit flip errors consists in encoding logical qudit α|0〉+ β|1〉 as

three entangled qudits,

α|0〉+ β|1〉 −→ α|000〉+ β|111〉.

As we have discussed earlier that we have two insurmountable problem in quantum

computing. One is the no-cloning theorem because of which we cannot directly do

|ψ〉 ⊗ |ψ〉 ⊗ |ψ〉. We can introduce some auxilary qubits and make them entangled

with the qubits we want to transmit. By using quantum circuit controlled not gate

we can encode in the following ways α|0〉 + β|1〉 ⊗ |0〉2 −→ α|000〉 + β|111〉. There

can be two kinds of error which can occur in the quantum state - bit flip and phase

flip error. Though here we are confined to bit flip errors but can refer to both bit

and phase flip errors explained in shor’s 9 bit code [4]. For example, if the bit flip

occurs on second qudit of encoded data, the state will be |ψ2〉 = α|010〉+β|101〉. The

error correction is based on two procedures, error detection detects the error and then

second recovery procedure from error, using the information gained by error detection

recovers the initial state. Error detection procedure can be performed by projective

measurement, with four projection operators:
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P0 = |000〉〈000|+ |111〉〈111| (no error)

P1 = |100〉〈100|+ |011〉〈011| (bit flip on first qubit)

P2 = |010〉〈010|+ |101〉〈101| (bit flip on second qubit)

P3 = |001〉〈001|+ |110〉〈110| (bit flip on third qubit).

If an error on i-th quantum digit occurs on the state |ψ〉 and transforms the three

qubits to the state |ψi〉 then 〈ψi|Pj|ψi〉 = δij. The outcome of error detection on the

state |ψi〉 is certainly i. This measurement never changes the state of measured system

since Pi|ψi〉 = |ψi〉 The recovery action is following: if output of the error detection

is 0 no action is needed, otherwise if output i is obtained then we will flip i-th qudit

back to its initial encoded state.

The problem of quantum error correcting code is more complicated if we want to

protect data against arbitrary error on single qudit. It turns out that a code which

can correct both quantum digit flip and phase flip errors is able to correct an arbitrary

error on single qudit [13]. The first solution of this problem was provided by Peter

Shor by introducing so known 9-qubits Shor code which protects against arbitrary

error on a single qubit [14].

4. Error operators

Error acting on a quantum digit is a linear operator that takes the quantum digit

from one state to another. The most commonly used error basis acting on a two

dimensional Hilbert space is Pauli bases. Let P be a set of pauli matrices given

by I,X, Z, Y . So, in general a quantum error E acting on a quantum digit can be

represented as linear combination of qudit flip, qudit shift and qudit flip + phase flip

errors. Error basis provides a convenient way to confine to only the errors that are the

basis of error vector space. Because of the fundamental linear property of quantum
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mechanics any code that can correct errors Ea and Eb are very likely to correct errors

Ea +Eb. Thus if we can correct errors in the basis set then we can correct any error

that can be written as the linear span of this set.[15] Let us consider the errors that

form a basis of vector space of linear operators acting on Cm
p Let

E = {e1, e2, e3....ep2m}

form such basis. If |ψ〉 represents a state of n pm-ary systems it can be altered by

error operator of the form E = σ1 ⊗ σ2 ⊗ ..... ⊗ σn, where σ1 ∈ {E1, E2, ...., Ep2m}

From the general theory of quantum code it is well known that if a code can correct

a given set E of error operators then it can correct the linear span of E . So it makes

sense to concentrate on operators E .
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CHAPTER III

THEORY OF STABILIZER CODES

The most important class of quantum code is binary stabilizer code. An appealing

aspect for which they are studied so much is that there exists link to classical coding

theory that facilitates the construction of good codes. This construction takes a

classical binary code, self-orthogonal under a certain symplectic inner product and

produces a quantum code, with minimum distance determined from the classical

code [9]. They were first formalised by Daniel Gottesman. The theory of binary

stabilizer code is well developed. More recently some results were generalized to the

case of non binary stabilizer codes [3, 13]. Non binary stabilizer codes over finite

field [15] has inspired us to work on non binary stabilizer codes over Finite Frobenius

rings. This chapter has two main goals. Initially, we review the theory of stabilizer

codes formulated in [16] and additionally we generalize some results.

A. Stabilizer codes

A stabilizer code is defined as qk dimensional subspace of the qn dimensional Hilbert

space which has the property that all the codewords remain invariant under the action

of certain error operator. Stabilizer code are characterized by the error operators that

stabilize them.

Let Gn be the error group generated by the error bases and let S be the subgroup

of Gn. Therefore the stabilizer code is defined as,

Q = {|v〉|s|v〉 = |v〉,∀s ∈ S} where, S is a subgroup of Gn

All operators in the stabilizer must commute with each other otherwise the code space

will only contain zero codeword. For example, if A and B are two operators in the
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stabilizer which do not commute with each other, then |ψ〉 = AB|ψ〉 = −BA|ψ〉 =

−|ψ〉.

Thus in gist, to encode k qudits in n, Q has qk dimensions and S has qn−k

elements. The stabilizer S must be an abelian subgroup of the error group Gn.

Because only commuting operators can have simultaneous eigenvectors, but as it is

abelian and neither −1 nor i is in S, the space Q have dimension qk.

B. Theory of stabilizer codes over finite Frobenius ring

The most natural class of rings that is suitable for coding theory is given by finite

Frobenius rings as they allow us to formulate the dual codes as in the case of codes

over finite fields.

There is a well developed theory of stabilizer codes over finite fields. Here we

consider the construction of quantum codes over Frobenius rings based on the same

idea of classical self-orthogonal codes over ring. The self-orthogonality notion is iden-

tified with the symplectic inner product. Self-orthogonal codes with respect to this

inner product are used in constructing the quantum Stabilizer codes.

Finite Frobenius rings are considered appropriate for constructing quantum codes,

because two classical theorems which are the extension theorem and the MacWilliams

identities, are generalized to these rings.

Notation Let R be a finite ring with identity. A code C over the ring R is a subset

of Rn module of rank n. Any additive subgroup C of Rn is called the additive code.

A code is called linear if it is a R-submodule of the Rn free module. For any two

vectors u and v in the code space C, inner product is defined as

(u, v) =
∑
i

uivi
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The dual C⊥ of C is defined as C⊥ = {v | (u, v) = 0 for all u ∈ C} [4]. In this

section, we establish the details required to establish a theory of quantum codes over

Frobenius ring.

1. Frobenius rings and the concept of generating character

Let R be a finite ring with identity. The character group of the additive group of R

which is (R,+) is denoted by R̂ := Homz(R,C
×). This group has the structure of

R \R bimodule. By defining χr(m) := χ(rm) and rχ(m) := χ(mr) for all χ ∈ R̂ and

for all r ∈ R,m ∈ M where M is the module over ring R. A finite ring R is called a

Frobenius ring if RR̂ = RR. A character χ is called a generating character if for every

ψ ∈ R̂ there exists a r ∈ R such that ψ = χr(a) and a ∈ R. A finite ring is called a

Frobenius ring if and only if it admits right or left generating character [16].

Given a character χ of the additive group (R,+) an a ring element b in R, we

observe that

χb(x) = χ(bx)

Examples of Frobenius rings are [17]: i) A finite field is a Frobenius ring with

generating character being defined as χ(a) = e2πitr(a)/p, where p is the primitive of

the field and tr is the trace of the homomorphism F → Fp and Fp is the prime

subfield.

ii) Ring of integers modulo m denoted as R = Z/m belong to this class. Suppose

ξ = e(2πi/m), then generating character is χ(x) = ξx.

iii) Any Galois ring is a Frobenius ring. A Galois ring is a Galois extension of

Z/(pn) and is given by GR(pn, r) = Z/(pn)[x]/(f) where f belongs to Z/(pn) is a
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monic irreducible polynomial
r∑
i=1

aiX
r−i where ai ∈ Z/(pn). Let ξ = exp(2πi/pn)

then, χ(a) = ξa is a generating character.

2. Inner product

Symplectic inner product Let (a|b) and (a
′|b′) denote two codewords in the code C.

Then the symplectic inner product of the two vectors is defined as χ(b.a
′−b′ .a). If C is

the code then its dual C⊥ is defined as C⊥ = {(a|b)|χ(b.a′−b′.a) = 1forall(a′|b′) ∈ C}

Lemma 1 Let χ be a character of a finite frobenius ring R. Then χ is a right

generating character if and only if ker(χ) contains no non-zero ideals.

Proof Let us define a homomorphic function φ : R → R̂ by φ(r) = χr As we know

|R̂| = |R|, φ : R → χr is an isomorphism if and only if φ is injective. We have

r ∈ ker(φ) if and only if χr(x) = χ(rx) = 1 for all x ∈ R if and only if the right ideal

rR ⊂ ker(χ).

The symplectic inner product over Frobenius ring is non-degenerate. Because χ(〈(a|b)|(c|d)〉) =

1 for all (a|b), (c|d) ∈ R2n and (a|b) = 0 else if (a|b) 6= 0 then χ(aidi) = 1 for some

(ai, 0, 0, · · · , 0) which implies kernel of the character contains the right ideal. This

contradicts our above theorem. If C is a free code then C⊥ is also free with respect

to symplectic inner product.

Hilbert-Schmidt inner product Let us define the normalized Hilbert-Schmidt inner

product on the set of linear operators of Cq as

〈A|B〉 =
1

q
tr(A†B),

where tr is the trace of the matrix and A† is the adjoint of the linear operator A.
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3. Nice error bases

An error basis E is called a nice error basis if it satisfies the following conditions [16]:

1. It contains the identity matrix.

2. The product of any two elements should be a scalar multiple of some element of

the error basis.

3. For any two distinct elements Ei, Ej of E , tr(E†iEj = 0).

Here we construct the error base and prove that it is a nice error bases. Suppose

R be a finite Frobenius ring with q elements. The addition and multiplication in the

ring R will be used to define an unitary shift and a multiplication operator on Cq.

For each a, b in R, we define a shift operator X(a) : Cq → Cq and multiplication

operator Z(b) : Cq → Cq by

X(a)|x〉 = |x+ a〉

Z(b)|x〉 = χ(bx)|x〉

where x is in R and χ is an irreducible character of the additive abelian group (R,+).

We form the set

E = {X(a)Z(b)|a, b ∈ R}.

This set has some interesting properties as follows:

1. It contains the identity matrix as in the matrix X(0)Z(0) is a identity matrix.

2. The product of two matrices in ε is a scalar multiple of another element in E .

We know χ(ba)X(a)Z(b) = Z(b)X(a) which implies that the product of two

operators is given by

X(a)Z(b)X(a′)Z(b′) = χ(ba′)X(a+ a′)Z(b+ b′),

which implies our statement.

3.The trace Tr(A†B) = 0 for distinct elements A,B ∈ E . A finite set of q2 unitary
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matrices that satisfy 1, 2, 3 is called nice error bases. The set E of error operators

forms a basis of the set of complex q × q matrices due to property 3. Let R be a

finite ring. Denote Irr(R) = Hom((R,+), C×), the set of irreducible characters of

the additive group (R,+). An irreducible character χ is generating if and only if

Irr(R) = {χb|b ∈ R} where χb(x) = χ(bx) for all x ∈ R. All finite ring does not

necessarily have a generating character. We call a ring nice if it has a generating

character. From the definition of Frobenius ring which tells that a ring is Frobenius

if and only if it admits left and right generating character, thus Frobenius ring is a

nice ring [18].

Let A = X(a)Z(b) and B = X(a′)Z(b′) are two error operators and C = {χb|b ∈

R} be the set of all irreducible characters. Then we have,

Tr(A†B) =


0 if a 6= a′∑
x∈R

χ(b′x)χ(bx) = 〈χb′ |χb〉 if a = a′

which implies character χb and χb′ are orthogonal when b 6= b′ and thus E is an

orthonormal basis. We can state that

Proposition B.1 The operators E = {X(a)Z(b)|a, b ∈ R} form an orthonormal

basis with respect to the normalized Hilbert-Schmidt inner product if and only if C =

{χb| b ∈ R} is the set of all irreducible characters of the additive group of R [16].

As R is a nice ring thus E = {X(a)Z(b)|a, b ∈ R} is a nice error basis on Cq and the

above discussion justifies the statement.

Lemma 2 If E1 and E2 are nice error bases then,

E = {E1 ⊗ E2|E1 ∈ E1, E2E2}
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is a nice error bases as well.

The lemma can be proved directly from the definition.

Let a = (a1, · · · , an) ∈ Rn. We can write X(a) = X(a1) ⊗ · · · ⊗ X(an) and

Z(a) = Z(a1) ⊗ · · · ⊗ Z(an) for the tensor product of n operators over Cqn . After

defining the operators on Cqn , we can state the following Corollary.

Corollary B.2 The set En = {X(a)Z(b)|a, b ∈ Rn} is also a nice error basis on Cqn.

4. Stabilizer codes

Let Gn be the error group generated by the nice error basis. By including all the

scalar multiples of the operators of the error basis, we get the error group

Gn = {χ(c)X(a)Z(b) | a, b ∈ Rn, c ∈ R}.

We call Gn be the error group associated with the nice error basis En. A non-zero

subspace of Cqn is called Stabilizer code Q that satisfies

Q =
⋂
E∈S

{v ∈ Cqn|Ev = v}

Where S is a subgroup ofGn. Q is the joint eigenspace of a subgroup S with eigenvalue

1. A stabilizer code contains all joint eigenvectors of S with eigenvalue 1. If it does

not, then it is not a stabilizer code for S.

C. Commutativity of operators

Commutativity of operators of the error group plays a crucial role to understand

the relation between classical and stabilizer codes. Let Ea be a error operator and

a = (a1, a2, · · · , an). Suppose the error operator is acting on n bit quantum state.

The operator can be either a bit flip or a phase flip error or both. So, in case of bit
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flip it can be denoted as Xa and decomposed as Xa1 ⊗ Xa2 ⊗ · · · ⊗ Xan . Similarly

if the operator is a phase flip, it is denoted as Zb where b = (b1, b2, · · · , bn). This

operator can be expanded to act on n bit quantum state as Zb1 ⊗ Zb2 ⊗ · · · ⊗ Zbn .

Any error operator can be represented as XaZb = Xa1Zb1 ⊗Xa2Zb2 ⊗XanZan . The

main relation between stabilizer and classical code is that the errors in the error group

can be characterized by the classical codes. Now we represent the error XaZb by a

vector (a|b) which is nothing but a vector over a field or a ring. So, the classical code

related to stabilizer code can be denoted by

C = {(a|b)|XaZb ∈ S}

C is a additive code as it needs to have the property that any two vectors in it are

close under vector addition. Let C ′ be the dual of the code C with respect to the

inner product 〈(a|b), (a′|b′)〉 = (b.a′ + a′.a)mod 2. We denote C ′ to be the centralizer

of the stabilizer as it has the property that it commutes with every element of S. Let

it be defined as below

C
′
= {(a′|b′)|b.a′ + b′.a = 0mod 2, for all (a|b) ∈ C}

Since stabilizer is contained in its C
′

therefore C should be a self orthogonal code

with respect to the above inner product. Thus there is a relation between quantum

stabilizer code and classical code.

1. Relation to classical codes

The condition for two error operators to commute with each other is given by the

following lemma.

Lemma 3 Two elements X(a)Z(b) and X(a′)Z(b′) of the error group commute if

and only if
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χ(b.a′ − b′.a) = 1

Proof Let x ∈ Rn, we have X(a)Z(b)|x〉 = X(a)χ(b.x)|x〉 = χ(b.x)|x + a〉 and

Z(b)X(a)|x〉 = Z(b)|x + a〉 = χ(b.x)χ(b.a)|x + a〉. Therefore χ(b.a)X(a)Z(b) =

Z(b)X(a). Thus it follows that

X(a)Z(b)X(a′)Z(b′) = χ(b.a′)X(a+ a′)Z(b+ b′)

and

X(a′)Z(b′)X(a)Z(b) = χ(b′.a)X(a+ a′)Z(b+ b′)

From both the equation we can say that X(a)Z(b) and X(a′)Z(b′) will commute only

if χ(b.a′ − b′.a) = 1

We define the symplectic weight swt of a vector (a|b) in R2n as

swt((a|b)) = |{k | (ak, bk) 6= (0, 0), for 1 ≤ k ≤ n}|

The weight wt(E) in the group Gn is defined to be the number of non-identity tensor

components. Thus wt(E) = swt((a|b)).

Minimum distance of quantum code is d if it can detect all errors in Gn of weight

less than d but cannot detect some errors of weight d. We say that Q is an ((n,K, d))q

code if and only if Q is a k−dimensional subspace of Cqn with minimum distance d.

2. Additive codes

Relation between stabilizer codes and classical codes comes from the fact that the

errors in the error group Gn that are detectable by the stabilizer codes can be char-

acterized by the classical codes. If S is a subgroup of Gn, then CGn denote the

centralizer of S in Gn
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CGn = {E ∈ Gn | EF = FE for all F ∈ S}

and SZ(Gn) denotes the group generated by S and the center Z(Gn) of the group Gn

Lemma 4 Suppose that S ≤ Gn is the stabilizer group of a stabilizer code Qs of

dimension dimQs > 1. An error E in Gn is detectable by the quantum code Qs if and

only if either E is an element of SZ(Gn) or E does not belong to the centralizer of

CGn(S).

Proof Any element E in SZ(Gn) is a scalar multiple of stabilizer S, E acts on

a quantum state by multiplication with a scalar λE on Q and hence the error E

is detectable. Suppose E is an element of Gn, that does not commute with some

element F of the stabilizer S. Therefore EF = λFE where λ 6= 1. For any vector

u and v in Qs we have 〈u|E|v〉 = 〈u|EF |v〉 = λ〈u|FE|v〉 = λ〈u|E|v〉 which implies

that 〈u|E|v〉 = 0 since λ 6= 1. Thus we can say that the error E is detectable.

Remark: We say that a quantum code Q is pure to t if and only if its stabilizer

group S does not contain non-scalar matrices of weight less than t. A quantum code

is called pure if and only if it is pure to its minimum distance. It is always assumed

that an ((n, 0, d))q code has to be pure [15].

Corollary C.1 If a stabilizer code Q has a minimum distance d and is pure t, then

all errors E ∈ Gn with 1 ≤ wt(E) < min{t, d} satisfy 〈u|E|v〉 = 0 for all u, v in Q.

Proof Since the weight of the error is less than the minimum distance, it follows

that error E is detectable. Since the wt(E) < t and the quantum code is pure to

t, it implies that E is not an element of SZ(Gn). Hence E does not belong to the

centralizer CGn(S). Thus the fact 〈E〉 = 0 follows from the above lemma.
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3. Codes over ring R with q elements

Let R be a nice ring. The errors in the error group Gn that are detectable by the

stabilizer are characterized by the additive codes over R. Let χ be a character in

Hom(R,C×). For each χ in Hom(R,C×) there exists a unique function

ψ : R→ Q/Z

such that

χ(x) = exp(2πψ(x)), x ∈ R.

Let 〈·|·〉χ : R2n ×R2n → Q/Z. Therefore,

〈(a|b)|(a′|b′)〉χ = ψ(b.a′ − b′.a)

for all (a|b) and (a′|b′) in R2n. The 〈u|v〉χ is called the bilinear inner product.

Lemma 5 Let R be a nice ring with χ be the generating character and u1, u2, v, v1, v2, u ∈

R2n and n ∈ Z. Then the following conditions holds [16]

1. 〈u1 + u2|v〉χ = 〈u1|v〉χ + 〈u2|v〉χ,

2. 〈u|v1 + v2〉χ = 〈u|v1〉χ + 〈u|v2〉χ,

3. 〈nu|v〉χ = 〈u|nv〉χ = n〈u|v〉χ,

4. If 〈u|v〉χ = 0 holds for all v in R2n then u = 0,

5. If 〈u|v〉χ = 0 holds for all u in R2n then v = 0.

Let us also define another form called symplectic form 〈·|·〉s : R2n ×R2n → R by

〈(a|b)|(a′|b′)〉s = b.a′ − b′.a

both the forms can be related as

χ(〈u|v〉s) = χ(b.a′ − b′.a) exp(2πi〈u|v〉χ)
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and the inner product is called the symplectic inner product. Suppose C be a sub-

group of (R2n,+). The relationship between the cardinality of two codes C and C⊥

is given by [16]

|C||C⊥| = |R2n|.

Likewise if we impose C to be linear, which is when C is sub-module of the R2n

module, then the following lemma can be stated.

Lemma 6 Suppose R be a finite (commutative) chain ring with generating character

χ. Let C and D be R−sub-modules of R2n. Then,[16]

C ⊥ D if and only if C ⊥s D.



33

CHAPTER IV

THEORY OF STABILIZER CODES OVER QUADRATIC ALGEBRA

Let R be a commutative ring satisfying 1 6= 0. A free algebra of rank 2 over R is

called a quadratic algebra over R. Recall that for elements x, y of the algebra A

and a scalar r in R, we have

r(xy) = (rx)y = x(ry).

Since A is a free R-algebra, the ring R can be understood as a subring of A by

identifying the ring element r with the element r1A of the center of the algebra A.

A quadratic algebra A over R contains an element x such that B = {1A, x} is

a basis of A. Thus, there exist elements a, b in R such that x2 = a1A + bx. This

equation completely determines the multiplication in A. Indeed, given two elements

y1 and y2 of A, we can express them in the form y1 = a11A + b1x and y2 = a21A + b2x

for some elements a1, b1, a2, b2 in R; multiplication yields

y1y2 = (a11A + b1x)(a21A + b2x)

= a1a21A + (a1b2 + a2b1)x+ b1b2x
2

= a1a21A + (a1b2 + a2b1)x+ b1b2(a1A + bx)

= (a1a2 + b1b2a)1A + (a1b2 + a2b1 + b1b2b)x.

Since R is commutative, it follows from this expression that y1y2 = y2y1 holds,

that is, A must be a commutative algebra.

Lemma 7 Let A be a quadratic algebra over R with basis {1A, x} such that x2 =

a1A + bx for some a, b in R, and A′ a quadratic algebra over R with basis {1A′ , x′}

such that x′2 = a′1A′ + b′x′ for some a′, b′ in R. Let ϕ : A′ → A be an A-linear

map satisfying ϕ(1A′) = 1A and ϕ(x′) = v for some element v of A. Then ϕ is an
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A-algebra homomorphism if and only if

v2 = a′1A + b′v

holds.

Proof See [19].

Conjugation : Let A be a quadratic algebra over commutative ring R with basis

{1A, x}, where x2 = a+ bx. The element y := b− x satisfies

y2 = (b− x)(b− x) = a+ b(b− x)

Thus there exists an A algebra automorphism σ on A satisfying

σ(1A) = 1A and σ(x) = b− x

σ2 is an identity map on A and σ is an involution. We call σ the conjugation map

on A. For c, d in R, we have

σ(c+ dx) = (c+ d(b− x)) = (c+ db)− dx

Norm : We can define the norm N of an element y = c+ dx by

N(y) = yσ(y) = (c+ dx)(c+ db− dx)

= c(c+ db)− cdx+ dx(c+ db)− d2(a+ bx)

= c2 + cdb− d2a
Thus, the norm is a map from A to R.

Lemma 8 Let A be a quadratic algebra over a commutative ring R. Then

(i) The norm is multiplicative (ii) An element y in A is a unit if and only if

N(y) is a unit in R.
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Proof (i) Suppose that u, v are elements of A. Then

N(uv) = uvσ(uv) = uvσ(u)σ(v) = uσ(u)vσ(v) = N(u) N(v).

(ii) Suppose that z is an element in A such that yz = 1. Then N(yz) = N(y) N(z) = 1,

so N(y) is a unit in R. Conversely, suppose that N(y) is a unit in R. Then N(y)−1σ(y)

is a multiplicative inverse of y.

Trace : We can define the trace tr of an element y = c+ dx of A by

tr(y) = y + σ(y) = c+ dx+ c+ db− dx = 2c+ db.

Thus, the trace maps elements from the algebra A to R.

Different and Discriminant : Let A be a quadratic R-algebra with basis B = {1, x}.

The element x−σ(x) is called the different with respect to the basis B. The different

with respect to different bases just differ by a factor that is a unit in R.

The discriminant of A with respect to the basis B is the element

δ := b2 + 4a = −N(x− σ(x)).

The principal ideal δR generated by a discriminant is called the discriminant ideal.

The discriminants of A with respect to two different bases just differ by a factor that

is the square of a unit in R. Thus, even though the discriminants of A with respect

to different bases may differ, their discriminant ideals are the same.

A quadratic R-algebra A is called unramified if and only if its discriminant

ideal is equal to R.

Lemma 9 Let A be a quadratic R-algebra such that its discriminant is not a zero

divisor. For all y in A, we have y = σ(y) if and only if y ∈ R.
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Proof Let B = {1, x} be a basis of A with x2 = a+bx. The discriminant d of A with

respect to the basis B is not a zero divisor. Since N(x − σ(x)) = −d, the different

x− σ(x) = 2x− b cannot be a zero divisor either.

Suppose that y is an element of the algebra A satisfying y = σ(y). If we write y

in the form y = c+dx for some c, d in R, then c+dx = c+db−dx, hence d(2x−b) = 0.

Since 2x− b is not a zero divisor, this means that d must be 0. Hence, y is an element

of R, as claimed. The proof of the converse is straightforward.

Examples : Let us exemplify the concept and see what will be the outcome if

we play around with the values of a and b. Suppose we take A as a quadratic

algebra over commutative Ring R with basis {1A, x} where x2 = x. Then the ring

A is isomorphic R ⊕ R. That is the cartesian product ring R × R made into an R

algebra via the diagonal map R → R × R we have σ(1A) = 1A and σ(x) = 1 − x.

Here σ is again a involution. In this case Norm is 0 since, let y = dx then, Norm

= y.σ(y) = (dx)(d− dx) = d2x− d2x2 But we know here x2 = x therefore Norm = 0.

Trace is tr(y) = y + σ(y) = dx+ d− dx = d, which belongs to R. And Discriminant

is 1

Example 1 : For basis {1A = (1, 1), x = (0, 1)} of R ⊕ R. We have φA → R ⊕ R

by φ(1A) = (1, 1) and (0, 1)2 = (0, 1). Clearly φ is a isomorphism. Conjugation is

σ(x) = 1− x = (1, 0) Suppose y = (1, 0) then y2 = (1, 0) i.e it satisfies y2 = y In this

case Norm is 0 and trace is 1 and discriminant is 1

Example 2 : If t ∈ R∗ then, x2 = bx+ a = tbx+ t2a

Example 3 : Let A be a quadratic algebra over R where x2 = bx+ a and B be any

quadratic algebra over R where x2 = dx− c then we can say both of the algebra are
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isometric to each other if there exists r in R and u in R∗, ring which are units such

that

d = ub+ 2r and c = u2arub− r2

Example 4 : IF R = C be the algebra over complex numbers. Quadratic algebra

over C is isomorphic to either the trivial algebra C[X]/X2−X or the algebra of dual

numbers C[X]/(X2)

Example 5 : Let A be a quadratic algebra over Z/mZ with basis {1, x} and x2 = −1.

Lemma 10 Let i denote the solution of equation x2 = −1. Let us define the set

A = {a+ ib|a, b ∈ R} of q2 elements such that addition is given by (a+ ib)+(c+ id) =

(a+c)q+i(b+d)q and multiplication is given by (a+ib).(c+id) = (ac−bd)q+i(bc−ad)q.

The set A is a commutative ring.

Proof It is clear from the theorem that any element u = e + if, v = j + ik and

w = x+ iy satisfies u+ (v + w) = (u+ v) + w, u+ v = v + u, u.(v + w) = u.v + u.w

and uv = vu

Conjugation of x is −x

Discriminant in this case is > 0 i.e b2 + 4a < 0. Both trace and norm maps from

A to R. Let q1, · · · , qr be a sequence of prime numbers such that (−1) is quadratic

non residue of qj such that j = 1, 2, · · · , r. Let q =
r∏
j=1

qj. A be a R algebra as defined

above i.e A = {a+ ib|a, b ∈ Rq} with respect to addition and multiplication modq.

Theorem .2 Direct sum of Galois fields Sq2=F
q21

+···+F
q2r

={(a1,a2,··· ,ar)|aj∈F 2
qj
, j = 1, · · · , r}

where (a1, a2, · · · , ar) + (b1, b2, · · · , br) = (a1 + b1, · · · , ar + br)

and (a1, a2, · · · , ar).(b1, b2, · · · , br) = ((a1b1, · · · , arbr). S

is a ring with q2 element which is isomorphic to the ring A.
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Proof If (a + ib) ∈ A then let φ : a + ib → (a + ib)modq1, (a + ib)modq2, · · · , (a +

ib)modqr be the mapping. Since j is a solution of x2 = −1, it is identically the solution

of x2 = −1modqj for k = 1, 2, · · · , r. The residue aqj + ibqj of (a + ib)modqj is an

element of Fq2j for j = 1, 2, · · · , r Thus, φ is a mapping of A into the ring S =
n∑
j=1

Fq2j

which implies φ : A → Fq21 + Fq22 + · · · + Fq2j . If u = e + if, v = j + ik are arbitrary

elements in A , then

φ(u+ v) = φ(u) + φ(v)

and

φ(u.v) = φ(u).φ(v).

φ is a homomorphic function. φ(u) maps the ring A into the direct sum of Galois

fields S i.e

φ(u) = φ(e+ if) = (eq1 + ifq1 , eq2 + ifq2 + · · · , eqr + ifqr)

a ≡ eqjmodqj

and b ≡ eqjmodqj for j = 1, 2, · · · , r It each element in S is a image of a unique

element in A which follows that the function φ is one to one and hence an isomorphic

mapping of S to A.

Isometric isomorphism : Let R be a nonzero commutative ring, and A a quadratic

R-algebra, that is, A is a free algebra of rank 2 over R. Let B = {1, x} be a basis of

A over the ring R such that x2 = α + βx for some α, β in R. We can define a map

φ : R2n → An by

φ((a|b)) = a+ bx (4.1)

for all (a|b) in R2n.
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Lemma 11 The map φ given in (4.1) is an R-linear isomorphism of R-modules that

is isometric in the sense that

swt((a|b)) = wt(φ((a|b))).

In other words, a vector of symplectic weight d is mapped by φ to a vector of Hamming

weight d.

Proof It is clear that φ is an R-linear map. The map is isometric, since for a vector

(a|b) in R2n, we have

swt((a|b)) = |{i|1 ≤ i ≤ n, (ai|bi) 6= (0, 0)}|

= |{i|1 ≤ i ≤ n, ai + bix 6= 0}|

= wt(φ((a|b))),

as claimed.

A. Alternating form

We introduce an alternating form that will enable us to obtain stabilizer codes from

classical codes over quadratic R−algebra A. A quadratic algebra unramified if and

only if x− σ(x) is a unit. For w, v ∈ An we define,

〈v|w〉a = (
v.σ(w)− σ(v).w

x− σ(x)
)

If we define a map φ : Rn ×Rn such that φ(vX |vZ) = vX + xvZ where (vX |vZ ∈ R2n

Theorem A.1 Suppose that C ≤ R2n and D ≤ An is a R linear code. According to

the above mapping φ let us consider φ(C) = D satisfying D ⊆ D⊥a. Then C ≤ C⊥a.

Also D⊥a = D⊥〈·|·〉s

Proof Let (vX |vZ)inC and (wX |wZ) in C⊥. Clearly if φ(C) ≤ φ(C⊥a) then, C ≤

C⊥a).
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〈φ(vX |vZ)|φ(wX |wZ)〉a = 0

i.e. (
φ(vX |vZ)σ(φ(wX |wZ)− σ(φ(vX |vZ))φ(wX |wZ

x− σ(x)
)

= (
vXwZ(x− σ(x))− vZwX(x− σ(x))

x− σ(x)
)

= (
(x− σ(x))(vXwZ − vZwX)

x− σ(x)
)

= (vXwZ − vZwX)

This proves the theorem.

Lemma 12 The form defined in equation (??) satisfies

(i) 〈v1 + v2|w〉a = 〈v1|w〉a + 〈v2|w〉a

(ii) 〈v|w1 + w2〉a = 〈v|w1〉a + 〈v|w2〉a

(iii) 〈rv|w〉a = 〈v|w〉a = r〈v|w〉a

(iv) 〈v|v〉a = 0

for all v, v1, v2, w, w1, w2 in An, and all r in R. Thus, it is an R-linear alternating

form.

Proof (i) Since σ is linear, we have

〈v1 + v2|w〉a =
(v1 + v2) · σ(w)− σ(v1 + v2) · w

x− σ(x)

=
v1 · σ(w)− σ(v1) · w

x− σ(x)
+
v2 · σ(w)− σ(v2) · w

x− σ(x)

= 〈v1|w〉a + 〈v2|w〉a.

The proof of the properties (ii) and (iii) is similar. Since A is commutative, we have

v · σ(v) = σ(v) · v, which implies property (iv).

Let R be a nonzero commutative ring. In the construction of quantum stabilizer

codes, a different R−linear from played a significant role, namely the symplectic

form 〈·|·〉s : R2n ×R2n → R defined by
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〈(a|b)|(a′|b′)〉s = b.a′ − b′.a

for all (a|b) and (a′|b′) in R2n. The symplectic form over R2n and the alternating form

over quadratic algebra over R are closely related, as the next theorem shows.

Theorem A.2 Let R be a nonzero commutative ring, and A an unramified quadratic

R-algebra. For all elements (a|b) and (a′|b′) in R2n, we have

〈(a|b)|(a′|b′)〉s = 〈φ((a|b)|φ((a|b))〉a,

where φ is the isometry defined in (4.1). In particular, for all v, w in An, the value

of the alternating form 〈v|w〉a is in R.

Proof We have

φ((a|b)) · σφ((a′|b′)) = a · a′ + (b · a′)x+ (a · b′)σ(x) + (b · b′) N(x)

σφ((a|b)) · φ((a′|b′)) = a · a′ + (b · a′)σ(x) + (a · b′)x+ (b · b′) N(x)

Taking the difference of these terms yields

φ((a|b)) · σφ((a′|b′))− σφ((a|b)) · φ((a′|b′)) = (b · a′)(x− σ(x)) + (a · b′)(σ(x)− x).

It follows from this calculaton that

〈φ((a|b)|φ((a|b))〉a =
(b · a′)(x− σ(x)) + (a · b′)(σ(x)− x)

x− σ(x)

= (b · a′)− (a · b′)

= 〈(a|b)|(a′|b′)〉s,

as claimed. Since the isometry φ is surjective, it follows that the values of the alter-

nating form are in R for all pairs of arguments.
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Pairings : Let R be a nonzero commutative Frobenius ring with generating character

χ. Let A be an unramified quadratic R-algebra. We define a pairing 〈 · | · 〉s,χ : R2n ×

R2n → C by

〈u|u′〉s,χ = χ(〈u|u′〉s)

for all u, u′ ∈ R2n, and a pairing 〈 · | · 〉a,χ : An × An → C by

〈v|w〉a,χ = χ(〈v|w〉a)

for all v, w in An. Thus, these pairings are simply obtained by applying the character

χ to the corresponding bilinear forms. We write

u⊥s,χ u′ if and only if 〈u|u′〉s,χ = 1,

v⊥a,χw if and only if 〈v|w〉a,χ = 1.

Lets now relate the stabilizer code to that of the classical code.

Theorem A.3 Let R be a finite commutative Frobenius ring with generating char-

acter χ. Let A be an unramified quadratic R-algebra. An ((n,K, d))R stabilizer code

exists if and only if there exists an additive code D ⊆ An such that

a) the cardinality of D is given by |D| = |R|n/K,

b) the code is self-orthgonal, D ⊆ D⊥,

c) and d =


wt(D⊥a,χ \D) if K > 1,

wt(D⊥a,χ − {0}) if K = 1.

Proof If an ((n,K, d)) stabilizer code exists, then there exists an additive code C ⊆

R2n such that a’) |C| = |R|n/K, b’) C ⊆ C⊥s,χ , and c)’

d =


swt(C⊥s,χ \ C) if K > 1,

swt(C⊥s,χ − {0}) if K = 1,
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see Theorem[8] [16]. Applying the isometric isomorphism φ yields an additive code

D with the claimed properties a), b), and c).

Conversely, if there exists an additive code D ⊆ An satisfying a), b), and c), then

the code C = φ−1(D) satisfies the properties a’), b’), and c’) above. Therefore, an

((n,K, d))R stabilizer code exists by Theorem[8] [16].

Corollary A.4 If there exists a classical [n, k]q2 additive code D ≤ A such that

D ≤ D⊥a and d⊥a = wt(D⊥a) then there exists an ((n, n− 2k,≥ d⊥a)) stabilizer code

that is pure to d⊥.

Hermitian inner product of two vectors x and y in A is σ(x).y. Two vectors

are x ⊥h y if and only if σ(x)y = 0 Here we relate our trace alternating inner product

with hermitian inner product.

Lemma 13 If two vectors x and y in A satisfy x ⊥h y, then they satisfy x ⊥a y. In

particular if D ≤ An then D⊥h ≤ D⊥a

Proof If σ(x).y = 0 then x.σ(y) = 0 holds therefore

〈x|y〉a = (
x.σ(y)− σ(x).y

σ(x)− x
) = 0

Thus the theorem holds. Therefore any self-orthogonal code with respect to the

hermitian inner product is self-orthogonal with respect to the trace alternating form.
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CHAPTER V

CODE CONSTRUCTION RULES OVER FINITE FROBENIUS RINGS

A. Introduction

Here we leverage the theory of stabilizer codes over finite Frobenius ring using trace

symplectic form, to establish a set of rules for constructing new codes from old codes.

That is, we define and show how to construct new non binary quantum stabilizer

codes over Frobenius rings by considering the relation of quantum stabilizer codes

to classical codes. Our approach is based on non binary error bases. We generalize

the relation between self-orthogonal codes over finite fields to non binary quantum

codes to self orthogonal codes over Frobenius ring to non binary quantum codes. As

we know constructing a good quantum code is a difficult task. So, using old codes

for finding new codes can simplify the task of finding codes which can otherwise be

quite a daunting task. There are number of simple modification which we can make

to existing codes to produce new codes with different parameters. We have used the

theory of stabilizer codes over Frobenius rings defined in [16] to formulate the set of

rules.

B. Relation of stabilizer codes to additive codes.

A code C over the ring R is a subset of Rn module of rank n. Additive code is defined

as the additive subgroup of Rn. Associating with every element χ(c)X(a)Z(b) of Gn,

an element (a|b) of R2n forms an additive code C. The dual C⊥ of the code C, is

defined as

C⊥ = {u|〈u|w〉χ = 0 for all w ∈ C}.
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Suppose R be a nice ring with generating character χ. Let C be a subgroup of

(R2n,+). Then the relation between the cardinality of the two codes is given by

|C||C⊥| = |R|2n

Let R be a nice ring and n be a positive number and let us consider a group which

has exponent m denoted by

〈X(a)Z(b)|a, b ∈ Rn〉

Considering ω = exp(2πi/m), be a primitive mth root of unity. We now define the

error group

Gn = 〈ωcX(a)Z(b)|a, b ∈ Rn, c ∈ Z〉

generated by the error operators X(a)Z(b) such that a, b ∈ Rn. As we have already

mentioned that the symplectic weight swt(a|b) is the number of indices i such that

ai 6= 0 or bi 6= 0, where a, b ∈ Rn and (a|b) ∈ R2n. We define a weight of an element

e ∈ Gn where e = ωcX(a)Z(b) to be the number of non-scalar tensor products of e.

Thus it is implied that

wt(e) = swt(a|b).

Let H be a subgroup of Gn. The stabilizer code Q = Fix(H) associated with H is

given by

Q = {c ∈ Cqn|Sc = c for all S ∈ H}

Quantum code Q denoted by ((n,K, d)) is the subspace of Cqn . A quantum code is

a stabilizer code if and only if we have a subgroup H of Gn such that Fix(H) = Q.

So if a stabilizer code Q exists then it implies there exists a subgroup H ∈ Gn of

order |R|n/K where K is the dimension of the code. Let C be the subgroup of R2n
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given by C ∼= HZ(Gn)/Z(Gn), where Z(Gn) is the center of the group Gn such that

Z(Gn) = {ωc.1|c ∈ Z}. Then |C| = |H| = |R|n/K and C⊥ ∼= CGn(H)/Z(Gn). As H

is an abelian group, then HZ(Gn) ≤ CGn(H), which is why C ≤ C⊥. If K = 1 then Q

is a pure quantum code, thus wt(CGn Z(Gn)) = swt(C⊥−0) = d. And if K > 1, then

the elements if CGn(H) \ HZ(Gn) have atleast weight d so that swt(C⊥ \ C) = d.

Now supposedly C is an additive code of R2n such that |C| = |R|n/K, C ≤ C⊥,

and swt(C⊥ \ C) = d if K ≥ 1 and for K = 1, swt(C⊥ − {0}) = d. Let N =

{ωcX(a)Z(b)|c ∈ Z and (a|b) ∈ C} be a normal abelian subgroup of Gn. It is normal

because it is the pre-image of C = N/Z(Gn) and abelian since C is self orthogonal.

Let χ be a character of N such that χ(ωc1) = ωc for c ∈ Z. Then

PN =
1

N

∑
E∈N

χ(E−1)E

is a orthogonal projector onto a vector space Q because PN is idempotent in the group

ring C[Gn] So,

dim(Q) = Tr[PN ] = |Z(GN)||Rn|/|N | = K

Each coset of N/Z(Gn) contains exactly one matrix E such that Ev = v for all v ∈ Q.

Let H = {E ∈ N |Ev = v for all Q} is an abelian subgroup of Gn and its order is

given by |H| = |C| = |R|n/K. The vector space Q is clearly a subspace of Fix(H) and

dim(Q) = |R|s/|S|, hence Q = Fix(H). Again if K ≥ 1, then an element wcX(a)Z(b)

in CGn \ HZ(Gn) cannot have weight less than d, else it will imply that (a|b) ∈ C,

which is not possible. The above explanation answers the following theorem.

Note : From now onwards we will assume that |R| = q

Theorem B.1 An ((n,K, d))q stabilizer code exists if and only if there exists an

additive code C ≤ R2n of size |C| = qn/K such that C ≤ C⊥ and swt(C⊥

C) = d if K > 1 and swt(C⊥ − {0}) = d if K = 1.
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[16]

Proof We can refer to the above explanation.

This theorem makes precise the relation between classical codes and stabilizer codes

giving us a well known connection to symplectic codes. This theorem is the basic

theorem over which formulation of propagation rule is done.

C. Pure vs impure codes

• A pure code is one in which different elements of the set of correctable errors

produce orthogonal results.

• Pure code are usually easier to implement due to their simple decoding process

while the degenerate ones has better error detecting capabilities.

• We say a stabilizer code is pure to t if and only if the stabilizer group S does

not contain non-scalar matrices of weight less than t.

• A quantum code is called pure if and only if it is pure to its minimum distance.

• An (n, 0, d)q code is always pure.

D. Propagation rules

Using old codes to find new ones can simplify the task of finding codes, which can

otherwise be quite a difficult problem. There are number of simple modifications we

can make to existing codes to produce new codes with different parameters.

We can lengthen a stabilizer code to get a new code. The main trick here is how

we append a scalar to get the new code. Suppose that an (n,K, d)q stabilizer code
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exist, and let C be the corresponding additive code with cardinality |C| = qn/K. If

we append a scalar (α|0) to C we get the following code C ′

C ′ = {(aα|b0) | α ∈ R, (a|b) ∈ C},

with cardinality qn+1/K. In the next theorem we affirm that corresponding to the

code C ′ there exist a impure stabilizer code of length n+ 1.

Theorem D.1 Let ((n,K, d)) stabilizer code exists for K > 0 then there exists an

impure((n+ 1, K, d)) stabilizer codes

Proof Above we have lengthened the additive code C to get C ′. Suppose that (aα|b0)

and (a′α
′|b′0) are two arbitrary elements of C ′. Then,〈

(aα|b0)|(a′α′ |b′0)
〉
χ

= ψ(aα|b0)|(a′α′|b′0) = ψ(aαb′0− a′α′b0) =

ψ(a.b′ + α.0− a′.b+ α
′
.0) = ψ(a.b′ − a′b) = 〈(ab|a′b′)〉χ

Therefore, C ′ is self-orthogonal with respect to symplectic inner product.

A vector in the symplectic dual should be of the form (aα|b0) with (a|b) ∈ C⊥

and α ∈ R Thus,

swt(C ′⊥\C ′) = min{swt(aα|b0)|α ∈ R, a, b ∈ C⊥ \ C}

As α can be zero so, the swt(C ′⊥\C ′) coincides with swt(C⊥\C). Therefore an (n+

1, k, d)q stabilizer code exists by Theorem B.1. If d > 1, the code is impure because

C ′⊥ has a vector (0α|00) of symplectic weight 1. So, we can conclude (n + 1, K, d)

code exists, which is impure if d > 1.

Now we see if we puncture a stabilizer code we can get a new code. The following

theorem shows the technique used while puncturing the code.
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Theorem D.2 If a pure ((n,K, d))q stabilizer code exists with n > 2 and d > 2 then

there exists a pure ((n− 1, K∗, d− 1))q stabilizer code where K∗ > K.

Proof Let an ((n,K, d))q stabilizer codeQ exists and C be the corresponding additive

subgroup of R2n and size of |C| = |R|n/K. Let C ≤ C⊥ and swt(C⊥ \ C) = d if

K > 1 and swt(C⊥) = d if K = 1 by the basic theorem defined above.

Suppose C⊥0 be code obtained by puncturing one coordinate from C⊥. As minimum

distance of C⊥ is greater than or equal to 2, we have |C⊥0 | = |C⊥| = |q2n|/|C| = qnK

and note that the minimum distance is d−1. That is, dual of C⊥0 consists of all vectors

(u|v) in (R × R)n−1 such that (0u|0v) consists in C. Hence C0 is a self orthogonal

additive code and the size of C0 is

|R2n−2|/|C⊥0 | = q2n−2/qnK = qn−2q/Kq = qn−1/Kq

as |C0||C⊥0 | = (R×R)n−1. Therefore we see that K∗ = Kq. Thus ((n−1, K∗, d−1))q

code exists where K∗ > K.

Here we will discuss the condition of getting smaller code inside the bigger code.

Theorem D.3 Suppose a (pure) ((n,K, d))q stabilizer code exists with K ≥ 2(K ≥

1) then there exists a (pure) ((n,K∗, d∗) stabilizer code such that d∗ ≥ d and K∗ ≤ K

Proof Suppose (n,K, d) be a stabilizer code then we can say an additive code C ≤

(R × R)n exists such that C ≤ C⊥ and swt(C⊥s \ C) = d and |C| = |R|n/K Choose

an additive code Cb be subgroup of (R × R)n of size Rn/K∗ such that K∗ < K and

C ≤ Cb ≤ C⊥. As C ≤ Cb we conclude that C⊥b ≤ C⊥.

The set
∑
b

= {C⊥b \ Cb} is a subset of {C⊥ \ C}. Thus the minimum weight of

the set d∗ is at least d. Thus we can conclude that an (n,K∗, d∗) code exists.
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If the code is pure, then swt(C⊥) = d, it follows as C⊥b ≤ C⊥, then swt(C⊥b ) is

greater than or equal to d. That is, smaller code should also be pure.

From above two theorem the corollary holds

Corollary D.4 If a pure ((n,K, d))q stabilizer code with n ≥ 2 and d ≥ 2 exists then

there exists a pure ((n− 1, K, d− 1))q stabilizer code.

Concatenating two quantum codes gives us a new quantum code. Suppose that

P1 and P2 are the orthogonal projectors onto the stabilizer codes Q1 = ((n1, K1, d1))q

and Q2 = ((n2, K2, d2))q. Then P1 × P2 is an orthogonal projector onto a K1K2-

dimensional subspace Q of Cqn1+n2 . Now if we consider S1 and S2 the stabilizer groups

of the images of P1 and P2, respectively. Then S = {E1×E2|E1 ∈ S1, E2 ∈ S2} is the

stabilizer group of Q. If an element F1 × F2 of Gn1 ×Gn2 = Gn1+n2 is not detectable

, then F1 has to commute with all elements in S1 and F2 has to commute with all

elements of S2. As it is not possible that both F1 ∈ Z(Gn1)S1 and F2 ∈ Z(Gn2)S2

hold because which would imply that F1 × F2 is detectable. Thus either F1 or F2 is

not detectable which shows that the weight of F1 × F2 is atleast min(d1, d2).

The above explanation leads to the following theorem.

Theorem D.5 Suppose an ((n1, K1, d1))q and ((n2, K2, d2))q stabilizer code exists.

Then there exists an ((n1 + n2, K1K2,min(d1, d2))q stabilizer code.

Proof It can be easily proved from the explanation above.

Theorem D.6 Let Q1 and Q2 be pure stabilizer codes that respectively have parame-

ters ((n,K1, d1))q and ((n,K2, d2))q. IF Q2 ⊆ Q1 then there exists a ((2n,K1K2, d))q

pure stabilizer code with minimum distance d ≥ min{2d2, d1}.
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Proof Let us consider D1 ≤ (Rn×Rn), D2 ≤ (Rn×Rn) and suppose D1 ≤ D2 such

that D1 ≤ D⊥1 (D2 ≤ D⊥2 ) and size of |D1| = qn/K1 (|D2| = qn/K2). The additive

code D = {(u, u+ v)|u ∈ D1, v ∈ D2} ≤ (R2n ×R2n) is of size |D| = q2n/K1K2. The

trace symplectic dual of the code is

D⊥ = {(u′ + v′, v′) | u′ ∈ D⊥1 , v′ ∈ D⊥2 }.

We see that the vector on the right hand side are ⊥ to the vectors in D because

〈(u, u+ v)|(u′ + v′, v′)〉 = 〈u|u′ + v′〉+ 〈u+ v|v′〉 = 0

then u ∈ D1, v ∈ D2 and u′ ∈ D⊥1 , v′ ∈ D⊥2 . We observe that D is self-orthogonal

D ≤ D⊥. And the weight of a vector (u′ + v′, v′) ∈ D⊥ \D is at least min{2d2, d1} .

Theorem D.7 Let |R| = q be an even prime number. If a pure ((n,K1, d1))q sta-

bilizer code Q1 exists that has pure subcode Q2 ⊆ Q1 with parameters ((n,K2, d2))q

such that K1 > K2, then a pure ((2n,K1/K2, d))q stabilizer code exists such that

d ≥ min{2d1, d2}.

Proof The inclusion Q2 ⊆ Q1 implies that D1 ≤ D2. Let D denote the additive code

consisting of vectors of the form (u, u + v) such that u ∈ D⊥2 and v ∈ D1. We claim

that D⊥ consisting of vectors of the form (u′, u′+ v′) such that u′ ∈ D⊥1 and v′ ∈ D2.

And we have

〈v1|v2〉 = 〈u|u′〉+ 〈u|v′〉+ 〈v|u′〉+ 〈v|v′〉 = 0,

which implies that v1 and v2 are orthogonal. The set {(u′, u′+v′)|u′ ∈ D⊥1 , v′ ∈ D2} ⊆

D⊥ has cardinality q2nK1/K2. So, it must be equal to D⊥ by dimension argument.

The hamming weight of a vector (u′, u′+v′) in D⊥ is at least min{2d1, d2} because

u′ ∈ D⊥1 and v′ ∈ D2 ≤ D⊥2 .
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1. Product codes

Let R be a ring with q elements then there is a subring R0 which is isomorphic to

Z/nZ where n is the characteristic of the ring. Suppose A be a unramified quadratic

algebra R−algebra A. If we define the inner product product as v?w =
n∑
i=1

tr(viσ(wi))

for v, w ∈ An tr maps elements from A to R.

Lemma 14 Let w,w′ be two elements of Rm which is a free module over R and v, v′

be two elements over Rn which is a module over R0, we have (v ⊗ w) ? (v′ ⊗ w′) =

(v.v′)(w ? w′)

[21]

Proof (v ⊗ w) ? (v′ ⊗ w′) =
n∑
i=1

m∑
j=1

tr(viwj(σ(v′i)σ(w′j)) since v, v′ ∈ Rn so σ(v) = v

and tr(
n∑
i=1

v.v′ is equal to
n∑
i=1

v.v′. Therefore symplectic inner product is the product

of the Eucledian inner product on the first space and ”?” inner product on the second

space.

Let C1 and C2 be a linear (n1, k1, d1)q and (n2, k2, d2)q code over R, with generator

matrices G1 and G2 respectively. Then, the product code Cπ = C1 ⊗ C2 is a linear

code where Cπ = (n1n2, k1k2, d1d2) generated by the matrix G = G1 ⊗G2 .

If C1 is a linear code over the S given by (n1, k1, d1)p and C2 is a additive code with

(n2, p
k2 , d2)q over R with q elements where q is a power of prime p then, product code

is defined by cπ = C1 ⊗s C2 with parameters (n1n2, p
k1k2 , d1d2)q.

Theorem D.8 Let Q1 and Q2 be two quantum code and their corresponding additive

code be C1 ≤ R2n, C1 ⊆ C?
1 and C2 ≤ R2n, C2 ⊆ C?

2 with parameters ((n1, k1, d1))R

and ((n2, k2, d2))R respectively. Then there exists a quantum code Q with parameters

((n1n2, n1n2−2k1k2,min(d1, d2))R whose corresponding additive code be Cπ = C1⊗sC2
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Proof This can be constructed using CSS code construction.
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CHAPTER VI

CODE CONSTRUCTION AND RESULTS

A. Introduction

In this chapter we show some code construction over Zps . Our main strategy to build

quantum code is by searching self-orthogonal classical codes and then construct the

quantum counterpart using CSS code construction theorem. We mostly emphasize

on simplex codes of type α and β over Z2s and Quasi twisted codes. However we also

construct few other types of codes over Zm where m is an odd prime.

B. CSS code construction

The CSS construction deals with self-orthogonal codes over the ring R with q ele-

ments. This construction was introduced in 1996 by Calderbank and Shor [20] and

Steane [7]. Later this was redefined over Frobenius ring in [16]. It provides the most

direct link to classical coding theory. The following theorem defines the CSS Code

Construction. All our code construction is done on the basis of this theorem.

Theorem B.1 Let C1 and C2 denote two classical linear codes with parameters

[n, k1, d1]q and [n, k2, d2]q such that C⊥2 ≤ C1. Then there exists a [[n, k1 + k2−n, d]]q

stabilizer code with minimum distance d = min{wt(c) | c ∈ (C1 \ C⊥2 ) ∪ (C2 \ C⊥1 )}

that is pure to min{d1, d2}

A special case that interests us is when C1 = C2 i.e when the code is self-orthogonal.

This is particularly interesting because one can easily find codes which satisfy the

self-orthogonality condition.

Theorem B.2 If C is a self-orthogonal code with parameters [n, k, d]q. Then there

exists an [[n, 2k − n,≥ d]]q stabilizer code that is pure to d.
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C. Self-orthogonal codes over Z2s

Let C be a linear code of length n over Zps . The generator matrix of the code is given

by [22].

G =



Ik0 A01 A02 · · · A0s−1 A0s

0 pIk1 pA12 · · · pA1s−1 pA1s

· · · · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · ·

0 0 0 · · · ps−1Iks−1 ps−1As−1s


,

where Aij are matrices over Zps and the columns are grouped into blocks of size

k0, k1, ..., ks−1, ks. Let k =
s−1∑
i=0

(s− 1)ki. Then |C| = pk.

Lets exemplify the self-orthogonal codes over Z2s by self-orthogonal codes over Z4

Let C be a linear code over Z4. Then C has a generator matrix of the form

G =

Ik0 A B1 + 2B2

0 2Ik1 2C


where A, B1, B2 and C are matrices with 0 or 1. And Ik is the identity matrix of

order k. The dual code C⊥ of C is defined as {x ∈ Zn
4 | x.y = 0, for all y ∈ C}. The

code C is called self-orthogonal if C ⊆ C⊥. Let dH and dL be the minimum Hamming

and Lee distance of C. E. M. Rains has shown that dH ≥ ddL/2e. C is said to be of

type α if dH = ddL
2
e and of type β if dH > ddL

2
e. Let Gα

k be the generator matrices

of simplex code of type α defined by

Gα
1 =

(
0 1 2 3

)
, Gα

k =

00 · · · 0 11 · · · 1 22 · · · 2 33 · · · 3

Gk−1 Gk−1 Gk−1 Gk−1

.

Gα
k consists of all elements of Zk

4 .
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Let Gβ
k be defined inductively by

Gβ
2 =

1111 0 2

0123 1 1

 , Gβ
k =

11 · · · 1 00 · · · 0 22 · · · 2

Gβ
k−1 Gβ

k−1 Gβ
k−1

.

No two columns of Gβ
k are multiples of each other. Both the codes generated by Gα

k

and Gβ
k over Z4 is of type α and β and is called simplex code of type α and β. Their

parameters are [22k, 2k, 22k−1] and [2k−1(2k − 1), 2k, 22k−1] respectively.

D. Simplex codes of type α, β over Z2s

Let Gk be a k × 2sk matrix over Z2s defined inductively by

Gα
1 =

(
0 1 2 3 · · · 2s − 1

)
, for k ≥ 2,

Gα
k =

00 · · · 0 11 · · · 1 22 · · · 2 · · · (2s − 1)(2s − 1) · · · (2s − 1)

Gα
k−1 Gα

k−1 Gα
k−1 · · · Gα

k−1

.

The code Sαk generated by Gα
k over Z2s has length 2sk and 2−dimension sk. Let Gβ

k

be the k × 2(s−1)(k−1)(2k−1)

matrix defined by

Gβ
2 =

 111 · · · 1 0 2 4 6 · · · (2s − 2)

0123 · · · (2s − 1) 1 1 1 1 · · · 1

 , and for k > 2

Gβ
k =111 · · · 1 00 · · · 0 22 · · · 2 44 · · · 4 66 · · · 6 · · · (2s − 2)(2s − 2) · · · (2s − 2)

Gα
k−1 Gβ

k−1 Gβ
k−1 Gβ

k−1 Gβ
k−1 · · · Gβ

k−1

.

Sβk is a [2(s−1)(k−1), sk, 2(s−1)(k−1)−s] code.

E. Quantum codes from simplex codes

In this section we give some examples how to construct Quantum codes from simplex

beta code and simplex alpha code both of degree 2.
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Example 1 : Generator matrix of simplex beta code C is given by1 0 3 2 3 1

0 1 2 3 1 1

.

The direct sum of C with C gives the code which is self-orthogonal with respect to

the symplectic inner product forms the stabilizer of the quantum code. The generator

matrix of this code is given by

1 0 3 2 3 1 0 0 0 0 0 0

0 1 2 3 1 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 3 2 3 1

0 0 0 0 0 0 0 1 2 3 1 1


.

The corresponding quantum code [[6, 2, 2]]4.

Example 2 Generator matrix of a self orthogonal simplex beta code C when k = 3

is:

G =

1 0 3 2 0 3 2 1 3 2 1 0 2 1 0 3 3 2 1 0 3 1 1 0 3 2 1 3
0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 1 1 0 1 2 3 1 1
0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3 1 1 1 1 0 2 1 1 1 1 0 2

.

The generator matrix of the code obtained by doing direct sum of C with itself is

given by G 0

0 G

.

The Quantum code obtained is [[28, 22, 2]]4.

Example 3 Generator matrix of a simplex alpha code is given by
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0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3

.

Direct sum of C with C gives the code which is self-orthogonal with respect to the

symplectic inner product. The generator matrix of this code is given by


0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3


This is also the stabilizer matrix that stabilizes the quantum code [[16, 12, 1]]4.

Simplex codes of degree 2 did not give any good quantum codes and going to

higher degree will not be so helpful, as the dimension of the code grows exponentially

which made it not suitable for building codes.

Similarly we can derive quantum codes from self-orthogonal codes over Z2s with

s > 2 by the procedure mentioned above.

F. Quantum codes over finite rings Zpm

We present a method for constructing self-orthogonal quantum codes over finite rings

Zpm , with p an odd prime and m a positive number. In the paper [23] they ex-

plained self-orthogonal codes over integer modulo odd primes. The ”Building up

construction” methodology is used to build self-orthogonal codes. Our construction

of quantum codes is done by using these self-orthogonal classical codes over rings.

We skip through all the details of how the self-orthogonal classical codes over odd

primes is built. Readers can refer to [23] for details. Building quantum codes is what

we emphasize here.
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Example 5 The following is a self-orthogonal almost MDR[4, 2, 2] code over Z52

with generator matrix

G =

5 0 15 0

0 5 0 10

 .

The stabilizer is

G =



5 0 15 0 0 0 0 0

0 5 0 10 0 0 0 0

0 0 0 0 5 0 15 0

0 0 0 0 0 5 0 10


.

The corresponding quantum code is [[4, 0, 2]]4.

Example 6 For length n = 6 starting from a code with generator matrix G5

with x = {14, 6, 21, 24}, we get a self-orthogonal MDR[6, 3, 4] code over Z25 with a

generator matrix 
5 0 0 15 20 15

0 5 0 5 10 15

0 0 5 10 15 20

 .

The corresponding quantum code is [[6, 0, 2]]4.

Example 7 For length n = 8 a self orthogonal almost MDR[8, 4, 4] code over Z25

with a generator matrix. 
5 0 0 0 15 20 0 15

0 5 0 0 0 20 15 15

0 0 5 0 15 20 15 0

 .

The corresponding generator matrix for quantum code is [[8, 0, 1]](4) code.



60

Remark : An [[n, 0, d]] code is pure by convention. [[n, 0, d]] code is a single quan-

tum state with the property that, when subjected to a decoherence of [(d − 1)/2]

coordinates, it is possible to determine exactly which coordinates were decohered.

Such a code might be useful for example in testing whether certain storage locations

for qudits are decohering faster than they should.

Example 8 Another self-orthogonal MDR[8, 5, 4] code over Z25 with generator

matrix is 

1 3 0 2 2 22 13 23

0 5 0 0 4 11 3 2

0 0 1 1 3 17 9 12

0 0 0 5 2 13 14 16

0 0 0 0 5 20 10 15


.

The corresponding quantum code is a [[8, 2, 2]]4 code. We also have self orthogonal

classical codes over integer modulo odd primes with length 10 and greater. However

we won’t be able to present those examples here as we do not have proper tool to

find the distance of the quantum code.

G. Quantum codes from quasi twisted codes(QT)

A code is said to be Quasi Twisted codes (QT ) if a consta-cyclic shift of any codeword

by p positions is still a codeword. The length n of a QT code is a multiple of p, i.e

n = mp. The constacyclic matrices are also called twistulant matrices and they form

the basic components of a generator matrix for a Quasi Twisted code. The generator

matrix G can be represented as

G =

(
B1 B2 B3 · · · Bp

)
,
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where each Bi is a m×m η−twistulant matrix and is represented as below

Bi =



b0 b1 b2 · · · bm−2 bm−1

ηbm−1 b0 b1 · · · bm−3 bm−2

· · · · · · · · ·

· · · · · · · · ·

ηb1 ηb2 ηb3 · · · ηbm−1 b0


,

Defining polynomials are used to represent the first row of the twistulant matrices.

The QT form of the consta-cyclic matrix can be represented by these defining poly-

nomials.

Let us exemplify the theory. The first row of the generator matrix for a (6, 2) code

is represented by [1, 1, 13] The generator matrix of the Quasi Twisted code is given

by

G =

 0 1 | 0 1 | 1 3

η.1 0 | η.1 0 | η.3 1


where η = 3. We use a brute force approach for exploring self orthogonal Quasi

Twisted codes. Our general criteria is to check for codes which have good minimum

distance.

Suppose the code which we have considered is C then the corresponding direct sum

of C with C gives us the code which is self orthogonal with respect to symplectic

inner product. The generator matrix of the code is given byG 0

0 G

 ,

where G is the generator matrix of the code C. This is also the stabilizer matrix that

stabilizes the quantum code which we built with the help of the [16] Theorem[2].
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Example 9 : A (18, 6) Quasi Twisted Code with first row of the generator matrix

is given by [21, 111, 11321]. The generator matrix of this code is given by the following

0 0 0 0 2 1 0 0 0 1 1 1 0 1 1 3 2 1

3 0 0 0 0 2 3 0 0 0 1 1 3 0 1 1 3 2

2 3 0 0 0 0 2 3 0 0 0 1 1 3 0 1 1 3

0 2 3 0 0 0 0 2 3 0 0 0 1 1 3 0 1 1

0 0 2 3 0 0 0 0 2 3 0 0 0 1 1 3 0 1

0 0 0 2 3 0 0 0 0 2 3 0 0 0 1 1 3 0


.

The corresponding quantum code is [[18, 6, 3]]4 with minimum distance 3.

Example 10 : Lets take another Self-orthogonal QT code is (24, 8). The generator

matrix is given below.

0 0 0 1 2 1 0 3 0 0 0 1 1 0 3 1 0 0 2 1 3 1 1 3

1 0 0 0 1 2 1 0 3 0 0 0 1 1 0 3 1 0 0 2 1 3 1 1

0 1 0 0 0 1 2 1 1 3 0 0 0 1 1 0 3 1 0 0 2 1 3 1

3 0 1 0 0 0 1 2 0 1 3 0 0 0 1 1 3 3 1 0 0 2 1 3

2 3 0 1 0 0 0 1 3 0 1 3 0 0 0 1 1 3 3 1 0 0 2 1

3 2 3 0 1 0 0 0 3 3 0 1 3 0 0 0 3 1 3 3 1 0 0 2

0 3 2 3 0 1 0 0 0 3 3 0 1 3 0 0 2 3 1 3 3 1 0 0

0 0 3 2 3 0 1 0 0 0 3 3 0 1 3 0 0 2 3 1 3 3 1 0



.

Quantum code constructed from this is [[24, 8, 3]]4.

Similarly we have constructed quantum codes [[32, 16, 4]]4 and [[16, 2, 3]]4 from

the classical code (32, 16) and (16, 2).



63

H. Conclusion

We provided a brief insight of constructing quantum codes over Z2s and Zm rings

where m is a odd prime. We presented a way of constructing quantum codes from

existing self-orthogonal classical codes and we discussed few classes of self orthogonal

codes and quoted few examples of quantum codes that have been constructed using

these types.
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