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ABSTRACT

A GPU Accelerated Smoothed Particle

Hydrodynamics Capability for Houdini. (August 2012)

Mathew Allen Sanford, B.S., Texas A&M University

Chair of Advisory Committee: Dr. Frederic Parke

Fluid simulations are computationally intensive and therefore time consuming and

expensive. In the field of visual effects, it is imperative that artists be able to efficiently

move through iterations of the simulation to quickly converge on the desired result.

One common fluid simulation technique is the Smoothed Particle Hydrodynamics

(SPH) method. This method is highly parellelizable. I have implemented a method

to integrate a Graphics Processor Unit (GPU) accelerated SPH capability into the

3D software package Houdini. This helps increase the speed with which artists are

able to move through these iterations. This approach is extendable to allow future

accelerations of the algorithm with new SPH techniques. Emphasis is placed on the

infrastructure design so it can also serve as a guideline for both GPU programming

and integrating custom code with Houdini.
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CHAPTER I

INTRODUCTION

The goal of this work is to create a Graphics Processor Unit (GPU) accelerated

Smoothed Particle Hydrodynamics (SPH) capability for the Houdini software pack-

age. Motivation for doing so is explained below.

I.1. Motivation

In the three-dimensional (3D) computer animation industry there are multiple parts of

the production process that are each integral to the success of a project. Each of these

segments requires artists with different sets of talents and abilities. Of these segments,

the creation of visual effects requires the most reliance on computer algorithms to

generate the end result.

Simply stated, effects are the creation of a virtual representation of natural or

supernatural phenomena through computer algorithms. These representations are

generally too time consuming or difficult to create in a more direct manner by hand.

Examples of this include fire, explosions, complex object fracturing, and fluid sim-

ulations. See Fig. 1 for examples in modern film. These realistic simulations are

generally computationally intensive. Therefore, using current commercially available

simulation methods it takes a substantial amount of time for the effects artist to

iterate through results to converge on the desired final look of an effect.

The Houdini software package, developed by Side Effects Software [15], is a

commercially available tool commonly used in the entertainment industry for the

The journal model is IEEE Transactions on Visualization and Computer
Graphics.
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(a) (b)

Fig. 1. Examples of visual effects in film: (a) Fire in How To Train Your Dragon [2].

(b) Water and object fracturing in Inception [18].

creation of effects. It is very versatile and allows users to easily develop their own

tools using several languages, including Python and C/C++, and integrate them with

the software package.

Recent advancements in graphics card technology have made large amounts of

computation power available at a very affordable cost. These graphics cards generally

consist of a GPU chip containing multiple stream processors and shared memory. It is

possible to write parallel non-graphics related code to take advantage of these GPUs,

allowing performance gains over traditional single threaded processing algorithms.

Several companies have developed proprietary tools that speed up simulation algo-

rithms using GPUs, but there are very few non-proprietary implementations available.

In this thesis I describe the creation of an extended capability for the Houdini soft-

ware package that makes use of the GPU to accelerate the SPH algorithm, which is

commonly used to simulate liquids and other substances with fluid-like behavior.

I.2. Introduction

Creation of this GPU accelerated SPH capability for Houdini has been driven by the

following goals.



3

• Create a usable Houdini asset. The Houdini asset should allow for GPU accel-

erated SPH simulation on a particle system. Within Houdini, this asset should

be easy to work with and not a burden for the user.

• Determine speed increase, if any, of integrating GPU acceleration in Houdini.

Analysis is made to determine how much the GPU implementation helped in-

crease the speed of calculation.

• Provide a useful template for future Houdini Development Kit (HDK) projects.

The resulting HDK template should be easy for another developer or student

to use as a base for creating their own GPU accelerated Houdini asset.

This thesis is organized as follows: Chapter II summarizes related work. Chap-

ter III discusses the process used for development and the details of the implemen-

tation. Chapter IV presents and discusses the results. Chapter V concludes and

discusses future work.
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CHAPTER II

RELATED WORK

This chapter discusses previous work that applies to this thesis. Section II.1 discusses

Smoothed Particle Hydrodynamics (SPH) from conception to more recent advance-

ments. Section II.2 discusses spatial subdivision schemes and the scheme that is

implemented in this thesis. Section II.3 discusses Houdini and the Houdini Develop-

ment Kit (HDK).

II.1. Smoothed Particle Hydrodynamics

Gingold and Monaghan [3] and Lucy [6] first introduced SPH as a means to simu-

late problems in astrophysics. The authors focused solely on the application of the

algorithm to astrophysics.

Monaghan later discussed the application of SPH to a broader selection of prob-

lems in 1992 [7]. The basic idea behind SPH is that fluid is represented by a set of

discrete elements, or particles. These particles each have attributes, such as mass,

position, and velocity. The SPH algorithm uses these attributes along with the dis-

tances between particles to approximate fluid properties, such as density, viscosity,

and pressure. These properties are calculated by averaging the attributes across the

particles based on the distance between the particles. This is accomplished using

a set of smoothing kernels, one for each of the properties. Examples of commonly

used smoothing kernels are the Gaussian function and cubic splines. The following

equation represents the generalized form of this averaging function.

A(r) =
∑

j

mj
Aj

ρj

W (|r − rj| , h) (2.1)



5

The variables in this function are defined as follows:

• A(r) represents the property to be calculated

• mj represents the mass of particle j

• Aj represents the value of property A at particle j

• ρj represents the density of particle j

• W is the smoothing kernel function

• |r − rj| is the distance between the particle of calculation and particle j

• h is the influence distance of the smoothing kernel, the smoothing length

In this generalized case, the summation over j implies a summation over all

particles in the simulation. In practical implementations, this is not feasible and a

spatial partitioning is used so that the summation is only performed on particles that

are within the smoothing distance.

To calculate the differential form of the generalized SPH averaging function, we

need only use a smoothing kernel that is differentiable. Because of this, we can use

normal differentiation and do not have to use finite differences or a grid. For example,

to calculate the gradient ∇A, we can use the following equation:

∇A(r) =
∑

j

mj
Aj

ρj

∇W (|r − rj| , h) (2.2)

The following subsections detail how SPH has been used to simulate fluid flow.

Section II.1.1 discusses the first application of SPH to fluids. Section II.1.2 discusses

some of the improvements made to SPH implementations for fluids. Section II.1.3

compares the SPH fluid simulation method with more common Eulerian voxel based

simulation methods.
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II.1.1. Modeling Fluids With Smoothed Particle Hydrodynamics

SPH was first introduced as a means to simulate fluid flow in 3D applications in 2003

[8]. The algorithm was then modified to create a realistic simulation in a real-time

application. These modifications apply the standard Navier-Stokes equation to the

algorithm. New smoothing kernels were derived that allowed real-time interactivity.

II.1.1.1. Applying Simplified Physics to Fluids

In Eulerian, grid-based fluid simulation, fluids are described by a velocity field v, a

density field ρ, and a pressure field p. There are two general equations that describe

the fluid with respect to these changing quantities.

∂p

∂t
+∇ · (ρv) = 0 (2.3)

ρ

(
∂v

∂t
+ v · ∇v

)
= −∇p+ ρg + µ∇2v (2.4)

To create a physically plausible and realistic simulation, both conservation of

mass and conservation of momentum must be observed. For Eulerian simulations,

equation 2.3 guarantees conservation of mass and equation 2.4 guarantees conserva-

tion of momentum. In Equation 2.4, g is an external gravity force and µ is the viscosity

of the fluid. This is a form of the Navier-Stokes equation, which describes the motion

of fluid substances [13]. There are many forms of the Navier-Stokes equation, this

form represents a simplified version used for incompressible fluids.

The use of particles in SPH allows several simplifications of these equations when

compared to grid based Eulerian simulations. First, since the number of particles in

an SPH simulation is constant, and each particle has a constant mass, conservation

of mass is inherently guaranteed. This makes equation 2.3 unnecessary in SPH calcu-
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lations. Second, in equation 2.4, first replace the ∂v/∂t+v ·∇v term on the left hand

side with the substantial derivative Dv/Dt. The substantial derivative of a property

in fluid dynamics defines the rate of change of the property subjected to a velocity

field. Since particles move with the fluid, the substantial derivative of the velocity

field is simply the time derivative of the velocity of the individual particles. This

allows us to eliminate the convective term v ·∇v, which leaves the following equation.

ρ

(
Dv

Dt

)
= −∇p+ ρg + µ∇2v (2.5)

In equation 2.5 there are three terms on the right hand side of the equation used

to model pressure (fpressure = −∇p), external forces (f external = ρg), and viscosity

(f viscosity = µ∇2v). The sum of these three terms is the fluid force f that determines

the change of momentum of the particles.

f = fpressure + f external + f viscosity (2.6)

Using this, we can calculate the acceleration of particle i with the following

equation:

ai =
dvi

dt
=
fi

ρi

(2.7)

In equation 2.7, vi is the velocity of particle i, fi is the fluid force on particle i,

and ρi is the density field evaluated at particle i.

II.1.1.2. Calculating Density

Notice that both the particle mass and density appear in equation 2.1. The mass of

a given particle is a constant throughout the simulation, but density may change. To

find the density at particle i, ρi, just insert the desired values into equation 2.1. This
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yields the following.

ρi(r) =
∑

j

mj
ρj

ρj

W (|r − rj| , h) =
∑

j

mjW (|r − rj| , h) (2.8)

II.1.1.3. Modeling Pressure

To model the pressure term of equation 2.5, −∇p, first apply the SPH equation 2.1.

This gives the following equation for the pressure on particle i.

fpressure
i = −∇p (ri) = −

∑
j

mj
pj

ρj

∇W (|ri − rj| , h) (2.9)

A problem with equation 2.9 is that it does not conserve energy as the forces

on two interacting particles are not inherently symmetric. When particle i interacts

with particle j, it uses only the pressure of particle j to compute the contributing

force, and particle j uses only particle i to compute the corresponding opposite force.

Since the pressure forces on each particle are not guaranteed to be equal, the pressure

forces will not be symmetric in most cases. Muller [8] proposes a simple method of

computing the pressure force between two particles by taking the arithmetic mean of

the pressures of the two particles. This ensures that the pressure force between two

interacting particles is symmetric. This results in the following equation.

fpressure
i = −

∑
j

mj
pi + pj

2ρj

∇W (|ri − rj| , h) (2.10)

To calculate the pressure at a given particle i, a modified version of the ideal gas

state equation is used.

pi = k (ρi − ρ0) (2.11)

In equation 2.11, the pressure of particle i, pi, is calculated using a pre-determined
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pressure constant k, the rest density of the fluid ρ0, and the current density of the

particle ρi as calculated by equation 2.8. Using this computed pressure in equation

2.10 will yield the desired fluid force on particle i due to pressure, fpressure
i .

II.1.1.4. Modeling Viscosity

Similar to the derivation for pressure, to model the viscosity term of equation 2.5,

f viscosity = µ∇2v, first apply the SPH equation 2.1. This gives the following equation

for the viscosity force on a particle i.

f viscosity
i = µ∇2v (ri) = µ

∑
j

mj
vj

ρj

∇2W (|ri − rj| , h) (2.12)

Similar to the derivation for pressure, there is a problem in equation 2.12. The

force on two interacting particles are not inherently symmetric because the velocity

field varies from one particle to the next. The viscosity term is a way for a particle i

to look at neighboring particles and accelerate in the direction of the average velocity

of it’s environment, in relation to it’s own velocity. Therefore, the forces can be

made symmetrical by defining the viscosity force as being dependent on the velocity

difference between two particles instead of the absolute velocities. This yields the

following equation, which is the viscosity force on particle i.

f viscosity
i = µ

∑
j

mj
vj − vi

ρj

∇2W (|ri − rj| , h) (2.13)

II.1.1.5. Selecting Smoothing Kernels

When choosing smoothing kernels to use, the key considerations are stability, com-

putational speed, and accuracy. For stability, it is beneficial to choose kernels whose

value and derivatives approach zero as the particle seperation, r, increases. For speed,
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it is beneficial to be able to precompute as much as possible of it and minimize the

amount of per-particle calculations that must be performed. Muller proposed the

use of the following smoothing kernels. Wpressure is used in the pressure calculations,

Wviscosity is used in the viscosity calculations, and Wother is used in all other calcu-

lations. These kernels were developed specifically for the SPH algorithm through

testing by Muller.

Wother (r, h) =
315

64πh9


(h2 − r2)

3
0 ≤ r ≤ h

0 otherwise

(2.14)

Wpressure (r, h) =
15

πh6


(h− r)3 0 ≤ r ≤ h

0 otherwise

(2.15)

Wviscosity (r, h) =
15

2πh3


− r3

2h3 + r2

h2 + h
2r
− 1 0 ≤ r ≤ h

0 otherwise

(2.16)

II.1.1.6. Modeling External Forces

SPH supports the inclusion of external forces on the simulation by applying the forces

directly on the individual particles independent of all SPH calculations. Some external

force examples could be gravity, collisions, wind, or user interaction forces.

For example, assuming a gravitational force, the following equation would be

used:

f external
i = mig (2.17)

Where mi is the mass of particle i, and g is the acceleration due to gravity.
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II.1.2. SPH Improvements

Since the initial introduction of SPH in 3D applications much research has been put

into improving both the efficiency and the realism of these simulations. Some of the

major improvements are discussed in this section.

One source of unnecessary calculation in SPH simulations is simulating the par-

ticles that are beneath the surface of the fluid. Since these are generally fairly sta-

tionary particles that are packed at the rest density, simulating all of these particles

is an unnecessary process. There has been research on using an adaptive method that

modifies the particle size based on the level of detail needed in the particle’s area. For

example, the particles at the surface of the fluid where detail is needed will be smaller

than the particles underneath the surface. This is exhibited in the research of Adams

et. al [1], Yan et. al [19] and Hong, House and Keyser [4]. Another take on adaptive

sampling was done by Solenthaler and Gross [16]. They propose definining areas of

the simulation where complex flow behavior occurs, and using a smaller particle size

in these areas as compared to the rest of the simulation.

Another source of inefficiency in the SPH algorithm is that the simulations tend

to produce fluids that are compressible if too large a timestep is used, which results

in an undesirable ’springy’ looking fluid. In physical simulations, a timestep is the

amount of time that each simulation calculation uses for it’s calculations. Solenthaler

and Pajarola address this issue by implementing a predictive-corrective scheme [17].

In this scheme, particle density fluctuations are propogated through the fluid and

the pressure values are updated each time step until a target density is met. This

sometimes takes longer per timestep to compute, but allows the use of a much larger

timestep per simulation step. Results showed that this method outperformed the

weakly compressible SPH model by an order of magnitude if a truly incompressible
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solution is desired.

II.1.3. Comparison With Voxel Fluid Simulations

SPH has several benefits over more traditional voxel based fluid simulation methods,

but also some drawbacks. One major benefit is that SPH inherently guarantees

conservation of mass, since the particles themselves represent the mass of the fluid.

Another major benefit is that pressure at a given particle is computed from a weighted

contribution of neighboring particles in SPH, whereas in a voxel based simulation a

more complex linear system of equations is used.

One drawback of SPH is that the algorithm inherently creates a compressible

fluid, meaning that particles can temporarily pack in tighter than the target density

of the fluid until the particle pressures are re-smoothed to achieve the desired density.

This smoothing process can sometimes take several timesteps to achieve. Specifying

a larger fluid pressure constant can minimize this effect. However, this requires tak-

ing smaller timesteps to avoid an unstable simulation, causing simulation times to

increase.

II.2. Spatial Subdivision

When working with a large number of 3D data points, it is beneficial to store the

data points in a data structure that allows for efficient processing. For example, many

algorithms, including SPH, require searching within a given radius of a point in 3D

space for other data points that may affect it. Storing the data points in a smart

data structure allows processing only data points that are within that radius, instead

of processing every single data point. This results in an efficiency on the order of

O(n), depending on the data structure used, instead of O(n2) if a spatial subdivision
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scheme is not used.

One common spatial subdivision scheme used in SPH is to partition the parti-

cles in a grid-based data structure [8]. Since the smoothing kernels in SPH have a

finite support distance, h, using a grid structure where the grid cells have uniform

dimension h can greatly increase simulation performance. This allows searching of

a particle’s own grid cell and its neighboring grid cells to find potential particles of

influence, instead of the whole domain of available particles. A common method

for implementing a grid sort as described above is to define a maximum number of

particles that are allowed in each grid cell, as well as the maximum total number of

cells, and then to preallocate an array of grid cell element structures large enough to

accommodate this.

Other, more recent spatial subdivision schemes implemented on the GPU are

illustrated by Liu et. al [5]. They describe a multi-level subdivision scheme designed

for operation on GPUs that divides the simulation workspace up into uniform grid

cells. Once the initial workspace subdivision is complete, they further divide the

individual cells up into more discrete cells depending on how the given processing

algorithm uses the space. By doing this, they are able to reduce the required final

processing even futher by eliminating more false positives.

II.3. Houdini

Houdini is a 3D animation package developed by Side Effects Software [15]. It is used

by visual effects and animation studios around the world. The chief distinction of

Houdini, when compared to other prominent 3D animation packages, is that it was

developed as a purely procedural environment from the ground up. This makes it an

ideal platform for developing procedural effects solutions.
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The following subsections describe the Houdini animation package, and go into

depth on the Houdini Development Kit. Section II.3.1 discusses the procedural opera-

tors and network types of Houdini. Section II.3.2 discusses the Houdini Development

Kit.

II.3.1. Houdini Operators and Networks

Houdini’s procedural nature is based largely on the fact that all tools are built by con-

necting sequences of operator nodes. Data flows sequentially through and is manipu-

lated by each operator in turn. This node based system allows non-linear workflows.

Non-linear refers to the fact that any node in the processing chain can be updated at

any time.

The following is a list of the available operator types in Houdini.

• OBJs - Top level object nodes that contain transform information. These are

usually container nodes that contain other operator types within them. A ’con-

tainer’ node is simply a node that is used to package a node tree inside, simpli-

fying the top level node graph.

• SOPs - Surface OPerators that contain surface generation nodes. These are

generally used for procedural modeling.

• POPs - Particle OPerators that contain nodes used to drive particle simulations.

• CHOPs - CHannel OPerators that contains nodes used to procedurally drive

channels for animation or audio manipulation. A channel refers to any input

to a node that can be modified. Examples of this are translation, rotation, and

scale inputs.

• COPs - Compositing OPerators used to drive a compositing network.

• DOPs - Dynamic OPerators used to drive dynamic simulations such as fluids,

rigid bodies, and cloth.
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• SHOPs - Shading OPerators used to represent shading types for different ren-

derers.

• ROPs - Render OPerators used to build rendering networks consisting of differ-

ent passes and dependencies.

• VOPs - Vector Expression (VEX) OPerators used to build nodes of any type.

VOP operator networks are built using a series of Houdini provided processing

nodes. This is similar to programming using pre-built operator types.

II.3.2. Houdini Development Kit

The Houdini Development (HDK) Toolkit is a set of freely distributed C++ libraries

that allows the development of plugins for Houdini and Mantra, which is the rendering

engine distributed with Houdini and developed by Side Effects [14]. This is the same

set of libraries that Side Effects uses to develop the standard Houdini distribution.

HDK allows customization and the capability to add functionality to any part of

Houdini. Here are a some examples of functionality that can be added.

• Adding custom expression functions.

• Adding custom commands.

• Developing custom operators, including but not limited to surface, particle, and

dynamics operators.

• Adding the ability to output to a non-standard renderer.

• Adding custom effects to the standard Mantra Renderer.

II.4. Graphics Processor Units and CUDA

This section describes Nvidia GPUs and the CUDA programming language used to

code them.
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II.4.1. Graphics Processor Units

Graphics Processor Units (GPUs) are specialized integrated circuits found on graphics

cards that typically are used to create and manipulate images output to a monitor

or other display devices attached. The graphics cards generally contain one or more

GPUs as well as a block of Random Access Memory (RAM). They connect to the

computer in a Peripheral Component Interconnect (PCI) slot.

Recently, GPUs have been developed to also accomodate general purpose com-

puting. Since the GPUs are designed as a series of stream processors with many

processors capable of being run in parallel, they work well for algorithms where an

identical processing sequence is executed on many different elements. [11] The pro-

cessors on the GPU have access to the RAM block on the graphics card, known as

their Global Memory, and also have access to a smaller amount of memory built into

the GPU, called Shared Memory.

II.4.2. Nvidia CUDA

Compute Unified Device Architecture (CUDA) is a parallel computing architecture

developed by NVIDIA for graphics processing [9]. Software developers are able to

access the CUDA computing engine by using ’C for CUDA’. This is a set of Nvidia

extensions and libraries developed to be used with either C or C++. CUDA lets

developers access the instruction set and memory of the GPUs.
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CHAPTER III

METHODOLOGY AND IMPLEMENTATION

This chapter focuses on the design methodology used in creating the GPU SPH

simulation, and also on the algorithmic implementation details. This thesis was done

in part as a learning experience in GPU programming. Therefore, all algorithms were

implemented first in a single threaded manner on the CPU, and then implemented in

parallel on the GPU. The algorithms were first implemented and visualized using an

OpenGL front-end, independent of Houdini. Once the results were verified, the Fluid

Simulation code was compiled into a static library and used to create a Houdini asset

using the HDK.

III.1. Development Environment

Since this is a GPU intensive task, the GPU and hardware used greatly impact the re-

sults. To put the results achieved in perspective, this section details the specifications

of the development workstation used.

This work was developed on a Linux workstation running Scientific Linux 6.1.

The workstation itself consists of an Intel i7-860 processor running at 2.93 GHz. The

system has 12GB of RAM. The graphics card is an Nvidia GTX260 containing a GPU

with 216 stream processors and 896 MB of local memory. The Houdini version used

is Houdini 11.1.67.

The Eclipse development IDE was used for the coding, and the Subclipse sub-

version plugin was used for code version control.
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III.2. Class Structure

Before jumping into the implementation of the SPH algorithm, a class structure

with appropriate virtual functions was developed that allowed seamless transition

between the GPU and CPU implementations of the fluid simulation. This scheme

consists of an SPH Fluid superclass with two subclasses, SPH Fluid CPU and

SPH Fluid GPU . These inherit the proper functions and variables that allow seam-

less switching between the two implementations. This class structure allows code

implementation reuse between both CPU and GPU implementations. Fig. 2 gives an

overview of how this works.

fluid; {Create either a GPU or CPU fluid object named fluid.}

fluid.init(); {Initialize fluid.}

while simulation running do

fluid.addParticle(); {Add any new particles for this frame.}

fluid.stepForward(); {Step the simulation forward one frame.}

fluid.getPartPos(); {Get the particle positions.}

Move to next frame.

end while

Fig. 2. Generalized class implementation.

III.3. Implementing Basic SPH on the CPU

As a first step, a basic SPH implementation working solely on the CPU was created,

following the class structure discussed above. This served as both a proof of concept

of the algorithm, as well as a foundation to be used for improvements to be discussed
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in following sections.

In this implementation, no spatial subdivision scheme was used to sort the par-

ticles. For each simulation step, every particle included every other particle in the

simulation for pressure and viscosity contributions. This results in an algorithmic

efficiency of O (n2). The outline for this implementation is shown in Fig. 3.

III.4. Spatial Subdivision on the CPU

After the basic SPH algorithm was implemented on the CPU, a spatial subdivision

scheme was added to speed up calculations by not performing calculations on particles

that are outside of each particle’s smoothing radius.

In section II.2 grid-based storage structures were discussed. These were used as

the basis for the spatial subdivision used. There were two derivations of this method

developed as described below.

For the first derivation, a large block of memory was pre-allocated for the creation

of the grid structure. The grid cells were cubic, with the dimensions of each cube

being the smoothing radius of the simulation. Each grid cell was given enough memory

space to hold a pre-defined number of pointers to particle structures. Fig. 4 gives an

overview of this data structure.
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fluidParameters; {Initialize all fluid parameters}

boundaryConditions; {Initialize implicit boundary conditions}

externalForces; {Initialize external forces}

initialize fluid;

while simulation running do

Add new particles to simulate;

s = 0;

while s < subSteps do

p = 0;

while p < numParticles do

Calculate density, pressure at p due to all particles in system;

end while

p = 0;

while p < numParticles do

Calculate pressure force at p due to all particles in system;

Calculate viscosity force at p due to all particles in system;

Calculate collisions on particle p;

Calculate external forces on particle p;

Integrate particle p;

end while

end while

end while

Fig. 3. Basic SPH algorithm process on CPU.
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Fig. 4. Basic spatial subdivision structure.

For each simulation substep, the number of grid cells needed was determined by

calculating the maximum and minimum position along the three axes. Then a grid

structure was created in the pre-allocated memory block. All of the particles were

then iterated through to determine in which grid cell they were currently located. A

pointer to the particle structure was then placed in that grid cell’s memory. When

this step is completed, a particle needs to iterate through the particles in it’s grid

cell and it’s neighbor grid cells to perform the fluid calculations. This results in an

algorithmic efficiency of O (mn), where m is the average number of particles in a

given smoothing radius neighborhood.

Implementation of this derivation is straightforward, but it has some drawbacks.

It requires a very large memory footprint to be pre-allocated. This especially comes

into play when dealing with GPUs, as they generally have smaller amounts of available

memory than the computer workstation. Secondly, since the grid cells themselves

only store pointers to the particle data structures, it is not very efficient in terms of

memory usage as the data will not be stored in contiguous memory blocks. It would

be faster to allocate the grid structure to hold particle structures instead of pointers
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to particle structures. However, this would create a memory footprint several times

larger still.

To overcome these deficiencies, a modified version of this storage system was

derived, as described below.

In the new derivation, memory is pre-allocated for two int data types per poten-

tial grid cell. These two integer values refer to the number of particles that reside in

each grid cell, and the minimum index into the particle array of the particles in each

grid cell. Fig. 6 shows this data structure.

All of the particles are then iterated through to determine the 3D coordinates of

the grid cell they are located in. Each 3D coordinate is then transformed into a one

dimensional index using Equation 3.1.

newIndex = indX + indY ∗ dimX + indZ ∗ dimX ∗ dimY ; (3.1)

In this equation, indX, indY , and indZ refer to the calculated three dimensional

coordinates, while dimX and dimY refer to the x and y dimensions of the grid.

Once these one dimensional indices are calculated, a key-value radix sort is per-

formed using the calculated indices as the keys, and the particle structures as the

data. This results in both the particle array and two value array described above

sorted by the grid cell that the particles reside in. Fig. 5 depicts the result of this

sort.
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Fig. 5. Key-value radix sort of particles.

After this radix sort is complete, all of the particles are then iterated through

once more. For each particle, the corresponding grid cell count is incremented, and

the starting index of the particle array for that grid cell is updated. Fig. 6 depicts

the result of this step of the algorithm.
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Fig. 6. Filling in the grid structure.

This method does have the drawback that it takes longer to create the grid

structure. However, it requires much less memory overhead and is efficient in the

SPH calculations as all of the particles will be in sequential memory locations.

Now that the grid cell structure is complete, all of the information is available to

perform the SPH calculations. When searching through the particles for a given grid

cell, we use the calculated start index into the particle array and the corresponding

number of particles in that grid cell. From this point, the algorithm is carried out

similar to the basic grid cell structure algorithm. Fig. 7 below depicts the algorithm

used for the grid cell implementations.
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fluidParameters; {Initialize all fluid parameters}

boundaryConditions; {Initialize implicit boundary conditions}

externalForces; {Initialize external forces}

initialize fluid;

while simulation running do

Add new particles to simulate;

s = 0;

while s < subSteps do

Calculate particle grid structure;

p = 0;

while p < numParticles do

Calculate density, pressure at p due to all particles in neighborhood;

end while

p = 0;

while p < numParticles do

Calculate pressure force at p due to all particles in neighborhood;

Calculate viscosity force at p due to all particles in neighborhood;

Calculate collisions on particle p;

Calculate external forces on particle p;

Integrate particle p;

end while

end while

end while

Fig. 7. Grid accelerated SPH algorithm process on CPU.



26

III.5. Implementing Basic SPH on the GPU

Algorithmically, implementing a basic SPH algorithm on the GPU is identical to the

process described in Section III.3. The only real difference is that data is processed

in parallel on the GPU.

There are three additions to the code structure when using the GPU.

• Transfer data to the GPU before processing, and back from the GPU after

processing.

• Creation of host GPU code to initiate the GPU processing.

• Creation of kernel GPU code to do the actual GPU processing.

Transferring data to the GPU memory is a straightforward process. To do this, a

memory location must first be declared and allocated for the transfer. To declare the

memory location on the GPU, a global variable declaration is defined in the CUDA

kernel file.

device float3* GPU data;

Once the memory is declared on the GPU, it must be allocated. In the following,

dataSize is the size to allocate for the data structure, in bytes.

cudaMalloc((void**)&GPU data, dataSize));

Once memory is allocated in the GPU’s memory, the particle data can be copied

to the GPU. In the following, CPU data is a character pointer to the data stored in

host memory, GPU data is the pointer to the memory allocated on the GPU, size is

the size of the data transfer in bytes, and cudaMemcpyHostToDevice is a flag that

specifies data is being transferred from the host CPU to the GPU.

cudaMemcpy((char*)GPU data,CPU data,size,cudaMemcpyHostToDevice));

When the particle data has been transferred to the GPU, it can then be processed.

To process data on the GPU, CUDA code must be written for the host processor to
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initiate the processing, and a CUDA kernel must be written to perform the processing

on the GPU.

The host code consists of calculating the number of GPU blocks and threads to

invoke, and calling the kernel code. Since the GPU processing infrastructure consists

of a finite number of processor blocks, it must be determined beforehand how many

of these processor blocks will be used, and how many processing threads to invoke on

each block of processors. Each Nvidia GPU has a maximum number of threads per

processor block.

In the case of SPH, this calculation is a simple process. For each frame of

simulation, we have a constant number of particles to process. Therefore, to determine

how many processor blocks are needed, we divide the total number of particles by the

maximum threads per processor block. If this is an exact division with no remainder,

the result is the number of blocks that are needed. If there is a remainder, the number

of blocks needs to be incremented by 1. This calculation is shown below.

numThreads = maxThreadsForGPU;
if(particleNum % numThreads == 0)

numBlocks = particleNum / numThreads;
else

numBlocks = (particleNum / numThreads) + 1;

With these values calculated, the host code just needs to invoke the kernel code.

This is done using the following template code. This code calls a kernel function,

SPH GPU Calc on numBlocks GPU processor blocks, each processing numThreads

threads. In this code, GPU data is the pointer to the data in GPU global memory.

numPoints is the number of particles.

SPH_GPU_Calc <<<numBlocks, numThreads>>> (GPU_data, numPoints);

The GPU kernel is a block of code that will be executed in parallel by each

thread on each block. Since the same code is executed by all threads, it is necessary
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for each thread to have a way of identifying which particle it is working on. CUDA

provides a simple way to do this by providing blockId and threadId variables that

are unique for each thread. CUDA provides functionality to access one, two, and three

dimensional arrays using these variables. For this thesis a one dimensional array is

used. The index of the current particle is calculated using the following code.

int ndx = blockIdx.x * blockDim.x + threadIdx.x;

Since all kernel invocations are called using one dimensional block and thread

identifiers, the particle ID is determined simply by multiplying the current block ID

by the dimension of each block, and adding the thread offset within that block.

Once the particle ID has been calculated, each particle’s information can be

accessed and calculations can proceed as described in Section III.3.

Once processing is completed on the GPU, data is transferred back to the

host using the following. The parameter names mean the same as before, with

cudaMemcpyDeviceToHost being the flag that specifies data is being transferred from

the GPU to the host CPU.

cudaMemcpy(CPU data,(char*)GPU data,size,cudaMemcpyDeviceToHost));

Once the particle data has been transferred back from the GPU, it can be dis-

played using OpenGL or transferred to Houdini. Fig. 8 gives an overview of the

simulation loop required for this algorithm.

III.6. Spatial Subdivision on the GPU

For the GPU spatial subdivision implementation, the algorithm used is identical to

that in Section III.4, except the bulk of the calculations are performed on the GPU.

First, space must be allocated on the GPU to hold the list structures.
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fluidParameters; {Initialize all fluid parameters}

boundaryConditions; {Initialize implicit boundary conditions}

externalForces; {Initialize external forces}

initialize fluid;

while simulation running do

Add new particles to simulate;

Copy particle data to GPU;

s = 0;

while s < subSteps do

Spawn p GPU threads to calculate density of particles;

Spawn p GPU threads to calculate fluid forces on ;

Spawn p GPU threads to calculate collisions;

Spawn p GPU threads to calculate external forces;

Spawn p GPU threads for integration;

end while

Copy partice data from GPU;

end while

Fig. 8. Basic SPH algorithm process on GPU.
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__device__ unsigned int* GPU_cellMarker;
__device__ List_GPU* GPU_cellList;
cudaMalloc((void**)&GPU_cellMarker,maxCellSize*sizeof(int)));
cudaMalloc((void**)&GPU_cellList,maxCellSize*sizeof(List_GPU)));

When computing the grid structure, the min and max dimensions of the particle

system are still determined on the CPU, as are the dimensions of the grid structure.

This data is then passed to the GPU so that each particle can calculate it’s grid cell

location in a parallel fashion using the same algorithm described by Equation 3.1.

This grid cell information is stored in the GPU cellMarker memory that has already

been allocated.

A key-value radix sort is then performed on the GPU using GPU cellMarker as

the keys and the particle data as the values. Nvidia provides a set of parallel sorting

algorithms as part of their Thrust library [10]. The radix sort used for this imple-

mentation was provided by this library. Usage of this library consisted of typecasting

both the GPU cellMarker and the particle data as thrust vectors, and then perform-

ing the sort. The particle data and GPU cellMarker structure are both sorted in

place, meaning the result from the sort is stored in place of the unsorted version. The

code for calling this library is

thrust::device_ptr<unsigned int> keyPtr =
thrust::device_pointer_cast(GPU_cellMarker);

thrust::device_ptr<Fluid_Particle_GPU> valuePtr =
thrust::device_pointer_cast(GPU_partBuf);

thrust::sort_by_key(keyPtr, keyPtr + numPoints, valuePtr);

Once the key-value pairs are sorted, the algorithm proceeds by generating the

count of particles in each grid cell, and calculating the start index of each grid cell

in the sorted particle list. Since this is done in parallel, memory locking methods

must be used to ensure that multiple threads do not modify the same memory loca-

tion simultaneously. This is achieved using the atomic operations built into CUDA,

atomicInc and atomicMin.
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Atomic operations are operations that appear to the rest of the system to occur

instantaneously. This guarantees that multiple atomic accesses to memory locations

will not conflict with each other. The atomic operation atomicInc increments the

value in a specified memory location by a value of 1. The atomic operation atomicMin

compares the value at a specified memory location with a provided value. If the

provided value is less than the current value in the memory, it replaces the memory

value with the provided value. Otherwise, it does nothing to memory. By creating

a CUDA thread for each particle, performing an atomicInc on that particle’s grid

cell and an atomicMin between the current minimum grid cell index and the current

index, the desired particle count and start index are generated. The following code

depicts this operation.

__global__ void SPH_GPU_Grid_CreateIndexListStart(
unsigned int *cellMarker,
List_Element_GPU *cellList,
unsigned int particleNum)

{
// Get Particle Index
int ndx = blockIdx.x * blockDim.x + threadIdx.x;
// Make sure we are not on an invalid mem location
if(ndx >= particleNum) return;
// Get Grid Index of Particle
unsigned int currentIndex = cellMarker[ndx];
// Run Atomic Min on Start Index
atomicMin(&cellList[currentIndex].startIndex,ndx);
// Run Atomic Inc on Particle Count
atomicInc(&cellList[currentIndex].particleCount,particleNum+1);

}

Once this data is generated, all of the data needed to complete the algorithm

as described in Section III.4 is present, using the principles of GPU coding described

in Section III.5. Fig. 9 gives an overview of the simulation loop required for this

algorithm.
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fluidParameters; {Initialize all fluid parameters}

boundaryConditions; {Initialize implicit boundary conditions}

externalForces; {Initialize external forces}

initialize fluid;

while simulation running do

Add new particles to simulate;

s = 0;

while s < subSteps do

Calculate particle grid structure;

Copy particle data to GPU;

Spawn p GPU threads to calculate density of particles using grid;

Spawn p GPU threads to calculate fluid forces using grid;

Spawn p GPU threads to calculate collisions;

Spawn p GPU threads to calculate external forces;

Spawn p GPU threads for integration;

Copy partice data from GPU;

end while

end while

Fig. 9. Grid accelerated SPH algorithm process on GPU.



33

III.7. Implicit Collisions on the GPU

Particle collisions with implicit surfaces were included for both the CPU and GPU

implementations. Implicit collisions are collisions with surfaces that can be defined by

parametric equations. The implicit surfaces implemented for collision detection were

axis aligned planes and vertically aligned cylinders. The following sections discuss

the implementation of the implicit collisions.

III.7.1. Collision With Implicit Planes

Collisions with axis aligned implicit planes were implemented on both the GPU and

the CPU. By axis aligned, it is meant that the plane is parallel to either the X = 0,

Y = 0, or Z = 0 plane.

Using the Y = 0 plane as an example case, for each particle a test is done to see if

the particle went from a position with a positive y value to a negative y value. If this

happens, a collision has occured. To simplify calculations and decrease processing

time, the particle is then moved to the Y = 0 plane, keeping it’s X and Y position

coordinates the same. To calculate the collision reflection velocity along the normal of

the plane, the dot product of the incoming velocity and the plane normal is taken. For

the Y = 0 plane example, this will result in the X and Z velocity components going

to 0, and the Y velocity component remaining. This velocity along the normal is then

subtracted from the incoming velocity, which yields the collision velocity tangent to

the plane. Finally, the normal velocity is multiplied by -1 to reflect the particle off

the surface.

The normal velocity is then multiplied by an ’elasticity’ constant and the tangen-

tial velocity is multiplied by a ’friction’ constant. This is a simple model of potential

energy loss due to the collision. For the final collision response velocity, the tangential
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and normal velocities are added together and applied to the particle.

III.7.2. Collision With Implicit Cylinders

Collisions with vertically aligned cylinders were implemented on both the GPU and

the CPU. By vertically aligned, we mean that the major central axis of the cylinder

is parallel to the Y-Axis.

Using the cylinder centered on the Y-axis with a radius of 1 as an example, each

particle is tested to see how far it is from the Y-axis. If the position of a particle

is within the radius of the cylinder, the particle is then moved to the approximate

collision location on the cylinder by multiplying the X and Y components of the

position by the ratio of the radius of the cylinder to the distance of the particle from

the cylinder’s major axis. This effectively moves the particle onto approximately the

surface of the cylinder.

To calculate the response velocity, the normal at the calculated surface point is

determined by finding the normalized vector from the cylinder axis to the surface

point that is orthogonal to the cylinder axis. To calculate the response velocity along

the normal vector, the dot product of the incoming velocity and the calculated normal

is taken. This velocity along the normal is then subtracted from the incoming velocity,

which yields the collision velocity tangent to the surface point. Finally, the normal

velocity is multiplied by -1 to reflect the particle off of the surface.

The normal velocity is then multiplied by an ’elasticity’ constant and the tangen-

tial velocity is multiplied by a ’friction’ constant. This is a simple model of potential

energy loss due to the collision. For the final collision response velocity, the tangential

and normal velocities are added together and applied to the particle.
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III.8. Integrating With Houdini

III.8.1. HDK Implementation

To integrate the fluid simulation code with Houdini, the Houdini Development Kit

(HDK) is used to initiate the fluid simulation. The code must first be compiled into

a static library that can be referenced by the HDK code. In the HDK code, several

things are done.

First, the HDK wrapper file sets up all of the parameters that will be accessible

when using the node in Houdini. This includes defining the parameters, setting

up their default values, and organizing them in a tabular structure. To define the

parameters, a list of PRM Name structures are defined, as shown below. This shows

only a subset of the parameters available in the final Houdini SPH solver.

static PRM_Name fluidParamNames[] =
{

PRM_Name("sph_restDensity", "Rest Density"),
PRM_Name("sph_pressureConstant", "Pressure Constant"),
PRM_Name("sph_viscosity", "Viscosity"),
PRM_Name("sph_surfaceTension", "Surface Tension"),
PRM_Name("sph_defaultMass", "Default Mass"),
PRM_Name("sph_smoothRad", "Smoothing Radius"),
PRM_Name("sph_simScale", "Simulation Scale"),
PRM_Name("sph_simTimestep", "Simulation Timestep"),
PRM_Name("sph_simSubsteps", "Simulation Substeps"),
PRM_Name("sph_drag", "Drag"),
PRM_Name("sph_gravity", "Gravity"),
PRM_Name(0)

};

To set the default values of the parameters, a list of PRM Default structures are

defined, as shown below.

static PRM_Default fluidParamDefs[] =
{

PRM_Default(1000),
PRM_Default(10),
PRM_Default(0.15),
PRM_Default(0),
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PRM_Default(0.00020543),
PRM_Default(0.006),
PRM_Default(1),
PRM_Default(0.002),
PRM_Default(10),
PRM_Default(0.999),
PRM_Default(-93)

};

The parameters and the default values must be bound together and have space

allocated within HDK. To do this we create a parameter template list, shown below.

In the template list, the first entry is the data type of the parameter, the second is

the size of the parameter, the third is the memory location of the defined parameter

name, and the third is the memory location of the default value.

PRM_Template
POP_SPH::myTemplateList[] =
{

PRM_Template(PRM_FLT_J,1,&fluidParamNames[0], &fluidParamDefs[0]),
PRM_Template(PRM_FLT_J,1,&fluidParamNames[1], &fluidParamDefs[1]),
PRM_Template(PRM_FLT_J,1,&fluidParamNames[2], &fluidParamDefs[2]),
PRM_Template(PRM_FLT_J,1,&fluidParamNames[3], &fluidParamDefs[3]),
PRM_Template(PRM_FLT_J,1,&fluidParamNames[4], &fluidParamDefs[4]),
PRM_Template(PRM_FLT_J,1,&fluidParamNames[5], &fluidParamDefs[5]),
PRM_Template(PRM_FLT_J,1,&fluidParamNames[6], &fluidParamDefs[6]),
PRM_Template(PRM_FLT_J,1,&fluidParamNames[7], &fluidParamDefs[7]),
PRM_Template(PRM_INT, 1,&fluidParamNames[8], &fluidParamDefs[8]),
PRM_Template(PRM_FLT_J,1,&fluidParamNames[9], &fluidParamDefs[9]),
PRM_Template(PRM_FLT_J,1,&fluidParamNames[10],&fluidParamDefs[10])
PRM_Template())

};

Once the parameters are setup for evaluation, we use a couple of functions written

in the HDK wrapper. One of them is used to initialize the fluid simulation when

the HDK code is called. This creates a new fluid simulation structure with enough

space to hold the current number of particles in the simulation, and accesses all

of the parameters in Houdini and applies them to the fluid structure. Once the

fluid structure has been initialized, a function is called that reads all of the particles

from Houdini and writes them out to the fluid structure. The following code block
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illustrates the general idea of how that is done.

GEO_PrimParticle* part;
GEO_ParticleVertex* pvtx;
// Process each particle primitive fed into this POP and then
// each particle within that primitive.
for (part = myParticleList.iterateInit() ;

part ; part = myParticleList.iterateNext())
{

for (pvtx = part->iterateInit() ; pvtx ; pvtx = pvtx->next)
{

myCurrPt = pvtx->getPt();
p = myCurrPt->getPos();
v = myCurrPt->getValue<UT_Vector3>(data->getVelocityOffset());
a = myCurrPt->getValue<UT_Vector3>(data->getAccelOffset());
pos = Point3D(p.x(), p.y(), p.z());
vel = Point3D(v.x(), v.y(), v.z());
acc = Point3D(a.x(), a.y(), a.z());
fluid->addParticle(pos, vel, acc, mass);

}
}

In this code block, GEO PrimParticle represents a particle system primitive. It

is possible for multiple particle systems to be input into the SPH solver node within

Houdini. This allows for effective processing of all present particle systems using

the same simulation. GEO ParticleVertex is used to hold the location of individual

particles in the particle system.

Once the fluid structure is initialized and the particles have all been written into

the fluid structure, the simulation can be run. This is accomplished by simply calling

the stepForward() function present as a member of the fluid class.

When the simulation has completed for the current frame, all particles are read

from the fluid simulation and written back into Houdini. The following code block

illustrates the general idea of how this is done.

int i=0;
GEO_PrimParticle* part;
GEO_ParticleVertex* pvtx;
// Process each particle primitive fed into this POP and then
// each particle within that primitive.
for (part = myParticleList.iterateInit() ;
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part ; part = myParticleList.iterateNext())
{
for (pvtx = part->iterateInit() ; pvtx ; pvtx = pvtx->next)
{

myCurrPt = pvtx->getPt();
pos = fluid->getPosition(i);
vel = fluid->getVelocity(i);
acc = fluid->getAccel(i);
p.assign(pos.x, pos.y, pos.z);
v.assign(vel.x, vel.y, vel.z);
a.assign(acc.x, acc.y, acc.z);
myCurrPt->setPos(p);
myCurrPt->setValue<UT_Vector3>(data->getVelocityOffset(), v);
myCurrPt->setValue<UT_Vector3>(data->getAccelOffset(), a);
i++;

}
}

After this is done, the fluid structure memory is deallocated and HDK cleans up

the rest of the variables that were used. The HDK code then exits back to Houdini,

and will be called again from Houdini when the next frame is ready to be evaluated.

III.8.2. Houdini Implementation

Once the fluid simulation is compiled into a Houdini Particle Operator node using

HDK, it can be imported into a Houdini Particle Operator network as a node. This

node will have all of the parameters needed to control the fluid simulation. Since

these parameters are inside of Houdini, they can be keyframed as desired. Fig. 10

shows the GUI parameter interface to the node.

The following list defines each of the parameters for the node.

• Activation - Whether or not the node is active.

• Source Group - If the input particles are grouped, which group or groups should

be affected by this node.

• Rest Density - Rest density of the SPH fluid simulation.

• Pressure Constant - Pressure constant of the SPH fluid simulation.

• Viscosity - Viscosity of the SPH fluid simulation.
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(a) Fluid parameters pane. (b) External forces pane.

(c) Fluid options pane. (d) Implicit collisions pane.

Fig. 10. Houdini SPH solver node attributes.

• Default Mass - Default particle mass to use if mass for the particle isn’t already

defined.

• Smoothing Radius - Smoothing radius of the SPH fluid simulation.

• Simulation Timestep - Timestep to use for each frame of the simulation.

• Simulation Substeps - How many substeps to take for each frame.

• Drag - Per timestep drag to apply to each particle.

• Gravity - Gravity to apply to each particle.

• Use GPU - Whether or not to use GPU acceleration.

• Enable Surface x - Enable use of implicit surface number x.

• Surface x Type - Which type of implicit surface to use. Options are: 0 - Constant
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X Plane, 1 - Constant Y Plane, 2 - Constant Z Plane, 3 - Sphere Inside, 4 -

Sphere Outside, 5 - Cylinder Inside, 6 - Cylinder Outside

• Surface x Center - Center of implicit surface x.

• Surface x Radius - Radius of implicit surface x.

• Surface x Cutoff - Max Y Axis cutoff to be used on cylinders.

The node’s input requires a connection to some particle source. The node will

process the particles provided to it’s input on each timestep, and pass the particles

along to the next node in the list. One complication that arose is that the Houdini

POP network integrates the particle network at the end of each frame’s processing.

This is not desirable, as the fluid simulation sometimes requires multiple substeps

per frame to complete it’s calculation. To deal with this issue, a system of nodes

were put in place to store the current velocities at the end of each frame and transfer

them back to the particles at the start of the next frame. Each particle’s velocity

was then zeroed out at the end of a frame. By zeroing out the velocity, it effectively

negates the built in integration by Houdini because there are no velocity values to

update positions. Fig. 11 shows this basic node network. In this figure, the SOURCE

node generates the particles. The VEL INIT node creates a particle attribute that will

be used to store the current velocity. The VEL SET node sets the current velocity to

the custom velocity particle attribute. The SOLVE SPH node is the implemented SPH

solver. The VEL GRAB node then grabs the current velocity and stores it in the custom

created velocity attribute. Finally, the VEL ZERO node sets the current velocity to zero

so the integration will not affect the current particles.
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Fig. 11. Example Houdini particle operator network.

Now that the particle network is completed, a particle fluid surface was applied to

the particles in a surface operator network. Fig. 12 shows this basic node network. In

this figure, the SOURCE GEO node is the source geometry used to generate the particles.

The TRANSFORM node is used to transform the emitter in the scene as desired. The

POPNET node is the particle operator network described by Fig. 11. The output of the

POPNET node is a particle system, and therefore needs a particle fluid surface fitted

to it for realistic rendering. The SURFACE GEO node places the particle fluid surface

around the particles.
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Fig. 12. Example Houdini surface operator network.
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CHAPTER IV

RESULTS AND DISCUSSION

We set out to accomplish several goals in this thesis. First, we wanted to implement

SPH fluid simulation on the GPU as a means of simulation acceleration. Second, we

wanted to provide this GPU accelerated fluid simulation as an extended capability for

Houdini. Third, we wanted to compare the results of the fluid simulation code on the

GPU with the same algorithm code written for the CPU to determine how much, if

any, the GPU accelerates the simulation. Fourth, we wanted to provide a framework

for future users willing to develop their algorithms on the GPU, and also provide a

framework for developing extended functionality for Houdini using the HDK.

IV.1. GPU Implementation

The first step was to get SPH simulations working in a Houdini-independent, OpenGL

environment using the same algorithm on both the CPU and the GPU. Using the

implementation process outlined in Chapter III, we were able to simulate fluid in

multiple environments bounded by implicit surfaces.

The first environment simulated was fluid in a box with no top. The walls of

the box were simulated as implicit planes. Fluid particles were dropped into the box

from above and allowed to settle. Fig. 13 illustrates some of the results from this

simulation. It is important to note that the fluid is represented only by particles

in this work. Particle fluid surface extraction was not implemented. The Houdini

Particle Fluid Surface was used for later renders.
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Fig. 13. OpenGL results from GPU simulation in a box environment.

The second environment simulated was fluid in a cylindrical ”water fountain”.

Implicit cylinders were used as an interior and exterior wall of the fountain. A maxi-

mum heigth of intersection was introduced, allowing fluid to go over the walls of the

fountain above a certain height.
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IV.2. Adding Houdini Functionality

The CPU and GPU simulations were imported into a Houdini digital asset using

HDK as described in Section III.8. When designing the Houdini interface, we decided

that an important feature should be ease of use. To do this, a multi-tab GUI inter-

face was designed with the simulation parameters grouped in tabs with other similar

parameters. Fig. 10 shows this interface.

In Fig. 14 a series of rendered images from a scene using the result of this work

are shown. In this scene, a rock falls into a fountain of water causing a splash.

IV.3. Performance Analysis

Performance data was collected for the four processing schemes.

• Basic CPU implementation as described in Section III.3 in both the OpenGL

and Houdini environments.

• Basic GPU implementation as described in Section III.5 in both the OpenGL

and Houdini environments.

• Grid accelerated CPU implementation as described in Section III.4 in both the

OpenGL and Houdini environments.

• Grid accelerated GPU implementation as described in Section III.6 in both the

OpenGL and Houdini environments.

Data was collected using several different particle counts in both simulation en-

vironments described in Section IV.1. Table 1 and Fig. 15 display the results from

the OpenGL fountain implementation. Table 2 and Fig. 16 display the results from

the OpenGL box implementation. Table 3 and Fig. 17 display the results from the

Houdini fountain implementation. Table 4 and Fig. 18 display the results from the

Houdini box implementation.
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(a)

(b)

Fig. 14. Results from GPU simulation in a fountain environment in Houdini, rendered

with Mantra.
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(c)

(d)

Fig. 14. Continued.
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TABLE 1
Tabular simulation results of fountain environment in OpenGL.

Frames per second limited to a maximum of 24.

Particle Count CPU Simple CPU Grid GPU Simple GPU Grid

100 24 24 24 24

1000 2.3 24 24 24

10000 <0.1 4.5 1.7 24

100000 <0.1 0.24 <0.1 5.7

Fig. 15. Simulation results of fountain environment in OpenGL. Frames per second

limited to a maximum of 24.
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TABLE 2
Tabular simulation results of box environment in OpenGL.

Frames per second limited to a maximum of 24.

Particle Count CPU Simple CPU Grid GPU Simple GPU Grid

100 24 24 24 24

1000 2.2 24 24 24

10000 <0.1 2.7 1.67 24

100000 <0.1 0.17 <0.1 4.5

Fig. 16. Simulation results of box environment in OpenGL. Frames per second limited

to a maximum of 24.
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TABLE 3
Tabular simulation results of fountain environment in Houdini.

Results shown in seconds.

Particle Count CPU Simple CPU Grid GPU Simple GPU Grid

100 3.4 2.3 2.1 2.2

1000 111.3 4.3 5.3 3.2

10000 1200 58.7 150.8 10.9

100000 3000 700 1400 116.7

Fig. 17. Simulation results of fountain environment in Houdini.
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TABLE 4
Tabular simulation results of box environment in Houdini.

Results shown in seconds.

Particle Count CPU Simple CPU Grid GPU Simple GPU Grid

100 3.3 2.3 2.3 2.3

1000 110.6 4.9 5.5 3.1

10000 1300 119.6 151.6 12.8

100000 3200 800 1500 161.6

Fig. 18. Simulation results of box environment in Houdini.
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The graphs clearly show that the GPU implementation is significantly faster

than the same implementation on the CPU in both the OpenGL and Houdini en-

vironments. One interesting result was that the CPU grid implementation yielded

similar results to the GPU simple implementation, particularly in the OpenGL envi-

ronment. Another interesting note is that the OpenGL environment was significantly

faster than simulation in the Houdini environment. This can be attributed to the

overhead in reading and writing particle data to and from Houdini, and the overhead

of processing the particle system inside Houdini itself.

Performance data was also gathered for two different graphics cards installed in

the same workstation. Along with the Nvidia GTX260 used for development, the

simulation was run on an Nvidia GT210. Table 5 shows the differences in these two

cards.

Fig. 19 and Fig. 20 show the comparison results of these two cards in the OpenGL

environments.

The graphs show that the GTX260 is faster in all cases when compared to the

GT210. However, there is not a linear relationship between card processing power

and the results because transferring data to and from the graphics card is the same

in both cases and is a large portion of the overall processing time. Being able to

decrease the number of simulation substeps by using a more advanced SPH method

like the Predictive-Corrective Incompressible SPH method would help alleviate this

data transfer overhead.

IV.4. Providing a Framework

We wanted to provide a framework for future users to develop their algorithms on the

GPU. We also wanted to provide a framework to develop extended functionality for
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TABLE 5
GT210 vs GTX260 hardware comparison.

GPU Steam Processor Count Stream Processor Clock Memory

Nvidia GT210 16 520 MHz 512 MB

Nvidia GTX260 216 576 MHz 896 MB

Houdini using HDK. Both the GPU and HDK framework presented in this thesis could

be adapted to many other algorithms. This will aid other students or professionals

in implementing their own processing algorithms on the GPU and using Houdini.
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Fig. 19. GT210 vs GTX260 comparison in box environment. Frames per second

limited to a maximum of 24.

Fig. 20. GT210 vs GTX260 comparison in fountain environment. Frames per second

limited to a maximum of 24.
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CHAPTER V

CONCLUSION AND FUTURE WORK

We have developed a GPU accelerated SPH fluid simulation that operates both in

an OpenGL environment, and as a plug-in for the Houdini software package. Our

implementation makes use of a grid based spatial partitioning scheme to acceler-

ate fluid calculations, but also implements a scheme without spatial partitioning for

efficiency comparison. Our implementation provides customizable viscosity and pres-

sure calculations for the fluid. It also allows for GPU calculation of external forces

such as gravity and drag. It allows for the computation of collisions against simple

environment boundaries using implicit surfaces on the GPU as well.

Our implementation was developed by implementing the same algorithms on

both the GPU and CPU, allowing for easy comparison of performance between the

two. In both the OpenGL and Houdini environment, the GPU algorithm is able to

run the simulation in a smaller amount of time.

This work can be extended both by improving the SPH simulation and imple-

mentation, and by improving the Houdini HDK implementation, as explained below.

Also, the OpenGL implementation could be extended in several ways.

The SPH simulation used does not include the most recent algorithm advance-

ments. Newer advancements, such as the adaptive particle size sampling and predictive-

corrective imcompressible schemes described in Section II.1.2 would likely improve

the efficiency of the algorithm. The adaptive particle size sampling scheme allows

for fewer particles in the sampling. The predictive-corrective incompressible scheme

allows for the use of large simulation timesteps, which in turn would require fewer

calculations for each simulation frame.
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The SPH algorithm on the GPU could also be implemented in a more efficienct

manner. The implementation currently stores all particle and grid information in

global memory on the GPU. While this works, a more efficient scheme could be

implemented that makes use of shared memory for each processor block. For example,

a processor block could be allocated to calculate the necessary information for one

grid cell. This would include initially copying all particle information for that grid

cell and neighboring grid cells into that processor block’s shared memory, and then

using the information from shared memory to perform the fluid calculations. Once

processing is complete on the particles in that grid cell, the particle information would

be transferred back to global memory for future calculations.

One other addition that would be very beneficial would be to use the GPU for

collision calculations with polygonal faces. Currently the GPU based simulation only

calculates collisions with implicit surfaces.

The Houdini HDK implementation could also be improved. Currently it makes

use of the Houdini Particle Operator networks. This allows integration with other

Houdini aspects, but a more dynamic implementation could be created that makes

direct use of Houdini Dynamic Operators. This would allow more ’seamless’ coupling

with other dynamic objects in the scene.

The OpenGL implementation could be improved in several ways. The most

obvious improvement would be to add a particle surface extraction functionality to

this code, and render an actual fluid surface in a nicely rendered environment instead

of just the particles. Another improvement could be to integrate this simulation into

part of an immersive visualization environment [12].

The fluid simulation framework presented in this thesis is a good example for

accelerated implementations of various algorithms using Nvidia GPUs and CUDA.

The strong object oriented design and the class implementation used could be applied
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to most parallelizable algorithms. Furthermore, it could serve as an example for future

projects that want to use Houdini’s HDK as a means for visualizing simulations.
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