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ABSTRACT

An Automatic Commercial Search Application for TV Broadcasting Using Audio
Fingerprinting. (August 2012)
Yaohua Song, B.S., University of Science and Technology of China

Chair of Advisory Committee: Dr. Zixiang Xiong

Nowadays, TV advertising is an important part of our daily life. However, it is
usually hard for organizations that produce and pay for the advertisements to confirm
whether their commercials are broadcasted as required in time and frequency.
Consequently, a multimedia file search problem arises and it has drawn more and more
attention in the past decade. In this thesis, we propose an automatic commercial search
scheme using audio fingerprinting and implement it in a PC-based application.

Our commercial search algorithm is composed of two parts: one for audio feature
extraction and another for database search.

For the first part, although the video stream of TV broadcast contains a great deal
of intuitive information, we decide to ignore it because it takes much more storage and
computations to process. For the audio stream, we have to extract proper audio features
which can represent its characteristics and store them in a database for identification. We
choose the Normalized Spectral Subband Centroids (NSSCs) as our audio fingerprints
and preprocess the known commercials to build the database.

For the second part, we apply a three-step process to search for any matches as

the user requests, which comprises candidate search, decision-making and time



verification. This process is performed for every N; (N;=15 in our application) frames if
the search result is negative. Once a match is confirmed, we skip the frames left in the
commercial and use the frame after it to start a new process.

Our experiment results are satisfactory based on the commercial and TV program
data in our database. Moreover, it shows that our PC-based application is robust against

degradation during real broadcast and recording.
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1. INTRODUCTION

In the information age, we have access to hundreds of thousands of multimedia
files through various means. However, as we have more resources than ever, searching
over such an enormous database is becoming more and more challenging. Unlike text-
based search, we need to extract features from multimedia files that can represent the
distinguishing characteristics of them instead of directly using the content itself. The
advantage of using fingerprints is three-fold: the memory/storage requirement is
reduced; comparisons are efficient, as perceptual irrelevancies have already been
removed; and searches are efficient, as the size of the database to be searched is much

smaller.

1.1 Motivation

Nowadays, TV advertising is an essential part of our daily life. It involves two
main tasks: 1) producing a television commercial that meets the broadcast standards, and
2) placing the commercial on television via an air time media buy that reaches the target
customers. For the latter, it is usually hard for the organizations that create and pay for
the advertisement to confirm whether their commercials are broadcasted in time and
frequency required. As a matter of fact, TV commercial detection concerns a wide range
of users, not only the producers. For instance, the end-users might want to skip the

commercial breaks and watch the TV programs only. Marketing agencies can make use

This thesis follows the style of /EEE Transactions on Signal Processing.



of the results for their marketing analyses, plan or just demonstrate the relevant
information to their interested clients.

The most straightforward method is to monitor the TV broadcasting manually
and record the occurrences of the commercials. However, this approach is demanding,
inefficient and expensive for companies and it is also boring and tedious for the staff.
Therefore, an automatic commercial search system is needed. The problem has recently

attracted a great deal of attention from both the research community and the industry.

1.2 Problem Formulation

The commercial search problem can be described as follows:

Given a predefined amount of recorded data of TV broadcasting and a set of
known commercials, identify the occurrences of some commercials as the users specify
or all the commercials stored in the database.

Before proposing an effective algorithm for the search, we need to review the
characteristics of TV commercials. A typical TV commercial contains a video stream
and an audio stream. A video stream is a sequence of still images representing scenes in
motion. It is more intuitive and takes a larger amount of space to store than the audio
information. Considering that the searching speed is one of the most important
parameters that evaluates the system, only the audio part is used for the commercial
identification in this thesis.

A source of difficulty with audio identification stems from the high

dimensionality and significant variance of perceptually similar content [1]. The simplest



approach is direct comparison of the digitalized waveforms, which is neither efficient
nor effective. It is necessary to extract a perceptual digest of a piece of audio content
which summarizes it, i.e., an audio fingerprint. There are several requirements that a
good audio fingerprinting system should fulfill:

Robustness: An audio clip should be identified regardless of the possible signal
degradation, e.g., compression level, equalization, AD/DA conversion, background
noise, etc. This is the reason why perceptual features of a recording are chosen as
features. The false negative rate is typically used as a measure of robustness. It is the
probability that the fingerprints of two perceptually similar audio clips are so different
that a positive match won’t be caused.

Reliability: The system should be able to discriminate between different fingerprints to
guarantee the accuracy of identification and reduce the false positive rate. The false
positive rate is the probability that one commercial is detected as another one.
Computationally Efficiency: Computation time and search speed are key parameters
for system evaluation. It is related to the size of the fingerprints, the complexity of the
fingerprint extraction, and the search algorithm.

These requirements are not independent. For example, the search speed tends to
increase when the system is designed to obtain a more robust fingerprint. This is because
audio fingerprint search is an approximate search, i.e., the fingerprint identified as the
most similar is not necessarily the perfect match. As a result, the more robust the
features are, the less similar they are. Therefore, there is a trade-off between

dimensionality reduction and information loss.



2. AUDIO FINGERPRINTING TECHNIQUES

Audio fingerprinting or content-based audio identification (CBID) has been
studied since the 1990s. It can be viewed as a special form of dimensionality reduction.
While it seems intuitive for a person to tell the differences between various audio clips,
it is much more complicated for a computer to accomplish the same task. On one hand,
to a computer the audio signal is simply a series of real or digital numbers represented as
a function of time. On the other hand, according to studies on the human auditory system
(HAS), we know that the human ears decompose an incoming sound into a series of
frequency components like a spectrum analyzer. The analyzed results are then passed to
the higher processing centers of our brain. In other words, the HAS deals the signals in
the frequency domain. Methods in both time and frequency domains are studied and

developed for audio fingerprinting.

2.1 Time-domain Methods

The most basic approaches to analyze an audio signal are to examine the
waveform and compute the mathematical measurements directly from it. These
measurements are also called the physical features. Two commonly used physical

features are introduced in the following sections.

2.1.1 Short-time Energy Function

The short-time energy of an audio signal is defined as



N

E_1
N

[x(m)w(m)]?, (2.1)
m=1
where w(m) is a window (usually a Hamming window) of a fixed length N. N is also
called the length of a frame. The short-time energy represents the signal’s amplitude
variation over time. It is the basis for differentiating between unvoiced and voiced
components of speech since the short-time energy values of the unvoiced parts are much

smaller than those of the voiced ones. Sometimes, the short-time energy is used to define

loudness [2]

N =

L= xmw(m)?)? = B

(2.2)
m=1
2.1.2 Short-time Average Zero-Crossing Rate (ZCR)
The short-time average zero-crossing rate (ZCR) is calculated as
1 N
zZ=3 Z Isgn[x(m)] — sgn[x(m — D]Iw(m), (2.3)
m=1
where
(1, x(m) =0,

sgn[x(m)] = {_1' x(m) < 0. (2.4)

ZCR is another effective parameter to distinguish voiced portions from unvoiced ones in
speech, as the voiced parts generally have much smaller values than the unvoiced parts.
In addition to this property, the ZCR curve can serve as an indicator for music and
speech. The curve for music is much smoother, with significantly lower variance and

mean amplitude, compared to that of speech.



2.1.3 Conclusion

There is very limited success on understanding audio signals’ characteristics by
applying the time-domain analysis. It only enables us to detect silence as a segment of
imperceptible sounds from the whole file, including unnoticeable noise and very short

clicks [3].

2.2 Frequency-domain Methods

As mentioned above, HAS performs all the functions in the frequency domain.
Thus most research in the audio fingerprinting focuses on features extracted from the
frequency domain. It is necessary to preprocess the signal. First the input signal is cut
into a series of overlapping frames of length N. This assumes that the signal can be
considered as stationary over an interval of a few milliseconds [1]. The overlap between
the frames is to ensure the algorithm’s robustness to shifts. Then each frame is filtered

by a Hamming window to minimize the discontinuities at the beginning and the end.

2.2.1 The Fourier Transform

The Fourier transform of an array of values is defined as:

=

-1
_ —i2mk2 _

X = Xn€ N,k=0,..,N—1, (2.5)

0

S
Il

where N is the length of the array. To decrease the computational complexity, N is
usually chosen to be a power of two so that Fast Fourier Transform (FFT) algorithms can

be implemented. From (2.5), we know that X, normally is a complex number. Due to



the sensitivity of the phase of Fourier transform to frame boundaries and the fact that the
human auditory system is relatively insensitive to phase, generally only the power
spectral density, calculated as (2.6), is applied for further processing.

Py = |Xi|?, (2.6)
In practice, x,, is always a real number, which results in the symmetry of the X, 's.
Therefore, it is sufficient to only consider the first half of the spectrum.

In [3] 128-point FFT of the signal was directly used to obtain 65-dimensional
vectors as features, which were taken to denote different kinds of timbre and build the
Hidden Markov Model (HMM). Clearly, the ratio of the dimension reduction is not
satisfying. To get a higher ratio, some research work was done based on several classic
algorithms for pattern recognition. Burges, Platt, and Jana [4] proposed an algorithm
called Distortion Discriminant Analysis (DDA), which uses oriented Principle
Component Analysis (PCA) to project its input (the 128 preprocessed log spectra) into
directions maximizing the SNR for a given set of distortions. DDA produces 64 values
out of every 243.6ms of audio under the assumption that distorted versions of a set of
training signals are available. This algorithm is not suitable for our application since
there is only one version of each commercial available in the database and the input size
is too large for the database search. So further advanced analysis is required to retrieve
more distinct features from the signal’s spectrum.

2.2.2 Brightness
Brightness is computed as the centroid of the short-time Fourier magnitude

spectra:



Z%=1Fm*m

B , (2.7)
" m=1Fmn
where
E, =log(X,,). (2.8)

It is a measure of the higher frequency content of the signal, considered as an acoustical

feature in [2].

2.2.3 Pitch

Pitch, also called as the short-time fundamental frequency (f,), is a major
auditory attribute of musical tones, along with duration, loudness, and timbre [5].
According to the American National Standards Institute (ANSI), it is officially defined
as the attribute of auditory sensation in terms of which sounds may be ordered on a scale
extending from low to high. Pitch depends not only on the frequency content but also the
sound pressure and the waveform. The fundamental frequency (f,) of a sound signal is
the lowest frequency component that relates well to the other partials [6]. Harmonic
Product Spectrum (HPS) is a classic algorithm of pitch detection [7]. For each frame, it

measures the maximum coincidence for harmonics according to

R
Y(w) = HIX((U ), (2.9)
Y = n(lua_x{Y(wl-)}, (2.10)

where R is the number of harmonics to be considered, and frequency w; is inside the

range of possible fundamental frequencies. Fig.1 is an example of the HPS with R=5 [8].



If f, is below 50 Hz, the audio signal is considered as non-harmonic. Sounds produced
by most musical instruments and voiced components in speech are harmonic while

unvoiced parts are non-harmonic.

MW = NNES, VI

1 N .
o

= L
i b

3o 4o S

Fig. 1. An example of the HPS with R=5.

Zhang and Kuo [3] combined pitch, the ZCR and the short-time energy to
classify the segments of an audio file into different kinds step by step. First, the “silence”
part is detected as discussed before. Then some special environmental sounds are
separated using the fundamental frequency curve, followed by distinguishing speech and
music based on the additional ZCR information. Last, other environmental sounds are
further sorted using the log spectrum.

To take advantage of these characteristics, certain fundamental analysis was
performed on them. In [2], the authors used statistical values, including means, variances
and autocorrelations, of these parameters to increase their reliability. However, this kind

of mechanism is only suitable for those sounds with a single timbre. Since a TV
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commercial usually contains both music and speech, which are two classes of sounds,

this approach is not a good choice for us.

2.2.4 Mel-frequency Cepstral Coefficients (MFCCs)

Mel-scale was proposed by Steven, Volkmann, and Newman [9] as a subjective
scale for the measurement of pitch. Compared to the frequency scale, it resembles the
human auditory system better because it is constructed from the determinations of the
half-value of pitches at various frequencies judged by listeners. The most popular

formula of the conversion between hertz (f) and mel (m) is:

: )
- J_ 211
m = 2595l0g,, (1 oo, (2.11)
or f =700 (1075 - 1), (2.12)

Fig.2 is the plot of mel versus Hertz scales. It is seen that we can tell that human hearing

is more sensitive in the low frequency region than that in the high frequency.
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Fig. 2. The plot of mel scale versus Hertz scale

MFCCs are derived as follows:
a) Calculate the FFT for the preprocessed audio data, Xj.

b) Map the log power of the spectrum onto the mel scale, using L windows.,
N
M, = Z MelBank|[n][k] = log(Py), n=12,..,L, (2.13)
k=1

c) Calculate the DCT (discrete cosine transform) of the resulting signal.

L
2 T 1

MFCCy, =ZZ M,, * cos [Z(n+§) n] n=12,..1 (2.14)

n=1
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This procedure produces a I-dimension vector for each frame. The 0" coefficient
of the MFCC cepstrum is neglected due to its unreliability. Sometimes, the 1% or 2"
order differential MFCC is used to increase the reliability.

The number and the shape of the windows are not fixed in step b), so the
designers can determine the dimension of the fingerprint according to their needs. In
[10], the authors compared the performance of various implementations of MFCC by
changing the number, shape, and locations of the windows and the usage of energy

information. Three different shapes of filters are shown in Fig. 3.

(
£

(a) ' (b) ' (©)

Fig. 3. Three different shapes of filters used in MFCC calculation.

MFCCs were shown to be quite effective for speech recognition, thus they were
widely used and discussed in [11-13]. But they do not work so well on more general

audio, like music.

2.2.5 Spectral Subband Centroids (SSCs)
Paliwal [14] first proposed Spectral Subband Centroids (SSCs) as new features
for speech recognition. The basic idea was to take advantage of formant frequencies to

eliminate the cepstral features’ sensitivity to the noise distortion. He discussed several
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possible strategies by setting the number of subbands, the shape of the subband filter and
the type of the scale (hertz scale or mel scale). But no firm conclusions of the parameter
selection were given since the author’s main purpose was to show that SSC improved
the recognition performance as a supplement to cepstral coefficients. It was further
investigated and implemented in [15-18].

Chen, Huang, Li, and Paliwal [19] reexamined the SSC’s potential as an
independent feature set and compared it to MFCC. They conducted a series of
experiments to study the effect of the number of subbands on the performance. The

result was shown in Fig.4 [19].

20 f—

Word error rate (%)

0 i\ - i i’ i’ PR S - . i TR S 4 - d bk Ao L A L A A A. i L i L ' i, i 4. e
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Number of subbands

Fig. 4. Recognition performance of isolated spoken alphabet letters versus the number

of subbands (without dynamic features).
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Their study indicated that the optimal number of subbands was 15, while the SSC
features still performed comparably well to the MFCCs when their numbers were
between 10 and 20. Furthermore, the SSC coefficients are more robust to the noise than
the MFCCs, as shown in Fig.5. In addition to the comparison between MFCC and SSC,
the authors further reduced the word error rate by introducing the static, delta, and

acceleration vectors of these two features.

70
—e— MFCC (Gaussian)
60 —&— SSC  (Gaussian)
50 ---@-- MFCC (babbling)
R --&-- SSC  (babbling)
o
£ 40
= 30
—
<)
=
20
10
0

Original 30dB 25dB 20dB 15dB 10dB 5dB

Fig. 5. Recognition performance of isolated spoken alphabet letters as a function of SNR

in white Gaussian noise and babbling noise.

SSCs were further discussed in [20] and implemented as a normalized version

NSSC in [21] [22].
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2.3 Other Methods

Instead of the audio fingerprinting schemes, several video-based approaches have
been proposed as well. In [23], the authors presented a prototype application for the TV
monitoring only using video information. The visual hash used in [23] was computed
from the low-frequency part of both the luminance and chroma frame components. The
key assumption for the detection method was that commercials are only broadcasted
within the commercial breaks, which are indicated by the bumpers for a given TV
station. Under this assumption, there is no need for the authors to distinguish between
the TV program and commercials, which greatly simplifies the search task.

Unfortunately, the bumper information is unavailable in our system.
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3. SEARCHING IN HIGH DIMENSIONS

Thanks to various audio fingerprinting algorithms, we are able to reduce the
dimension of the audio data remarkably, typically from thousands to tens. Nevertheless,
searching in the feature database is still not as simple as searching in a relational
database. In contrast to traditional database applications, the basic function of a feature
database is to search for all objects within it that are similar enough to a given object,
rather than an exact match. This operation is also called a range query. Formally, given a
file of N records (each of which is described by k attributes), a dissimilarity measure
function d(x, y), and a predefined threshold ¢, the operation is to find all the records in
the query range of a query record with specified attribute values. The query range of a
record is defined as the region in which all the vectors’ distances from the record is no
larger than 6. When the database is small, a sequential scan is sufficient to find all the
results. When the database is very large and each record is a high-dimension vector in
reality, it is essential to apply appropriate multidimensional techniques for efficient

search.

3.1 Dissimilarity Measures

Regardless of what technique is used to speed up the search process, a specific
dissimilarity measure has to be employed to decide how similar two vectors in the space
are. In our problem description, there are no restrictions for the function d(x, ).

However, there are several implicit underlying assumptions.
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A dissimilarity measure function of k-dimension vectors is defined as:

k
dxy) & F [Z fiGe v |, (3.1)
i=1
where {f;} ¥_, are required to be symmetric
fix,y) = fily,x), 1<i<k, (3.2)
and both {f;} ¥, and F are monotonous
F(x) = F(y), if x>y, (3.3)

filx,z) = fi(x,y), ifx>y>zorx<y<z 1<i<k (34
{f;} ¥, are called the coordinate distance function, which represent the one-dimensional
distance along every coordinate. Generally, they are all identical, that is, for 1< i < k,
f:(x,y) = f(x,y). Then ¥¥_, fi(x;, y;) can be simplified to the linear function
f(x,y) = |x — y|. Considering the geometrical concept of a vector, a metric distance is
commonly a good choice for d(x, y). A metric distance satisfies the triangle inequality

d(x,y) +d(y,z) = d(x,2). (3.5)

The most widely used metric distances are the vector space p-norms

k
dp(f,f’) = [lei - 3’i|p]
i=1

The Euclidean distance where p=2 is employed in our system.

1
14
. (3.6)

3.2 Vector Quantization
To search efficiently, one might think of classifying the set of acquired features

into a few groups such that every feature vector can be expressed as the index of its class.
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This is also the basic idea of vector quantization and pattern recognition/classification.
These two fields have been studied for decades. A number of effective and classical
algorithms are proposed and accepted in a wide range. They are potential candidates for
this application. We will introduce one mechanism and discuss its feasibility.

The K-Nearest Neighbor (K-NN) Algorithm is one of the most commonly used
methods in pattern recognition. The original application of this method was to search for
the most relevant features that could distinguish among the classes. One simple example
is the Nearest Neighbor search by choosing K=1.

The goal of the K-NN algorithm is to minimize the average squared error in
every subset. Let G, = {X1, X5, ... X|g, |} be the subset containing all the members
classified as class k; Yy, is the “center” of class k (also known as the codeword). Then the

average squared error e;, in G can be calculated using

1
e =1 ) X~ Vil 3.7)
Gl £

E = zK: é;. (3.8)

Now let X = {X;, X,, ... Xy} be the training set. To get the codebook Y = {¥;,Y,, ..., Vi },
the K-NN Algorithm go through the following steps:

a) Initialize the codebook using (3.9), assuming the training data is divided into M

subsets of equal size % (in practice, it is probably not an integer. For the facility

of analysis, % Is treated as an integer.)
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. (3.9)

b) Calculate the total average of squared errors {E;} for {Y;} using (3.8).

c) Classify the training data X into different classes G, based on the NN rule, which
is:

X, €G, if dX, V) <d(X,Y;), anyj#k, (3.10)

where d(X,Y) is defined as the Euclidean distance.

d) Recalculate the Y;’s using the new subsets G, ’s to get a new codebook Y.

e) Calculate the total average squared error {E;'} for {¥;'}. Compare {E;} and {E;}.
If they are not close enough, let Y’ be Y, repeat step b). Otherwise, stop. The
current codebook Y is the result.

After creating the codebook Y for the algorithm, the system quantizes every input
vector x into a class under the scheme below: for an unclassified input, the algorithm
searches for the K nearest training samples to the query, then assigns it the label that is
most frequent among these K samples. Obviously, the classification phase of the classic
K-NN algorithm is too complex. So we adjusted this part to label the input using the
index of the nearest codeword as the label, which is the basic quantization concept.

Using this quantization scheme, every feature vector is represented by a number
so that an audio clip is expressed as an integer sequence. The problem of searching for

commercials in a segment of TV broadcasting is turned into the task of searching for a
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short sequence in a much longer one. This transformation seems quite promising;

however, there are three problems with this approach:

i)

i)

The generation and update of the codebook can be demanding. Review the
procedure to get Y. It is a recursive process and its performance depends on
the accuracy of the initial codebook as it relates to the final one and the
threshold set for the change in {E;}. As the size of the training set increases,
the necessity of updating the codebook cannot be neglected. Every time the
database is updated, the generation procedure needs to be conducted again.
Quantization ensures that the input is quite similar to those training data that
label as the same codeword. Nevertheless, it ignores the possibility that there
may be other similar data in other subsets. On one hand, imagine a
hypersphere centered in the input vector x with a radius of J, which is the
given threshold in the initial problem description. Any training data inside
this hypersphere is considered as qualified. On the other hand, after
quantization, all the candidates selected lie in a hypersphere centered in the
codeword Y; instead of x. There is a good chance that the search is not
complete.

Due to the frame loss phenomenon and the problem discussed in ii), the
simple sequence task becomes complicated. First, the frame loss phenomenon
requires the consideration of time wrapping during the sequence comparison.
Dynamic time wrapping (DTW) is a potential solution. Second, for the issue

caused by quantization, the search algorithm needs to be designed for
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approximate sequences, rather than exact matches. These two conditions
greatly increase the complexity and computations of the sequence search
algorithm.

Therefore, vector quantization is not an appropriate choice for our purpose.

3.3 Techniques based on Index Structure

According to the analysis of vector quantization methods above, we realize there
are several properties that the search algorithm should meet: 1) the classes are
represented by regions instead of points, and 2) the update of the database and the
classifications is convenient.

Bohm, Berchtold, and Keim [24] provided an overview of the techniques in
querying multimedia databases, which described various index structures and algorithms
for query processing in high-dimensional space. Their paper starts with the mathematical
analysis of the effects caused by the increase of dimensionality, which are subsumed by
the term “curse of dimensionality”. Then the problems were identified and the authors
reviewed the proposed methods to overcome these obstacles. Rather than exploring the
details of all the approaches, the focus was to understand the basic concepts and
common principles shared in them. High-dimensional indexing methods are based on the
principle of hierarchical clustering of the data space. Tree structure is resembled and two

kind of nodes used for construction (see Fig. 6).
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Fig.6 Hierarchical index structures.

The height of the tree is normally the dimension of the vector as only one
component is examined at a time. The leaf nodes of the tree are called data nodes,
storing the vectors. All the other nodes are the directory nodes, which consist of the
partitions inherited from their parent nodes and those passed to the child nodes. In other
words, each directory node is a split point for the hyperplane and every leaf node
represents a region of the entire high-dimension space. It is easy to see that the region
that one directory node defines must always be completely covered by that of its parent.
Analogously, all vector objects stored in a subtree lie in the region of its root node. This
property enables the system to cut branches of the tree from further processing. For
example, if a region does not intersect the with the query range, it is impossible that any
sub-region in its subtree intersects with the query range. As a result, only those nodes
intersecting with the query range worth further investigation.

It is not surprised that binary tree is a reasonable and proper choice as the
framework to organize the high-dimension database, considering the total number of the

leaf nodes and the simplicity of the basic operations. A bigger cause of concern is the
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partition strategy design to make the best use of the structure. The splitting rule decides

the shape, volume, and distribution of all the regions. The shape of a region can be a

hypercube, a hypersphere, a multidimensional cuboid, a multidimensional cylinder or a

combination of several of the above. A summary of a few leading high-dimensional

index structures and their properties was given in [24] (and summarized in Table.1,

where MBR stands for minimum bounding rectangle).

Table. 1. High-dimensional index structures and their properties.

Name Region Disjoint | Complete Split Criteria
R-tree MBR No No (\Various algorithms)
Surface area
R*-tree MBR No No Overlap
Dead space coverage
Split History
X-tree MBR No No Surface/overlap
Dead space coverage
Cyclic change of
LSD"-tree kd-tree region Yes No/Yes dimension
Distinct values
SS-tree Sphere No No Variance
Sphere with Seeds with least
TV-tree reduced No No common prefix
dimension Maximum distance
SR-tree Intersle\z/? I’;sl,_\?here/ No No Variance
Space filling Union of Yes Yes According to space filling
curves rectangles curve
Pyramid tree Trunks_ of Yes Yes According to pyramid-
pyramids mapping

From Table.1, we can see that most structures choose the rectangle or the sphere

as the geometrical shape of the regions. The resulting segmentation, which is a primary

measure of the performance, is not always disjoint or complete over the entire space. On
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one hand, disjoint partitioning guarantees that there is no overlapping between any nodes,
thus the decision of which subtree to search is unambiguous. On the other hand,

complete partitioning has the dis-advantage that the regions are generally larger than
necessary. Taking account of these factors, a modified K-D tree is a reasonable choice
for the audio feature search.

The original K-D tree was proposed by Bentley [25], where K is the
dimensionality of the space. The partition values were randomly selected and the
discriminator for each level was obtained by cycling through the keys in order. Fig. 7 is
a 2-D space example. The entire space is cut into the 8 subspaces based on the K-D tree
on the right. Several associated basic operation algorithms, e.g. insertion, deletion, and

search, were designed and evaluated by average running time.

y
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L 2
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L
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Fig. 7. A 2-D space example of the original K-D tree structure.
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It was modified and optimized in [26] with respect to the expected number of
records examined in the search process. The modifications are made in three aspects:

a). The height of the tree K is fixed as the number of attributes that one record
has. As a result, each component in a feature vector is only checked once in the
algorithm. It is reasonable because K is usually quite large. There is no need to check
them more than once.

b). The order of the discriminator key is decided by the ranges along different
dimensions. The range of a specific component is defined as the difference between the
minimum and the maximum values in the database. The dimension with the largest
range is checked first, then the second largest one, and so on.

c). The partition value of every discriminator key is defined as the median value
of its distribution in the database.

The goal of this selection of the order of the discriminator keys and the partition
is to optimize the binary K-D tree for the current database without any knowledge of the
distribution of the queries. In particular, it is unnecessary to store every node’s bounds in
advance as they can be computed in the process using those of the parent node and the
information defined in b) and c). The tree is easy to update and this structure also avoids
a general binary tree optimization, which can be very time-consuming.

The search algorithm in the modified K-D tree is a recursive procedure. Recall
the task of a typical search task: given a predefined threshold ¢, and a dissimilarity
measure function d(x, y), find all the records in the query range of a given query record

with specified attributes in the database. Starting with the root node, the process
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examines the geometric boundaries the current node indicated. If they overlap the ball
centered at the given record with a radius equal to the dissimilarity threshold ¢, then the
subtree must be considered as potential candidates and the procedure is called
recursively for the child nodes. This is referred to as the “bounds-overlap-ball” test. The
details will be introduced in Section 4.3.

At last, the authors analyzed the performance theoretically and experimentally
for various combinations of the dimensionality and the dissimilarity function.

Foote [11] applied the modified K-D tree structure for the quantization in his
system and used the maximum mutual information (MMI) of every dimension to
optimize the partitions. Similarly, every leaf node in the tree is a class i and every non-
terminal node represents a hyper rectangular cell j of the high-dimensional space. Let t,
be the partition along dimension d. To calculate the mutual information 1(X; I), two
probabilities are estimated first. For the region of j , define P.(i) as the probability of
classi and P.(a;) as the probability that a member of class i is above t;. They are
computed using

Ny A;
, B(a) =—, (3.11)

B-() =

\.2|

where N;; is the number of points in cell j from class i , N; is the number of points in cell

Jj, and 4; is the number of points from class i with x, greater than t;. Then the mutual

information is calculated as

106D = HOD) — HAX) = = ) BDlogh ) + ) POH(P ()
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It is a function of t; need to be maximized. An associative stop rule is set to prevent the

optimization process running for ever.
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4. PROPOSED SEARCH ALGORITHM

The whole system proposed can be divided into two parts: audio feature
extraction and database search. There are two aspects to pay attention to:

First, as mentioned above, TV broadcasting data typically consist of both video
and audio parts. To apply the audio feature extraction algorithm, the audio parts should
be extracted from the recorded TV broadcasting streams before any data are processed in
the system. For our application, the “AoA Audio Extractor” [27] is used to obtain the
audio files in the WAVE format.

Second, the database used in this application comprises four parts: the original
commercial audio files, the file containing all the features of known commercials, the
file recording the basic information of each commercial, and the file containing the key
information for the K-D tree. Construction of the database is assumed to be finished
offline before the system starting the search process The files are stored in the hard disk
in the format of text files. The structure of the database will be explained later in Section

4.2. Fig.8 is the overview of the entire system.
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Fig. 8. The overview of the commercial searching system.

4.1 Audio Feature Extraction

Recall the various audio fingerprinting techniques reviewed and discussed in

frequency domain approaches.

Section 2. The time domain methods do not qualify since they can only classify the

audio signals into two basic types: silence and voiced sound. Then we move to the

The Fourier transform itself does not help much since the rate of dimensionality

features cannot supply a good discrimination.

reduction is only one half. The brightness and pitch derived from the Fourier transform
coefficients are quite effective for distinguishing different timbres. But for those audio

clips containing more than one timbre, which TV commercials usually are, this kind of
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Now consider the MFCC and NSCC. These two audio fingerprinting schemes
share the basic idea that instead of directly utilizing the frequency domain information,
convert it from hertz scale to other scales that are based on the human hearing’s
judgment. Mel scale is used in MFCC while bark scale is more appropriate for NSCC.
The comparison of the performance of MFCCs and NSCCs has been reviewed in section
2.2.5. If the number of subbands is properly selected (around 15), these two features
provide comparable low error rate in speech recognition. Moreover, NSSCs are more
robust than MFCCs with respect to the noise. More discussion with regard to the
computational complexity is demonstrated in this section.

The generations of the MFCCs and NSSCs begin with a few same steps: down
sample the original signal to a predefined frequency, frame it with a specific rate of
overlapping, window every frame by a Hamming window, and transform them into the
frequency domain coefficients using the FFT. After these procedures, there are two more
steps for MFCCs and only one for NSSCs.

To calculate the MFCCs, the power spectrum is mapped onto the mel scale using
20 triangular overlapping windows with the same area, applying the equation (2.13). It is
followed by using (2.14) to get 12 MFCCs. This combination of bandpass filters and the
dimension of features has been proven to give the highest performance with acceptable
computations and storage. On the other hand, NCSSs are obtained by calculating the
centroids for K critical bands of the human hearing, which is similar to a filtering
process. Hence NSCC is a better choice compared to MFCC. Fig. 9 is an overview of

how to calculate the NSSCs of the audio data.
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NSCCs of the audio data are derived as follows:

Power of the |

spectrum
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Overview of audio-based feature extraction.

1. Convert the audio data to mono and down sample it to 11025Hz. It is because the

critical subbands we are interested in range from 300Hz to 5300 Hz [28]. The

boundaries of the subbands are listed as in Table 2.

Table. 2. The boundaries of 16 critical bands.

Critical | Lower Upper Bandwidth | Critical | Lower Upper Bandwidth

band frequency | Frequency | (Af) band frequency | frequency | (Af)

no. limit (7)) limit (£.) no. limit () | imit (1)

= 1 300 400 100 . 9 1480 1720 240
2 400 510 110 10 1720 2000 280
3 510 630 120 11 2000 2320 320
4 630 770 140 12 2320 2700 380
5 770 920 150 13 2700 3150 450
6 920 1080 160 14 3150 3700 550
7 1080 1270 190 15 3700 4400 700
8 1270 1480 210 16 4400 5300 900
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Theoretically, the whole audible frequency ranges from 0 to 16 kHz. It can be divided
into 24 subbands according to the HAS. As discussed in [19], the best performance of
SSC is achieved when there are about 15 subbands. For this reason, the most relevant 16
of them to the HAS are chosen to be the critical subbands in our algorithm.

2. Segment the signal into overlapping frames. In our application, we choose the width
of the frame to be 4096 (approximately 371.5ms) and the overlap ratio is 50%.
Overlap must be applied to promise the robustness to shifting.

3. Apply a Hamming window to each frame to minimize the discontinuities at the
beginning and the end, shown as Fig. 10.

2mn
1),where N = 4096,a = 0.46. (4.1)

w(n)=1—a—a*cos(

0.7
06|

05}

1 1 1 1 1 1 1 1
500 1000 1500 2000 2500 3000 3500 4000

Fig. 10. The 4096-point Hamming window.
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4. Transform the signal into the frequency domain using the FFT.

=

-1

, n
X, = ) x,e “™N k=0,..,N—-1, (2.5)
0

S
Il

5. Take the power of the spectrum.
6. Calculate the normalized frequency centroids of the 16 critical bands. Let C; be the i-

th subband centroid for a frame, resulting

CBit+1
C = k=CB'l-+1
t CBiy1
k=CB;+1

k x Py
Py

i=1,2,..,16, (4.2)

where CB; is the lower frequency boundary for the i-th critical band, Py is the audio
spectrum. Then it is normalized as follows:

NC, = C;—(CB; + CB;y1)/2
l CBiyy —CB;

(4.3)

Each NSSC is a value between -0.5 and 0.5 regardless of the critical bands. For
the computation simplicity and storage efficiency, all the NSSCs are further quantized to

256 values such that each one can be presented using only one byte.

4.2 Database Construction

Based on the audio fingerprint extraction scheme, the database of the known
commercials is created for the search. The structure of the database is critical because it
is closely related to the effectiveness and efficiency of the search algorithm.

For the first component of the database, the original commercials clips are cut
from the TV streams directly. In practice, the source of the known commercials is

diversified. They can be the standard samples provided by the companies, the
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broadcasted versions modified by the stations, or the degraded files reported by the end-
users. In several scenarios proposed before, these audio files were not stored after the
features had been calculated for the database in consideration of the space they might
take. Nevertheless, the copies are kept in our database so that the users have access to
playing them, which is the most direct way to confirm the accuracy of the results.

The second component is the collection of all the features of the commercials in
the database by using the extraction algorithm described above. Technically, this is the
real “database” for the system. Every 16-dimension NSSC feature is a record and is
assigned an index. Combined with the third element, the text file containing the basic
information of the ads, the system can indicate which commercial a record comes from
and its relative position to it.

The last piece is the file that contains the crucial parameters corresponding to the
K-D tree structure and the indexes of the leaf nodes that each record belongs to. These
parameters are some statistics data derived from all the features we have, including the
maximum, minimum, median values of NSSC of each critical band and the
discriminators of each level of the tree. If new commercials are accepted, all the
components in the database need to be updated. The computation required to build and
update the tree is easily derived. Let V denote the number of records in the database.
Two exhaustive scans of the database are necessary and sufficient to carry out the task.
The maximum, minimum, median values of 16-dim NSSCs are acquired during the first
scan. The computations demanded are proportional to N, N and NlogN respectively.

These 48 bytes determine all the nodes of the tree, so in the second scan the leaf node
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which a record belongs to is decided by comparing its components to the median values.

The time it takes is just O(N).

4.3 Database Search

The search algorithm in the system takes three steps to accomplish the result:
candidate search, decision, and time verification. Fig. 11 depicts the flow chart of the
whole process.

From the flow chart we can see that generally the process is performed for every
N; (N;=15 is used in the application) frames when there is no match. Once a commercial
is detected and confirmed, it jumps to the frame after the commercial and begins a new
search.

For the candidate search, two cases are considered: single commercial and all
commercials in the database. If the user selects a specific commercial to search, the
system just compares the current frame with all the frames in this commercial using the
square of the Euclidean distance to find any qualified candidates. If the user chooses to
search all the commercials in the database, it applies the K-D tree method [26] to fulfill

the task. The algorithm is depicted in Fig.12.
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Fig. 11. The flow chart of the search process.
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Global:
X[16]: the NSSCs of the current frame
Upper[16]: the upper bounds
Lower[16]: the lower bounds
Discriminator[16]:
the discriminators for each level, each one is an index of the
critical bands
Partition[16]: the partition values for each critical band
Procedure SEARCH(node)
local p, d, temp, v;
let v be the level of current node
if (vis 16)
examine all the features in this node, update the candidate set;
else
d=Discriminator[v]; p=Partition[v];
if (X[d]<=p)
temp=Upper[d]; Upper[d]=p;
SEARCH(left son of node); Upper[d]=temp;
else
temp=Lower[d]; Lower[d]=p;
SEARCH(right son of node); Lower[d]=temp;
end
if (X[d]<=p)
temp=Lower[d]; Lower[d]=p;
if (BOUND-OVERLAP-BALL) SEARCH(right son of node);
Lower[d]=temp;
else
temp=Upper[d]; Upper[d]=p;
if (BOUND-OVERLAP-BALL) SEARCH(left son of node);
Upper[d]=temp;
end;
end;

Logical procedure BOUND-OVERLAP-BALL
local sum, d;
sum=0;
for d=1to d=16
if (X[d]<Lower[d]) sum+=(X[d]-Lower[d])%;
if (sum>6) return(FALSE);
else if(X[d]>Upper[d]) sum+=(X[d]-Upper[d])>;
if (sum>8) return(FALSE);
end;
end;

Fig. 12. The search algorithm for K-D tree.
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It consists of two kernel procedures: search (node) and bound-overlap-ball
function for the current node. There are six arrays involved in the entire execution path:
X [16], Upper [16], Lower [16], Discriminator [16], Partition [16] and Candidate vector.
Hence they are defined as global variables. In particular, Upper [16] and Lower [16] are
initialized as the maximum and minimum values of the NSSCs of 16 critical bands in the
database respectively and will be updated and modified during the recursive search
function. On the other hand, X [16], Discriminator [16], Partition [16] are constant for
the current frame and the database. Discriminator [16] are the discriminators of different
levels of the tree and Partition [16] are the median values of the 16-dim NSSCs in the
database.

The function search (node) is called recursively to return all the qualified
candidates related to the leaves of the subtree of the node. It is operated as follows:

1. For the given node, calculate its level / in the tree to determine whether it is a leaf
node or not. If it is a leaf node (/=16, assuming the level of the root node is 0),
check all the candidate frames labeled as this node and return those with smaller
distances to the X [16] than the threshold ¢, then stop.

2. If the node is a nonterminal one, retrieve the /-th discriminator 4 and partition p
from the Discriminator [16] and Partition [16]. Compare the X [d] with p. If X
[d] is smaller than p, store the current Upper [d], change it to p and search the left
subtree. Otherwise the current Lower [d] is preserved and updated to p, then

search the right one.
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3. After searching the selected subtree, the Upper [d] or Lower [d] is reset to the
previous saved one. The procedure applies the bound-overlap-ball function to
check the possibility that there are potential candidates in the other tree. The
region associated with the other subtree is acquired by updating the Upper [d] or
Lower [d] accordingly. The function bound-overlap-ball calculates the
dissimilarity from X [16] to the closest boundary of the subtree under
consideration. The distances along the 16 dimensions are computed one at a time.
Hence if the region is far from X [16], the subtree can be excluded on the basis of
a few NSSCs.

The third step guarantees that all the leaf nodes overlapping the ball centered at
X [16] are investigated during the process. For each frame X [16], the system searches
the entire database by calling function search (root) and updating the Candidate vector
during the process. If the vector is empty, then the system skips to the next Ni-th frame.
If there is any candidate, it moves to the next level: decision.

The versatility of this method makes its formal analysis quite difficult. Its
performance certainly depends on the total number of records in the database N, the
dissimilarity threshold &, the number of records in the leaf nodes and the distribution of
the records. Intuitively, as the size of the database N becomes bigger, the search will
take more time. The number of records in one leaf node is closely related to N since the
total number of leaf nodes is constant, 216. Because the median values are chosen to be

the partitions, the records are highly possible to evenly distribute in these terminal nodes.
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The choice of ¢ is crucial: a big ¢ results in a large amount of leaf nodes to be
examined and candidates to further investigate in the next step while a small 6 probably
leaves some real commercial occurrences out mistakenly. Jin S. Seo, Minho Jin et.al [21]
performed some analysis on the fingerprints in their database and gave some suggested
parameters based on the experimental results. They assumed the SSC sequence as a
stationary process and normalized it using (4.4) before modeling.

SSC[n] —m
pln] = — n=12,..M, (4.4)

where M is the number of SSCs in an audio block (=848 in [21]), m is the mean and
o2 is the variance. Then the authors calculated the first-order & second-order
autocorrelations of the training data to build a simplified stochastic model as follows:
R[k] = E[p[nlp[n + k]] = al¥, (4.5)
QK] = E[p*[nlp?[n + k1] = 1 + (u, — DbX), (4.6)
where a, b and u, were revealed to be 0.59, 0.44 and 3.0 by the experimental results.
After the modeling, the square of the Euclidean distance measure D, defined as in (4.7),

was analyzed to determine a reasonable threshold for two similar blocks.

M
1
D= M;(p[n] ~ qfnl)?. (4.7)

The mean of D is given as
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The variance of D is calculated as

op = E[D?*] — (E[D])?, (4.9)

where

M M M 2
E[D?] = - (Z Pl + Y tln] ~2 ) p[n]q[n]>

n=1 n=1 n=1

M-1
2u,+4 4
=2+ T N M- w1+ (g - DB 4207 (410)

n=1

Using the experimental values of a, b and p,, op is given as 0.1479. Then the false alarm
rate Pr, was estimated as in (4.11) under the assumption that D has a normal distribution

if M is sufficiently large and the components in the sum are sufficiently independent.

2 :fT 1 exp(—ﬂ>dleerfc<2_71> (4.11)
FA o \/EO'D 2 O_Dz ) \/EO'D . .

It turned out that T could be quite large based on the model with a low probability to

declare different audio blocks as similar.
For the decision step, the system checks K; (K1=53 is chosen as the length is
approximately 10 seconds) consecutive frames for each candidate. As described in

Section 4.2, each frame is assigned a number which can indicate the commercial it



42

belongs to and its relative position to it. We can utilize this number to decide which
frames near the candidates to choose. If there are less than K; frames in this commercial,
all the frames in it are used to calculate the total distance. For those long enough
commercial, if the current frame is the first half of it, the first K; frames are selected;
otherwise the last K; ones are chosen. After computing the square of Euclidean distance
for all the candidates, the system selects the one with the minimal distance and further
verifies if this distance is under the predefined threshold. If it is too large, the process
skips to the next Nj-th frame like that in the previous step. If it is small enough, it moves
on to the final level: time verification.

At the time verification level, the first frame of the original commercial sample is
selected as a header to locate the starting time accurately. After a proper shift, if
necessary, it finishes the whole process for one frame.

Compared to the monitoring system proposed in [22], this process can be seen as
a simplified version with little impact on the overall performance. Since this application
is user-oriented, it is designed to offer more information and options to the users. In
addition to the function of searching all the commercials in the database, the user can
browse the list and choose any commercial to search in the current file. The result will
be labeled directly on the waveform of the TV broadcasting data. Moreover, both the
original commercial and the searched clips can be played so that the users can actually

hear and confirm occurrences of the commercials.
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5. EXPERIMENT RESULTS

5.1 The Interface Design

The application is written with C++ language and MFC. A computer with 2.9
GHz CPU is used in the experiment.

Fig.13 is the startup layout of the designed application. The interface is divided
into 5 sub windows. We will introduce their functions and communication between each
other.

The leftmost one is to automatically browse and list all the audio files stored
under the specified file directory. They are displayed in a tree structure, representing the
multi-story catalog. Through the folders’ names, it is convenient to figure out when these
file are broadcasted and their durations. Users can create new folders to organize their
own audio resources. Each leaf node is a name of a WAVE format file. If the user wants
to search commercials in one of the clips, just double click the name. Then the
application will start loading this file and extracting its audio features. After the
processing, the waveform of this audio clip will be displayed in the middle window on

the right, as shown in Fig. 14.
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The top window on the right is the list of all commercials in the database so that
people can select a specific one to search for. It is connected to the left window in the
bottom. Double click one commercial then the original version will be displayed in the
bottom left. If there is a TV show file loaded before the selection, the application will

spontaneously search the commercial in it. Otherwise, a notifying message pops up -“No

show file loaded”. The number of matches will be indicated in the message. If there are
any occurrences, they will be labeled in the audio file’s waveform, as shown in Fig.15.

There are two ways for the users to confirm the result. Double click the labeled
part and the waveform of the short cut will be displayed in the last window, as shown in
Fig.16. The user can compare it to that of the original commercial by dragging the
horizontal scroll bar to see the whole shape, or just simply play both of them by clicking
the “play” button.

Besides the single commercial search, the application supports the search for all
the commercials in the database. After loading the TV show file, the user just need to
click the “Test” button on the main menu. The format of the result report is shown in

Fig.17.
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5.2 Result Analysis

There are 126 different commercials in the database and their lengths are 5s, 10s,
15s, 20s or 30s. They are all gathered from the same station, CCTV-2. About 50 hours of
recorded real broadcasting data is used for the test.

Based on the experiments results, an average processing time for the audio
feature extraction from the audio data of an hour is about 45 seconds. The search speed
for one commercial is fast, about 1-2 seconds. The average running time of the entire
database search is about 100 seconds.

In the experiments, only the commercials in the database are recognized, and
other versions are ignored. They are broadcasted 653 times in total in 50 hours. The
system detects 640 among them, which is about 98.00%. No commercial is determined
as another one and no TV program clips are recognized as commercials, which means
the false alarm rate P, is 0.00%. Therefore this system is quite reliable. Table.3 lists the
commercials that are broadcasted most frequently and their durations, occurrences and
detections.

From the table we can see that the detection scheme performs quite well on most

commercials. But for some commercials, the detection rates are not good enough.



Table. 3. Statistic results for some commercials.
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Commercial Name Duration(sec.) Occurrences Detections Rate (%)
Yanzhiwu 15 26 26 100
Guomei 15 22 22 100
Shuiyushan 5 18 18 100
Xiali 15 15 15 100
Jiannanchun 15 14 14 100
Qipilang 15 13 13 100
Aoyounaifen 15 13 11 84.62
Shangdaitong 5 12 12 100
Kangjia 5 12 12 100
Dongfengrichan 15 12 12 100
Yangxuegingnao 5 12 11 91.67
Minsheng bank 5 12 11 91.67
Minsheng credit card 5 12 10 83.33
Lanling 10 11 11 100
BYD_F6 10 11 11 100
Xinhuiteng 30 11 11 100
Kangjie 10 11 11 100
Benchi 30 11 11 100
Qicaiyunnan 5 10 10 100
Meidizhenglifang 15 10 10 100
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Table. 3. Continued

Commercial Name Duration(sec.) Occurrences Detections Rate (%)
MDX 30 9 9 100
Aidengbao 15 9 8 88.89
Hongloumengjiu 10 9 8 88.89

Observing the broadcasting time of these commercial, we find out that most of
the detection failures happen when the commercial is broadcasted between others and its
duration is quite short. Recall several parameters used in the proposed algorithm. In the
audio feature extraction part, the audio data is down sampled to 11.025 kHz. The length
of every frame is 4096 and the overlap ratio is 50%. So there are actually 2048 new
points in a frame, which is about 0.2 sec. This is also the maximum error of time shift for
one frame. Although the time verification is applied in the data search part, this error is
still likely to propagate due to the fact that the basic unit of search is a frame. When the
cumulated error is large enough, the whole commercial may just be skipped because of

the short duration.

5.3 Discussion and Future Work

Most existing TV commercial algorithms and products apply the vector
quantization in the system to train the broadcasting data. At the expense of more training
time on the data, the search speed is really fast. Typically, it takes 150 seconds to
preprocess the broadcasting data of an hour and 1 sec to search for all the commercials

in the database. The state-of-art product can detect all the occurrences of known
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commercials (100% detection) with Pr, = 1.9%. Compared to this product, our system
sacrifices little robustness for better reliability. However, robustness is more practically
important since it is easier to report the false alarm by reviewing than to find out the
missing one in the broadcasting stream. Proper adjustment of the dissimilarity threshold
is likely to increase the probability of detection.

In practice, considering the cost of broadcasting, companies always tend to adjust
the lengths of their commercials for different stations. It leads to various versions of the
commercials for the same product. As the system assumes the match is of the same
length, it is required to store all the versions in the database to guarantee the search for
some specific product is complete.

In this system, the commercials in the database are typical. Every one contains
both audio and video components and most of them have background music and speech.
However, there are other special cases in the real life. Some commercials only have the
video part. Some only contain the speech element, which are quite similar to TV
programs, like news report. And others may just play the music part which is used in
some different commercial. Under these conditions, this system will be vulnerable. It is

necessary to take advantage of the video information for further improvement.
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6. CONCLUSION

A commercial search system for TV broadcasting is presented using audio
fingerprints. The application selects Normalized Spectral Subband Centroids (NSSCs) as
the audio features, and constructs a database and designs search algorithms for different
cases. It is implemented based on C++, using Microsoft Visual Studio MFC for the
interface. The application can search either one specific commercial as the user request
or all the commercials in the database. The detection is quite accurate for most
commercials but not good enough for some specific ones. Future work is needed to

improve the performance.
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