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ABSTRACT 

 

Analytical Layer Planning for Nanometer VLSI Designs. 

 (August 2012) 

Chi-Yu Chang, B.S., National Chung Cheng University, Taiwan 

Chair of Advisory Committee: Dr. Jiang Hu 

 

 In this thesis, we proposed an intermediate sub-process between placement and 

routing stage in physical design. The algorithm is for generating layer guidance for 

post-placement optimization technique especially buffer insertion. This issue becomes 

critical in nowadays VLSI chip design due to the factor of timing, congestion, and 

increasingly non-uniform parasitic among different metal layers. Besides, as a step 

before routing, this layer planning algorithm accounts for routability by considering 

minimized overlap area between different nets. Moreover, layer directive information 

which is a crucial concern in industrial design is also considered in the algorithm. 

 The core problem is formulated as nonlinear programming problem which is 

composed of objective function and constraints. The problem is further solved by 

conjugate gradient method. The whole algorithm is implemented by C++ under Linux 

operating system and tested on ISPD2008 Global Routing Contest Benchmarks. The 

experiment results are shown in the end of this thesis and confirm the effectiveness of 

our approach especially in routability aspect. 
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1. INTRODUCTION 

 

1.1. Post-placement Optimization in VLSI Designs 

Traditionally, physical design produces the geometrical data like netlist of the 

circuits for fabrication, and the process is mainly partitioned into two parts: placement 

and routing. In typical design flows, many optimizations are performed between the 

placement and routing, such as gate sizing and buffer insertion. Our work is to generate 

layer guidance especially for pre-routing optimization, especially buffer insertion. In 

modern technology, this issue became critical because the number of metal layers keeps 

increasing and metal size/parasitic among different layers becomes increasingly 

non-uniform. As such, without layer and corresponding parasitic information, the 

post-placement (pre-routing) optimizations may unnecessarily insert huge amount of 

buffers. Therefore, it is essentially important to provide a reliable estimation on layer 

information for the optimizations.  

1.2. Routability-driven Techniques 

Steps before routing like placement and buffer insertion need to consider routability 

so that they can lead to routable circuits. Therefore, routability-driven techniques have 

been proposed and broadly used in many designs as in [1-4]. Being a pre-routing process 

 
 
____________ 
This thesis follows the style of IEEE Transactions on Computer Aided Design of 

Integrated Circuits and System. 
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as well in this design, we will take it into consideration. 

1.3. Layer Directive Information  

Besides, in order to boost the development of routing techniques, International 

Symposium on Physical Design (ISPD) released two sets of benchmarks in 2007 and 

2008 respectively. Both sets provide the multi-layer designs; as a result, recent 

developed routing algorithm as in [5] and [8] could generate 3D routing solution with 

minimized wirelength and overflow considered. 

However, in industrial design, the real objectives of router are not only considering 

wirelength and overflow but also the detours of those timing-critical nets into higher 

layer. Layer directives information came out for those critical nets in ICCAD 2009 

benchmark [9], and it could be considered by router [6] and [7] so as to meet the system 

timing specifications. 

1.4. Objectives 

Our objective is to develop a pre-routing layer planner, which can efficiently 

generate guidance for further buffer insertion. This planner assigns each net to a layer 

range such that the estimated wire congestion is minimized and the layer directives for 

timing critical nets are observed. Since this is prior to routing, a net is represented by a 

netbox, which is the smallest bounding rectangle covering all pins of the net. A netbox is 

illustrated in Figure 1. 
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1.5. Thesis Organized 

The reminder of this thesis is organized as follows. Section2 is to introduce the 

previous similar work. Section3 formulates the 3D layer planning problem and mentions 

the method how we solve the problem. Section4 introduces our analytical layer planner 

engine explicitly and give formal explanation on each parameter we used in this work. 

Senction5 give the detailed implementation on solving the formula by 

conjugate-gradient nonlinear programming. Finally, we will have experiment results and 

comparison charts in Section6 and Section7 respectively, and the thesis would conclude 

in Section8. 

 

 

 

 

 

                                                      

Fig. 1. Rectangle is called netbox or net and each connecting wire between pins is segment. 
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2. PREVIOUS WORK 

 

A straightforward way to implement layer planning is to run a global router [5-7], 

stop it pre-maturely, and then take the result as layer guidance. The layer planning 

results will serve as a soft guidance, instead of hard constraints, to subsequent routers. 

This method seems right and reasonable, and we will rename this pre-mature 

NTHU-route as NTHU-layer planner. However, we innovate a new method to 

implement it; no like mentioned NTHU-route, their layer assignment algorithm is to 

assign each segment to different layer as in [10]. What we do is to assign whole netbox 

into discrepant layer. In theory, the problem spaces in our work would be smaller 

compared to the method in [10], since one netbox includes a bunch of segments. This 

attribute also meet the needs of our design, since we are pursuing a briefly guidance 

algorithm which should have the ability to generate sound information efficiently.  

To carefully rectify the terms we are using, as layer assignment [10] in NTHU-route 

is doing some similar work with us but focusing on different aspect, we would use the 

term: layer planner to represent our work from now on.  

As mentioned in Section 1, proposed work will finally be inserted to provide 

guidance for buffer insertion, and then to global router. The result of proposed work 

should not only generate guidance lead to less buffer using but also better routing ability.  

By measuring routability, we will check firstly if the routing attributes in terms of 

wirelength, via count, overflow and routing time, become better or not compared to 
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purely exploiting NTHU-route. Furthermore, we will also do routing attributes 

comparison between what NTHU-layer planner and our layer planner provide. Flow for 

above comparison is shown in Fig. 2.  

As for judgement of buffer insertion ability in our design, we would apply our layer 

guidance into buffer insertion algorithm to see if less buffer inserted and smaller buffer 

area occupied compared to which without any layer guidance. However, the buffer 

insertion algorithm we preferred still in experimental stage, we would combine both 

work in the future to see if it provide efficient and sound buffer insertion ability. One 

thing to note is that, in the buffer insertion stage, we will need to provide physical 

implementation details such as layer parasitic information, net’s RAT (Required Arrival 

Time) and wire width of each and every different layers to get the realistic timing 

constraint. Since adding buffer is to tackle the issue of timing violation in real design. 
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Fig. 2. Flow for final result comparison 
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3. PROBLEM FORMULATION 

          

What we want to fulfill is giving each netbox a layer range to lie in. The reason for 

saying layer range rather than a specific layer is due to nowadays routing technique will 

have the wire routed in interleaving direction in consecutive layer. So we can regard 

consecutive two layers as one set of routing resource and call it tier. Fig.3 is to show this 

concept. In this two layer resource example, layer2 get wider wire and goes in vertical 

direction; while, layer1’s wire are thinner and aligned in horizontal way. 

 

 

 

 

 

 

 

 

 

 

 

Besides giving guidance for netbox a layer range to lie in, we will also take 

routability and layer directive suggestion from benchmark into account for further design. 

Minimizing the overlap area between each netbox can help relief the congestion issue 

Layer1 

Layer2  

 

Fig. 3(a). Wire routed in interleaving direction in consecutive layer 

Tier1  

Fig. 3(b). Regard consecutive two layers as one set of routing resource 
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and make routing easier. However, the given benchmark is well-placed, so we won’t 

make any change on     coordinate of netboxes. Hence, the routability issue would 

become minimizing the netbox overlap area by moving them into different tier in   

direction.  

Given a circuit represented as hypergraph   (   ), the placement region   and 

the total number of device tiers  ; where   represent a set of netboxes and   for the 

coordinate (     )    of those given well-placed   netboxes. The task is to assign every 

netbox      a    value, which indicates that this netbox is placed onto the tier 

   *       +, so as to minimize the netboxes overlap area. To get routable result, we 

have to include a constraint that    has to be a number between available layer resource 

ranges. Finally, we formulate the routability-driven layer planner problem as overlap area 

minimization in (1). 

 

 

 

Beside the overlap, consideration on timing critical issue will be implemented by 

adding a BETA factor in the objective function. BETA would be set to smaller if being 

put within layer range suggested by layer directive information.  

Another RUDY factor will also in our discussion by taking practical design into 

account. RUDY will facilitate netbox to go to lower layer due to plenty routing resource 

in normal cases; otherwise, it is necessary to route in higher layer for getting smaller 

𝑶𝒃𝒋𝒆𝒄𝒕𝒊𝒗𝒆 𝑭𝒖𝒏𝒄𝒕𝒊𝒐𝒏    𝒏𝒆𝒕𝒃𝒐𝒙𝒐𝒗𝒆𝒓𝒍𝒂𝒑  

𝒔. 𝒕.   𝟎 < 𝒛𝒊 < 𝑲+ 𝟏 (𝟏) 
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overlap or better timing alignment. The issue will become making decision by observing 

tradeoff among these factors – overlap area, BETA and RUDY factor value. We will 

address more details on how we derive these factors in Section4. 

After we figure out all the factors in objective function, we employed optimization 

method – conjugate gradient to handle the 3D layer planning, which will also be explicitly 

explained in Section5. Moreover, the solution space of nonlinear programming is Real 

number R, our discussion on layer planner is always Natural number N. Thus, we need a 

mechanism to do relaxation from discrete number to continuous, which will be explicitly 

shown in Section4.2. The overall layer planner flow is shown in Fig. 4. 

 

 

 

 

 

 

 

 

 

START 

Well Placed Netlist 

Initial Guess on 𝑧𝑖 
value of netboxes 

Get Objective  
Function Value 

Converge 

Conjugate Gradient 

Map 𝑧𝑖 Back  
to Integer 

END 

Y 

N 

Fig. 4. Proposed layer planner algorithm flow 
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4. ANALYTICAL LAYER PLANNER ENGINE 

 

 According to (1), we could transform the desired problem by setting up boundary 

for    when doing the iteration in nonlinear programming. Besides, include the factors 

mentioned in above chapter, we can get complete objective function in (2), and those    

value to make objective function minimized would be our desired layer planning 

solution. 

  

 

4.1. Density Penalty Function 

In modern analytical placer [11-14], the overlap-free issue are broadly studied and 

usually transformed to density penalties function as in [12, 13]. We will use this concept 

in formulation so as to find out the minimized overlap area between each netboxes. The 

density penalty function is for minimizing the overlap by moving netboxes in z-direction 

and the minimized value should lead to the least overlapping area.  

Assume that every netbox has a legal tier assignment ( .  .     *       +), then 

we can define   different layer density penalty function for each of these   tiers and 

problem would be simplified as summation of all these layer density penalty function one 

by one. 

𝑶𝒃𝒋𝒆𝒄𝒕𝒊𝒗𝒆 𝑭𝒖𝒏𝒄𝒕𝒊𝒐𝒏    
𝑵𝒆𝒕𝒃𝒐𝒙𝒐𝒗𝒆𝒓𝒍𝒂𝒑(𝒛𝒊) × 𝑹𝒆𝒍𝒂𝒙𝒂𝒕𝒊𝒐𝒏(𝒛𝒊)

× 𝑹𝑼𝑫𝒀(𝒛𝒊) ×𝑩𝑬𝑻𝑨(𝒛𝒊)
 |𝒛𝒊 ,𝟏   𝑲- (𝟐) 
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To further increase the calculation efficiency; and after all, no much loss on 

precision, we will generate overlap area based on netbox and gcell, which is a placement 

region   divided into many square tiles as illustrated in Fig. 5., rather than overlap 

between different netbox.  

 

 

 

 

 

By observing the benchmark setting, we can conclude that calculation on overlap 

between netbox and g-cell won’t have too much loss on precision compared to real 

overlap area between each netboxes we pursued. This is due to the g-cell dimension 

stated in benchmarks are comparably tiny when it comes to netbox dimension. Fig.6. is 

to show the explanation for this argument. Two identical placement region   are shown 

in Fig. 6(a) and Fig. 6(b), as two identical netboxes place on it but with different g-cell 

dimension. Fig. 6(a)’s g-cell density is nine times smaller than Fig. 6(b) and we can find 

out in this sparse g-cell, there is overlap area miscalculation occurred. Since, 

theoretically, netbox1 and netbox2 don’t have overlap at all in this example; however, by 

using proposed estimation on overlap area between netbox and g-cell, g-cell_3 in Fig. 

6(a) will make things disobey from truth. That is, in our calculation, situation in Fig. 6(a) 

g-cell 

Fig. 5. Illustration on g-cell 

NET0 

NET1 
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will both have overlap on g-cell_3 and make it seems to have overlap. From observing, 

we can notice that denser g-cell like Fig. 6(b) will relief this miscalculation situation 

after all, since these two netboxes don’t have overlap area on same g-cell. 

 

 

 

 

 

 

 

 

Inspired by the quadratic penalty terms in 2D placement methods [15] and observing 

the following cases, we can have rather precise formula to calculate the netbox and 

g-cell overlap. We use simple 2D plane example in the following to explain it and the 

proposed 3D method in this thesis is based on it. Suppose given a 2D plane, there are 4 

netboxes but only three tiers available; and netbox0(n0) is fixed on tier one, then the 

scattering of these four nteboxes could be categorized into 3 cases. The Fig. 7 shows 

these three cases and has   direction in vertical as different tier to place, and   

 

 

Netbox1 

Netbox2 

Fig. 6(b). Dense g-cell dimension 
will relief miscalculation, since 
there is no overlap in a specific 
g-cell 

Fig. 6(a). Sparse g-cell will cause 
miscalculation on overlap area in  
g-cell 3 

Netbox1 

Netbox2 

 

 

g-cell_3 
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direction in horizontal as different g-cell. Each rectangle represent one netbox in 

cross-section view and each with two unit length and one unit height; besides, length 

unit is like how many g-cell it cross and height unit is like the area a netbox occupied in 

that specific g-cell. Among these three cases, we can easily observe that overlap the 

most happened in case three; and by the quadratic term, we can also get the value the 

biggest. Thus, quadratic term is used as punishment when overlap happened. 

 

 

 

 

 

 

 

Conclude from what we discussed above, we can now have the prototype of our 

density penalty function, which is shown in (3), to emulate netbox and g-cell overlap 

area calculation.  

 

Fig. 7. Three possible cases to demonstrate the necessity of quadratic term. 

𝑫𝒆𝒏𝒔𝒊𝒕𝒚𝑷𝒆𝒏𝒂𝒍𝒕𝒚(𝒛)       (𝒏𝒆𝒕𝒃𝒐𝒙_𝒈𝒄𝒆𝒍𝒍_𝒐𝒗𝒆𝒓𝒍𝒂𝒑)

𝒏𝒆𝒕𝒃𝒐𝒙

 

𝟐

𝒈−𝒄𝒆𝒍𝒍
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4.2. Relaxation of Discrete Variables 

 As mentioned in Section3. The layer planning variables are represented by   , which 

should be a discrete variable in *1 2    +. However, the range of    have to be 

relaxed from the discrete number set *1 2    + to continuous interval ,1  -, so that 

we can assert nonlinear solver in our layer planner engine. Moreover, in order to get 

legal integer solution, the relaxed continuous results after optimization have to be 

mapped back to the most closed discrete value at the end. We borrow the idea from 

bell-shaped function  (        ) as in [1, 4, 12, 16] to help us doing relaxation by 

projecting those non-integer placed netbox to integer layer. Equation(4) shows the 

proposed method, where   represent the netbox placed layer and   is device integer 

tier.  

 

 

 

 

 

An actual curve of how this relaxation works for a resource with three layers is 

given in Fig. 8(a). Three curves noted by Layer1, Layer2 and Layer3 represents tier 1, 2 

and 3 respectively. The x-axis is the relaxed layer number in z-direction, while the y-axis 

indicates the amount of function value to be projected in the actual discrete tiers. An 

example is shown in Fig. 8(b), a netbox is temporarily placed at      1.2 between 

device tier 1 and 2. The relaxation function will project 92% of its original function 

𝜼(𝒍𝒂𝒚𝒆𝒓𝒌 𝒛)|𝟏≤𝒌≤𝑲   

   𝟏 𝟐(𝒛 𝒌)𝟐      |𝒛 𝒌| ≤ 𝟏 𝟐  

𝟐(|𝒛 𝒌|  𝟏)𝟐   𝟏 𝟐 < |𝒛 𝒌| ≤ 𝟏 

             𝟎                  𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆  

(𝟒) 
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value onto tier1 and 8% to tier2. By this method, we can have our mapping from a 

continuous number, which is used in nonlinear programming, to discrete number for 

sigma numerical calculation in objective function as in (3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Layer1 Layer2 Layer3 

Fig. 8(a). Function 𝜼(𝒍𝒂𝒚𝒆𝒓𝒌 𝒛) help implement relaxation 

 

 

 

𝑧  1.2 
𝑙𝑎𝑦𝑒𝑟1 

𝑙𝑎𝑦𝑒𝑟2 
 

 𝑧  1 𝑙𝑎𝑦𝑒𝑟1 

𝑙𝑎𝑦𝑒𝑟2 

 

 

𝑧  2 

𝑙𝑎𝑦𝑒𝑟1 

𝑙𝑎𝑦𝑒𝑟2 

& 

Fig. 8(b). A netbox with value 1 placed at 𝒛𝒊   1.2 

will project 0.92 onto tier 1 and 0.08 onto tier 2 
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The relaxation function establish a continuous to discrete number transfer 

mechanism; however, we should also let    to be located the closer to integer the better, 

so that we can have more precise and less estimation solution, since we will map back 

nonlinear programming solution to the nearest device tier at the end. In order to avoid 

the situation happened in Fig. 9, which is caused by original relaxation function: right 

figure even have smaller objective value than the left one, which is theoretically the best 

tier to put in this small example. The defect for the relaxation function is when some 

netbox being put onto integer layer, it will give complete one projection ratio on that 

layer; however, when one netbox located at non-integer number tier, by the relaxation 

function and quadratic term we mentioned in Section4.1, it will make total summation  

of projection ratio on adjacent integer layer smaller than one. Fig. 9 shows this defect on 

equation expression.  

We will then introduce the interlayer relaxation function in (5). By adding this 

function, it help getting more integer-closed results because the tendencies of reaching  

 

 

 

 

 

 

 

 

   

  

 

  

  

Layer1 

Layer2 

Fig. 9. Showing defect of only relexation function 
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smaller objective function. Fig.10 is improved by adding interlayer relaxation function. 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.3. Estimation of the Routing Demand 

Because routability is an abstract concept, it is hard to tell whether a process can be 

routed easily or not. Therefore, we have to apply some metric to measure the routability. 

Many previous works are to evaluate the routability as in [17]; and here, we generalize 

the routability evaluation technique called RUDY [2]. RUDY stands for Rectangular 

Uniform wire DensitY and is defined as the ratio of the wire area      to the netbox 

𝜼_𝒊𝒏𝒕𝒆𝒓𝒍𝒂𝒚𝒆𝒓(𝒍𝒂𝒚𝒆𝒓𝒌 𝒛)|𝟏≤𝒌≤𝑲−𝟏   

   𝟏  𝟐(𝒛  𝒌 + 𝟎.𝟓)𝟐   |𝒛  𝒌 + 𝟎.𝟓| ≤ 𝟏 𝟐  

𝟐(|𝒛  𝒌+ 𝟎.𝟓|  𝟏)𝟐   𝟏 𝟐 < |𝒛  𝒌+ 𝟎.𝟓| ≤ 𝟏 

                    𝟎                      𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆  

(𝟓) 
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Fig. 10. Improved by adding interlayer relaxation function 
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area     , which is shown in Fig. 11. However, wire area cannot be known until the 

routing stage finished, so RUDY will use Rectilinear Steiner Minimal Tree (RSMT) to 

estimate routing model. 

Furthermore, RUDY value not only shows the congestion but also give us different 

penalty when we put netbox in different layer. Generally speaking, putting netbox on 

lower layer is preferred, since more routing resource due to smaller wire width; however, 

when it comes to too much overlap in lower layer level or layer directive information are 

included, which will make overall objective function too big, the located layer would be 

detoured into higher layer by nonlinear programming decision. As a result, adding 

RUDY factor in objective function will give us more realistic solution in terms of 

considering difference wire width in discrepant device layer. 

 

 

 

 

 

 

 

4.4. BETA Parameter for Timing Critical Nets  

Start from ICCAD 2009 [9], some benchmark will include layer directive 

information for timing critical nets. This information shows these nets have tighter slack 
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𝒘𝒏 × 𝒉𝒏
 

Fig. 11. RUDY function and its representation 
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and should be put in higher layer, where wider wire will make signal conduct faster so as 

to release the timing violation situation. Depending on different timing request, some 

may ask netbox goes to the highest layer; others only need not to be located at the lowest 

layer. However, layer directive information is not hard constraint in this work. That is, 

there is no need to strictly follow the layer directive information when we do layer 

planning.  

Beta is a parameter for us to punish objective function on netbox if it is not 

following the suggestion of layer directive from benchmark. In each iteration, if the 

netboxes went to a layer happened to be in the range of given layer directive, then we 

will insert smaller Beta; otherwise, the bigger Beta value would be asserted. Hence, 

theoretically, every timing-critical netbox would try to locate at suggested layer to keep 

the objective function minimized; however, we regard timing critical netbox’s layer 

directive as a soft constraint as we mentioned above, so there is no need to strictly stick 

to it. The solutions are finally decided in nonlinear programming method to reach 

minimum objective function by weighing the tradeoff between these factors. 

Conclude from Section4, we can generate our complete formula in (6). 

 

 

 

 

 

         𝑶𝒃𝒋𝒆𝒄𝒕𝒊𝒗𝒆
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𝟐

𝒈−𝒄𝒆𝒍𝒍

 

𝑳𝒂𝒚𝒆𝒓

 

  

(𝟔) 



20 
 

 

20 

5. DETAIL IMPLEMENTATION 

 

We use the conjugate gradient method to minimize the objective function as 

described in (6). A detailed treatment along with explicitly explanation on conjugate 

gradient method could be found in [18-20]. Generally speaking, the conjugate gradient 

method finds the optimum value by executing a series of line search. By doing that, we 

have to know where the right direction to go and how big a step is at a time, and that is 

called search direction and step length respectively. The result of one line search is used 

as the start point for the next line search and we won’t stop the iteration until customized 

criteria reached. The line search has the following form as (7).  

 

 

 

 

Where    denote the gradient,    represent step length derived from 

Newton-Raphson algorithm and    is the search direction with the using of 

Fletcher-Reeves formula on 𝛽. For step length    and factor for search direction 𝛽, 

there’s a large variety of choices we can have, but here we just take general used one 

Newton-Raphson and Fletcher-Reeves respectively. As for the stop point, we will not 

halt conjugate gradient iteration until the following criteria are reached: 1. 

Predetermined number of iteration has hit; 2. the function value is not changing 

𝒛𝒊+𝟏  𝒛𝒊 + 𝜶𝒊 ∙ 𝒅𝒊    

𝒅𝒊   𝒈𝒊 + 𝜷𝒊 ∙ 𝒅𝒊−𝟏      𝒇𝒐𝒓 𝒊 > 𝟏 
         𝒅𝒊   𝒈𝒊                            𝒇𝒐𝒓 𝒊  𝟏           

 
(𝟕) 
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significantly with additional iterations. The complete implementation flow of the 

conjugate gradient method is shown in Fig. 12.  

Given a function  , its negative gradient value 𝒓 , hessian value 𝒉 , an starting 

value vector   , which store the initial located tier for each and every netbox. A 

maximum number of iteration  𝒕 𝒓   , an error tolerance 𝜺 < 1, a maximum number 

of Newton-Raphson iteration 𝒋    and a Newton-Raphson error tolerance 𝝐. This 

conjugate gradient algorithm will terminate when the maximum number of iteration 

 𝒕 𝒓    has been exceed or when ‖𝒓 + ‖ ≤ 𝜺 ∙ ‖𝒓 ‖.  

Each Newton-Raphson iteration adds 𝜶 ∙ 𝒅  to    and every addition from last 

steps have to fall below a tolerance 𝝐 or it will just be setting as the boundary for each 

step addition. Newton-Raphson are terminated when the number of iterations exceeds 

𝒋    

Keep updating new value of each attributes as long as an iteration is finished and no 

stopping criteria reached. Nonlinear conjugate gradient is restarted by setting 𝒅  𝒓  

whenever a search direction is computed not in descent direction  𝒓 
 ∙ 𝒅 > 𝟎. It is also 

restarted once every 𝒏 iterations, so as to improve convergence by setting a small 𝒏. 

The complete flow for conjugate gradient algorithm is shown below. 
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 𝑟𝑖   𝑔𝑖   ;   ℎ𝑖  𝛻𝑔𝑖  ;    𝑑𝑖  𝑟𝑖   ;    𝛿𝑛𝑒𝑤  𝑟𝑖
𝑇 ∙ 𝑟𝑖   ;    𝛿0  𝛿𝑛𝑒𝑤  

        𝑤ℎ𝑖𝑙𝑒 𝑖𝑡𝑒𝑟  𝒊𝒕𝒆𝒓𝒎𝒂𝒙    𝑎𝑛𝑑    𝛿𝑛𝑒𝑤 > 𝜺𝟐 ∙ 𝛿0  
𝑑𝑜 

      𝑤ℎ𝑖𝑙𝑒 𝑗 < 𝒋𝒎𝒂𝒙   
𝑟𝑖   𝑔𝑖   ;   ℎ𝑖  𝛻𝑔𝑖  ;   𝛿𝑛𝑒𝑤  𝑟𝑖

𝑇 ∙ 𝑟𝑖  ;   𝛿𝑜𝑙𝑑  𝛿𝑛𝑒𝑤 

      𝑖𝑓 𝑖  𝒏    𝑜𝑟   𝑟𝑖
𝑇 ∙ 𝑑𝑖 ≤ 0  

𝑑𝑖  𝑟𝑖   ;    𝑖  0 
𝑖𝑡𝑒𝑟  𝑖𝑡𝑒𝑟 + 1 

𝑗  𝑗 + 1 

 𝛼𝑖  𝑟𝑖
𝑇 ∙ 𝑑𝑖 𝑑𝑖

𝑇 ∙ ℎ𝑖 ∙ 𝑑𝑖  

 𝑧𝑖+1  𝑧𝑖 + 𝛼𝑖 ∙ 𝑑𝑖 

𝑖𝑓(|𝛼𝑖 ∙ 𝑑𝑖| > 𝝐) 

𝛼𝑖 ∙ 𝑑𝑖  ±𝝐  

𝛽  𝛿𝑛𝑒𝑤 𝛿𝑜𝑙𝑑   ;   𝑑𝑖  𝑟𝑖 + 𝛽 ∙ 𝑑𝑖  ;    𝑖  𝑖 + 1 

Fig. 12. Nonlinear Conjugate Gradient with Newton-Raphson and 
Fletcher-Reeves and bold font represent the customized parameter 
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6. EXPERIMENT SETUP 

 

6.1. Benchmarks  

We carried out several experiments results to prove the efficiency and quality of 

proposed algorithm. Our test cases are from ISPD2007 and ISPD2008 Global Routing 

Contest Benchmark. There are 16 benchmarks in total, which is from industrial ASIC 

designs and all of them consist of multi-metal layers. Note that 8 of the 16 benchmarks 

are from ISPD2007 3D version and the others are from ISPD2008 suite. Though 

ISPD2007 also have the version of 2D, we won’t take too much concern about it. By 

observing these 16 benchmarks we are going to test, it’s all multi-metal layer and 3D 

design; moreover, 3 of 16 benchmarks equip eight device layers, others just provide total 

six device layers as resource.  

Inspired by ICCAD 2009 [9] as we mentioned in Section3.4, some benchmarks will 

include layer directive information for timing critical nets. This information shows these 

nets have tighter slack and have to be detoured to higher layer, where can make signal 

conduct faster so as to release the timing violation. Depending on different timing 

request, some may ask netbox goes to the highest layer; others only need not to be 

located at the lowest layer. We will name the netbox happen in former cases as critical 

nets, and later one as marginal critical nets respectively. Since ISPD2007 and ISPD2008 

benchmarks don’t have layer directive information included; besides, motivated by 
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ICCAD2009, we will randomly generate each of these 16 benchmarks with 20% of nets 

critical, 20% marginal critical and the left 60% with no layer directive preference given.  

Though we randomly generate the new benchmarks with critical and marginal 

critical nets, we will still have only one version of benchmarks in specific test cases and 

we will call it modified benchmarks from here.  

6.2. Comparisons  

Since we generate modified benchmarks by our own, we will first make sure if all of 

them are executable by NTHU-route and by our layer planner. Table 1 shows the 

execution detail of NTHU-route and our layer planner on modified benchmarks. Here, 

we just show total 9 benchmarks that work under both algorithms. Some of the modified 

benchmarks cannot be routed completely by NTHU-route, since segmentation fault 

occurred. Others happened segmentation fault in our layer planner. 

 

 

 

 

 

 

 

 

 

ISPD2008 
BENCHMARK 

g-cell_X 
dimension 

g-cell_Y 
dimension #Nets 

#Marginal 
Critical 

Nets 

#Critical 
Nets 

OUR-layer 
planner 

Executable 

OUR-layer 
planner TIME 
(iteration = 20) 

NTHU-route 
Executable 

NTHU-route 
TIME (iteration 

= 50+10) 

adaptec1_modified 324 324 219794 43982 43802 Yes 13min Yes 70min 

adaptec2_modified 424 424 260159 52170 51747 Yes 11min Yes 36min 

adaptec5_modified 465 468 867441 173229 173332 Yes 45min Yes 220min 

bigblue1_modified 227 227 282974 56723 56327 Yes 8min Yes 80min 

newblue1_modified 399 399 331663 66526 65957 Yes 6min Yes 30min 

newblue2_modified 557 463 463213 92613 92264 Yes 12min Yes 3min 

newblue4_modified 455 458 636195 127174 126766 Yes 26min Yes 72min 

newblue5_modified 637 640 1257555 251295 251027 Yes 80min Yes 190min 

newblue6_modified 463 464 1286452 257081 256795 Yes 30min Yes 210min 

    

Table 1. Detailed execution results of proposed layer planner and NTHU-route 
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From Table 1, since our layer planner focus on different objectives and solution 

space are much smaller compared to NTHU-route, we can have these benchmarks 

properly done really fast in our algorithm. However, we are not showing comparison 

between our planner and NTHU-route, just to demonstrate the execution capability of 

these modified benchmarks.  

Being a layer planner, we provide layer guidance for pre-routing optimization like 

buffer insertion. At the same time, as a pre-routing process also, we took routability into 

account in our design. Hence, we will address on following mentioned aspects to do 

comparison.  

Firstly, we will try to demonstrate that when our layer planner algorithm are being 

inserted before NTHU-route, that means, when NTHU-route follow our netbox layer 

guidance first and then do NTHU-route, the routing attributes will be much better than 

purely executing NTHU-route.  

Secondly, we will compare with some other layer planner and to see the 

performance of routing attributes. Nevertheless, there is no similar work focusing on the 

same issue till now, so we come up with running NTHU-route for a while and stop 

prematurely. The intermediate output of NTHU-route will be regarded as certain layer 

guidance, and we name it as NTHU-layer planner. By doing the same layer planner task 

as our layer planner and being fair for later comparison, our layer planner and 

NTHU-layer planner should run the modified benchmarks for the same time. After both 

of the layer planner finished, we will feed their layer guidance information back to 
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NTHU-route again and this time will exploit NTHU-route as router rather than stop at 

some point. After that, we compare both performances on routing attributes to see which 

layer planner provide better routing quality. The complete experimental comparison flow 

is shown in Fig. 13. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Fig. 13. Complete flow for experimental results comparisons 
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 The dashed line in Fig. 13 is the part we didn’t implement in this work just like 

we mentioned in Section2. But we will finally combine layer guidance and further buffer 

insertion algorithm together in the future to testify the buffer insertion ability after our 

layer guidance algorithm being applied in flow.  

6.3. Layer Planner Output  

The ISPD2008 modified benchmarks have layer directive information inside, which 

is adding by our own with randomly generated 20% marginal critical nets and 20% 

critical nets. The marginal critical nets means the layer directive information is given 

and saying that these nets should route in higher layer, and the critical nets represent the 

nets should route in the highest layer. In six metal device layer design, marginal critical 

information give the suggestion that we should route the nets between layer three and 

four, and critical one should route in layer five and six, which can be represented in file 

format as [3:4] and [5:6] respectively. Moreover, for eight metal device layer design, 

marginal critical and critical nets would be represented in file format as [5:6] and [7:8], 

which means former one is suggested to route between layer five and six but later one is 

layer seven and eight separately.  

After feeding ISPD2008 modified benchmarks into layer planner, layer planner 

output will also provide layer guidance for each and every netboxes. This guidance will 

then overwrite the layer directive information and output another file with same format 

as modified benchmarks, only replacement on layer directive information to layer 

guidance information. 
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However, proposed planner being just a layer guider and the reason for not too 

much constraint for further NTHU-route, we won’t give every netbox their layer 

guidance information to layer planner output. We only provide layer guidance for those 

who have to be put onto the highest two tier after layer planner results. That is, if a 

netbox in six metal layer design being assigned to layer three and four by layer planner, 

we will having [3:4] format to tell further NTHU-route the guidance for this nets. On the 

other hand, if a netbox in six metal layer design being assigned to layer one and two by 

layer planner, which is not in the highest two tier, we will not give any guidance for this 

nets in layer planner output, which is input for further NTHU-route. Fig. 14 below is to 

show an example about this. 

 

 

 

 

 

 

 

 

 

6.4. Consistency  

After the layer planner output being routed by NTHU-route, we will have to 

compare the routing attributes with each different setup. Aside from routing attributes 

 

netobx1 

netobx2 

netobx3 

Layer directive  
  information  
 from modified  
  benchmark 

[3:4] 

[5:6] 

 Layer 
Planner 

Layer guidance      
in layer planner 

output  
for further  

NTHU-route  

[3:4] 

[5:6] 

Assigned layer 
  Derived from  
  Layer planner  
   algorithm  

[3:4] 

[5:6] 

[1:2] 

Fig. 14. An example to show how layer guidance information replace the layer directive in 
modified benchmarks and how it displayed in layer planner output file for further NTHU-route 
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along, in Fig. 13 the comparison flow, we may notice there are two new terminologies: 

Layer planner consistency and Routing consistency, which is also a comparison object in 

our experiment. We have to finish NTHU-route so that we can know the value for these 

two terms.  

Layer planner consistency means after NTHU-route the ratio of wirelength which 

follow the layer guidance information derived from layer planner to total wirelength of 

that specific netboxes. On the other hand, Routing consistency represent after 

NTHU-route the ratio of wirelength which follow the layer directive information given 

from modified benchmarks to total wirelength of that specific netboxes. Fig. 15 is to 

show this concept. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

netbox1 

Layer directive 
  information 
 from modified  
  benchmark 

[3:4] (tier2) 

Layer guidance       
  information    
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𝑡𝑜𝑡𝑎𝑙 𝑤𝑖𝑟𝑒𝑙𝑒𝑛𝑔𝑡ℎ:  (𝑊 ∗ 3) + (𝐿 ∗ 2) 
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Fig. 15. An example to show how Routing consistency and Layer planner consistency calculated 
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7. EXPERIMENT RESULTS 

 

 The complete comparison flow could be consulted in Fig. 13. The comparison focus 

on how the layer planner affect the NTHU-route attributes; besides, see the different 

impact on routing attributes by our layer planner and NTHU-layer planner. However, in 

some cases, NTHU-route cannot generate valid output, we will use N/A to represent it in 

following tables, and use NULL represent that column won’t have any value. Following 

tables are showing the comparison on ISPD2008 modified benchmarks. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2. ISPD2008-adaptec2 modified benchmarks comparison 

NULL 

NULL 

Table 3. ISPD2008-newblue1 modified benchmarks comparison 

NULL 

NULL 
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Table 5. ISPD2008-newblue4 modified benchmarks comparison 

NULL 

NULL 

Table 6. ISPD2008-newblue5 modified benchmarks comparison 

NULL 

NULL 

Table 4. ISPD2008-newblue2 modified benchmarks comparison 

NULL 

NULL 
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Above five benchmarks start from Table 2 to Table 6 are the most complete few, 

since both layer planner work fine and no segmentation fault occurred. Besides, 

NTHU-route can also execute both layer planner’s output and process them without any 

error.  

By observing the results, with our layer planner process first and then through layer 

guidance result to NTHU-route, the routing attributes become much better. For example, 

in modified benchmark ISPD2008-newblue5, with benchmark direct disposed by 

NTHU-route, it will take 190 minutes to finish routing. On the other hand, if we assert 

modified benchmark with our layer planner first then feed output with layer guidance to 

NTHU-route, it now can have better routing quality since taking only 130 minutes and 

better wirelength, via count and overflow counted.  

Furthermore, by comparing each layer planner quality, we can easily find out that to 

be fair, if we fix both layer planner runtime as the same, our layer planner results with 

layer guidance information can make NTHU-route generate much better routing quality 

in terms of all the routing attributes.  

So we can say, our layer planner can improve NTHU-route ability by providing it 

with promising layer guidance for modified benchmarks. Besides, under the 

circumstance being fair in both planner runtime, our layer planner provides effective 

layer guidance for further NTHU-route compared to NTHU-layer planner suggested. 
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Table 9. ISPD2008-bigblue1 modified benchmarks comparison 

NULL 

NULL 

N/A 

N/A 

N/A 

N/A 

N/A 

Table 7. ISPD2008-adaptec1 modified benchmarks comparison 

N/A 

N/A 

N/A 

NULL 

NULL 

 

 N/A 

N/A 

Table 8. ISPD2008-adaptec5 modified benchmarks comparison 

NULL 

NULL 

N/A 

N/A 

N/A 

N/A 

N/A 
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Observing from Table 7 to Table 10, they are also quite complete in experimental 

statistic. Both layer planner works fine without error occurred; however, when we try to 

feed NTHU-layer planner output with layer guidance to further NTHU-route, the 

segmentation fault comes out. This kind of segmentation fault is hard to detect, since 

NTHU-route are not supposed to be used as a layer planner when it was invented; 

besides, in great work like NTHU-route, it is really hard to debug. As a result, we cannot 

have our comparison between layer planner. But concluded from Table 2 to Table 6, we 

can definitely know that the layer guidance information from our layer planner will out 

win NTHU-layer planner.  

With above four benchmarks results, we can still conclude again that modified 

benchmarks with our layer planner asserted will generate more quality routing results in 

terms of wirelength, via count, overflow and runtime compared to direct feeding 

modified benchmark to NTHU-route. So our layer planner still output promising and 

quality layer guidance for NTHU-route by above observation. 

Table 10. ISPD2008-newblue6 modified benchmarks comparison 

NULL 

NULL 

N/A 

N/A 

N/A 

N/A 

N/A 
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8. CONCLUSION 

 

In typical physical design flows, many optimizations are performed between the 

placement and routing, such as gate sizing and buffer insertion. Our objective is to 

develop a pre-routing analytical layer planner, which can efficiently generate guidance 

for further buffer insertion. As a step before routing, we also need to consider routability 

so that results can lead to routable circuits.  

We also noticed nowadays trend of following layer directive information to relief 

timing violation by considering BETA factor. Besides, the number of metal layers keeps 

increase and metal size/parasitic among different layers becomes increasingly 

non-uniform. We tackle this by taking RUDY factor into account.  

At the end, we assert nonlinear conjugate gradient method to do optimization and 

the solution give each netbox an integer tier to place. By inserting our algorithm before 

NTHU-route, the experimental results show that our approach do provide easier and 

efficient routing, in terms of smaller wirelength, total overflow and less runtime using, 

compared with only asserting NTHU-route on same benchmark. Our approach has 

achieved significant success in providing quality layer planning guidance for buffer 

insertion; while, at the same time, generate efficient guidance for further routing. 

 

  



36 
 

 

36 

REFERENCES 

 

[1]  J. Cong, G. Luo, “A multilevel analytical placement for 3D ICs,” in 

Proceedings of the 2009 Asia and South Pacific Design Automation Conference, 

January 19-22, 2009, Yokohama, Japan 

[2] P. Spindler, F.M. Johannes, “Fast and accurate routing demand estimation for 

efficient routability-driven placement,” in Proceedings of the conference on 

Design Automation and Test in Europe, April 16-20, 2007, Nice, France 

[3] Z.W. Jiang, B.Y. Su, Y.W. Chang, “Routability-driven analytical placement by 

net overlapping removal for large-scale mixed-size designs,” in Proceedings of 

the 45th annual conference on Design Automation, June 08-13, 2008, Anaheim, 

California 

[4] A.B. Kahng, Q. Wang, “Implementation and extensibility of an analytic 

placer,” IEEE Transactions on Computer-Aided Design of Integrated Circuits 

and Systems, vol. 24. no. 5, pp. 734-747, 2005 

[5] Y.J. Chang, Y.T. Lee, T.C. Wang, “NTHU-Route 2.0: a fast and stable global 

router,” in Proceedings of the 2008 IEEE/ACM International Conference on 

Computer-Aided Design, November 10-13, 2008, San Jose, California 

[6] Y.J. Chang, T.H. Lee, T.C. Wang, “GLADE: a modern global router 

considering layer directives,” in Proceedings of the International Conference on 

Computer-Aided Design, November 07-11, 2010, San Jose, California 

http://dl.acm.org/citation.cfm?id=1509725&CFID=96273037&CFTOKEN=43114893
http://dl.acm.org/citation.cfm?id=1509725&CFID=96273037&CFTOKEN=43114893
http://dl.acm.org/citation.cfm?id=1509725&CFID=96273037&CFTOKEN=43114893
http://dl.acm.org/citation.cfm?id=1266632&CFID=96273037&CFTOKEN=43114893
http://dl.acm.org/citation.cfm?id=1266632&CFID=96273037&CFTOKEN=43114893
http://dl.acm.org/citation.cfm?id=1266632&CFID=96273037&CFTOKEN=43114893
http://dl.acm.org/citation.cfm?id=1391513&CFID=96273037&CFTOKEN=43114893
http://dl.acm.org/citation.cfm?id=1391513&CFID=96273037&CFTOKEN=43114893
http://dl.acm.org/citation.cfm?id=1391513&CFID=96273037&CFTOKEN=43114893
http://dl.acm.org/citation.cfm?id=1391513&CFID=96273037&CFTOKEN=43114893
http://dl.acm.org/citation.cfm?id=1509536&CFID=96273037&CFTOKEN=43114893
http://dl.acm.org/citation.cfm?id=1509536&CFID=96273037&CFTOKEN=43114893
http://dl.acm.org/citation.cfm?id=1509536&CFID=96273037&CFTOKEN=43114893
http://dl.acm.org/citation.cfm?id=2133496&CFID=96273037&CFTOKEN=43114893
http://dl.acm.org/citation.cfm?id=2133496&CFID=96273037&CFTOKEN=43114893
http://dl.acm.org/citation.cfm?id=2133496&CFID=96273037&CFTOKEN=43114893


37 
 

 

37 

[7] T.H. Lee, Y.J. Chang, T.C. Wang, “An enhanced global router with 

consideration of general layer directives,” in Proceedings of the International 

Symposium on Physical Design, March 27-30, 2011, Santa Barbara, California 

[8] M. Pan, C. Chu, “FastRoute 2.0: A High-quality and Efficient Global Router,” 

in Proceedings of the 2007 Asia and South Pacific Design Automation 

Conference, January 23-26, 2007, Yokohama, Japan  

[9] M.D. Moffitt, “Global routing revisited,” in Proceedings of the 2009 

International Conference on Computer-Aided Design, November 02-05, 2009, 

San Jose, California  

[10] T.H. Lee, T.C. Wang, “Congestion-constrained Layer Assignment for Via 

Minimization in Global Routing,” IEEE Transactions on Computer-Aided 

Design of Integrated Circuits and Systems, vol. 27, no. 9, pp. 1643-1656, 2008 

[11]  G.J. Nam, J. Cong, “Modern Circuit Placement: Best Practices and Results,” 

Springer Publishing Company, New York, 2007 

[12]  T.C. Chen, Z.W. Jiang, T.C. Hsu, H.C. Chen, Y.W. Chang, “A high-quality 

mixed-size analytical placer considering preplaced blocks and density 

constraints,” in Proceedings of the International Conference on 

Computer-Aided Design, November 05-09, 2006, San Jose, California 

[13] J. Nocedal, S.J. Wright, “Numerical Optimization 2nd ed,” Springer Publishing 

Company, New York, 2006 

http://dl.acm.org/citation.cfm?id=1960411&CFID=96273037&CFTOKEN=43114893
http://dl.acm.org/citation.cfm?id=1960411&CFID=96273037&CFTOKEN=43114893
http://dl.acm.org/citation.cfm?id=1960411&CFID=96273037&CFTOKEN=43114893
http://dl.acm.org/citation.cfm?id=1323353&CFID=96273037&CFTOKEN=43114893
http://dl.acm.org/citation.cfm?id=1323353&CFID=96273037&CFTOKEN=43114893
http://dl.acm.org/citation.cfm?id=1323353&CFID=96273037&CFTOKEN=43114893
http://dl.acm.org/citation.cfm?id=1687549&CFID=96273037&CFTOKEN=43114893
http://dl.acm.org/citation.cfm?id=1687549&CFID=96273037&CFTOKEN=43114893
http://dl.acm.org/citation.cfm?id=1687549&CFID=96273037&CFTOKEN=43114893
http://dl.acm.org/citation.cfm?id=1543522&CFID=96273037&CFTOKEN=43114893
http://dl.acm.org/citation.cfm?id=1543522&CFID=96273037&CFTOKEN=43114893
http://www.betterworldbooks.com/list.aspx?SearchTerm=Nocedal%2c+Jorge
http://www.betterworldbooks.com/list.aspx?SearchTerm=Wright%2c+Stephen+J.


38 
 

 

38 

[14] C. Li, M. Xie, C. Koh, J. Cong, P. Madden, “Routability-driven placement and 

white space allocation,” IEEE Transactions on Computer-Aided Design of 

Integrated Circuits and Systems, vol. 26, no.5, pp.167-172, May 2008 

[15]  G.J. Nam, “ISPD 2006 Placement Contest: Benchmark Suite and Results,” in 

Proceedings of the International Symposium on Physical Design, April 09-12, 

2006, San Jose, California 

[16]  A.B. Kahng, S. Reda, Q. Wang, “Architecture and details of a high quality, 

large-scale analytical placer,” in Proceedings of the International Conference 

on Computer-Aided Design, November 06-10, 2005, San Jose, California 

[17]  A.B. Kahng, X. Xu, “Accurate pseudo-constructive wirelength and congestion 

estimation,” in Proceedings of the 2003 international workshop on System-level 

interconnect prediction, April 05-06, 2003, Monterey, California 

[18]  J.R. Shewchuk, “An Introduction to the Conjugate Gradient Method Without 

the Agonizing Pain,” 1994, Pittsburgh, Pennsylvania 

[19]  M.S. Bazaraa, H.D. Sherali, C.M. Shetty, “Nonlinear Programming: Theory and 

Algorithms 3rd ed,” John Wiley & Sons Inc., New Jersey, 2006 

[20]  K.G. Murty, “Linear Complementarity, Linear and Nonlinear Programming,” 

Helderman Verlag, Berlin, 1988 

 

  

http://dl.acm.org/citation.cfm?id=1123042&CFID=96273037&CFTOKEN=43114893
http://dl.acm.org/citation.cfm?id=1123042&CFID=96273037&CFTOKEN=43114893
http://dl.acm.org/citation.cfm?id=1123042&CFID=96273037&CFTOKEN=43114893
http://dl.acm.org/citation.cfm?id=1129727&CFID=96273037&CFTOKEN=43114893
http://dl.acm.org/citation.cfm?id=1129727&CFID=96273037&CFTOKEN=43114893
http://dl.acm.org/citation.cfm?id=1129727&CFID=96273037&CFTOKEN=43114893
http://dl.acm.org/citation.cfm?id=639942&CFID=96273037&CFTOKEN=43114893
http://dl.acm.org/citation.cfm?id=639942&CFID=96273037&CFTOKEN=43114893
http://dl.acm.org/citation.cfm?id=639942&CFID=96273037&CFTOKEN=43114893


39 
 

 

39 

VITA 

 

 Chi-Yu Chang received his Bachelor of Engineering degree in electrical engineering 

from National Chung Cheng University, Chiayi, Taiwan in 2009. After one year of 

military service, in August 2010, he joined the Texas A&M University and graduated 

with Master of Science degree in computer engineering in August 2012. His research 

interests include digital integrated circuit design, physical design and VLSI computer 

aided design. He can be reached at the Department of Electrical and Computer 

Engineering, 238 Zachry Engineering Center, Texas A&M University, College Station, 

TX 77843-3128. His email is changalvin@tamu.edu. 




