DESIGN OF A 20MHZ TRANSIMPEDANCE LOW-PASS FILTER WITH AN ADAPTED $3^{\text {RD }}$ ORDER INVERSE CHEBYSHEV RESPONSE

A Thesis
by
EMMANUEL OSEI BOAKYE

Submitted to the Office of Graduate Studies of
Texas A\&M University
in partial fulfillment of the requirements for the degree of
MASTER OF SCIENCE

August 2012

Major Subject: Electrical Engineering

DESIGN OF A 20MHZ TRANSIMPEDANCE LOW-PASS FILTER WITH AN ADAPTED $3^{\text {RD }}$ ORDER INVERSE CHEBYSHEV RESPONSE

A Thesis
by
EMMANUEL OSEI BOAKYE

Submitted to the Office of Graduate Studies of Texas A\&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE

Approved by:
Chair of Committee, Aydin Karsilayan
Committee Members, Jose Silva-Martinez
Shankar P. Bhattacharyya
Radu Stoleru
Head of Department, Costas Georghiades

August 2012

Major Subject: Electrical Engineering

Abstract

Design of a 20 MHz Transimpedance Low-pass Filter with an Adapted $3^{\text {rd }}$ Order Inverse Chebyshev Response. (August 2012) Emmanuel Osei Boakye, B.Sc., Kwame Nkrumah University of Science and Technology Chair of Advisory Committee: Dr. Aydin Karsilayan

In Multi-Standard receivers, multiple radios co-exist in close proximity. A desired signal can be accompanied by significantly stronger out-of band interferers or blockers, which can severely degrade a receiver's sensitivity through gain compression of the blocks in the receiver chain. This work presents a new Transimpedance Amplifier (TIA) low-pass filter architecture which seeks to solve the out-of-band blocker problem of the existing architectures.

A higher order filtering is embedded within the TIA in the form of an active feedback to provide more attenuation to out-of-band blockers. The active feedback circuitry feeds back an equivalent amount of current to the input node to cancel out incoming out-ofband blockers while maintaining an acceptable voltage swing at the output of the TIA. The proposed TIA filter has a channel bandwidth of 20 MHz , and can processes interferers of $\pm 10 \mathrm{~mA}$ fully differential without saturating the opamps. The maximum single ended voltage swing at all the nodes is $\pm 200 \mathrm{mV}$.

All the circuits were designed in IBM 180nm CMOS process with a supply voltage of 1.8 V .

DEDICATION

To my parents, Eric Oppong-Bediako and Victoria Mensah-Oppong

ACKNOWLEDGEMENTS

I would like to first express my profound gratitude to my advisor Dr. Aydin Karsilayan for his guidance and support during my graduate studies. I would also like to thank all my committee members, Dr. Silva, Dr. Bhattacharyya and Dr. Stoleru for their time and support.

I am also grateful to my parents, siblings and my dearest one for all their support and encouragement throughout my stay in College Station. I also thank my friends, officemates and roommates at Texas A\&M.

Finally, I would like to express my gratitude to Texas Instruments for sponsoring my education.

TABLE OF CONTENTS

Page

ABSTRACT iii
DEDICATION v
ACKNOWLEDGEMENTS vi
TABLE OF CONTENTS vii
LIST OF FIGURES ix
LIST OF TABLES xiii
1 INTRODUCTION 1
1.1 Background 1
1.2 Thesis Organization 6
2 GENERAL DESIGN CONSIDERATION FOR A TRANSIMPEDANCE FILTER 8
2.1 Gain 8
2.2 Input Impedance. 10
2.3 Effect Of Finite Gain-Bandwidth Product (GBW) Of An Opamp On System Performance 11
2.3.1 Gain 12
2.3.2 Input impedance 13
2.4 Noise 16
2.5 Linearity 17
3 PROPOSED FILTER 20
3.1 Concept 20
3.2 Filter Transfer Function 23
3.3 Circuit Implementations Of $\mathrm{B}^{\prime}(\mathrm{s})$ And $\mathrm{G}_{\mathrm{m}}(\mathrm{s})$ 28
3.3.1 Selection of Q for B'(s) 33
3.3.2 Synthesized transfer functions for $B^{\prime}(s)$ and $T^{\prime}(s)$ 36
3.3.3 Sensitivity analysis of B(s) 39
4 CIRCUIT OPTIMIZATION AND TRANSISTOR LEVEL DESIGN. 40
4.1 V-I Differentiator 40
4.1.1 Noise. 46
4.1.2 Optimum values for N and C_{M} 47
4.1.3 Layout of the current amplifier 51
4.2 Optimum GBW For Opamp1 And Opamp2 53
4.3 Amplifier Design 60
4.3.1 Circuit implementation of opamp1 62
4.3.2 Circuit implementation of opamp2 65
4.4 Transistor Level Implementation Of The Proposed TIA 69
5 RESULTS 70
5.1 Layout 70
5.2 Filter Setup 71
5.3 Simulation Results 72
6 SUMMARY AND CONCLUSIONS 84
REFERENCES 86
VITA 89

LIST OF FIGURES

Page

Figure 1 Fully different current driven mixer 3
Figure 2 Direct conversion receiver with current driven passive mixer 4
Figure 3 The basic transimpedance amplifier 8
Figure 4 Single pole RC TIA filter 10
Figure 5 Input impedance of first-order TIA 11
Figure 6 Input impedance function for $\mathrm{P}_{1}<\mathrm{Z}_{1}$ 14
Figure 7 Input impedance transfer with for $\mathrm{Z}_{1}<\mathrm{P}_{1}$ 15
Figure 8 First-order TIA with equivalent noise sources 16
Figure 9 Black box representation of a system 17
Figure 10 First-order TIA filter. 20
Figure 11 Conceptual TIA architecture 23
Figure 12 Ideal low-pass filter 23
Figure 13 Magnitude response of a $3{ }^{\text {rd }}$ order inverse Chebyshev transfer function 25
Figure 14 Proposed structure of the TIA 26
Figure 15 Magnitude response of T'(s) with variation of Q 28
Figure 16 Ackerberg-Mossberg biquad 29
Figure 17 Sallen-Key biquad 29
Figure 18 Second order voltage to voltage filter 30
Figure 19 Location of the zeros of $\mathrm{B}^{\prime}(\mathrm{s})$ while sweeping C_{F} 32
Figure 20 A sweep of R against R_{X}, C_{X}, C_{1} and C_{2} for $Z_{1}=1 / R_{X} C_{X}=1 / 5.2 \times 10^{-9}$ and $Z_{2}=2 / C_{1} R=1 / 1.101 \times 10^{-8}$35
Figure 21 A sweep of R against $\mathrm{R}_{\mathrm{X}}, \mathrm{C}_{\mathrm{X}}, \mathrm{C}_{1}$ and C_{2} for $\mathrm{Z}_{1}=1 / \mathrm{R}_{\mathrm{X}} \mathrm{C}_{\mathrm{X}}=1 / 1.101 \times 10^{-8}$ and $\mathrm{Z}_{2}=2 / \mathrm{C}_{1} \mathrm{R}=1 / 5.2 \times 10^{-9}$ 36
Figure 22 Magnitude response of $\mathrm{T}(\mathrm{s})$ and $\mathrm{T}^{\prime}(\mathrm{s})$ 37
Figure 23 Transfer function of the TIA with ideal opamps after adjusting components' values as given in Table 2 38
Figure 24 Proposed single ended TIA Filter 40
Figure 25 Concept of reduction of $\mathrm{C}_{\text {IN }}$. 41
Figure 26 First-order V-I differentiator 42
Figure 27 V-I differentiator with gain boosted g_{m} circuit 43
Figure 28 V -I differentiator with cascade of two g_{m} stages to create a virtual ground 44
Figure 29 Noise sources for the V-I differentiator. 46
Figure 30 Fully differential V-I differentiator 49Figure 31 Magnitude responses of a 60 pF capacitor and the V-Idifferentiator with $\mathrm{N}=7,8,10,12$ from DC to 1 GHz50
Figure 32 Layout of current amplifer 52Figure 33 Transient response of the TIA to a current step of 400 uAwith the GBW of opamp1 set to 3 GHz and the GBW ofopamp2 varied from 200 MHz to 3 GHz .54

Figure 34 Input impedance of the TIA with the GBW of opamp1 set to 3 GHz and the GBW of opamp 2 varied from 200 MHz to 3 GHz .55

Figure 35 Transient response of the TIA to a current step of 400uA with the GBW of opamp2set to 3 GHz and the GBW of opamp1 varied from 200 MHz to 3 GHz .56

Figure 36 Input impedance of the TIA with the GBW of opamp2 set to 3 GHz and the GBW of opamp1 varied from 200 MHz to 3 GHz .57
Figure 37 Magnitude response with GBW of opamp1 and opamp2 set to 1 GHz and 1.4 GHz , respectively 58
Figure 38 Comparing the transimpedance gain before and after changing the components' values to achieve the desired bandwidth. 59
Figure 39 Block diagram of the amplifier with feed-forward compensation technique 61
Figure 40 Schematic of the main amplifier (opamp1) 63
Figure 41 Layout of opamp1 65
Figure 42 Schematic of the feedback amplifier (opamp2) 66
Figure 43 Layout of opamp2 68
Figure 44 Top Level implementation of the proposed TIA with $\mathrm{C}_{\mathrm{Y}}=40 \mathrm{pF}$ and $\mathrm{m}=3$ 69
Figure 45 Layout of the TIA 71
Figure 46 Testing circuit setup 72
Figure 47 Magnitude response of the conventional and the proposed TIA 73
Figure 48 Transient response of the conventional and proposed TIA to an input current of 5 mA at 60 MHz 74
Figure 49 Input impedance of the filter 75
Figure 50 Transient input voltage to an input current of 10 mA at 60 MHz 76
Figure 51 Step response of the TIA 77
Figure 52 Input noise current of the conventional proposed TIA 78
Figure 53 Transient response of TIA to an in-band current of amplitude $100 \mu \mathrm{~A}$ at 10 MHz and out-of-band block of 10 mA at 60 MHz 79
Figure 54 DFT of the transient response of TIA to an in-band current of amplitude $100 \mu \mathrm{~A}$ at 10 MHz and out-of-band block of 10 mA at 60 MHz 80
Figure 55 DFT of the TIA to an input of 10 mA at 60 MHz and 110 MHz 81

Figure 561 dB compression point... 82

LIST OF TABLES

Page

Table 1 Characteristics of the filter approximations ... 24
Table 2 Summary of the components with ideal opamps after bandwidth adjustment 38
Table 3 Summary of optimum parameter values for the design of V-I differentiator...... 51
Table 4 Summary of components values used in the implementation.............................. 59
Table 5 Transistor dimensions, passive component values and bias
current for opamp1... 64
Table 6 Transistor dimensions, passive components value and bias current for opamp267

Table 7 Summary of performance parameter for opamp1 and opamp2 68
Table 8 Input referred integrated noise current.. 78
Table 9 Proposed TIA performance summary... 83

1 INTRODUCTION

1.1 Background

In today's wireless industry, there is a growing interest in Multi-Standard receivers. There are three main groups of communication standards: network, cellular and satellite. The network communication standards include WLAN (Wireless Local Area Network), Bluetooth, Wi-Fi, LTE (Long Term Evolution) and UWB (Ultra Wide Band). The cellular communication standards include Global System for Mobile communications (GSM), General Packet Radio Service (GPRS) and WCDMA (Wideband Code Division Multiple Access). The satellite communication standards include GPS (Global Positioning System). The number of standards is continuously increasing. The motivation now is to design systems which support as many standards as possible.

It is a challenge to design a receiver with a wide range of reconfigurability for the above mentioned standards, especially when two or more standards operate concurrently at a given time. In [1], a reconfigurable RF front end based on narrow-band tunable Low Noise Amplifiers (LNAs) is presented. With such an architecture, the complexity and occupied chip area of the receiver increase as the number of supported standards increases. An alternate solution is a single broadband receiver which supports any of the

This thesis follows the format and style of IEEE Journal of Solid-State Circuits.
standards. To make such receiver architecture more attractive on the market, the solutions presented should be cost effective. The most conventional receiver, heterodyne architecture, requires a bulky RF filter to suppress the unwanted image signal from down converting to IF. The RF filters must have a high quality factor and can only be implemented with discrete passive components (capacitor and inductors). These RF filters are very expensive [2].

The cost of the receiver can be reduced by full integration, implementing the radios as silicon on chip (SoC), sharing resources and removing the expensive bulky SAW filters from the RF section of the receiver [3, 4]. The direct conversion or direct conversion architecture provides the most cost effective solution for the implementation of a fully integrated Multi-Standard Radio Receiver [5],[6]

In direct conversion receivers, the desired signal is converted directly to baseband, where a fully integrable low-pass filter can be used to filter out the unwanted signals. However, because the signal is converted directly to DC, the system becomes susceptible to flicker noise. Generally, the major source of flicker noise in the receiver front end comes from the mixer switching pair but as demonstrated in [7] and [8], a current driven passive mixer can drastically reduce the flicker noise in the switching devices. No DC current flows through a current passive mixer, so its flicker noise contribution is minimal. Shown in Figure 1 is a fully differential current-mode passive mixer.

Figure 1 Fully different current driven mixer

The receiver block diagram for a direct conversion receiver is shown in Figure 2. It comprises of a Low Noise transconductance Amplifier (LNTA) which converts the received RF signal to current, a current-mode passive mixer which drives a low impedance node, TIA low-pass filter, to convert the down converted current to voltage and also to filter out all the unwanted signal components, and an Analog-to-Digital Converter (ADC) to process and convert the signal from analog to digital domain. The focus of this thesis is the TIA low-pass filter block in the receiver chain.

Figure 2 Direct conversion receiver with current driven passive mixer

Generally, the TIA used in direct conversion receivers consist of an opamp and feedback networks. Most commonly the TIA is implemented with a first-order attenuation [9],[10]. The transistors in the current driven passive mixer operate in the triode region. In order to preserve their linearity, the drain to source voltage for all the transistors should always be much lower than their corresponding over-drive voltage. The output voltage swing of the mixer is always small because the TIA input impedance is low due to the shunt feedback to its input.

In Multi-Standard receivers, multiple radios exist in close proximity. A desired signal can be accompanied by interferers. The impact of an interferer on a system depends on its magnitude and location. In a receiver chain, there is always a high probability of interferers downconverting to frequencies near the desired signal bandwidth, or the cross products of two or more interferers falling close to or in the signal bandwidth. These
unwanted signals may experience the same process the desired signal goes through, corrupting the required information. The problem worsens if the interferers are significantly stronger because their cross product terms which fall in the band of interest can easily saturate the blocks jeopardizing all forms of communication. Also a strong interferer can severely degrade receiver's sensitivity through gain compression. Such a phenomenon can even happen when the interferer is at frequencies far from the band of interest.

In [9] and [10], the TIA uses a single pole RC circuit to filter out the interferers. Firstorder filtering may not be adequate especially in the presence of strong interferers. The authors' assumption is that the blockers are accommodated by a high dynamic range ADC, which in effect increases power consumption, cost and complexity of the ADC. In [11], a single pole TIA cascaded with a higher order filter is proposed. Although this may help suppress the blockers to the ADC, the large signal performance of the first stage which is the TIA does not change. Any strong interferer can easily saturate the first stage, desensitizing the whole receiver chain.

In this thesis, a TIA with an adapted $3^{\text {rd }}$ order lowpass inverse Chebyshev response is presented. Extra circuitry is added to the feedback of the existing first-order TIA to provide more attenuation to the interferers. The proposed TIA still maintains the desirable low impedance property while providing better out-of-band linearity performance. Also, with the proposed TIA, the oversampling ratio and resolution of the

ADC can be relaxed; consequently, cost, complexity and power consumption of the ADC can be reduced. The proposed TIA handles $\pm 5 \mathrm{~mA}$ interferer at 60 MHz and beyond without any saturation.

1.2 Thesis Organization

The thesis has six sections. Section 1 is the introduction. It discusses the various communication standards, conventional receiver architectures and general issues with direct conversion receivers. Existing solutions are discussed and the concept of the proposed TIA is introduced.

Section 2 reviews the general design metrics for TIAs and their impact on the overall system performance. Some system level issues in the design of TIAs are also explained.

Section 3 details the concept of the proposed TIA filter and the bottlenecks of the design. The transfer function and the circuit implementation of the various blocks are presented. The various constraints that set the component values for the blocks are discussed.

In Section 4, the main considerations in the transistor level design for the proposed TIA are discussed. The optimization process in determining the Gain-Bandwidth products of the opamps is also analyzed. System level simulations with a novel V-I differentiator are presented and its linearity and noise impact on the whole system are also discussed. Also the layout for the proposed TIA is introduced.

In Section 5, the schematic and post-layout simulation results of the proposed TIA lowpass filter are presented. The out-of band linearity of the proposed filter is presented which shows a considerable improvement of linearity over the existing architectures

Conclusions and possible future work are presented in Section 6.

2 GENERAL DESIGN CONSIDERATION FOR A TRANSIMPEDANCE FILTER

Transimpedance amplifier (TIA) is an important active element in analog integrated circuits and systems. It basically transforms current signals to voltage signals. In most receivers, it is used at the output of a current mode down-conversion mixer to convert the current signals to voltage signals. In this section the various design parameters for TIA are briefly discussed.

2.1 Gain

The conventional TIA architecture is shown in Figure 3. The gain is defined as the ratio of the output voltage $\left(\mathrm{V}_{\text {OUT }}\right)$ to the input current $\left(\mathrm{I}_{\mathrm{IN}}\right)$. For example, a TIA with a gain of $60 \mathrm{~dB}(1000)$ produces a change of 1 mV at the output in response to $1 \mu \mathrm{~A}$ of current at its input.

Figure 3 The basic transimpedance amplifier

Using nodal analysis at V_{X}, the gain for Figure 3 can be expressed as

$$
\begin{equation*}
\frac{\mathrm{T}}{\mathrm{I}_{\mathrm{I}}} \quad \frac{\mathrm{~A}(\mathrm{~s})}{1 \mathrm{~A}(\mathrm{~s})} \mathrm{F} \tag{2-1}
\end{equation*}
$$

If $|\mathrm{A}(\mathrm{j} \omega)| \gg 1$, the TIA gain reduces to

$$
\begin{equation*}
\frac{\mathrm{T}}{\mathrm{I}_{\mathrm{I}}} \approx \mathrm{~F} \tag{2-2}
\end{equation*}
$$

For large values of the opamp gain, the transimpedance gain is simply the feedback impedance. Most often, Z_{F} is a combination of passive elements and its value is well defined. As a result, the sensitivity of the output voltage to variations in $A(s)$ is very minimal. The unit for the gain can easily be deduced from (2-2) as ohms (Ω).

In most direct conversion receivers, Z_{F} is a parallel combination of a resistor and a capacitor. Using (2-2) , the gain for Figure 4 is given as:

$$
\begin{equation*}
\frac{\mathrm{T}}{\mathrm{I}_{\mathrm{I}}} \quad \overline{1 \mathrm{~s} \mathrm{C}} \tag{2-3}
\end{equation*}
$$

The above equation gives first-order attenuation after the corner frequency (bandwidth) 1/RC.

Figure 4 Single pole RC TIA filter

2.2 Input Impedance

One desirable property of a TIA is the low input impedance it offers to mixers in the receiver chain. This attribute helps to preserve the linearity of the mixer. Considering Figure 3, the input current can be defined as

$$
\begin{equation*}
I_{\mathrm{I}} \frac{(1 \mathrm{~A}(\mathrm{~s}))}{\mathrm{F}} \tag{2-4}
\end{equation*}
$$

which can rearranged as

$$
\begin{equation*}
\mathrm{I} \quad \overline{\mathrm{I}_{\mathrm{I}}} \quad \frac{\mathrm{~F}}{1 \mathrm{~A}(\mathrm{~s})} \tag{2-5}
\end{equation*}
$$

As can be observed, for large values of $|\mathrm{A}(\mathrm{j} \omega)|$, the input impedance is very small.

Again considering Figure 4, its input impedance can be found by replacing Z_{F} in (2-5) with $\|^{1} / \mathrm{sC}$, resulting in

$$
\begin{equation*}
\text { I } \overline{(1 \mathrm{~s} \mathrm{C})(1 \mathrm{~A}(\mathrm{~s}))} \tag{2-6}
\end{equation*}
$$

For instance, with 1000Ω and C 7.9 pF , the DC gain and bandwidth for Figure 4 are $1000(60 \mathrm{~dB})$ and 20 MHz , respectively. Assuming the gain for the opamp is 1000 (60dB) and with no frequency dependency, (2-6) becomes

$$
\begin{equation*}
\text { I } \frac{0.999}{17.9 \times 10^{-9} \mathrm{~s}} \tag{2-7}
\end{equation*}
$$

The above equation exhibits a first-order low-pass response. At low frequencies, the input impedance is equal to 0.999Ω, and at frequencies higher than the bandwidth, the input impedance starts to decrease as shown in Figure 5.

Figure 5 Input impedance of first-order TIA

2.3 Effect Of Finite Gain-Bandwidth Product (GBW) Of An Opamp On

 System PerformanceAs the name suggests, the gain-bandwidth product is defined as the product of the DC gain and bandwidth of the opamp. In reality, opamps have finite gain with poles and
zeros. To simplify the analysis, the opamp is assumed to have a single pole with the transfer function given as

$$
\begin{equation*}
\mathrm{A}(\mathrm{~s})=\frac{\mathrm{A}_{0}}{1 \frac{\mathrm{~s}}{\omega_{\mathrm{dB}}}} \tag{2-8}
\end{equation*}
$$

Equation (2-8) can be rewritten as

$$
\begin{equation*}
\mathrm{A}(\mathrm{~s}) \frac{\mathrm{A}_{0} \omega_{\mathrm{dB}}}{\mathrm{~s} \omega_{\mathrm{dB}}} \tag{2-9}
\end{equation*}
$$

The Gain-Bandwidth Product from the definition is given as

$$
\begin{equation*}
\mathrm{GB} \quad \mathrm{~A}_{0} \omega_{\mathrm{dB}} \tag{2-10}
\end{equation*}
$$

Substituting (2-10) into (2-9) gives

$$
\begin{equation*}
A(\mathrm{~s}) \frac{\mathrm{GB}}{\mathrm{~s} \omega_{\mathrm{dB}}} \tag{2-11}
\end{equation*}
$$

The impacts of the GBW of the opamp on the overall system performance are discussed below.

2.3.1 Gain

With the gain of the opamp defined in terms of GBW and the bandwidth as in (2-11), (2-1) can now be written as

$$
\begin{equation*}
\frac{\text { out }}{\mathrm{I}_{\mathrm{in}}} \quad \frac{\mathrm{~GB}}{\mathrm{~GB} \omega_{\mathrm{dB}} \mathrm{~s}} \mathrm{f} \tag{2-12}
\end{equation*}
$$

Using the first-order transimpedance filter shown in Figure 4 as an example, its transfer function using (2-12) is given as

$$
\frac{\text { out }}{\mathrm{I}_{\text {in }}} \frac{\left(\begin{array}{ll}
1 & \left.\frac{1}{\mathrm{~A}_{0}}\right) \tag{2-13}\\
1 \frac{\mathrm{~S}}{\mathrm{~GB} \quad \omega_{\mathrm{dB}}} & \\
1 \mathrm{~s} \mathrm{C}
\end{array}\right) .}{}
$$

$\mathrm{A}_{0} \gg 1$, therefore (2-13) can be reduced to

$$
\begin{equation*}
\frac{\text { out }}{\mathrm{I}_{\text {in }}} \frac{1}{1 \frac{\mathrm{~s}}{\mathrm{~GB} \quad \omega_{\mathrm{dB}}}}\left(\frac{}{1 \mathrm{~s} \mathrm{C}}\right) \tag{2-14}
\end{equation*}
$$

Comparing (2-3) and (2-14), it can be seen that (2-14) has an additional pole, which changes the $-20 \mathrm{db} /$ decade roll-off from the feedback impedance to $-40 \mathrm{db} /$ decade. This additional pole adds more phase to the loop, which potentially could introduce stability issues. The situation becomes worse in reality because an opamp usually has more than one pole.

2.3.2 Input impedance

The input impedance equation shown in (2-5) has the gain of the opamp as a variable.
Substituting (2-11) into (2-5) gives

$$
\begin{equation*}
\text { I (s) } \frac{\left(\mathrm{s} \omega_{\mathrm{dB}} 1\right)}{\mathrm{A}_{0} 1} \frac{\mathrm{l}}{(1 \mathrm{~s} C)\left(\mathrm{s}\left(\mathrm{w}_{\mathrm{dB}} \mathrm{~GB} \quad\right) 1\right)} \tag{2-15}
\end{equation*}
$$

From the above equation,

$$
\text { Impedance at } \mathrm{DC}=\frac{\mathrm{R}}{\mathrm{~A}_{0}+1}, \begin{align*}
1 & \frac{1}{\mathrm{C}} \tag{2-16}\\
2 \mathrm{~GB} & \omega \mathrm{~dB} \tag{2-17}\\
1 & \omega \mathrm{~dB} \tag{2-18}
\end{align*}
$$

The position of P_{1} and Z_{1} are dependent on the bandwidth specification and the dominant pole of the opamp, respectively. The second pole P_{2} is generally greater than P_{1} and $\mathrm{Z}_{1} . \mathrm{Z}_{\mathrm{IN}}(\mathrm{s})$ can take two forms; $\mathrm{P}_{1}<\mathrm{Z}_{1}$, shown in Figure 6 and $\mathrm{Z}_{1}<\mathrm{P}_{1}$, shown in Figure 7.

For Figure 6, the input impedance function stays flat at the DC value of $\mathrm{Z}_{\text {IN }}$ until it encounters P_{1}. From this point, the $Z_{\text {IN }}$ decreases with a slope of $-20 \mathrm{db} /$ decade. This effect is cancelled as soon as the input impedance function hits the zero, Z_{1}. It remains flat until the function encounters P_{2}. From here on, $\mathrm{Z}_{\text {IN }}$ again decreases with a slope of $20 \mathrm{~dB} /$ decade.

Figure 6 Input impedance function for $\mathrm{P}_{1}<\mathrm{Z}_{1}$

In Figure $7, \mathrm{Z}_{\mathrm{IN}}$ starts at its DC value but unlike Figure 6 , it rises with a positive slope of $20 \mathrm{db} /$ decade after the zero $\mathrm{Z}_{1} . \mathrm{Z}_{\mathrm{IN}}(\mathrm{s})$ is flattened as soon as the input impedance function hits the pole P_{1}. Once $Z_{\text {IN }}$ reaches P_{2}, it decreases with a roll-off of $-20 \mathrm{db} /$ decade.

Figure 7 Input impedance transfer with for $\mathrm{Z}_{1}<\mathrm{P}_{1}$

The following deductions can be made from Figure 6 and 7:
(i) For the TIA to offer very low input impedance to the mixer, the gain of the opamp should be as high as possible to reduce the impedance at DC.
(ii) For the same DC gain, the higher the GBW of the opamp, the higher the frequency of Z_{1} and the smaller the rise in Z_{IN} before P_{1} flattens Z_{IN}.
(iii) The positions of P_{1} and Z_{1} depend on the bandwidth specification and the dominant pole of the opamp. These two parameters should be placed close to
each other as much as possible by the designer to cancel the input impedance increment as shown in Figure 7.

2.4 Noise

The input referred noise current of the TIA is very crucial to the performance of the overall receiver chain. The minimum noticeable signal depends on the amount of noise produced by the device.

Figure 8 First-order TIA with equivalent noise sources

The total input referred noise current for the first-order TIA filter shown in Figure 8 can be approximated as

$$
\begin{equation*}
\mathrm{I}_{\mathrm{I},}^{2} \quad 2_{, \mathrm{A}}\left(\frac{\mathrm{sC} \quad 1}{2}\right)^{2}+\frac{\mathrm{kT}}{} \tag{2-20}
\end{equation*}
$$

where k is the Boltzmann constant, T is the temperature in degrees Kelvin and $\mathrm{V}^{2}{ }_{\mathrm{N}, \mathrm{A}}$ is the output referred noise of the opamp. At low frequencies, the impact of the noise contribution from the opamp is minimized by the high pass filter formed by the resistor and capacitor in the feedback. The main noise source at low frequencies is the feedback resistor. A bigger R contributes less thermal noise to the TIA but increasing this also increases the TIA's DC gain. Therefore, the value of R should be carefully chosen to satisfy both the noise requirement and the filter specifications. At high frequencies the noise from the opamp becomes critical which needs to be considered during design.

2.5 Linearity

Most analog and RF circuits are non-linear in nature. For large signal behavior, linearity of the various blocks in the receiver chain is very important, especially for systems where multiple radios operate in the same band or adjacent bands.

Figure 9 Black box representation of a system

A linear system is basically a system whose output $\left(\mathrm{V}_{\mathrm{O}}\right)$ is proportional to its input $\left(\mathrm{V}_{\mathrm{I}}\right)$.

$$
\begin{equation*}
=\mathrm{C}_{1} \tag{2-21}
\end{equation*}
$$

The output of a non-linear system can be approximated with polynomials as

$$
\begin{array}{lllllllll}
\mathrm{C}_{0} & \mathrm{C}_{1} & \mathrm{I} & \mathrm{C}_{2} & \mathrm{I}^{2} \mathrm{C} & \mathrm{I} & \tag{2-22}
\end{array}
$$

As a result of the non-linearity, the output will have a signal at the input frequency and signals at the harmonics of the input frequency.

There are many interesting phenomena that occur due to the non-linearity nature of a system. Some of the phenomena are cross modulation, gain compression, inter modulation, blocking of desired signal due to strong interferer and desensitization of blocks.

Assuming there are two signal components at the input of Figure 9,

$$
\begin{equation*}
\text { I } \quad{ }_{1} \cos \left(\omega_{1} t\right) \quad{ }_{2} \cos \left(\omega_{2} t\right) \tag{2-23}
\end{equation*}
$$

the output can be approximated as

$$
\begin{gather*}
\mathrm{o} \quad \mathrm{C}_{0} \quad \mathrm{C}_{1}\left(\begin{array}{llll}
1_{1} \cos \left(\omega_{1} \mathrm{t}\right) & \left.{ }_{2} \cos \left(\omega_{2} \mathrm{t}\right)\right) & \mathrm{C}_{2}\left(\mathrm{C}_{1} \cos \left(\omega_{1} \mathrm{t}\right)\right. & \left.{ }_{2} \cos \left(\omega_{2} \mathrm{t}\right)\right)^{2} \\
\mathrm{C}\left({ }_{1} \cos \left(\omega_{1} \mathrm{t}\right)\right. & \left.{ }_{2} \cos \left(\omega_{2} \mathrm{t}\right)\right)
\end{array}\right.
\end{gather*}
$$

The square term can be expanded into

$$
\left.\left.\frac{\mathrm{C}_{2}}{2}\left[\begin{array}{lllll}
{ }_{1}^{2}\left(1 \cos 2 \omega_{1} t\right) & { }_{2}^{2}\left(1 \cos 2 \omega_{2} t\right) & 1 & 2 \tag{2-25}\\
\left(\operatorname { c o s } \left(\omega_{1}\right.\right. & \omega_{2}
\end{array}\right) t \cos \left(\omega_{1} \omega_{2}\right) t\right)\right]
$$

The cubic term can be expanded as

$$
\left.\left.\begin{array}{c}
\mathrm{C}\left[\frac { 1 } { 2 } \left(\cos \omega_{1} \mathrm{t}\right.\right. \tag{2-26}\\
\left.\cos \omega_{1} \mathrm{t}\right) \\
\frac{2}{2}\left(\cos \omega_{2} \mathrm{t}\right. \\
\left.\cos \omega_{2} \mathrm{t}\right) \\
\left(\begin{array}{ll}
1 & \frac{2}{2}\left(\frac{\cos \omega_{1} \mathrm{t}}{2}\right.
\end{array} \frac{\cos \left(2 \omega_{2}\right.}{} \omega_{1}\right) \mathrm{t} \\
2
\end{array} \quad \frac{2}{2}\left(\frac{\cos \omega_{2} \mathrm{t}}{2} \frac{\cos \left(2 \omega_{1} \omega_{2}\right) \mathrm{t}}{2}\right)\right)\right] .
$$

From the above equations, it can be observed that, the output has signals at the harmonics of the input frequencies and cross modulation terms from mixing of the two signal components. The harmonics for ω_{1} are at $2 \omega_{1}$ and $3 \omega_{1}$, and the harmonics for ω_{2} are at $2 \omega_{2}$ and ω_{2}. The cross modulation products are at $\left(\omega_{1} \omega_{2}\right),\left(2 \omega_{1} \pm \omega_{2}\right)$ and $\left(2 \omega_{2} \pm\right.$ ω_{1}). These signal components can fall anywhere in the band of interest. For instance, if there are two close undesired interferers, their harmonics may be at high frequencies, but the cross product terms can fall into baseband, which potentially can corrupt the desired signal. Usually in a down conversion receiver chain, a low-pass filter is usually required at the output of the mixer to attenuate the out-of-band interferers, which helps to minimize the impact of harmonics and cross product terms on the desired band.

One significant focus of this work is that the proposed a low-pass TIA filter can achieve high large signal linearity while dealing with interferers in the adjacent bands. The proposed TIA is to be designed to tolerate blockers of $\pm 5 \mathrm{~mA}$ from 60 MHz and beyond.

3 PROPOSED FILTER

This section presents the details of the theory and the design of the proposed TIA filter. Overall system implementation and simulations are also presented. All the system level considerations that affect stability and noise are also discussed.

3.1 Concept

In a low-pass TIA, the feedback impedance is relatively high and constant within the bandwidth, but at frequencies beyond the bandwidth, the feedback impedance reduces. Shown in Figure 10 is a first-order low-pass TIA filter [9] [10].

Figure 10 First-order TIA filter

At DC and low frequencies, the capacitor C is an open circuit, so most of the current flows through the resistor, R_{F}. The output voltage at DC and low frequencies is given as

$$
\begin{equation*}
\mathrm{T} \quad-\frac{\mathrm{F}}{\frac{1}{\mathrm{~A}_{0}} 1} \mathrm{I}_{\mathrm{I}} \quad-\mathrm{I}_{\mathrm{I}} \quad \mathrm{~F} \tag{3-1}
\end{equation*}
$$

At higher frequencies, C functions as low impedance and shares the input current with R_{F}. As the frequency increases, the capacitive impedance becomes smaller; therefore the overall feedback impedance also decreases.

The limitation of this topology is that it only provides a first-order rejection. For a filter with a bandwidth of 20 MHz and a gain of 60 dB , the rejection at 60 MHz is just 10 dB . So for an input current of 5 mA at 60 MHz , the output voltage will be 1.6 V . In most of the recent technologies with limited supply voltages, such voltage level will easily saturate the TIA.

One way to mitigate the saturation problem is to increase the supply voltages and this technique was employed in [10]. The down side of the technique is that the designer has to utilize extra circuitries to protect the transistors or use more expensive technologies with drain extended devices. Also a single pole filtering will require an ADC with a higher dynamic range and resolution to process the baseband signals. This may increase the complexity and power consumption of the ADC.

Another option is to increase the stop-band rejection of the TIA which relaxes the requirements of the ADC . For instance, for a third order system the attenuation at 60 MHz for a TIA with a bandwidth of 20 MHz and 60 MHz is 28 dB . For 5 mA input, the output voltage is approximately 0.2 V , a manageable voltage level in short channel technologies. So, with an improved stop-band rejection in the low-pass TIA, ADCs with lower resolutions can be used to process the baseband signals to save power.

Figure 11 shows the conceptual idea for the proposed TIA filter. It is similar to the topology in Figure 10 but the capacitor has been replaced with $\mathrm{F}(\mathrm{s})$, which is voltage ($\mathrm{V}_{\text {OUT }}$) to current $\left(\mathrm{I}_{\mathrm{X}}\right)$ transfer function given as

$$
\begin{equation*}
F(s) \frac{I}{T} \tag{3-2}
\end{equation*}
$$

Under large signal conditions, $\mathrm{F}(\mathrm{s})$ feeds back an equivalent amount of current to the input node to cancel out incoming out-of-band blockers while maintaining an acceptable voltage swing at the output of the TIA. $\mathrm{F}(\mathrm{s})$ is inactive in the pass-band and only becomes active in the stop-band. The resistor provides the DC gain; $\mathrm{F}(\mathrm{s})$ and the resistor together define the bandwidth of the system.

Figure 11 Conceptual TIA architecture

The transfer function for Figure 11 is given as

$$
\begin{equation*}
\frac{\mathrm{T}(\mathrm{~s})}{\mathrm{I}_{\mathrm{I}}(\mathrm{~s})} \mathrm{T}(\mathrm{~s})-\frac{\mathrm{F}}{1{ }_{\mathrm{F}} \mathrm{~F}(\mathrm{~s})} \tag{3-3}
\end{equation*}
$$

3.2 Filter Transfer Function

An ideal low-pass filter is shown in Figure 12, where ω_{p} is the pass-band frequency.

Figure 12 Ideal low-pass filter

In practice, the transfer function in Figure 12 is not realizable, but there are mathematical approximations which can be used to mimic an ideal low-pass filter. The traditional filter approximations are Butterworth, Chebyshev, inverse Chebyshev, and elliptic. Table 1 shows a summary of the pass-band and stop-band characteristics of these approximations.

Table 1 Characteristics of the filter approximations

Approximation	Pass-band	Stop-band
Butterworth	Flat	Flat
Inverse Chebyshev	Flat	Ripples
Chebyshev	Ripples	Flat
Elliptic	Ripples	Ripples

For the same filter order, Butterworth and Elliptic have the least and the most stop-band attenuation, respectively. Another important parameter is group delay variation, which is a measure of the time delay variations offered by the system to the various signal components. For the same order, elliptic gives the maximum group delay variation while Butterworth gives the minimum group delay variation.

For a given filter order, inverse Chebyshev gives the best compromise in terms of group delay variation and attenuation. Also, inverse Chebyshev approximation has no ripples in the pass-band and offers a sharper roll-off from the pass-band to stop-band. Due to
these reasons, the inverse Chebyshev approximation is used in the design of the proposed TIA filter.

For a transfer function with a gain of 60 dB , a bandwidth of 20 MHz and a stop-band frequency at 60 MHz , the inverse Chebyshev transfer function is given as

The magnitude response of $\mathrm{T}(\mathrm{s})$ is shown in Figure 13.

Figure 13 Magnitude response of a $3^{\text {rd }}$ order inverse Chebyshev transfer function

Equation (3-3) can be rearranged as

$$
\begin{equation*}
\mathrm{F}(\mathrm{~s}) \frac{1}{\mathrm{~T}(\mathrm{~s})} \frac{1}{\mathrm{~F}} \tag{3-5}
\end{equation*}
$$

For a gain of 60 dB , the value of the resistor is 1000Ω. Substituting $\mathrm{R}_{\mathrm{F}} \quad 1000 \Omega$ and (3-4) into (3-5) gives

$$
\begin{equation*}
\mathrm{F}(\mathrm{~s}) \frac{\mathrm{s}}{\mathrm{~s}} \quad 2.5 \quad 10 \quad \mathrm{~s}^{2} \quad .19 \quad 10^{1} \mathrm{~s} \text { s } \tag{3-6}
\end{equation*}
$$

Equation (3-6) can be decomposed into (3-7) as shown in Figure 14.

$$
\begin{equation*}
\mathrm{F}(\mathrm{~s}) \mathrm{sC}_{\mathrm{F}} \mathrm{~B}(\mathrm{~s}) \mathrm{G}_{\mathrm{m}}(\mathrm{~s}) \tag{3-7}
\end{equation*}
$$

where

$$
\begin{align*}
& \mathrm{B}(\mathrm{~s}) \frac{\mathrm{T}}{} \tag{3-8}\\
& \mathrm{G}_{\mathrm{m}}(\mathrm{~s}) \frac{\mathrm{I}}{} \tag{3-9}
\end{align*}
$$

Figure 14 Proposed structure of the TIA

It is possible to implement $\mathrm{G}_{\mathrm{m}}(\mathrm{s})$ and $\mathrm{B}(\mathrm{s})$ in several ways. However, noise requirement, voltage swing and the maximum signal the system needs to tolerate set the constraints on the circuit implementations and the components value. $\mathrm{G}_{\mathrm{m}}(\mathrm{s})$ is a voltage to current differentiator and can be realized with a capacitor, $C_{\text {IN }}$. Substituting $G_{m}(s)=s C_{\text {IN }}$ into (3-7), transfer function for $\mathrm{B}(\mathrm{s})$ can be given as

$$
\begin{gather*}
\mathrm{B}(\mathrm{~s}) \frac{\mathrm{F}(\mathrm{~s}) \mathrm{sC}_{\mathrm{F}}}{\mathrm{sC}_{\mathrm{IN}}} \tag{3-10}\\
\mathrm{~B}(\mathrm{~s}) \tag{3-11}\\
\frac{1}{\mathrm{C}_{\mathrm{IN}}}
\end{gather*}\left(\begin{array}{llllllllll}
\mathrm{s}^{2} & 2.5 & 10 & \mathrm{~s} & .19 & 10^{1} & \mathrm{C}_{\mathrm{F}}(1 . & 10^{10} \mathrm{~s}^{2} & 2 . & 2
\end{array} 10^{27}\right) \cdot\left(\begin{array}{llllll}
1 . & 10^{10} \mathrm{~s}^{2} & 2 . & 20^{27} &
\end{array}\right)
$$

$\mathrm{B}(\mathrm{s})$ has an infinite Q which makes it impractical to realize. The infinite Q introduces the notch shown in Figure 13. A notch at a specific frequency is not crucial to the overall performance of the TIA, because the objective of this work is to design a TIA filter which can handle blockers over a wide frequency range (60 MHz and beyond) and not just at a particular frequency. By introducing a Q into (3-11), the transfer function becomes

$$
\mathrm{B}^{\prime}(\mathrm{s}) \frac{1}{\mathrm{C}_{\mathrm{I}}}\left(\begin{array}{cccccccccc}
\mathrm{s}^{2} & 2.5 & 10 & \mathrm{~s} & .19 & 10^{1} & \mathrm{C}_{\mathrm{F}}(1 . & 10^{10} \mathrm{~s}^{2} & 2.2 & \left.10^{27}\right) \tag{3-12}\\
\hline & & 1 . & 10^{10} \mathrm{~s}^{2} & \mathrm{~s}\left(\frac{.29}{\mathrm{Q}} 10^{1}\right. \\
& & & & 2.2 & 10^{27} &
\end{array}\right)
$$

Now, with the introduction of Q in $\mathrm{B}(\mathrm{s}), \mathrm{T}(\mathrm{s})$ becomes

$$
\left.\mathrm{T}(\mathrm{~s}) \frac{1 . \quad 10^{10} \mathrm{~s}^{2} \mathrm{~s}\left(\frac{.29}{\mathrm{Q}} 10^{1}\right)}{\mathrm{Q}}\right) \begin{array}{llllll}
& 2.2 & 10^{27} \tag{3-13}\\
\hline \mathrm{~s} & 2.2 & 10 & \mathrm{~s}^{2} & .19 & 10^{1} \\
\mathrm{~s} & 2.2 & 10^{2}
\end{array}
$$

Figure 15 shows how the magnitude response of T'(s) varies with Q . As shown in Figure 15 , a Q of 1.5 provides a rejection of approximately 30 dB at 60 MHz . An input current of

5 mA to such a system translates to 0.158 V at the output. The maximum voltage swing set for this work is $\pm 200 \mathrm{mV}$ single ended, so a Q of 1.5 is sufficient to provide the rejection the system needs to tolerate the expected blocker magnitude. It will be shown in later in this section of how the Q for the system is selected.

Figure 15 Magnitude response of $T^{\prime}(s)$ with variation of Q

3.3 Circuit Implementations Of $B^{\prime}(s)$ And $G_{m}(s)$

$\mathrm{B}^{\prime}(\mathrm{s})$ is second order transfer function with transmission zeros. $\mathrm{B}^{\prime}(\mathrm{s})$ can be realized using any of the well-known biquad implementations such as Tow Thomas, AckerbergMosberg (shown in Figure 16) and General Impedance Converter. Most of these biquads require at least two opamps which increases the power consumption for the whole system. Biquads such Sallen-Key (shown in Figure 17) and Delyiannis-Friend can be
implemented with a single opamps. However in a fully differential implementation, B'(s) may have to be realized using two identical single ended Sallen-Key or DelyiannisFriend filters.

Figure 16 Ackerberg-Mossberg biquad

Figure 17 Sallen-Key biquad

In Figure 18, an alternative biquad implementation is presented. The feedback element consists of a T-RC-network connected in parallel with a capacitor. The feedback network creates one real zero and two complex poles. The input element is formed by a parallel combination of a capacitor and a resistor which produces another real zero.

Figure 18 Second order voltage to voltage filter

The transfer function for Figure 18 is given as

$$
\begin{equation*}
\frac{\mathrm{o}}{\mathrm{I}} \frac{(1 \mathrm{~s} \quad \mathrm{C} \quad)\left(1 \frac{\mathrm{sC}_{1}}{2}\right)}{\mathrm{s}^{2}{ }^{2} \mathrm{C}_{1} \mathrm{C}_{2}}{\mathrm{~s} 2 \mathrm{C}_{2}}^{1}(-) \tag{3-14}
\end{equation*}
$$

The general second order transfer function has the form

$$
\begin{equation*}
\text { (s) } \frac{{ }_{1} \mathrm{~s}^{2}}{{ }_{2} \mathrm{~s}} \tag{3-15}
\end{equation*}
$$

Because the poles are real, (3-15) can be rewritten as

$$
\text { (s) } \frac{\left(\begin{array}{ll}
\frac{s}{1} & 1
\end{array}\right)\left(\begin{array}{ll}
\frac{s}{2} & 1 \tag{3-16}
\end{array}\right)}{\frac{s^{2}}{\omega_{0}^{2}} \frac{\mathrm{~s}}{\mathrm{Q} \omega_{0}}} 1
$$

Comparing (3-14) and (3-16) gives

$$
\begin{gather*}
\omega_{0} \frac{1}{\sqrt{\mathrm{C}_{1} \mathrm{C}_{2}}} \tag{3-17}\\
\mathrm{Q}=\frac{1}{2} \sqrt{\frac{\mathrm{C}_{1}}{\mathrm{C}_{2}}} \tag{3-18}\\
\frac{2}{1} \tag{3-19}\\
\frac{1}{\mathrm{C}} \tag{3-20}\\
2 \frac{2}{\mathrm{C}_{1}} \tag{3-21}
\end{gather*}
$$

From algebraic manipulation of equations (3-17) to (3-19) , it can be shown that, the Q for the filter in Figure 18 is given as

$$
\begin{equation*}
\mathrm{Q}=\frac{\omega_{0}}{\mathrm{Z}_{2}} \tag{3-22}
\end{equation*}
$$

One thing that is obvious from (3-17), (3-18) and (3-22) is that the Q cannot be independently varied without affecting ω_{O}. The rest of parameters can be partially adjusted by changing at least two components. For instance, if the gain is to be increased, the value of R_{X} can be reduced. Although this increases Z_{1}, it can be adjusted by increasing C_{X}. The same can be done for the other parameters except for the quality factor which is set by the ratio of C_{1} and C_{2}.

In the order to implement $B^{\prime}(s)$ with the circuit shown in Figure 18 , the zeros of $B^{\prime}(s)$ have to be real. As can be seen from (3-7), the positions of the zeros depend on the capacitance of C_{F}. As shown in the plot in Figure 19 , for the zeros to be real the capacitance of C_{F} should be at least 7.1 pF . Any capacitance value of C_{F} less than 7.1 pF makes the zeros of $\mathrm{B}^{\prime}(\mathrm{s})$ complex. In order to give some room for margin of error, $C_{F}=8 p F$ is selected for the synthesis of $B^{\prime}(s)$ and $G_{m}(s)$.

Figure 19 Location of the zeros of $\mathrm{B}^{\prime}(\mathrm{s})$ while sweeping C_{F}

At high frequencies, the current which is fed back to cancel the blockers mostly comes from $\mathrm{G}_{\mathrm{m}}(\mathrm{s})$ and the capacitor C_{F}. The maximum output voltage swing set for the TIA filter is $\pm 200 \mathrm{mV}$ single-ended, so the current that would be fed back by $\mathrm{C}_{\mathrm{F}}=8 \mathrm{pF}$ at 60 MHz is

$$
\begin{equation*}
\mathrm{I}=\omega \mathrm{C}_{\mathrm{F}} \mathrm{o}=0 . \mathrm{mA} \tag{3-23}
\end{equation*}
$$

Effectively the current expected from $\mathrm{G}_{\mathrm{m}}(\mathrm{s})$ to cancel out an interferer of 5 mA at 60 MHz is 4.4 mA and its required capacitance, C_{IN} is given as

$$
\begin{equation*}
\mathrm{C}_{\mathrm{IN}} \frac{\mathrm{I}_{\mathrm{MA}}}{\omega}=5.5 \mathrm{pF} \tag{3-24}
\end{equation*}
$$

$\mathrm{V}_{\mathrm{O}} \quad 200 \mathrm{~m} \quad$ and $\omega \quad 2 \pi^{*} 0 \mathrm{Mz}$. In the synthesis, $\mathrm{C}_{\mathrm{IN}}=60 \mathrm{pF}$ is used to allow some margin of error.

$$
\begin{array}{cc}
\mathrm{C}_{\mathrm{F}} & 10{ }^{12} \mathrm{~s} \\
\mathrm{G}_{\mathrm{m}}(\mathrm{~s}) & \mathrm{sC}_{\mathrm{I}}
\end{array} \begin{array}{lll}
& 10 & { }^{12} \mathrm{~s} \tag{3-26}
\end{array}
$$

With C_{IN} and C_{F} selected, $\mathrm{B}^{\prime}(\mathrm{s})$ can now be synthesized by substituting (3-25) and (3-26) into (3-12) to give

3.3.1 Selection of \mathbf{Q} for $B^{\prime}(s)$

From (3-17) to (3-21), $\mathrm{R}_{\mathrm{X}}, \mathrm{C}_{\mathrm{X}}, \mathrm{C}_{1}$ and C_{2} can be written in-terms of R as illustrated in (3-33)-(3-36).

$$
\begin{align*}
& \tag{3-28}\\
& \mathrm{C} \quad \frac{2}{2} \tag{3-29}\\
& \mathrm{C}_{1} \frac{2}{2} \tag{3-30}\\
& \mathrm{C}_{2} \frac{2}{2 \omega_{0}^{2}} \tag{3-31}
\end{align*}
$$

Since there are two zeros, there can be two scenarios for the selection of Q. In Figure 20, $11 / \mathrm{C}=1 / 5.2010^{-9}$ and $22 / \mathrm{C}_{1}=1 / 1.10110^{-}$, and using (3-33)-(3-36), is swept from 100Ω to $1.5 \mathrm{k} \Omega$ and the corresponding values for $\mathrm{C}_{\mathrm{X}}, \mathrm{R}_{\mathrm{X}}, \mathrm{C}_{1}$ and C_{2} are plotted. The Q for $\mathrm{B}^{\prime}(\mathrm{s})$ as demonstrated in (3-22) in this case is 4.15 .

It can be seen that, for a given R, the capacitor ratio between C_{1} and C_{2}, and C_{1} and C_{X} are quite huge. For instance, for 500Ω, the corresponding value for $\mathrm{C}_{1}, \mathrm{C}_{2}$ and C_{X} are approximately $44 \mathrm{pF}, 630 \mathrm{fF}$ and 560 fF , respectively. The ratio between C_{1} and C_{2} is 70 , and the ratio between C_{1} and C_{X} is 78 . These capacitance ratios are quite huge, which makes matching between the components very difficult. Also it can be observed that, the required capacitance for the implementation of C_{1} is very large, so the overall power consumption and area may be relatively higher for $\mathrm{Q}=4.15$.

Figure 20 A sweep of R against R_{X}, C_{X}, C_{1} and C_{2} for $Z_{1}=1 / R_{X} C_{X}=1 / 5.2 \times 10^{-9}$ and $Z_{2}=2 / C_{1} R=1 / 1.101 \times 10^{-8}$

Figure 21 shows the case for which $1 / \mathrm{C}=1 / 1.10110^{-}$and $2 / \mathrm{C}_{1}=$ $1 / 5.2010^{-9}$. The Q in this case as illustrated in (3-22) is 2 .

Figure 21 A sweep of R against $\mathrm{R}_{\mathrm{X}}, \mathrm{C}_{\mathrm{X}}, \mathrm{C}_{1}$ and C_{2} for $\mathrm{Z}_{1}=1 / \mathrm{R}_{\mathrm{X}} \mathrm{C}_{\mathrm{X}}=1 / 1.101 \times 10^{-8}$ and $\mathrm{Z}_{2}=2 / \mathrm{C}_{1} \mathrm{R}=1 / 5.2 \times 10^{-9}$

As can be seen the capacitance ratios for C_{1} and C_{2}, and C_{1} and C_{X} are relatively lower for the case of $\mathrm{Q}=2$. In addition, the corresponding C_{1} for a given R are comparatively smaller in this case. Considering all these, the case with $\mathrm{Q}=2$ would be the better option.

3.3.2 Synthesized transfer functions for $B^{\prime}(s)$ and $T^{\prime}(s)$

ith Q selected as 2, $\mathrm{B}^{\prime}(\mathrm{s})$ becomes

$$
\text { B (s) } \left.\frac{0.1059\left(\begin{array}{llllll}
1.101 & 10 & \mathrm{~s} \mathrm{c} & 1 \tag{3-32}
\end{array}\right)\left(5.20 \quad 10^{9} \mathrm{~s}\right.}{} \quad 1\right)
$$

After synthesising the various blocks for $\mathrm{F}(\mathrm{s})$, the overall transfer function now becomes

Matlab plots of the magnitude responses of $\mathrm{T}^{\prime}(\mathrm{s})$ and $\mathrm{T}(\mathrm{s})$ are shown in Figure 22. The bandwidth for $\mathrm{T}^{\prime}(\mathrm{s})$ has been reduced. o wever, this can easily be compensated by adjusting the components value as shown in Figure 23. The opamps used for the plot in Figure 23 are ideal and the various components' values are shown in Table 2. As stated earlier, although the notch in $T(s)$ is removed, the modified TIA Transfer function still provides adequate attenuation to out-of-band blockers at 60 MHz and beyond.

Figure 22 Magnitude response of T(s) and T'(s)

Table 2 Summary of the components with ideal opamps after bandwidth adjustment

Parameter	Value
R_{F}	1Ω
C_{F}	8 p
C_{IN}	60 pF
C_{X}	0.99 pF
R	50Ω
R_{X}	$1.5 \mathrm{k} \Omega$
C_{1}	16 pF
C_{2}	1.14 pF

Figure 23 Transfer function of the TIA with ideal opamps after adjusting components' values as given in Table 2

3.3.3 Sensitivity analysis of $B(s)$

In dealing with the circuit in Figure 18, the sensitivity of the various components needs to be examined. Sensitivity is a measure of how variations in a component value alter the behavior of a circuit. The commonly used definition is the bode sensitivity which is defined as [12]

$$
\begin{equation*}
\mathrm{S} \frac{\frac{\mathrm{~d}}{\mathrm{~d}}}{\underline{\mathrm{~d}}} \tag{3-34}
\end{equation*}
$$

The sensitivity of $\omega_{0}, \mathrm{Q}, \mathrm{Z}_{1}$ and Z_{2} to the various passive components are given as

$$
\begin{array}{ccccc}
\mathrm{S}_{\mathrm{C}_{1}}^{\omega_{0}} & \mathrm{~S}_{\mathrm{C}_{2}}^{\omega_{0}} & \frac{1}{2}, & \mathrm{~S}^{\omega_{\mathrm{O}}} & 1 \\
\mathrm{~S}_{\mathrm{C}_{1}}^{\mathrm{Q}} & \mathrm{~S}_{\mathrm{C}_{2}}^{\mathrm{Q}} & \frac{1}{2} \\
\mathrm{~S} & \mathrm{~S} & 1 \\
& \mathrm{~S}_{R_{X}}^{Z_{1}} & \mathrm{~S}_{C_{X}}^{Z_{1}} & 1 \\
& \mathrm{~S}_{\mathrm{C}_{1}}^{2} & \mathrm{~S}^{2} & 1 \tag{3-39}
\end{array}
$$

As can be seen from (3-35) to (3-39), all the sensitivity values are equal to or less than unity. Therefore the circuit can be classified as insensitive to component variations.

4 CIRCUIT OPTIMIZATION AND TRANSISTOR LEVEL DESIGN

The proposed TIA filter is shown in Figure 24. It consists of a second order voltage to voltage filter, a V-I differentiator in the form of a capacitor and a feedback resistor to provide the in band gain. The circuit is realized as a fully differential circuit so the inverter in the feedback will be ignored in the analysis.

Figure 24 Proposed single ended TIA Filter

4.1 V-I Differentiator

As shown in section 3, to provide a current of $\pm 5 \mathrm{~mA}$ for the cancellation of the out-ofband blockers, the capacitor $\mathrm{C}_{\text {IN }}$ needs to be as large as $60 \mathrm{pF} . \mathrm{C}_{\text {IN }}$ is directly coupled to the output of opamp2. Such a high load can introduce a low frequency pole which can
limit the high speed operation of the system. Also to drive such a huge load, the opamp needs to burn a great deal of current to provide an appreciable GBW and slew rate. Another thing is that, a capacitor of such magnitude will require a large chip area.

The value of C_{IN} can be reduced by cascade of a smaller capacitor C_{M} and a current amplifier with a gain of N as demonstrated in Figure 25. The current amplifier provides low impedance at X for the linear conversion of the voltage V_{O} to the current I_{IN}.

Figure 25 Concept of reduction of $\mathrm{C}_{\text {IN }}$

$$
\begin{array}{r}
\frac{\mathrm{I}_{\mathrm{T}}}{\mathrm{I}_{\mathrm{I}}} \\
\mathrm{C}_{\mathrm{M}} \quad \frac{\mathrm{C}_{\mathrm{I}}}{} \tag{4-2}
\end{array}
$$

The circuit in Figure 26 implements a voltage to current high pass filter with a pole at $\mathrm{g}_{\mathrm{m} 1} / \mathrm{C}_{\mathrm{M}}$. The general principle is simple; M_{1} provides a low impedance node at X and the
voltage to current differentiation is done by the capacitor. The differentiated current is then mirrored to the input of opamp1. So with such a circuit, $\mathrm{C}_{\text {IN }}$ can be reduced by a factor of N as given in (4-2) .

Figure 26 First-order V-I differentiator

The transfer function for Figure 26 is given as

$$
\begin{equation*}
\frac{\mathrm{I}_{\mathrm{T}}}{\mathrm{I}} \frac{\mathrm{~s} \mathrm{C}_{\mathrm{M}}}{1 \frac{\mathrm{sC}_{\mathrm{M}}}{\mathrm{~g}_{\mathrm{m} 1}}} \tag{4-3}
\end{equation*}
$$

The differentiation is cancelled as soon as (4-3) encounters the pole, $\mathrm{g}_{\mathrm{m} 1} / \mathrm{C}_{\mathrm{IN}}$. Therefore, the pole needs to be pushed to a very high frequency. This can be done by reducing the C_{M} or increasing $g_{m 1}$. Although not shown in (4-3), the current mirror also adds another pole to the transfer function. For a fixed C_{IN}, reducing C_{M} requires N to increase which will definitely decrease the current mirror pole.

The g_{m} of M_{1} can be increased by increasing the width or the biasing current. The latter requires more current which increases the static power consumption, and the former adds more capacitance at X which limits the bandwidth. Alternatively, $\mathrm{g}_{\mathrm{m} 1}$ can be increased with a gain boosting amplifier as shown in Figure 27.

Figure 27 V-I differentiator with gain boosted g_{m} circuit

Now Z_{X} in Figure 27 becomes

$$
\begin{equation*}
\frac{1}{\mathrm{~g}_{\mathrm{m} 1}(\mathrm{~A} \quad 1)} \tag{4-4}
\end{equation*}
$$

The impedance is reduced by a factor of $(A+1)$. For an amplifier with a gain of 20 dB , the pole in (4-3) is increased by a factor of 11 . The frequency of operation is improved
by a decade. Although the amplifier greatly helps mitigate the earlier problem, a local feedback, formed by the amplifier and M_{1} could introduce stability issues.

In the Figure 28, a cascade of two g_{m} stages shown in Figure 26 can be used to create a virtual ground at X . This idea is explored in [13] to implement a second order low-pass current mode biquad.

Figure 28 V-I differentiator with cascade of two g_{m} stages to create a virtual ground

At $D C, C_{P}$ is an open circuit, so the currents through M_{1} and M_{2} are equal. If the transconductance of M_{1} and M_{2} are designed to have the same value, Z_{X} is zero (virtual
ground) at DC. As the frequency increases, the current in C_{P} also increases. The technology used for this work is IBM 180 nm CMOS, which is a short channel process. C_{P} is a parasitic capacitor and is usually very small in such process. The current through C_{P} becomes substantial only at high frequencies. However, over a wide range of frequencies, $\mathrm{I}_{\mathrm{M} 1} \quad \mathrm{I}_{\mathrm{M} 2}$. With such a topology, the input impedance can be close to zero from DC to very high frequencies without burning much power.

Assuming $\mathrm{g}_{\mathrm{m} 1}=\mathrm{g}_{\mathrm{m} 2}=\mathrm{g}_{\mathrm{m}}, \mathrm{Z}_{\mathrm{X}}$ is given by

$$
\begin{equation*}
\frac{\mathrm{sC}_{\mathrm{P}}}{\mathrm{~g}_{\mathrm{m}}^{2}} \frac{1}{1 \frac{\mathrm{SC}_{\mathrm{P}}}{\mathrm{~g}_{\mathrm{m}}}} \tag{4-5}
\end{equation*}
$$

Even for frequencies beyond $\omega_{P}=g_{m} / C_{P}, Z_{X}$ is $1 / g_{m}$, which can still be considered small.

The overall voltage to current transfer function for Figure 28 is

$$
\begin{equation*}
\frac{I_{T}}{I} \frac{s^{\prime} C_{M}}{s^{2}\left(\frac{C_{P} C_{M}}{g_{m}^{2}}\right) \frac{s C_{P}}{g_{m}}} 1 \tag{4-6}
\end{equation*}
$$

The desired response is described in the numerator of (4-6) but the equation has two parasitic poles with a center frequency and quality factor given as

$$
\begin{gather*}
\omega_{o} \frac{\mathrm{~g}_{\mathrm{m}}}{\sqrt{\mathrm{C}_{\mathrm{P}} \mathrm{C}_{\mathrm{M}}}} \tag{4-7}\\
Q \sqrt{\frac{\mathrm{C}_{\mathrm{M}}}{\mathrm{C}}} \tag{4-8}
\end{gather*}
$$

In short cannel technologies, these poles are mostly at high frequencies, so its impact on the system is usually minimal but the designer should be aware of these parasitic poles.

4.1.1 Noise

The noise from the V-I differentiator is directly fed to the input of the TIA, which impact the overall signal to noise ratio. Therefore, the various noise sources for the V-I differentiator shown in Figure 29 need to be investigated.

Figure 29 Noise sources for the V-I differentiator

The noise transfer function of M_{1} and $\mathrm{M}_{2}, \mathrm{M}_{3}$ and M_{4} are given as

$$
\begin{align*}
& \left|\frac{\mathrm{I}_{\mathrm{T}}}{\mathrm{I}_{\mathrm{M} 1},}\right|^{2}\left|\frac{\mathrm{sC}_{\mathrm{M}}}{\mathrm{~s}^{2} \frac{\mathrm{C}_{\mathrm{P}} C_{\mathrm{M}}}{\mathrm{~g}_{\mathrm{m}}^{2}}} \frac{\mathrm{sC}}{\mathrm{~g}_{\mathrm{m}}} \quad 1 \quad\right|^{2} \tag{4-9}\\
& \left|\frac{\mathrm{I}}{\mathrm{~T}} \mathrm{I}_{\mathrm{M} 2,}\right|^{2}=\left|\begin{array}{ll}
\frac{\mathrm{s}^{2} \mathrm{C}_{\mathrm{M}} C_{P}}{\mathrm{~g}_{\mathrm{m}}^{2}} & \frac{\mathrm{~s}\left(\mathrm{C}_{\mathrm{P}} C_{M}\right)}{\mathrm{g}_{\mathrm{m}}} \\
\frac{\mathrm{~s}^{2} \frac{\mathrm{C}_{\mathrm{P}} C_{M}}{g_{m}^{2}}}{} \frac{\mathrm{sC}}{\mathrm{~g}_{\mathrm{m}}} & 1
\end{array}\right|^{2} \tag{4-10}\\
& \left|\frac{\mathrm{I}_{\mathrm{T}}}{\mathrm{I}_{\mathrm{M}},}\right|^{2}=\left|\frac{1}{\mathrm{~s}^{2} \frac{\mathrm{C}_{\mathrm{P}} \mathrm{C}_{\mathrm{M}}}{\mathrm{~g}_{\mathrm{m}}^{2}}} \frac{\mathrm{sC}^{\mathrm{g}_{\mathrm{m}}}}{} \quad 1\right|^{2} \tag{4-11}\\
& \left|\frac{\mathrm{I}_{\mathrm{T}}}{\mathrm{I}_{\mathrm{M},}}\right|^{2}=1 \tag{4-12}
\end{align*}
$$

The noise transfer function for M_{1} has a band-pass response with the center frequency at ω_{0}. The bandwidth of the system is far less than ω_{0}, so most of the noise from M_{1} is filtered out in the band of interest. The noise transfer function of M_{2} has a high pass characteristic and again most of its noise is filtered in the bandwidth.

The major sources of noise are M_{3} and M_{4}. Noise of M_{3} has low-pass characteristic so nothing is filtered out in the band of interest while the noise of M_{4} is injected directly to the output. Therefore, the dimensions and over-drive voltages of these transistors should be carefully optimized to reduce their noise impact on the system.

4.1.2 Optimum values for \mathbf{N} and \mathbf{C}_{M}

The following design equations can be considered in the design of the V-I differentiator.

$$
\begin{align*}
& \mathrm{C}_{\mathrm{M}}=\frac{60 \times 10^{-12}}{\mathrm{~N}} \tag{4-13}\\
& \mathrm{~g}_{\mathrm{m}} \omega_{0} \sqrt{\mathrm{C} \mathrm{C}} \mathrm{M} \tag{4-14}
\end{align*}
$$

Equation (4-14) can also be rewritten as

$$
\begin{equation*}
\mathrm{g}_{\mathrm{m}} \omega_{0} \sqrt{\frac{\mathrm{C} \quad 0 \quad 10^{12}}{}} \tag{4-15}
\end{equation*}
$$

The total current in Figure 28 is given as

$$
\begin{equation*}
\mathrm{I}_{\text {total }}(1+\mathrm{N}) \mathrm{I}_{\mathrm{d}} \tag{4-16}
\end{equation*}
$$

The following deductions can be made from the above equations. Increasing the current gain by N :
(i) Increases the power consumption by a factor of $1+\mathrm{N}$.
(ii) Reduces the current mirror pole by approximately N. A low frequency pole from the V-I differentiator can cause stability issues and also degrade its performance. (4-6) has band pass response with a centre frequency at ω_{0}. Any pole lower than ω_{0} can cancel the differentiating characteristics of (4-6), which is from DC to ω_{0}. Therefore, the pole from the current mirror needs to be placed at a high frequency.
(iii) Also increases the output current noise of M_{3} and M_{4} by N^{2}. As discussed earlier, the main sources of noise in the band of interest are M_{3} and M_{4}. The
noise contribution of these transistors need to be considered in choosing the current gain
(iv) Reduces $\mathrm{C}_{\text {IN }}$ by a factor N which is the objective of this V-I differentiator.

The fully differential V-I differentiator circuit is shown in Figure 30. Cascode current mirrors are used to provide high output impedance. It also helps to match the drain to source voltage of the transistors to reduce the deviations of the current gain from the desired number.

Figure 30 Fully differential V-I differentiator

In Figure $30, \mathrm{I}_{\mathrm{A}}$ is mirrored to I_{D} and $\mathrm{I}_{\mathrm{E}} . \mathrm{I}_{\mathrm{B}}$ is also mirrored to I_{C} and I_{F}. The current gains to the various branches are specified in Figure $30 . \mathrm{I}_{\mathrm{C}}$ and I_{D} are also mirrored to I_{F} and I_{E}, respectively, by a current ratio of N . With this topology, the currents fed to the input terminals of opamp1 are $2 \times N \times I_{A}$ and $2 \times N \times I_{B}$. Figure 31 compares the magnitude response of $\mathrm{C}_{\mathrm{IN}}=60 \mathrm{pF}$ with equivalent response from the $\mathrm{V}-\mathrm{I}$ differentiator for $\mathrm{N}=$ 7,8,10 and 12 .

AC Response

Figure 31 Magnitude responses of a 60 pF capacitor and the V-I differentiator with $\mathrm{N}=7,8,10,12$ from DC to 1 GHz

The magnitude response of the V-I differentiator from DC to approximately 600 MHz is almost the same as the ideal response. However, beyond 600 MHz , the parasitics start to degrade the response. Mostly, TIAs in direct-conversion receivers have a large shunt capacitor at their input node to supplement the bandwidth limitation of the amplifiers. At high frequency most of the signal processing is done by the shunt capacitors, so the effect of these parasitics may not affect the overall system performance.

Table 3 is a summary of the values of current mirror ratio N, transconductance g_{m} of M_{1} and M_{2} and the capacitor C_{M} that were chosen from system level simulations.

Table 3 Summary of optimum parameter values for the design of V-I differentiator

Parameter	Optimum value
N	8
C_{M}	3.75 p
g_{m}	$3.67 \mathrm{mV} / \mathrm{A}$

4.1.3 Layout of the current amplifier

The layout of the current amplifier is shown in Figure 32. The transistors are designed with multiple fingers to reduce the parasitic capacitance and resistance, and are matched using common centroid technique. With this layout technique, linear processing gradients that affect the transistor's electrical properties are averaged over the matched
devices. M_{1} and M_{2} are closely matched to ensure they have the same transconductance. As shown in Figure 32, M_{1} and M_{2} are placed close to each other, and in the same guard ring. The guard ring isolates M_{1} and M_{2} from the other devices, and putting M_{1} and M_{2} in close proximity ensures that they generally experience the almost the same device conditions.

Figure 32 Layout of current amplifier

4.2 Optimum GBW For Opamp1 And Opamp2

In the analysis above, the GBWs for the amplifiers were assumed to be infinite but as discussed in section 2, opamps are band-limited with a finite gain. Also, there is an added circuitry in the feedback which can cause stability issues. System instability may lead to transient ringing or oscillations. Therefore, the best possible GBWs for the opamps which do not affect the stability need to be found. Another important reason to find optimum GBWs for the opamps is to avoid overdesigning the opamps with large power dissipation.

Figure 33 shows the transient response of the TIA to an input current step of 400 uA , the GBW of the opamp 1 is set to 3 GHz (an anticipated achievable GBW in the IBM 180 nm process) and the GBW of the opamp2 is varied from 200 MHz to 3 GHz . All the responses exhibit slight rings before they settle to their final value. The settling time for each case is approximately 70 ns . It can be observed that, the overshoot and settling time of the TIA are less sensitive to variations in the GBW of the opamp2.

Figure 33 Transient response of the TIA to a current step of 400 uA with the GBW of opamp1 set to 3 GHz and the GBW of opamp 2 varied from 200 MHz to 3 GHz .

Under the same conditions used for Figure 33, the input impedance to the TIA filter is also plotted in Figure 34. From 1 MHz to 50 MHz , the input impedance in all the cases is almost the same. Input impedance for GBW $=200 \mathrm{MHz}$ is slightly lower than the rest by a few $\mathrm{m} \Omega \mathrm{s}$. ow ever, from 55 MHz to around 300 MHz (thus the critical frequencies in handling the out-of-band blockers), the overall input impedance is reduced for large GBW. Beyond 300 MHz , the input impedance peaks to a certain value and then falls. A GBW of 1 GHz was selected for opamp 2 because it offers a tolerable input impedance value while keeping the power consumption low. A lower GBW can be selected but the designer should be aware of second order effects from the transistor level design, which may cause incessant ringing in the output response.

Figure 34 Input impedance of the TIA with the GBW of opamp1 set to 3 GHz and the GBW of opamp 2 varied from 200 MHz to 3 GHz .

In Figure 35, the step response of the TIA is shown with GBW of opamp2 is set to 3 GHz and the GBW of opamm 2 is varied from 200 MHz to 3 GHz . In all the case there are small transient ringing in the response with GBW $=200 \mathrm{MHz}$ and 3 GHz exhibiting the most and least ringing, respectively. The overshoot and settling time also decrease with increasing GBW. The settling time for GBW of 200 MHz and 3 GHz are 240 ns and 70 ns , respectively.

Figure 35 Transient response of the TIA to a current step of 400 uA with the GBW of opamp2set to 3 GHz and the GBW of opamp1 varied from 200 MHz to 3 GHz .

Figure 36 shows the input impedance of the TIA filter with the same settings used for Figure 35. The overall input impedance reduces for large GBW. However, from GBW of 1.32 GHz to 3 GHz , the improvement in the input impedance by increasing the GBW is not that substantial. For instance the peak value for the case with GBW of 1.32 GHz is 5. Ω while the peak value for GB of $1 . \mathrm{G} \mathrm{z}$ is Ω, so there is an improvement of just $1 . \Omega$ for a considerable amount of power which may be required to achieve a GB of 1.88 GHz . A GBW of 1.4 GHz is used for opamp1, because it gives a better compromise in terms of overshoot, settling time, input impedance and power consumption.

Figure 36 Input impedance of the TIA with the GBW of opamp 2 set to 3 GHz and the GBW of opamp 1 varied from 200 MHz to 3 GHz .

Figure 37 shows the response of the TIA filter with GBW for opamp1 and opamp2 set to 1.4 GHz and 1 GHz , respectively. The bandwidth is somewhat degraded to 17.45 MHz but this can be compensated by slightly changing the components' values.

Figure 37 Magnitude response with GBW of opamp1 and opamp2 set to 1 GHz and 1.4 GHz , respectively.

Altering the components values helps to increase the bandwidth of the TIA but the attenuation at some critical frequencies are reduced. As shown in Figure 38, the attenuation is reduced by 2.73 dB , but as discussed earlier attenuation of approximately 30 dB is sufficient to suppress the large blockers. A summary of the final components' values and GBW of the opamps are shown in Table 4.

AC Response

Figure 38 Comparing the transimpedance gain before and after changing the components' values to achieve the desired bandwidth.

Table 4 Summary of components values used in the implementation

Parameter	Value	Parameter	Value
R_{F}	1Ω	R	0Ω
C_{F}	9.5 pF	R_{X}	$5 \mathrm{k} \Omega$
C_{M}	3.75 pF	C_{1}	16 pF
C_{X}	0.9 pF	C_{2}	1 pF
GBW for Opamp1	1.4 GHz	GBW for Opamp2	1 GHz

4.3 Amplifier Design

From system simulations, it is obvious that opamps with high gain and high bandwidth are required in the system. It is always difficult to design an amplifier with a high gain and high GBW, especially in short channel technologies. The most common scheme for designing such opamps is by cascading two or more stages. However, each stage adds a pole and degrades the phase margin. The conventional scheme to ensure stability in a cascade of stages is Miller compensation, which uses capacitors to split the poles of the various stages. The downside of the Miller compensation scheme is that, it forces the dominant pole to a lower frequency and this limits the bandwidth. The non dominant poles are pushed to high frequencies. Also a right half zero is also introduced, degrading the phase margin further. There are many reported schemes that use a resistor or a positive phase feed-forward stage to cancel the right half zero [14] - [15].

In [16], a feed-forward compensation technique known as no-capacitor feed-forward (NCFF) compensation is presented. The feed-forward path and the normal path have the same phase. With such a topology, a left-half-plane (LHP) zero is created and its positive phase shift can be used to cancel the negative phase shift of the poles to achieve a good phase margin. The dominant pole is not forced to lower frequencies, resulting in a higher bandwidth with a fast step response. The block diagram of the amplifier is shown in Figure 39.

Figure 39 Block diagram of the amplifier with feed-forward compensation technique

The amplifier in Figure 39 has two main poles given by $\omega_{p 1}=1 / R_{1} C_{1}$ and $\omega_{p 2}=1 / R_{2} C_{2}$. The overall transfer function is given as

$$
\left.(\mathrm{s}) \frac{\left(\begin{array}{lllll}
\mathrm{g}_{\mathrm{m} 1} & 1 \mathrm{~g}_{\mathrm{m} 2} & 2 & \mathrm{~g}_{\mathrm{m}} & 2
\end{array}\right)\left(\begin{array}{llll}
1 & \mathrm{~g}_{\mathrm{m}} & 2 \tag{4-17}\\
\left(\begin{array}{llll}
\mathrm{g}_{\mathrm{m} 1} & 1 \mathrm{~g}_{\mathrm{m} 2} & 2 & \mathrm{~g}_{\mathrm{m}}
\end{array}\right. & 2
\end{array}\right) \omega_{\mathrm{p} 1}}{}\right)\left(\begin{array}{lll}
1 & \left.\frac{\mathrm{~s}}{\omega_{\mathrm{p} 1}}\right)\left(\begin{array}{lll}
1 & \frac{\mathrm{~s}}{\omega_{\mathrm{p} 2}}
\end{array}\right)
\end{array}\right.
$$

The DC gain is given as

$$
\begin{equation*}
\text { Ao } \mathrm{g}_{\mathrm{m} 1} \quad 1 \mathrm{~g}_{\mathrm{m} 2} \quad 2 \quad \mathrm{~g}_{\mathrm{m}} \quad 2 \tag{4-18}
\end{equation*}
$$

and the zero created is given as

$$
\omega_{\mathrm{z}} \frac{\left(\begin{array}{lllll}
\mathrm{g}_{\mathrm{m} 1} & 1 \mathrm{~g}_{\mathrm{m} 2} & 2 & \mathrm{~g}_{\mathrm{m}} & 2 \tag{4-19}
\end{array}\right)}{\mathrm{g}_{\mathrm{m}}} 2 \quad \omega_{\mathrm{p} 1} \frac{\mathrm{~g}_{\mathrm{m} 1} \mathrm{~g}_{\mathrm{m} 2}}{\mathrm{~g}_{\mathrm{m}} \mathrm{C}_{1}}
$$

The negative phase effect of $\omega_{\mathrm{p} 2}$ can be annulled by choosing $\omega_{\mathrm{p} 2} \omega_{\mathrm{Z}}$. Pole-zero mismatches may degrade the settling time of amplifiers. However the settling time
requirement for opamps for continuous time filters is relaxed; hence such mismatches can be tolerated [17].

4.3.1 Circuit implementation of opamp1

Opamp1 is a two stage fully differential opamp with feed-forward compensation. Figure 40 shows the schematic implementation of opamp1. The first stage is similar to the first stage in [10] and is optimized for high gain. The dominant pole is at the output of the first stage and it is designed to be as high as possible to achieve the required GBW. The second-stage and feed-forward stages are designed for high bandwidth and medium gain to move the second pole to high frequencies. The second-stage transconductance gain is sum of $g_{m 6}$ and $g_{m 2} . M_{6}$ reuses the bias currents from M_{2} and M_{3} to conserve power.

The main contributor of distortion at lower frequencies is the output stage whereas the input stage is the main contributor at higher frequencies [18]. The swing at the output of the first stage is low because the signal is further amplified by the second stage. The second stage experiences large output swing; therefore its biasing should be carefully done to lessen its impact on distortion of the system. Due to the nature of the output stage, the drain-source voltages of the various transistors are much higher than the overdrive voltage, so the distortion from the g_{ds} of the output transistors is minimal. The main sources of distortion are the transconductance of the output stage transistors, consequently the over-drive voltage of the output transistors need to be chosen as high as possible.

Figure 40 Schematic of the main amplifier (opamp1)

Each stage of opamp1 has a common mode feedback circuit (CMFB) which sets its output DC common mode level. The DC common mode voltages at the first and second stages are 1.1 V and 0.9 V , respectively. The first stage CMFB consists of M_{10} and M_{11}, and the second stage CMFB is formed by M_{8} and M_{9}. The CMFBs use resistive averaging to detect the common mode voltage and feed back the error to the main circuit to correct the DC output voltage to the desired DC level. CMFB for the first and second stage have a left hand zero at $\mathrm{R}_{1} \mathrm{C}_{1}$ and $\mathrm{R}_{2} \mathrm{C}_{2}$, respectively. The zeros are used to improve the stability of the common mode loops. A summary of opampl components is shown in Table 5.

Table 5 Transistor dimensions, passive component values and bias current for opamp1

Device	Dimensions			Device
	Multiplier	$\mathbf{(W / L)}$	Value	
M_{1}	10	$4.76 \mu \mathrm{~m} / 0.6 \mu \mathrm{~m}$	$\mathrm{I}_{\mathrm{B} 1}$	$500 \mu \mathrm{~A}$
M_{2}	10	$8 \mu \mathrm{~m} / 0.3 \mu \mathrm{~m}$	$\mathrm{I}_{\mathrm{B} 2}$	1.1 mA
M_{3}	40	$40 \mu \mathrm{~m} / 0.3 \mu \mathrm{~m}$	$\mathrm{I}_{\mathrm{B} 3}$	16.35 mA
M_{4}	2	$3.42 \mu \mathrm{~m} / 0.3 \mu \mathrm{~m}$	$\mathrm{I}_{\mathrm{B} 4}$	530 uA
M_{5}	5	$13.02 \mu \mathrm{~m} / 0.3 \mu \mathrm{~m}$	$\mathrm{I}_{\mathrm{B} 5}$	2 mA
M_{6}	20	$34.61 \mu \mathrm{~m} / 0.3 \mu \mathrm{~m}$	R_{1}	$150 \mathrm{k} \Omega$
M_{7}	30	$23.34 \mu \mathrm{~m} / 0.3 \mu \mathrm{~m}$	C_{1}	200 fF
M_{8}	20	$15 \mu \mathrm{~m} / 0.6 \mu \mathrm{~m}$	R_{2}	$150 \mathrm{k} \Omega$
M_{9}	20	$13.77 \mu \mathrm{~m} / 0.3 \mu \mathrm{~m}$	C_{2}	200 fF
M_{10}	5	$15 \mu \mathrm{~m} / 0.6 \mu \mathrm{~m}$		
M_{11}	8	$8.65 \mu \mathrm{~m} / 0.3 \mu \mathrm{~m}$		

4.3.1.1 Layout of opamp1

The layout of opam1 is shown Figure 41. Wide transistors are broken into multiple fingers to reduce the drain and source area. This helps to reduce the parasitic capacitance and resistance. Matched devices have the same geometries and are matched with interdigitization and common centroid technique. With such techniques, the processing gradients that affect the matched transistors' electrical properties can be averaged across them.

Figure 41 Layout of opamp1

4.3.2 Circuit implementation of opamp2

The schematic of opamp2 is very similar to opamp1. The only difference is the first stage, which as shown in Figure 42 is a simple differential pair with active loads. From
system level simulations, the GBW for opamp2 has to be at least 1 GHz and its gain does not need to be as high as the gain of opamp1. Since the DC gain requirement for opamp2 is relaxed, the cascode transistor M_{4} in Figure 40 which is used to improve the gain of the first stage can be removed to push the dominant pole to a higher frequency. The first stage uses a shunt feedback resistor load R_{1} to set the common mode level[19]. The second stage CMFB is the same as the CMFB in Figure 40 . The summary of the component values and dimensions are shown in Table 6.

Figure 42 Schematic of the feedback amplifier (opamp2)

Table 6 Transistor dimensions, passive components value and bias current for opamp2

Device	Dimensions		Device	Value
	Multiplier	\mathbf{W} / \mathbf{L}		
M_{1}	5	$5.84 \mu \mathrm{~m} / 0.6 \mu \mathrm{~m}$	$\mathrm{I}_{\mathrm{B} 1}$	$300 \mu \mathrm{~A}$
M_{2}	8	$5 \mu \mathrm{~m} / 0.3 \mu \mathrm{~m}$	$\mathrm{I}_{\mathrm{B} 2}$	$530 \mu \mathrm{~A}$
M_{3}	25	$26.02 \mu \mathrm{~m} / 0.4 \mu \mathrm{~m}$	$\mathrm{I}_{\mathrm{B} 3}$	6.3 mA
M_{5}	8	$4.95 \mu \mathrm{~m} / 0.3 \mu \mathrm{~m}$	$\mathrm{I}_{\mathrm{B} 5}$	900 uA
M_{6}	15	$27.76 \mu \mathrm{~m} / 0.2 \mu \mathrm{~m}$	R_{1}	0Ω
M_{7}	5	$15.1 \mu \mathrm{~m} / 0.2 \mu \mathrm{~m}$	C_{2}	300 f
M_{8}	10	$15.0 \mu \mathrm{~m} / 0.6 \mu \mathrm{~m}$	R_{2}	80Ω
M_{9}	8	$8.66 \mu \mathrm{~m} / 0.3 \mu \mathrm{~m}$		

4.3.2.1 Layout of opamp2

The same layout techniques for opamp1 are used for opamp2. The layout for opamp2 is shown in Figure 43.

Figure 43 Layout of opamp2

A summary of the performance parameters of the opamps are shown in Table 7.

Table 7 Summary of performance parameter for opamp1 and opamp2

Parameter	Opamp1	Opamp2
DC gain (dB)	56	51
GBW (GHz)	1.4	1.3
Phase Margin	75	0.7
Power Consumption (mA)	21	8.4

4.4 Transistor Level Implementation Of The Proposed TIA

Figure 44 shows the top level implementation of the proposed TIA. Opamp1, Opamp2 and the current amplifier are at transistor level. The shunt capacitors $\left(\mathrm{C}_{\mathrm{Y}}, \mathrm{mC}_{\mathrm{Y}}\right)$ at the input node are used to supplement the bandwidth limitations of the amplifiers. At high frequencies, most of the signal processing is done by the shunt capacitors.

Figure 44 Top Level implementation of the proposed TIA with $\mathrm{C}_{\mathrm{Y}}=40 \mathrm{pF}$ and $\mathrm{m}=3$.

5 RESULTS

In this section, the filter test setup, layout and simulations results are presented. A comparison of post layout and schematic simulation results are also described. The TIA was designed, laid out and simulated with IBM 180nm CMOS technology.

5.1 Layout

The complete layout is shown in Figure 45. The total chip area is approximately $1.3 \mathrm{~mm} \times 1.22 \mathrm{~mm}$. Interdigization and common centroid techniques are employed throughout the layout to minimize mismatches. Dummy transistors are also used as ending elements to ensure etching and diffusion processes are equalized over all segments of the various devices. All the capacitors are matched with common centroid technique and laid out with square geometries to curtail random mismatches due to peripheral variations.

The metal lines are carefully routed to reduce parasitic capacitances and to ensure the same parasitic impedance in the differential paths. The metal with the least sheet resistance is used for the power lines and are also made as wide as possible to reduce the resistive voltage drops. Metal lines carrying significant amount of current are also made as wide as possible to reduce the voltage drops. The devices are located such that the metal routing distances are considerably lessened. All routing metal widths in critical signal paths are designed to comply with electrical migration rules.

Figure 45 Layout of the TIA

5.2 Filter Setup

In the test bench shown in Figure 46, the input is modeled as a Norton current with an output impedance of $1 \mathrm{M} \Omega$. A capacitive load of 1 pF is connected at the output to model the package parasitic. The bias current is set by an external resistor. The bias current
with a couple of current mirrors in the design are used to provide the current to set the bias voltages for the opamp1, opamp2 and V-I differentiator. DC voltage sources are used as the supply voltages (vdd! and VSS).

Figure 46 Testing circuit setup

5.3 Simulation Results

The post layout and schematic magnitude response of the proposed TIA is shown in Figure 47. The magnitude response of the conventional TIA is also shown in Figure 47 for comparison. At 60 MHz , the attenuation for the post layout, schematic and the firstorder are $29.18 \mathrm{~dB}, 28.18 \mathrm{~dB}$ and 10 dB , respectively. In both the schematic and the post layout, the attenuation provided by the proposed TIA is improved by at least 19 dB . From

50 MHz to 200 MHz , the attenuation provided by the schematic and layout are comparable, but beyond 200 MHz , the attenuation provided by the layout is slightly higher than the schematics due to the added parasitics in the layout. Also the bandwidth for the layout is slightly reduced due to the parasitics.

Figure 47 Magnitude response of the conventional and the proposed TIA

To verify the response shown in Figure 47 , the system was tested with an input current with amplitude of 5 mA (10 mA differential) at 60 MHz . As shown in Figure 48, the amplitude of the post layout and schematic output voltage levels are 252 mV and 290.6 mV , respectively while the amplitude of the output voltage level of the conventional TIA is 3.15 V . IBM 180 nM process supports a supply voltage level of 1.8 V , so the opamp for the conventional TIA is implemented with a macromodel to
prevent the opamp from saturating. Evidently a first-order TIA designed in this process cannot tolerate blockers of such magnitude unless the supplies are increased and some complex circuitries are employed to protect the transistors. Again as expected, the amplitude of the output voltage in the post layout is slightly lower than the schematics due to the lower attenuation offered by the layout as shown in Figure 47

Figure 48 Transient response of the conventional and proposed TIA to an input current of 5 mA at 60 MHz

Figure 49 shows the magnitude response of the input impedance. There is a slight difference in the input impedance for the layout and the schematic. The parasitic impedance of the metal connectors accounts for the difference observed. The conventional TIA shows a peak input impedance of 14.74Ω at frequencies greater than

60 MHz , whereas the schematic and post-layout of the proposed TIA exhibits a peak impedance of.Ω and 5.7Ω, respectively. So, at frequencies beyond 60 MHz , where the large interferers are expected, and the proposed TIA input impedance is considerably lower than the conventional TIA. Therefore, the linearity of the mixer at the input is improved at the critical frequencies. Figure 50 demonstrates the effect of the reduced input impedance of the proposed TIA in the presence of an out-of-band blocker of 10 mA at 60 MHz . The amplitude of the input voltage in the proposed TIA (post-layout) is reduced by a factor of almost 10 , which can significantly impact the out-of-band linearity performance of the triode operating current mode mixer.

Figure 49 Input impedance of the filter

Transient Response

Figure 50 Transient input voltage to an input current of 10 mA at 60 MHz

In Figure 51, the transient response of the TIA to an input step of 400 uA is shown. In all cases the output follows the input. As anticipated, there is slight ringing and overshoot in the step response of the proposed TIA while the conventional TIA approaches its final value in an exponential manner. For the conventional TIA, the settling time is around 70 ns and for the proposed TIA, the post-layout and schematic response show a settling time of 101 ns and 97 ns , respectively.

Figure 51 Step response of the TIA

Figure 52 shows the noise performance of the proposed TIA. The noise current of the proposed TIA is higher than the conventional TIA. The major noises are from the V-I differentiator block. There is a trade-off between power and noise. As discussed in section 4, the use of large capacitor places a huge power and slew rate burden on opamp2. The use of the V-I differentiator helps to mitigate this requirement. Also in systems where linearity of large out-of-band blockers is more critical than noise, the noise levels shown in the proposed TIA may not be that crucial. Table 8 shows a summary of the integrated noise current of the proposed and conventional TIA.

Figure 52 Input noise current of the conventional proposed TIA

Table 8 Input referred integrated noise current

TIA Filter	Integrated noise (1KHz-20MHz) /nA
Conventional	20
Proposed Schematic	764
Proposed Post Layout	800

Figure 53 compares the transient response of the proposed and convenitonal TIA to inband signal of 100 uA at 10 MHz in the presence of an out-of-band blocker of amplitude 10 mA at 60 MHz . The amplitude of the output signal for the proposed TIA is 350 mV ,
whereas the amplitude of the conventional TIA is 1.75 V . The amplitude of the proposed TIA is relaxed by almost 1.4 V . The DFT of Figure 53 is also shown Figure 54. The attenuation of the 10 mA component at 60 MHz in the proposed TIA is improved by 17 dB when compared to the corrresponding component in the conventional TIA.

Figure 53 Transient response of TIA to an in-band current of amplitude $100 \mu \mathrm{~A}$ at 10 MHz and out-of-band block of 10 mA at 60 MHz

Figure 54 DFT of the transient response of TIA to an in-band current of amplitude $100 \mu \mathrm{~A}$ at 10 MHz and out-of-band block of 10 mA at 60 MHz

Figure 55 shows the intermodulation product of two out-of-band interferers. The input to the TIAs has two components at 60 MHz and 110 MHz with amplitude of 10 mA . The intermodulation product of importance is the $2 f_{1}-f_{2}$, which falls in the band of interest. As discussed earlier, the impact of the $2 \mathrm{f}_{1}-\mathrm{f}_{2}$ can drastically degrade the system performance through gain compression and desensitization of the TIA. For $f_{1}=60 \mathrm{MHz}$ and $\mathrm{f}_{2}=110 \mathrm{MHz}$, the intermodulation product at $2 \mathrm{f}_{1}-\mathrm{f}_{2}$ is 10 MHz . Compared to the conventional TIA, the intermodulation product at 10 MHz in the schematic and postlayout of proposed TIA are reduced by 10.84 dB and 10.54 dB , respectively. This improvement is due to the increase in stop-band attenuation of the proposed TIA.

Figure 55 DFT of the TIA to an input of 10 mA at 60 MHz and 110 MHz

Non-linear systems tend to lose gain as its input levels are increased. In Figure 56, the single tone 1 dB compression levels of the conventional and the TIA are compared. The plot shows the amplitude of the input current that causes the gain of the output signal to compress by 1 dB at various frequencies. As can be seen, the in-band 1 dB compression for the conventional and the proposed TIA are almost the same. The difference lies in the stop-band where the 1 dB compression point for the proposed TIA is significantly higher than the conventional TIA. From 40 MHz and beyond, the proposed TIA can handle a current of at least $\pm 5 \mathrm{~mA}$ (single ended) before the gain is compressed by 1 dB . At 60 MHz , the post layout simulation shows that, the TIA can handle up to 15 mA of current before its gain compresses by 1 dB . Input current with amplitude of 15 mA translates to an output voltage with amplitude of approximately 0.47 V , which means the system should be able to cope with output swing of such magnitude. However, the TIA was designed for a blocker level of $\pm 5 \mathrm{~mA}$ with maximum swing of $\pm 200 \mathrm{mV}$. Operating
the TIA at amplitudes higher than $\pm 5 \mathrm{~mA}$ may cause opamps to be slew-limited across process and temperature increasing the overall distortion. Finally, a summary of the performance of the proposed TIA filter in comparison to the conventional TIA filter is shown in Table 9.

Figure 56 1dB compression point

Table 9 Proposed TIA performance summary

Parameter	Units	Single-Pole TIA	Proposed TIA
Transimpedance gain	$\mathrm{dB} \Omega$	60	60
f-3dB	MHz	20	20
Z IN 2, single-ended (60MHz and beyond)	Ω	<14.74	<5.7
-1 dB compression level for single OOB tone at 60 MHz	mA	3	15
Vsupply	V	1.8	1.8
Total current consumption	mA	21	35
Maximum output voltage swing	mV	± 200	± 200
Max interferer level at 60 MHz	mA	0.63	500
Input referred integrated noise $(1 \mathrm{kHz}-20 \mathrm{MHz})$	nA	20	1.3×1.22
Area	mm	-	8

6 SUMMARY AND CONCLUSIONS

In this work, a novel TIA architecture is presented. The TIA was designed and laid out in IBM 180nm CMOS process with a power supply of 1.8 V . The topology is similar to the conventional TIA with a resistor and a capacitor in the feedback, which provides first order attenuation in the stop-band. The capacitor is replaced with higher order high-pass filter which provides more attenuation or suppression to out-of-band blockers in the stop-band. The desirable in-band performance of the conventional TIA is maintained in the proposed TIA.

The TIA was implemented with a $3^{\text {rd }}$ order inverse Chebyshev approximation. This was chosen because it provides a significant attenuation in the stop-band and offers optimum group delay variation to incoming signals in the pass-band.

The added block in the feedback has two paths from the output to the input. The first path is a cascade of a second-order voltage to voltage filter (biquad) and a V-I differentiator. The second path is a feedback capacitor which converts the output voltage directly to current at the input node. The high current conversion from a low voltage swing at the output of opamps necessitates the use large capacitor sizes for implementation of the V-I differentiator in the feedback. To alleviate the large capacitor requirement, a V-I differentiator is proposed. The details of the design and impact of the proposed V-I differentiator were presented. Also to save power, the biquad in the
feedback uses a novel single opamp architecture which requires real transmission zeros. It was shown that, by careful selection of the value of the feedback capacitor, the zeros of the transfer function for the implementation of the biquad can be made real.

Compared to the existing first order architecture, the proposed TIA achieves attenuation of more than 20 dB to large interferers at 60 MHz . The TIA handles blockers of magnitude $\pm 10 \mathrm{~mA}$ (differential) at 60 MHz and beyond with maximum voltage swing of $\pm 400 \mathrm{mV}$ (differential) at the output of the opamps. In addition to improving the attenuation to interferers, the input impedance of the TIA in the region where large interferers are anticipated is considerably improved. Reduced input impedance helps to improve the linearity of the preceding mixer.

Power consumption and noise are higher in the proposed TIA. The increased power and noise are due to the additional blocks in the feedback. Future work should be dedicated to improving the noise performance and decreasing power consumption.

REFERENCES

[1] F. Agnelli, G. Albasini, I. Bietti, A. Gnudi, A. Lacaita, D. Manstretta, R. Rovatti, E. Sacchi, P. Savazzi, F. Svelto, E. Temporiti, S. Vitali, and R. Castello, "Wireless multi-standard terminals: system analysis and design of a reconfigurable RF front-end," IEEE Circuits and Systems Magazine, vol. 6, pp. 38-59, 2006.
[2] J. Crols and M. S. J. Steyaert, "Low-IF topologies for high-performance analog front ends of fully integrated receivers," IEEE Trans. Circuits and Systems II: Analog and Digital Signal Processing, vol. 45, pp. 269-282, 1998.
[3] A. Mirzaei, H. Darabi, A. Yazdi, Z. Zhimin, E. Chang, and P. Suri, "A 65 nm CMOS Quad-Band SAW-Less Receiver SoC for GSM/GPRS/EDGE," IEEE J. SolidState Circuits, vol. 46, pp. 950-964, 2011.
[4] R. Saad, D. L. Aristizabal-Ramirez, and S. Hoyos, "Sensitivity analysis of continuous-time $\Delta \Sigma$ ADCs to out-of-band blockers in future SAW-Less multi-standard wireless receivers," IEEE Trans. Circuits and Systems I: Regular Papers, vol. PP, pp. 11, 2012.
[5] S. Spiridon, C. Dan, and M. Bodea, "Filter partitioning optimum strategy in homodyne multi-standard radio receivers," in Ph.D. Research in Microelectronics and Electronics (PRIME), 2011 7th Conference on, 2011, pp. 9-12.
[6] T. H. Lee, "The Design of CMOS Radio-Frequency Integrated Circuits," Cambridge University Press, 2nd Ed., 2004, pp. 710-713.
[7] M. Valla, G. Montagna, R. Castello, R. Tonietto, and I. Bietti, "A 72-mW CMOS 802.11a direct conversion front-end with $3.5-\mathrm{dB}$ NF and $200-\mathrm{kHz} 1 / \mathrm{f}$ noise corner," IEEE J. Solid-State Circuits, vol. 40, pp. 970-977, 2005.
[8] Z. Sining and M. C. F. Chang, "A CMOS passive mixer with low flicker noise for low-power direct-conversion receiver," IEEE J. Solid-State Circuits, vol. 40, pp. 1084-1093, 2005.
[9] B. R. Carlton, J. S. Duster, S. S. Taylor, and J. H. C. Zhan, "A 2.2dB NF, 4.96 GHz direct conversion multi-standard RF receiver front-end in 90 nm CMOS," IEEE Radio Frequency Integrated Circuits Symposium, 2008, pp. 617-620.
[10] J. H. C. Zhan, B. R. Carlton, and S. S. Taylor, "A Broadband Low-Cost DirectConversion Receiver Front-End in 90 nm CMOS," IEEE J. Solid-State Circuits, vol. 43, pp. 1132-1137, 2008.
[11] L. Li, N. Wongkomet, D. Yu, L. Chi-Hung, H. Ming, B. Nissim, S. Lyuee, P. Yu, T. Sepke, S. Shekarchian, L. Tee, P. Muller, J. Tam, and T. Cho, "A fully integrated 2×2 MIMO dual-band dual- mode direct-conversion CMOS transceiver for WiMAX/WLAN applications," IEEE Int. Solid-State Circuits Conference - Digest of Technical Papers, 2009, pp. 416-417,417a.
[12] G. Chandra, P. Tadeparthy, and P. Easwaran, "Single amplifier bi-quadratic filter topologies in transimpedance configuration," IEEE Int. Symposium Circuits and Systems, 2005 , pp. 820-823 Vol. 821.
[13] A. Pirola, A. Liscidini, and R. Castello, "Current-mode, WCDMA channel filter with in-band noise shaping," IEEE J. Solid-State Circuits, vol. 45, pp. 1770-1780, 2010.
[14] A. K. N. Leung, P. K. T. Mok, K. Wing Hung, and J. K. O. Sin, "Damping-factor-control frequency compensation technique for low-voltage large capacitive load applications," IEEE Int. Solid-State Circuits Conference, 1999. Digest of Technical Papers, 1999, pp. 158-159.
[15] Y. Fan, S. H. K. Embabi, and E. Sanchez-Sinencio, "A multistage amplifier topology with nested Gm-C compensation for low-voltage application,"IEEE Int. SolidState Circuits Conference, 1997. Digest of Technical Papers. 43rd ISSCC., 1997 1997, pp. 348-349.
[16] B. K. Thandri and J. Silva-Martinez, "A robust feedforward compensation scheme for multistage operational transconductance amplifiers with no Miller capacitors," IEEE J. Solid-State Circuits, vol. 38, pp. 237-243, 2003.
[17] B. Y. T. Kamath, R. G. Meyer, and P. R. Gray, "Relationship between frequency response and settling time of operational amplifiers," IEEE J. Solid-State Circuits, vol. 9, pp. 347-352, 1974.
[18] B. Hernes and W. Sansen, "Distortion in single-, two- and three-stage amplifiers," IEEE Trans. Circuits and Systems I: Regular Papers, vol. 52, pp. 846-856, 2005.
[19] S. Bang-Sup, C. Myung-Jun, P. Rakers, and S. Gillig, "A 1 V 6 b 50 MHz current-interpolating CMOS ADC," in VLSI Circuits, 1999. Digest of Technical Papers. 1999, pp. 79-80.

VITA

Name: Emmanuel Osei Boakye
Address: Texas A\&M University, Department of Electrical Engineering, College Station, TX 77843-3128

Email Address: oboakye22@yahoo.com
Education: B.Sc., Electrical \& Electronic Engineering, Kwame Nkrumah University of Science \& Technology, 2009
M.S, Electrical Engineering, Texas A\&M University, 2012

