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ABSTRACT 

 

SCMFS Performance Enhancement  

and Implementation on Mobile Platform. (August 2012) 

Qian Cao, B.S., Huazhong University of Science and Technology; 

M.S., Huazhong University of Science and Technology 

Chair of Advisory Committee: Dr. A.L.Narasimha Reddy 

 

 This thesis presents a method for enhancing performance of Storage Class 

Memory File System (SCMFS) and an implementation of SCMFS  on Android platform. 

It focuses on analyzing performance influencing factors of memory file systems and the 

differences in implementation of SCMFS on Android and Linux kernels.  

 SCMFS allocates memory pages as file blocks and employs virtual memory 

addresses as file block addresses. SCMFS utilizes processor’s memory management unit 

and TLB (Translation Lookaside Buffer) during file accesses. TLB is an expensive 

resource and has a limited number of entries to cache virtual to physical address 

translations. TLB miss results in expensive page walks through memory page table. 

Thus TLB misses play an important role in determining SCMFS performance. In this 

thesis, SCMFS is designed to support both 4KB and 2MB page sizes in order to reduce 

TLB misses and to avoid significant internal fragmentation. By comparing SCMFS with 

YAFFS2 and EXT4 using popular benchmarks, both advantages and disadvantages of 
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SCMFS huge-page version and small-page version are revealed. In the second part of 

this thesis, an implementation of SCMFS on Android platform is presented. At the time 

of working on this research project, Android kernel was not merged into Linux kernel 

yet. Two main changes of SCMFS kernel code: memory zoning and inode functions, are 

made to be compatible with Android kernel. AndroSH, a file system benchmark for 

SCMFS on Android, is developed based on shell script. Evaluations are made from three 

perspectives to compare SCMFS with YAFFS2 and EXT4: I/O throughput, user data 

access latency, and application execution latency. SCMFS shows a performance 

advantage because of its small instruction footprint and its pre-allocation mechanism. 

However, the singly linked list used by SCMFS to store subdirectories is less efficient 

than HTree index used by EXT4. The future work can improve lookup efficiency of 

SCMFS. 
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1. INTRODUCTION 

 

This section introduces the motivation of this research project, and also presents 

a main problem enabled in a previous research work. 

 

1.1 Motivation 

 Phase Change Memory (PCM) is a typical Storage Class Memory which is non-

volatile, byte-addressable, and bit-flippable. Its write life endurance is 3 orders of 

magnitude of NAND flash, and its read/write accesses are 2~7 times faster than NAND 

flash. Several firms are working on PCM and PCM is expected to be in wide production 

in a few years.  

 Android is one of the most popular mobile operating systems nowadays. Many 

organizations or individuals developed file systems for Android platform. However, 

there is no available Android file system designed for PCM characteristics. PCM is 

suited to mobile platforms because of its low power consumption and a suitable file 

system will enable its adoption.  

 In a previous work from our research group, a Storage Class Memory File 

System (SCMFS) [1] for PCM was developed on Linux Operating System. SCMFS was  

shown to provide higher performance in many ways than other file systems, e.g. 

___________ 

This thesis follows the style of IEEE Transactions on Computers. 
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RAMFS, TMPFS, EXT2, and EXT3. Therefore, this motivates the implementation of 

SCMFS on Android Operating System to make a high performance file system ready for 

next generation Android mobile products based on PCM.  

 

1.2 PCM vs NAND 

 PCM is very different from NAND flash although they are both non-volatile.  

PCM works by changing the state of an alloy, chalcogenide glass. To write data, heat is 

generated by the passing electrical current which switches the alloy between its 

crystalline and its amorphous state. To read data, a smaller current is applied to 

determine which state the alloy is in. The state of the alloy indicates if a bit 0 or 1 is 

stored in the cell.  

 Compared to NAND flash, PCM has several significant advantages. First of all, it 

inherently has longer write life cycle than NAND on account of its average endurance of 

100,000,000 write cycles as compared to 100,000 of NAND. PCM is much more 

efficient than NAND at accessing smaller chunks of data because it is byte-addressable 

but NAND is accessed per chunk. PCM can be switched quickly and can be in-place 

flipped, which avoids the laborious block erase-and-write cycle required by NAND [2]. 

 

1.3 Existing Android File Systems 

To use PCM as either main memory or an internal backup device, both YAFFS2 

and EXT4 can support it, but none of them considers PCM’s characteristics into design.   

http://en.wikipedia.org/wiki/Chalcogenide_glass
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YAFFS2 is a commonly used mobile file system for internal flash storage. It is 

designed specifically for NAND flash device to prolong the device life cycle and also 

enhance performance. Because NAND flash is block-erasable, and every block has 

several chunks (flash pages), rewriting a chunk causes erasing a whole block. The log-

structure of YAFFS2 keeps writes always going to sequentially higher-number chunks to 

avoid rewriting to previous chunks. This mechanism can protect chunks of NAND flash 

from being rewritten too often, but when it comes to PCM, it becomes unnecessary and 

causes overhead because PCM can be updated in place at a smaller granularity. 

To resolve the performance overhead caused by garbage collecting unused old 

chunks, a Short-Op Cache [3] can improve performance. The main purpose of the 

internal cache is to reduce NAND access for badly behaved applications which perform 

many small reads and writes. It is only involved for operations which are not chunk 

aligned. It collaborates with Linux-like kernel VFS (virtual file system) page cache. VFS 

page cache serves read operations and the Short-Op Cache addresses non-chunk aligned 

writes. YAFFS2 has to rely on a caching mechanism, but this mechanism causes 

overhead to PCM as the fact that PCM is a memory device, writing to cache and then 

writing to memory disk doubles work. 

EXT4 is considered a good replacement of YAFFS2 because of its several 

features of performance enhancement and also because it provides better multithreading 

support. 

To use PCM as a persistent storage device, one way is to create a RAMDISK 

from PCM, and then mount it with EXT4. However, storage devices are assumed by 
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EXT4 as I/O-bus attached block devices therefore EXT4 accesses the storage devices 

through generic block layer and block I/O operations are emulated. When it comes to 

PCM which is directly attached to memory bus and can be accessed through memory 

operations, generic block layer and emulation become unnecessary. In the traditional 

storage hierarchy, since hard disk access has a much higher latency than a memory 

access, the additional overhead can be ignored. On the contrary, these extra cost become 

substantially impactful when the storage device is attached directly to the memory bus 

and can be accessed at memory speed, thus they should be avoided.  

 

1.4 SCMFS 

 The idea of SCMFS came from the characteristics of PCM. Many discussions 

were made before implementation of this file system. Memory resident file systems such 

as RAMFS and TMPFS can also be used with PCM, but they don’t support persistent 

data.  

SCMFS is designed specifically for PCM characteristics. Since PCM can be 

attached directly to the memory bus, SCMFS accesses PCM through memory 

management layer instead of generic block layer [1]. As Figure 1 shows, it is built on 

virtual memory space and utilizes memory management unit (MMU) to map the file 

system addresses to physical addresses on PCM.  

 Traditional file systems, such as EXT3/EXT2, use indirect block mapping once 

file is read from or written to disk blocks, because files are on disk blocks instead of 

memory and blocks of a file are usually non-contiguous, as shown in Figure 2.  



 5 

 
Figure 1: [1] SCMFS is built upon memory management module.  

 

 

 

 

 
Figure 2: [4] Indirect mapping of blocks in EXT2/EXT3. 
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 SCMFS addresses files on physical memory and it runs on virtual address space, 

as shown in Figure 3. SCMFS allocates blocks of one file contiguous in virtual address 

space, thus the process of handling read/write requests is simplified [1]. 

 

 

 

 
Figure 3: [4] Contiguous virtual address space for a file in SCMFS.  

 

 

 

 

 During reboot, as Figure 4 shows, data on PCM can still be persistent because 

file system metadata and mapping table are stored on fixed physical addresses on PCM 

[1]. Metadata stores superblock and inode table information. Mapping table stores 

address translation from virtual address to physical address of each block.  
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Figure 4: [4] SCMFS file system layout.   

 

 

 

 

With pre-allocation mechanism, SCMFS always maintains certain number of null 

files within the file system, as shown in Figure 5 [4]. Although these null files have 

neither name nor data, they have already been allocated some physical space. When a 

new file is created, SCMFS always looks for a null file first. When a file shrinks or is 

deleted, the shrunk or deleted space is not de-allocated, instead, it is marked as a null file 

and kept for future use. Through the space pre-allocation mechanism, the number of 

allocation and de-allocation operations is reduced significantly. As a result, with 

accumulative savings from smaller instruction footprint, the file system performance is 

enhanced significantly.  
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Figure 5: [4] SCMFS pre-allocation using null files. 

 

 

 

 

To recycle the reserved but unused space pre-allocated by the above mechanism, 

garbage collection is implemented to control the waste [1].  

 The previous work modified Linux kernel 2.6.33 to add SCMFS. The 

development was done on Linux x86_64 platform. In x86_64 Linux, three memory 

zones exist in physical address space: ZONE_DMA, ZONE_DMA32, 

ZONE_NORMAL [5]. A new memory zone “ZONE_STORAGE” is added for PCM, 

which is only accessed by SCMFS. Memory allocation/deallocation functions: 

nvmalloc()/nvfree() gets/releases memory from ZONE_STORAGE. Nvmalloc() derives 

from vmalloc(), and allocates memory which is contiguous in kernel virtual memory 

space, while not necessarily contiguous in physical memory space. 

 With contiguous file virtual address space, the design of SCMFS is largely 

simplified; on the other hand, this design causes high Data TLB misses compared to 
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other file systems [1]. Results are shown in Figure 6, from an IOZONE benchmark 

experiment.  

 

 

 

 
(a) 

 
(b) 

Figure 6: [1] SCMF suffers from Data TLB misses. 
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The main reason is that SCMFS allocates space using small pages (4KB), but 

RAMDISK works within direct mapping space allocating large pages (2MB) [4].  

 Next section will discuss a method to reduce TLB misses, and will also analyze if 

SCMFS has a performance advantage against YAFFS2 and EXT4.  
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2. SCMFS PERFORMANCE ENHANCEMENT 

 

 In this section, first, huge-page allocation mechanism is explained; and then, 

analysis of further reduction of Data TLB misses is addressed. Next, SCMFS small-page 

version and huge-page version are compared with YAFFS2 and EXT4 using micro-

benchmarks and macro-benchmarks to evaluate the pros and cons of using SCMFS on a 

mobile platform. 

 

2.1 TLB and Paging in Linux 

 TLB [6] is included in x86 processors to speed up linear address translation. At 

the first time that a linear address is accessed, the corresponding physical address is 

computed through Page Tables in RAM which is a slow and expensive process. The 

physical address is then loaded and cached in a TLB entry so that further references to 

the same linear address can be quickly translated.  In a multiprocessor system, every 

processor has its own local TLB.  

 To load new page table into TLB, CR3 control register of a processor is modified 

and local TLB are automatically invalidated. 

 On x86_64 architecture with Linux kernel 2.6, three paging levels and four 

paging levels are both supported [6]. Linear address bit splitting used by x86_64 

platform divides page table address into 5 parts, shown in Figure 7: PGD (Page Global 

Directory), PUD (Page Upper Directory), PMD (Page Middle Directory), PTE (Page 

Table Entry), and OFFSET. PGD includes the addresses of several PUDs, which in turn 
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include the addresses of several PMDs, which in turn include the addresses of several 

PTEs. Each PTE points to a page frame.  

 

 

 

 
Figure 7: [6] Page table linear address bit splitting. 

 

 

 

 

 A number of macros are provided in Linux kernel for each page table level to 

break up the linear address into parts. Those macros are: a SHIFT, a SIZE and a MASK 

[5]. PAGE_SHIFT is hash defined as 12 in kernel code and it is used to calculate 

PAGE_SIZE and PAGE_MASK. PAGE_SHIFT is the length in bits of the offset part of 

the linear address space, which is 12 bits on the x86. The size of a page is calculated as 

           , which is 4KB.  

X86 CPU supports 4KB, 2MB and 1GB page sizes. To enlarge page size to 

2MB, more linear addresses are covered by one page, thus OFFSET shifts to left to 
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expand address coverage. In HugeTLB kernel code, a macro HPAGE_SHIFT is hash 

defined as PAGE_SHIFT << 9 for 2MB page size. By enabling huge-page support, 

kernel page table is changed from 4 paging levels to 3 paging levels since PTE is 

eliminated by OFFSET left shift. Vmap_pmd_range_hugepage() function is 

implemented to convert PMD to PTE and pte_mkhuge() function is called to set a page 

table entry for huge-page. 

 

2.2 Employing Huge-pages in SCMFS to Reduce TLB Misses 

 In the block allocation code of SCMFS, nvmalloc() uses buddy allocator to get 

physical memory pages as its file blocks, and sets the address of each page in kernel 

page table which is partially cached in TLB. The capacity of the address coverage of a 

2MB page TLB entry is 512 times of the capacity of 4KB page TLB entry. Therefore 

huge-page can substantially reduce TLB misses. 

By default, buddy allocator allocates pages of 4KB. HugeTLB kernel code is 

leveraged to allocate pages of 2MB for SCMFS to resolve the problem of high Data TLB 

misses. Given that only using pages of 2MB for all kinds of data may lead to inefficient 

use of blocks, since file system metadata is usually small and many text files may not 

exceed 2MB, both 4KB and 2MB page sizes are supported in SCMFS to avoid too much 

internal fragmentation.   

 PCM physical address space is divided into two contiguous parts during system 

boot: one for small-pages, another for huge-pages.  When kernel boots, huge-pages are 

reserved and put into a huge-page queue, as shown in Figure 8. The reason for reserving 
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huge-pages at the very beginning is that sufficient number of  contiguous small pages to 

form huge pages are not guaranteed after system has run for a while. When writing a 

file, the file is allocated pages of 4KB first until file size reaches a certain threshold. At 

the threshold size, one huge page is allocated to it and the file is copied from previous 

space to the new space, and then all previously allocated small pages are freed. From 

then onwards, only pages of 2MB are allocated to it.  

 

 

 

 
Figure 8: Huge-page reservation during system boot. 

 

 

 

 

As block allocation changes from allocating pages of 4KB to pages of 2MB, the 

addresses of file blocks start being pointed by huge-page TLB entries instead of small-

page TLB entries. In modern x86 processors, such as Intel Core i5, separate TLBs are 

designed for small-pages and huge-pages. Usually TLBs used by huge-pages provides 

caching capability between 1 to 2 orders of magnitude of TLBs used by small-pages. 
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2.3 Further Reducing TLB Misses 

Before migrating to a huge-page, TLB entries taken by a file will be equal to  

         

  
. This value reaches a maximum when file size grows to a threshold size, equal to  

         

  
. After migrating to huge-pages, the number of TLB entries needed by the file 

will be  
         

  
. The accumulative TLB entries are the sum of TLB entries before and 

after migrating. TLB misses are proportional to accumulative TLB entries, therefore it 

can be presented in the formula below: 

            
         

  
  
         

  
 

Intuitively, the earlier the file is migrated into huge pages the fewer the TLB 

misses. However, earlier migration into 2MB huge pages may cause excessive internal 

fragmentation.  

The function updated from previous design is scm_alloc_blocks(). In this 

function, the algorithm to determine allocating small block or huge block is described as 

below: 

1) When file size is smaller than the threshold size and there is no block allocated 

for the file, nvmalloc() is called to allocate a certain size of space with small contiguous 

blocks in it. 

2) If the file size is still smaller than the threshold size and the file already has 

blocks, nvmalloc_extend() is called to allocate more small blocks. 
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3) If the file size is bigger than the threshold size and there is no block allocated 

for it, nvmalloc_huge-page() is called to allocate a certain range of space with huge 

contiguous blocks in it.  

4) If the file size is bigger than the threshold size and there are already blocks 

allocated for it, and if the previous blocks are small blocks, scm_migrate_hugepage() is 

called to allocate a huge block and migrate file onto it, and then free previously allocated 

space with small-pages; if the previous blocks are already huge blocks, 

scm_alloc_blocks_hugepage() is called to expand the space by allocating a larger space 

with more huge blocks and migrating the file to the new space.  

 Allocating a huge page and then migrating file from small-page space to huge-

page space involves memory copy and memory release which unavoidably increases 

latency to the file system. If pre-allocating a large space for the file, then the number of 

migrations can be reduced to improve performance. 

The extra mapped space by pre-allocation is not a concern. Given that SCMFS 

has a garbage collection mechanism which runs a thread in the background to handle 

mapped but unused spaces [1], when the unmapped space on the PCM is lower than a 

threshold, this background thread will try to free the extra space which is mapped but not 

used. The extra space generated by pre-allocation can be recycled instead of being 

wasted. To be more specific about how it works: during garbage collecting, number of 

null files is checked first; if the number exceeds a predefined threshold, extra null files 

are freed. The garbage collection thread considers cold files based on least recently used 

records. The cold/hot files can be easily classified through the last modified time [1]. 
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2.4 TLB Miss Evaluation 

In this test, Data TLB misses of four huge page mechanisms are measured: 1) no 

huge-pages, 2) migration to huge-pages at 128KB threshold, 3) migration at 512KB and 

4) migration at 2MB. Instruction TLB misses account for very little performance loss 

because SCMFS has a small instruction footprint thus it has low instruction TLB misses 

discussed in previous research work [1], so this issue is not considered here [7].  

Test machine uses Intel Core i5 processor which has separate TLBs: L1 Data 

TLB0 for small-pages has 64 entries, L1 Data TLB1 for huge-pages has 32 entries; 

separate L1 Instruction TLB0 and 1 are also present; L2 TLB is shared by data and 

instructions, and all the TLBs have 64bytes prefetching ability. 

The purpose of this test is to verify if huge-page mechanism can reduce Data 

TLB misses and earlier migration to huge pages can further reduce TLB misses. With 

IOZONE benchmark, 100MB is chosen as the test file size. IOZONE generates 

sequential write/read and random write/read workloads. All the operations are normal 

I/O. To eliminate the randomness of exceptions, data in results are average of 3 runs. 

 

2.4.1 Sequential Write/Read 

In sequential write/read tests, the records will be written to a new file and read 

from it, through sequentially increasing offsets. Each test runs with one record length, 

varied from 4KB~1MB. Record length means the size of the I/O request. Given a test 

file of 100MB, 1MB record length means writing to the file 100 times or reading from it 

100 times.  
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Figure 9: IOZONE sequential write Data TLB misses. 

 

 

 

 

Figure 9 shows the Data TLB misses of sequential write test. At 1MB record 

length, all huge-page versions have far fewer Data TLB misses than the small-page 

version. The reason can be explained by showing TLB missing and loading steps:  

To begin with, L1 Data TLB0 for small-page has 64 entries, but with small 

pages, 1MB I/O needs 256 entries, so the I/O size certainly exceeds the capacity of L1 

Data TLB0. For each miss, the missing address is loaded from memory to TLB. TLB 

prefetching mechanism loads more sequentially larger addresses into TLB entries for 

further TLB access use. When there is enough room in TLB, missing a few entries 

results in loading more addresses, thus next several accesses can have TLB hits. When 

there is not enough room in TLB, or when TLB prefetching is not fast enough to fulfill 

the needs, TLB misses are caused. If this happens in L1 Data TLB, then processor goes 

to L2 shared TLB to query cached addresses. However data and instructions compete 
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using L2 shared TLB, so it is possible that not enough TLB entries are guaranteed for 

data addresses.  

On the other hand, after huge-page SCMFS starts migrating to huge-pages, 1MB 

I/O only needs 1 entry in L1 Data TLB1 used by huge-pages. With prefetching, after 

loading a new huge-page address into TLB, some more addresses are also loaded, and 

several next accesses will have TLB hits, so huge-page versions have fewer TLB misses 

at 1MB record length.  

Because of above reason, SCMFS small-page version suffers significant Data 

TLB misses at 1MB record length, but three huge-page versions maintain fairly lower 

level Data TLB misses. 

In Figure 9, Data TLB misses of all versions are low at small record lengths 

because L1 Data TLB still has room, and TLB prefetching can fulfill the requests after 

smaller number of misses.  

Figure 10 indicates that all huge-page versions benefit from huge-page 

mechanism thus their Data TLB misses at 1MB record length are obviously fewer than 

small-page version. 
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Figure 10: IOZONE sequential read Data TLB misses. 
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2.4.2 Random Write/Read 

In random tests of IOZONE, records will be written and read at random offsets in 

a file of size 100MB. All operations are normal I/O. Results are shown in Figure 11 and 

12. 

As Figure 11 and 12 show, in random write and read tests, SCMFS-128k and 

SCMFS-512k have more reductions of Data TLB misses than small-page version at all 

record lengths, and SCMFS-128k has the least number of TLB misses among all the 

huge-page versions which is consistent with our analysis in 2.3 that early migration to 

huge-page can further reduce TLB misses.  

However, migration too early may cause significant internal fragmentation. 

128KB is a reasonable threshold which can avoid wasting space. Our experiments here, 

however, were not constrained by available space and hence fragmentation did not turn 

out to be an issue.  
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Figure 11: IOZONE random write Data TLB misses. 

 

 

 

 

 
Figure 12: IOZONE random read Data TLB misses. 
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2.4.3 Enhancement of Throughput 

As SCMFS is memory resident file system and PCM is fast enough, TLB misses 

can become a significant influencing factor in its performance. Next, IOZONE micro-

benchmark is still used to measure the throughput of SCMFS small-page version and 

three huge-page versions, to evaluate the impact of TLB misses on the file system 

performance. Test configuration is the same as the previous one. Test file is 100MB in 

size, and sequential and random write/read workloads are executed.  

Sequential write is a test to measure the performance of writing a new file. Not 

only does the data need to be stored but also the metadata information for keeping track 

of where the data is located on the storage media while writing to the new file. Metadata 

consists of the directory information, the space allocation and any other data associated 

with a file that is not part of the data contained in the file [8].  

Figure 13 is the result of sequential write throughput test. All huge-page versions 

have much higher throughput than small-page version because of two main reasons: 1) 

huge-page versions have less Data TLB misses in this test, 2) allocating a huge-page has 

an effect of pre-allocating a larger space thus number of space allocation operations of 

huge-page versions are less than the small-page version, so the total latency of every 

huge-page version goes down from this point of view. SCMFS-128k benefits from 

earlier migration to huge-page size, thus it has the best throughput performance 

compared to all the other versions.  
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Figure 13: IOZONE sequential write throughput.  

 

 

 

 

 
Figure 14: IOZONE sequential read throughput. 
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Sequential read test measures the performance of reading an existing file. Figure 

14 shows the results. SCMFS-128k outperforms other versions at all record lengths. 

In single large file tests, sequential write/read throughput results are consistent to 

TLB miss results. When TLB misses are low, throughput is high; otherwise, throughput 

decreases. One simple explanation is low latency from low TLB misses. In most cases, 

SCMFS-128k is better than the other three versions until record length above 2MB. 

Figure 14 shows that SCMF-small has similar throughput value to SCMFS-512k and 

SCMFS-2M in sequential read. It appears that TLB misses are not significant enough to 

affect throughput performance since it is only one of many factors affecting file system 

performance.  

 

 

 

 
Figure 15: IOZONE random write throughput. 
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Random write test measures the performance of writing a file with accesses 

being made to random locations within the file.  

Comparing Figure 15 with Figure 13, at all record lengths, random write is better 

than sequential write in throughput. Since all four versions of SCMFS have fairly low 

Data TLB misses in random write shown in Figure 11, it is reasonable that Data TLB 

miss is not a barrier to their performance. Thus four versions of SCMFS reach high 

throughput. 

Random read test measures the performance of reading a file with accesses being 

made to random locations within the file. Figure 16 shows that SCMFS-128k keeps its 

outstanding performance at most record lengths. 

 

 

 

 
Figure 16: IOZONE random read throughput. 
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As a conclusion, employing huge-page sizes can significantly increase 

throughput performance in sequential write operations. Early migration to huge-page can 

further increase throughput, but the choice of threshold determines the improvement. All 

the performance results show the advantage of migrating to huge-page at 128KB. 

Although SCMFS-128k performs the best in most cases in the experiments, this does not 

mean adopting huge-page at a very early stage of a growing file is better because internal 

fragmentation can be significant if allocating huge-page when file is small and stays 

small. Processor TLB capacity plays an important role in determining SCMFS’ 

performance. When a server processor has sufficient TLB entries, the gap between 

small-page version and huge-page version will be largely reduced.  

 

2.5 Performance Comparison and Analysis 

Many vendors in mobile industry are showing interest in SCMFS, therefore 

implementing SCMFS to Android can make it ready for next generation mobile products 

using PCM. Section 3 will discuss the methodology of implementing SCMFS to Android. 

Before that, comparing performance of SCMFS with a widely used Android file system 

YAFFS2, and its replacement EXT4 can help to evaluate if SCMFS has a performance 

advantage.  

SCMFS small-page version and huge-page version are evaluated and compared 

with YAFFS2 and EXT4 using widely used file system micro-benchmarks and macro-

benchmarks. Micro-benchmark is to isolate specific overheads of a few operations 

within the system. Macro-benchmark is to run a particular workload that is meant to 
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represent some real-world workload [9]. Using both types of benchmarks can 

sufficiently measure I/O level and application level capacities of a file system. 

First of all, the features of YAFFS2 and EXT4 are introduced here.  

 

2.5.1 Features of YAFFS2 and EXT4 

2.5.1.1 YAFFS2 

YAFFS has been designed specifically for NAND flash according to the features 

of this particular device to maximize its performance. To enhance robustness of NAND 

flash, YAFFS uses journaling, error correction and verification techniques based on  

typical NAND failure modes [10].  

YAFFS now is in generation 2 to support newer NAND flash chips which have 

larger pages, 2048 bytes. Each page within an erase block must be written to in 

sequential order, and each page must be written only once before it is erased again [11]. 

Log-structure is used to track mapping between logical chunk IDs of a file during 

operations and real physical chunks (flash page) and blocks. Write request will do 

operation to a new physical chunk sequentially following the previous chunk, but 

logically this operation still goes to a reused chunk ID [12]. Because of this feature, 

YAFFS2 always writes to a new chunk thus it always does sequential writes. 

As discussed in Section 1, YAFFS2 has an internal Short-Op Cache to align 

small writes to chunk in order to keep number of writes low and prolong the life cycle of 

a flash device; it also collaborates with VFS page cache to cache the path of data to serve 

small reads [3]. Therefore, it does not support direct I/O. Page cache can enhance 
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read/write performance of YAFFS2, but when using memory to simulate NAND flash, 

page cache may cause overhead as explained in Section 1.  

 

2.5.1.2 EXT4 

One important performance enhancement feature of EXT4 is “extents” [13]. The 

traditional Unix-derived file systems such as EXT3 and EXT2 use an indirect block 

mapping scheme to keep track of each block used for the blocks corresponding to the 

data of a file. The mapping keeps an entry for every single block. When it comes to a big 

file, many blocks are mapped. It is inefficient, especially on large file delete and truncate 

operations, because large latency is caused. With “extents” in EXT4, an extent is 

basically a bunch of contiguous physical blocks, so indirect mapping maps several 

blocks to one entry. Since an extent encourages continuous layouts on the disk, this 

mechanism improves the performance and also helps to reduce the fragmentation. 

“Multi-block Allocation” [13] also enhances performance by allocating many 

blocks in a single call instead of a single block per call in EXT4. SCMFS also allocates 

multiple blocks per each allocation operation.   

“Persistent Pre-allocation” is a feature which allows applications to pre-allocate 

disk space, but there is no data on it until the application really needs to write the data in 

the future [13]. This feature also improves fragmentation since the blocks will be 

allocated at one time as contiguously as possible. This pre-allocation is similar to the 

corresponding feature of SCMFS. System call of pre-allocation in EXT4 differentiates it 

from SCMFS. 
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HTree data structure is used by EXT4 to index all the flat subdirectories. HTree 

is similar to BTree and has constant depth and large fanout. The superior features of 

HTree highly enhance the lookup efficiency of the file system [14].   

EXT4 enables “Barriers” by default to improve the integrity of the file system at 

the cost of longer latency. The file system must explicitly instruct the disk to get all of 

the journal data onto the media before writing the commit record; if the commit record 

gets written first, the journal may be corrupted. A barrier forbids the writing of any 

blocks after the barrier until all blocks written before the barrier are committed to the 

media. By using barriers, the file system can make sure that their on-disk structures 

remain consistent at all times [15].  

From the results of performance enhancement section, SCMFS-128k is 

concluded as the best huge-page migration mechanism in our test environment, so it 

represents SCMFS with huge-page ability to compare with SCMFS-small, YAFFS2 and 

EXT4 in the following tests. 

 

2.5.2 NAND Flash Simulator and RAMDISK Configuration 

Section 1 discussed when storage device is a memory device, Data TLB misses 

can become a significant influencing factor in its performance. In the past, it was not an 

issue because hard disk is much slower compared to the TLB. In our tests, all storage 

devices are simulated from DRAM, as YAFFS2 uses NAND flash simulator [16] and 

EXT4 uses RAMDISK as well as SCMFS uses simulated PCM, thus TLB miss will 

significantly affect performance results. Since TLB miss is determined by page size, to 
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make a fair comparison, it is very important to make sure the page sizes of these devices 

do not vary too much, and all features which cause extra cost of file systems should be 

disabled.  

YAFFS2 is not one of Linux default file systems. It must be ported [17] to Linux 

before implementing performance comparison. To simulate NAND flash device, MTD 

(Memory Technology Device) and NAND simulator driver are enabled in kernel 

configuration. The default NAND simulator is 128M with 512 bytes page size. To 

enlarge NAND simulator capacity, dummy NAND device can be created by modifying 

nand_ids table in nand_ids.c.  

Both NAND simulator and RAMDISK allocate pages from LOWMEM. As 

YAFFS kernel code defines, when NAND simulator uses page size of 512 bytes, 

YAFFS1 is automatically selected; if page size is 2048 bytes, YAFFS2 is loaded. A 

dummy NAND flash device which has page size 2048 bytes, chip size 16KB, device size 

1GB, is created in the following tests. According to Android default configuration, 

directly mapped LOWMEM space has PSE (Page Size Extension) disabled, so 

RAMDISK page size is 4KB. Before implementing SCMFS on Android, comparing 

SCMFS with EXT4 with Android setting on Linux can help to predict if SCMFS has an 

advantage over EXT4 on Android. Therefore, PSE is also disabled on Linux before 

running benchmarks.  

Throughout all tests on Linux, direct I/O of EXT4 is enabled because SCMFS 

only supports direct I/O, and barrier of EXT4 is disabled to avoid overhead caused by 
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synchronous writing. Direct I/O cannot be enabled on YAFFS2, because it only supports 

page cache.  

 

2.5.3 Micro-benchmark Evaluation 

POSTMARK is a file system micro-benchmark, which creates a large pool of 

continually changing files and measures the transaction rates for a workload 

approximating a large Internet electronic mail server [18]. An initial bunch of random 

text files ranging in sizes from configurable minimum size to maximum size are 

generated. A specified number of transactions occur; once the pool has been created. 

Each transaction consists of a pair of smaller transactions: Create file or Delete file, 

Read file or Append file. To minimize caching effect, the incidence of each transaction 

type and its affected files are chosen randomly [18], thus file operations tend to go 

through target storage device instead of only accessing cache or buffer. 

In the next test, to emulate real world random workloads on mobile platform, 200 

files ranging from 4KB to 2MB are generated and processed by 4000 transactions to 

simulate processing files on a mobile platform. In the rest of the performance tests in this 

section, SCMFS-128k is used to represent huge-page versions because it outperforms 

other huge-page versions in the previous tests.  
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Figure 17: POSTMARK random workloads Data TLB misses. 
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the extra huge-pages cause extra TLB misses. When doing migration to huge-page in 

SCMFS-128k, the migration operation also causes TLB misses. Therefore, the total TLB 

misses of huge-page version exceed the total TLB misses of small-page version. It 

shows that huge-page mechanism does not bring benefit to SCMFS when small files 
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Figure 18: POSTMARK random workloads transaction latency. 
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Figure 19: POSTMARK random workloads write throughput. 

 

 

 

 

 
Figure 20: POSTMARK random workloads read throughput. 
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In throughput results in Figure 19 and 20, SCMFS-small is the fastest in all the 

cases. This result verifies that huge-page cannot help to improve performance when 

there is large amount of small random data.  

Figure 17, 18, 19 and 20 show that YAFFS2 has the highest number of TLB 

misses, longest latency and lowest throughput. It is because of two main reasons: 1) 

YAFFS2’s page size is 2KB which is half of other file systems’ size, thus its TLB misses 

are higher, 2) it tends to buffer read/write operations until they are chunk aligned thus 

the latency is much higher than other file systems. 

 

2.5.4 Macro-benchmark Evaluation 

To evaluate and compare these four file systems in a real-world environment, 

FILEBENCH macro-benchmarks are used. FILEBENCH provides some configurations 

to simulate real-world data workload, e.g. mail server, file server, web server. In all three 

test cases, 1000 random files are generated with a mean file size of 16KB, and the 

maximum file size is 1MB.  

Varmail is a multi-threaded mail server workload [19]. FILEBENCH performs a 

sequence of operations to imitate reading mails, composing and deleting mails. Unlike 

the file server and web proxy workloads introduced later, the mail server workload puts 

all the files in one directory. It exercises large directory support and fast lookups. 
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(a)                                                                                  (b) 

Figure 21: Mail server simulation. (a) operations per second, (b) throughout. 

 

 

 

 

Figure 21 provides performance results of operations per second and throughput 

of mail server simulation test. Operations per second is an indicator of I/O efficiency of 

the file system. It is proportional to throughput. The results show that SCMFS-small is 

the fastest file system compared to the other three. SCMFS-128k is not as good as 

SCMFS-small because huge-page mechanism has no advantage in the case of large 

number of random small files.  
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(a)                                                                               (b) 

Figure 22: File server simulation. (a) operations per second, (b) throughput. 
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files constantly. Each thread performs delete, create, append, close, and repeating open, 

read and close.  

 

 

 

 
(a)                                                                                     (b)  

Figure 23: Web proxy simulation. (a) operations per second, (b) throughput. 
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in real-world situations, because of large number of small files, the advantage of huge-

page mechanism can be canceled out. In the mail server test, EXT4 is not as good as 

SCMFS, but better than SCMFS in the other two test cases, because file server and web 

proxy have multiple subdirectories and EXT4 uses more efficient data structure HTree to 

index all the subdirectories, thus the lookup efficiency is high. SCMFS’ simple linked-

list design is not as good as HTree when handling large number of subdirectories in 

above two test scenarios. YAFFS2 is better than SCMFS-128k in all the three test cases.  

Since all the three cases have a lot of random read operations, it is likely the case that 

page cache enhances read efficiency of YAFFS2. However page cache is not supported 

by SCMFS. In addition, SCMFS-128k has overhead caused by huge-page allocation and 

migration, so its overall performance is worse than YAFFS2 in these three test cases 

with the particular test dataset. 

 

2.6 Conclusion 

 Based on the performance analysis in this section, employing huge-page to 

SCMFS helps to reduce Data TLB misses when handling large files. Huge-page version 

has higher throughput than small-page version especially in sequential write workloads 

because of fewer Data TLB misses and larger pre-allocation. Earlier migration to huge-

page can further reduce Data TLB misses and improve throughput in large file case. 

However in the case of large number of random files including small and medium files, 

SCMFS huge-page version has extra cost because of huge-page allocation and migration. 
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SCMFS small-page version is better for Android because random small files are usually 

the case on mobile platforms.  
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3. IMPLEMENTATION OF SCMFS ON ANDROID 

 

 In this section, an overview of the Android platform is provided, followed by a 

description of the implementation of SCMFS in the Android kernel. The two main 

differences of this implementation from the previous one in Linux kernel are the  

reservation of a memory zone for PCM and the concurrency control of inode operations.  

 

3.1 Android Architecture 

3.1.1 Android Kernel Differences to Linux Kernel  

 Compared to the broad coverage of target architectures by Linux kernel, Android 

only fully supports two at this time: x86 and ARM. Their instruction design philosophy 

is fundamentally different. The x86 family is primarily a CISC (Complicated Instruction 

Set Computer) design whereas ARM is a RISC (Reduced Instruction Set Computer) 

architecture. Therefore simpler instructions are used by ARM processors when 

compared to an equivalent set of x86 operations. [20]. 

Android operating system is developed by Google based on the Linux kernel 2.6, 

but does not use a standard Linux kernel. The kernel enhancements of Android as shown 

in Figure 24 include alarm driver, ashmem (Android shared memory driver), binder 

driver (Inter-Process Communication Interface), power management, low memory killer, 

kernel debugger and logger [20]. 
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Figure 24: [20] Android architecture. 

 

 

 

 

 Compared to Linux kernel, Android kernel is smaller, more preemptive, and 

more able to support enhanced drivers of mobile devices. For instance, its power 

management module manages power and saves power more aggressively; its low 

memory killer driver works for memory constrained mobile devices which set thresholds 

in user space and kills processes that exceed thresholds. 

 

3.1.2 Android Storage System   

Typical Android mobile device has three level storage hierarchies: RAM, internal 

NAND flash, and external SD card, from the fastest to the slowest. The internal flash 

storage contains all the important system partitions due to its faster access than external 
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SD card and bigger capacity than main memory. The external storage is primarily used 

for storing user content such as media files such as songs, movies, and photographs, 

documents, and backup images [21]. 

 

 

 

 
Figure 25:  [21] Android storage system. 

 

 

 

 

As Figure 25 shows, the most important default partitions include [21]: 1) 

/system: contains the entire operating system, except the kernel and the RAMDISK. 

Android user interfaces and pre-installed system applications are located in this partition. 

2) /data: stores user data and installed applications. 3) /cache: Android stores frequently 

accessed data and application components in this partition. 4) /sdcard: external SD card 

partition to store media, documents, backup files, etc. 

  In this research work, /system and /data partitions must be granted full access 

permission in order to manipulate system commands, mount target file systems, and 

change cache of applications. Since Android does not support multiple users login and 

the default user is not root, user cannot manipulate directories and files in root partition, 

and also /system and /data partitions. The most popular approach to grant user superior 

permission is to root Android [22]. However since Android x86 full source code is 

available, the approach we used is to change access mode of some important directories 
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in init.rc, such as /data/data which contains profile, cache, and database of all 

applications, /system/xbin and /system/bin which contain all root commands and user 

commands respectively, then those directories are automatically configured as fully 

accessible during boot.   

 

3.1.3 Other Uniqueness of Android  

Android developers viewed the GNU C library as being too resource-consuming 

for memory constrained embedded system. Moreover, GNU C library is licensed under 

the GNU Lesser Public License (LGPL) and restricts licensing of derivative works. Due 

to these concerns, Android developers create their own C library: “Bionic” [20].  

In contrast to J2ME (Java 2 Micro Edition) built by some top cell phone 

manufactures to optimize Java virtual machine, Android has its own Dalvik Virtual 

Machine [20]. The Dalvik VM is a fast register-based VM providing a small memory 

footprint.  Every application has its own instance of the Dalvik VM [21].  

SQLite [21] is the primary means used by Android to store structured data. It is a 

lightweight  transactional database engine which has small memory and disk footprint. 

Every application has its own SQLite database to store data.  

 

3.2 Implement SCMFS on Android 

3.2.1 Choice of Target U-ARCH 

Android x86 platform is chosen for reasons stated below:  
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1) Android x86 [23] is an open source project which ported Android to 32bit x86, 

so the entire source tree is fully accessible.  

2) SCMFS is designed for x86 and it needs to modify x86 memory detection 

code to reserve memory zone for PCM. ARM does not have memory detection 

mechanism as much as x86 has, because ARM cores are used in embedded systems thus 

it is unnecessary for it to be compatible to broad architectures [24]. 

3) ARM mobile phone has limited DRAM which is not enough to simulate PCM. 

Android x86 can run in a virtual machine on PC, so PC hardware resources can be 

available in Android testing, thus ensuring enough memory resources. 

 

3.2.2 Kernel Modification 

The main difference between SCMFS on Android x86 and Linux x86_64 is the 

kernel virtual address space that SCMFS can use. In the following sections, the virtual 

address space that SCMFS uses on i386 platform and the capacity that SCMFS can reach 

will be discussed. Android kernel also provides VFS inode APIs which have better 

concurrency control for inode operations, so changes of inode functions will also be 

discussed in this section.   

 

3.2.2.1 Memory Zone Modification 

On a 32bit architecture, Linux kernel can directly address the first 1GB of 

physical memory (896MB when considering the reserved range) [25]. Within this 1GB, 

ZONE_NORMAL is a directly mapped zone that kernel can directly access physical 



 47 

addresses.  In virtual address space, this part is usually called LOWMEM. Above 

ZONE_NORMAL is ZONE_HIGHMEM. When physical memory is larger than 1GB, 

HIGHMEM should be enabled in kernel configuration to make the physical memory 

above 1GB accessible by kernel. ZONE_HIGHMEM is not directly mapped, but 

mapped into LOWMEM per page when there is an access. On the other hand, in the 

64bit architecture, ZONE_NORMAL extends all the way to 64GB or even larger. There 

is no ZONE_HIGHMEM anymore.  

As some papers argue, PCM still cannot replace DRAM to be main memory on 

account of its smaller write life cycle and lower performance than DRAM. In real usage 

model, PCM can play the role of a fast secondary storage in mobile devices to store the 

most frequently accessed data or OS image for fast boot purposes. It is highly likely that 

PCM will stay in the physical address space above 1GB. Therefore, in the 

implementation of SCMFS on Android, ZONE_STORAGE for PCM is reserved by 

shrinking ZONE_HIGHMEM during system boots.  

To simulate PCM, as Figure 26 shows, ZONE_STORAGE is reserved between 

the end of ZONE_HIGHMEM and max_pfn -- the maximum page frame number 

detected by e820 code. The default end of highmem is max_pfn if HIGHMEM is 

enabled in the kernel configuration. To reserve a zone, highmem_end is shrunk to a 

certain extent based on the needs.  

 

 

 



 48 

 
Figure 26: Android x86 memory zones layout. 

 

 

 

 

To allocate/de-allocate blocks from ZONE_STORAGE, nvmalloc()/nvfree() 

functions which derive from vmalloc()/vfree() are used. There are three built-in memory 

allocators in kernel: vmalloc(), kmalloc() and _get_free_pages(). Vmalloc() allocates 

from ZONE_HIGHMEM by default and falls back to ZONE_NORMAL if there is no 

HIGHMEM available. It gets non-contiguous physical pages using buddy allocator and 

stores all allocated pages into a page array, then sets up page mapping in the kernel page 

table, thus it forms a larger contiguous virtual space from many non-contiguous physical 

pages. The space it provides is not directly mapped. Vmalloc() uses flags 
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GFP_HIGHMEM|GFP_KERNEL to allocate from HIGHMEM or LOWMEM. As a 

derivation of vmalloc(), nvmalloc() takes the same approach to form contiguous large 

virtual space and uses GFP_NV flag to ensure accessing ZONE_STORAGE. Kmalloc() 

and _get_free_pages() allocate from directly mapped address space, but they can only 

return contiguous physical pages, thus they cannot provide large space needed by 

SCMFS. They both use flag GFP_KERNEL to allocate from LOWMEM. Vmalloc(), 

kmalloc() and _get_free_pages() cannot access ZONE_STORAGE with their own flags.  

 

3.2.2.2 SCMFS Capacity 

 

 

 
Table 1: X86_64 virtual address space layout. 

0000000000000000 - 00007fffffffffff (=47 bits) user space 

ffff800000000000 - ffff80ffffffffff (=40 bits) guard hole 

ffff880000000000 - ffffc7ffffffffff (=64 TB) direct mapping of all physical memory 

ffffc80000000000 - ffffc8ffffffffff (=40 bits) hole 

ffffc90000000000 - ffffe8ffffffffff (=45 bits) vmalloc/ioremap space 

ffffe90000000000 - ffffe9ffffffffff (=40 bits) hole 

ffffea0000000000 - ffffeaffffffffff (=40 bits) virtual memory map (1TB) 

ffffffff80000000 - ffffffffa0000000 (=512 MB)  kernel text mapping 

ffffffffa0000000 - fffffffffff00000 (=1536 MB) module mapping space 
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SCMFS uses nvmalloc() to allocate blocks. The size of the address space 

accessible by nvmalloc() determines the capacity of SCMFS.  

In a 64bit system memory map [26], there are address “holes” in between some 

contiguous memory mapped spaces, and the holes are large. In the original design on 

Linux, nvmalloc() uses addresses within an unused hole highlighted in Table 1. This 

space is up to     bytes, so the space accessible by this allocator is large enough. 

However, in 32bit system memory map, address resources are much more constrained. 

There are no address “holes” that SCMFS can use, so nvmalloc() reuses vmalloc() space. 

 

 

 
Table 2: Android x86 virtual address space layout. 

fixmap 0xfff16000 - 0xfffff000    (932 KB) 

pkmap 0xff800000 - 0xffc00000 (4096 KB) 

vmalloc 0xf7ffe000 - 0xff7fe000 (120 MB) 

lowmem 0xc0000000 - 0xf77fe000 (887 MB) 

.init 0xc14a2000 - 0xc1503000 (388 kB) 

.data 0xc1328bb2 - 0xc14a1140    (1505 kB) 

.text 0xc1000000 - 0xc1328bb2    (3234 kB) 

 

 

 

 

On a 64bit machine, VMALLOC_START and VMALLOC_END are both 

defined as fixed addresses according to the memory map. On a 32bit machine, as Table 2 

shows, the memory space is more constrained. The space between VMALLOC_START 

and VMALLOC_END is determined by VMALLOC_RESERVED, which has a default 
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value 128MB. Except for an 8MB offset, vmalloc range is 120MB by default, which is 

not big enough for SCMFS.  

Expanding VMALLOC_RESERVED is one way to enlarge SCMFS, but only to 

a limited extent. For example, if kernel space is 1GB, VMALLOC_RESERVED is 

800MB which can be used for SCMFS. This size is still valid as the capacity of a fast 

secondary storage which stores only the most frequently used data or the Android OS 

image.  

 

 

 
Table 3: SCMFS capacity. 

VMsplit SCMFS Capacity Max File Size Number of Files 

3G/1G 800M 600M+ 

2M: 300+ 

6M: 100+ 

25M: 20+ 

100M: 7 

2G/2G 1.8G 1G+ 

2M: 500+ 

6M: 180+ 

25M: 50+ 

100M: 10+ 

1G/3G 2.8G 2G+ 

2M: 1000+ 

6M: 400+ 

25M: 100+ 

100M: 20+ 
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On another side, since vmalloc space is constrained by kernel space, enlarging 

the whole kernel space can fundamentally resolve the problem of capacity limitation. 

Android kernel supports 3 types of user/kernel VMsplit (virtual memory split): 3G/1G, 

2G/2G and 1G/3G. The default one is 3G/1G. To make 2G/2G VMsplit workable, kernel 

starting address must be changed from 0xC0000000 to 0x80000000, and then PRELINK 

must be enabled in all default system libraries and application libraries in Android build 

source code. 

 Table 3 shows the guaranteed number of files that SCMFS can support under 

different ways of VMsplit. 

 

3.2.2.3 Better Concurrency Control in Inode Functions 

Embedded devices require preemptive kernel since real-time and responsiveness 

are important characteristics of such devices. To ensure file system data consistency, 

better concurrency control should be added to protect critical sections.  

Android supports multi-tasking [21]. The kernel uses a fine-grained locking 

mechanism to protect individual data structures. Various locking options are provided 

and each is optimized for different kernel data usage patterns.  

Spinlocks [27] are designed for the shot-term protection of critical sections from 

being accessed by other processors. Processor repeatedly checks whether it can acquire 

the lock without going to sleep while kernel is waiting for a spinlock to be released. 

Spin_lock_irqsave [27] not only acquires the spinlock but also disables the interrupts on 

the local CPU.  
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Read/write locks [27] have two types of access to data structures. Concurrent 

read can be performed by any number of processors to read from a data structure, but 

write access is restricted to a single processor. Thus read lock is shared lock but write 

lock is exclusive lock. 

Android 2.2 kernel implements a set of inode operation functions with 

concurrency control by using read/write lock and spinlock. Existing functions in the 

original design of SCMFS are replaced with these new functions and affected kernel 

code sections are updated accordingly.  

 

 

 
Table 4: Inode function changes. 

Functionality Linux 2.6.33 Android 2.2 

Allocate inode vfs_dq_alloc_inode() dquot_alloc_inode() 

Free inode vfs_dq_free_inode() dquot_free_inode() 

Drop inode vfs_dq_drop() dquot_drop() 

Clear inode clear_inode() end_writeback() 

Delete inode delete_inode() evict_inode() 

 

 

 

 

In Table 4, in the first three functionalities, read/write lock is used to protect 

allocating an inode, freeing an inode or droping an inode. Spinklock is used to protect an 

inode status change.  
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In Linux 2.6.33 kernel, clear_inode() checks some flags of inode, after checking 

and making sure the inode can be cleared, it sets I_CLEAR flag to inode state. In 

Android 2.2 kernel, end_writeback() checks the same flags of inode with spin_lock_irq 

which is to disable interrupt while checking, and after checking and making sure the 

inode can be cleared, it writes I_CLEAR flag in a synchronous way to guarantee the flag 

is set correctly. Thus end_writeback() also provides better multithreading capability to 

SCMFS.  

Delete_inode() in Linux kernel 2.6.33 truncates inode pages first and then clears 

inode. Evict_inode() in Android 2.2 kernel uses spinlocks to protect inode state checking, 

and deleting  and  freeing inode from the inode LRU list.   

 

3.3 Summary 

Change of memory zoning and enhancement of concurrency control of inode 

functions are two major changes of SCMFS on Android. The next section will address 

performance evaluation on Android to compare SCMFS with YAFFS2 and EXT4. 
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4. FILE SYSTEM PERFORMANCE EVALUATION 

ON ANDROID 

 

 This chapter addresses the performance evaluation on Android to compare 

SCMFS with YAFFS2 and EXT4. The benchmarks used for performance evaluation are 

introduced in the first section, followed by micro-benchmark tests, user data workload 

simulation tests and finally application performance evaluation. 

 

4.1 AndroSH 

Existing file system benchmarks such as IOZONE and POSTMARK are not 

available on Android x86. Instead of porting existing benchmarks to Android x86, 

AndroSH benchmark is developed in this project to evaluate I/O level and application 

level performance on Android.  AndroSH is a script based benchmark which makes use 

of Android BusyBox command line utilities such as dd, cp, mkdir, rm, tar, scp to create 

several test cases to exercise file system from many angles.  In all the tests, a NAND 

flash with 2KB page size for YAFFS2 and a RAMDISK with 4KB page size for EXT4 

are simulated. PSE is disabled by default in Android. 

 

4.2 Micro-benchmark Tests 

In sequential write/read tests, AndroSH exercises target file systems by writing to 

and reading from a test file with sequentially increasing offsets. As usual, the test file is 
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100MB large. Due to the limitation of shell script, direct I/O of EXT4 is not enabled, so 

page cache effect should be taken into account.  

 Figure 27 shows the sequential write throughput results. SCMFS has higher 

throughput than YAFFS2 and EXT4 in sequential write tests because of three main 

reasons: 1) SCMFS is smaller and faster than the other two file systems; 2) SCMFS’s 

pre-allocation reduces number of physical space allocation operations; 3) page cache 

causes overhead to YAFFS2 and EXT4. 

 The result of sequential read in Figure 28 shows that SCMFS has higher or equal 

throughput to the other two file systems across all record lengths. There is no obvious 

difference of throughput at some record lengths because all three file systems are using 

memory devices in the test. Three file systems don’t have as much gap as the gap in 

sequential write as the fact that page cache brings benefit to YAFFS2 and EXT4. Results 

of sequential write sequential read operations are not compared here because different 

number of iterations are used by them to ensure enough duration of execution.  
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Figure 27: Sequential write throughput on Android. 

 

 

 

 

 
Figure 28: Sequential read throughput on Android. 
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Figure 29: Random write throughput on Android. 

 

 

 

 

 
Figure 30: Random read throughput on Android. 
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And then, in random write/read operations, AndroSH writes to and reads from 

the test file at random offsets. SCMFS shows higher throughput performance in both 

random write and random read tests shown in Figure 29 and 30.  

 As discussed before, SCMFS has a simple design, it stores files and 

subdirectories in a singly linked list, thus the lookup time complexity is O(n). EXT4 uses 

a HTree data structure to index all the subdirectories within one directory. HTree has 

higher lookup efficiency. Directory efficiency test of AndroSH measures directory 

lookup efficiency of target file systems from three configurations: 1) 50 files are inside 

the root directory and no subdirectory is created; 2) 50 subdirectories are created under 

the root directory and each contains one file; 3) 3 levels of subdirectories are created 

under the root directory in a hierarchical structure: the root directory contains 2 

subdirectories each of which has 5 subdirectories with 5 more subdirectories inside each, 

and the 50 leaf subdirectories have one file inside. AndroSH reads from target file 

systems with these three configurations.  Only read workload is used to exercise lookup 

efficiency because write workload has other factors affecting its performance. 

 In the read result shown in Figure 31, without subdirectory, SCMFS is slightly 

better which is consistent to the sequential read result. With subdirectories, all the file 

systems have higher throughput than the case of no subdirectory, because directory paths 

are cached in dentry [28] cache in VFS which enhances lookup efficiency. With HTree 

index, EXT4 is faster than SCMFS and YAFFS2 in the case of flat directory. However, 

with hierarchical subdirectory structure, EXT4 is not outstanding because the numbers 

of subdirectories of each level are not large enough to make the HTree effect obvious. 
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Since HTree structure shows advantage of enhancing lookup speed, it can be considered 

to replace the linked list in SCMFS design in the future work. 

 

 

 

 
Figure 31: Directory lookup efficiency test. 

 

 

 

 

4.3 User Data Workload Simulation 

Other than files of applications, users tend to store four types of data on mobile 

devices: photos, music, audio podcasts, video podcasts. Compared to application data, 

the four types have more specific average sizes: 2MB (photo), 6MB (song), 25MB 

(audio podcast), 100MB (video podcast). With AndroSH, workloads simulating real 

usage models with the simulation of these four types of data are executed to measure 

data throughput and latency of file systems.  
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In real world usage, those user data are copied to mobile devices by downloading 

from network or PC. Some data transmission software is available on Android to 

download or upload data, for example, “Browser” and “Software Data Cable”. Android 

also has some data compressing software such as AndroZip which compresses or 

decompresses user data files. Due to the fact that these applications by design access 

/data and /sdcard partitions, and these two partitions only support block device attached 

to I/O bus by design, several test cases are developed in AndroSH to mimic the 

workloads generated by these Android applications for test purposes.  

Downloading/synchronizing data are simulated in four test cases: 1) copy large 

amount of same type of data to the same directory, 2) copy random data into hierarchical 

directories, 3) copy one large file and compress it, 4) copy random data into the same 

directory and compress all into one file.  

 

1) Copy same type of data into the same directory 

This script measures the throughput of each file system by copying simulated 

user data files to the root directory of the file system. It simulates the situation that users 

usually synchronize many pieces of photos from computer to one directory in an internal 

partition on the mobile device, or download music/video from network to one folder in 

an internal partition on the mobile device.  
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(a)                                                                          (b) 

 
                                           (c)                                                                            (d) 

Figure 32: Copy to flat directory on Android. (a) photos (b) music files (c) audio podcasts (d) video 

podcasts. 

 

 

 

 

Memory file systems generally run fast. To get certain time duration of operation, 

the number of iterations is changed when testing files of different sizes. For instance, 

testing larger file takes less number of iterations. Since the purpose is to find out the 

difference between file systems, and not between different data types, performance 

results of different data sets are not compared. For instance, in Figure 32 (a) and (b), the 

copy operation runs more iterations than (c) and (d). As shown in the results, SCMFS 

has higher throughput than the other two file systems because of its smaller instruction 

footprint and pre-allocation in most cases.  
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2) Copy random data into hierarchical directories 

This script simulates some file manager software on Android. It exercises 

throughput and path lookup ability of file system. Every test case generates file sizes 

0~maxium (for e.g. 2MB, 6MB, 25MB or 100MB).  

Except in Figure 33(d), EXT4 performs much better than the previous test and 

shows only slightly lower throughput than SCMFS. This test exercises path lookup 

efficiency while measuring random file writing ability. EXT4 has efficient HTree data 

structure to store subdirectories, thus its path lookup efficiency is high. When it comes to 

test files as large as 100MB, EXT4 appears to be much worse than SCMFS because page 

cache buffers writes and enlarges latency, and also because SCMFS has better pre-

allocation mechanism.  

 

 

 

 
(a)                                                                           (b) 

Figure 33: Copy random files to hierarchical directories on Android. (a) photos (b) music files (c) 

audio podcasts (d) video podcasts. 
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(c)                                                                          (d) 

Figure 33: Continued. 

 

 

 

 

3) Copy and compress 

This script copies one large file to the file system and compresses it into a tar.gz 

file, and then repeats these steps several times to ensure sufficient time duration for 

accurate measurements.  

 

 

 

 
(a)                                                                             (b) 

Figure 34: Copy and compress file. (a) photos (b) music files (c) audio podcasts (d) video podcasts. 
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(c)                                                                                (d)                     

Figure 34: Continued. 

 

 

 

 

Figure 34 shows with all four types of simulated user data, SCMFS can finish 

copy and compress operations the fastest.  

 

4) Copy random files and compress them 

This script simulates file-compressing software on Android, such as AndroZip. It 

copies 50 random size files from 4k to 6M into one directory and compresses them into 

one tar.gz file.   
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Figure 35: Copy and compress random files. 

 

 

 

 

Figure 35 shows that the performance of SCMFS is significantly better compared 

to YAFFS2 and EXT4. In Android, SCMFS and EXT4 use 4KB page size, and YAFFS2 

uses 2KB page size, so SCMFS does not have disadvantage of TLB misses. When 

executing the compressing process, the target file system competes in using TLB with 

the user process thus TLB misses can have a significant impact on latency. As one 

important reason, since YAFFS2 has a smaller page size, its TLB miss is inevitably 

higher, and its execution latency is also higher. There are some other possible reasons 

leading to the longer latency of YAFFS2, such as buffering small writes until they are 

chunk aligned, or garbage collecting old chunks for rewriting. EXT4 has the overhead of 

accessing generic block layer hence its latency is higher than SCMFS. 
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4.4 Application Performance Evaluation 

4.4.1 Methodology 

In order to evaluate the performance of the three file systems in real application 

scenarios, two popular Android benchmarks such as Antutu and Vellamo are used to 

measure file system’s latency. 

All applications store data in their corresponding directories under /data/data/. 

Most applications have cache and databases directories under their own folder. Cache 

stores all the temporary data of the application. Databases store SQLite data per 

application. Moving cache or databases to different target file systems can change the 

performance of the applications. Page cache is not considered in SCMFS’s design 

because PCM is fast enough and hence page cache is not necessary. Consequently 

SCMFS cannot handle SQLite transactions because the transactions require a buffer. 

Owning to this particular reason, only cache of each benchmark application is moved to 

target file systems in the test.  

 The methodology is to mount partition with target file system, and create a cache 

directory for application such as /fs_scmfs/cache and then create its symbolic link 

/data/data/<applicationname>/cache. While running the application, temporary data is 

generated into the cache in the target file system. The faster the target file system, the 

lower the execution latency of the application. 
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4.4.2 Application Execution Performance 

Antutu stresses CPU, memory, SQLite database and the file system. In the file 

system tests, it stresses /data and /sdcard partitions. These two partitions cannot use 

SCMFS because they only support either generic block disk or NAND flash disk, so 

only RAMDISK or NAND simulator works for it. Vellamo is a web browser benchmark. 

They both generate certain amount of temporary data while executing.  

 

 

 

 
(a)                                                                                  (b) 

Figure 36: Application execution latency. (a) Antutu, (b) Vellamo. 

 

 

 

 

The result depends on how many accesses the applications generate to their 

cache directories. A benchmark frequently write to and read from cache will certainly 

have different results from a benchmark rarely doing so. As the results show in Figure 

36, SCMFS serves the two applications as a faster cache than the other two file systems.  
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4.5 Conclusion 

All the above tests on Android are run several times, so the throughput and 

latency data tend to be stable.  In the I/O capability micro-benchmark tests, SCMFS 

demonstrates higher throughput in sequential write/read and random write/read tests than 

YAFFS2 and EXT4.  In the user data usage model simulation tests, SCMFS also 

demonstrates higher throughput and lower latency than the other two file systems. When 

used to store cache data of two popular Android benchmarks, SCMFS reduces the 

execution time more than the other two competitors.  In conclusion, SCMFS shows 

obvious performance advantage because of its simple design and pre-allocation 

mechanism, therefore it is a good option for next generation mobile products based on 

PCM. 
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5. RELATED WORK 

 

5.1 Non-volatile Byte-addressable Memory File System 

BPFS [29] is proposed as a file system designed for non-volatile byte-

addressable memory, which uses shadow paging techniques to provide fast and 

consistent updates. This file system also requires architectural enhancements to provide 

new interfaces for enforcing a flexible level of write ordering. SCMFS aims to simplify 

the design and eliminate the unnecessary overheads to improve performance.  

DFS [30] incorporates the functionality of block management in the device driver 

and firmware to simplify the file system, and also keeps the files contiguous in a huge 

address space. It is designed for a PCIe based SSD device by FusionIo, and relies on 

specific features in the hardware.  

 

5.2 Exploiting Huge-pages to Reduce TLB Misses 

As [31] analyzes, standard x86_64 pages are 4KB, so there is a single 12-bit page 

offset. The remainder of the 48-bit virtual address is divided into four 9-bit indices, 

which are used to select entries from the four levels of the page table. In Linux kernel, 

the four levels of the x86_64 page table are named L4(PGD), L3(PUD), L2(PMD), 

L1(PTE) [5]. To support 2MB page size, page offset is enlarged to 21-bit, so the first 

level (PTE) is eliminated from kernel page table in order to present offset with more bits. 

In our research work, macros of two page sizes are defined accordingly. Our test 

machine has Intel Core i5 processor which uses separate TLBs for small page tables and 
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large page tables [32]. 4K pages and 2M pages cannot co-exist in the same page table, 

but their corresponding page tables can be cached in different TLBs. In our 

implementation, small pages are allocated to a file first until the file reaches a certain 

size, then huge-page is allocated to it and from then onwards only huge-pages are 

allocated to the file.  

 

5.3 Android Storage Benchmark 

Design of Androbench, a good file system benchmark of Android, is introduced 

by Je-Min Kim et.al [33]. This paper also explains the idea to stress internal /data and 

external /sdcard partitions. In our approach, instead of using the existing benchmarks, 

we developed a script based benchmark to exercise file systems with micro-benchmark 

workloads and user data usage model simulation workloads. 

Hyojun Kim et.al [21] provides great details of using Android adb to transmit 

data to mobile device, and using reverse tethering to stress mobile device by network 

traffic. They mount RAMDISK, internal flash and external SD card to /data and /sdcard, 

the two most frequently used partitions by user applications, Dalvik VM and SQLite to 

compare performance among different storage devices. SCMFS cannot be mounted on  

/data and /sdcard, because these two partitions only support generic block device or 

NAND flash block device by design. Instead of trying to mount SCMFS on  /data and 

/sdcard partitions, we change permission of /data partition to fully accessible, create 

mount point under /data, and mount SCMFS to it. Most applications have a cache 

directory under their application directories under /data/data. Our methodology is to 
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create symbolic link of a cache folder created in target file system partition and put it in 

/data/data/<applicationname>/ to replace the cache of the application.     

Two typical types of file system performance benchmarks: micro-benchmark and 

macro-benchmark are introduced and analyzed by Avishay Traeger et.al [9]. Based on 9 

years of study of file system and storage benchmarking, this paper provides sufficient 

analysis of the usage of various benchmarks, and reveals their pros and cons. We choose 

benchmark tools by studying the analysis of this paper. IOZONE and POSTMARK are 

good micro-benchmarks for individual storage file systems. FILEBENCH supports both 

micro-benchmarking and macro-benchmarking. Some script based benchmarks, e.g. 

LFS-SH[9], SPEC SDM[34], give us idea of how to evaluate Android file system 

performance with command line utilities in Android Busybox.  
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6. CONCLUSION AND FUTURE WORK 

 

 Page size is an important influencing factor on memory file system’s 

performance. Employing huge-pages in SCMFS can reduce TLB misses, and reasonably 

early migration to huge-pages can further reduce TLB misses and enhance throughput, 

and also control efficiency of file system utilization. Small-page version of SCMFS 

supports operations of large number of random files better than huge-page version, thus 

it is more suitable for Android. SCMFS outperforms other mainstream Android internal 

flash file systems because of its small instruction set and pre-allocation mechanism. 

 In the future, to further enhance SCMFS, more efficient data structures for  

managing files and directories can be considered into design to reduce lookup latency. A 

user-friendly Java-based Android file system benchmark which is compatible with 

storage class memory file systems can be developed. It is also possible that SCMFS will 

be applied to a distributed computing environment on account of the fact that some 

Storage Attached Network (SAN) products are built on DRAM and NAND flash 

nowadays and they will probably be replaced by SCM in the near future, so expanding 

SCMFS to support distributed environments is also valuable to future usage models.  
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