
DESIGN, IMPLEMENTATION, AND FORMAL VERIFICATION OF

ON-DEMAND CONNECTION ESTABLISHMENT SCHEME FOR

TCP MODULE OF MPICH2 LIBRARY

A Thesis

by

SANKARA SUBBIAH MUTHUKRISHNAN

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

August 2012

Major Subject: Computer Science

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&M Repository

https://core.ac.uk/display/13642324?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

DESIGN, IMPLEMENTATION, AND FORMAL VERIFICATION OF

ON-DEMAND CONNECTION ESTABLISHMENT SCHEME FOR

TCP MODULE OF MPICH2 LIBRARY

A Thesis

by

SANKARA SUBBIAH MUTHUKRISHNAN

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Approved by:

Chair of Committee, Jaakko Järvi
Committee Members, Darius Buntinas

A. L. Narasimha Reddy
Valerie E. Taylor

Head of Department, Duncan M. Walker

August 2012

Major Subject: Computer Science

iii

ABSTRACT

Design, Implementation, and Formal Verification of

On-demand Connection Establishment Scheme for TCP Module of MPICH2

Library. (August 2012)

Sankara Subbiah Muthukrishnan, B.E., Anna University, Chennai, India

Chair of Advisory Committee: Dr. Jaakko Järvi

Message Passing Interface (MPI) is a standard library interface for writing

parallel programs. The MPI specification is broadly used for solving engineering

and scientific problems on parallel computers, and MPICH2 is a popular MPI im-

plementation developed at Argonne National Laboratory. The scalability of MPI

implementations is very important for building high performance parallel computing

applications. The initial TCP (Transmission Control Protocol) network module de-

veloped for Nemesis communication sub-system in the MPICH2 library, however, was

not scalable in how it established connections: pairwise connections between all of

an application’s processes were established during the initialization of the application

(the library call to MPI Init), regardless of whether the connections were eventually

needed or not.

In this work, we have developed a new TCP network module for Nemesis that

establishes connections on-demand. The on-demand connection establishment scheme

is designed to improve the scalability of the TCP network module in MPICH2 library,

aiming to reduce the initialization time and the use of operating system resources of

MPI applications. Our performance benchmark results show that MPI Init in the

on-demand connection establishment scheme becomes a fast constant time operation,

and the additional cost of establishing connections later is negligible.

The on-demand connection establishment between two processes, especially when

iv

two processes attempt to connect to each other simultaneously, is a complex task due

to race-conditions and thus prone to hard-to-reproduce defects. To assure ourselves

of the correctness of the TCP network module, we modeled its design using the SPIN

model checker, and verified safety and liveness properties stated as Linear Temporal

Logic claims.

v

To my parents (Sornam and Muthukrishnan), wife (Suganya), and son (Sridarsh)

vi

ACKNOWLEDGMENTS

I owe my deepest gratitude to my advisor, Dr. Jaakko Järvi, for his invaluable

guidance, abundant patience, and consistent motivation throughout the research and

writing. I am thankful to him for finding several gaps in the research and helping me

address those. I would like to especially acknowledge his guidance on formal verifica-

tion and benchmarks. Dr. Järvi has always been helpful in answering my questions by

email even in the middle of the night. I am grateful to him for his tremendous help

in reviewing the draft; without his conscientious feedback on structure, grammar,

clarity, this thesis would not have been complete. I am thankful to him for his help

in improving my technical writing skills. My special thanks to him for all his help

with the logistics for the defense and approval process at A&M while I was working

remotely.

I am indebted to Dr. Darius Buntinas for all his immeasurable help and guidance

in the research from my internship days at Argonne National Laboratory through the

consummation of the thesis. This work would not have been possible without his help

and comprehensive and meticulous feedback on the design, implementation, tests,

benchmarks, and formal verification throughout the research. I express my special

thanks to him for helping to run several benchmarks on a HPC cluster at Argonne,

and providing exceptional feedback on the write-up on several revisions without any

hesitation. I am extremely pleased with the amount of assistance he extended to me

after the internship. He is an excellent mentor for interns.

I would like to express my sincere thanks to my other committee members,

Dr. A. L. Narasimha Reddy and Dr. Valerie E. Taylor for their time, valuable inputs,

and co-operation. I extend my sincere thanks to Dr. William Gropp and Dr. Ra-

jeev Thakur for their help in collaboration during my research at Argonne. I express

vii

my sincere gratitude to Dr. Gerard Holzmann for his invaluable time and help in

responding to my questions, quickly, on using SPIN, iSPIN, and model checking, in

general.

I gratefully acknowledge the computing resources provided on “Fusion,” a 320-

node computing cluster operated by the Laboratory Computing Resource Center at

Argonne National Laboratory.

Friends and family play a key role. I would like to extend my gratitude to

Sriram Ramanathan for reviewing a couple of chapters in the draft and his persistent

motivation. I am grateful to Jayesh Krishna for his inputs and time for brainstorming

on MPI , suggestions for the thesis outline, and constant encouragement. I sincerely

appreciate Xiaolong Tang, ”lifesaver”, for his help in running around for signatures

in several forms to meet every single deadline and thus help me graduate.

I would like to express my sincere gratitude to my managers at National Instru-

ments, Mr. James R. Andrews and Mr. Michael Phillips, for allowing me to maintain

flexible work schedule for a few weeks towards the completion.

I express my sincere gratitude to my mom Mrs. Sornam Muthukrishnan and

dad Mr. Muthukrishnan Sudalai, for their love, sacrifice, motivation, and support

to pursue an advanced degree. This thesis also would not also have been possible

without my wife Suganya’s sacrifice, encouragement, and love. I particularly thank

her for listening to my mock presentation and reviewing portions of the draft.

I would like to thank Rajkumar Kettimuthu for getting me an internship oppor-

tunity at Argonne and all his help. I express my sincere thanks to my friends Murali

Karuppanan, Anuradha Mani, Balamurugan Muthuksamy, Shanmugavel Ponnusamy,

Monish Mamadapur, Udayasarathy A Vijayasarathy, my brother Sundaramoorthy

Muthukrishnan, and my sister Uma Rani Muthukrishnan for their endless encourage-

ment and assistance in my pursuit of knowledge.

viii

TABLE OF CONTENTS

CHAPTER Page

I INTRODUCTION . 1

II BACKGROUND . 6

A. Sockets . 6

1. TCP Socket Programming 7

2. Issues with Blocking Sockets 10

3. Non-blocking Sockets 12

B. A Tutorial on MPI . 12

1. An MPI Program . 13

2. Communication Functions 15

3. Communicators . 15

4. MPICH2 and Nemesis 16

5. Virtual Connection and Network Module Connection . 16

III SCALABILITY ISSUES AND A SOLUTION 20

A. Scalability Problem . 20

B. Solution . 23

1. Head-to-head Resolution of Connections 24

IV DESIGN AND IMPLEMENTATION 28

V FORMAL VERIFICATION OF DESIGN 40

A. Need for Formal Verification 40

1. Complications in Concurrent Software Verification . . 42

B. Introduction to Model Checking 44

1. Model Checking and Model Checker 45

C. Introduction to PROMELA 47

1. Datatypes . 48

2. Processes . 49

3. Message Channels . 49

4. Rules of Executability and Control Flow 51

D. Introduction to Verification using SPIN 53

1. Verification of Safety Properties 54

ix

CHAPTER Page

2. Verification of Liveness Properties 57

3. Linear Temporal Logic 58

4. Model Abstraction . 59

5. Property-based Slicing 60

E. Details of Verification of the Model 63

1. Extraction of the Model 63

2. Verification of Safety Properties 69

3. Verification of Liveness Properties 72

4. Experiences on Finding and Fixing Defects Using SPIN 75

5. Checking for Redundancies with Property-based

Slicing Techniques . 78

6. Complexity of Verification 78

VI BENCHMARK RESULTS . 81

A. Benchmark of MPI Init Time 81

B. Benchmark of Latency in the On-demand Scheme 86

1. Overhead of Connection Establishment in the On-

demand Scheme . 86

2. Comparison of the Worst-case Latency of the Static

and On-demand Schemes 87

3. Comparison of the Latency of the Static and On-

demand Schemes of Typical Parallel Applications . . . 91

VII CONCLUSIONS . 94

A. Performance Improvement and Scalability of the On-

demand Scheme . 94

B. Design Verification . 96

C. Future Work . 97

REFERENCES . 99

APPENDIX A . 105

VITA . 115

x

LIST OF TABLES

TABLE Page

I Average number of distinct destinations per process. 22

II Relative cost of fixing bugs in different stages of software development. 41

III Efficiency of several software defect removal methods. 43

IV LTL operators. 59

V Description of test cases. 79

VI Verification complexity of a safety property. 79

VII Verification complexity of a liveness property. 80

VIII Comparison of the latency of the on-demand scheme with the

static scheme of test applications simulating parallel applications

on the cluster. 92

xi

LIST OF FIGURES

FIGURE Page

1 Connecting socket and accepting socket end-points. 11

2 Architecture of MPICH2. 17

3 Virtual connection and network module connection. 19

4 Head-to-head connections resulting in duplicate connections. 26

5 Head-to-head connections resulting in no connections. 27

6 Connect-side state machine of the TCP network module. 31

7 Accept-side state machine of the TCP network module. 32

8 Common states of connect-side and accept-side state machines. . . . 33

9 Message Sequence Chart (MSC) of an error trail replay. 77

10 Cost of MPI Init of the on-demand and static connection schemes

in two desktop PCs. 84

11 Cost of MPI Init of the on-demand and static connection schemes

in a cluster. 85

12 Comparison of the worst-case (fully-connected) latency of the on-

demand scheme with the static scheme on two desktop PCs. 88

13 Comparison of the worst-case (fully-connected) latency of the on-

demand scheme with the static scheme on the cluster. 90

1

CHAPTER I

INTRODUCTION

Parallel computers can deliver a large amount of computing power required by com-

putationally intensive scientific applications such as modeling and simulations. In

the past decade, requirements for computing power in many applications including

commercial computing (online transaction processing) and entertainment industry

(making computer-animated motion pictures) have grown notably and can only be

delivered by high performance parallel and cluster computers. Parallel computing

continues to become more and more ubiquitous and widespread. Due to several re-

strictions, including heat dissipation and power consumption, microprocessor speed

and performance will likely not improve drastically in the near future. Major pro-

cessor manufacturers have moved to hyper-threaded and multi-core architectures.

Sutter [1] points out that concurrent programming is the next major revolution on

how we write software.

There are several parallel architectures and a variety of hardware, such as SMPs,

NUMA machines [2], massively parallel processors such as IBM Bluegene [3], and

clusters [4]. In order to have efficient communication between the nodes in cluster

systems, there are many network interconnects available which are based on different

architectures with their accompanying protocols, such as Virtual Interface Architec-

ture [5], Infiniband [6] and Quadrics [7]. A parallel application can achieve the best

performance on a particular hardware architecture only by exploiting the specific fea-

tures of that architecture. However, parallel applications should be written in such a

way that they are portable across several architectures. Efficiently programming for

The journal model is IEEE Transactions on Automatic Control.

2

different parallel architectures in a portable manner is a considerable challenge. The

Message Passing Interface (MPI) standard [8] is defined to address these portability

and performance issues.

The MPI Standard is a message passing library standard, based on the consensus

of the MPI Forum [9]. The MPI standard has become a de facto standard for writ-

ing parallel applications. There are several implementations available based on the

standard; these include MPICH2 [10], OpenMPI [11], and LAM/MPI [12]. MPICH2

is one of the popular implementations, developed at Argonne National Laboratory,

that supports several interconnects and architectures and provides an application

programming interface (API) for the C, C++ and FORTRAN languages.

Performance and scalability are the chief design goals of the MPI libraries. As

the size of the cluster computers grows, the scalability of parallel applications be-

comes more and more important. This thesis focuses on the impact that initiating

connections between different processes in an MPI application can have on scalability.

Two processes in a parallel application pass messages between each other by es-

tablishing a connection between them. Even though the MPI libraries are efficient and

scalable in general, some of them are not scalable in how they establish connections.

These MPI implementations create connections between all the processes during ini-

tialization of the parallel application (i.e., during the MPI library call MPI Init).

However, many parallel applications do not require connections between all the pro-

cesses in the application. Each process in a parallel application may thus consume

system resources for connections that are never used and cause depletion of system

resources. Moreover, initialization may require a considerable amount of time, which

is also not desirable in some applications.

Furthermore, some applications have further demands, such as checkpointing [13,

14], a relatively new feature being introduced in the MPI libraries. Checkpointing

3

allows suspending a parallel job either in order to schedule a higher priority job on

a supercomputer or in the event of a hardware or software failure, and resuming the

job from the point of suspension without losing any of the previous work. Paral-

lel jobs that are checkpointed need to tear down all the connections including the

never-used connections, and need to initialize all the connections while restarting the

checkpointed job, and both can be very time-consuming.

All of the aforementioned issues diminish the scalability of the parallel applica-

tions. These issues are alleviated if the connections are established between processes

only when needed, rather than during initialization time. In such an on-demand

connection establishment scheme, the creation of a connection is delayed until a pro-

cess tries to send a message to or receive a message from another process. In this

work, we have developed such a scheme for the TCP network module of the Nemesis

channel, which is a communication sub-system designed for both high-performance

intra-node (using shared memory) and high-performance inter-node communication

(using networks such as TCP) integrated into MPICH2 library.

We originally designed and implemented on-demand connection establishment

scheme as a stand-alone prototype. During the design phase of the prototype, we

underestimated the complexity, which became apparent when implementing the pro-

totype, especially during its integration into the TCP network module of the Nemesis

channel. Also, the researchers at Argonne National Laboratory had past bitter expe-

riences — while maintaining MPICH2 library software — with several hard-to-track

race-condition related bugs in the state machines in the old communication channels

that existed before the Nemesis channel. In order to be confident about the correct-

ness of the on-demand connection establishment scheme and the state machine and to

ensure the reliability and robustness of the new TCP network module and thus ease

its maintenance, we decided to rely on formal verification techniques, model checking

4

in particular. The state-of-the-art model checker SPIN [15] was chosen for this task.

The state machine describing the behavior of our on-demand connection establish-

ment scheme was modeled in the PROMELA language. Several safety properties of

this model were formulated as Linear Temporal Logic claims [16,17] and verified using

the SPIN model checker. The PROMELA model was also verified using the built-in

safety verification algorithm of SPIN to ensure that there are no deadlocks in the

model.

The contributions of this thesis are:

• The design of the on-demand connection establishment scheme for the Nemesis

channel in TCP module of MPICH2.

• A prototype implementation, tested for correctness and scalability, of the state

machine that realizes the on-demand connection establishment scheme.

• The integration of the state machine implementation into MPICH2’s TCP net-

work module.

• The development of benchmarks that compare the on-demand and static con-

nection schemes.

• A model of the state machine in PROMELA language.

• The specification and verification of several safety and liveness properties using

the SPIN model checker.

• Checking for redundancies in the model using SPIN’s property-based slicing

techniques [18].

The thesis is structured as follows: Chapter II describes the relevant background

information about programming with TCP sockets and MPI. Chapter III elucidates

5

the scalability problem of MPI applications and briefly outlines how this problem can

be solved by establishing connections on-demand. Chapter IV explains the design and

implementation of the state machine in connection establishment. In Chapter V, we

review the relevant background to the model checker SPIN, its language PROMELA,

construction of the PROMELA model of the state machine, and verification of safety

and liveness properties using Linear Temporal Logic claims. In Chapter VI, we discuss

the benchmark results that show how MPI Init time is reduced with the on-demand

connection establishment scheme. Chapter VII concludes this thesis and outlines

some potential future work, especially related to model checking.

6

CHAPTER II

BACKGROUND

This chapter discusses some relevant background material for our work in this chapter.

We first briefly review TCP/IP sockets and socket programming with the focus on

connection-oriented sockets. We then present an overview of MPI and the MPICH2

library.

A. Sockets

The TCP/IP network stack implementation exposes its services to applications through

the socket programming interface, which has evolved to be the de-facto standard of

network programming. The socket programming interface is a part of the IEEE

POSIX standard [19] that enables the implementation of portable network applica-

tions across several platforms. We briefly review sockets in this section; a good source

for further information is the book “Unix Network Programming — Volume 1” [20].

Most of the network applications use one (or both) of the two types of sockets:

− Datagram sockets: UDP (Universal Datagram Protocol) is a connection-

less transport layer protocol in the network stack. This protocol provides the

concept of application endpoint (UDP port) to its clients. The endpoint allows

applications to identify the remote destination to which data needs to be sent or

from which received. Since UDP is a connectionless protocol, it does not incur

a handshake overhead for setup or tear-down. However, UDP does not sup-

port reliability(guaranteed delivery of packets without errors and duplicates),

sequencing of packets, and retransmission of packets in case of packet loss or

corruption. UDP is useful in many applications where speed is more important

7

than reliability and receipt of packets out-of-sequence is not a problem. Higher-

layer network protocols (like DHCP and DNS) are implemented using the UDP

protocol services. In the socket parlance, a socket that uses UDP is commonly

known as a datagram socket.

− Stream sockets: TCP (Transmission Control Protocol) provides guaranteed

in-order (sequenced) data delivery service to its clients. Like UDP, TCP also

provides an application endpoint (TCP port) to its clients. However, unlike

UDP, TCP is connection-oriented, which means that two applications must es-

tablish a connection explicitly before they can exchange data. TCP connections

are full-duplex, with each endpoint having its own data stream to the other end-

point. TCP also provides congestion control [20] and flow control [20] between

the communicating endpoints. TCP sockets are also called stream sockets. We

discuss the TCP sockets briefly in the next section.

1. TCP Socket Programming

TCP socket programming typically follows the client server programming model. A

socket can be thought of as a communication endpoint. A socket endpoint is uniquely

identified by the combination of an IP address and a TCP port. A socket pair (client

endpoint and server endpoint) forms an active TCP socket connection. The server

listens on a port; the client needs the port number to request a connection; for

standard services such as http, ssh, etc, the ports are standardized/well-known; for

other services, the port needs to be communicated to the client in some way. The

client connects to the server at the server’s advertised port, and then the server and

the client start communicating with each other. A system, or, to be precise, a process

running in a system, can act both as a server and a client.

8

We introduce some of the key socket functions with an example consisting of a

simple client and a server. The client sends a text string to the server; the server

echoes back any message that it receives. The client program is outlined in Listing II.1

and the server program in Listing II.2. These programs are not complete; some source

code is omitted and error checking of functions is not done for brevity.

Listing II.1 TCP client program.
int main(int argc , char *argv [])

{

int conn_sock; // connection socket

struct sockaddr_in servaddr; // socket address structure

// Create the stream socket

conn_sock = socket(AF_INET , SOCK_STREAM , 0);

memset (&servaddr , 0, sizeof(servaddr));

servaddr.sin_family = AF_INET;

servaddr.sin_port = htons (10000);

servaddr.sin_addr.s_addr = inet_addr("127.0.0.1");

// connect to the remote echo server

connect(conn_sock , (struct sockaddr *) &servaddr ,

sizeof(servaddr));

while (1) {

// Send a string to the server.

// Receive the string echoed by the server.

// source code omitted for brevity

}

close(conn_sock);

}

Listing II.2 TCP server program.
int main(int argc , char *argv [])

{

int lstn_sock; // listening socket

int acpt_sock; // accepted connection socket

struct sockaddr_in servaddr; // socket address structure

// Create a listening socket.

9

lstn_sock = socket(AF_INET , SOCK_STREAM , 0);

memset (&servaddr , 0, sizeof(servaddr));

servaddr.sin_family = AF_INET;

servaddr.sin_addr.s_addr = htonl(INADDR_ANY);

servaddr.sin_port = htons (10001);

// Explicitly bind to port 10001.

bind(lstn_sock , (struct sockaddr *) &servaddr ,

sizeof(servaddr));

// Listen for incoming connections.

//Make the backlog as much as the stack will support.

listen(lstn_sock , SOMAXCONN);

while (1) {

acpt_sock = accept(lstn_sock , NULL , NULL));

// Receive a string from the client.

// Send it back to the client.

// source code omitted for brevity.

close(acpt_sock);

}

}

We start with the client as it is the simpler of the two programs. The client

first creates a socket using the socket function. When a socket is created, it is not

assigned an endpoint. An endpoint can be assigned to a socket in two ways: explicitly

using the bind function, or implicitly using the connect function. Since the client

is not concerned which port in the local machine it uses, it relies on the connect

function to assign it an endpoint. The connect function establishes a connection to

the server and assigns an endpoint to the client socket. We refer to this socket as the

connecting socket. After the socket gets connected to the remote server, the client

sends the request message to the server using the send function and, then, receives

the message from the server using the recv function.

The TCP server begins by creating a socket. It uses the bind function to attach

an endpoint (in our case, the port of 10001 and IP address of the local host). It then

10

calls the listen function that makes the socket a passive socket, i.e., a socket that

can be used to only accept new connection requests. Subsequently, the server calls the

accept function on the listening socket that waits for a new connection request from

the client, and returns a new socket when such a connection request is found. This

new socket is the one that can be used to communicate with the client; we refer to

this socket as accepting socket. The server receives the message from the client using

the recv function and sends it back to the client using the send function. Figure 1

shows the end-points of connecting socket in the client process and accepting socket

in the server process and how full-duplex communication happens between the two

processes.

2. Issues with Blocking Sockets

In the simple client-server example we discussed above, the connect, accept, send,

and recv functions are blocking calls. In other words, they will block in the operating

system’s network stack until the function succeeds. Thus, this model can have both

reliability and performance issues. For instance, the server hanging after accepting

the connection from the client can cause the client to block indefinitely until the

server is shut down. The server or the client process cannot do any other useful work

when they are blocked in one of the functions.

There are two solutions for the aforementioned issues. One solution, for instance

for the server side, is to spawn a new thread to handle each client. If one client hangs,

this does not prevent the server from serving other clients. The drawback with this

approach is that threads can be expensive resources in some systems. This approach

can also complicate the application design. The other solution is to use non-blocking

sockets. We will review non-blocking sockets in the next section.

11

Fig. 1. Connecting socket and accepting socket end-points.

12

3. Non-blocking Sockets

After a socket gets created using the socket function or the accept function, it can

be made non-blocking using the function fcntl. After a socket is made non-blocking,

the socket functions such as connect, accept, send, and recv will return immediately

with a special return code (such as EAGAIN or EWOULDBLOCK) if they cannot

succeed, and the application must either retry later, or check whether the pending

operation has succeeded later. The application, instead of simply retrying, can call the

poll function that indicates whether a socket is ready for an I/O operation (sending,

receiving, or both) or whether there are errors in the socket.

We briefly discuss the non-blocking functions. If a connect function is called on

a socket and a connection cannot be established immediately, this function returns

an error indicating that the connection is in progress. The application can call poll

later to determine whether the connection has been established. Similarly, a listening

socket can be checked using poll to see whether there is a new connection request

pending before the accept function is called on a listening socket. A non-blocking

application checks whether a socket is readable before trying to receive data from the

socket, and checks whether a socket is writable before trying to send data.

Non-blocking sockets are inherently more complex to design and implement:

buffer management gets tricky because read and write to sockets can return when

they are partially complete, and socket implementations in various platforms handle

errors differently for non-blocking functions, making portability an issue.

B. A Tutorial on MPI

Message Passing Interface (MPI) standard [8] has been evolving since 1992. It has

matured significantly in functionality and it is widely supported on almost all of the

13

HPC (High Performance Computing) platforms. Several vendor implementations and

open-source implementations [10–12] are available, and they exploit various processor

and network interconnect features to optimize the performance. The programming

model of MPI requires explicit parallelism; in other words, the developer of a parallel

application is responsible for identifying parallelism and designing the application

using MPI functions to exploit parallelism. Even though the MPI model was originally

developed for the distributed memory architecture, the model naturally works for the

shared memory architectures, such as SMP and NUMA [2].

1. An MPI Program

This section briefly reviews programming with MPI, starting with a walk-through

of a simple MPI program in Listing II.3. The MPI program first calls the function

MPI Init before calling any other MPI functions. MPI Init initializes the MPI ex-

ecution environment in the context of all the processes in the application. After

initialization, MPI processes typically compute and exchange data with each other.

For simplicity, our sample program does not do any computation. In order for one

process to identify another process to which data needs to be sent to or received

from, each process is given a unique identifier during MPI Init, known as the rank

of the MPI process. MPI Comm rank function can be used to query the rank of the

current process. A typical parallel application may have the need to form different

small groups of processes, either to communicate with each other process within a

group, or across groups. MPI provides an abstraction called a communicator for this

purpose. There is one default communicator called MPI COMM WORLD that includes all

the processes in the application. The size of a communicator can be obtained using

MPI Comm size. In the example in Listing II.3, each MPI process other than the

one with rank zero sends (using MPI Send) one character in the send buffer (indexed

14

by its rank) to the process with rank zero. The process with rank zero receives a

character from all the other processes (using MPI Recv) and puts that character into

the receive buffer at the location indexed by the rank of the sending process. The

MPI application calls MPI Finalize which cleans up the resources in the execution

environment of all the processes. As the name suggests, no MPI library function shall

be called after MPI Finalize.

Listing II.3 Hello World MPI program.
int main(int argc , char *argv [])

{

int myRank , commSize , maxRank;

char sbuf[] = "Hello World";

char *rbuf;

MPI_Init(0, 0);

MPI_Comm_rank(MPI_COMM_WORLD , &myRank);

MPI_Comm_size(MPI_COMM_WORLD , &commSize);

maxRank = MIN(strlen(sbuf), commSize);

if (myRank == 0) {

int remoteRank;

MPI_Status status;

rbuf = (char *) malloc(strlen(sbuf)+1);

rbuf [0] = ’H’;

for (remoteRank = 1; remoteRank < maxRank; remoteRank ++)

MPI_Recv (&rbuf[remoteRank], 1, MPI_CHAR , remoteRank ,

100, MPI_COMM_WORLD , &status);

rbuf[remoteRank] = ’\0’;

printf("%s\n", rbuf);

free(rbuf);

}

else if (myRank < maxRank) {

MPI_Send (&sbuf[myRank], 1, MPI_CHAR , 0, 100,

MPI_COMM_WORLD);

}

MPI_Finalize ();

return 0;

}

15

2. Communication Functions

In the aforementioned example, we have used two communication functions called

MPI Send and MPI Recv. The MPI communication functions can be broadly classi-

fied into two categories: point-to-point communication and collective communication.

Point-to-point communication, as the name suggests, always happens between two

MPI processes. This communication supports different flavors that can be classified

orthogonally: (1) blocking and non-blocking, (2) synchronous, buffered, and ready.

Collective communication must involve all the processes in a communicator, and all

collective MPI functions are blocking. For a detailed overview on different types of

communication and other advanced features, consult the books “Using MPI” [21] and

“Using MPI-2” [22].

3. Communicators

A communicator is a group of processes that may communicate with each other. All

MPI functions that exchange data must specify a communicator. Communicators

allow the parallel application developer to organize tasks into different groups based

on the computation functions that need to be performed by them. The communicator

exposes the notion of user-defined virtual topologies, which is useful in the design of

parallel applications. Since collective communications need to be performed by all

the processes in a group, the concept of communicator lends itself nicely to collective

communication. Communicators are dynamic, and they can be created and destroyed

during the lifetime of an application; a process can be part of more than one com-

municator, however, it has a unique rank in each communicator. For details on using

communicators, consult the MPI reference documentation [21,22].

16

4. MPICH2 and Nemesis

MPICH2 library [10] is a popular implementation of MPI. It supports different clusters

(shared-memory, multi-core), high-speed network interconnects (Gigabit ethernet, In-

finiband [6], Myrinet [23] and Quadrics [7]), and proprietary high-end computing

systems (Blue Gene, Cray). MPICH2 supports the features of both MPI standards,

MPI-1 and MPI-2 [8]. A high-level architecture depicting different layers of MPICH2

is given in Figure 2. ADI-3 is a full-featured abstract device interface that provides

a portability layer to allow access to many performance-oriented features of several

communication systems [24]. CH3 [24] is a simplified channel device that requires

the implementation of only a dozen functions but provides many performance advan-

tages of the ADI-3 interface. Modules such as “TCP/IP” and “shared memory” are

implemented as CH3 channels.

Nemesis [25,26] is a more recent development of MPICH2. It is the communica-

tion sub-system, redesigned by Buntinas, Gropp, et al., to improve the performance

and scalability of MPICH2; it uses shared memory for communication between pro-

cesses in the same node (intra-node) and a network module such as TCP for com-

munication between processes running in different nodes (inter-node). Though the

intent is to ideally implement Nemesis as an ADI-3 device, Nemesis is integrated

as a CH3 channel (for quicker prototyping and experimenting). The integration of

Nemesis as a CH3 channel and Nemesis supporting different network modules such

as TCP, GM [23], and ELAN [7] are shown in Figure 2.

5. Virtual Connection and Network Module Connection

Ranks are used to communicate between processes within the same communicator.

If one process in one communicator needs to communicate with another process in a

17

Fig. 2. Architecture of MPICH2.

18

different communicator, it uses both rank and communicator identifier of the remote

process. The communicator identifier is referred to as process group identifier (or

simply PGID) in the MPICH2 implementation. In MPICH2, the communication

between processes using ranks and PGIDs is abstracted at the CH3 device level. CH3

device abstracts communication to a remote MPI process as a virtual connection. The

network module such as TCP establishes the physical connection to the remote process

using the appropriate network protocol. When the network connection is established,

the virtual connection and the network connection (such as socket connection) are

associated with each other. Figure 3 shows how a virtual connection and one of the

network module connections is associated.

19

Fig. 3. Virtual connection and network module connection.

20

CHAPTER III

SCALABILITY ISSUES AND A SOLUTION

A. Scalability Problem

MPICH2 provides an efficient MPI-2 implementation for small- and large-scale clus-

ters, SMP machines, and massively parallel processors such as IBM Bluegene [3].

While one of the goals of the MPI standard, apart from improving portability of par-

allel applications, is to bridge the gap between the marked performance offered by

different parallel architectures and the actual performance delivered to the applica-

tion, the extent to which this is achieved depends on the implementation. Our focus

is on Nemesis [25,26], a communication subsystem of MPICH2 library, designed and

implemented by Buntinas, et al. after identifying the critical areas to improve the

performance of MPICH2.

Nemesis was designed to be a scalable, high-performance, shared-memory, multi-

network communication subsystem for MPICH2. The design goals, in order of prior-

ity, were scalability, high-performance intra-node communication, high-performance

inter-node communication, and multi-network inter-node communication [25]. Neme-

sis uses shared-memory for intra-node communication and a network module such

as TCP for inter-node communication. Nemesis was successfully integrated into

MPICH2 and yields very good performance [25]. The main focus in the initial imple-

mentation of Nemesis was on efficient and high performance communication. Because

of this focus, some other areas received less attention. In particular, the connection

establishment was not scalable. In the original implementation of the network mod-

ules of Nemesis, all connections were statically created during MPI Init. As a matter

of fact, several MPI implementations statically create connections during MPI Init.

21

This connection management scheme is called static connection establishment scheme,

and it is also known as eager connection establishment scheme. It is easy to implement

this scheme, but it suffers from scalability and performance issues.

We will review the several disadvantages of static connection establishment scheme

below:

• If a parallel application has N processes and each process connects to all the

other processes, the parallel application will have Θ(N2) connections,

N × (N − 1)/2 to be exact. Most large-scale parallel applications are not

fully-connected. Table I (reproduced from [27]) lists the average number of des-

tinations each process has in different parallel applications. The estimation of

1024 processes [27] is based on communication patterns described in [28] and

implementation of collective communication using binomial tree algorithms [29].

The average number of connections each process makes in a 1024 process par-

allel application is typically less than 11 [28]. Therefore, in several parallel

applications with the static connection establishment scheme, a large amount

of resources gets allocated in creating Θ(N2) connections which are never used.

• Establishing Θ(N2) connections during initialization of a parallel application,

in other words, during the library call MPI Init, consumes a lot of CPU cycles

and the parallel application will have a very slow start. While the start-up time

for some of the applications may not be crucial, it is very important for certain

class of applications.

• The number of established connections affect not only the start-up time of an

application, but also its shutdown (either normal of forceful) time. The more

connections that have been established, the more connections there are that

need to be torn down. This has significant impact for parallel applications that

22

Table I. Average number of distinct destinations per process.

Application Number of Processes Average Number of Destinations

64 5.5
sPPM

1024 < 6

64 41.88
SMG2000

1024 < 1023

64 0.98
Sphot

1024 <= 1

64 3.5
Sweep3D

1024 <= 4

64 4.94
Samari4

1024 <= 10

64 6.36
CG

1024 <= 11

23

are checkpointed. When a higher priority (even a mission-critical) parallel job

should be scheduled on a cluster/supercomputer after checkpointing the cur-

rently running parallel application, it is imperative that the current application

is checkpointed and shut down gracefully as quickly as possible. In addition to

that, a checkpointed application should also be resumed fast when it is resched-

uled by the job scheduler. When the number of connections, however, is large,

checkpointing and restarting a parallel application takes a significant time.

• Unnecessary use of system resources in a fully-connected application can also

cause performance degradation during the execution of the application. Typi-

cally the MPI library maintains a table of connections internally. If the number

of connections is large, as is the case in the static connection establishment

scheme, the number of connection entries in this table may take up consid-

erable space, and accessing connection entries can lead to page-faults. If a

process’s table of connections consist of only those that are used, the table will

be smaller and may fit into fewer memory pages; typically even into one page.

B. Solution

We have discussed several problems in establishing connections statically during the

initialization of a parallel application. This thesis demonstrates that by establishing

connections as needed, the problems can be solved. Concretely, during MPI Init,

no connections are created between any processes. A connection is only created

between two processes when they try to communicate with each other using MPI

functions such as MPI Send and MPI Recv. This scheme is called the on-demand

connection establishment scheme or, alternatively, the lazy connection establishment

scheme. We briefly outline this scheme and discuss some of its intricacies in this

24

section. The discussion assumes knowledge of network programming with sockets,

socket functions and several MPI concepts, including virtual connections, and the

identification information of MPI processes. Please consult Chapter II for a brief

review of these topics.

Each MPI process has a listener socket that accepts connections from other

processes. When an MPI process P1 tries to establish a virtual connection to another

MPI process P2 in order to send or receive data, P1 creates a network socket and issues

a connect to P2. The listener socket in P2 that issues an accept call establishes the

connection with P1. Then, P1 sends its identification information to P2 that helps

P2 to associate the newly created socket connection to a virtual connection. As P1

initiates the socket connection for its virtual connection, it trivially associates its

virtual connection with the established socket connection. Similarly, when P1 wants

to disconnect a virtual connection with P2, it does so by closing the associated socket

connection. At the first glance, this looks trivial. However, this scheme gets complex

when two communicating processes race with each other to connect and disconnect

sockets. We will briefly discuss the intricacies of this scheme in the next subsection.

1. Head-to-head Resolution of Connections

We explained in Chapter II that a socket connection between two processes is duplex,

and therefore each process can send and receive data from another process simul-

taneously using only one socket. Hence, one virtual connection of a process should

be associated with one socket connection. It will be redundant to keep two socket

connections between a pair of communicating processes; also, the design and imple-

mentation to associate two socket connections (for that matter, two of any network

module connections) to a virtual connection will add unnecessary complexity in the

design and implementation. We will show a scenario that results in two socket con-

25

nections when two MPI processes try to connect to each other at the same time.

In Figure 4, two processes P1 and P2 try to connect to each other at the same

time, send their identification information to each other, and create two network

connections (one that is initiated and the other that is accepted) that can be used

by the virtual connection. This problem may arise in a näıve implementation of

supporting on-demand connections. One simple solution is to check whether one

connection is a duplicate and close the duplicate connection. An instinctive attempt

to solve this problem is shown in Figure 5, and discussed below.

In Figure 5, two processes P1 and P2 connect to each other simultaneously and

both of them create two network connections as explained above, and illustrated

in Figure 4. Later, P1 realizes that it has a duplicate connection and closes the

one it accepted from P2. P2, while noticing the duplicate connection, closes the

one it accepted from P1. Both the processes close both of their connections, which

results in not having any network connection at all between the two processes. We

refer to these kinds of issues as head-to-head connection establishment issues. The

above two scenarios are just examples we have used for illustration, and by no means

exhaustively cover all the head-to-head situations.

The head-to-head connection issues do not arise in the static connection estab-

lishment scheme; each process initiates a connection only with the higher-ranked

processes, thus avoiding duplicate connections. We find that resolving head-to-head

connections is not trivial but requires careful design. In the next chapter, we will

discuss the detailed design and implementation of the on-demand connection estab-

lishment scheme.

26

Fig. 4. Head-to-head connections resulting in duplicate connections.

27

Fig. 5. Head-to-head connections resulting in no connections.

28

CHAPTER IV

DESIGN AND IMPLEMENTATION

We discussed how head-to-head resolution of connections is important and not trivial

in Chapter III. It was important for us to design a state machine and handle various

states of an MPI process to resolve the head-to-head situations. In this chapter, we

will discuss the design of the on-demand connection establishment scheme and some

implementation details.

In our work, we have chosen TCP sockets as the services TCP sockets provide

(as discussed in Chapter II) are important to the TCP network module. One of the

key decisions before designing a state machine is to choose between blocking and

non-blocking sockets. MPICH2 library implementation handles both communication

requests and connection requests without using any additional dedicated threads.

This is possible with an approach that is based on polling; by periodically checking

whether communication and connection requests are pending and making progress on

them. Therefore, we have chosen non-blocking sockets for the TCP network module.

The alternative design option — adding new threads to handle the connection requests

— would require significant amount of redesign of MPICH2, and therefore is not

chosen.

Each MPI process has to accept connections from other MPI processes. Hence,

when the TCP network module is initialized, we create a listener socket that listens for

new connections in a polling loop. We keep a table of all the socket connections that

are both initiated by the process and that are accepted by the process. Each entry

in this table has the following fields: a socket descriptor, a boolean that indicates

whether the peer of the connection is in the same process group, the rank of the

peer in the process group, the process group ID of the peer if the peer is not in the

29

same process group, the current state of the connection, the handler function for the

current state, and a pointer back to the virtual connection. Some fields, such as the

rank and the process group ID, are cached in this structure even though they can

be obtained from the pointer to the virtual connection; this avoids the performance

penalty of chasing pointers. We also keep another table of struct pollfd structures [20]

with all the socket descriptors for polling using the system call poll. Each entry in

these two tables refers to the same socket connection.

The state machine has several states (to be explained in detail later in this

section) and there is a handler function for each state. The progress engine polls

for all the socket connections in the polling table, and, if an event has occurred for

a socket descriptor, it calls the handler function of that socket connection to take

appropriate action (including progressing to another state in the state machine for

most of the states). We have discussed in Chapter II that when a socket is polled

using the poll system call, we can query specifically whether the socket is ready for

reading or writing or both. We have optimized the polling performance by requesting

specific events expediently in the call to the poll system call based on the current

state of the state machine.

As the state machine is too large to fit into one page of this report, they are split

into two state machines, one for the connect-side and another for the accept-side.

The connect-side of the state machine is depicted in Figure 6 and the accept-side

in Figure 7. For clarity and a holistic picture, we show the common states of both

machines in Figure 8. As the state machine is non-trivial and split into two figures,

the reader may have to refer to all the three figures and read the explanation of the

states and handler functions back and forth. To help in this task, we use the following

conventions in prefixing the names of the states:

30

TS : a shared state of both the connect-side and the accept-side state machines

TC : a state of the connect-side state machine

TA : a state of the accept-side state machine

C : a state that is part of connection sequence

D : a state that is part of disconnection sequence

In the state machine diagrams shown in Figures 6, 7, and 8, each transition is

labeled with “event/action”. Each transition may be read as the following: If “event”

occurs in the current state, perform the “action” and transition to the new state.

The following is a list of all the states, each accompanied with a short description.

− TS CLOSED: This is the initial state of a socket connection for both the connect-

side and the accept-side state machines. The network socket does not simply

exist in this state.

− TC C CNTING: After a non-blocking connect is issued on a socket, if the socket

does not get connected immediately to the peer, then the state-machine transi-

tions to this state.

− TC C CNTD: After connect is issued on a socket and the socket gets connected

to the peer, the state machine goes to this state.

− TC C RANKSENT: When the identification information of the MPI process is sent

to the peer from the TC C CNTD state, state machine transitions to this state.

− TA C CNTD: When there is a new connection in the listen queue and it is accepted,

the state machine of the connection moves to this state.

31

Fig. 6. Connect-side state machine of the TCP network module.

32

Fig. 7. Accept-side state machine of the TCP network module.

33

Fig. 8. Common states of connect-side and accept-side state machines.

34

− TA C RANKRCVD: When the identification information is received from the peer

in the TA C CNTD state, the state machine transitions to this state.

− TS COMMRDY: After the state machine transitions to this state, the communica-

tion may happen with the peer process. The associated virtual connection of

this socket connection is notified that sends and receives may happen now on

this socket connection.

− TS D QUIESCENT: The state machine transitions to this state when one of the

following events takes place: a socket connection is found to be a duplicate, an

error in the socket, the peer closing the socket, and closing of the associated

virtual connection.

We have written a handler function for each state of the state machine. This

handler function is called by the polling loop of the progress engine for each of the

socket connections when one of the requested events (such as reading or writing or

both) for the socket connection has occurred. The typical work of the handler function

of each state is to execute the defined action, and, if necessary, move the state machine

to the appropriate state. The tasks of each of the handler functions are as follows:

− Handler TS CLOSED: This handler function gets called for both the connect-side

and the accept-side of the state machines. When the virtual connection layer

tries to establish a network connection, it requests the TCP module to create

a connection to the remote process; the TCP module creates a socket and

connects to the remote process. When this happens, the state machine of the

connection moves from the TS CLOSED to TC C CNTD or TC C CNTING depending

on whether the socket is immediately connected to the peer or not. Similarly,

when the listener socket accepts a new connection, the state machine of the

accepted connection transitions from this state to TA C CNTD.

35

− Handler TC C CNTING: In this state, the socket descriptor is polled for both

reading and writing. If the socket becomes readable or writable and there is no

error, then the state machine is moved to TC C CNTD. If there are any errors on

the socket, then the state machine moves to TS D QUIESCENT state.

− Handler TC C CNTD: We check whether there is any other connection in the

connection table either in the TS COMMRDY or the TA C RANKRCVD state. If

such a connection is found, then we transition this socket connection to the

TS D QUIESCENT state. We will see why this is done. If another connection in

the table is already in the TS COMMRDY state, then it is evident that this network

connection need not be considered any further; it can be considered a duplicate

and closed. If another connection in the table is already in the TA C RANKRCVD

state, we consider that connection to be in a more advanced state already; this

connection can be closed.

If such an existing connection is not found in the table, we poll whether the

socket is writable. If it is not writable, then nothing is done and the state

machine continues to remain in its current state. If it is writable, then we send

the identification information to the remote peer process of this connection and

the state machine is transitioned to the TC C RANKSENT state. The identification

information includes only the rank of the process if the remote process is in the

same process group; otherwise, it includes both the rank and the process group

id.

− Handler TC C RANKSENT: The socket descriptor is polled only for its readability

in this state; if it is readable, we read a packet from the socket. If we received an

ACK packet from the peer, the virtual connection is notified that an associated

network connection is ready for communication, and the state machine moves

36

to the TS COMMRDY state; if we received a NAK packet instead from the peer, the

state machine moves to the TS D QUIESCENT state. We will explain the peer

sending ACK versus NAK in the Handler TA C RANKRCVD function. If there are

any errors in the socket or the peer has closed the socket connection, then we

transition from this state to the TS D QUIESCENT.

− Handler TA C CNTD: The socket connection is checked for readability. If there

are any errors in the socket, state machine goes to the TS D QUIESCENT state.

If there is no error and the socket is not readable yet, we choose to remain

in this state. On the other hand, if the socket becomes readable, we receive

the identification information. Based on the rank and process group ID of the

peer, the virtual connection is obtained and the socket connection and virtual

connection are associated with each other. The state machine transitions to the

TA C RANKRCVD state.

37

Listing IV.1 Algorithm to resolve duplicate connections
/*

This algorithm is executed only in the TA_C_RANKRCVD state

of the state machine of a connection. Let ’s assume the

algorithm is called from the state machine handler of the

connection ’A’ and assume another connection called ’B’

exists already in the socket connection table that is in

TS_COMMRDY state or TC_C_RANKSENT state.

Note: PGID: Process Group ID , RANK: Rank of the process in

MPI_COMM_WORLD

*/

procedure ResolveDuplicates ()

{

if ’B’ is in TS_COMMRDY {

’B’ wins;

}

else if (’B’ is in TC_C_RANKSENT state) {

if (the peer of ’A’ is in the same process group) {

if (RANK of this process > RANK of the peer of ’A’) {

’A’ wins;

} else {

’B’ wins;

}

}

else if (the peer of ’A’ is in a different process group)

{

if (PGID of this process > PGID of the peer of ’A’) {

’A’ wins;

}

else {

’B’ wins;

}

}

}

}

− Handler TA C RANKRCVD: The socket descriptor is polled to see whether the

socket is writable. If there are any errors in the socket or it is closed by the

peer, then we move it to TS D QUIESCENT state. We call the socket connection

38

of the current state machine A. If there is no error in the socket and the socket is

writable, then we check whether there is any connection in the connection table

that is either in the TS COMMRDY or the TC C RANKSENT state. If such a connection

is found, we call this connection B. We call the algorithm ResolveDuplicates

in Listing IV.1 and the algorithm determines whether A wins or B wins. If such

a connection itself is not found in the table, then clearly A wins. If A wins, then

we send an ACK packet to the peer and the state machine moves to TS COMMRDY

state; if B wins, then we send a NAK packet to the peer and the state machine

moves to TS D QUIESCENT state.

− Handler TS COMMRDY: This is the state in which the associated virtual connec-

tion can send and receive MPI messages. If the socket descriptor is writable, this

state handler sends the queued messages in the virtual connection; if the socket

is readable, this handler receives the messages from the peer. When the virtual

connection is terminated, this state machine transitions to the TS D QUIESCENT

state. If there are any errors in the socket while receiving or sending, then the

state machine enters the TS D QUIESCENT state as well.

− Handler TS D QUIESCENT: If the virtual connection is terminated and messages

are in the send queue and the socket is writable, those outstanding messages

are sent and then the socket is closed; if there are any socket errors, or if the

peer has closed its socket, then this socket is closed as well. Then, the state

machine is moved to TS CLOSED.

The key task our state machine performs is resolving the head-to-head situations

that may occur in the on-demand connection establishment scheme. The requirement

to use non-blocking sockets for the TCP network module made the state machine de-

sign more complex for the reasons explained earlier in the section. We had to be

39

careful with some of the implementation specific details in using non-blocking sock-

ets, as different Unix and Linux implementations have slightly different behaviors,

in the areas of readability, writability, and error handling of sockets, which made it

more difficult to arrive at a portable design and implementation. The original design

of the state machine looked plausibly correct when manually tracing individual tran-

sition paths in the connect-side and accept-side state machines. The total machine,

however, is complex enough that such “pen tests” were not sufficient to assure us of

its correctness.

40

CHAPTER V

FORMAL VERIFICATION OF DESIGN

The old implementation of the TCP module in MPICH2 before Nemesis was intro-

duced, called the sock channel, had several issues related to reliability and robustness.

This was because of the complexity of the connection establishment scheme and inter-

actions with the upper layers, the virtual connections. As the complexity of the entire

system grew, the original implementation did not cater to it. Problems that occur

rarely, due to the race conditions occurring in a multi-tasking or distributed environ-

ment, cannot be reproduced reliably in test laboratories. Such defects are referred to

as heisenbugs , as there are uncertainties in trying to reproduce them. For instance,

an attempt to to understand a defect by instrumenting the source code containing the

defect, may cause the defect to disappear or not manifest, due to changes in timing.

Such heisenbugs were primarily affecting the reliability of the sock channel.

The TCP network module — developed for the Nemesis channel in MPICH2

— was designed carefully. The implementation underwent functional testing, and

system testing, however, in order to ensure the reliability and robustness of the new

TCP module, we decided to formally verify the design of the state machine of the

new TCP module.

A. Need for Formal Verification

Software bugs are very costly. According to a federal study done in 2002 [30], cost of

software bugs to the U.S. economy was estimated to be $59.5 billion each year, with

more than half of the cost borne by end users and the remainder by developers and

vendors. David Rice, the author of the book titled “Geekonomics: The Real Cost of

Insecure Software,” states in the book [31] that shoddy software cost the US roughly

41

$180 billion in 2007 alone. Today, it is likely that software bugs cost substantially

even more. The federal study [30] also reports that increasing test coverage could

reduce only one third of this cost, and it will not eliminate all software errors.

It is widely understood that the cost of identifying and fixing software defects

increases at later and later stages of the software development life cycle. The results

of a study done by Walter Bazuik [32] and another one done by Barry Boehm [33],

shown in Table II, illustrate the order of magnitude it costs to fix a software bug as

a project matures.

Table II. Relative cost of fixing bugs in different stages of software development.

Life Cycle Stage Bazuik study Boehm study

Requirements X X

Design 3X–6X

Coding 10X

System Testing 90X 15X–40X

Installation Testing 90X–440X

Acceptance Testing 440X 30X–70X

Operation and Maintenance 470X–880X 40X–1000X

Even though the software industry is aware of the high cost of fixing defects

at later stages of software life-cycle, defects still slip through to these phases. For

example, according to Tony Hoare, a researcher at Microsoft’s Cambridge laboratory,

up to three-quarters of the $400 billion spent annually to hire programmers in the

United States is ultimately spent on debugging [34]. Therefore, techniques to ver-

ify the design before or during implementation (coding) stage should be used when

42

possible.

Although testing remains the most commonly used tool to uncover software de-

fects, testing has its drawbacks. Dijkstra says, “Program testing can be used to show

the presence of bugs, but never their absence.” Ideally, it would be possible to prove

the absence of defects in software programs. Indeed, theorem provers and model

checkers can, in certain cases, achieve this. In this thesis, we apply model checking

to ensure the correctness of the design and implementation.

A study, given in the book titled “Programming Productivity” and reproduced

in Table III [35], shows the observed efficiency of different defect removal methods.

We can see that modeling or prototyping is one of the highly efficient techniques to

remove software defects.

1. Complications in Concurrent Software Verification

Concurrency (multi-tasking) makes traditional testing techniques and manual code

inspection grossly inadequate to gain confidence in the correctness of even seemingly

not-so-complex software systems of modest size. To see why this is, consider the

number of possible thread interleavings in a few simple programs with only a few

threads. Assume two threads each executing four atomic units of code. The number

of different possible thread interleavings is

(
8

4

)
×

(
4

4

)
= 70. Assume three threads

each executing four atomic units of code. The number of possible thread interleavings

in this case is

(
12

4

)
×

(
8

4

)
×

(
4

4

)
= 34, 650. Finally, with three threads and eight

atomic units of code, the number of thread interleavings reaches 9, 465, 511, 770.

As the number of lines of source code increases and the number of threads in-

creases, the number of thread interleavings increases exponentially. Today, even sim-

ple multi-threaded software systems easily spawn dozens of threads — that span

thousands of atomic units of code; therefore, the number of possible interleavings

43

Table III. Efficiency of several software defect removal methods.

Removal Step Lowest(%) Modal(%) Highest(%)

Personal checking of design or docs 15 35 70

Informal group design reviews 30 40 60

Formal design inspections 35 55 75

Formal code inspections 30 60 70

Modeling or prototyping 35 65 80

Desk checking of code 20 40 60

Unit testing(single modules) 10 25 50

Function testing(related modules) 20 35 55

Integration testing(full system) 25 45 60

Field testing(live data) 35 50 65

Cumulative efficiency 93 99 99

becomes astronomical. The mapping from expressions and statements in the source

language to atomic units of execution is commonly quite complex. If we add processor

and operating system features such as pipelining, prefetching, cache-snooping, false

cache-sharing, mutexes, semaphores, spinlocks, memory barriers, interrupt handlers,

signal handers, user-kernel transitions, etc. to the mix, understanding the possible

interleavings due to concurrency gets spectacularly difficult. It is thus evident that

the confidence for the correctness of a software system that can be gained purely with

testing and code inspection remains low.

Gerard Holzmann states that the lack of observability, controllability, and time

are the main issues in testing a concurrent system [15]. It is very difficult, if not

44

impossible, to visualize the data access patterns, process scheduling decisions, and

precise interleaving of events that occur in physically distinct systems. Even if this

can be done, a tester cannot control many aspects of execution in a concurrent system,

for instance, thread or process interleaving — that is controlled typically only by the

operating system scheduler. This leads to defects that cannot easily be reproduced,

but will nevertheless manifest in a production environment. Sometimes, these envi-

ronments could be a rocket, Mars pathfinder [36], or the Large Hadron Collider [37].

Since the number of thread interleavings grows exponentially in the concurrent soft-

ware applications, even coming up with novel ideas to force the race conditions to

occur in order to improve test coverage, although not practical in most cases, could

take several man years, and such attempts may only turn out to be futile. The

aforementioned reasons suggest that the role of formal specification and verification

techniques for ensuring the correctness of concurrent programs is important, more so

than for sequential programs.

B. Introduction to Model Checking

In the above section, we saw that standard testing techniques do not suffice if we de-

sire high confidence that a software system — especially a distributed or concurrent

system — is correct. One cannot prove that a system is correct in any absolute sense.

One can only prove that a system does (or does not satisfy) certain specific proper-

ties [15]. There are two well-known techniques to check the correctness properties of

a system.

− Deductive proof : The basic idea of this technique is to come up with rigorous

mathematical argument — based on the axioms, proven theorems, and rules of

inference — that proves a property, or absence of a property in a system.

45

− Model checking: The fundamental principle of this technique is to explore

all possible system executions exhaustively, and check whether a correctness

property holds.

Deductive methods — introduced by Hoare [38] — can be used to prove that

the execution of a program produces an output that satisfies a property expressed

in formal logic. Amir Pnueli, et al. extended these deductive systems to distributed

systems [39]. While deductive methods are appreciated by mathematicians, even

experienced mathematicians find it challenging to model a fairly simple distributed

system. Edmund Clarke says that though he is very familiar with constructing proofs

by hand using Floyd-Hoare style logic and a formal system for reasoning about con-

ditional critical regions, task of proof construction is not only tedious but also makes

him quite skeptical about the scalability of hand-constructed proofs [40].

On the other hand, the alternative technique is to build a simplified model of

the original distributed system preserving the essential characteristics of the actual

system and then verify this model. The tool with which a design model can be verified

is called model checker, and the technique is called model checking. Edmund Clarke

and Allen Emerson [41], the inventors of model checking, say, “Model checking is

an automated technique that, given a finite-state model of a system and a logical

property, systematically checks whether this property holds for (a given initial state

in) that model.” Though mathematicians might consider this approach inelegant as

this technique is about exploring all the possible states to prove the correctness,

computer scientists consider this practical to verify a program automatically [42].

1. Model Checking and Model Checker

The formal definition of the model checking problem is the following [40]:

46

Let M be a Kripke structure (i.e., state-transition graph). Let f be a formula of

temporal logic (i.e., the specification). Find all states s of M such that

M, s |= f.

The inputs to a model checker are a model of the program to verify and a

correctness property. The model checker constructs two non-deterministic finite state

automata — one for the model and one for the negation of the property. If it finds an

input string that matches both the finite state automata, then the model checker has

found a violation of the property and flags an error. If it cannot find such an input

string, then the property is satisfied in the model. The challenge for the model checker

is to explore exhaustively all the states of the program; this problem is known as state

space explosion, and it suffers from both space and time complexity. However, model

checkers have been evolving for a few decades, and the modern model checkers are

smart in pruning the state space and marking the already visited states to reduce

the space and time complexity, and thus making them extremely useful to check even

fairly complex models.

Model checking has a number of advantages compared to other verification tech-

niques such as the deductive proof method or automated theorem proving. Some of

these advantages, according to Edmund Clarke [40], are given below:

1. The user of a model checker does not need to construct a correctness proof.

In principle, all that is necessary is for the user to enter a description of the

program to be verified and the specification to be checked and run the model

checker tool. The checking process is automatic.

2. Using rigorous methods such as proof checkers (or theorem provers) may require

months of the user’s time working in interactive mode. However, it takes less

time to develop a model for checking with a model checker tool.

47

3. If the specification is not satisfied, the model checker will produce a counterex-

ample execution trace that shows why the specification does not hold. It is

impossible to overestimate the importance of the counterexample feature. The

counterexamples are invaluable in debugging complex systems. Some people

use model checking just for this feature.1

4. It is not necessary to specify the entire program before beginning to check the

properties of a model. Thus, model checking can be used during the design of

a complex system. The user does not have to wait until the design phase is

complete.

5. Temporal Logics can precisely and succinctly express many of the properties

that one commonly wants to prove about concurrent systems.

To verify the state machine for establishing on-demand connections developed in

this thesis, we use the SPIN model checker. SPIN, acronym for “Simple Promela IN-

terpreter,” is a state-of-the-art model checker developed by Gerard Holzmann at the

Bell Labs which is used not only in academia but also widely in the industry for model

checking concurrent programs. SPIN was recognized with the most prestigious “Soft-

ware System Award” by the ACM (Association for Computing Machinery). SPIN is

also an efficient model checker and has been growing from 1991 until today with new

features and bug fixes.

C. Introduction to PROMELA

PROMELA, acronym for “PROcess MEta LAnguage”, is the language used to write

design models that can be checked by the SPIN model checker. This section briefly

1We will discuss later in this chapter how this feature is used.

48

reviews PROMELA and SPIN; for more detailed description, we refer to the book,

“The SPIN Model Checker,” [15] the authoritative guide for SPIN.

1. Datatypes

PROMELA supports some primitive statements like the C language. It supports

numeric datatypes such as bit, bool, byte, short, int, and unsigned. The data

type bool and the values true and false are just syntactic sugar for the data type

bit and the values 1 and 0. All variables, defined global or local, are initialized to

0 by default. PROMELA does not support the data types character, string, and

floating point. byte can be used instead of the character data type and printf

supports “%c” to print characters. The floating point and string data types are

intentionally omitted as one would typically not require them in a modeling language,

and numerical values are sufficient to model a system and verify it. PROMELA does

not have any explicit type conversions; all values are implicitly converted to int for

all arithmetic operations.

The datatype mtype can hold symbolic values; mtype declarations are usually

placed in the beginning of the specification, and merely enumerates the symbolic

names used in the model, for instance, as follows:

mtype = {ini , ack , dreq , data , shutup , quite , dead};

Because of the restriction of the value range of this type, more than 255 symbolic

names cannot be declared in all mtype declarations combined. A special predefined

routine called printm can be used to print the symbolic name of an mtype variable.

User-defined data types are also supported in PROMELA, same as C, with the

keyword typedef as below:

typedef tMsg {

mtype msg_id;

int rank;

49

};

2. Processes

A SPIN model is commonly used to describe the behavior of a system that has

concurrently executing processes. The primary unit of execution in a SPIN model is

a process, and not a C-style function. The keyword proctype is used to specify a

process:

active [2] proctype proces () {

printf("Welcome to SPIN. My ID is %d\n", _pid)

}

The keyword active indicates that a process must be instantiated from the proctype

declaration that follows, and the number two in the square brackets specifies the

number of processes that must be launched. pid is a reserved keyword that gives

the process identifier which can be used for debugging a model. If active is not

specified in proctype declaration, then the process(es) must be instantiated with

the run operator from another process. There is a special process declared with the

keyword init which is the first process that gets instantiated if it exists. Note that

there is no “;” at the end of the printf statement in the above listing; semicolon is

defined as a statement separator and not as a statement terminator in PROMELA.

3. Message Channels

Message channels are the language constructs that help to model the exchange of

data between processes.

chan qname = [2] of {mtype , int}

In the above declaration, chan introduces the channel declaration; qname is the name

of the channel that is capable of storing two messages, and each message consists of

two fields, mtype and int.

50

The statement

qname!expr1 , expr2

enqueues a message with the values of the two expressions at the end of the channel

qname. By default, the send statement is only executable if the target channel is not

full; it blocks otherwise.

The statement

qname?var1 , var2

removes a message from the head of the channel and stores values from the fields of

the message into the corresponding variables. The receive statement is executable

only if the source channel is not empty.

Some or all the arguments in the receive statement can be given as constants

instead of variables:

qname?const1 , var2

In the above case, only if the value of all the message fields specified as constants

matches the values of the corresponding fields in the message that is to be received,

the receive statement becomes executable. If we want to use the current value of the

variable itself as a constant, then we can use the predefined function eval as follows:

qname?eval(var1), var2

The statements that send or receive messages from a channel are called I/O state-

ments.

PROMELA supports a few predefined boolean functions full, empty, nfull,

and nempty that can be used to test the emptiness and fullness of the channel. len

is a function that returns the number of messages stored in the channel.

In certain cases, we may want to check whether a send or receive operation

would succeed without actually executing it. This can be achieved by changing the

channel operations discussed above into side effect free expressions. For example, the

51

expression

(state == CONNECTED && qname ?[connect_request])

is true when the first condition evaluates to true and the particular receive operation

can be executed; however, the actual receive operation itself is not executed when

evaluating this expression. The second condition in the above statement is known as

poll operation on the channel.

There is a special form of message communication protocol called rendezvous

message passing, also known as synchronous communication. This can also be mod-

eled using PROMELA by specifying the channel capacity as zero:

chan rendez_chan = [0] of {byte}

In other words, messages can only be passed between processes using the channel,

but they cannot be stored. Therefore, rendezvous communication can happen only

between two processes:

4. Rules of Executability and Control Flow

The definition of PROMELA is based on its semantics of executability, which is sig-

nificantly different from any of the mainstream languages. In a PROMELA model of

a system, every statement is either executable or unexecutable (also called blocked) at

any given state. If and only if a statement evaluates to the boolean value true, that

statement is executable. Otherwise, it is blocked until the statement is evaluated

to true by the progress of the other process(es) in the system. For example, the

statement

(state == connected);

blocks until state becomes connected. Since a blocking statement may have to be

evaluated several times before it becomes executable, expressions in PROMELA must

be free of side-effects.

52

The interesting and nonintuitive aspect in PROMELA is that the expressions

can be used as statements in any context. For instance, when the expression

(state == CONNECTED && qname ?[connect_request])

is used as a statement, the process executing the statement will block until the state-

ment evaluates to true. The expressions when used as statements are referred to as

expression statements.

An execution sequence in PROMELA is a sequence of statements in a selection

or repetitive statement. The selection structure in PROMELA contains one or more

possible execution sequences; each preceded by a double colon. A sequence can be

selected only if its first statement is executable. First statement is therefore called

the guard of the option sequence.

if

:: (state == COMM_READY) -> option1

:: (state != COMM_READY) -> option2

fi

If only one of the sequences is executable, that sequence will be executed. In the

above example, only one of the guards will always be executable; however, this need

not be true. If all the guards are unexecutable, the process will block until at least of

one of the guards becomes executable. If more than one guard is executable, one of

the sequences will be chosen non-deterministically. A special guard called else can

be used in the selection sequence which will become executable only if none of the

other guards is executable, for instance:

if

:: (state == CONNECTED) -> option1

:: (state == COMM_READY) -> option2

:: else -> option3

fi

Another statement called skip — that always evaluates to true — is a syntactic

sugar for true. The arrow symbol “→” is just another name for the semicolon that

53

differentiates a guard from the other statements in a sequence. Otherwise, guards are

simply normal PROMELA statements.

The repetitive statement is called the do statement:

do

:: (state == CONNECTED) -> option1

:: (state == COMM_READY) -> option2

:: else -> break

od

The do statement contains one or more execution sequences, each preceded by a

double colon. The semantics of it is very similar to the selection structure explained

above except that the control goes back to the start of the loop after executing any one

of the statement sequences. For breaking out of a repetition structure, PROMELA

offers the break statement, similar to that in C. For unconditional jumps, PROMELA

supports a goto statement.

D. Introduction to Verification using SPIN

The correctness properties that need to be verified in a distributed system can be

classified primarily into two categories: safety and liveness properties. Safety is about

proving that nothing bad ever happens in the system. Liveness is about proving that

something good eventually happens in the system. In other words, safety is usually

designed as a set of properties that a system must not violate, while liveness is defined

as a set of properties that a system must satisfy [15]. Consider the classical critical

section problem where multiple processes try to enter a critical section and mutual

exclusion of processes must be satisfied. A safety property may be defined as “make

sure that there is always at most one process in the critical section.” A liveness

property may be defined as “if many processes try to enter a critical section, one

process eventually enters the critical section.”

54

1. Verification of Safety Properties

There are three ways to verify safety properties using SPIN.

− Assertions: Assertions in PROMELA are similar to the assertions in the main-

stream programming languages. Statements of the form

assert(num_procs_in_critsec <= 1);

are called basic assertions in PROMELA. Basic assertions are always exe-

cutable; and, they are side-effect free. If an assert statement evaluates to

false, then SPIN triggers an error message.

− Built-in Safety Verification of SPIN: Some correctness properties of a dis-

tributed system need not be stated explicitly but are expected to be verified by

SPIN. One such property, for instance, is that the processes in the system reach

the valid end-states (i.e., processes do not deadlock or hang). SPIN’s built-in

safety verifier can verify that such safety properties are satisfied.

SPIN expects all processes to reach the end of their proctype body (the final

curly brace) by default. However, some processes (for example, server processes)

do not reach the end of the proctype body but are possibly in a wait-state in the

loop (for example, waiting to service a client) — which is correct by design and

must not be considered an invalid end-state by SPIN. Therefore, PROMELA

allows specifying user defined end-states (through the use of labels that are

prefixed with “end”) that are honored by SPIN as valid end-states.

− LTL and never claims: There is often a requirement to verify that some

invariants are satisfied in all possible states. These invariants can involve more

than one process. One way to verify such invariants using SPIN is to have an

additional process that asserts the invariant. For example, in the code snippet

55

shown in Listing V.1 where two processes try to enter and leave a critical section,

a Watchdog process is created to make sure that the number of processes in the

critical section is always less than or equal to one.

Listing V.1 Critical section.
int lock = 0;

int num_procs_in_cs = 0;

active proctype P()

{

l1:

do

::

enter_cs(lock);

l2:

num_procs_in_cs ++;

num_procs_in_cs --;

leave_cs(lock);

l3:

skip;

od

}

active proctype Q()

{

do

:: enter_cs(lock);

num_procs_in_cs ++;

num_procs_in_cs --;

leave_cs(lock);

od

}

active proctype Watchdog ()

{

assert(num_procs_in_cs <= 1);

}

Though the above technique with a special process works to verify system in-

variants, SPIN allows a more elegant way to verify the properties using never

claims. A never claim is normally used to specify a finite or infinite system

56

behavior that should never occur [15]. A never claim can be thought of a spe-

cial process that checks a property before and after each execution step of the

entire system. For verifying an invariant like the one defined in the Watchdog

process in Listing V.1, the special claim process simply checks for the invariant

in every step of execution and flags an error if the property is violated in any

step of the execution. The code snippet below shows the never claim that can

obviate the Watchdog process.

#define p (num_procs_in_cs <= 1)

never n1 { /* ![] p */

start:

if

:: (1) -> goto start

:: (!p) -> goto accept_all

fi;

accept_all:

skip

}

SPIN flags an error if the never claim reaches a state that is labeled with the

prefix accept.

Never claims for complex properties are not easy and intuitive to write; however,

the complex properties can be easily written as claims in Linear Temporal Logic

(LTL). For example, the claim sf1 says that p must be always true. The

symbol [] is read as always in LTL. We postpone the discussion of LTL itself

to Section 3.

Listing V.2 Safety property in critical section.
#define p (num_procs_in_cs <= 1)

ltl sf1 { [] p }

57

2. Verification of Liveness Properties

While verifying safety properties of a logic model is important, safety properties could

simply be vacuously true in a model that does not do anything useful. For instance,

in the critical section problem — shown in Listing V.1 — the safety property using

Watchdog process, the never claim n1, or the LTL claim sf1 could simply be satisfied

in an erroneous solution where no process ever enters the critical section. Therefore,

we need to verify liveness properties of a system. Liveness properties can be written

using never claims or LTL claims. We show a few liveness properties in LTL for the

critical section problem in Listing V.3.

Listing V.3 Liveness properties in critical section.
#define try_cs (P@l1)

#define in_cs (P@l2)

#define out_of_cs (P@l3)

ltl lv1 { [] (try_cs -> <> in_cs }

ltl lv2 { [] (in_cs -> <> out_of_cs) }

“<>” is read as eventually and “->” is read as implies. The LTL claim lv1 states

that “If process P tries to enter a critical section, it eventually does so”; the LTL

claim lv2 states that “If process P is in a critical section, it eventually leaves the

critical section.” To appreciate the brevity of LTL claims over never claims (and

ease of writing LTL claims), we show the never claim for the LTL property lv1 in

Listing V.4.

Listing V.4 never claim for property lv1.
never { /* [] (p -> <> q) */

T0_init:

if

:: (((! ((p))) || ((q)))) -> goto accept_S20

:: (1) -> goto T0_S27

fi;

58

accept_S20:

if

:: (((! ((p))) || ((q)))) -> goto T0_init

:: (1) -> goto T0_S27

fi;

accept_S27:

if

:: ((q)) -> goto T0_init

:: (1) -> goto T0_S27

fi;

T0_S27:

if

:: ((q)) -> goto accept_S20

:: (1) -> goto T0_S27

:: ((q)) -> goto accept_S27

fi;

}

3. Linear Temporal Logic

Temporal Logic is a branch of logic that extends propositional calculus [43] with some

temporal operators. This logic allows the formalization of safety and liveness prop-

erties, and is thus useful for verifying the correctness of a distributed system. There

are several forms of the temporal logic; SPIN uses the one called Linear Temporal

Logic (LTL) [15,44]. The operators supported in LTL are given in Table IV.

LTL operators operate on the propositional symbols. The propositional symbols

in LTL are boolean expressions that can be evaluated in any state of the verification of

the model. For instance, p in Listing V.2 and try cs, in cs, and out cs in Listing V.3

are propositional symbols.

Even though LTL claims are much easier to write than never claims, LTL claims

are less expressive than never claims (i.e., all never claims cannot be expressed as

LTL claims, but the converse is true); however, most of the interesting properties can

indeed be specified in LTL for most of the model checking use cases. SPIN internally

59

Table IV. LTL operators.

Operators Math SPIN

not ¬ !

and ∧ &&

or ∨ ||

implies → ->

equivalent ↔ <->

always � []

eventually ♦ <>

until ∪ U

converts LTL claims to never claims before verification.

4. Model Abstraction

SPIN not only supports design abstractions, it requires them [15]. The purpose of

SPIN is to verify concurrent applications. In a PROMELA model, the focus is on

the control aspects of the applications, not the computational aspects. In order to

make sure that the models specified in PROMELA always have effectively verifiable

properties, two requirements are imposed [15]:

− the model can specify only finite systems, though the underlying application is

potentially infinite.

− the model must be fully specified, that is, it must be closed to its environment.

A program that allows unbounded recursion is not finite. A program that reads

input from a file or stream is not closed to its environment. For most of the practi-

60

cal software applications, the aforementioned conditions are not automatically met.

Therefore, we have to apply abstraction to construct SPIN models. Holzmann rec-

ommends the following steps to develop a verification model [15]:

− The aspects of the design — that are important and require verification —

should be determined, and should be expressed as a set of system requirements.

The requirements must be testable.

− The essence of the design itself — specifically the aspects of the design that

help the system meet its requirements — should be considered.

− An executable abstraction in PROMELA, also known as the model, should be

constructed. The model should be detailed enough to capture the essence of

the design or implementation, and no more.

The verification model must allow us to make refutable statements about the

design. Therefore, aspects of a model that do not contribute to refutability can

and should be deleted to enhance the verifiability [15]. Holzmann further stresses

the need for building a smallest sufficient model using efficient abstraction because

the computational complexity remains the single most challenging issue for model

checkers, even though the model checkers have evolved significantly, and computers

have got orders of magnitude faster in the past two decades [15].

5. Property-based Slicing

We briefly review the definition of program slicing as given by Frank Tip [45] here

before discussing SPIN’s slicing techniques: A program slice consists of the parts of

a program that (potentially) affect the values computed at some point of interest.

Such a point of interest is referred to as a slicing criterion and is typically specified

61

by a pair (program point, set of variables). The parts of a program that have a

direct or indirect effect on the values computed at a slicing criterion C constitute

the program slice with respect to criterion C. The task of computing program slices

is called program slicing. Details on different types of program slicing and different

techniques and algorithms in program slicing can be found in [45].

Holzmann’s informal definitions of logical completeness and logical soundness of

an abstraction are as follows [15]: “An abstraction is logically sound if it excludes the

possibility of false positives. The correctness of the model always implies the correct-

ness of the program. An abstraction is logically complete if it excludes the possibility

of false negatives. The incorrectness of the model always implies the incorrectness of

the program”. The formal definitions of logical soundness and logical completeness

can be found in [15].

An abstraction method that guarantees both logical soundness and logical com-

pleteness with respect to a given LTL property is called selective data hiding [15].

For using this method, a set of data objects that are irrelevant to the property —

that needs to be proved — should be identified and removed from the model together

with all the associated operations on those data objects. Using a simple version of

the program slicing algorithm, this abstraction method is automated in SPIN.

The simple version of program slicing algorithm built into SPIN does the fol-

lowing [15]: a set of slice criteria is constructed including only the data objects that

are referred to explicitly in one or more correctness properties defined using either

assertions or LTL formula. Through data and control dependency analysis, the al-

gorithm determines on which larger set of data objects the slice criteria depend for

their values. All data objects that are independent of the slice criteria, and not con-

tained in the set of slice criteria themselves, can then be considered irrelevant to the

verification and thus can be removed from the model, together with all associated

62

operations. This technique is referred to as property-based slicing.

Applying the property-based slicing on a model, SPIN reports two types of feed-

back about the model:

− Redundancies in the model: Property slicing algorithm in SPIN reports

the redundancies (lines of code and variables) found in the model for the given

LTL property or properties (and assertions) in the model. If redundancies were

found in the model, it helps with verification in different aspects. If a model is

too complex to verify due to constraints such as time or memory usage, then

the model can be simplified by removing redundant variables and code for the

given property and the simplified model can be verified for the given property.

This can be repeated for different properties that need to be verified.

If the same lines of source code are reported as redundant by the property slic-

ing algorithm for all the properties that need to be verified in a model, then it

could imply that the model could be simplified by removing the redundant lines

of code. However, there is a caveat: the redundant lines of source code reported

by SPIN are not provably completely irrelevant and thus cannot be automati-

cally removed without manually examining them and ensuring their necessity.

The reason is the following: Although, property-based slicing can be shown

to preserve both logical soundness and logical completeness of the correctness

properties that are used in deriving the abstraction, it does not necessarily have

these desirable properties for some other types of correctness requirements that

cannot be expressed in assertions or LTL formulae. An example of such a prop-

erty is “absence of deadlock” [15]. Therefore, the designer should be careful

about removing redundant lines of code in the model; the original model can

suffer from deadlocks even though the simplified model does not.

63

− Less-restrictive data types: SPIN recommends using less-restrictive data

types, if possible. For instance, SPIN recommends using byte instead of int.

Less-restrictive data types help with reducing verification complexity; for in-

stance, the size of the state vector is reduced.

E. Details of Verification of the Model

The key aspect in the design of the on-demand connection establishment scheme is

the state machine explained in Chapter IV. The state machine handlers executing

in two different processes can interleave in several ways, and thus formally verifying

the state machine is essential to gain confidence about the design. Therefore, we

construct a model of the state machine in PROMELA and verify various safety and

liveness properties using SPIN.

1. Extraction of the Model

Abstracting the model from the design is the foundation to “model checking”. A

poor abstraction may either cause frustration during the verification of properties or

may give false confidence about the success of verification. Therefore, we carefully

abstract the PROMELA model from the design of the state machine. As a first step

in abstraction, we map the key aspects of the design to the idioms and constructs of

PROMELA and ignore the other details — that are not relevant to the verification

of the design.

We discussed network programming with sockets in Chapter II and usage of non-

blocking TCP sockets in Chapter IV. The closest PROMELA idiom to exchange data

back and forth is channels. Since the network socket is full-duplex (as discussed in

Chapter II), we need two channels for modeling one network socket. We define a

64

socket using typedef and array of two channels (with a capacity of two messages) as

follows:

typedef tSocket {

chan ch[2] = [2] of {tMsg};

};

In the code snippet in Listing V.5, we show how a server (that accepts a socket

connection) and a client (that initiates a socket connection), such as the program

in Listing II.1, can be modeled in PROMELA.

Listing V.5 TCP client-server using channels.
proctype client(chan con_snd , con_rcv) {

}

proctype server(chan acpt_rcv , acpt_snd) {

}

init {

tSocket sock;

client(sock.ch[0], sock.ch[1]);

server(sock.ch[0], sock.ch[1]);

}

The send-channel of the “connecting” socket — con snd — in the client is used as

the receive-channel of “accepting” socket — acpt rcv — in the server; similarly,

the send-channel of the “accepting” socket — acpt snd — in the server is used as

the receive-channel of “connecting” socket — con rcv — in the client. The variable

sock itself cannot be passed as an argument to the client and the server directly due

to the limitation of PROMELA not allowing either an array or a typedef containing

an array to be passed as an argument to proctype. PROMELA also requires that

typedef must be defined globally and not in the process context.

We reviewed in Chapter IV that, in the on-demand connection scheme, each

65

MPI process can initiate a connection to another MPI process and can accept a

socket connection from another MPI process simultaneously. Therefore, we model two

processes each trying to connect to the other and accept connection from each other.

Both the processes execute the same state machine in the MPICH2 implementation.

Therefore, we define one process called NetModSM to represent the state machine of

the TCP network module of the Nemesis channel, and instantiate two instances of

this process as given in the following listing:

typedef tSocket {

chan ch[2] = [2] of {tMsg};

};

proctype NetModSM(byte id; chan con_snd , con_rcv , acpt_rcv ,

acpt_snd) {

}

init {

tSocket sock [2];

byte proc_id = 0;

run NetModSM(proc_id , sock [0].ch[0], sock [0].ch[1], sock

[1].ch[0], sock [1].ch[1]);

proc_id ++;

run NetModSM(proc_id , sock [1].ch[0], sock [1].ch[1], sock

[0].ch[0], sock [0].ch[1]);

}

As shown in the above listing, we pass a unique ID called proc id as the first argument

to the process NetModSM.

The messages that are exchanged between two processes and the different states

of the state machine (discussed in Chapter IV) are defined using mtype as follows:

mtype = {m_close , m_connect , m_connect_ack , m_rank ,

m_rank_ack , m_rank_nak };

mtype = {TS_CLOSED , TC_C_CNTING , TC_C_CNTD , TC_C_RANKSENT ,

TC_C_RANKRCVD , TS_COMMRDY , TS_D_QUIESCENT , TA_C_CNTD ,

66

TA_C_RANKRCVD };

Message exchanged between processes is defined using the typedef in Listing V.6.

Listing V.6 Type definition of the message.
typedef tMsg {

mtype msg_id;

int rank;

};

The field rank is included in the typedef and hence it is sent and received in every

type of message; however, rank is relevant only in the message type m rank (as

mentioned in the state machine handlers in Chapter IV). Adding an extra field —

that is not needed for messages — does not increase the state-space of the verification.

The other approach would be to send only the msg id (such as m connect) for all

the messages and send another extra message with the rank information only for the

m rank message. This alternative approach adds unnecessary complexity to the model

and increases the verification complexity (increases the state space); in addition, this

would not accurately represent the actual design and implementation where a single

message type is used for m rank. This is an example where adding an unused field in

the message for various types of messages in the model is appropriate in abstracting

the PROMELA model. The downside of this approach is an increase in the size of

the state-vector used by SPIN — which does not pose any practical limitations on

the memory usage of the verification of our model.

As we are modeling two processes each accepting connections and initiating con-

nections, we need to represent the state of both “connecting” socket and “accepting”

socket in both processes. This is defined using an array of mtype — as shown below

in the code snippet — where array index represents the unique proc id that is passed

to NetModSM. Both the “connecting” and “accepting” socket states of both processes

67

are initialized to the TS CLOSED state:

mtype con_state [2] = TS_CLOSED , acpt_state [2] = TS_CLOSED;

We discussed in Chapter II, in the MPICH2 implementation, how a virtual con-

nection at the CH3 layer requests the TCP network module layer to connect to and

disconnect from the remote process. We model these virtual connection and discon-

nection requests, sent from the init process to the state-machine process NetModSM,

using channels. The snippet below shows the channels and the virtual connection

(VC) messages:

mtype = {m_vc_connect , m_vc_disconnect };

chan vc_chan [2] = [2] of {mtype};

In the previous few listings, we have used the datatype mtype to define mes-

sages for the virtual connection and the socket connection, and various states of the

“connecting” and “accepting” sockets. This reduces the readability of the model

as different types of constants are defined with one datatype mtype. User-defined

datatypes can be used to solve this problem. A typedef declaration, however, can-

not be used to define a new datatype for an existing datatype as done in “C”; for

instance, the following is not allowed in PROMELA:

typedef mtype tVCmsg;

tVCmsg = {m_vc_connect , m_vc_disconnect };

Instead, macros in PROMELA can be used to represent user-defined datatypes. We

rewrite various messages and states using macros — to improve readability — as

follows:

#define tVCmsg mtype

#define tNetMsg mtype

#define tNetModState mtype

68

tNetModState = {TS_CLOSED , TC_C_CNTING , TC_C_CNTD ,

TC_C_RANKSENT , TC_C_RANKRCVD , TS_COMMRDY , TS_D_QUIESCENT ,

TA_C_CNTD , TA_C_RANKRCVD };

tNetModState con_state [2] = TS_CLOSED , acpt_state [2] =

TS_CLOSED;

tVCmsg = {m_vc_connect , m_vc_disconnect };

chan vc_chan [2] = [2] of {tVCmsg };

tNetMsg = {m_close , m_connect , m_connect_ack , m_rank ,

m_rank_ack , m_rank_nak };

typedef tMsg {

tNetMsg msg_id;

byte rank;

};

typedef tSocket {

chan ch[2] = [2] of {tMsg};

};

tSocket sock [2];

In the algorithm in Listing IV.1, both PGID (process group ID) and RANK are

used in resolving the duplicate connections. However, taking a closer look at the

algorithm, we can observe that it is sufficient to verify this algorithm only with RANK;

PGID is an implementation detail that does not allow us to make any additional

refutable statements (verification claims) about the model (than RANK by itself) and

thus it does not contribute to the verifiability of the model. Therefore, we have only

included rank in the typedef tMsg as shown in Listing V.6.

We have shown code snippets and illustrated some abstraction aspects of the

PROMELA model from the design and implementation of the state machine. The

complete PROMELA model of the state machine is given in Appendix A. The en-

tire state machine is abstracted in the NetModSM process within a do loop with state

69

handlers as different selection options of the loop. We use the init process to instan-

tiate two instances of NetModSM, and then to send the virtual connection messages

(m vc connect and m vc disconnect) to the NetModSM processes. As we discuss fur-

ther about different verification aspects of the model, we recommend that the reader

refers to the model in Appendix A.

2. Verification of Safety Properties

In this section, we discuss how we use the three different methods (discussed in

Section D) to verify the safety properties.

− Assertions: Assertions are added to ensure that a channel is not full before

sending a message to the channel.

assert(nfull(ch));

ch!msg;

When the “connecting” socket of a process goes to the TS COMMRDY state, the

“accepting” socket of the process must not be in the TS COMMRDY state, and vice

versa. These conditions are asserted as follows:

:: (con_state[id] == TS_COMMRDY &&

(vc_chan[id]?[m_vc_disconnect] || nempty(con_rcv)))

->

assert(acpt_state[id] != TS_COMMRDY);

...

:: (acpt_state[id] == TS_COMMRDY &&

(vc_chan[id]?[m_vc_disconnect] || nempty(acpt_rcv)))

->

assert(con_state[id] != TS_COMMRDY);

...

Even though these assertions are helpful for a sanity check during the devel-

opment of the model, they are not sufficient to prove the correctness because

70

their scope is limited to the specific states they are used (i.e., these assertions

are not evaluated in all the states during verification).

− Built-in Safety Verification of SPIN: The model is verified for the built-in

safety properties — such as invalid end-states. In the state machine resolving

head-to-head resolution of two MPI processes, deadlocked state — where each

process would be expecting a particular message from the other process causing

both of them not to make progress — is an uncommon error. SPIN verifying

the model for deadlock states without any additional user effort (such as writing

claims) is a powerful feature that we exploit.

− LTL and never claims: The algorithm in Listing IV.1 is developed to solve

the head-to-head resolution problems discussed in Chapter III. We need to ver-

ify formally that simultaneous head-to-head connections between two processes

are resolved such that two connections between a pair of processes do not go to

the TS COMMRDY state. Though this property can be verified using an additional

Watchdog process as discussed in Section D, we skip that technique here and

discuss how this property can be verified using more elegant techniques such as

the never claim and the LTL claim.

First, we define some of the commonly used boolean conditions — whether the

“connecting” socket or the “accepting” socket is in the TS COMMRDY state or

the TS CLOSED state — as propositional symbols, which are useful to write the

claims:

#define p (con_state [0] == TS_COMMRDY)

#define q (acpt_state [0] == TS_COMMRDY)

#define r (con_state [1] == TS_COMMRDY)

#define s (acpt_state [1] == TS_COMMRDY)

#define p_ (con_state [0] == TS_CLOSED)

71

#define q_ (acpt_state [0] == TS_CLOSED)

#define r_ (con_state [1] == TS_CLOSED)

#define s_ (acpt_state [1] == TS_CLOSED)

In SPIN, the never claim is meant to match the behavior that should never

occur. We show the never claim below to assert that both the “connecting

socket” and the “accepting socket” (of either of the two processes) do not move

to the TS COMMRDY state:

never n0 {

do

:: ((p && q) || (r && s)) -> break

:: else

od

accept_all:

}

If either (p && q) or (r && s) is satisfied, the never claim breaks out of the

loop, and the claim reaching a label prefixed with accept is identified as a

violation by SPIN during verification. If neither of these conditions becomes

true, then the never claim does not exit out of the loop; this is considered

successful verification of the claim.

The never claim n0 can be written as a LTL claim as follows:

ltl p0 {

[] ((p -> !q) && (q -> !p) && (r -> !s) && (s -> !r))

}

(p → !q) reads “connecting socket of process-0 in the TS COMMRDY state im-

plies that the ‘accepting socket’ of the same process is not in the TS COMMRDY

state”. As a reminder, the symbol ”[]” is read as always. The claim above

asserts that all the four implications are always true. (q → !p) is the contra-

positive of (p → !q). In the propositional logic theory, a statement and its

contra-positive are equivalent [46]. Therefore, the above claim can be simplified

72

as follows:

ltl p0 {

[] ((p -> !q) && (r -> !s))

}

This LTL claim is simpler and more intuitive (as there is no negation of the

property as in the never claim) than the never claim to understand (and to

write). Therefore, in the rest of this Chapter, we use only LTL claims.

3. Verification of Liveness Properties

We verified, in the previous section, the safety property that both the “connecting

socket” and the “accepting socket” do not go to the TS COMMRDY state at the same time

in a process. That property could be satisfied in a flawed model where neither socket

connection goes to the TS COMMRDY state. Therefore, verifying liveness properties such

as “one of the socket connections in each of the two processes eventually goes to the

TS COMMRDY state” is a necessary part of a proof of the correctness of the model. We

review some of the liveness properties we verified in this section.

We developed a few test cases that contain typical situations/scenarios that are

found in real MPI applications and wrote LTL claims for those cases. The simplest

case is that an m vc connect is sent to one of the two NetModSM processes. In this

case, the “connecting socket” of the process — to which m vc connect is sent — and

the “accepting socket” of the other process must go to the TS COMMRDY state.

Listing V.7 Verification of VC-Connect in one process.
init

{

vc_chan [0]! m_vc_connect;

}

ltl p1a {

[] (vc_chan [0]?[m_vc_connect] -> <> (p && s && r_ && q_))

73

}

ltl p1b {

[] <> (p && s && r_ && q_)

}

The LTL claim p1a in Listing V.7 reads: It is always true that if an m vc connect

message is found in the vc chan in process-0, then the propositional state formula (p

&& s && r && q) eventually becomes true. The formula indicates that the “con-

necting socket” of process-0 and “accepting socket” of process-1 go to the TS COMMRDY

state, and, the “connecting socket” of process-1 and the “accepting socket” of process-

0 go to the TS CLOSED state. Since the claim p1a is written for the specific test case,

it can be re-written as p1b in Listing V.7, omitting the conditional part of the impli-

cation (i.e., (vc chan[0]?[m vc connect])).

The important scenarios for which we want to verify the liveness properties in the

model are the head-to-head situations. For instance, when an m vc connect message

is sent to both the NetModSM processes, only one socket in each process should go

to the TS COMMRDY state, and other other socket should go to the TS CLOSED state;

and the corresponding sockets in both the processes (the “connecting socket” in one

process corresponds to the “accepting socket” in the other process) must go to the

same state. The test case and the claims are shown in Listing V.8.

Listing V.8 Verification of VC-Connect in both the processes.

init {

vc_chan [0]! m_vc_connect;

vc_chan [1]! m_vc_connect;

}

ltl p3a {

[] <>((p && s && r_ && q_) || (r && q && p_ && s_))

}

74

ltl p3b {

([] <> (r && q && p_ && s_)) || ([] <> (p && s && r_ && q_

))

} // equivalence of p3a

The claim p3a in Listing V.8 reads: It is always true that eventually either “connect-

ing socket” of process-0 and “accepting socket” of process-1 go to the TS COMMRDY

state (and “connecting socket” of process-1 and “accepting socket” of process-0 go

to the TS CLOSED state) or “connecting socket” of process-1 and “accepting socket”

of process-0 go to the TS COMMRDY state (and “connecting socket” of process-0 and

“accepting socket” of process-1 go to the TS CLOSED state). In different possible ex-

ecution sequences depending on the relative progress of one process over the other,

either the state formula (p && s && r && q) or (r && q && p && s) will even-

tually become true. LTL claim p3b in Listing V.8 is simply an equivalence of LTL

claim p3a, and we show that this claim can be specified as p3a or p3b.

Next, we show a case where an m vc disconnect is issued to process-0 after

both processes move to the TS COMMRDY state (due to a previous m vc connect sent

to process-0):

init

{

vc_chan [0]! m_vc_connect;

(p && s && r_ && q_);

vc_chan [0]! m_vc_disconnect;

}

ltl p4a { [] <> ((p_ && s_ && r_ && q_)) }

The claim p4a shown above for this case verifies that both the socket connections in

both the processes move to the TS CLOSED state eventually. We show a few more test

cases and the corresponding LTL claims for those cases in Appendix A.

75

4. Experiences on Finding and Fixing Defects Using SPIN

Checking the model we developed for the safety and liveness properties described

above helped us to discover defects in our implementation, and in our model. We

discuss in this section our experience with finding one of the bugs and fixing it.

In the prototype of on-demand connection establishment scheme developed in C

and the model written in PROMELA, the first if statement in the algorithm defined

in Listing IV.1 was omitted by mistake. In the functional testing of C implementation,

no defects were discovered. SPIN was very useful for incrementally developing the

model and verifying the specific claims written thus far. Listing V.7 and Listing V.8

show the code for the model and the claims at different stages of development. For

the test case in Listing V.7, where m vc connect is sent to only one NetModSM process,

we found no verification errors for the claims p1a and p1b. However, when the model

was further developed, as in Listing V.8 (where m vc connect is issued to both the

NetModSM processes) and verified, the verification claim p3a failed and created an error

trail. We replayed the error trail using the simulation mode of SPIN to understand

the error in the model.

We used the graphical front-end tool called xSpin (and the newer version called

iSpin) to replay the error trail. One window pane of iSpin shows the complete path

of all the processes, including state number and line number of the model as below:

132: proc 1 (NetModSM) sm.pml :90 (state 149) [acpt_snd!

acpt_msg.msg_id ,acpt_msg.rank]

132: proc 1 (NetModSM) sm.pml :91 (state 150) [acpt_state[

id] = 12]

134: proc 2 (NetModSM) sm.pml :177 (state 50) [(((

con_state[id]== TC_C_RANKSENT)&& nempty(con_rcv)))]

136: proc 2 (NetModSM) sm.pml :178 (state 51) [con_rcv?

con_msg.msg_id ,con_msg.rank]

138: proc 2 (NetModSM) sm.pml :182 (state 54) [((con_msg.

msg_id == m_rank_ack))]

140: proc 2 (NetModSM) sm.pml :183 (state 55) [con_state[

76

id] = TS_COMMRDY]

<<<<<START OF CYCLE >>>>>

spin: trail ends after 142 steps

#processes: 3

142: proc 2 (NetModSM) sm.pml :122 (state 187)

142: proc 1 (NetModSM) sm.pml :122 (state 187)

142: proc 0 (:init:) sm.pml :421 (state 6)

Another window pane shows the values of the global variables as listed below:

acpt_state [0] = TS_COMMRDY

acpt_state [1] = TS_COMMRDY

con_state [0] = TS_COMMRDY

con_state [1] = TS_COMMRDY

The other nice feature of iSpin is the ability for viewing values of variables,

contents of channels, and states of processes, during replay of error trails. From the

output of the final state of all the variables, we can see how the claim p3a defined

in Listing V.8 is violated. Replaying step-by-step and looking at the model at the

specific line numbers of each state, we can easily see what sequence of interleavings

of the two processes leads to the error. xSpin/iSpin has a feature called Message

Sequence Charts(MSC); messages sent and received across channels between processes

are shown graphically with time-line. An example of playing an error tail is shown in

Figure 9. Clicking mouse on the different boxes updates all the other windows such

as variable window, error trail window, and source code listing window. The MSC

feature is extremely useful for understanding errors.

Using the aforementioned techniques, the problem — why the LTL claim p3a

failed — was not hard to spot and reason about. Adding the code snippet (that

moves the “accepting” socket to the TS D QUIESCENT state if the “connecting” socket

in the given process is already in the TS COMMRDY state) to the guard statement for

the TA C RANKRCVD state, as given in the listing below, fixed the error in the model:

:: acpt_state[id] == TA_C_RANKRCVD ->

...

:: con_state[id] == TS_COMMRDY ->

77

Fig. 9. Message Sequence Chart (MSC) of an error trail replay.

78

acpt_msg.msg_id = m_rank_nak;

send_msg_trans(acpt_snd , acpt_msg ,

acpt_state[id], TS_D_QUIESCENT);

...

5. Checking for Redundancies with Property-based Slicing Techniques

We ran the property slicing algorithm of SPIN on our PROMELA model. SPIN did

not report any redundancies for the LTL properties and assertions. Therefore, we did

not have to do any further analysis on redundancies.

SPIN reported a few errors similar to the one shown below:

spin: consider using predicate abstraction to replace:

int x 0 <NetModSM > <variable > {scope _6_}

The datatypes of the reported variables could be defined as more restrictive datatypes

(smaller in size). In the above example, x can be defined as byte or even as bit which

reduces the verification complexity of SPIN. We fixed a few errors like the above. We

also removed some unused variables.

Changing the datatype of proc id and rank from int to byte reduced the size

of the state vector by 100 bytes and total memory usage of SPIN during verification

by a few megabytes. Even though it is not significantly important for verification of

our model, it is good practice to follow the programming idioms and best practices

of the modeling language.

6. Complexity of Verification

In this section, we review the verification complexity of the model of the state machine.

We discussed, in the previous sections, how we developed different test cases and

verified different safety and liveness properties using LTL claims for each of the test

cases. In this section, we analyze the complexity of verification for three sample test

79

cases that are listed in Table V.

Table V. Description of test cases.

Test Description of the test

CASE-1 vc connect in one process

CASE-2 vc connect in both processes

CASE-3 both vc connect and vc disconnect in both processes

The complexity results of verification of a safety property are shown in Table VI, and

the complexity results of a liveness property are shown in Table VII.

Table VI. Verification complexity of a safety property.

Test-case States stored State transitions

CASE-1 75 101

CASE-2 3,267 5,523

CASE-3 21,884 43,507

As can be seen in Table V, CASE-1 is the test case with no head-to-head

resolutions (and thus the simplest one), and CASE-2 is the test case that involves

head-to-head resolutions. The number of state transitions increases from 101 for

CASE-1 to 5,523 for CASE-2 for the safety property; the same increases from 363

to 25241 for the liveness property. We can see how the complexity of the state machine

is multiple orders of magnitude greater for the head-to-head resolution compared to a

no head-to-head situation. The complexity increases even more when a disconnection

sequence follows the connection sequence for CASE-3 in both safety and liveness

80

Table VII. Verification complexity of a liveness property.

Test-case States stored State transitions

CASE-1 146 363

CASE-2 6,257 25,241

CASE-3 43,667 194,834

cases. Such a huge number of states and state transitions of verification indicates

clearly why it is difficult for developers to verify all the possible race conditions with

code inspection, peer reviews, and traditional testing in distributed computing.

Looking at the state machine depicted in Figures 6, 7, and 8, even though the

state machine is not trivial, it does not look significantly complex either. However,

looking at the number of state transitions shown in the Tables VI and VII, we infer

that the complexity of the state machine indeed should not be underestimated.

81

CHAPTER VI

BENCHMARK RESULTS

One of the motivations for developing the on-demand connection establishment scheme,

as discussed in Chapter III, was to reduce the time that MPI Init took in the original

implementation of Nemesis’s TCP module — which had to establish Θ(N2) connec-

tions. In our on-demand connection establishment scheme, MPI Init should take very

little time, as it does not establish any connections. We confirmed this by benchmark-

ing the time taken by MPI Init of the original static connection establishment scheme

and our on-demand connection establishment scheme; we ran our benchmarks on two

desktop computers and a cluster computer. This chapter explains the benchmarking

strategy and reports the results.

A. Benchmark of MPI Init Time

We wrote an MPI program that calls MPI Init and takes time-stamps before and after

this function call. We use the Linux system call gettimeofday that gives us resolution

in microseconds. We use MPI Reduce to compute the maximum of the difference

between the two time-stamps from all the processes at process-0 (that is, process

whose rank is zero). In order to measure the time taken by MPI Init accurately,

we ignore the time to launch all the processes by calling the PMI Barrier function

before recording the first time-stamp. PMI Barrier function is not a standard MPI

function, but rather an MPICH2 implementation function. The standard MPI barrier

function — MPI Barrier — cannot be used, since that function can be called only

after MPI Init.

We use the same project manager, Hydra, for both static and on-demand scheme

implementations in Nemesis to ensure that we precisely measure only MPI Init and

82

remove an additional variable in the benchmarking mechanism. We use the envi-

ronment variable MPICH NO LOCAL to force using the TCP network module between

processes in the same node also (Otherwise, shared memory would be used for intra-

node communication).

We ran the benchmark program with static connection support and on-demand

connection support on two desktop PCs with the following configuration. These two

computers are in the same subnet (i.e., connected to a router/switch). Since there are

only 6 CPU cores (ignoring hyper-threaded cores) in both the computers together,

the cores are oversubscribed (that is, each processor core running more than one MPI

process) when we launch more than 6 processes. The results are shown in Figure 10.

Configuration of Computer-1

Processor : Intel Core i5 2.27 GHz

Number of CPUs : 2

Number of CPU threads : 4 (with Hyperthreading)

Memory : 4 GB

OS : Linux kernel 3.0.0-12

Configuration of Computer-2

Processor : Intel Core2 Quad Q9300 2.5 GHz

Number of CPUs : 4

Number of CPU threads : 4 (no Hyperthreading)

Memory : 3 GB

OS : Linux kernel 3.0.0-12

We also ran the benchmark program on a cluster system called Fusion at Labora-

tory Computing Resource Center in Argonne National Laboratory. Its configuration

is given below. Each node has two quad-core CPUs; eight processes per node are

83

chosen to make sure that no processor core is oversubscribed. The benchmark results

are depicted in Figure 11.

Configuration of Fusion cluster

Processor : Intel(R) Xeon(R) CPU E5540 @ 2.53GHz

Number of compute nodes : 320 (Hyperthreading disabled)

Storage : 200 TB of clusterwide disk: 60 TB GFS and 150 TB PVFS

Memory : 304 nodes with 36 GB of RAM, 16 nodes with 96 GB of RAM

OS : Linux kernel 2.6.18-274.18.1.el5

Network : Gigabit ethernet (Intel Corporation 82575EB Gigabit Network Connection)

We can see from Figures 10 and 11 that in the static connection establishment

scheme the time taken by MPI Init increases quadratically as the number of processes

increases, since Θ(N2) connections need to be established for N processes. In the

desktop case, the time taken by MPI Init is 25 seconds for 230 processes, and less

than a second for up to 60 processes. In the cluster case, MPI Init time is 15 seconds

for 230 processes, 282 seconds for 400 processes, and less than a second for up to 100

processes. We can observe that the time taken by MPI Init is more in the desktop

case than in the cluster case for the same number of processes. This is due to the

following reasons: there are fewer processor cores than the number of processes in

the desktop case and more CPU time is required to establish the connections in

both the MPICH2 library layer and the network stack layer of the operating system;

aspects such as context switch of processes, effect on the cache, page faults during

context-switches also likely contribute to the additional cost in the desktop case as

the processors are oversubscribed.

On the other hand, the cost of MPI Init of the on-demand connection estab-

lishment scheme, however, stays negligible when compared to the static connection

scheme. On the cluster, the time taken by MPI Init is between 118 milliseconds and

84

Fig. 10. Cost of MPI Init of the on-demand and static connection schemes in two

desktop PCs.

85

Fig. 11. Cost of MPI Init of the on-demand and static connection schemes in a cluster.

86

201 milliseconds; the graph of MPI Init time does not follow any pattern as the num-

ber of processes increases. The variability in the MPI Init time is mostly due to the

operating system overhead. In the desktop case, the MPI Init time varies from 262

to 367 milliseconds, but unlike the cluster case, it follows a linear pattern with a very

small slope against the number of processes; this is again due to the oversubscription

of processors.

B. Benchmark of Latency in the On-demand Scheme

We showed in the previous section that we reduced the MPI Init time with the

on-demand connection scheme. However, not creating connections between all the

processes during MPI Init can be expected to cause an increase in the latency of

the first communication between any pair of processes, as the connection has to be

established between the processes before data exchange can happen. The connection

handshake protocol (designed and implemented with a state machine as discussed in

Chapter IV) of the on-demand connection scheme can cause some additional latency

in the connection establishment time between a pair of processes compared to the

static connection scheme, as head-to-head resolutions are likely to happen in the on-

demand connection scheme but never in the static connection scheme. Therefore, we

created benchmarks to measure this latency.

1. Overhead of Connection Establishment in the On-demand Scheme

A ping-pong between two MPI processes is defined as the following: each MPI pro-

cess sends a message to the other MPI process and then receives a message from the

other MPI process. We wrote an MPI program — using the on-demand connection

scheme — where two MPI processes do two ping-pongs. The connection establish-

87

ment between the two MPI processes happen during the first ping-pong; the created

connection is used for the second ping-pong. Therefore, the difference between the

time taken for the first ping-pong and the second ping-pong is the time taken by

the connection establishment handshake protocol. We measured the latency of the

first ping-pong and that of the second ping-pong. We ran this program for 10,000

iterations on the two desktop PCs. The average latency of the first ping-pong is

57 microseconds and that of second ping-pong is 42 microseconds; thus, the average

latency of the connection establishment protocol is 15 microseconds. The mode la-

tency of the first ping-pong is 19 microseconds, and that of second ping-pong is 3

microseconds; thus, the mode latency of the connection establishment protocol is 16

microseconds.

2. Comparison of the Worst-case Latency of the Static and On-demand Schemes

We wrote another benchmark to measure the worst-case overhead of the connection

establishment of the on-demand connection scheme; the worst-case overhead happens

in an MPI application that establishes connections between all the processes (i.e.,

the connection pattern becomes the same as the static connection scheme). In this

benchmark program, each MPI process sends a message (using MPI Send) to all the

lower-ranked processes and receives a message (using MPI Recv) from all the higher-

ranked processes. We took the first time-stamp before MPI Init and the second

time-stamp after the MPI Send/MPI Recv sequence. We used PMI Barrier before

taking the first time-stamp to ignore the time to launch all the processes. We called

PMI Barrier before taking the second time-stamp to ensure that all the processes

finish the sends and receives.

This benchmark strategy ensures that the measured latency includes both con-

nection establishment and sends and receives between all the processes — in the same

88

pattern — in both on-demand and static schemes. The only difference is that the

connection establishment between all the processes happens during MPI Init in the

static scheme whereas it happens during the first ping-pong in the on-demand scheme.

We ran this benchmark program five times and computed its average running time.

We performed this for different number of processes for both the on-demand scheme

and the static scheme. Figure 12 and Figure 13 show the results of this benchmark

performed on two desktop PCs and a cluster, respectively.

Fig. 12. Comparison of the worst-case (fully-connected) latency of the on-demand

scheme with the static scheme on two desktop PCs.

In Figure 12, we observe that the on-demand scheme takes 50 milliseconds more

89

than the static scheme for 50 processes and 2.2 seconds more for 190 processes. How-

ever, interestingly, the on-demand scheme takes less time than the static scheme

when the number of processes is greater than 190; for instance, for 230 processes,

the on-demand scheme takes 8.8 seconds less than the static scheme. In Figure 13,

we see that the on-demand scheme takes between 17 milliseconds and 2.5 seconds

more than the static scheme when the number of processes varies from 10 to 150

processes. However, the on-demand scheme takes less time than the static scheme

when the number of processes is more than 150; for instance, 0.91 seconds less for 170

processes and 31.93 seconds less for 290 processes. In other words, when the latency

of the on-demand scheme is more than that of the static scheme, the increase in the

latency for the first connection between a pair of processes is not very high and is

likely acceptable to most applications. On the other hand, if the number of processes

is more than 170 (when the processors are not oversubscribed), the latency of the

on-demand scheme is less than that of the static scheme.

As the benchmark program is fully-connected, N×(N−1)/2 connections get cre-

ated for N processes. We computed the per-connection latency overhead (by dividing

the difference in the latencies of the two schemes by the number of connections). In

the cluster case, when the on-demand scheme takes longer than the static scheme,

the per-connection overhead varies between 39 and 467 microseconds; when the on-

demand scheme takes less time than the static scheme, the per-connection gain of

the on-demand scheme increases from 304 microseconds to 762 microseconds as the

number of processes increases. The per-connection latency overhead is in the order

of hundreds of microseconds in the worst-case. Therefore, if the number of destina-

tions per process is small in a parallel application (for example a constant, instead of

quadratic, function of the number of processes, as in the worst-case), then the cumu-

lative latency overhead of the first connection between processes in the on-demand

90

Fig. 13. Comparison of the worst-case (fully-connected) latency of the on-demand

scheme with the static scheme on the cluster.

91

scheme will likely be negligible.

3. Comparison of the Latency of the Static and On-demand Schemes of Typical

Parallel Applications

We wrote benchmark applications that simulate the practical large scale parallel

applications listed in Table I in Chapter III. In these test applications, each process

connects (by issuing MPI Send and MPI Recv) to the same number of destinations

as the real-world applications. The latency of MPI Init followed by MPI Send and

MPI Recv is measured the same way as explained in Section 2. Our benchmark results,

run on the same cluster (for 64 and 400 processes), are shown in Table VIII. We

observe that, for 64 processes, the latency of the on-demand scheme is 43% to 75% of

the latency of the static scheme. However, for 400 processes, the latency of the on-

demand scheme is only 0.07% to 1.83% of the latency of the static scheme. For many

of the applications, for 400 processes, the latency for the static scheme is close to five

minutes whereas the latency for the on-demand scheme is less than half-a-second.

The latency of the test application simulating “sPPM” for 400 processes with six

destinations per process is less than that of the test application simulating “Sphot”

for the same number of processes with only one destination because of the variabil-

ity in the test environment. The other observation is about the latency of the test

application simulating “SMG2000” for 400 processes. Even though each process con-

nects to the same number of destinations (i.e., all the other processes) in both the

schemes, the latency of the static scheme is 341.06 seconds whereas the latency of the

on-demand scheme is only 6.25 seconds. This is because of the following reason: the

static scheme uses blocking sockets to connect and accept, and thus the connection

creation process is serialized; the on-demand scheme uses non-blocking sockets and

there are multiple instances of the state machines running in each process for different

92

Table VIII. Comparison of the latency of the on-demand scheme with the static scheme

of test applications simulating parallel applications on the cluster.

Test Number Number of Time Time

simulating of of destinations taken by taken by

application processes per process static scheme on-demand scheme

64 6 0.42 0.21
sPPM

400 6 289.48 0.19

64 42 0.34 0.16
SMG2000

400 399 341.06 6.25

64 1 0.31 0.21
Sphot

400 1 315.44 0.24

64 4 0.28 0.21
Sweep3D

400 4 311.04 0.21

64 5 0.35 0.15
Samari4

400 10 314.77 0.24

64 7 0.30 0.20
CG

400 11 336.30 0.37

93

destinations, and all of those state machines make progress in parallel.

As Table I shows, the average number of destinations in most practical large

scale MPI applications is typically less than 11, and, in fact, several MPI applications

also exhibit the pattern of each process having a constant number of destinations

irrespective of the number of processes in the application. Therefore, we observe —

from the results of the benchmarks we have discussed in this chapter — that the

on-demand connection establishment scheme not only reduces the MPI Init time but

also does not affect the latency of communication for typical parallel applications.

94

CHAPTER VII

CONCLUSIONS

A. Performance Improvement and Scalability of the On-demand Scheme

The typical number of destinations each process has in most MPI applications is very

small compared to the total number of processes in the application. Creating all pos-

sible connections between all processes during the start-up (MPI Init) unnecessarily

increases the start-up times of MPI applications. Connections that are created during

the start-up need to be destroyed during shutdown of the application. Besides slower

start-up and shutdown, this static connection scheme has further problems as well.

In the TCP network module in MPICH2, which was the starting point of our work,

unused socket connections in a process imply more use of operating system resources,

such as socket descriptors, memory, and kernel buffers of the network stack. This

thesis describes a solution to the above problems: a scheme where no connections are

created at the start-up time, but instead on-demand as the need for two processes to

communicate arises.

We designed and implemented the on-demand connection establishment scheme

for the TCP network module of the Nemesis communication subsystem in MPICH2

library. Our benchmarks show that the MPI Init of the on-demand connection scheme

takes significantly less time than that of the static connection scheme. The time taken

by MPI Init in the static scheme increases quadratically as the number of processes

increases; we measured an increase from less than one second for 100 processes to

282 seconds for 400 processes on a high-performance cluster system. On the other

hand, the time taken by MPI Init in the on-demand scheme is constant; less than

250 milliseconds for up to 400 processes in the same cluster.

95

In the on-demand scheme, connections are established between two processes

during the first communication (for instance, first MPI Send/MPI Recv). This first

communication takes more time than the subsequent communications. We measured

this additional latency overhead due to the connection establishment protocol; the

average overhead is small (15 microseconds in the cluster).

We also measured the worst-case (where every process connects to every other

process) latency overhead of the on-demand scheme in the cluster. We computed the

total time taken by MPI Init and an MPI Send/MPI Recv between all the processes

in the on-demand scheme and the static scheme. The on-demand scheme takes only

up to 2.5 seconds more than the static scheme for up to 150 processes; the on-

demand scheme takes up to 4.6 seconds for up to 150 processes. However, the on-

demand scheme outperforms (i.e., takes less time than) the static scheme when the

number of processes is more than 150 even in a fully-connected application. The

per-connection latency overhead computed from this benchmark is in the order of

hundreds of microseconds. Therefore, for many practical applications with a small

number of destinations per process, the latency overhead of the on-demand scheme

is likely negligible.

The on-demand connection scheme is very beneficial for checkpointing/restarting

of MPI applications. This feature allows the state of a running process to be stored

in a file in storage media and terminating the process and later reconstructing the

process with the same state as described in the file. This feature is receiving a lot of

attention in the parallel computing community because it improves the fault-tolerance

of MPI applications. The support for checkpointing was recently added to MPICH2

as well — the on-demand connection scheme implemented as part of this work is thus

very relevant, contributing to a very efficient checkpoint/restart feature.

MPI forum is actively working on the MPI-3 standard to make MPI scalable to

96

million-core systems in the future. As the static scheme is not scalable to hundreds

and thousand of nodes today, it will be completely infeasible on a million-core system.

The on-demand scheme is needed to make MPI scale to the “monster machines” of

the future.

B. Design Verification

The implementation of the on-demand scheme is not trivial. As conventional testing

often fails to discover concurrency defects due to a large number of possible thread

interleavings, we verified our design formally and thus increased our confidence on

the correctness of the system. We modeled (or abstracted) the core state machine

of the scheme in PROMELA and verified the model using the SPIN model checker.

We verified several safety properties (such as no deadlocks, no duplicate connections

between two processes) using a few techniques: using assertions, SPIN’s built-in safety

verification mode, and Linear Temporal Logic (LTL) formulae. We also wrote several

LTL claims to verify the liveness properties that guarantee that a process eventually

establishes a connection with another process if it attempts to connect to the other

process.

The modeling effort proved useful. We found a few defects thanks to constructing

the abstract model of the on-demand connection scheme and SPIN; to correct the

defects, both the model and the implementation needed changes. We also applied

SPIN’s property slicing techniques but did not find any redundancies in the model;

property slicing, however, allowed us to replace a few datatypes with smaller ones (in

size) to reduce the verification complexity.

From the verification statistics of SPIN, we observe that the number of state

transitions varies from one hundred to as high as 194,000 for different LTL claims

97

for different use cases of verification of the model. Even though the state machine

did not appear to be exceedingly complex during the design phase, we infer that

the complexity of a non-trivial state machine should not be underestimated, and the

importance of model-checking should not be neglected.

C. Future Work

Even though we create connections on-demand in our work, the connections are de-

stroyed only when the MPI application is shut down. In a long running application,

some connections may become unused and no longer needed. An interesting topic of

investigation would be strategies for, and possible benefits of, tearing down unused

connections while the application is still running.

Another topic for further investigation is the interplay between checkpointing and

on-demand connections. MPICH2’s current checkpointing algorithm sends “marker

messages” between all the processes of a parallel application. To improve scalability,

the messages could be only sent between processes that are connected to each other.

The on-demand scheme, however, poses the additional challenge that new connections

can arise while the checkpointing algorithm is running.

The aforementioned optimizations are tricky to design, and they would add more

states to the state machine. However, the PROMELA model and claims developed

in this work may be enhanced and the design can be formally verified before imple-

menting these new features in the library.

We verified only the state machine of the TCP network module in this thesis.

The virtual connection has its own state machine in MPICH2. Since the network

connection and the virtual connection are associated with each other, we think it

would be valuable to also model the virtual connection state machine in PROMELA

98

and verify it with SPIN. Support for dynamic processes and connections has been

added to the TCP network module of Nemesis recently; this adds additional com-

plexity to the state machine of the on-demand scheme. Verifying this feature with

SPIN by enhancing the model may also be fruitful. While verifying virtual connection

state machine and dynamic process support, we may be able to add new safety and

liveness properties using the states of both the state machines (network connection

and virtual connection) together. We anticipate that this effort will overall further

improve the reliability of MPICH2.

99

REFERENCES

[1] H. Sutter and J. Larus, “The free lunch is over: A fundamental turn toward

toward concurrency,” Dr. Dobb’s Journal, vol. 30, no. 3, Mar. 2005.

[2] B. C. Brock, G. D. Carpenter, E. Chiprout, M. E. Dean, P. L. De Backer,

E. N. Elnozahy, and et al., “Experience with building a commodity Intel-based

ccNUMA system,” IBM Journal of Research and Development, vol. 45, no. 2,

pp. 207–227, Mar. 2001.

[3] IBM Journal of Research and Development Staff, “Overview of the IBM Blue

Gene/P project,” IBM Journal of Research and Development, vol. 52, no. 1.2,

pp. 199–220, Jan. 2008.

[4] D. Trybus, “Design and analyses of a cluster computer,” Ph.D. dissertation,

University of Western Ontario, Ont., Canada, 2004.

[5] M. Bertozzi, F. Boselli, G. Conte, and M. Reggiani, “An MPI implementation

on the top of the Virtual Interface Architecture,” in Recent Advances in Parallel

Virtual Machine and Message Passing Interface (6th PVM/MPI’99), vol. 1697

of Lecture Notes in Computer Science (LNCS), pp. 199–206. Springer-Verlag,

Barcelona, Spain, Sep. 1999.

[6] G. F. Pfister, “An introduction to the InfiniBand architecture,” in High Per-

formance Mass Storage and Parallel I/O: Technologies and Applications, pp.

617–632. IEEE Computer Society Press and Wiley, New York, NY, 2001.

[7] F. Petrini, W. C. Feng, A. Hoisie, S. Coll, and E. Frachtenberg, “The Quadrics

network: High-performance clustering technology,” IEEE Micro, vol. 22, no. 1,

pp. 46–57, 2002.

100

[8] Message Passing Interface Forum, “MPI: A message passing interface standard,”

Mar 1994, http://www.mpi-forum.org/docs.

[9] MPI Forum, “Message passing interface forum,” Accessed in May 2012, http:

//www.mpi-forum.org.

[10] Argonne National Laboratory, “MPICH2 library: An implementation of MPI,”

Accessed in May 2012, http://www.mcs.anl.gov/research/projects/mpich2/index.

php.

[11] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. Dongarra, and et al., “Open

MPI: Goals, concept, and design of a next generation MPI implementation,”

in Recent Advances in Parallel Virtual Machine and Message Passing Interface

(11th European PVM/MPI’04), vol. 3241 of Lecture Notes in Computer Science,

pp. 97–104. Springer, Budapest, Hungary, Sep. 2004.

[12] G. Burns, R. Daoud, and J. Vaigl, “LAM: An open cluster environment for

MPI,” in Proceedings of Supercomputing Symposium, 1994, pp. 379–386.

[13] P. H. Hargrove and J. C. Duell, “Berkeley lab checkpoint/restart (BLCR) for

linux clusters,” Journal of Physics: Conference Series, vol. 46, no. 1, pp. 494,

2006.

[14] S. Sankaran, J. M. Squyres, B. Barrett, V. Sahay, A. Lumsdaine, J. Duell, P. Har-

grove, and E. Roman, “The LAM/MPI checkpoint/restart framework: System-

initiated checkpointing,” The International Journal of High Performance Com-

puting Applications, vol. 19, no. 4, pp. 479–493, Winter 2005.

[15] G. J. Holzmann, The SPIN Model Checker, Addison-Wesley, Boston, MA, 1st

edition, 2004.

101

[16] E. A. Emerson, “Temporal and modal logic,” in Handbook of Theoretical Com-

puter Science, vol. B, pp. 995–1072. North-Holland, Amsterdam, The Nether-

lands, 1990.

[17] G. Holzmann, “PROMELA man page on Linear Temporal Logic,” Accessed in

May 2012, http://spinroot.com/spin/Man/ltl.html.

[18] G. J. Holzmann, “A framework for abstraction,” in The SPIN Model Checker,

pp. 230–238. Addison-Wesley, 1st edition, 2004.

[19] IEEE, “POSIX standard,” 2001-2008, http://pubs.opengroup.org/onlinepubs/

9699919799/functions/V2 chap02.html.

[20] W. R. Stevens, B. Fenner, and A. M. Rudoff, UNIX Network Programming, Vol

1:The Sockets Networking API, Addison-Wesley, Boston, MA, 3rd edition, 2003.

[21] W. Gropp, E. Lusk, and R. Thakur, Using MPI: Portable Parallel Program-

ming with the Message Passing Interface, The MIT Press, Cambridge, MA, 2nd

edition, 1999.

[22] W. Gropp, E. Lusk, and R. Thakur, Using MPI-2: Advanced Features of the

Message-Passing Interface, The MIT Press, Cambridge, MA, 1st edition, 1999.

[23] S. Pakin, “Myrinet,” in Encyclopedia of Parallel Computing, pp. 1239–1247.

Springer, New York, NY, 2011.

[24] D. Ashton, W. Gropp, R. Thakur, and B. Toonen, “The CH3 design for a simple

implementation of ADI-3 for MPICH with a TCP-based implementation,” Tech.

Rep., 2003, http://phase.hpcc.jp/mirrors/mpi/mpich2/docs/tcpadi3.pdf.

102

[25] D. Buntinas, G. Mercier, and W. Gropp, “Design and evaluation of Nemesis, a

scalable, low-latency, message-passing communication subsystem,” in Proceed-

ings of the Sixth Annual IEEE International Symposium on Cluster Computing

and the Grid, Washington, DC, 2006, pp. 521–530.

[26] D. Buntinas, G. Mercier, and W. Gropp, “Implementation and shared-memory

evaluation of MPICH2 over the nemesis communication subsystem,” in Recent

Advances in Parallel Virtual Machine and Message Passing Interface (13th Euro-

pean PVM/MPI’06), vol. 4192 of Lecture Notes in Computer Science, pp. 86–95.

Springer, New York, NY, 2006.

[27] J. Wu, J. Liu, P. Wyckoff, and D. Panda, “Impact of on-demand connection

management in MPI over VIA,” in Proceedings of the 2002 IEEE International

Conference on Cluster Computing, Chicago, IL, 2002, pp. 152–159.

[28] J. S. Vetter and F. Mueller, “Communication characteristics of large-scale scien-

tific applications for contemporary cluster architectures,” in Proceedings of the

16th International Parallel and Distributed Processing Symposium, Fort Laud-

erdale, FL, 2002, p. 96.

[29] R. V. D. Geijn, D. Payne, L. Shuler, and J. Watts, “A streetguide to collective

communication and its application,” Jan. 1996, http://www.cs.utexas.edu/users/

rvdg/pubs/streetguide.ps.

[30] RTI International, “The economic impacts of inadequate infrastructure for soft-

ware testing,” Planning Report 02-3, National Institute of Standards and Tech-

nology, Gaithersburg, MD, May 2002.

[31] D. Rice, Geekonomics: The Real Cost of Insecure Software, Addison-Wesley,

Boston, MA, 1st edition, 2007.

103

[32] W. Baziuk, “BNR/NORTEL: Path to improve product quality, reliability and

customer satisfaction,” in Sixth International Symposium on Software Reliability

Engineering, 1995, pp. 995–1072.

[33] B. W. Boehm, Software Engineering Economics, Prentice Hall, New York, NY,

1st edition, 1981.

[34] M. Robins, “AbortRetryFail AbortRetryFail AbortRetryFail,” New Scientist,

vol. 2265, no. 1, pp. 41–43, 2000.

[35] C. Jones, Programming Productivity, Mcgraw-Hill College, New York, NY, 1st

edition, 1986.

[36] M. Jones, “What really happened on Mars,” Dec. 1997, http://research.

microsoft.com/en-us/um/people/mbj/mars pathfinder/mars pathfinder.html.

[37] C. Lundstedt, “The large Hadron collider,” Linux Journal, vol. 2010, no. 199,

Nov. 2010.

[38] C. A. R. Hoare, “An axiomatic basis for computer programming,” Communica-

tions of ACM, vol. 12, no. 10, pp. 576–580, Oct. 1969.

[39] Z. Manna and A. Pnueli, The temporal logic of reactive and concurrent systems,

Springer-Verlag, New York, NY, 1st edition, 1991.

[40] E. M. Clarke, “The birth of model checking,” in 25 Years of Model Checking,

pp. 1–26. Springer-Verlag, Berlin, Germany, 1st edition, 2008.

[41] E. M. Clarke and E. A. Emerson, “Synthesis of synchronization skeletons for

branching time temporal logic,” in Logics of Programs: Workshop, vol. 131

of Lecture Notes in Computer Science. Springer-Verlag, Yorktown Heights, NY,

May 1981.

104

[42] M. Ben-Ari, “A primer on model checking,” ACM Inroads, vol. 1, no. 1, pp.

40–47, Mar. 2010.

[43] D. Goldrei, Propositional and Predicate Calculus: A Model of Argument,

Springer, New York, NY, 1st edition, 2005.

[44] M. Fisher, An Introduction to Practical Formal Methods Using Temporal Logic,

Wiley, Hoboken, NJ, 1st edition, 2011.

[45] F. Tip, “A survey of program slicing techniques,” Journal of Programming

Languages, vol. 3, no. 3, pp. 121–189, 1995.

[46] R. Blecksmith, “Implication,” Accessed in May 2012, http://www.math.niu.edu/

∼richard/Math101/implies.pdf.

105

APPENDIX A

PROMELA MODEL OF THE NEMESIS TCP MODULE STATE MACHINE

/*

Author : Sankara Subbiah Muthukrishnan

Texas A&M University

PROMELA model of the TCP network module of the Nemesis

communication subsytem in MPICH2

Coding conventions:

* Use tabs to indent and not spaces.

* Since "::" is an indentation trigger , indent with a tab

after "::".

This keeps the code look neat and remebering to indent is

easy.

The main difference between C and PROMELA syntax with

respect to indentation is that C does not have a

2-character syntax construct which is an indentation

trigger but PROMELA does.

* Use a tabstop =2 for optimal viewing.

* For all the different verification tests that need to be

done , use the preprocessor directive in the form "TEST_"

* Do not use negation or logical and on the preprocessor

directives.

* Do NOT nest the preprocessor directives (#if, #elif);use

them flat

* The above 3 conventions SHOULD be followed , since the

automated shell script that verifies this model

(verify_sm.sh)

depends on these assumptions. Yes , the shell script does

some basic parsing to verify all the claims automatically

and it is not a full -blown pre -processor of PROMELA

*/

#define BUG_FIX 1

#define _empty(_ch) (len(_ch) == 0)

#define _nempty(_ch) (len(_ch) != 0)

/*

These two macros are defined , since "else" cannot be combined

106

with the built -in boolean functions empty and nempty in an

"if" statement. SPIN throws the following syntax error when

"else" is combined with the builtin "empty" and "nempty ":

dubious use of ’else ’ combined with i/o, saw ’token: ::’

On the other hand , SPIN allows "else" to be used on "len" and

channel poll (including random poll) operations which is not

fully consistent with disallowing "else" to be combined with

nempty and empty. These macros simplify the model which would

be otherwise slightly more complicated and hence these two

macros are used.

*/

#define tVCmsg mtype

#define tNetMsg mtype

#define tNetModState mtype

tNetMsg = {m_close , m_connect , m_connect_ack , m_rank ,

m_rank_ack , m_rank_nak };

tVCmsg = {m_vc_connect , m_vc_disconnect };

typedef tMsg {

tNetMsg msg_id;

byte rank;

};

tNetModState = {TS_CLOSED , TC_C_CNTING , TC_C_CNTD ,

TC_C_RANKSENT , TC_C_RANKRCVD , TS_COMMRDY , TS_D_QUIESCENT ,

TA_C_CNTD , TA_C_RANKRCVD };

chan vc_chan [2] = [1] of {tVCmsg };

tNetModState con_state [2] = TS_CLOSED , acpt_state [2] =

TS_CLOSED;

/*

Note: The variables that are declared globally are done so so

that they can be used in verification claims (LTL/never).

Yes , claims cannot use variables defined in the scope of

proctype or inline functions

Arrays cannot be passed to proctype as an argument , even

within a typedef. That ’s why a pair of channels cannot be

grouped as a socket (typedef ’ed) but they are defined

independently as 2 channels

107

atomic or d_step are not used(or needed) in the model , since

the process is single -threaded and it goes through the state

machine from a single loop.

*/

inline send_msg_trans(ch , msg , sm , new_state)

{

assert(nfull(ch));

ch!msg;

sm = new_state;

}

proctype NetModSM(byte id; chan con_snd , con_rcv , acpt_rcv ,

acpt_snd)

{

tMsg con_msg , acpt_msg;

byte remote_rank;

end_state:

do

:: ((con_state[id] == TS_CLOSED) &&

(vc_chan[id]?[m_vc_connect])) ->

vc_chan[id]? m_vc_connect;

if

:: con_state[id] == TS_COMMRDY ||

acpt_state[id] == TS_COMMRDY ->

skip;

:: else ->

con_msg.msg_id = m_connect;

send_msg_trans(con_snd , con_msg , con_state[id],

TC_C_CNTING);

fi

:: ((con_state[id] == TS_CLOSED) &&

(vc_chan[id]?[m_vc_disconnect])) ->

vc_chan[id]? m_vc_disconnect;

:: ((con_state[id] == TS_CLOSED) && nempty(con_rcv)) ->

con_rcv?_,_;

:: con_state[id] == TC_C_CNTING && nempty(con_rcv) ->

con_rcv?con_msg;

if

:: con_msg.msg_id == m_close ->

108

con_state[id] = TS_D_QUIESCENT;

:: con_msg.msg_id == m_connect_ack ->

con_state[id] = TC_C_CNTD;

fi;

:: con_state[id] == TC_C_CNTD ->

if

:: nempty(con_rcv) && con_rcv ?[m_close , _] ->

con_rcv?con_msg;

assert(con_msg.msg_id == m_close);

con_state[id] = TS_D_QUIESCENT;

:: if

:: acpt_state[id] == TS_COMMRDY ||

acpt_state[id] == TA_C_RANKRCVD ->

con_msg.msg_id = m_close;

send_msg_trans(con_snd , con_msg ,

con_state[id], TS_D_QUIESCENT);

:: else ->

con_msg.msg_id = m_rank; con_msg.rank = id;

send_msg_trans(con_snd , con_msg ,

con_state[id], TC_C_RANKSENT);

fi

fi

:: con_state[id] == TC_C_RANKSENT && nempty(con_rcv) ->

con_rcv?con_msg;

if

:: con_msg.msg_id == m_close ->

con_state[id] = TS_D_QUIESCENT;

:: con_msg.msg_id == m_rank_ack ->

con_state[id] = TS_COMMRDY;

:: con_msg.msg_id == m_rank_nak ->

con_state[id] = TS_D_QUIESCENT;

fi

:: (con_state[id] == TS_COMMRDY &&

(vc_chan[id]?[m_vc_disconnect] || nempty(con_rcv))) ->

assert(acpt_state[id] != TS_COMMRDY);

if

:: vc_chan[id]?[m_vc_disconnect] ->

vc_chan[id]? m_vc_disconnect ->

con_msg.msg_id = m_close;

send_msg_trans(con_snd , con_msg ,

con_state[id], TS_D_QUIESCENT);

acpt_msg.msg_id = m_close;

109

send_msg_trans(acpt_snd , acpt_msg ,

acpt_state[id], TS_D_QUIESCENT);

:: nempty(con_rcv) ->

con_rcv?con_msg;

if

:: con_msg.msg_id == m_close ->

con_state[id] = TS_D_QUIESCENT;

fi;

fi;

:: con_state[id] == TS_D_QUIESCENT ->

if

:: _nempty(con_rcv) ->

con_rcv?_,_;

:: else ->

con_state[id] = TS_CLOSED;

fi

:: acpt_state[id] == TS_CLOSED && nempty(acpt_rcv) ->

acpt_rcv?acpt_msg;

if

:: acpt_msg.msg_id == m_connect ->

acpt_msg.msg_id = m_connect_ack;

send_msg_trans(acpt_snd , acpt_msg ,

acpt_state[id], TA_C_CNTD);

:: else -> skip;

fi

:: (acpt_state[id] == TA_C_CNTD &&

(nempty(acpt_rcv) || con_state[id] == TS_COMMRDY)) ->

if

:: nempty(acpt_rcv) ->

acpt_rcv?acpt_msg;

if

:: acpt_msg.msg_id == m_close ->

acpt_state[id] = TS_D_QUIESCENT;

:: acpt_msg.msg_id == m_rank ->

acpt_state[id] = TA_C_RANKRCVD;

remote_rank = acpt_msg.rank;

fi

:: con_state[id] == TS_COMMRDY ->

acpt_msg.msg_id = m_close;

send_msg_trans(acpt_snd , acpt_msg ,

acpt_state[id], TS_D_QUIESCENT);

fi

110

:: acpt_state[id] == TA_C_RANKRCVD ->

if

:: nempty(acpt_rcv) ->

acpt_rcv?acpt_msg;

if

:: acpt_msg.msg_id == m_close ->

acpt_state[id] = TS_D_QUIESCENT;

fi

:: if

#if BUG_FIX

:: con_state[id] == TS_COMMRDY ->

acpt_msg.msg_id = m_rank_nak;

send_msg_trans(acpt_snd , acpt_msg ,

acpt_state[id], TS_D_QUIESCENT);

#endif

:: con_state[id] == TC_C_RANKSENT ->

if

:: id > remote_rank ->

acpt_msg.msg_id = m_rank_ack;

send_msg_trans(acpt_snd , acpt_msg ,

acpt_state[id], TS_COMMRDY);

:: else ->

acpt_msg.msg_id = m_rank_nak;

send_msg_trans(acpt_snd , acpt_msg ,

acpt_state[id], TS_D_QUIESCENT);

fi

:: else ->

acpt_msg.msg_id = m_rank_ack;

send_msg_trans(acpt_snd , acpt_msg ,

acpt_state[id], TS_COMMRDY);

fi;

fi

:: (acpt_state[id] == TS_COMMRDY &&

(vc_chan[id]?[m_vc_disconnect] || nempty(acpt_rcv))) ->

assert(con_state[id] != TS_COMMRDY);

if

:: vc_chan[id]?[m_vc_disconnect] ->

vc_chan[id]? m_vc_disconnect ->

acpt_msg.msg_id = m_close;

send_msg_trans(acpt_snd , acpt_msg ,

acpt_state[id], TS_D_QUIESCENT);

con_msg.msg_id = m_close;

send_msg_trans(con_snd , con_msg ,

111

con_state[id], TS_D_QUIESCENT);

:: nempty(acpt_rcv) ->

acpt_rcv?acpt_msg;

if

:: acpt_msg.msg_id == m_close ->

acpt_state[id] = TS_D_QUIESCENT;

fi;

fi;

:: acpt_state[id] == TS_D_QUIESCENT ->

if

:: _nempty(acpt_rcv) ->

acpt_rcv?_,_;

:: else ->

acpt_state[id] = TS_CLOSED;

fi

od

}

#define p (con_state [0] == TS_COMMRDY)

#define q (acpt_state [0] == TS_COMMRDY)

#define r (con_state [1] == TS_COMMRDY)

#define s (acpt_state [1] == TS_COMMRDY)

#define p_ (con_state [0] == TS_CLOSED)

#define q_ (acpt_state [0] == TS_CLOSED)

#define r_ (con_state [1] == TS_CLOSED)

#define s_ (acpt_state [1] == TS_CLOSED)

#define both_comm_rdy ((p && s && r_ && q_) || \

(r && q && p_ && s_))

#define both_closed (p_ && s_ && r_ && q_)

#define all_chan_empty (empty(sock [0].ch[0]) && \

empty(sock [0].ch[1]) && \

empty(sock [1].ch[0]) && empty(sock [1].ch[1]) && \

empty(vc_chan [0]) && empty(vc_chan [1]) \

)

typedef tSocket {

chan ch[2] = [3] of {tMsg};

};

tSocket sock [2]; /* global shown while replaying; useful */

112

init

{

byte proc_id = 0;

run NetModSM(proc_id , sock [0].ch[0], sock [0].ch[1],

sock [1].ch[0], sock [1].ch[1]);

proc_id ++;

run NetModSM(proc_id , sock [1].ch[0], sock [1].ch[1],

sock [0].ch[0], sock [0].ch[1]);

#if TEST_1

vc_chan [0]! m_vc_connect;

#elif TEST_2

vc_chan [1]! m_vc_connect;

#elif TEST_3

vc_chan [0]! m_vc_connect;

vc_chan [1]! m_vc_connect;

#elif TEST_4

vc_chan [0]! m_vc_connect;

(p && s && r_ && q_);

vc_chan [0]! m_vc_disconnect;

#elif TEST_5

vc_chan [1]! m_vc_connect;

(r && q && p_ && s_);

vc_chan [1]! m_vc_disconnect;

#elif TEST_6

vc_chan [0]! m_vc_connect;

vc_chan [1]! m_vc_connect;

(both_comm_rdy && all_chan_empty);

vc_chan [0]! m_vc_disconnect;

vc_chan [1]! m_vc_disconnect;

#endif

}

/*

Following is a different way to express the LTL claim p0

(which is same as never claim n0) and verify.

proctype Watchdog ()

{

assert (!(

((con_state [0] == TS_COMMRDY) &&

(acpt_state [0] == TS_COMMRDY)) ||

((con_state [1] == TS_COMMRDY) &&

(acpt_state [1] == TS_COMMRDY))));

113

}

*/

#if (TEST_1 || TEST_2 || TEST_3 || TEST_4 || TEST_5 || TEST_6)

/*

Same as using Watchdog () process or LTL claim p0a

never n0a {

do

:: ((p && q) || (r && s)) -> break

:: else

od

accept_all:

skip

}

*/

/* p0a is same as n0a */

ltl p0a { [] ((p -> !q) && (q -> !p) &&

(r -> !s) && (s -> !r)) }

/*

p0b is same as p0a , since (q -> !p) is a contra -positive of

(p -> !q) which evaluates to the same in propositional logic.

SPIN ’s builtin LTL to never converter does not show that

these same. But , the third -party converter ltl2ba shows

that these are same.

*/

ltl p0b { [] ((p -> !q) && (r -> !s)) }

#endif

#if TEST_1

ltl p1a { [] (vc_chan [0]?[m_vc_connect] ->

<> (p && s && r_ && q_)) }

ltl p1b { [] <> (p && s && r_ && q_) }

#elif TEST_2

ltl p2a { [] (vc_chan [1]?[m_vc_connect] ->

<> (r && q && p_ && s_)) }

ltl p2b { [] <> (r && q && p_ && s_) }

#elif TEST_3

ltl p3a { [] <>((p && s && r_ && q_) ||

(r && q && p_ && s_)) }

/* p3b is an equivalence of p3a */

ltl p3b { ([] <> (r && q && p_ && s_)) ||

([] <> (p && s && r_ && q_)) }

114

#endif

#if (TEST_4 || TEST_5 || TEST_6)

ltl p4a { [] <> both_closed }

#endif

115

VITA

Name: Sankara Subbiah Muthukrishnan

Address: Parasol Lab

Department of Computer Science and Engineering

Texas A&M University

College Station, TX 77843-3112

Email Address: twosquaredfour@gmail.com

Education: B.E., Computer Science and Engineering (1999)

College of Engineering, Guindy

Anna University, Chennai, India

M.S., Computer Science (2012)

Texas A&M University, College Station, Texas, USA

Patent Issued: Usage consciousness in HTTP/HTML for reducing unused data

flow across a network

Patent Pending: Method and apparatus for improving performance and security

of DES-CBC encryption algorithm

Experience : IBM Software Labs (Full-time)

Argonne National Laboratory (Intern)

National Instruments (Full-time)

This document was typeset in LATEX by Sankara Muthukrishnan.

