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ABSTRACT 

 

The Role of O-mannosyl Glycans in  

Drosophila Development. (August 2011) 

Dmitry Lyalin, B.S.; M.S., Moscow State University, Russia 

Chair of Advisory Committee: Dr. Vladislav M. Panin 

 

O-mannosylation is a specific form of glycosylation, a post-translational protein 

modification with O-linked mannose attached to serine or threonine residues. O-

mannosylation is implicated in crucial biological processes such as neuronal and muscle 

development, cell adhesion and cell migration.  

Two O-mannosyltransferase genes have been described in mammalian genomes 

so far, POMT1 and POMT2. Disruptions of O-mannosylation result in congenital 

muscular disorders in humans. The most severe, the Walker-Warburg Syndrome is 

associated with mutations in POMT1 and POMT2. 

Just like vertebrates, Drosophila has two O-mannosyltrasferase genes, 

DmPOMT1 (rt) and DmPOMT2 (tw), which share significant similarities with their 

mammalian counterparts. Mutations in both DmPOMT1 and DmPOMT2 cause the 

"rotated abdomen" phenotype, a clockwise rotation of abdominal segments in adult flies. 

In my dissertation, I analyzed the expression patterns of rt and tw during 

development. Both genes have similar essentially overlapping expression patterns. 

Immunostaining revealed that RT and TW proteins are co-localized in the ER 
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compartment. The analysis of double mutants revealed a mutual epistatic relationship 

between rt and tw, which could be evidence for RT and TW functioning in the same 

molecular complex.  

Also, I studied temporal and spatial requirements of tw during development. I 

found a broad “developmental window competent to fully rescue the abdomen rotation 

in adult flies. The spatial studies of tw requirements demonstrated that tw expression is 

pattern-dependent and the function of tw is cell-autonomous or it has a very short-range 

effect. The analysis of rescue results with different drivers suggested that the tw 

requirement is not strictly limited to larval epidermis or muscles alone, but required a 

contribution from epidermal and muscle cells with a possible involvement of CNS. 

I have shown that Drosophila Dystroglycan is modified with mannose in the 

presence of RT-TW enzymatic complex in vivo and in vitro. The co-expression of RT 

and TW is required to generate high-molecular-mass bands of DG. The lectin staining 

revealed differences in glycan compositions of DG purified from different genetic 

backgrounds.  

Overall, this research work established Drosophila as a model system to study 

mannosylation, which may shed light on mechanisms of muscular dystrophies in 

humans. 
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CHAPTER I 

INTRODUCTION
*
 

 

O-MANNOSYLATION: FROM YEAST TO MAMMALS 

Glycosylation is a common post-translational protein modification. The surface of 

a mammalian cell is highly decorated with glycolipids, glycoproteins and proteoglycans. 

Sugars carried by glycoconjugates are known individually as glycans and are 

biosynthetically assembled from simple monosaccharides into oligo and poly-saccharide 

chains attached to proteins or lipids. Glycan structures not only play important roles in 

modulating properties such as protein stability and conformation, but also the key 

elements in many molecular recognition processes such as bacterial and viral infection, 

cell adhesion in inflammation and metastasis, differentiation, development and many 

other events characterized by intercellular communications. (KOBATA 1992; 

RADEMACHER et al. 1988; VARKI 1993). 

The major glycans of glycoproteins can be divided into three groups according to 

their glycan-peptide linkage. The first group—glycans that are linked to the asparagine 

(Asn) residues of polypeptides are called N-glycans. 

In O-glycans, the reducing terminal N-acetylgalactosamine (GalNAc) is attached 

to the hydroxyl groups of Ser or Thr residues. However, in addition to the abundant O-

GalNAc forms, several unique types of protein O-glycosylation have been reported, such 

                                                 
This dissertation follows the style and format of Genetics. 
* Portions of this chapter are reprinted with kind permission from: Protein O-mannosylation in animal 

development and physiology: From human disorders to Drosophila phenotypes by Nakamura, N., 
Lyalin, D., Panin, V, Seminars in Cell & Developmental Biology, 21(6), 2010, 622-630.  
Copyright Elsevier Ltd. All rights reserved. 
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as O-fucose, O-glucose, O-GlcNAc, O-xylose (proteoglycans), and O-mannose. 

This type of glycosylation does not require a consensus sequence and 

oligosaccharide precursor. 

C-linked glycosylation involves attachment of α-mannose to the C2 atom of the 

idol ring of tryptophan. This is an unusual modification because the sugar is linked to a 

carbon rather than a reactive atom like a nitrogen or oxygen. 

O-mannosylation is known as a yeast-type modification and O-mannosylated 

glycans are abundant in the yeast cell wall  (GENTZSCH et al. 1995). In unicellular 

eukaryotic organisms, all O-mannosyl glycan structures found so far are neutral linear 

glycans, starting with O-glycosidic bonding of mannose (Man) carbon 1 in  anomeric 

configuration to the hydroxyl group of Ser/Thr. This first mannose attached to the 

protein backbone can be further extended by addition of -linked mannose residues at 

the non-reducing terminus, with predominant complete structure being represented by a 

linear oligosaccharide composed of up to five Man residues (LOMMEL and STRAHL 

2009). O-mannosylation of proteins has been shown to be vital in yeast because its 

absence affects cell structure and rigidity. Additionally, a deficiency in O-mannosylation 

in the fungal pathogen Candida albicans leads to defects in multiple cellular functions 

including expression of virulence (TIMPEL et al. 1998). The rod-like stalk structures of 

proteins are obtained if specific protein domains are highly O-glycosylated and that such 

structures are protected by the sugars against protease. However, for many O-

mannosylated yeast proteins this explanation is not mandatory. O-mannosylation of 

proteins is an essential process required for cell growth and multiplication(GENTZSCH 

and TANNER 1996). 
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In yeast, the protein O-mannosyltrasferases catalyze the transfer of a mannose 

sugar from dolichyl phosphate mannose (Dol-P-Man) to Ser/Thr residues of certain 

proteins. Seven genes (three subfamilies—PMT1, PMT2 and PMT4) were identified in 

the genome of S. cerveisia which are responsible for the formation of mannosyl-peptide 

linkage (STRAHL-BOLSINGER et al. 1999). Only two protein O-mannosyltransferases 

(POTMs) are present in metazoan organisms, both vertebrates and invertebrates, with 

POMT1 and POMT2 being more closely related to PMT4 and PMT2 yeast enzymes 

respectively (WILLER et al. 2003). 

In mammals, O-mannosylation is an uncommon type of protein modification that has 

been so far found on a limited number of glycoproteins present in muscles and neural 

tissue, including a brain chondroitin sulfate proteoglycan (FINNE et al. 1979; KRUSIUS et 

al. 1986), -dystroglycan (-DG) (CHIBA et al. 1997; SASAKI et al. 1998; SMALHEISER 

et al. 1998), and receptor protein tyrosine phosphatase  (ABBOTT et al. 2008).  

Mammalian O-mannosylation was reported to exist in several different forms, 

with the most common fully elongated configuration of the tetrasaccharide being  

Siaa2-3Galβ1-4GlcNAcβ1-2Man α1-O-Ser/Thr (Figure 1) (ENDO 1999; MARTIN 2003; 

WILLER et al. 2003). 
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Figure 1—Typical structure of O-mannosyl glycan in mammals. 

 

Attempts to detect protein O-mannosyltransferase activity and to characterize the 

enzymes responsible in vertebrates were unsuccessful for a long time. At last, two 

mammalian O-mannosyltrasferases, POMT1 and POMT2, were found (JURADO et al. 

1999; WILLER et al. 2002). 

Similar to yeast PMTs, mammalian POMT1 and POMT2 proteins are localized 

to the ER compartment. Both enzymes share almost identical hydropathy profiles, which 

predict both proteins to be integrated membrane proteins with multiple (7 – 12) 

transmembrane domains. The potential topology of human POMT1 protein was modeled 

on a yeast homolog, which suggested that POMT1 has 7 transmembrane domains, with 

N- and C-termini located in the cytoplasmic and the ER compartments, respectively. All 

POMTs include a conserved PMT domain and three MIR motifs shared with inositol 

triphosphate and ryanodine receptors. Research in yeast suggested that the ER-localized 

loops 1 and 5 are essential for POMT functioning, with loop 1 being likely involved in 



 5 

substrate binding and catalytic activity (LOMMEL and STRAHL 2009). Loop 5, the largest 

ER-localized hydrophobic domain, shows significant homology to SDF2 chaperons 

(HAMADA et al. 1996) and thus may have a role in protein folding (MEUNIER et al. 

2002). Intriguingly, a mouse POMT2 splicoform with an N-terminal extension has been 

identified in testes where it localizes to the acrosome of sperm cells. This POMT2 

variant appears not to be involved in O-mannosylation in vivo and most likely has a 

novel non-enzymatic function (LOMMEL et al. 2008).  

Recent studies have demonstrated that elevated O-mannosyltransferase activity 

could be detected in extracts from cultured cells only if POMT1 and POMT2 were co-

expressed together (ICHIMIYA et al. 2004; MANYA et al. 2004). The data strongly 

suggests that POMT1 and POMT2 form a heterocomplex in order to exhibit O-

mannosyltasferase activity. This conclusion is reinforced by co-immunoprecipitation of 

these proteins and their co-localization within the ER(AKASAKA-MANYA et al. 2006).  

Studies in mice revealed that mPOMT1 and mPOMT2 have an elevated expression in 

the developing embryonic nervous system, the eye, and the mesenchyme. Targeted 

disruption of mPOMT1 results in a defect in the formation of Reichert's membrane (an 

extra-embryonic basal membrane separating the embryonic and maternal tissues in 

rodent development) and E7.5-9.5 embryonic lethality (WILLER et al. 2004), while 

similar phenotypes were observed in dystroglycan-null mice (WILLIAMSON et al. 1997). 

Another important enzyme in O-mannosylation pathway is POMGnT1, a  

β1,2-N-acetylglucosaminyltransferase that elongates O-linked mannose with a  

β1,2-linked GlcNac residue and mediates the second step in the vertebrate pathway 

(YOSHIDA et al. 2001a; ZHANG et al. 2002) (Figure 2). This enzyme resides in Golgi 
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subcellular compartment and has a typical type II transmembrane topology, with a short 

N-terminal cytoplasmic tail, a stem region and a C-terminal catalytic domain (AKASAKA-

MANYA et al. 2004). A single orthologue of this enzyme is present in vertebrates, while 

invertebrate species, like Drosophila, lack a functional counterpart of POMGnT1. 

Consistent with this conclusion, so far only non-elongated O-linked mannose has been 

found in Drosophila (NAKAMURA et al. 2010). 

Unlike the mPomt1 knockout, targeted disruptions of mPOMGnT1 produced 

viable mice which, however, had developmental abnormalities, including myopathy, 

neuronal migration defects, reduced cerebellum, and eye defects (LI et al. 2008). The 

failure of neuronal migration in the cerebellum of these mice is probably caused by pial 

basement membrane breaches and the disruption of underlying glia limitants, which 

suggests that POMGnT1 has a cell-nonautonomous effect on neuron migration. 

Biosynthesis of branched O-mannose glycans is thought to be mediated by β1,6-

N-acetylglucosaminyltrasferase Vb (GlcNAcT-Vb) that adds a β1,6-linked GlcNac 

residue to O-linked mannose (see page 8) (INAMORI et al. 2004). It’s highly expressed in 

the brain and testes (INAMORI et al. 2003; KANEKO et al. 2003). GlcNAcT-Vb is less 

specific for O-mannosylation pathway than POMGnT1 because it also participates in N-

linked glycosylation. However, GlcNAcT-Vb prefers O-linked mannose as an acceptor 

in vitro thus probably playing a major in producing branched O-mannosyl glycans 

(ALVAREZ-MANILLA et al. 2010). 

There are another three putative glycosyltrasferases that are potentially involved 

in modification of O-mannosyl glycans: Fukutin, Fukutin-related protein and LARGE. 

The biochemical activities and function of these proteins have not been characterized 
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yet. Recent study suggested that LARGE and Fukutin are involved in the biosynthesis of 

an unusual postphosphoryl modification of O-mannose, that appears to be important for 

α-DG ligand binding (YOSHIDA-MORIGUCHI et al. 2010). Putative orthologues of FKRP 

and LARGE genes are present in invertebrates, however the presence of LARGE is 

variable among insect species (LARGE is absent in Drosophila but present in bees) 

(GREWAL et al. 2005). 

There are several potential candidates for enzymes adding sialic acid, galactose, 

fucose and glucuronic acid to O-mannosyl glycans in mammals (Figure 2). However, the 

exact identity of these glycosyltrasferases is not yet known. Most likely, they are not 

specific for O-mannosylation alone, but rather being involved in biosynthetic pathway of 

other glycans. 

The best-studied prominent function of O-mannosylation is associated with the 

regulation of -DG activity. α-Dystroglycan is a key element of dystrophin-glycoprotein 

complex (DGC) that functions as a bridge between the cytoskeleton and extracellular 

matrix in muscle and neural cells (MICHELE and CAMPBELL 2003). 

In mammals, Dystroglycan (Dg) is encoded by a single gene (DAG1) and later 

cleaved into two subunits (α- and β- dystroglycan) (IBRAGHIMOV-BESKROVNAYA et al. 

1992).The two subunits remain attached to one another through non-covalent interaction 

of the C-terminal of α-Dg with the N-terminal region of β-Dg (SCIANDRA et al. 2001). 

Dystroglycan mediates cell-extracellular matrix communications in a variety of cell 

types and plays an important role in adhesion, sarcolemmal integrity, neurological 

development, basement membrane assembly and morphogenesis. 
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β-Dystroglycan has a single transmembrane domain and the last 15 amino acids 

of the C-terminus bind directly to the cysteine-rich region of dystrophin (Dys) in muscle 

cells (JAMES et al. 2000), and the Dys-homolog Utrophin (Utr) in epithelial cells. 

α–Dystroglycan shows a dumbbell-like molecular shape, in which two less 

glycosylated globular domains are separated by a mucin-like domain, a highly 

glycosylated serine-threonine-proline-rich region (BRANCACCIO et al. 1995). The 

predicted core of α-Dg peptide is ~74 kDa, but it runs as a broad smear in SDS-PAGE, 

with apparent molecular masses of 156 kDa in skeletal muscles, 120 kDa in brain. The 

difference in molecular masses of α-Dg obtained from different tissues is not due to the 

difference of primary structures, but rather due to the tissue-specific differences in 

glycosylation of the protein core.  

Laminin (Lam), Agrin, Perlecan (Pcan), Neurexin and Pikachurin serve as 

ligands for α-Dg (IBRAGHIMOV-BESKROVNAYA et al. 1992; SUGITA et al. 2001). The 

removal of O-glycans by chemical treatments with periodic acid or 

trifluoromethanesulfonic acid resulted in the loss of laminin binding (ERVASTI and 

CAMPBELL 1993; SMALHEISER and KIM 1995). This result suggested that O-glycans of α-

Dg are important for laminin binding. Unfortunately, the binding sites of α-Dg are not 

known, also, the proper O-glycosylation within mucin-like domain is required not only 

for Lam binding, but for Pcan as well (KANAGAWA et al. 2005). 
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Figure 2—Structures and biosynthesis of O-mannosyl glycans in animals. 

Note:  
Arrows indicate enzymatic steps mediated by the enzymes shown next to the arrows: POMT1/POMT2, protein O-mannosyltransferase 1 and 
2; POMGnT1, protein O-mannose β1,2-N-acetylglucosaminyltransferase; GlcNAcT-Vb (aka GnT-IX, Mgat-5b), β1,6-N-
acetylglucosaminyltransferase; GalT, β1,4-galactosyltransferase; SiaT, α2,3-sialyltransferase; FucT, α1,3-fucosyltransferase; GlcAT, β1,3-
glucuronyltrasferase; HNK-1ST, carbohydrate sulfotransferase. *Structures identified on mammalian α-dystroglycan. **The structure found 
on Drosophila dystroglycan. ?, unknown/potential steps or enzymes. 
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It is not really clear whether the sugar chains of this domain are directly involved 

in the interactions or play a role in supporting the rod-like shape of this region in α-Dg. 

In mammals Dg plays a very important role during early development. It has 

been shown that a Dg-knockout mouse failed to develop past day 5.5 of embryogenesis 

due to the disruption of the formation of the extra-embryonic basement membrane 

(Reichert’s membrane) (WILLIAMSON et al. 1997). Also, studies have shown a clear role 

for Dg in muscle differentiation (BROWN et al. 1999; LESCHZINER et al. 2000), in 

neuronal development, neuromuscular synapse formation and in branching epithelial 

morphogenesis (DURBEEJ and EKBLOM 1997). Unfortunately the complexities of Dg 

interactions and lack of appropriate tools have made analyses in mammals difficult. 

CONGENITAL MUSCULAR DISORDERS IN HUMANS 

In recent years a number of Congenital Muscular Dystrophies (CMDs) had been 

associated with defects in glycosylation pathway. Mutations in glycosyltransferase genes 

implicated in O-mannosyl glycan biosynthesis result in the phenotypes that are similar to 

those found in dystroglycan mutant tissue, such as dystrophic muscles and neuronal 

migration failure (BELTRAN-VALERO DE BERNABE et al. 2002; COTE et al. 1999; MOORE 

et al. 2002; SATZ et al. 2008; VAN REEUWIJK et al. 2005; YOSHIDA et al. 2001a). The 

CMDs with hypoglycosylation of α-DG and are commonly known as 

dystroglycanopathies; they include the Walker Warburg syndrome (WWS) caused by 

mutations in POMT1 and POMT2, and Muscle-Eye-Brain disease (MEB) that results 

from defects in POMGnT1 and other genes implicated in α-Dg glycosylation (BELTRAN-



11 

 

11 

VALERO DE BERNABE et al. 2002; VAN REEUWIJK et al. 2005; YOSHIDA et al. 2001b). 

Besides POMT1, POMT2 and POMGnT1, three more genes have been linked to 

dystroglycanopathies: fukutin, fukutin-related protein (FKRP) and LARGE (BELTRAN-

VALERO DE BERNABE et al. 2004; BROCKINGTON et al. 2001; KOBAYASHI et al. 1998; 

MUNTONI et al. 2008). 

WWS is the most severe autosomal congenital muscular dystrophy (with a mean 

life span of less than 1 year) associated with brain, muscle and eye abnormalities. 

Symptoms and signs are already present at birth and early infancy and occasionally can 

be detected prenatally with ultrasound imaging techniques. WWS is generally associated 

with hypotonia, muscle weakness, developmental delay with mental retardation and 

seizures. The anterior eye abnormalities (cataracts, shallow anterior chamber, 

microcornea) are quite common as well as a spectrum of posterior eye anomalies (retinal 

detachment, hypoplasia and atrophy of the optic nerve). Brain abnormalities often 

include type II lissencephaly (cobblestone type), hydrocephalus, vermal or general 

cerebellar hypoplasia and flat brainstem with small pyramids. White matter shows 

hypomyelination. In addition hypoplasia/agenesis of corpus callosum, occipital 

encephalocele and Dandy-Walker malformation have been described. Biochemical 

analysis often shows elevated levels of creatine kinase. Immunohistochemical studies 

using antibodies against α-Dg (VIA4-1 detects the glycans on α-Dg) have revealed the 

deficient immunostaining of α-Dg in the basal lamina of skeletal muscles. 
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MEB clinical findings largely overlap with those of WWS, but the defects 

associated with MEB are less severe and have a more variable phenotype expressivity, 

with some patients surviving to adulthood (Table 1). 

Although dystroglycanopathies show a general correlation between 

hypoglycosylation of α-Dg and the pathology, and there is a tendency for genes at the 

top of O-mannosylation pathway to appear more frequently among causative mutations 

(POMT1 and POMT2 are more often mutated in CMDs, followed by POMGnT1 and 

other genes), recent studies found no reliable genotype-phenotype correlation for these 

genes (Table 1) (Figure 3) (MERCURI et al. 2009). The study of glycosylation in humans 

presents a real challenge due to complexity of genetic and biochemical pathways. That is 

why in my PhD project I decided to use Drosophila as a model system to understand the 

role of O-mannosyl glycans in development and their involvement in muscular 

dystrophies in humans. 
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Table 1—Dystroglycanopathies, associated mutations and clinical findings. 

Disorder 

(OMIM) 

Gene 

mutated 

Phenotype 

Mobility and muscle Neurological phenotype 

WWS 
(236670) 

POMT1 

POMT2  

POMGnT1 

Fukutin  

FKRP  

LARGE 

Severe-impaired mobility, muscle weakness, reduced 
muscle bulk, dystrophic muscle biopsy, elevated serum 
CK level, hypoglycosylation of α–dystroglycan 
(IIH6,VIA4-1) 

Severe structural brain abnormalities including; 
Encephalocele, severe hydrocephalus, type II 
lissencephaly/agyria, absence of corpus callosum, 
fusion of cerebral hemispheres. Severe atrophy of the 
cerebellar vermis. Eye abnormalities including: 
unilateral or bilateral microphthalmia, buphthalmus, 
hypoplastic or absent optic nerves, retinal detachment, 
common anterior chamber malformations (cataracts, 
iris malformation, glaucoma). 

MEB 
(253280) 

POMT1 

POMT2 

POMGnT1 

FKRP 

LARGE  

Profound muscle hypotonia, impaired mobility, can sit 
unsupported, speak a few words, muscle degeneration, 
fibrosis elevated serum CK level, hypoglycosylation of 
α–dystroglycan (IIH6,VIA4-1) 

Brain abnormality less severe than WWS including: 
cerebellar hypoplasia, cortical dysplasia, 
pachygyria/polymicrogyria/agyria, common epilepsy 
seizures, flattening of the pons and brainstem. Eye 
abnormalities including: high myopia, retinal atrophy, 
retinal dysplasia, glaucoma, cataracts, retinal 
detachment. In a rare case: severe autistic features, 
tonic-clonic seizer. 

FCMD 
(253800) 

Fukutin Profound muscle hypotonia, impaired mobility, dilated 
cardiomyopathy, enlargement of calves, quadriceps, and 
tongue, scoliosis, elevated serum CK level, 
hypoglycosylation of α-dystroglycan (IIH6,VIA4-1) 

Brain abnormality less severe than WWS including; 
micropolygrya, cerebellar hypoplasia, cortical 
dysplasia, verrucous dysplasia, unlayered 
polymicrogyria, cerebellar cystic lesions, type II 
lissencephaly, flattening of the pons and brainstem. Eye 
abnormalities: in rare case, retinal detachment. 
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Table 1—Continued 

Disorder 

(OMIM) 

Gene 

mutated 

Phenotype 

Mobility and muscle Neurological phenotype 

MDC1C 
(606612) 

 

FKRP Severe case; inability to walk 
Mild case; muscle weakness and hypotonia, limited 
mobility and movements, impairment of cardic left-
ventricular, hypotrophy, elevated serum CK level, 
hypoglycosylation of α–dystroglycan (VIA4-1) 

Weak phenotype: normal brain structures and 
intelligence. Mild phenotype: mild mental retardation, 
mild structural changes of the cerebellum, cerebellar 
cysts, normal brain stem and eyes. Severe phenotype: 
severe mental retardation, ponto-cerebellar hepoplasia, 
cerebellar cysts. Retinal changes with abnormal 
pigmentation, myopia. 

LGMD2I 
(607155) 

FKRP Mild cases: ability to walk, muscle weakness, elevated 
serum CK levels, hypoglycosylation of α–dystroglycan 
(IIH6). Severe cases: inability to walk, elevated serum 
CK levels, dilated cardiomyopathy, muscle hypertrophy, 
hypoglycosylation of α–dystroglycan (VIA4-1) 

Brain structures judged by MRI are normal, normal 
intelligence. 

LGMD2K 
(609308) 

POMT1 Muscle weakness, muscle hypertrophy, 
hypoglycosylation of α–dystroglycan (VIA4-1), elevated 
serum CK levels 

Mild mental retardation, microcephaly, normal brain 
structure by cranial imaging. 

MDC1D 
(608840) 

LARGE Muscle weakness, muscle spasticity, hypertrophy, 
reduced immunolabelling of α–dystroglycan (IIH6 and 
VIA4-1), elevated serum CK levels 

Profound mental retardation, white matter changes, 
structural abnormalities, abnormal neuronal migration. 
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Figure 3—The mutations of POMT1 identified in CMDs patients. 

Note: 
Schematic model structure of human POMT1 is drawn based on the topological diagram reported 
previously (WILLER et al. 2003). Asterisks and green rhombuses indicate conserved Arg residues and 
conserved Asp-Glu motif, respectively (LOMMEL and STRAHL 2009). It is interesting to note that many 
mutations found in WWS patients locate in Loop 5 that shows significant homology to SDF2 chaperons. 
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DROSOPHILA AS A MODEL SYSTEM FOR MUSCULAR 

DYSTROPHY 

The Drosophila system has been used extensively as a model for studying various 

developmental processes for over a hundred years. The similarity of developmental and 

signaling pathways in Drosophila to higher organisms allows for extrapolation of the 

information gained to other systems. The relatively small genome size of Drosophila 

decreases genetic redundancy and complexity in the fly compared to vertebrates. Due to 

the extensive history of research in this model organism, a sophisticated set of molecular 

and genetics tools have been developed. Furthermore, Drosophila has a relatively short 

life cycle consisting of distinct morphological stages, making this model system ideal for 

developmental processes’ study. After an egg is fertilized, embryogenesis lasts one day, 

after which the egg hatches and the first of three larval stages begins. The first instar 

larval stage lasts one day, followed by a second instar stage for another twenty-four 

hours and finally a third instar stage, which lasts two days. The Drosophila pupal stage 

lasts approximately five days, after which an adult fly emerges. During the pupal stages, 

old larval tissues (consisting mostly of polyploid cells) are dissolved and replaced with 

adult tissues.  
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Figure 4—Drosophila homologues of human POMT1 & POMT2. 

Note: 
Multiple sequence alignments of POMT1 and POMT2 orthologues from human, 
mouse, zebrafish, Drosophila together with yeast (Saccharomyces cerevisiae) PMT proteins. Alignments 
were generated using the CLUSTALW algorithm, distance-based phylogenic trees were constructed by an 
NJ image method (GenomeNet CLUSTALW of the Kyoto University Bioinformatics Center, 
http://www.genome.jp/ja/) and visualized with NJ Plots software. 
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The developmental processes, signaling pathways components, transduction and 

regulation of these stages are well studied, making Drosophila a valuable model to study 

the role of O-mannosyl glycan during development. 

Just like vertebrates, Drosophila has two O-mannosyltrasferase enzymes, 

DmPOMT1 and DmPOMT2, referred in Drosophila nomenclature as rt (rotated 

abdomen) and tw (twisted) respectively. These enzymes are evolutionary related to 

mammalian POMT1 and POMT2 (MARTIN-BLANCO and GARCIA-BELLIDO 1996; 

WILLER et al. 2002) (Figure 4) and share a high level of identity of protein sequence 

with their mammalian counterparts. 

Originally, the rotated abdomen (rt) locus was described first by Bridges and 

Morgan in 1923 (BRIDGES and MORGAN 1923) as poorly viable recessive mutation with 

clockwise rotation of abdominal segments in adult flies. The rt locus was mapped at 

position 68D on the third chromosome defined by deficiencies Df
(vin)

6 and Df 
(vin)

. 

Almost seventy years later, three mutant alleles of rt gene had been isolated and 

phenotypically characterized (MARTIN-BLANCO and GARCIA-BELLIDO 1996). These 

mutants are semi viable recessive alleles associated with disruptions of the gene-coding 

region by P-element insertions and possibly represent null mutations.  

The in situ hybridization analysis of rt expression during development revealed 

that rt is expressed thought development as a 3.2-kb mRNA transcript at variable levels. 

A maternal transcript decays rapidly with zygotic expression peaks between the 8th and 

12th hours of development. RNA transcripts localize first in invaginating cells at the 

cellular blastoderm stage and start to accumulate in the ventrally located mesoderm 
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primordium. At germ band extension stage, the expression becomes periodic in the 

mesoderm; stripes of strong expression alternate with stripes of weak expression. A 

strong signal is also detected in the invaginating gut. At the germ band retraction stage 

the mesodermal expression decays and become restricted to somatic muscle precursors. 

At the later stages, the rt expression disappears from the mesoderm and remains in the 

endoderm. 

Recent studies have revealed that along with clockwise rotation of abdominal 

segments, the rt and tw mutants exhibit larval and adult muscle abnormalities (missing 

muscles, muscle rearrangements), problems with muscle ultrastructure (sarcomeric 

disarray, irregular Z-lines, filament disorganization, accumulation of glycogen granules, 

enlargement of mitochondria and duplication of basement membrane) (HAINES et al. 

2007; UEYAMA et al. 2010). Similar alterations of muscle ultrastructure are observed in 

human patients with CMDs. Mutant flies have also problems with heavy exercises (such 

as climbing and flying), but show no problem with light movements such as locomotion. 

Defective motor function in mutants appears immediately after enclosure and progresses 

in age-dependent manner. Those findings suggest a novel mechanism for development 

of muscular dystrophy: flies with mutations in POMTs have a high myoblast density and 

position derangements which result in apoptosis, muscle disorganization, and muscle 

cell defects.  

In addition to muscle and behavioral abnormalities in rt mutants a neurological 

phenotype has been reported. In rt mutants, there is a decrease in the efficacy of synaptic 

transmission and a change in the subunit composition of the postsynaptic glutamate 
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receptors at the neuromuscular junctions (DAVIS 1980). The Drosophila neuromuscular 

junction (NMJ) is a well-established system for studying the structure and function of 

synapses (Davis 1980). The postsynaptic glutamate receptor at the NMJ is comprised of 

three essential subunits and two nonessential subunits, DGluRIIA and DGluRIIB. In rt 

mutants, the level of synaptic DGluRIIB was decreased with no detectable change in the 

levels of DGluRIIA. The decreased levels of DGluRIIB severe impair the ability of 

synapses to release neurotransmitter, which results in decreased Excitatory Junction 

Potential (EJP) levels in rt mutants. Similar phenotypes were observed in Dg mutants as 

well. Interestingly, in tw mutants, I was not able to detect changes in EJP (unpublished 

observation). It is not clear yet, how the hypoglycosylation of Dg can impair the subunit 

composition and transmitter release, but we can speculate that Dg, via its interactions 

with the extracellular matrix, is an important part of trans-synaptic complex that plays a 

structural and/or functional role at the synapse to promote normal synaptic function. 

Synaptic defects are a plausible cause of mental retardation found in patients with 

CMDs, making Drosophila a unique model for understanding the role of glycosylation 

in neuronal development and functioning. 

What makes Drosophila a good model for studying muscular dystrophies is 

evolutionary conservation of the Dystrophin-Glycoprotein Complex (DGC) between 

vertebrates and Drosophila. In fact, Drosophila genome includes genes encoding all 

essential components of DGC, albeit having substantially decreased diversity of 

homologues as compared to vertebrates (Figure 5) (ROBINSON et al. 2005).  
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Figure 5—Evolutionary conservation of the dystrophin-glycoprotein complex (DGC) 
between Drosophila and vertebrates. 

Note:  
Drosophila has all essential components of the DGC along with dystroglycan ligands, 
including Laminin (LanA), Perlecan (Trol), Neurexin and a putative Pikachurin. Unlike in vertebrates, 
dystroglycan in Drosophila appears not to be processed into separate α and β subunits, and no extension of 
O-linked mannose has been identified in Drosophila so far. 
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In embryogenesis, many of these genes, including dystrophin (Dys), dystroglycan 

(Dg), and sarcoglycan orthologues, are expressed in a partially overlapping and dynamic 

pattern in the nervous system and the body wall muscles (DEKKERS et al. 2004).Unlike 

mammals, Drosophila has three different DG isoforms, DG-A, -B, and -C, produced by 

alternative splicing (DENG et al. 2003). Among these isoforms, only DG-C includes a 

predicted mucin-type domain with the potential for extensive O-glycosylation, sharing 

this feature with mammalian α-DG (DENG et al. 2003; SCHNEIDER et al. 2006). The 

expression of different DG splicoforms is developmentally regulated, and they show 

distinct patterns of embryonic expression, with DG-A being expressed mostly in muscle 

attachments, DG-B expression being elevated in dorsal median cells, dorsal vessel, 

malpighian tubules, and glial cells, and DG-C expression being detected throughout 

embryogenesis in broad pattern, including epidermis, visceral mesoderm, tracheal pits, 

neurons, hindgut, pharynx, and gonads (SCHNEIDER and BAUMGARTNER 2008). 

Drosophila Dg is required for planar polarity of the basal actin stress fibers in the follicle 

cells (DENG et al. 2003; MIROUSE et al. 2009), however Dg mutants appear to develop 

normally, with the only conspicuous phenotype being a wing posterior crossvein defect 

(CHRISTOFOROU et al. 2008).  

In addition, Dg has been implicated in establishing epithelial polarity in follicle 

cells and anteroposterior polarity of the oocyte during oogenesis (DENG et al. 2003; 

SCHNEIDER et al. 2006). This effect, however, depends on energetic stress conditions, 

and Dg appears to be not required for cell polarity when the energy pathway is not 

compromised (MIROUSE et al. 2009). The maintenance of epithelial polarity under 
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energetic stress involves DG interaction with Perlecan and induces two different 

pathways that impinge on cytoskeleton polarization, one of them acting through Myosin 

II, and another working through yet unknown mechanism (MIROUSE et al. 2009). The 

involvement of Dg in energetic stress pathway may explain discrepancy of the epithelial 

polarity phenotype in perlecan mutant cells observed in some (SCHNEIDER et al. 2006) 

but not other experiments (MIROUSE et al. 2009), presumably due to fly food 

composition that varies between different laboratories (MIROUSE et al. 2009). 

As it has been mentioned previously, Dystroglycan also plays a role in the nervous 

system, where it is required for photoreceptor axon pathfinding, while at larval NMJs Dg 

affects glutamate receptor subunit composition, the concentration of synaptic Laminin 

and Dystrophin, and the efficacy of synaptic transmission (BOGDANIK et al. 2008; 

WAIRKAR et al. 2008). RNAi-mediated downregulation of DG results in 

postdevelopmental phenotypes reminiscent of human CMDs, with decreased mobility of 

flies and age-dependent muscle degeneration (SHCHERBATA et al. 2007). Crossvein and 

muscle degeneration phenotypes of Dg closely resemble those of Dys, while the last one 

is similarly required for normal NMJ synaptic transmission (BOGDANIK et al. 2008; 

CHRISTOFOROU et al. 2008; SHCHERBATA et al. 2007; VAN DER PLAS et al. 2007; VAN 

DER PLAS et al. 2006; WAIRKAR et al. 2008). All these results further support the notion 

that DGC function is evolutionarily conserved between Drosophila and vertebrates. 
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DISSERTATION OVERVIEW 

To understand the role of O-mannosyl glycans in Drosophila, I focused my 

research on the Drosophila O-mannosyltransferase genes, DmPOMT1 (rt) and 

DmPOMT2 (tw). 

At the beginning of my PhD project, there were no mutations reported for 

DmPOMT2 gene, although the possibility that mutations in the twisted locus might 

represent DmPOMT2 mutants has been suggested. In Chapter II, I will show that 

mutation in DmPOMT2 corresponds to twisted locus, will characterize expression 

pattern of tw gene, identify the sub-cellular localization of RT and TW proteins and 

analyze genetics interactions between tw1 and rt mutant alleles.  

In order to better understand the function of O-mannosyl glycans I will analyze 

temporal and spatial requirements for rt and tw genes during development (Chapter III). 

I will use “developmental heat-shock” approach to narrow down the list of larval and 

pupal stages, which require the expression of rt and tw for proper alignment of 

abdominal segments in adult flies. I will use a panel of different GAL4 drivers to 

understand tissue-specific requirements of mannosyltransferase genes during Drosophila 

development. 

 In Chapter IV, in collaboration with Dr. Naosuke Nakamura, I will investigate 

glycosylation of Drosophila Dg in vitro and in vivo.  These studies will serve to help 

understanding the role of O-mannosyl glycans in Drosophila development and shed light 

on possible mechanisms of muscular dystrophies in humans. 
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CHAPTER II 

CHARACTERIZATION OF DROSOPHILA POMT2 GENE EXPRESSION 

PATTERN AND GENETIC INTERACTIONS  

WITH DmPOMT1
†
 

 

INTRODUCTION 

The family of mammalian O-mannosyltransferases includes two enzymes, POMT1 

and POMT2, which are thought to be essential for muscle and neural development. 

Similar to mammalian organisms, Drosophila have two O-mannosyltransferase genes, 

rotated abdomen (rt) and DmPOMT2, encoding proteins with high homology to their 

mammalian counterparts. Several mutations in the rotated abdomen gene (rt) were 

previously isolated and phenotypically characterized (BRIDGES and MORGAN 1923; 

LINDSLEY and ZIMM 1992; MARTIN-BLANCO and GARCIA-BELLIDO 1996; YOSHIDA-

MORIGUCHI et al. 2010). Two molecularly characterized mutants, rt2 and rtP, are 

semiviable recessive alleles associated with disruptions of the gene coding region by P-

element insertion; they possibly represent null mutations. The phenotypes of these 

mutations include larval and adult muscle abnormalities, behavioral and neurological 

                                                 
† Portions of this chapter are reprinted with kind permission from: The twisted gene encodes Drosophila 

protein O-mannosyltransferase 2 and genetically interacts with the rotated abdomen gene encoding 
Drosophila protein O-mannosyltransferase 1 by Lyalin, D., et al., Genetics, 172 (1), 2006, 343-353. 
Copyright The Genetics Society of America. 
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defects as well as a prominent, up to 90° clockwise rotation of abdominal segments in 

adult flies (see Chapter I) (MARTIN-BLANCO and GARCIA-BELLIDO 1996). 

No mutations in DmPOMT2 gene have been reported so far, although the 

possibility that mutations in the twisted locus might represent DmPOMT2 mutants has 

been suggested (MARTIN-BLANCO and GARCIA-BELLIDO 1996; WILLER et al. 2002). 

This hypothesis was further supported by “twisted abdomen” phenotype obtained 

in RNAi-mediated DmPOMT knockdown experiments (ICHIMIYA et al. 2004). Similar to 

their mammalian counterparts, RT and DmPOMT2 proteins have to be co-expressed to 

produce O-mannosyltransferase activity (ICHIMIYA et al. 2004). 

The twisted alleles represent a complementation group of viable and semiviable 

recessive mutations on the X chromosome that also exhibit clockwise rotated abdominal 

segments in the adult (LINDSLEY and ZIMM 1992). Several tw mutant alleles had been 

isolated (DAVIS 1980; LINDSLEY and ZIMM 1992); however, none of them was 

characterized in detail and no molecular data are currently available for the tw locus. 

Most of these tw mutants have been lost and there is only one mutant allele, tw1, 

available from public collections (DRYSDALE and CROSBY 2005). 

In this study, I have tested the hypothesis that tw corresponds to DmPOMT2. I 

used an expression rescue approach and established that the tw locus represents the 

DmPOMT2 gene. The immunostaining analysis of subcellular localization of tagged RT 

and DmPOMT2 (TW) proteins revealed their colocalization in the endoplasmic 

reticulum (ER) of Drosophila cells. The pattern of embryonic tw expression was 

analyzed by in situ hybridization and compared to the expression of rt. The data showed 
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striking overlap of tw and rt expression at different stages of embryogenesis. Moreover, I 

found a genetic interaction between tw and rt mutant alleles. All these results are 

consistent with the hypothesis that RT and TW, the two Drosophila protein O-

mannosyltransferases, participate in the same developmental cascade and may 

collaborate at the molecular level, potentially functioning as an enzymatic 

heterocomplex.  

MATERIALS AND METHODS 

Mutant and transgenic Drosophila stocks 

The following Drosophila mutant alleles, chromosomal aberrations, and transgenic 

insertions used in the study were obtained from the Bloomington Drosophila Stock 

Center, Indiana University: tw1, rt
P, rt

2, Df(1)su(s)83, Dp(1;Y)y
2
sc, Act5C–GAL4-25 

(second chromosome insertion), Act5C–GAL4-17 (third chromosome insertion), tubP–

GAL4 (LL7), and C155–GAL4. The rt
571 allele (also designated as EP(3)0571) was 

obtained from the Exelixis EP collection (Exelixis; San Francisco). In my experiments, I 

have used three different rt alleles to exclude potential influence of genetic background 

and possible peculiarities of some alleles. All three alleles of rt include an independent 

P-element insertion in the first exon of the gene and likely represent null or strong 

hypomorphic mutations (see (DRYSDALE and CROSBY 2005; MARTIN-BLANCO and 

GARCIA-BELLIDO 1996). PDI∷GFP transgenic flies were kindly provided by Alain 

Debec (BOBINNEC et al. 2003). The following transgenic insertions were generated by P-
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element mediated transformation: UAS–DmPOMT2 and UAS–twRNAi-39 (on the second 

chromosome) and UAS–twRNAi-77 (on the third chromosome).  

Sequencing of the DmPOMT2 gene in tw
1
 mutant flies 

The DNA fragment of DmPOMT2 locus was PCR amplified from the genomic 

DNA of tw1 homozygous flies using primers 5′ CGTGGCCAGGATAACAACACTGGC 

3′ and 5′ AACGTTGACAGGGTTGTGGGTGTGGT 3′. The amplified genomic region 

included the transcribed region [determined by the alignment of the DmPOMT2 cDNA 

(clone LP01681) with Drosophila genomic sequences (ADAMS et al. 2000) , along with 

the 2-kb upstream and 500-bp downstream fragments. The PCR product was sequenced 

and several deviations of the DmPOMT2 locus sequence from the corresponding wild-

type genomic sequence determined by the Drosophila genome project (ADAMS et al. 

2000) were uncovered. The alterations include: CA(249,250) → AGGAT; C(472) → T; 

T(2545) → C (nucleotide numbers are relative to the beginning of coding region). The 

first alteration is predicted to affect the translated protein sequence [T(59) → GS], while 

the two other mutations are silent.  

DNA constructs for cell-culture expression and fly transformation 

The cDNA clones were obtained from the Drosophila Genomics Resource Center 

at Indiana University. For cell culture expression experiments, the coding region of 

DmPOMT2 was PCR amplified from the DmPOMT2 cDNA (LP01681) using PCR 

primers containing BglII and XbaI restriction sites. Using these sites, the PCR product 
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was inserted into the pMK33 vector (KOELLE et al. 1991). The final construct, pMK–

DmPOMT2, also included a short DNA fragment encoding the HA tag (NIMAN et al. 

1983); it was obtained by annealing two synthesized oligonucleotides and then 

introduced into DmPOMT2 cDNA using SanDI restriction site. The resulting construct 

encoded a DmPOMT2 (TW) protein with HA-tag inserted into nonconserved region 

immediately after G(650). The same construct was subcloned into the pUAST vector 

(BRAND et al. 1994) to obtain pUAST–DmPOMT2 for fly transformation and in vivo 

expression. Functionality of the construct was confirmed by Western-blot analysis (data 

not shown) and immunostaining of pMK–DmPOMT2-transfected S2 cells (see page 38), 

as well as by an in vivo rescue assay (see page 34). For the expression of rt in 

Drosophila cell culture, the coding region of rt was PCR amplified from the rt cDNA 

(clone RE30211) and inserted in the pRMHA3 vector (BUNCH et al. 1988). In the final 

expression construct, the rt coding region was modified by the addition of a short DNA 

fragment encoding two MYC tags (EVAN et al. 1985) immediately following the last 

amino acid-coding triplet of rt. As revealed by sequencing, the RE30211 clone includes 

a short unspliced intron preceding the last coding exon of the gene. Efficient expression 

of the construct and removal of the intron by in-cell splicing was confirmed using anti-

MYC immunostaining of pRMHA3–rt-MYC-transfected cells (see page 38). The 

functionality of the MYC-tagged RT protein was also confirmed in vivo by its ability to 

rescue the rt mutant phenotype. The UAS–twRNAi construct was produced essentially 

according to the published strategy (LEE and CARTHEW 2003). 

http://www.genetics.org/content/172/1/343.full#F4
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Cell culture 

Drosophila S2 cells were maintained and transfected using the protocols described 

earlier (KOLES et al. 2004). 

Immunostaining and epifluorescent microscopy 

Expression of the UAST–DmPOMT2 construct was induced in salivary glands 

using the C155–GAL4 driver. Third instar larvae were dissected, fixed, and stained as 

described earlier (PANIN et al. 1997). The following primary antibodies and 

corresponding dilutions were used for immunostaining: rabbit anti-LVA (1:2000) (a gift 

from John Sisson, University of Texas, Austin, TX); mouse and rabbit anti-HA (1:1000); 

mouse anti-MYC (1: 1000) (BabCo, Berkeley, CA). We used the following fluorescent 

secondary donkey antibodies: anti-mouse-Cy3 (1:250); anti-rabbit-FITC (1:150); and 

anti-mouse-Cy5 (1:150) (Jackson Laboratories). Digital images were obtained using 

Zeiss Axioplan 2 fluorescent microscope with the ApoTome module for optical 

sectioning.  

In situ hybridization was performed as described earlier (KOLES et al. 2004) using 

the tw and rt cDNA clones LP01681 and RE30211, respectively, as templates for the 

synthesis of DIG-labeled probes. Every in situ hybridization experiment included a 

negative control staining with a probe transcribed from the corresponding antiparallel 

cDNA sequence (data not shown).  
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Phenotype analysis 

All flies were grown at 25°. The rotation of abdomen was scored in CO2-

anesthetized flies 1 day after eclosion (to eliminate possible influence of aging or altered 

morphology in very young flies). The rotation angle was measured from posterior 

viewpoint using Nikon SMZ microscope with a protractor reticle objective.  

RESULTS 

The tw
1
 mutant allele contains a mutation within the DmPOMT2 gene 

region encoding the conserved PMT domain  

The novel Drosophila O-mannosyltransferase 2 gene was initially found by 

BLAST searches of Drosophila genomic sequences on the basis of the homology of its 

conceptual translation to the sequences of RT, yeast, and mammalian O-

mannosyltransferases. The software prediction was further confirmed by the 

identification and sequencing of the corresponding full-length cDNA clone LP01681 

from the Drosophila EST collection. A mosquito EST sequence has been identified 

(GenBank accession no. XM 312249), encoding a protein with high homology to 

DmPOMT2, which suggested that this sequence corresponds to the mosquito ortholog of 

DmPOMT2, AgPOMT2 (Figure 6).  
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Figure 6—Protein sequence alignment of several protein O-mannosyltransferases from different species. 

Note: 
DmPOMT2, fruit fly (Drosophila melanogaster) POMT2; AgPOMT2, mosquito (Anopheles gambiae) POMT2; HsPOMT2, human POMT2; ScPmt2p, 
yeast (S. cerevisiae) protein O-mannosyltransferase 2; RT, D. melanogaster POMT1. The aligned conserved PMT domain (solid line) and MIR 
domains (dashed lines) are indicated. Asterisk indicates the position of T(59) → GS mutation identified in the tw1 allele. Alignment was performed 

using CLUSTAL W algorithm  at BCM server (http://searchlauncher.bcm.tmc.edu/multi-align). 
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The similarity between the products of rt and DmPOMT2 (Figure 6), along with 

functional data on the homologous yeast PMT family members, allowed to suggest that 

both Drosophila genes might function within the same biochemical pathway. This 

scenario would predict similar phenotypes for rt and DmPOMT2 mutations. 

Interestingly, the chromosomal position of DmPOMT2 (1D4) maps to the 

cytogenetic region that also includes tw (1C3–D4), the complementation group of 

mutations causing a clockwise rotation of the adult abdomen (LINDSLEY and ZIMM 

1992). This phenotype is strikingly similar to that of rt mutants (Figure 7, A–C). The 

data indicated the possibility that tw corresponds to DmPOMT2. This hypothesis has 

also been mentioned by other researchers (WILLER et al. 2002) and supported by 

DmPOMT2 RNAi experiments that generated rt-like abdomen rotation phenotype 

(ICHIMIYA et al. 2004). Thus, we decided to sequence the genomic region of DmPOMT2 

in tw1 mutant flies carrying a semiviable recessive twisted allele. The tw1 homozygous 

female and hemizygous male flies have a fully penetrant phenotype that manifests in the 

clockwise rotation of the abdomen (20°–40°) along the anteroposterior axis, when scored 

from a posterior viewpoint (Figure 7, C). Genetically, the tw1 mutation behaves as a 

hypomorphic allele since its phenotype is significantly enhanced in tw1-hemizygous 

females carrying a deficiency that includes the tw locus [tw1/Df(1)su(s)83], while the 

phenotype is completely rescued in males carrying a duplication of the tw locus on the Y 

chromosome [tw1
/Dp(1;Y)y

2
sc] (Figure 7, C and Figure 8). 
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Figure 7—Abdomen rotation phenotype of rt and tw mutants. 

Note: 
(A) Wild type; (B) rt

P
/rt

2; (C) tw1
/tw

1; and (D) tw1
/Df(1)su(s)83.  

Only females are shown; corresponding males have similar phenotypes. Ventral view, anterior is up. 
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The sequencing of the DmPOMT2 locus included the transcribed region together 

with 2-kb upstream and 500-bp downstream fragments. The sequencing revealed several 

deviations of the DmPOMT2 genomic sequence from the corresponding wild-type 

sequence. One of the identified mutations is the coding region and results in the amino 

acid substitution/insertion [T(59) → GS] within the conserved PMT domain of 

DmPOMT2 (Figure 6), which might explain an altered function of the DmPOMT2 

protein in tw1 mutants. This observation further supports the hypothesis that clockwise 

rotation of abdomen phenotype in tw mutants is caused by mutations in DmPOMT2. 

The phenotype of tw
1
 mutation can be rescued by DmPOMT2 

expression  

To confirm that the DmPOMT2 mutation(s) causes the abdominal rotation 

phenotype in tw1 mutants, I carried out a rescue assay: induced DmPOMT2 expression in 

the tw1 mutant background using the UAS/GAL4  in vivo expression system (BRAND et 

al. 1994).  

I generated UAS–DmPOMT2 transgenic fly line and crossed them to flies carrying 

a ubiquitous Act5C–GAL4-17 driver (see Materials and Methods). There were no visible 

defects in abdominal morphology of the flies from either parental stocks or UAS–

DmPOMT2/+; Act5C–GAL4-17/+ progeny of the cross. The presence of the UAS–

DmPOMT2 or Act5C–GAL4 transgene alone did not modify the phenotype of tw1 

mutants (Figure 8).  
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Figure 8—The tw1 allele is a hypomorphic allele of the DmPOMT2 gene. 

Note: 
Error bars indicate standard deviations. 
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At the same time, the complete rescue of the abdomen rotation phenotype was 

observed in tw1 hemizygous male and homozygous female flies carrying both UAS–

DmPOMT2 and Act5C–GAL4-17 together (Figure 8). Similar results were obtained 

when DmPOMT2 was expressed using a different ubiquitous driver. These rescue 

experiments proved that tw indeed represents the DmPOMT2 gene. 

Subcellular localization of RT and TW proteins 

Glycosyltransferases that modify secreted glycoproteins commonly function in the 

Golgi apparatus. Interestingly, yeast PMT family members localize to the ER subcellular 

compartment (WILLER et al. 2003). The localization of O-mannosyltransferase proteins 

in animal cells has been reported only for human POMT2 protein expressed in human 

culture cells (WILLER et al. 2002). I decided to investigate the subcellular localization of 

the TW protein, the Drosophila ortholog of mammalian POMT2, using the UAS–

DmPOMT2 transgenic construct that was functional in our rescue assay (Figure 8). 

Immunostaining for TW protein expressed in vivo in the salivary gland cells of 

Drosophila larvae revealed its colocalization with an ER marker, PDI-GFP. At the same 

time, the localization of TW showed minimal overlap with a Golgi marker, the LVA 

protein, when TW was expressed in Drosophila S2 cells (Figure 9, D–F). Double 

immunostaining of S2 cells expressing both RT and TW proteins demonstrated their 

colocalization inside the cell (Figure 9, G–I). Thus, I concluded that both RT and TW 

proteins reside in the ER subcellular compartment.  
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Figure 9—Subcellular localization of the TW and RT proteins. 

Note: 
(A–C) Immunofluorescent staining for HA-tagged TW protein expressed in the third larva instar salivary 
gland cells of PDI∷GFP transgenic flies.  
(A) TW (red, Cy5); (B) PDI-GFP (green); (C) overlay of the red A and green B channels. The staining 
reveals TW localization in the ER compartment.  
(D–F) Double-immunofluorescent staining for HA-tagged TW and LVA proteins expressed in the 
Drosophila S2 cell culture. (D) LVA (red, Cy3); (E) TW (green, FITC); (F) overlay of the red D and green 
E channels. The staining indicates TW exclusion from the Golgi compartment (obtained by V.Panin).  
(G–I) Double-immunofluorescent staining for TW (HA-tagged) and RT (MYC-tagged) coexpressed in 
Drosophila culture cells. (G) TW (red, Cy3); (H) RT (green, FITC); (I) overlay of the red (G) and green 
(H) channels. The double immunostaining shows colocalization of TW and RT within Drosophila cells. 
Circular staining around nuclei of S2 cells represents perinuclear ER.  
Bars, 20 μm in C and 6 μm in F and I.  
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Analysis of tw and rt expression during Drosophila embryogenesis by 

in situ hybridization  

Detailed analysis of the spatial and temporal patterns of gene expression by in situ 

hybridization can provide important information about the functioning and regulation of 

the gene. The pattern of embryonic rt expression was previously analyzed by in situ 

hybridization ((MARTIN-BLANCO and GARCIA-BELLIDO 1996). The pattern of tw 

(DmPOMT2) expression has been reported only for embryonic stage 10, while the 

expression at other stages was estimated only using a real-time PCR assay (ICHIMIYA et 

al. 2004). Thus, we decided to perform in situ hybridization analysis of tw expression 

and compare it with the pattern of rt expression at different embryonic stages. The 

original in situ hybridization was done in our lab by Sigrid M. Roosendaal. In agreement 

with previous reports (ICHIMIYA et al. 2004; MARTIN-BLANCO and GARCIA-BELLIDO 

1996), we found no significant expression of tw at early embryonic stages, while rt 

mRNA was detected at stages 5 and 6, which probably indicates the presence of 

maternally provided transcript (Figure 10, A and D). This early rt expression decays 

quickly and it is not readily detectable after stage 7. Although we did detect some weak 

staining for tw and rt expression during the stages of germband extension (stages 10 and 

11), this staining was diffuse and barely detectable above the background. 
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Figure 10—The pattern of rt and tw expression at different embryonic stages as revealed by in situ hybridization (images 
obtained by Sigrid D. Roosendaal). 

Note: 
(A–C) tw expression: A, stage 5; B, stage 14; C, stage 15.  
(D–F) rt expression: D, stage 5; E, stage 14; F, stage 16.  
At stage 14, the expression of the genes is elevated in the epidermis (arrows), foregut (open triangles), hindgut (solid triangles), and trachea (asterisk). 
The presence of the rt mRNA at stage 5 in D suggests maternal contribution of the transcript. Anterior is to the left. B, C, E, and F are dorsolateral 
views.  
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       Thus, we decided to concentrate our analysis on tw and rt expression at later stages, 

when the expression of these genes is readily detectable. The prominent expression of 

both genes, tw and rt, appears at early stage 14 that corresponds to the period of active 

muscle differentiation (Figure 10, B and E). 

However, we have not detected significant expression of tw or rt in the developing 

somatic muscle cells. Instead, the expression of these genes appeared to be pronounced 

in other tissues, including certain developing epidermal cells, as well as hindgut and 

foregut regions. At that stage, the expression of tw is also present in the developing 

trachea, while rt expression appears in the tracheal cells slightly later, during stage 15.  

Genetic interactions between tw and rt genes 

The similarity of mutant phenotypes strongly suggests that both genes function in 

the same developmental cascade. To test this possibility, I assayed the genetic 

interaction between tw1 and three rt alleles, rt
2, rt

P, and rt
571. Somewhat surprisingly, I 

found that the presence of tw1 significantly suppressed the abdomen rotation phenotype 

of rt mutants (Figure 11A). Notably, this effect is dominant since even one copy of tw1 

mutation in females is sufficient for the suppression. In fact, the suppression of rt 

phenotype in tw1 homozygous or hemizygous flies appears to be nearly complete since 

the phenotype of tw1
/tw

1(or tw1
/Y); rt/rt double mutants is virtually indistinguishable 

from the phenotype of tw1-homo-/hemizygous mutants alone (Figure 11B). 
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Figure 11—Genetic interactions between tw1 and rt mutant alleles. 

Note: 
(A) The suppression of rt mutant phenotype by the tw1 allele. 
Error bars indicate standard deviations. 
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                                    Figure 11- Continued.  

Note: 
(B) The phenotype of tw

1 homo-/hemizygous mutants is not significantly influenced by the level of rt 
activity.  
Error bars indicate standard deviations. 
  



44 

 

44 

Two competing explanations of these results were considered. First, the relative 

excess of TW as compared to RT in the rt mutants might have a negative effect on the 

O-mannosylation pathway. In this case, a potential decrease of TW might explain the 

suppression of rt phenotype in tw1 mutant background. Alternatively, the suppression of 

rt phenotype by tw1 might be explained by a special feature of the tw1 allele,  

which would not implicate the dependence of phenotype on relative concentrations of 

RT and TW. To discriminate between these two possibilities, we analyzed further the 

genetic interaction between rt and tw. 

The first possibility would predict that an increase of tw activity would increase 

the severity of rt mutant phenotype, while a decrease of tw would result in rt mutant 

phenotype suppression. 

To test this prediction, I varied the level of tw in rt mutants by several alternative 

ways: (i) by adding an extra copy of the tw locus [using duplication Dp(1;Y)y
2
sc], (ii) by 

overexpressing TW using UAS–GAL4 system, and (iii) by decreasing the tw activity via 

UAS–twRNAi construct expression. Neither the increase of tw expression (Figure 12A) 

nor the decrease of tw activity (Figure 12B) revealed the predicted sensitivity of rt 

mutant phenotype to varied concentrations of TW. Therefore, I interpret the dominant 

suppression of rt phenotype by the tw1 mutation as a special feature of the tw1 allele that 

somehow bypasses the requirement for rt activity in the genetic pathway. This 

interpretation is further supported by a synergistic effect of tw RNAi and heterozygous rt 

mutant background (Figure 13), which revealed a positive interaction between rt and tw, 

indicating their close collaboration within the pathway.   
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Figure 12—Genetic interactions between tw and rt. 

Note: 
(A) The increased level of tw does not have a significant effect on the phenotype of rt mutants.  
Error bars indicate standard errors of the mean. The difference between phenotypes of compared male 
genotypes is small but statistically significant (t-test, P < 0.05). The difference between corresponding 
females is not statistically significant (P > 0.3). 
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                      Figure 12- Continued.  

Note: 
(B) The phenotype of rt mutants is insensitive to the decreased level of tw.  
The difference between phenotypes of compared genotypes is not statistically significant (t-test, P > 0.07). 
Error bars indicate standard errors of the mean. 
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Figure 13—Synergistic genetic interactions between rt and tw. 

Note: 
The difference between compared phenotypes is statistically significant  
(t-test, P ≪ 0.001). Error bars indicate standard errors of the mean.  
  



48 

 

48 

These data also support the hypothesis that the O-mannosylation pathway requires 

the simultaneous activities of both rt and tw genes (ICHIMIYA et al. 2004). This 

simultaneity requirement can explain the absence of any significant effect of varied TW 

levels on the phenotype of tested rt mutants that represent very strong hypomorphic or 

amorphic mutations and presumably lack the RT protein. 

DISCUSSION 

The family of protein O-mannosyltransferases in Drosophila includes two 

members, RT and DmPOMT2, and exhibits obvious evolutionary relation to the 

mammalian POMT protein family (WILLER et al. 2003). While several mutations in the 

rt locus have been previously isolated and the rt gene has been molecularly characterized 

((LINDSLEY and ZIMM 1992; MARTIN-BLANCO and GARCIA-BELLIDO 1996), the novel 

DmPOMT2 gene (CG12311) has been described only recently (ICHIMIYA et al. 2004), 

and no mutations in DmPOMT2 have been reported so far. In this study, I have 

established the relationship between DmPOMT2 and twisted, the previously isolated 

complementation group of recessive mutations with the characteristic phenotype of a 

clockwise twisted abdomen. The results of this study demonstrate that the tw1 semiviable 

recessive allele is associated with a mutation in the coding region of the DmPOMT2 

gene, which alters the amino acid sequence of the conserved PMT domain of 

DmPOMT2 protein. I have also found that this mutation is associated with the decrease 

of tw activity, since the tw1 phenotype is enhanced over deficiency for tw locus, and it 

can be completely rescued by genetic duplication including the tw gene or by ubiquitous 



49 

 

49 

ectopic expression of the UAS–DmPOMT2 construct. Thus, tw1 represents the first 

molecularly and genetically characterized mutant allele of the DmPOMT2 gene. 

Interestingly, I found that tw1 could efficiently suppress the phenotype of three 

tested rt alleles (Figure 11). This finding was unexpected, since previously it was 

reported that RT and DmPOMT2 collaborate biochemically in vitro, and DmPOMT2 

RNAi phenotype is enhanced in the rt
P heterozygous background (ICHIMIYA et al. 2004). 

Yet the possibility existed that the suppression is the result of a decreased activity of tw 

in tw1 mutants. In this case, the suppression would suggest that an unbalanced relative 

increase of TW in rt mutants had a negative effect on the pathway [which, for instance, 

might result from a competition between nonproductive homomeric TW complexes and 

active RT–TW heterocomplexes (GIRRBACH and STRAHL 2003; ICHIMIYA et al. 2004)]. 

To test this possibility, I further analyzed the genetic interaction between tw and rt by 

varying the level of tw in the rt mutant background. I found that the phenotype of rt 

homozygous or heteroallelic mutants was neither significantly sensitive to an increase of 

tw expression by introducing a duplication of the tw locus or by ectopic expression of 

UAS–DmPOMT2 construct nor significantly sensitive to a decrease of tw activity by 

UAS–twRNAi expression (Figure 12 A and B). At the same time, we also confirmed the 

synergistic effect of the partial reduction of tw and rt activities on the mutant phenotype 

using UAS–twRNAi construct expression in rt heterozygotes (Figure 13). Thus, we ruled 

out the possibility of negative effect of tw in rt mutants and concluded that the 

suppression of rt phenotype is a special feature of tw1 allele.  
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Taken together, our results indicate that both tw and rt are involved in the same 

developmental pathway, where they execute nonredundant functions. Insensitivity of rt 

mutant phenotype to the varied level of tw expression formally characterizes rt as 

epistatic to tw. At the same time, the tw1 mutation could dominantly suppress the 

phenotype of strong (probably amorphic) rt mutations, thus revealing its epistatic 

position relative to rt (Figure 11). We interpret these mutually epistatic relationships 

between rt and tw as the evidence for possible functioning of their protein products 

within the same molecular complex or being involved in a regulatory interaction within 

the same biochemical pathway. This conclusion is in agreement with previously reported 

data on simultaneous requirement of RT and DmPOMT2 for their biochemical activity 

in vitro (Ichimiya et al. 2004). The conclusion is also consistent with our other 

observations presented here, including (i) essentially identical phenotypes of clockwise 

abdomen rotation in both rt and tw mutants (Figure 6), (ii) the subcellular colocalization 

of RT and TW proteins within the ER compartment in Drosophila cells (Figure 9), and 

(iii) the overlapping pattern of rt and tw expression during different stages of 

embryogenesis (Figure 10). Although the close relationship between RT and TW 

functioning is obvious from all these data, molecular events underlying this relationship 

remain to be elucidated. Further biochemical and cell biological experiments are 

necessary to discriminate between different possible molecular mechanisms, including 

stable physical interaction between RT and TW, their enzymatic modifications of one 

another, chaperone activity of these proteins, or yet other possibilities.  
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The combined genetic and molecular characterization of tw1 mutant highlighted 

the functional importance of the conserved PMT domain of TW protein. I found that tw1 

mutation should result in the expression of the TW protein with just a subtle alteration of 

amino acid sequence [T(59) → GS] of the PMT domain (Figure 6). Despite the apparent 

subtleness of this mutation and the fact that T(59) is not well conserved between 

different species, this mutation causes decreased tw function and a pronounced rotated 

abdomen phenotype in tw1 homozygotes (Figures 7 and 8). In addition, the tw1 

phenotype is insensitive to the decreased level of rt activity, thus indicating that TW1 

mutant protein can bypass the requirement for RT activity that is obligatory for wild-

type TW (Figures 11–13). On the basis of protein sequence alignment of TW with other 

members of the POMT family the alteration in TW1 protein sequence maps to the 

lumenal terminus of the first transmembrane domain of TW protein. It is possible to 

speculate that this protein region might be involved in TW–RT regulatory interactions; 

however, other possible mechanisms could also explain the properties of the tw1 

mutation. Further biochemical and genetic experiments are necessary to clarify the 

properties of TW1 protein.  

In vertebrates, O-mannosylation of α-dystroglycan plays an important role in 

muscle and neural development (MARTIN 2003; MICHELE and CAMPBELL 2003). 

Drosophila Dystroglycan (Dg) is a fly homolog of the vertebrate Dystroglycan gene 

(DENG et al. 2003; GREENER and ROBERTS 2000). The predicted product of this gene, 

Drosophila DG protein, is structurally related to its vertebrate counterpart (DENG et al. 

2003), thus representing a potential molecular target of RT/TW O-mannosyltransferase 
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activity (reviewed in Chapter I). Embryonic expression of Dg was detected in a dynamic 

fashion in many tissues, including visceral and somatic muscles, epidermis, nervous 

system, gut, and tracheal pits (DEKKERS et al. 2004). This expression has only partial 

overlap with the expression of rt and tw determined in experiments, indicating that 

putative O-mannose modification of Drosophila DG protein may be limited to just a 

subset of DG-expressing cells. Interestingly, the expression of rt and tw in the 

developing epidermis revealed in this study corresponds to the region of epidermal 

segment border cells that are known to participate in the development of muscle 

attachment sites and to influence patterning of larval somatic muscles (VOLK and 

VIJAYRAGHAVAN 1994). These results suggest that these genes function in the epidermal 

muscle-attachment cells, which would provide a novel mechanism for the involvement 

of O-mannosylation in muscle development. Further detailed characterization of rt and 

tw mutant phenotypes (Chapter III) should shed light on this possibility and help 

elucidate the functions of these genes in Drosophila development.  
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CHAPTER III 

TEMPORAL AND SPATIAL REQUIREMENTS FOR RT AND TW IN 

DROSOPHILA DEVELOPMENT 

 

INTRODUCTION 

 In Chapter II, I discussed the expression pattern of tw gene. It turned out that rt 

and tw are expressed in a very similar, essentially overlapping pattern during 

embryogenesis, and that RT and TW proteins are co-localized in the endoplasmic 

reticulum of Drosophila cells (LYALIN et al. 2006). At the same time, genetic analysis 

revealed both synergistic and mutually epistatic relationship between rt and tw (LYALIN 

et al. 2006). All these results are consistent with data indicating that RT and TW are 

simultaneously required for O-mannosyltransferase activity in vitro (ICHIMIYA et al. 

2004) and they suggest that RT and TW function in vivo as non-redundant components 

of an O-mannosyltransferase enzymatic heterocomplex. This hypothesis implies that rt 

and tw mutants should have similar requirements throughout development. In this 

Chapter I analyzed temporal and spatial requirements for rt and tw for adult abdomen 

development. In addition to that, I found a new phenotype in rt and tw mutants – larval 

cuticle misalignment phenotype. 
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MATERIALS AND METHODS 

Drosophila stocks 

The mutant alleles for rt and tw were previously described (LYALIN et al. 2006; 

MARTIN-BLANCO and GARCIA-BELLIDO 1996): tw1, a hypomorphic allele; rt
P, rt

2, and 

rt
571 all represent similar strong hypomorphic alleles that are close to amorphs. Several 

transgenic insertions were obtained from different researchers: ci-Gal4 and hh-GAL4 

were from Gary Struhl, en-GAL4 was from Ken Irvine, stripe-GAL4 was from Talila 

Volk, MHC-GAL4 was from Graeme Davis. UAS-tw insertion was previously described 

(LYALIN et al. 2006). Other chromosomal aberrations and transgenic lines used in the 

study were obtained from the Bloomington Drosophila Stock Center, Indiana 

University.  

Fluorescent staining and microscopy 

Third instar larvae were dissected and fixed as described (BELLEN and BUDNIK 

2000). Larval tissues were stained with mouse anti-GFP, 1:800 (Invitrogen); anti-mouse 

Alexa-488, 1:250 (Molecular Probes). Digital images were obtained using Zeiss 

Axioplan 2 fluorescent microscope with the ApoTome module for optical sectioning. 

Cuticle preparation 

Third instar mutant larvae were washed in sucrose, and then incubated in distilled 

water at 60oC for 30 min. After incubation, the larvae were fixed in 1:4 glycerol: acetic 
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acid for 1 hour at 60oC, and then incubated in the same solution overnight at room 

temperature. Before dissection larvae were incubated in 100% glycerol for 30 min. 

Cuticle was dissected under a Nikon SMZ microscope in PBS. After dissection, cuticle 

was washed in 3:7 glycerol: ethanol and mounted in 100% glycerol. 

Ectopic expression experiments 

The expression of tw or rt cDNA (UAS-tw and UAS-rt constructs (Lyalin et al. 

2006)) was induced with a pulse of hs-GAL4 driver expression (15 min incubation for tw 

and 40 min for rt, at 37oC in a water bath) at different developmental stages. 

Developmental staging was done according to Ashburner (ASHBURNER 1989). The adult 

flies that developed from the heat-shocked embryos, larvae, or prepupae were scored for 

the abdomen rotation phenotype as described earlier (LYALIN et al. 2006). In control 

experiments I confirmed that the heat shock alone does not influence the mutant 

phenotype, and that the hs-GAL4-induced ectopic expression of tw or rt does not 

produce any morphological abnormalities in a wild type genetic background. In driver-

mediated ectopic expression experiments for tw, the rescue was scored in tw1
/Y; UAS-

tw/+ males that were also carrying a copy of corresponding GAL4 driver. The males in 

rt experiment were UAS-rt/hs-GAL4; rt
2
/rt

P
. In control experiments, I confirmed that 

neither the UAS constructs alone nor GAL4 drivers are capable of rescuing the mutant 

phenotype. The rescue was analyzed in 1-day old adult males of corresponding 

genotypes. Unless otherwise indicated, all crosses were kept at 25oC. 
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RESULTS 

Both rt and tw mutants have larval cuticle misalignment phenotype 

I examined the cuticle of third instar rt
2
/ rt

571 mutant larvae produced by rt mutant 

female and thus lacking normal maternal contribution of the rt product (LYALIN et al. 

2006). The cuticle of these larvae exhibited mild but highly penetrant (76%) and easily 

detectable phenotype of misaligned (“clock-wise rotated”) segments as revealed by the 

skewed pattern of ventral denticle belts (Figures 14C, 15). A similar phenotype was 

detected in tw1
/Df(1)su(s)83 larvae with 55% penetrance (Figures 14B, 15). The 

decreased penetrance of cuticle rotation in these tw mutant larvae, as compared to rt
2
/ 

rt
571 larvae, is consistent with possible influence of maternal contribution of tw on the 

development of tw1
/Df(1)su(s)83 mutants.  

Alignment of segments is abnormal in rt and tw mutant embryos 

The mild phenotype of cuticle rotation in rt and tw mutants at late larval stages 

contrasts with the pronounced misalignment of abdominal segments in these mutants at 

the adult stage (LYALIN et al. 2006). This may indicate a possibility of selection for less 

affected, healthier organisms during embryonic and early larval stages, which would 

result in the survival of only mildly affected larvae.  
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Figure 14— Cuticle defects in rt and tw mutant larvae. 

Note: 
 (A) wild type. 
(B) tw1

/Df(1)su(s)83 
(C) rt

2
/rt

571   
Ventral view of third instar larval cuticle, the region of A1-A8 ventral denticle belts is shown. 
The dashed lines connect approximate central positions of denticle belts to illustrate the shift of the ventral 
midline in the rt and tw mutants.  
At least 20 larvae of each genotype were analyzed. Anterior is up. 
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Figure 15—Cuticle defects in 3rd instar larvae. 
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Figure 16—Rotation phenotype of rt mutant embryos (data of N.Nakamura). 

Note: 
(A) Wild type embryo, the segments are perfectly aligned 
(B) rt

571
/rt

2
 embryo, the whole-body “rotation” of the embryo is obvious (for instance, the dorsal midline 

gap between muscles shows prominently skewed pattern).  
Embryos were stained with fluorescent phalloidin to visualize muscles. Optical sections through the 
embryos were used for 3D reconstruction to generate the images. Embryonic stage 17, dorsal view, 
anterior is up.  
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        This possibility is consistent with the significantly decreased viability of rt and tw 

mutants during development. Thus, I decided to investigate the alignment of segments in 

these mutants during late embryogenesis. I found significantly more prominent “rotated” 

phenotype in rt mutant embryos (Figure 16), and in tw1
/Df(1)su(s)83 mutants (data not 

shown). These results confirmed our hypothesis about selection for the milder phenotype 

during development of POMTs mutants, and provided additional support for the 

possibility of maternal rescue of defects in the tw mutants. To further investigate the 

involvement of tw in Drosophila development, I decided to analyze its temporal and 

spatial requirement for the adult abdomen development using rescue expression 

approach. 

A short pulse of tw or rt expression delivered over a broad range of 

developmental stages can rescue imaginal epidermis defects 

I expressed wild-type cDNA constructs in tw1 (homozygous females or 

hemizygous males) or rt mutant background using the UAS-GAL4 system. I used a 

hs-GAL4 driver to induce a short pulse of ubiquitous tw or rt expression at different 

developmental stages and then scored the abdomen rotation phenotype of adult mutant 

flies. In the control experiments, I induced tw expression in a wild type background and 

confirmed that tw overexpression does not produce any ectopic phenotype in the 

abdomen. The same controls were repeated for UAS-rt construct.  
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Figure 17—Rescue of mutant phenotype with a pulse of cDNA expression (data 
obtained in collaboration with K. Koles). 

Note: 
(A) tw1 mutant phenotype rescued with UAS-tw expression. 
The bars indicate the ratio of flies (in %) with rescued phenotype.  
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                                        Figure 17 - Continued. 

Note: 
(B) rt mutant phenotype rescue with UAS-rt expression. 
The bars indicate the ratio of flies (in %) with rescued phenotype. 
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We found a surprisingly broad competent range of developmental stages at which 

the short pulse of tw expression could fully rescue the abdomen phenotype in the adult 

(Figure 17A, data obtained in collaboration with K. Koles). Similar results were obtained 

in rt heat-shock rescue experiment (Figure 17B). The range spans about 3 days (from the 

second larval instar till the stage 3 prepupa, 6 hours after puparium formation (APF)). 

Two conclusions can be drawn from these results. First, the expression of tw appears to 

produce a rather stable functional product (whether in the form of mRNA transcript, TW 

protein, or possibly O-mannosylated molecules) with a long lifetime in developing 

cells /tissue. This conclusion is consistent with our other observations, including normal 

alignment of embryonic segments in tw1
/Df(1)su(s)83 mutants, as well as the decreased 

penetrance of a cuticle phenotype in these mutants at the late larval stage (Figures 14, 

15), all possibly explained by the perdurance of maternal contribution. Second, the 

rescue experiments indicate that the last period still competent for rescuing the 

abdominal defect in tw mutants is the prepupal stage P3, or 3-6 APF (Figure 17A). This 

suggests that the end of third larval instar — early prepupa stage is probably the period 

when Drosophila POMTs’ function is normally required for abdomen development. 

This time correlates with the very beginning of adult epidermis development at 2-3 APF, 

when histoblasts start proliferating to later form the imaginal epidermis (MADHAVAN 

and MADHAVAN 1980). 
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Table 2—Rescue of abdominal phenotype of tw1 mutants with expression of tw cDNA 
induced by different GAL4 drivers. 

 
 
+++, complete rescue (no abdomen rotation);  ++, partial rescue;  —,  no rescue.  
The decrease of average abdomen rotation relative to mutant controls in partial rescue: en-GAL4, 45% 
rotation decrease; hh-GAL4, 29% rotation decrease; stripe-GAL4, 27% rotation decrease (in all cases the 
difference was statistically significant, t-test P<0.01).  

Driver Expression pattern in developing muscles and epidermis Rescue 
# of flies  

analyzed 

Act5C-GAL4 Ubiquitous (Crosby et al. 2007) +++ >50 

tubP-GAL4 Ubiquitous (LEE and LUO 1999) +++ >50 

c179-GAL4 
Widespread /ubiquitous expression (CROSBY et al. 2007; 

MANSEAU et al. 1997) +++ 26 

ddc-GAL4 
Ubiquitous in larval epidermis (CROSBY et al. 2007; LANDGRAF 

et al. 2003) +++ >50 

Eip71CD-

GAL4 

Widespread /ubiquitous in larval epidermis starting from mid-
third larval instar (Cherbas et al. 2003) +++ 31 

en-GAL4 

Segmentally-repeated pattern in larval and developing adult 
abdominal epidermis, posterior compartment (LAWRENCE et al. 

1999; STRUHL et al. 1997) 
++ 94 

hh-GAL4 

Segmentally-repeated pattern in larval and developing adult 
abdominal epidermis, posterior compartment (LAWRENCE et al. 

1999; STRUHL et al. 1997) 
++ 84 

stripe-GAL4 
Muscle attachment sites (SUBRAMANIAN et al. 2003; VOLK 

1999) ++ 63 

twi-GAL4 

Adult abdominal muscle precursor cells; all mesodermal cells 
(embryonic stage) (BATE et al. 1991; CROSBY et al. 2007; 

GREIG and AKAM 1993) 
— >40 

MHC-GAL4 All differentiated larval and adult muscles (Schuster et al. 1996) — 53 
Dmef2-

GAL4 

Expressed in somatic muscles during embryonic and larval 
system (ABERLE et al. 2002) — >20 

ptc-GAL4 

Segmentally-repeated pattern in larval and developing adult 
abdominal epidermis, anterior compartment (LAWRENCE et al. 

1999; LAWRENCE et al. 2002; STRUHL et al. 1997) 
— 80 

wg-GAL4 

Segmentally-repeated pattern in larval and developing adult 
abdominal epidermis, anterior compartment (CROSBY et al. 

2007; STRUHL et al. 1997) 
— >40 

dpp-GAL4 

Segmentally-repeated pattern in larval and developing adult 
abdominal epidermis, anterior compartment (KOPP et al. 1999; 

STRUHL et al. 1997) 
— 27 

ci-GAL4 

Segmentally-repeated pattern in larval and developing adult 
abdominal epidermis, anterior compartment (CROKER et al. 

2006; LAWRENCE et al. 2004; STRUHL et al. 1997) 
— 70 
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The requirement for tw is not limited to distinct regions of developing 

epidermis 

To better understand a possible role of mannosyltransferases, I studied spatial 

requirements for tw during larval development. I induced tw cDNA expression in tw1 

mutants with the UAS-GAL4 system using a panel of different tissue-specific GAL4 

drivers. The results were evaluated by scoring the abdomen rotation phenotype in adult 

flies. Since defects in the alignment of abdominal segments in tw mutants are likely 

caused by abnormal epidermis development, with contribution from muscle 

abnormalities (LYALIN et al. 2006; MARTIN-BLANCO and GARCIA-BELLIDO 1996), I 

focused on drivers which are known to be active in developing epidermis or/and muscle 

cells. I also included ubiquitous drivers (actin5C-GAL4 and tubP-GAL4) that are 

expressed in all tissues throughout development to confirm that tw overexpression does 

not lead to an ectopic abdomen phenotype. The results were grouped in three categories: 

(1) drivers that can completely rescue the abdomen rotation; (2) drivers that can partially 

rescue the phenotype (the rotation was significantly decreased); and (3) drivers that 

cannot rescue the phenotype (Table 2). 

First, I found that drivers with ubiquitous expression in the larval epidermis (c179-

GAL4, ddc-GAL4, Eip71CD-GAL4) fully rescue the mutant phenotype, while muscle-

specific drivers expressed in all differentiated larval and adult muscle cells, MHC-GAL4, 

Dmef2-GAL4 or a driver expressed in adult muscle precursor cells, twi-GAL4, are unable 

to mediate rescue (Table 2). The twi-GAL4 driver was also tested in combination with 

UAS-GAL4 element (HASSAN et al. 2000) to amplify and prolong the expression of 
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UAS-tw construct in developing muscles, which, however, did not result in rescue of 

abdominal rotation. Thus, I originally concluded that tw is required in the developing 

epidermis but not in muscles for the proper alignment of abdominal segments. In 

addition, the rescue with Eip71CD-GAL4 whose expression is initiated only past mid-

third larval instar (CHERBAS et al. 2003), is consistent with my hypothesis that tw is 

normally required for abdomen development during the period of late third larval instar 

— early prepupa stages. 

Among drivers with more restricted pattern of expression in the developing 

epidermis, only those that are expressed in the posterior compartment of abdominal 

segments at larval and pupal stages (en-GAL4, hh-GAL4) or in the muscle attachment 

sites (stripe-GAL4) could partially rescue the abdomen phenotype. At the same time, 

drivers that are expressed in the anterior compartment of developing abdominal 

segments (ptc-GAL4, ci-GAL4, dpp-GAL4, wg-GAL4) were not able to provide any 

rescue of the abdominal defect (Table 2). The partial rescue with stripe-GAL4, en-

GAL4, and hh-GAL4 was somewhat ameliorated when I increased the level of 

expression by rearing flies at elevated temperature (29oC), which however, did not result 

in the complete rescue of the abdomen rotation (data not shown). I also tested the 

increased level of anterior expression using two copies of ci-GAL4 driver, which still did 

not rescue the phenotype. Two conclusions can be made from these results. First, since 

the rescue with ectopic expression is pattern- rather than level- dependent, the function 

of tw is cell-autonomous, or it has a short-range effect.   
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Figure 18—Rescue of tw1 mutant phenotype with expression of tw cDNA induced by a 
combination of GAL4 drivers. 

Note: 
Triple rescue represents expression of UAS-tw by Dmef2-GAL4, stripe-GAL4 and  
esg-GAL4 in tw1 mutant background.  
Error bars indicate standard errors of the mean.  
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Second, there is a different requirement for tw within distinct regions /cells of 

developing epidermis, with more prominent role of tw in muscle attachments and cells of 

posterior compartment.  The function of tw, however, is not restricted to just posterior or 

muscle attachment cells, indicating that some anterior cells possibly also contribute to 

tw-mediated alignment of abdominal segments. Although the expression tw using a 

muscle-specific driver, Dmef2-GAL4, did not result in rescue of the mutant phenotype, 

this result did not rule out that muscle-specific expression is a component required of 

normal tw function. The possibility of the muscle-specific function of tw is consistent 

with the fact that none of the epidermal drivers could produce the full rescue of the 

phenotype (Table 2). In addition, a weak expression of rt and tw was detected in larval 

muscles (O. Larvova, personal communication).  

Thus, I decided to test if a muscle driver, in combination with some drivers 

expressed in the epidermis, could result in a more complete rescue. This approach would 

allow me to narrow down the cell-specific requirement for tw during larval stages. My 

initial candidates for rescue were: Dmef2-GAL4 as a muscle driver; stripe-GAL4 

(muscle-attachment sites) and esg-GAL4 (histoblast driver). I found that this 

combination of drivers gives an almost complete rescue of the adult phenotype (Figure 

18). The rescue results support my hypothesis, that tw requirement during Drosophila 

development is not strictly limited to developing epidermis, but rather requires input 

from muscle, muscle-attachment sites and epidermis, with a possibly CNS involvement.  
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Figure 19—The expression pattern of G14-GAL4 and Dmef2-GAL4 in muscles of 
3rd instar Drosophila larvae. 

Note: 
(A) Immunostaining for GFP (green) in G14-GAL4/UAS-GFP-CD8 larvae. 
(B) Staining for GFP (green) in UAS-GFP-CD8/+; Dmef2-GAL4/+ larvae. The staining is similar to G14-

GAL4. 
Dorsal view, anterior is down. 
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Figure 20—G14-GAL4 is expressed in a subset of epidermal cells, Dmef2-GAL4 is not. 

Note: 
(A) G14-GAL4/UAS-GFP-CD8, MHC-GAL80/+ staining. GFP (green), DAPI (blue). Epidermal cells 
expressing GFP are indicated with white arrows. 
(B) +/UAS-GFP-CD8; Dmef2-GAL4, MHC-GAL80 staining. GFP (green), DAPI (blue) 
Lateral Transverse Muscles (LTM) are depicted with white dash-type shapes. 

Dorsal view, anterior is down.
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The full rescue with this driver was unexpected, since none of muscle drivers tested 

before (MHC-GAL4, Dmef2-GAL4, twi-GAL4) rescued tw mutant phenotype. I analyzed 

the expression pattern of G14-GAL4 using UAS-GFP-CD8 and UAS-GFP-nls reporter 

constructs to confirm muscle-specific expression. To my surprise, G14-GAL4 was 

expressed not only in muscles, but also in epidermal cells, peripheral nervous system 

(PNS) and larval brain. 

I decided to compare the expression patterns of G14-GAL4 and Dmef2-GAL4 

using UAS-GFP construct. Both drivers are expressed in larval muscles, but obviously 

muscle expression alone was not enough to rescue the tw phenotype. Side-by-side 

analysis using UAS-GFP-CD8 revealed that muscle expression pattern and levels for 

G14-GAL4 and Dmef2-GAL4 were undistinguishable (Figure 19). 

Using MHC-GAL80 construct I eliminated the muscle expression and was able to 

analyze the underlying tissues. Both drivers were expressed in subset of PNS cells 

(confirmed with ELAV staining). I did not detect expression in the muscle-attachment 

sites for either of the two drivers. However, the expression pattern in the larval 

epidermis was different: no detectable expression for Dmef2-GAL4 was observed, as for 

G14-GAL4 driver, a subset of epidermal cells, expressing GFP-CD8, was identified 

(Figure 20). Based on cell morphology, location and DAPI staining, I concluded that 

those cells belong to a subset of histoblast nests. These results are in agreement with my 

hypothesis that the tissue-specific requirement for tw is a combination of epidermal, 

muscle and muscle-attachment sites expression with a possibility of neuronal 

involvement. 
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DISCUSSION 

In the previous Chapter, I proposed a hypothesis that RT and TW proteins function 

in vivo as non-redundant components of an O-mannosyltransferase enzymatic complex 

(LYALIN et al. 2006). In this study I investigated the phenotypes of rt and tw mutants at 

larval and embryonic stages. In agreement with my hypothesis, I found similar 

misalignment of cuticle in rt and tw mutant larvae, although the penetrance of the 

phenotype was lower for tw mutants. A striking misalignment of segments was found in 

rt mutant embryos, which somewhat contrasts with the mild rotation of cuticle found in 

these mutants at the 3rd instar larval stage. I interpret these results as an evidence for 

selection against stronger phenotypes during early larval stages, which results in lethality 

for larvae with significantly rotated segments. Consistent with this idea, rt mutants show 

partial lethality not restricted to a particular developmental stage, while some first instar 

larvae have “rolling” phenotype of miscoordinated movement that was not observed for 

third instar larvae (data not shown and (MARTIN-BLANCO and GARCIA-BELLIDO 1996)). 

Since in holometabolous species like Drosophila the imaginal epidermis is built 

essentially from scratch during prepupal and pupal stages, these results can possibly be 

explained by the perdurance of maternally provided tw function (mRNA, and/or TW 

protein, and/or O-mannosylated product of TW activity) still present during embryonic 

development, but not during imaginal epidermis development. The maternally-provided 

tw function may be sufficient to rescue the gross misalignment of embryonic segments 

(such as those found in mutants lacking both maternal and zygotic rt function), however, 

mild cuticle defects are still detectable in tw1
/Df(1)su(s)83 larvae (Figure 14B). These 
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conclusions are consistent with my results of rescue experiments, which confirmed that a 

pulse of tw expression can result in a long-lasting function, and they also suggest that tw 

is normally required for the alignment of adult abdominal segments during late 3rd larval 

instar – early prepupal stages (Figure 17A). 

Our heat-shock rescue experiments delineated an unusually broad range of rescue-

competent stages, from second instar to P3 that spans more than 70 hours (Figure 17). 

The rescue abruptly disappears during transition through P3 prepupal stage. By that 

time, all imaginal epidermis precursor cells, histoblasts, just initiated first rounds of cell 

division and they are still confined to very small regions of epidermis, 8 histoblast nests 

per segment (FRISTROM and FRISTROM 1993). Thus, these results suggest that, already at 

this time, certain landmarks of symmetry of future imaginal epidermis are laid out. In 

that connection, it is interesting to note that the P3 stage is associated with apolysis and 

initiation of the pupal cuticle secretion (ASHBURNER 1989; FRISTROM and FRISTROM 

1993). This suggests that the possible landmarks of symmetry of future abdominal 

epidermis may be deposited as some cuticular structures that are later used by 

proliferating and migrating histoblast cells as spatial cues for building the final pattern of 

the adult epidermis. Further investigation is required to elucidate this intriguing 

possibility. 

To my knowledge, the “rotated embryo” phenotype that was found in rt mutants is 

described for the first time. This result indicates that rt (likely together with tw) mediates 

a pathway that controls the alignment of developing epidermis at both embryonic and 

metamorphosis stages. The pathway probably comes in play each time when already 
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specified but still developing segments, each with their established AP and DV axes and 

undergoing similar developmental changes as relatively independent functional units 

(MARTINEZ ARIES 1993; RUANGVORAVAT and LO 1992), need to maintain their relative 

alignment within the body as a whole. It is quite possible that segment boundary regions 

play an important role in this process, which is consistent with elevated expression of rt 

and tw at segment boundaries during embryonic development (LYALIN et al. 2006), as 

well as with partial rescue of the adult abdomen defect in tw mutants by tw expression in 

muscle attachment sites (Table 2), many of which correspond to the segment boundaries.  

The immunostaining analysis of G14-GAL4 and Dmef2-GAL4 expression patterns 

revealed a difference in epidermal expression, which might be crucial for rescuing the 

alignment of abdominal segments in adult flies (Figure 20). The triple rescue results 

support my hypothesis, that epidermal expression alone is not enough to rescue “tw” 

phenotype. It is tempting to speculate that a proper O-mannosylation of target protein/s 

(Drosophila Dg as one of them) is required on pre-synaptic and post-synaptic sides, as 

well as in epidermal cells. 



75 

 

75 

CHAPTER IV 

DROSOPHILA DYSTROGLYCAN AS A TARGET 

OF MANNOSYLTRASFERASES  

 

INTRODUCTION 

Dystroglycan, a highly glycosylated protein of mammalian muscle cells, is a 

central component of the dystrophin–glycoprotein complex (DGC) that provides 

structural stability to the sarcolemma during muscle contraction. Mammalian 

dystroglycan undergoes posttranslational cleavage into separate α- and β-subunits 

(BARRESI and CAMPBELL 2006). Proper glycosylation of α-dystroglycan (α-DG) has 

been proven to be essential for interaction with the extracellular matrix (ECM) ligands, 

thus providing functionality for the DGC at the sarcolemma. α-DG has a complex 

pattern of abundant glycosylation, including the presence of both N- and O-linked 

glycans. While not all structures of these glycans have been fully characterized, the O-

glycans are reported to be initiated by O-GalNAc and O-mannose. The presence of the 

O-mannose-linked glycans is thought to be particularly important for ligand-binding 

activity of α-DG. Several human congenital muscular dystrophies (CMDs) were found to 

be caused by genetic defects in glycosyltransferases involved in the biosynthesis of the 

O-mannose-linked carbohydrates. Although substantial progress has been made in 

understanding the molecular and genetic bases of O-mannosylation of α-DG, the 

complexity of mammalian glycosylation pathways along with limitations of genetic 
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approaches makes it extremely difficult to study O-mannosylation in mammals. Several 

recent studies have hinted at Drosophila as a potential model organism for studying 

biological mechanisms of O-mannosylation and its involvement in human pathologies. 

The Drosophila genome encodes two protein O-mannosyl- transferases, Rotated 

Abdomen (RT) and Twisted (TW) (aka DmPOMT1 and DmPOMT2, respectively), 

along with counterparts of all essential components of the mammalian DGC, including 

Dystroglycan. However, in Drosophila, unlike in mammals, DG appears not to be 

cleaved into α- and β-subunits upon maturation, while alternative splicing is predicted to 

produce three different DG isoforms, DG-A, -B, and -C (DENG et al. 2003). Out of these 

three isoforms, only DG-C includes a predicted mucin-type domain with the potential for 

extensive O-glycosylation, sharing this feature with mammalian α-DG.  Drosophila Dg 

is required for apicobasal polarity in epithelial cells and antero-posterior polarity in the 

oocyte, while the down-regulation of Dg expression in larvae and adult flies causes 

neuromuscular junction synaptic defects, muscle defects and degeneration (Reviewed in 

Chapter I). The similarity of defects caused by Dystroglycan abnormalities in Drosophila 

and mammals has led to the hypothesis that DG functions are evolutionary conserved 

between Drosophila and humans. 

The experiments in this chapter were done in collaboration with Dr. Naosuke 

Nakamura; we analyzed the glycosylation of Drosophila DG using both in vivo and in 

vitro approaches. We found that the DG protein is a target of O-mannosyltransferase 

activity and that both RT and TW are simultaneously required for the modification of 

DG with O-linked mannose in vivo. Our results demonstrate that O-mannosylation of 
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DG is an evolutionarily conserved mechanism and suggest that it plays an important role 

in the regulation of DG function in Drosophila. These data also indicate that Drosophila 

can be used as a model organism to study molecular and genetic mechanisms of CMDs. 

MATERIALS AND METHODS 

Drosophila strains and cDNA 

The following Drosophila mutant alleles and transgenic insertions were obtained 

from the Bloomington Drosophila Stock Center, Indiana University: tw1
, rt

p
, rt

2, 

Df(1)su(s)83 (tw deficiency), Dp(1;Y)y
2
sc (tw duplication), Act5C-GAL4–25, tubP-

GAL4 (LL7), ptc-GAL4. UAS-rt, and UAS-tw transgenes were previously described 

(LYALIN et al. 2006). Drosophila Dg-C cDNA was obtained from Dr. Ruohola-Baker 

(University of Washington, Seattle).  

Constructs and proteins for in vitro O-mannosylation assays 

Templates for engineering expression constructs were plasmids with cDNA 

sequences of Dg-A (obtained from DGRC, Indiana University), Dg-C (obtained from 

Hannele Ruohola-Baker, Seattle), and rabbit α-Dg (DGFc5, a gift from Michael 

Oldstone and Stephan Kunz from Scripps Institute, La Jolla, supported by NIH grant 

AI09484 (KUNZ et al. 2001). Fragments of Dg-A, Dg-C, and rabbit Dg cDNAs encoding 

protein regions with predicted abundant O-glycosylation (amino acids 204–399 for DG-

A, 315–592 for DG-C, and 314–487 for rabbit α-DG) were PCR-amplified and cloned 

into the pET41a vector (Novagen, EMD USA, Gibbstown, NJ) between NcoI and EagI 
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cloning sites and in frame with the N-terminal GST tag. The GST-fused proteins were 

expressed and purified from E. coli BL21(DE3) cells according to manufacturer's 

protocol (Novagen). Briefly, the protein expression was induced with 0.4 mM IPTG for 

18 h, and then cells were harvested and lysed in the wash buffer (PBS, 0.1% NP-40, 

0.1% PMSF) by sonication. The lysates were pre-cleared by centrifugation and 0.45 μm 

membrane filtering, and incubated with GST-beads on a nutator at 4°C overnight. Then, 

beads were extensively washed with the wash buffer and purified proteins were eluted 

with 100 mM glutathione in 0.5M Tris, pH 8.0. The eluted proteins were dialyzed 

against 2 mM EDTA, 0.1% PMSF, 20 mM Tris pH 8.0, concentrated by Millipore 

centrifugal filters (15 kDa cut-off), and used as substrates in the in vitro O-

mannosylation assay.  

In vitro O-mannosylation assays 

The assays were performed essentially as described previously (ICHIMIYA et al. 

2004). Briefly, a reaction mixture (20 μL total volume) contained 20 mM Tris, pH 8.0, 

100 nM [3H]- mannosylphosphoryldolicol (ARC, Inc.), 2 mM 2-mercapto- ethanol, 10 

mM EDTA, 0.5% n-octyl-β-D-thioglucoside, 10 μg GST-tagged acceptor protein, and 

80 μg of microsomal membrane fraction as a source of O-mannosyltransferase activity. 

The microsomal membrane fraction was prepared from third instar Drosophila larvae 

using previously published protocol (ICHIMIYA et al. 2004). The concentration of 

proteins in microsomal fraction was determined by the Bradford assay. After 1 h 

incubation at 24°C, mannosyltransferase reactions were stopped by adding 200 μL PBS 
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with 1% Triton X-100, the mixtures were centrifuged at 10,000 × g for 10 min at 4°C, 

and the supernatant was bound to pre-washed GST-beads on a nutator. Then, the beads 

were washed three times with PBS containing 0.5% Triton X-100, and the incorporation 

of radioactive mannose was measured in dpm using a liquid scintillation counter. 

Background control was determined by a mock assay following the same protocol but 

with 10 μg of BSA instead of a real acceptor. The results of the assay were presented as 

the ratio of radioactive mannose incorporation for Dystroglycan acceptors to that for 

BSA as a control.  

ExDg construct 

The ExDg construct was generated by in-frame fusion of cDNA region encoding 

the first 1048 amino acids of DG-C isoform (the entire predicted extracellular domain of 

DG-C) with the fragment encoding the 3xFLAG tag (Sigma) using standard molecular 

biology techniques. Details on molecular cloning of ExDg are available on request. The 

ExDG protein encoded by the construct lacks transmembrane domain and is predicted to 

be a secreted protein.  

Expression of ExDG in Drosophila S2 cells 

S2 tissue culture cells were maintained and transfected as previously described 

(KOLES et al. 2004). For tissue culture expression, ExDg was subcloned into the pMK33 

vector with metallothionein promoter using standard molecular biology techniques. The 

expression of ExDG was induced in transiently transfected cells by 0.7 mM CuSO4.  
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In vivo expression and purification of ExDG 

ExDg was cloned into the pUAST vector for in vivo expression, and transgenic 

Drosophila strains were obtained by P-element-mediated germline transformation. In 

vivo expression of the UAS-ExDg transgene was induced using the UAS-GAL4 system 

(BRAND et al. 1994). The specificity of ExDG detection by Western blot was confirmed 

using ‘negative control’ samples without ExDG expression. ExDG was expressed in vivo 

in the following genetic backgrounds: rt
−, rt

P
/rt

2; tw−
, tw

1
/ Df(1)su(s)83 (where 

Df(1)su(s)83 is a tw deficiency); rt
+
tw

+
, UAS-rt,UAS-tw/Act5C-GAL4; rt

+
, UAS-

rt/Act5C-GAL4; tw+
, UAS-tw/Act5C-GAL4. ExDG protein was purified from pupae with 

anti-FLAG M2 agarose (Sigma). For each purification experiment, 15–80 larvae or 

pupae were collected and lysed in 300 μL–1.5 mL of lysis buffer (50 mM Tris-HCl, pH 

7.4, 150 mM NaCl, 1% Triton X100) including cocktail of protease inhibitors 

(Complete, Roche). Following centrifugation at 18,000 × g for 20 min at 4°C, the 

supernatant was added to 10–40 μL of FLAG agarose beads and incubated for 2 h at 4°C 

with nutation. The agarose beads were then washed four times with the lysis buffer. The 

purified ExDG bound to beads was directly used in later assays. 

Glycosidase treatments 

ExDG protein purified from 3–4 pupae was incubated with 500 units of PNGaseF 

(NEB) in 5 mM sodium phosphate buffer (pH 7.5) for 1 h at 37°C (mock control was 

without PNGaseF). It was later treated with 0.4 milliunits of α-mannosidase from Jack 

beans (Sigma) (or without α-mannosidase for control) in the 50 mM sodium citrate 
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buffer (pH 4.5) for 3 h at 37°C. Reactions were stopped by adding 2× SDS loading 

buffer and used in Western or lectin blot analyses.  

Western and lectin blot analyses 

Analyses were performed according to standard protocols. Briefly, the tissue 

lysates normalized by the Bradford method for protein amount, or purified ExDG from 

pupae, were run on 5% SDS–PAGE gel and then the separated proteins were transferred 

onto a nitrocellulose membrane. For Western blotting, mouse anti-FLAG M2 primary 

(Sigma) and rabbit anti-mouse HRP-conjugated secondary (Jackson Laboratories) 

antibodies were used for detection by chemiluminescence (SuperSignal, Thermo 

Scientific). For lectin blots, proteins on the membrane were blocked with 2% BSA 

(Roche) in TBST (10 mM Tris-HCl, pH 8.0, 150 mM NaCl, 0.05% Tween 20) and then 

incubated with biotinylated lectins (2.5 μg/mL of Con A, or 10 μg/mL of VVA, WFA, 

HHL, and PNA, all from Vector) for 1 h at room temperature followed by detection with 

a Vectastain ABC kit (Vector). The specificity of lectin staining was confirmed by 

incubation with lectin in the presence of corresponding inhibiting sugars (i.e., 0.2 M 

GalNAc for VVA and WFA, 0.2 M galactose for PNA, 0.2 M methyl α-D-

mannopyranoside for Con A and HHL). Blots were quantified using the ChemiDoc XRS 

system (Bio-Rad).  
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Immunostaining and microscopy 

Expression of the pUAST-ExDg construct was induced in wing imaginal disks 

using the ptc-GAL4 driver. Third instar imaginal disks were dissected, fixed, and stained 

as described previously (PANIN et al. 1997). The following antibodies and corresponding 

dilutions were used for immunostaining: primary mouse anti-FLAG (1:2,000) (Sigma) 

and secondary donkey anti-mouse Cy3 (1:250) (Jacksons Laboratories). Digital images 

were obtained using a Zeiss Axioplan 2 fluorescent microscope with the ApoTome 

module for optical sectioning. Z-sections were reconstructed using Zeiss AxioVision 

software. 

Bioinformatic analyses 

Prediction of DG glycosylation and was performed by NetNGlyc, NetOGlyc, and 

Signal IP software at the Center for Biological Sequence Analysis site, DTU, Denmark 

(http://www.cbs.dtu.dk/services). 

  

http://www.cbs.dtu.dk/services
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RESULTS 

Drosophila DG is a substrate for protein O-mannosylation activity of 

RT and TW in vitro 

I tested if Drosophila DG can be used as a substrate for O-mannosylation by RT 

and TW in vitro. Previous experiments revealed that the mucin-type domain of 

mammalian α-DG is a target of O-mannose modification (BRELOY et al. 2008; MANYA 

et al. 2004). Thus, I focused my analysis on Drosophila DG-C isoform that, similarly to 

its mammalian counterpart, also includes a mucin-type domain, a potential target of  

O-mannosylation. A region of mucin-type domain of the DG-C isoform (see page 86) 

was expressed in Escherichia coli, purified and tested as a substrate in an in vitro O-

mannosylation assay using microsomal membrane fraction prepared from Drosophila 

larvae as a source of RT-TW activity (Figure 21). I also tested a corresponding fragment 

of DG-A extracellular domain that spans the predicted region of mucin-type O-

glycosylation (Figure 22). As a positive control, I used the region of mucin-type domain 

of rabbit α-DG that was previously shown to be a substrate for RT-TW in vitro 

(ICHIMIYA et al. 2004). My results indicated that, similarly to mammalian α-DG, DG-C 

could serve as a substrate for in vitro O-mannosylation, with the DG-C fragment being 

apparently a better substrate for RT-TW activity in vitro than the region of mucin-type 

domain of rabbit α-DG. Incorporation of mannose into DG-A was not significantly 

above the background (Figure 23).  
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Extracellular domain of DG is properly folded and trafficked in 

Drosophila cells with or without RT-TW activity 

We expressed the entire extracellular part of DG-C tagged with 3xFLAG epitope 

(ExDG) as a transgenic construct in Drosophila. To confirm that ExDG is properly 

folded and trafficked in Drosophila cells, we verified by Western blot that the ExDG 

protein was efficiently secreted in a diffusible form into cell medium when expressed in 

Drosophila S2 cultured cells (Figure 24A). Next, we expressed ExDG in vivo within 

wing imaginal disk epithelium using a UAS-GAL4 expression system. We tested three 

different genetic backgrounds: rt mutant, wildtype, and rt-tw co-expression. The 

immunofluorescent detection of in vivo expressed ExDG revealed that it was similarly 

delivered to the cell surface and no difference in subcellular localization of ExDG could 

be detected between these backgrounds (Figure 24B). Thus, we concluded that the 

trafficking and subcellular localization of ExDG was not affected by RT-TW activity in 

vivo. 
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Figure 21—Flow chart of O-mannosylation assay in vitro. 

Note: 
The Dg fragments, containing predicted O-mannosylation sites, were expressed in E.coli and purified on 
GST-affinity beads. The microsomal fraction containing RT-TW enzymatic complex was prepared from 
larval tissue with ubiquitous overexpression of tw and rt cDNA. 3H-label Dolychol Mannose was used a 
mannose sugar donor.  
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Figure 22—Prediction of mucin-type O-linked glycosylation of the extracellular 
domains of rabbit α-DG and Drosophila DG isoforms A, B, and C.  

Note: 
Solid vertical bars show the G-score of corresponding S/T residues with respect to the glycosylation 
potential (Julenius et al. 2005); the predicted glycosylation sites have bars above the threshold (horizontal 
dashed line). DC-C panel also includes the prediction of N-linked glycosylation (dotted vertical bars). 
Regions of rabbit α-DG, DG-A, and DG-C proteins used in in vitro O-mannosylation assays are 
underlined. 
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Figure 23—O-mannosylation assay of Drosophila DG-A and DG-C proteins. 

 
Note: 
Purified fragments of extracellular domain of DG-A and DG-C isoforms were used as substrates in in vitro 
O-mannosylation assayswith microsomal fraction from Drosophila larvae as a source of RT-TW 
mannosyltransferase activity and [3H]-mannosyl phosphoryl dolicol as a sugar donor. Incorporation of 
mannose is shown as the ratio of incorporated radioactivity for a substrate to that for BSA as a mock 
control. 
Error bars indicate SEM calculated from six independent assays. ∗∗ and ∗ – indicate significant differences 
from the mock control with t-test P < 0.01 and P < 0.05, respectively. Note that the results for DG-C and 
rabbit α-DG were also significantly different from each other (t-test, P < 0.05), while incorporation of O-
mannose in DG-A was not significantly different from the background control (t-test, P > 0.4).  
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Figure 24—Secretion and subcellular localization of the ExDG protein (data of N. 
Nakamura). 

Note: 
(A) Anti-FLAG Western blot of tissue culture media from S2 cells (control) or from S2 cells transfected 
with ExDG-expressing construct (with or without induction of expression). The results show that ExDG is 
efficiently secreted in a diffusible form outside of the cell.  
(B) Expression of ExDG in the third instar larval wing imaginal disks with a patched-GAL4 driver using 
the UAS-GAL4 system.  
Genotype of the disks:  
left disk (ptc::ExDg rt

−) – ptc-GAL4 UAS-GFP/UAS-ExDg; rt
P
/rt

2;  
middle disk (ptc::ExDg) – ptc-GAL4 UAS-GFP/+; UAS-ExDg/+;  
right disk (ptc::ExDg+rt+tw) – ptc-GAL4 UAS-GFP/UAS-rt UAS-tw; UAS-ExDg/+. ExDG expression is 
detected by immunofluorescent staining (red), while GFP signal (green) highlights the pattern of the ptc 
driver. Yellow dashed line indicates the position of Z cross-sections reconstructed for each disk in panel Z. 
Z cross-sections: no accumulation of the ExDG protein can be detected inside the columnar epithelium 
cells (asterisks), while the protein is efficiently delivered to the basal (arrows) or apical (arrowheads) 
surfaces of the disk epithelium. There is no significant difference in the subcellular localization of ExDG 
between the three genotypes. For all panels: dorsal is to the top; for the frontal-view sections: anterior is to 
the left; for Z cross-sections: basal is to the left 
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The co-expression of RT and TW is required to generate the high-

molecular-mass form of DG in vivo 

The ExDG protein was expressed in Drosophila with different genetic 

backgrounds corresponding to varied levels of RT and TW, and then it was analyzed by 

Western blotting using an anti-FLAG antibody. We found a drastic difference in the 

pattern of high-molecular-mass bands of ExDG expressed in rt and/or tw mutant, 

wildtype, and RT-TW c-oexpression backgrounds (Figure 25A and B). In wild-type 

flies, we observed two major bands of estimated sizes of 175 kDa (designated as S 

(small) band) and 215 kDa (designated as L (large) band) present at approximately equal 

amounts. The L band was undetectable in rt mutants, tw mutants, as well as in rt and tw 

double mutants. We also found that the relative amount of the L band was significantly 

increased in flies co-expressing both RT and TW. At the same time, the overexpression 

of one of the O-mannosyltransferases, RT or TW, resulted in no significant increase of 

the relative amount of the L band, as compared to a wild-type background. These results 

indicated that RT and TW are simultaneously required in vivo for producing the high-

molecular-mass form of ExDG.  
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Figure 25—Western and lectin blot analyses of in vivo expressed ExDG (data of N. Nakamura).  

Note: 
(A) Western blot detection of ExDG expressed in rt-tw double mutants (rt

− tw−), 
 rt mutants (rt

−), tw mutants (tw−), wild-type background (WT), and backgrounds with ubiquitous ectopic expression of RT (rt
+), TW (tw+), or RT-TW 

co-expression (rt
+
 tw

+). The L band is the top band present in wild-type background and backgrounds with RT and TW expression, but absent in rt 
and/or tw mutants; the S band is present in all genetic backgrounds analyzed.  
(B) The ratio between the intensities of L and S bands was quantified for rt mutant, tw mutant, wild-type, and RT-TW co-expression backgrounds. 
Error bars represent standard deviation. 
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Glycosidase treatments and lectin blots revealed O-mannosylation  

of high-molecular-mass form of DG 

We analyzed the glycosylation of DG-C isoforms represented by L and S bands 

using treatments with specific glycosidases. The removal of N-linked glycans with 

PNGaseF resulted in a gel shift of ExDG, with the shift being similar for both L and S  

bands (Figure 26A). The S band was similarly decreased in size for both rt mutant and 

RT-TW coexpression backgrounds. The shift of ExDG bands after PNGaseF treatment, 

estimated as ∼10 kDa, corresponds to approximately six oligomannose-type N-glycans. 

We also treated purified ExDG with α-mannosidase that cleaves off α-linked mannose 

residues. This treatment should both remove O-linked mannose (ICHIMIYA et al. 2004; 

MANYA et al. 2004) and trim oligomannose N-linked glycans. α-Mannosidase treatment 

alone resulted in a significantly greater shift of the L band as compared to the S band, 

which suggested that the high-molecular-mass form is extensively modified with O-

linked mannose. This conclusion was confirmed by sequential digestion with PNGaseF 

and α-mannosidase, which showed an additional decrease in the mass of the L band as 

compared to PNGaseF digestion alone. A similar comparison between PNGaseF-treated 

and double PNGaseF /α-mannosidase-treated S bands did not reveal a significant 

difference, thus suggesting that the S band represents a glycoform without extensive O-

mannosylation.  

The presence of α-linked mannose on ExDG was examined by concanavalin A 

(Con A) lectin blot (Figure 26B).  
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Figure 26—Analysis of ExDG glycosylation by glycosidase treatments (data of N. Nakamura). 

Note: 
(A) left panel: ExDG purified from rt mutants was treated with PNGaseF or α-mannosidase, or with both glycosidases sequentially. No additional shift 
of the ExDG band (S band) is detected in double PNGaseF/α-mannosidase treatment as compared to PNGaseF treatment alone, suggesting that ExDG 
has no O-mannose modification.  
Right panel: glycosidase treatments of ExDG purified from RT-TW coexpression background. Top (L) band shows significant loss of mass (≥10 kDa) 

when PNGaseF-treated ExDG was digested with α-mannosidase, which suggests the presence of abundant O-mannose modifications. No such loss of 
mass was detected for the lower (S) band, suggesting that O-mannosylation of ExDG in this band is not significant.
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Figure 26—Continued 

 
Note: 
(B) Con A reactivity of purified ExDG after treatments with PNGaseF and α-mannosidase. The S 
glycoform purified from rt mutant background loses Con A reactivity either after the removal of N-linked 
glycans by PNGaseF or after treatment with α-mannosidase removing α-linked mannose residues (top 
panel, left), suggesting the absence of O-mannose modification and efficient removal of oligomannose 
structures either by trimming N-linked branches with α-mannosidase or by complete elimination of N-
linked glycans. At the same time, the L glycoform purified from RT-TW co-expression background retains 
Con A reactivity after treatment with PNGaseF, α-mannosidase, or both glycosidases (top panel, right), 
suggesting that L glycoform is O-mannosylated, and that α-mannosidase does not remove O-mannose 
completely. The bottom panel shows anti-FLAG western control corresponding to the lectin blot. Red 
dashed line outlines the region of the L glycoform on the blots. Asterisk “

*
” indicates an additional minor 

band sometimes detected by FLAG Western blots that probably represents ExDG proteolytic degradation.  



94 

 

94 

ConA binds specifically α-D-mannosyl and α-D- glucosyl residues. Con A 

strongly reacted with the L band, while showing weaker reactivity with the S band from 

rt mutant and RT-TW coexpression backgrounds. The Con A reactivity of the S band 

from rt mutants was eliminated by PNGaseF treatment, indicating that this reactivity was 

solely due to mannose structures of N-linked glycans and providing further evidence that 

ExDG was not modified with O-mannose in rt mutants. At the same time, PNGaseF 

treatment did not eliminate the reactivity of the L band, suggesting that O-mannose is 

present on this glycoform. Interestingly, the S glycoform from RT-TW coexpression also 

showed Con A reactivity after PNGaseF treatment, suggesting the presence of some O-

linked mannose on this isoform as well. The double PNGaseF/α-mannosidase-treated 

ExDG from RT-TW coexpression retains some residual reactivity for Con A, which 

suggest the presence of mannosidase-resistant O-mannose on ExDG (Figure 26B). This 

conclusion is consistent with the fact that O-linked mannose is a relatively poor substrate 

for α-mannosidase (MANYA et al. 2004), while there is also a possibility that some 

modification present on O-mannose may inhibit α-mannosidase. 

We examined the glycosylation of ExDG using several other lectins. The presence 

of O-linked GalNAc on purified ExDG was analyzed using Vicia villosa (VVA) lectin 

(Figure 27A). Staining with VVA lectin only recognizes terminal GalNac. Only S band 

showed strong VVA staining, while the reactivity of the L band was barely above the 

background. Interestingly, the S band from rt mutants had a significantly stronger VVA  
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Figure 27—Analysis of ExDG glycosylation by lectin blots (data of N. Nakamura). 

Note: 
ExDG was purified from rt mutant or RT-TW coexpression backgrounds. 
(A) VVA lectin blot (left two lanes) and anti-FLAG western control for protein amount (right two lanes). 
The S band from RT-TW overexpression has significantly weaker VVA reactivity than that from rt 
mutants, while the reactivity of the L band is even further reduced to a nearly undetectable level. 
Asterisk indicates an additional minor band representing some proteolytic degradation 
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                                 Figure 27 - Continued. 

Note: 
(B) Anti-FLAG western control (left two lanes), WFA and HHL lectin blots (middle and right two lanes, 
respectively). 
Only the L band reveals strong HHL staining, with the S band from RT-TW co-expression showing much 
weaker staining, and the S band from rt mutants having no HHL reactivity at all. ExDG was treated with 
PNGaseF (de-N-glycosylated). 
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reactivity than that from RT-TW coexpression, suggesting more extensive O-GalNAc 

modification of ExDG in the absence of O-linked mannose. 

We also performed analysis of ExDG glycosylation by Wisteria floribunda 

agglutinin (WFA) and Hippeastrum hybrid lectin (HHL) that recognize terminal 

GalNAc and mannose residues, respectively. To exclude possible reactivity with N-

linked glycans, purified ExDG was first treated with PNGaseF in these experiments. 

Similar to VVA, WFA strongly recognized the S band from rt mutants, had a weaker 

reactivity with the S band from RT-TW coexpression, and could barely detect the L band 

(Figure 27B). On the other hand, HHL strongly recognized the L band, showed weak 

reactivity with the S band from RT-TW coexpression, and did not react at all with the S 

band from rt mutants (Figure 27B). Together, these results further supported our 

conclusion that ExDG from RT-TW coexpression has O-mannose modification, with the 

L band representing more extensively O-mannosylated glycoform and the S band 

probably including only limited O-mannose modification. At the same time, the extent 

of O-linked GalNAc modification appears to be complementary to that of O-

mannosylation, with the S band from rt mutants being most prominently modified with 

O-GalNAc, the amount of O-GalNAc being significantly decreased on the S band from 

RT-TW coexpression and even further reduced on the L glycoform. 
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DISCUSSION 

In this chapter, we demonstrated for the first time, that Drosophila Dystroglycan is 

O-mannosylated and serves as a substrate for two Drosophila protein  

O-mannosyltransferases, RT and TW, in vitro and in vivo. Our study was focused on the 

extracellular part of the DG-C isoform that includes a mucin-type domain and most 

closely resembles the structure of mammalian α-DG. For in vivo analyses, the entire 

extracellular domain of DG-C, ExDG, was expressed in flies with genetically varied 

levels of RT and TW. When characterized by Western blots, a characteristic pattern of 

two major bands (L and S) of ExDG was observed for the genetic backgrounds with 

wild-type or elevated levels of RT and TW, while only the lower-molecular-mass band 

(S) was detected when the activity of either rt or tw genes was compromised, as well as 

in double rt/tw mutants. These results are consistent with the previously reported 

absence of high-molecular-mass band of endogenous DG in rt mutants (WAIRKAR et al. 

2008). Most importantly, we found that the relative amount of the L form was 

significantly elevated only by co-expression of RT and TW, while increasing the level of 

either RT or TW alone had no significant effect on the amount of the L band (Figure 25). 

Together, these results indicate that RT and TW concurrent activity is required for 

generating the high-molecular-mass form of ExDG in vivo, suggesting that RT and TW 

work as a heterocomplex in vivo and providing further support for similar conclusions of 

in vitro (ICHIMIYA et al. 2004) and genetic (LYALIN et al. 2006) experiments. Since the 

expression of constructs was driven ubiquitously in these experiments, the fact that the 

elevated level of either RT or TW alone does not increase the amount of the L glycoform 
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also suggests that the levels and patterns of endogenous RT and TW expression largely 

coincide throughout larval and pupal stages. This conclusion is consistent with in situ 

hybridization data that revealed the overlapping expression of rt and tw at embryonic 

and larval stages (LYALIN et al. 2006). 

To understand the nature of the L and S forms of ExDG, we investigated their 

glycosylation using a combination of approaches, including specific glycosidase 

treatments and lectins. Treatment with PNGaseF showed no difference in N-linked 

glycosylation between ExDG species represented by L and S bands from rt mutant and 

RT-TW coexpression backgrounds. That is an indication, that RT-TW activity has no 

effect on N-linked glycosylation of ExDG. 

α-Mannosidase treatments of purified ExDG suggest that the L band represents a 

glycoform extensively modified with O-linked mannose, while the S band corresponds 

to the glycoform without significant O-mannosylation (Figure 26). This conclusion is 

consistent with the fact that α-mannosidase has similar effect on S bands from rt mutant 

and RT-TW coexpression backgrounds (Figure 25). Further evidence of O-

mannosylation of the L glycoform was obtained by lectin blots with mannose-

recognizing lectins, Con A and HHL (Figures 26B and 27B). The estimated decrease in 

the L glycoform molecular mass upon α-mannosidase digestion of PNGaseF-treated 

ExDG is ≥10 kDa (Figure 26A), which implies the presence of more than 50 O-mannose 

residues attached to ExDG. 

Staining with VVA lectin that recognizes terminal GalNAc was previously found 

to correlate with the level of DG expressed in Drosophila muscles and NMJ (HAINES et 
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al. 2007), suggesting that Drosophila DG may bear this modification. Thus, besides O-

mannose, the L and S glycoforms may be modified with O-linked GalNAc. The S band 

from rt mutants was the most prominently stained with both VVA and WFA; the band 

from RT-TW co-expression has shown significantly weaker reactivity, and the L band 

was barely detectable with these lectins. It seems, O-GalNAc is present on ExDG 

glycoforms in a reverse proportion to O-mannose. Since RT and TW function in the ER 

(LYALIN et al. 2006), upstream in the secretory pathway to O-GalNAc-transferases, 

PGANTs, that function in the Golgi (ROTTGER et al. 1998), this complementary pattern 

of glycosylation suggest that O-mannosylation can compete with O-GalNAc 

modification of DG. Thus, these data provide further support for our conclusion that the 

majority of O-mannosylation occurs within the region of mucin-type domain, where O-

mannose could directly compete with the bulk of predicted O-GalNAc modification. 

This possible competition may underlie a regulatory mechanism that modulates DG 

function, for instance, via changing the ligand-binding activity of DG. 

Interestingly, the generation of the L glycoform by RT-TW activity appears to be 

an “all-or-nothing” process with the absence of intermediate forms. This observation 

suggests a possible mechanism of O-mannosylation that requires recognition of some 

determinants that result in quantitative modification of nearly all available sites. These 

determinants may belong to DG itself, such as some posttranslational modifications, or 

they may represent certain factors that regulate the function of the RT-TW complex 

within the cell. 
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Protein O-mannosylation in yeast has been implicated in secretory protein 

sorting, protein stability, and degradation (LOMMEL et al. 2004). In our experiments, the 

immunostaining detection and optical sectioning did not reveal a significant difference in 

the level of expression or subcellular localization of ExDG within the wing imaginal 

disk epithelium in the presence or absence of RT-TW activity. We think that that O-

mannosylation does not affect the stability or trafficking of Drosophila DG, but rather it 

changes its functional properties, e.g. by modifying interactions with extracellular 

ligands. These results suggest that O-mannosylation can function as a molecular 

regulator of the DGC-mediated pathway via changing the ligand-binding activity of DG. 

In summary, the experiments described in this chapter, done in collaboration 

with Dr. Naosuke Nakamura, clearly demonstrated that extracellular domain of 

Drosophila Dg is a target of O-mannosylation in vitro and in vivo. We found that O-

mannosylation is an abundant modification of ExDG that requires co-expression of two 

Drosophila mannosyltransferases. Our experiments revealed that subcellular localization 

and trafficking of ExDG is not dependent on RT and TW activity. At the same time, 

ExDG function can be modulated by RT-TW activity, suggesting that O-mannosylation 

regulated ligand-binding activity of Drosophila Dg. These results highlight the 

evolutionary conservation of mechanism of O-mannosylation between Drosophila and 

mammals and suggest that Drosophila can be a suitable model system to study 

molecular and genetic mechanisms of mammalian α-DG O-mannosylation. 
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CHAPTER V 

SUMMARY AND FUTURE DIRECTIONS 

 

My research is focused on understanding the role of mannosyl glycans in 

Drosophila development and their involvement in human diseases. O-mannosylation is a 

posttranslational modification of proteins with O-linked mannose attached to serine or 

threonine residues on a protein backbone. This unusual type of glycosylation is thought 

to be important for several aspects of cell interactions, including cell adhesion, migration 

and interaction with extracellular matrix. 

Recently, a number of congenital muscular dystrophies have been associated 

with defective glycosylation of the α-dystroglycan subunit. Genetic studies of these 

conditions have identified six genes (POMT1, POMT2, POMGnT1, Fukutin, FKRP and 

LARGE) that encode proteins required for the synthesis of essential glycan structures on 

dystroglycan (MUNTONI et al. 2008). 

POMT1 and POMT2 are the two O-mannsyltransferase genes that have been 

described in the human genome to date. Notably, mutations in O-mannosylation genes 

have been linked to the Walker-Warburg syndrome, a severe form of human muscular 

dystrophy (BELTRAN-VALERO DE BERNABE et al. 2002; VAN REEUWIJK et al. 2005). 

WWS is usually associated with general hypotonia, muscle weakness, developmental 

delays and mental retardation. In severe cases, the newborns die within the first year of 

life. The clinical findings in patients with WWS are linked to hypoglycosylation of α-

Dg, a key element of Dystrophin-Glycoprotein Complex (DGC). The role of glycan 
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chains on the Dg protein core is not completely understood yet, but obviously, it is 

involved in Dg binding to extra-cellular ligands (laminin, agrin, neurexin etc). The 

complexity of genetic and biochemical pathways in higher vertebrates makes it difficult 

to analyze the role of glycans in development. In my PhD project I decided to use a 

Drosophila model system to study O-mannosylation. 

Just like vertebrates Drosophila have two mannosyltransferase genes, 

DmPOMT1 (rt) and DmPOMT2 (tw). These genes are evolutionary conserved and share 

a high level of homology with their human counterparts. Another advantage of the 

Drosophila model system is a high evolutionary conservation of DGC between fruit flies 

and higher animals (including humans). In my dissertation work I want to establish 

Drosophila as a suitable model system to study the role of glycans in congenital 

muscular disorders. 

In the beginning of my project, I characterized the expression of rt and tw genes 

during development. In collaboration with Sigrid Roosendaal, I found that both genes 

share a similar expression pattern; at stages 14 – 16, they are expressed in developing 

epidermal cells, hindgut, foregut and trachea. These epidermal regions are important for 

proper muscle attachments during later stages of embryogenesis. 

The immunostaining of RT and TW proteins revealed their co-localization in the 

ER compartment. This localization is unusual for enzymes involved in O-glycosylation 

because glycosyltransferases modifying proteins with O-glycans most commonly reside 

in the Golgi apparatus. The co-localization of RT and TW proteins suggests that they 

form an enzymatic hetero-complex in order to exhibit O-mannosyltrasferase activity. 
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Mutations in both rt or tw result in a clockwise rotation of abdominal segments in 

adult flies. The similarity of the phenotype strongly suggests involvement of these genes 

in the same developmental cascade. To test this hypothesis, I studied the genetic 

interaction between tw1 and rt mutant alleles. I expected to reveal a more severe or 

perhaps lethal phenotype in double mutants. Surprisingly, the presence of tw1 allele 

significantly suppressed the abdominal rotation in adult rt mutants. The effect was 

dominant, since even one copy of tw1 was enough for the suppression. Further analysis 

revealed a mutual epistatic relationship between rt and tw, which provided further 

support for the hypothesis that RT and TW are functioning in the same molecular 

complex.  

Although, the close relationship between RT and TW functioning is obvious 

from my data – the identical phenotype of abdomen rotation (i), subcellular 

colocalization of RT and TW within the ER compartment (ii), overlapping pattern of rt 

and tw expression during different stages of embryogenesis (iii) – the molecular 

mechanisms underlying this relationship are poorly understood. Further biochemical and 

cell biological experiments are required to understand the possible physical interactions 

between RT and TW proteins, possible enzymatic modifications of one another or yet 

other possibilities. 

To better understand the possible role of mannosyltrasferases in Drosophila 

development, I looked at what stages the expression of rt and tw genes is required. I used 

a “developmental heat-shock” approach. In collaboration with Kate Koles, I found a 

broad “developmental window” in which the short pulse of expression could fully rescue 
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the abdomen rotation phenotype in adult flies. The range spans about 70 hours – from 

the 3rd larval stage till stage 3 prepupa. These results lead to two conclusions.  

First, a short pulse of tw expression produced a rather stable functional product 

of this expression (whether in form of mRNA transcript, TW protein, or possible O-

mannosylated proteins) with a long lifetime in developing tissues. 

Second, the rescue experiment revealed that the last stage still competent for 

rescuing the abdominal rotation is the prepupal stage P3.This suggests that the end of the 

3rd larval stage – early prepupa is probably the period when the function of POMTs is 

required for normal abdomenal development. This period corresponds to the beginning 

of adult epidermis formation, when histoblasts start to proliferate forming a new 

epidermis (Madhavan and Madhavan 1980). 

In my studies of the spatial requirement for tw, I used a panel of different GAL4 

drivers, expressing UAS-tw construct in tw1 background. The commonly shared idea that 

tw is required in muscle tissues would not really explain the abdomen rotation in adult 

flies. I used drivers expressed in muscle, CNS cells, epidermal cell and muscle-

attachment sites. Neither muscle drivers (MHC-GAL4, Dmef2-GAL4) nor CNS driver 

(elav-GAL4) rescued the mutant phenotype. The muscle-attachment site expression 

partially rescued the abdomen rotation, drivers with posterior compartment expression 

pattern showed a partial rescue as well. I’ve tried to increase the level of tw expression 

by introducing UAS-GAL4 construct, but that did not improve rescue results. That result 

leads me to the conclusion that tw expression is pattern - rather than level – dependent 

and the function of tw is cell-autonomous or it has a very short-range effect.  
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My hypothesis suggests that RT-TW enzymatic complex works on extracellular 

domain of Dg protein.  

The further analysis of triple rescue experiments and comparison of G14-GAL4 

and Dmef2-GAL4 expression patterns revealed that tw requirements are not strictly 

limited to epidermal or muscle expression alone, but required a contribution from 

epidermal and muscle cells with a possible involvement of CNS.  

It has been shown that Dg is one of the targets of O-mannosylation in mammals 

(MANYA et al. 2004). In collaboration with Dr. Naosuke Nakamura, I decided to test 

whether or not Drosophila Dg is O-mannosylated in vitro and in vivo. The results from 

in vitro and in vivo assays showed that extracellular domain of Drosophila Dg is 

modified with mannose in the presence of RT-TW enzymatic complex. We found a 

drastic difference in the pattern of high-molecular-mass bands of ExDG expressed in rt 

and/or tw mutant, wild type, and RT-TW co-expression backgrounds. The high-

molecular-mass band represents a highly-glycosylated form (L) of ExDG. We also found 

that the relative amount of the L band was significantly increased in flies co-expressing 

both RT and TW. We did not observe a significant increase of the relative amount of the 

L-band with overexpression of one of the genes - rt or tw, indicating that RT and TW are 

simultaneously required in vivo for producing the high-molecular-mass form of ExDG. 

The lectin staining revealed differences in glycan compositions of ExDG purified from 

different genetic backgrounds. In rt mutants, the predicted mannosylation sites were 

occupied by GalNac, suggesting O-mannosylation can compete with O-GalNAc 

modification of DG. 
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Overall, my PhD project helped to establish Drosophila as a model system to 

study the role of glycans in development. Our result showed that mannosylation in 

Drosophila is strikingly similar to higher organisms and we can extrapolate results from 

fruit flies to humans. 

As for future directions of this project, I would like to see identification of new 

target/targets of RT-TW enzymatic complex. My results suggested tha Dystroglycan is 

not the only functionally important target. Recently, a new target of O-mannosylation 

was found in mammalian cells – receptor tyrosine phosphatase β (RPTPβ) which is 

involved in neural cell adhesion and migration. Revealing potential targets in Drosophila 

would provide an essential basis for future comprehensive understanding of the function 

of O-mannosylation in development. 

Another interesting project would be to study the effect of glycans on structure of 

Drosophila Dg. Normally, the glycan chains on mucin-type domains help to sustain the rod-like 

shape of the glycosylated proteins. No one had shown yet the conformational difference 

between glycosylated and non-glycosylated forms of Dg. This experiment might give some 

insight on how glycans affect ligand binding.  

It has been shown that Dystroglycan is implicated in energy homeostasis in 

Drosophila (TAKEUCHI et al. 2009). It would be interesting to see if O-mannosylation of 

Dg is somehow involved in energy metabolism - that would explain the “rotated 

embryo” phenotype we observed in rt mutants. The “rotated embryo” phenotype is 

possibly caused by abnormal muscle contractions. Muscle cells require a constant supply 

of energy for proper functioning (contraction and relaxation). It is possible, that  
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O-mannosylation of Dg is important for energy metabolism, and hypoglycosylation 

affects energy supply in muscle cells. The energy-depleted muscle cells eventually stop 

contracting or relaxing, resulting in the rotated embryo phenotype we observed in rt or 

tw mutants. 

In rescue experiments with tissue-specific drivers, I relied on immunostaining to 

determine the requirements for tw during development but a different approach can be 

used to address the same question. New advances in recombineering (recombination-

mediated genetic engineering) techniques allow introducing specific tags in BACs 

(Bacterial Artificial Chromosomes) containing genomic DNA with rt or tw regions. 

Later, this tagged version of genomic DNA can be incorporated in Drosophila genome 

and we can track the endogenous expression of the genes by immunostaining the tagged 

version of the protein. We can slightly modify this approach and create a GAL4 

“enhancement trap” that would express GAL4 under control of either rt or tw promoter. 

This construct would be useful for future genetic experiments.  

In conclusion, a combination of genetic and biochemical strategies would help to 

elucidate the role of O-mannosyl glycans in Dg functioning, their involvement in cell 

migration and cell-to-cell communications during Drosophila development. The insights 

we learn from Drosophila then could be expanded to understand the molecular 

mechanism of muscular disorders in humans. 
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