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ABSTRACT

Three Essays on Estimation and Testing of Nonparametric Models. (August 2012 )

Guangyi Ma, B.A., Harbin Institute of Technology; M.A., Seoul National University

Chair of Advisory Committee: Dr. Ke-Li Xu

In this dissertation, I focus on the development and application of nonparametric

methods in econometrics. First, a constrained nonparametric regression method is

developed to estimate a function and its derivatives subject to shape restrictions

implied by economic theory. The constrained estimators can be viewed as a set of

empirical likelihood-based reweighted local polynomial estimators. They are shown

to be weakly consistent and have the same first order asymptotic distribution as

the unconstrained estimators. When the shape restrictions are correctly specified,

the constrained estimators can achieve a large degree of finite sample bias reduction

and thus outperform the unconstrained estimators. The constrained nonparametric

regression method is applied on the estimation of daily option pricing function and

state-price density function.

Second, a modified Cumulative Sum of Squares (CUSQ) test is proposed to test

structural changes in the unconditional volatility in a time-varying coefficient model.

The proposed test is based on nonparametric residuals from local linear estimation

of the time-varying coefficients. Asymptotic theory is provided to show that the

new CUSQ test has standard null distribution and diverges at standard rate under

the alternatives. Compared with a test based on least squares residuals, the new

test enjoys correct size and good power properties. This is because, by estimating

the model nonparametrically, one can circumvent the size distortion from potential

structural changes in the mean. Empirical results from both simulation experiments
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and real data applications are presented to demonstrate the test’s size and power

properties.

Third, an empirical study of testing the Purchasing Power Parity (PPP) hypoth-

esis is conducted in a functional-coefficient cointegration model, which is consistent

with equilibrium models of exchange rate determination with the presence of trans-

actions costs in international trade. Supporting evidence of PPP is found in the

recent float exchange rate era. The cointegration relation of nominal exchange rate

and price levels varies conditioning on the real exchange rate volatility. The cointe-

gration coefficients are more stable and numerically near the value implied by PPP

theory when the real exchange rate volatility is relatively lower.
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1. INTRODUCTION AND SUMMARY

In the last two decades, there is a growing literature of nonparametric methods in

statistics and econometrics; see the books by, for example, Fan and Gijbels (1996),

Pagan and Ullah (1999), and Li and Racine (2007) for general discussion of nonpara-

metric theory as well as applications. Moreover, nonparametric methods have been

well recognized as useful tools in economic and financial data analysis because they

are less restrictive compared with parametric models, and thus could be attractive

when one has little prior information on the underlying data generating process; see

the survey articles by Cai and Hong (2003), and Fan (2005). In this dissertation, I

contribute to the research literature of nonparametric econometrics in the following

aspects.

In the first study (Section 2: Empirical Likelihood-Based Constrained Nonpara-

metric Regression), I develop a constrained nonparametric regression method to esti-

mate a function and its derivatives subject to shape restrictions implied by economic

theory. As a data-driven smoothing technique, the standard nonparametric local

polynomial regression method produces curve estimates which heavily depend on

the observed sample data. In other words, the shape of estimated functions by a

standard local polynomial method may not always satisfy certain properties implied

by the researcher’s economic model. By introducing the empirical likelihood based,

reweighted version of the local polynomial estimators, I show that one can accom-

modate a large range of shape restrictions using the modified estimators and achieve

finite sample bias reductions. I also provide asymptotic analysis of the proposed

constrained nonparametric estimation method, with a focus on the comparison of

the constrained and unconstrained estimators.

In the second study (Section 3: The CUSUM of Squares Test for Volatility Change

in a Time-varying Coefficient Model), I consider a testing problem of structural

This dissertation follows the style of Journal of Econometrics.
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change in the volatility of time series models. Specifically, I propose a modified Cu-

mulative Sum of Squares (CUSQ) test to test structural changes in the unconditional

volatility in a time-varying coefficient model. The reason to consider this model is

due to the concern of co-existing structural changes in both the first and second

moments. The proposed test is based on nonparametric residuals from local linear

estimation of the time-varying coefficients. I provide asymptotic theory to show that

the new CUSQ test has standard null distribution and diverges at standard rate

under the alternatives. Compared with a test based on least squares residuals, the

new test enjoys correct size and good power properties. This is because, by esti-

mating the model nonparametrically, one can circumvent the size distortion from

potential structural changes in the mean. I present empirical results from both sim-

ulation experiments and real data applications to demonstrate the size and power

properties.

In the third study (Section 4: Functional-Coefficient Cointegration Test of Pur-

chasing Power Parity), I test the absolute version of Purchasing Power Parity (PPP)

hypothesis in a functional-coefficient cointegration model, which is consistent with

equilibrium models of exchange rate determination with the presence of transactions

costs in international trade. I find supporting evidence of PPP in the recent float ex-

change rate era. The cointegration relation of nominal exchange rate and price levels

varies conditioning on the real exchange rate volatility. The cointegration coefficients

are more stable and numerically near the value implied by PPP theory when the real

exchange rate volatility is relatively lower.
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2. EMPIRICAL LIKELIHOOD-BASED CONSTRAINED NONPARAMETRIC

REGRESSION

2.1 Introduction

Nonparametric regression methods are known to be robust to functional form

misspecification, hence they are useful when the researcher does not have a theory

specifying the exact relationship between economic variables. However, in many

cases, economic theory indicates that the functional relationship between two vari-

ables X and Y , say, Y = m (X), should be under certain shape restrictions such

as monotonicity, convexity, homogeneity, etc. Because the estimation results from

nonparametric regression are not guaranteed to satisfy these ex-ante model restric-

tions, it is desirable to develop a methodology to accommodate such conventional

restrictions in nonparametric estimation.

In previous literature, various approaches to nonparametric regression which sat-

isfy monotonic restriction have been developed. See Matzkin (1994) for a compre-

hensive survey. A popular approach in the existing research literature is the isotonic

regression method. See, e.g., Hansen et al. (1973), Dykstra (1983), Goldman and

Rudd (1992), Rudd (1995), etc.1. A less desirable feature of the isotonic regres-

sion technique is that the estimated function might not be smooth. To produce

monotonic yet still smooth estimation results, one can add a kernel-based smoothing

step with the isotonic regression. See, e.g., Mukerjee (1988), and Mammen (1991).

Recently, Aı̈t-Sahalia and Duarte (2003) proposed a similar two-step procedure to

estimate option price function nonparametrically. In the first step, they adopt Dyk-

stra’s (1983) constrained least square algorithm to trim the data so that the estimates

from the succeeding kernel smoothing step are guaranteed to be monotonic and con-

vex. In this constrained least squares method, the numerical search is performed

1Another vast line in the literature is constrained smoothing splines. See, e.g., Yatchew and Bos
(1997), etc. Also see a recent survey by Henderson and Parmeter (2009) for this method and other
alternatives.
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iteratively in a subset of the n-dimensional Euclidean space, where n is the sample

size. This algorithm might be computationally intensive when the sample size is

large. Consequently, it is practically useful to combine theory-imposed restrictions

with a procedure (e.g., kernel smoothing method) which produces smooth functional

estimates, meanwhile is able to reduce computational burden.

In this section, I explore the possibility of imposing shape restrictions in the lo-

cal polynomial regression framework. I construct constrained local quadratic (CLQ)

estimators specifically for the functions m (X), m′ (X), and m′′ (X). The proposed

estimators can be viewed as a reweighted version of the corresponding standard local

quadratic estimators and the weights are determined via empirical likelihood (EL)

maximization. Empirical likelihood, proposed by Owen (1988), (1990), and (1991)

is a nonparametric likelihood method, in contrast to the widely known paramet-

ric likelihood method. See Kitamura (2006) for a comprehensive survey of EL in

econometrics. EL can be applied in both parametric and nonparametric models.

In parametric estimation, a generalized empirical likelihood estimator is shown to

have advantages, in terms of higher order asymptotic properties, against the GMM

estimator (see Newey and Smith (2004)). The idea of parametric estimation via

EL is to maximize a nonparametric likelihood ratio
∏n

i=1 (npi) between a probability

measure {pi : i = 1, · · · , n} given on the sample points and the empirical distribution

{1/n, · · · , 1/n}, subject to the moment conditions of interest. See Qin and Lawless

(1994), and Kitamura et al. (2004).

EL can also be used in combination with nonparametric models. For a given non-

parametric estimator, confidence intervals via EL has demonstrated advantages over

asymptotic normality-based approaches. See Hall and Owen (1993), Chen (1996) for

density function estimation; Chen and Qin (2000), Qin and Tsao (2005) for local lin-

ear estimators of conditional mean function; Cai (2002) for conditional distribution

and regression quantiles; Xu (2009) for local linear estimators in continuous-time

diffusion models. The common approach in this literature is to maximize the non-
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parametric likelihood ratio
∏n

i=1 (npi) subject to the EL-weighted estimating equa-

tions which can be viewed as counterparts of the moment conditions in parametric

settings.

Following this line, I consider the EL profile {pi : i = 1, · · · , n} embedded on a

set of local quadratic estimators and I maximize
∏n

i=1 (npi) under the desired shape

restrictions. If the restrictions are true for the underlying data generating process,

then the EL profile asymptotically converges to {1/n, · · · , 1/n} as n goes to infinity.

Hence the CLQ estimators have the same first order asymptotic distribution as the

standard local quadratic estimators. My procedure offers estimation results that are

smooth functions, and reduces the dimensions of numerical optimization from sample

size n to the number of restrictions. Moreover, the procedure estimates the function

Y = m (X) and its first and second derivative simultaneously, so it is particularly

useful when one is interested in estimating the derivatives.

When multiple nonparametric functions are jointly estimated, it is common for

only some of the restrictions to be violated by the unconstrained estimator. By

adjusting those violations to meet the constraints, my EL approach can meanwhile

tune other functional estimates at the same location towards the corresponding true

values. In addition, the procedure can be applied in more general situations when

constraints on the function and its derivatives vary over locations, unlike the constant

constraints considered in the existing literature.

Hall and Huang (2001) proposed an EL-based nonparametric regression approach

to estimate a function, subject to monotonicity constraints. Under certain assump-

tions of the weight functions of the original estimator (kernel or local linear weights,

etc.), they show the existence of a set of location independent EL weights which

guarantee the reweighted estimator to be monotonic. Racine et al. (2009) extend

Hall and Huang’s (2001) approach to multivariate and multi-constraint cases. My

study in this section is different from these two papers in several aspects. First, I

consider the joint estimation of the regression function and its derivatives and in-
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vestigate the asymptotic distribution of the EL weighted CLQ estimators, whereas

the above mentioned two papers focus on the estimation of the regression function

only. Second, my EL weights are location dependent so that we can accommodate

constraints varying over the domain of X. Third, I allow constraints on the regres-

sion function as well as its derivatives, while the theoretical results in Racine et al.

(2009) are not directly applicable to such a case where there are multiple constraints

on the first and second derivatives with respect to the same explanatory variable X.

As an application, I use the EL-based CLQ estimator to investigate the non-

parametric estimation of daily call option prices C as a function of strike prices

X. As implied by finance theory, under the assumption of market completeness

and no arbitrage opportunities, the price of a call option C = C (X) must be a

decreasing and convex function of the option’s strike price X. These shape re-

strictions can be expressed as Ct,τ (X) ∈
[
max

(
0, Ste

−δt,τ τ −Xe−rt,τ τ
)
, Ste

−δt,τ τ
]
,

C ′t,τ (X) ∈ [−e−rt,τ τ , 0], and C ′′t,τ (X) ∈ [0,∞) , where t is the current time, τ is the

time-to-expiration, r is the risk free interest rate, and δ is the dividend yield of the

underlying asset with price St. I estimate Ct,τ (X), C ′t,τ (X), and C ′′t,τ (X) under

these constraints and compare the results of my CLQ estimation with the results

of standard local quadratic estimation. In a simulation study, I adopt the same

simulation set-up as in Aı̈t-Sahalia and Duarte (2003), and find that my results are

comparable with theirs in this extremely small sample setting, whereas my procedure

exhibits potential advantages such as convergent solution and fast computation when

the sample size becomes larger. Last, I apply this method to estimate the S&P 500

index options in a typical trading day in May 2009.

The remainder of this section is organized as follows. Section 2.2 introduces the

definition of EL for the local quadratic estimators, subject to inequality constraints.

Then I show the equivalence of two saddle point problems from the EL formulation

to ease the following asymptotic analysis. Next, Section 2.3 studies the asymptotic

properties of the EL-based CLQ estimator. Section 2.4 applies the constrained esti-
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mation procedure to estimate option price function and the state-price density. The

proofs are presented in the Appendix A.

2.2 Empirical Likelihood-Based Constrained Local Quadratic Regression

Suppose one observes a random sample {(Xi, Yi) : i = 1, · · · , n} generated from

a bivariate distribution. I shall denote the conditional mean function of Y given

X by m (x) = E (Y |X = x) and the conditional variance function by σ2 (x) =

V ar (Y |X = x), then the nonparametric regression model under consideration is

Y = m (X) + σ (X)u, where E (u|X) = 0 and V ar (u|X) = 1. I shall also de-

note the marginal density of X by f ( · ). In this section I develop the empirical

likelihood formulation in the context of a local quadratic regression model subject

to inequality constraints.

2.2.1 The Local Quadratic Estimator

Because the empirical motivation of this study is to impose theory-motivated

constraints on the estimators of the functions m ( · ), m′ ( · ), and m′′ ( · ), I shall focus

on the local quadratic regression model, which provides estimators for the three

functions simultaneously. The local quadratic estimators can be derived from the

following minimization problem

min
βj(x): j=0,1,2

n∑
i=1

[
Yi − β0 (x)− β1 (x) (Xi − x)− β2 (x) (Xi − x)2]2Ki, (2.1)

where Ki = K ((Xi − x) /h). Hereafter I shall slightly abuse the notation and use

(m0 ( · ) ,m1 ( · ) ,m2 ( · ))ᵀ to denote
(
m ( · ) ,m(1) ( · ) ,m(2) ( · ) /2

)ᵀ
, then the local

quadratic estimator for (m0 (x) ,m1 (x) ,m2 (x))ᵀ can be written as

β̂ (x) =
(
β̂0 (x) , β̂1 (x) , β̂2 (x)

)ᵀ
,
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where for j = 0, 1, 2,

β̂j (x) =
1

hj

1
n

∑n

i=1
Wji (x)Yi

1
n

∑n

i=1
W0i (x)

,

and the corresponding weights are

W0i (x) =

[(
s2s4 − s2

3

)
− (s1s4 − s2s3)

(
Xi − x
h

)
−
(
s2

2 − s1s3

)(Xi − x
h

)2
]
Ki,

W1i (x) =

[
(s2s3 − s1s4)−

(
s2

2 − s0s4

)(Xi − x
h

)
− (s0s3 − s1s2)

(
Xi − x
h

)2
]
Ki,

W2i (x) =

[(
s1s3 − s2

2

)
− (s0s3 − s1s2)

(
Xi − x
h

)
−
(
s2

1 − s0s2

)(Xi − x
h

)2
]
Ki,

where

sj =
1

nh

∑n

i=1

(
Xi − x
h

)j
Ki for j = 0, 1, 2, 3, 4.

2.2.2 EL for the Local Quadratic Estimating Equations

In this subsection we construct the empirical likelihood formulation for the local

quadratic regression model. Let {p1, · · · , pn} be a discrete probability distribution

on the sample {(Xi, Yi) : i = 1, · · · , n}. That is, {p1, · · · , pn} is a set of nonnegative

numbers adding to unity. At a location x in the domain of X, the profile empirical

likelihood ratio at a set of candidate values β (x) = (β0 (x) , β1 (x) , β2 (x))ᵀ of

E
[
β̂ (x)

]
=
(
E
[
β̂0 (x)

]
, E
[
β̂1 (x)

]
, E
[
β̂2 (x)

])ᵀ
is defined as

L (β) = max
{p1,··· ,pn}

{∏n

i=1
npi | pi > 0,

∑n

i=1
pi = 1,

∑n

i=1
piUi (β) = 0

}
, (2.2)
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where Ui (β) = (U0i (β) , U1i (β) , U2i (β))ᵀ, Uji (β (x)) = Wji (x)
[
Yi − (Xi − x)j βj (x)

]
.

Hereafter, when it is clear we shall omit the explicit dependence of a variable on the

location x for brevity of notations. The three equations

∑n

i=1
piUi (β) = 0 (2.3)

are labeled as estimating equations in the empirical likelihood literature.

Heuristically, if we take {p1, · · · , pn} = {1/n, · · · , 1/n}, then for j = 0, 1, 2, the

estimating equations become

1

n

∑n

i=1
Wji (x)

[
Yi − (Xi − x)j βj (x)

]
= 0,

which can be viewed as reformulations of the first order conditions of the weighted

least squares problem (2.1). From the above equations, we can solve, for j = 0, 1, 2,

βj (x) =

1
n

∑n

i=1
Wji (x)Yi

1
n

∑n

i=1
Wji (x) (Xi − x)j

=
1

hj

1
n

∑n

i=1
Wji (x)Yi

1
n

∑n

i=1
W0i (x)

by recognizing that

1

nh

∑n

i=1
W0i (x) =

1

nh

∑n

i=1
W1i (x)

(
Xi − x
h

)
=

1

nh

∑n

i=1
W2i (x)

(
Xi − x
h

)2

.

(2.4)

That is, the candidate values βj (x) coincide with the local quadratic estimators

β̂j (x). In general, the candidate values βj (x) are not fixed at β̂j (x), and the cor-

responding {p1, · · · , pn} are different from uniform weights 1/n. As a digression on

notation, we will reserve Dn for the common value in (2.4). That is, we denote

Dn =
1

nh

∑n

i=1
Wji (x)

(
Xi − x
h

)j
= s0

(
s2s4 − s2

3

)
−s1 (s1s4 − s2s3)−s2

(
s2

2 − s1s3

)
.
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By using the log empirical likelihood ratio, we can modify the EL maximization

problem (2.2) to be

l (β) = max
(p1,··· ,pn)

{∑n

i=1
log (npi) | pi > 0,

∑n

i=1
pi = 1,

∑n

i=1
piUi (β) = 0

}
.

(2.5)

Further, by introducing Lagrange multipliers λ (β) = (λ0 (β) , λ1 (β) , λ2 (β))ᵀ for the

estimating equations (2.3) respectively, we can form the Lagrangian as

L =
∑n

i=1
log (npi)− γ

(∑n

i=1
pi − 1

)
− nλ (β)ᵀ

∑n

i=1
piUi (β) ,

and solve for

pi (β) =
1

n (1 + λ (β)ᵀ Ui (β))
.

Now the log empirical likelihood ratio l (β) can be expressed as

l (β) = min
λ∈Λ

[
−
∑n

i=1
log (1 + λ (β)ᵀ Ui (β))

]
= max

λ∈Λ

∑n

i=1
log (1 + λ (β)ᵀ Ui (β)) ,

(2.6)

and

λ̃ (β) = arg max
λ∈Λ

∑n

i=1
log (1 + λ (β)ᵀ Ui (β)) , (2.7)

where

Λ =
{
λ (β) ∈ R3|1 + λ (β)ᵀ Ui (β) > 1/n, i = 1, · · · , n

}
.

The domain Λ of λ (β) is derived from pi ∈ [0, 1] and it is needed to ensure that the

arguments of the logarithm are strictly positive.

2.2.3 EL Formulation under Inequality Constraints

In this section I investigate the log empirical likelihood ratio (2.6) under inequality

constraints. In the regression model Y = m (X) + σ (X)u, one can formulate shape

restrictions imposed by economic theory as lower and upper bounds on the function
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m ( · ) and its derivatives. More specifically, let b (x) = (b0 (x) , b1 (x) , b2 (x))ᵀ and

b (x) =
(
b0 (x) , b1 (x) , b2 (x)

)ᵀ
, then the restrictions can be expressed as

b0 (x) 6 m0 (x) 6 b0 (x) ,

b1 (x) 6 m1 (x) 6 b1 (x) ,

b2 (x) 6 m2 (x) 6 b2 (x) .

For example, in the estimation of option price function and its derivatives, the shape

restrictions are given by b (X) =
(
max

(
0, Ste

−δτ −Xe−rτ
)
,−e−rτ , 0

)ᵀ
, and b (X) =(

Ste
−δτ , 0,∞

)ᵀ
. The goal is to accommodate these constraints in the nonparametric

estimation of m ( · ) and its derivatives.

Because the log empirical likelihood ratio (2.6) depends on candidate values

β (x) = (β0 (x) , β1 (x) , β2 (x))ᵀ, one can stack the above inequality constraints and

impose them on the candidate values:

b (x) 6 β (x) 6 b (x) . (2.8)

Then (2.6) is modified as

min
b6β6b

l (β) = min
b6β6b

max
λ∈Λ

Gn (β, λ) , (2.9)

where

Gn (β, λ) =
∑n

i=1
log (1 + λ (β)ᵀ Ui (β)) .

This can be viewed as a saddle point problem, and let its solution be
(
β̃, λ̃

)
.

Remark 2.2.1. The objective function in (2.5) corresponds to −1 times the Kullback–

Leibler distance between the probability distribution {p1, · · · , pn} and the empirical

distribution {1/n, · · · , 1/n}. Thus maximizing the log empirical likelihood ratio l (β)

can be interpreted as minimizing the Kullback–Leibler distance between {p1, · · · , pn}
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and {1/n, · · · , 1/n}. On the other hand, it is easy to verify that (2.5) attains its global

maximum at {1/n, · · · , 1/n}, corresponding to the candidate values β (x) being equal

to the standard local quadratic estimators β̂ (x). Indeed β̂ (x) are the minimizers of

l (β) without imposing the inequality constraints (2.8). Thus β̃ (x), as the minimiz-

ers of l (β) in (2.9), are designed to minimally adjust the standard local quadratic

estimators such that the inequality constraints (2.8) are satisfied.

Remark 2.2.2. The empirical likelihood formulated so far is for E
[
β̂ (x)

]
= m (x)+

bias, rather than for m (x). This point has been observed in previous studies of

empirical likelihood-based inference for nonparametric models (Chen and Qin (2000),

Qin and Tsao (2005), etc.). To reduce the bias, one can use an under smoothing

bandwidth condition nh7 → 0, as recommended in Chen and Qin (2000). I will

discuss this point further in the asymptotic analysis.

To facilitate the asymptotic analysis of the CLQ estimator
(
β̃, λ̃

)
, I need to

introduce another saddle point problem

min
β

max
λ∈Λ,ν∈R6

+

G∗n (β, λ, ν) (2.10)

where

G∗n (β, λ, ν) = Gn (β, λ) + nνᵀ (b− β) + nνᵀ
(
β − b

)
and ν = (νᵀ, νᵀ)ᵀ is a set of Lagrangian multipliers for the inequalities

b− β 6 0,

β − b 6 0.

The following lemma states that the two problems (2.9) and (2.10) have the same

saddle points.
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Lemma 2.2.1.
(
β̃, λ̃

)
is a saddle point of Gn (β, λ) and solve (2.9) if and only if(

β̃, λ̃, ν̃
)

is a saddle point of G∗n (β, λ, ν) that solves (2.10), where for j = 0, 1, 2,

ν̃j

(
x, β̃

)
=

 −
1
n

∑n
i=1

λ̃j(β̃)Wji(x)(Xi−x)j

1+λ̃(β̃)
ᵀ
Ui(β̃)

if bj − β̃j = 0,

0 if bj − β̃j < 0,

ν̃j

(
x, β̃

)
=


1
n

∑n
i=1

λ̃j(β̃)Wji(x)(Xi−x)j

1+λ̃(β̃)
ᵀ
Ui(β̃)

if β̃j − bj = 0,

0 if β̃j − bj < 0.
(2.11)

Remark 2.2.3. In practical implementation, one can program according to the sad-

dle point problem (2.9). Essentially, at each evaluating location x, searching for

β̃ (x) is performed in
[
b (x) , b (x)

]
. This can be viewed as an outer loop. While for

each candidate β (x), searching for λ (β) is done in the inner loop via maximizing

Gn (β, λ). Plugging pi in the EL weighted estimating equations
∑n

i=1 piUi (β) = 0,

one can obtain
1

n

∑n

i=1

Ui (β)

1 + λ (β)ᵀ Ui (β)
= 0,

which can also be viewed as the first order conditions for λ (β) in (2.6) divided by

n. In the inner loop, given a candidate value of β (x), one can equivalently solve for

λ (β) from these first order conditions.

Remark 2.2.4. The saddle point problem (2.10) is useful in the following asymptotic

analysis of the CLQ estimators β̃ (x). Since (2.9) and (2.10) are equivalent, I shall

use the same notation l (β) in the remaining of this section. That is, I denote

l (β) = max
λ∈Λ,ν∈R6

+

G∗n (β, λ, ν)

= max
λ∈Λ,ν∈R6

+

∑n

i=1
log (1 + λ (β)ᵀ Ui (β)) + nνᵀ (b− β) + nνᵀ

(
β − b

)
.
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2.3 Asymptotic Analysis of the Constrained Local Quadratic Estimators

In this section, first I show that, under proper regularity conditions, λ (m) =

(λ0 (m) , λ1 (m) , λ2 (m))ᵀ converges to zero as n → ∞. This result is presented in

Theorem 2.3.1. Then I show in Theorem 2.3.2 that the CLQ estimators β̃ (x) and the

standard local quadratic estimators β̂ (x) are asymptotically equivalent, that is, β̃ (x)

and β̂ (x) have the same first-order asymptotic distribution. As a starting point, I

shall list the following assumptions:

Assumption 2.3.1. The kernel function K ( · ) is a symmetric, bounded density

function compactly supported on [−1, 1].

Assumption 2.3.2. f ( · ) and σ ( · ) have continuous derivatives up to the second

order in a neighborhood of x, and both f (x) > 0 and σ (x) > 0. Also m ( · ) has

continuous derivatives up to the third order in a neighborhood of x.

Assumption 2.3.3. h→ 0, nh→∞, and nh7 → 0 as n→∞.

Lemma 2.3.1. Under Assumptions 2.3.1, 2.3.2, and 2.3.3, as n→∞, we have the

asymptotic distribution

√
nh

(
1

nh

∑n

i=1
Ui (m)− h3

6
m(3) (x) f 3 (x)BU

)
d→ N

(
0, σ2 (x) f 5 (x)VU

)
, (2.12)

where

BU =


0

µ2
4 − µ2

2µ4

0

 , VU =


ω0 0 ω2

0 ω3 0

ω2 0 ω5

 ,

ω0 = µ2
2

(
µ2

4ν0 − 2µ2µ4ν2 + µ2
2ν4

)
,

ω2 = −µ2
2

(
µ2µ4ν0 −

(
µ4 + µ2

2

)
ν2 + µ2ν4

)
,

ω3 =
(
µ4 − µ2

2

)2
ν2,

ω5 = µ2
2

(
µ2

2ν0 − 2µ2ν2 + ν4

)
.
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Remark 2.3.1. To investigate the asymptotic behavior of the EL-based CLQ esti-

mators, first I need to find the asymptotic distribution of the estimating equations

(2.3). Lemma 2.3.1 presents the asymptotic distribution of (2.3) evaluated at the set

of true values m (x) = (m0 (x) ,m1 (x) ,m2 (x)). This result can be derived from the

asymptotic distribution of the local quadratic estimators β̂ (x) because (2.3) can be

viewed as a reformulation of β̂ (x)−m (x). Essentially, from Lemma 2.3.1 we have

1

nh

∑n

i=1
Ui (m) = Op

(
(nh)−1/2 + h3

)
.

Remark 2.3.2. Among the three terms in (2.12), the leading bias of 1
nh

∑n

i=1
U0i (m)

and 1
nh

∑n

i=1
U2i (m) are actually zeros because of the symmetry of the kernel K ( · ).

As suggested by Chen and Qin (2000), I use an under smoothing condition nh7 → 0

to reduce the bias of 1
nh

∑n

i=1
U1i (m). With this condition, one can still use the

optimal bandwidth h = O
(
n−1/9

)
for the estimation of the regression function and

the second derivative.

Lemma 2.3.2. Under Assumptions 2.3.1, 2.3.2, and 2.3.3, we have

1

nh

∑n

i=1
Ui (m)Ui (m)ᵀ = ΩU + op (1) ,

where

ΩU = f 3 (x)


σ2 (x)ω0 σ2 (x)ω1 σ2 (x)ω2

σ2 (x)ω1 [σ2 (x) +m2 (x)]ω3 [σ2 (x) +m2 (x)]ω4

σ2 (x)ω2 [σ2 (x) +m2 (x)]ω4 [σ2 (x) +m2 (x)]ω5

 .

Theorem 2.3.1. Assume that E |Yi|s < ∞ for some s > 2 and Assumptions 2.3.1,

2.3.2, and 2.3.3 hold. Then

λ (m) = Op

(
(nh)−1/2 + h3

)
= op

(
n−3/7

)
,
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also

λ (m) =

[
1

nh

∑n

i=1
Ui (m)Ui (m)ᵀ

]−1 [
1

nh

∑n

i=1
Ui (m)

]
+ op

(
(nh)−1/2 + h3

)
.

Remark 2.3.3. From Theorem 2.3.1, pi (m) = n−1 (1 + λ (m)ᵀ Ui (m))
−1

converges

to 1/n with increasing sample size and proper selected bandwidth. Hence the EL-based

CLQ estimators

β̃j (x) =
1

hj

∑n

i=1
piWji (x)Yi∑n

i=1
piW0i (x)

(j = 0, 1, 2)

converge to the unconstrained local quadratic estimators

β̂j (x) =
1

hj

1
n

∑n

i=1
Wji (x)Yi

1
n

∑n

i=1
W0i (x)

(j = 0, 1, 2)

Lemma 2.3.3. Assume that Assumptions 2.3.1, 2.3.2, and 2.3.3 hold, further as-

sume that nh5 →∞ as n→∞. Then G∗n (β, λ, ν) attains its saddle point at
(
β̃, λ̃, ν̃

)
where β̃ =

(
β̃0, β̃1, β̃2

)
is such that

∣∣∣β̃j (x)−mj (x)
∣∣∣ 6 h2−j; λ̃ = λ

(
β̃
)

is given by

(2.7); and ν̃ is given by (2.11). Further,
(
β̃, λ̃

)
satisfies

g1n

(
β̃, λ̃

)
= 0, g1n

(
β̃, λ̃

)
= 0,

where

g1n (β, λ) =
1

nh

∑n

i=1

Ui (β)

1 + λ (β)ᵀ Ui (β)
,

g2n (β, λ) =
1

nh

∑n

i=1

Di (x)λ (β)

1 + λ (β)ᵀ Ui (β)
,

and Di (x) is a 3× 3 matrix such that Di (x) = diag
{
−Wji (x) ((Xi − x) /h)j

}
.
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Remark 2.3.4. Lemma 2.3.3 shows the existence of a saddle point of G∗n (β, λ, ν)

in the interior of a (asymptotically shrinking) neighborhood of m (x),

{
β (x) : |βj (x)−mj (x)| 6 h2−j, j = 0, 1, 2

}
. (2.13)

This is achieved by establishing a lower bound of l (β) out of (2.13) and then it is

shown that this lower bound is of a larger stochastic order than l (m).

Theorem 2.3.2. Suppose that the assumptions of Theorem 2.3.1 hold. Also assume

that nh5 →∞ as n→∞. Then for j = 0, 1, 2, the EL-based CLQ estimator

β̃j (x) = β̂j (x) + op

((
nh1+2j

)−1/2
+ h3−j

)
,

where for each j, β̂j (x) is the corresponding local quadratic estimator. As n → ∞,

the asymptotic distribution of β̃ (x) is given by

diag
(√

nh1+2j
)(

β̃ (x)−m (x)− h2

6
m(3) (x)Bβ̃

)
d→ N

(
0,
σ2 (x)

f (x)
Vβ̃

)
, (2.14)

where

Bβ̃ =


0

µ4/µ2

0

 , Vβ̃ =
VU

µ2
2 (µ4 − µ2

2)
2 .

Remark 2.3.5. Theorem 2.3.2 shows that the EL-based CLQ estimators β̃ (x) and

the standard local quadratic estimators β̂ (x) have the same asymptotic distribution

up to the first order. This result is naturally expected because, as the sample size

increases, β̂ (x) converges to the true function values which are in the bounded region[
b (x) , b (x)

]
, hence the inequality constraints become unbinding (ν̃

p→ 0) and β̃ (x)

and β̂ (x) are asymptotically first-order equivalent.
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2.4 Application: Option Pricing Function Estimation

2.4.1 Restrictions Imposed by Option Pricing Theory

To show the usefulness of the CLQ estimation procedure proposed in this section,

I estimate the daily option pricing function and the state-price density function by

incorporating various shape restrictions. In summary, given market completeness

and no arbitrage assumptions, implication from financial market theory suggests

that the price of a call option, as a function of its strike price, must be decreasing

and convex.

Let us consider an European call option with price Ct at time t, and expiration

time T . Denote by τ = T − t the maturity, and X the strike price. Also denote by

rt,τ the risk free interest rate and δt,τ the dividend yield of the underlying asset with

price St. Using these notations, one can write the call option price Ct by

C (X,St, τ, rt,τ , δt,τ ) = e−rt,τ τ
∫ +∞

0

max (0, ST −X) f ∗ (ST |St, τ, rt,τ , δt,τ ) dST ,

where f ∗ (ST |St, τ, rt,τ , δt,τ ) is the state-price density (SPD), also called the risk-

neutral density. The SPD will be denoted as f ∗ (ST ) for brevity in what follows.

Asset pricing theory imposes no arbitrage bounds for the price function as

max
(
0, Ste

−δt,τ τ −Xe−rt,τ τ
)
6 Ct,τ (X) 6 Ste

−δt,τ τ , (2.15)

where Ct,τ (X) is used to denote C (X,St, τ, rt,τ , δt,τ ) since the main concern here is

the call option price C as a function of X. For the first derivative

∂C

∂X
= −e−rt,τ τ

∫ +∞

X

f ∗ (ST ) dST ,
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the no-arbitrage assumption requires C to be a decreasing function of X, so the first

derivative should be negative; also the first derivative should be larger than −e−rt,τ τ

because it is the integration of a scaled SPD. Thus we have

−e−rt,τ τ 6 C ′t,τ (X) 6 0 (2.16)

from the positivity and integrability to one of the SPD. The second derivative is

C ′′t,τ (X) = e−rt,τ τf ∗ (X) > 0 (2.17)

since the SPD must be positive.

Given the data (Xi, Ci) recorded at time t (typically in one trading day) with the

same maturity τ , our objective is to estimate Ct,τ (X), C ′t,τ (X), and C ′′t,τ (X) under

constraints (2.15), (2.16), and (2.17).

2.4.2 Monte-Carlo Simulation

To compare the performance of the EL based CLQ estimation method with other

existing approaches, I adopt the simulation setup as that in Aı̈t-Sahalia and Duarte

(2003). Specifically, the true call option price function is assumed to be parametric

as in the Black-Scholes/Merton model

CBS (X,Ft,τ , τ, rt,τ , σ) = e−rt,τ τ [Ft,τΦ (d1)−XΦ (d2)] ,

where Ft,τ = Ste
(rt,τ−δt,τ )τ is the forward price of the underlying asset at time t and

d1 =
log (Ft,τ/X)

σ
√
τ

+
σ
√
τ

2
, d2 =

log (Ft,τ/X)

σ
√
τ

− σ
√
τ

2
,



20

and σ = σ (X/Ft,τ , τ) is the volatility parameter. To generate data for simulation, I

calibrate parameter values from real observations of S&P 500 index options on May

13, 1999. The parameter values and domain of strike prices are set as

St = 1365,

rt,τ = 4.5%,

δt,τ = 2.5%,

τ = 30/252,

Xi ∈ [1000, 1700] ,

σi = −Xi/140 + 432/35.

In the first simulation, the strike prices X are equally spaced between 1000 and

1700 with a sample size of 25. That is, in each sample there are 25 distinct strike

prices and each of them corresponds to one call option price. In the second simulation,

I generate 10 call option prices for each distinct strike price, so the sample size is 250.2

To generate option prices, in the first simulation (n = 25), I add uniform noise to the

true option price function, which ranges from 3% of the true price value for deep in

the money options (X = 1000) to 18% for deep out of the money options (X = 1700).

I double the noise size in the second simulation (n = 250).3 I use the Epanechnikov

kernel in the local quadratic estimation and adopt a rule-of-thumb bandwidth as in

Fan and Mancini (2009). In each simulation experiment, I generate and estimate

1000 samples and show the average, 5%, and 95% quantiles as confidence bands in

each graph.

For samples with 25 observations in the first simulation, the estimation results are

shown in Figure 2.1. The unconstrained estimates are presented in the left column

and the constrained estimates in the left column. The sample size in this simulation

is tiny, so the unconstrained local quadratic estimators, especially the estimators

for first and second derivatives, Ĉ ′ (X) and Ĉ ′′ (X), perform poorly and violate the

constraints frequently. Although difficult to tell in the graph, the estimator for the

2This is similar with the simulation setup in Yatchew and Hardle (2006).
3If I use the same noise design in the second simulation, because of the larger sample size (n = 250),
the unconstrained local quadratic estimates will violate constrains less frequently so the constrained
and unconstrained estimation results will be indistinguishable.
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Fig. 2.1. Simulation results for n = 25

Left column from top to bottom: Unconstrained estimates Ĉ ′ (X), Ĉ ′′ (X), and

ert,τ τ Ĉ ′′ (X). Right column from top to bottom: Constrained estimates C̃ ′ (X), C̃ ′′ (X),

and ert,τ τ C̃ ′′ (X). Solid black line: True function. Solid blue line: Average estimate. Dot

blue line: 95% confidence band. Dot red line: Constraints.

option price, Ĉ (X), also violates the lower bound when the strike price is low for

deep in the money options. This violation of constraint can be adjusted in my
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EL-based CLQ estimator, while not in Ait-Sahalia and Duarte (2003). Turning to

the constrained estimation by the EL-based procedure, it is obvious that all three

estimates, C̃ (X), C̃ ′ (X), and C̃ ′′ (X), always satisfy the constraints, and the esti-

mates for first and second derivatives have smaller confidence bands in both of the

boundary areas of the domain of X. An interesting finding is that, by correcting the

violation of constraints in the first derivative estimate, the EL-based procedure also

adjusts the second derivative estimate towards to its true function in corresponding

boundary areas, although the unconstrained estimate itself, Ĉ ′′ (X), may not violate

its nonnegative lower bound.4

As shown in Figure 2.2, in the second simulation with 250 observations, the

unconstrained local quadratic estimators perform better than they did in the previous

small sample design, despite of the doubled noise size. With a sample size as large

as 250, the unconstrained estimate (Ĉ (X)) of the option price function and its

true value are very close. But for the estimation of derivatives, the unconstrained

estimators (Ĉ ′ (X) and Ĉ ′′ (X)) still violate the constraints when the strike price is

very low or very high. In comparison, the EL-based constrained estimators (C̃ ′ (X),

and C̃ ′′ (X)) are strictly within the constraints and have much narrower confidence

bands, specially, in the left boundary area.

Last, I conduct a comparison of the integrated mean squared errors (IMSE) from

constrained and unconstrained estimation in Figure 2.3. I focus on the first simu-

lation design with sample size 25. The plots show that the IMSE’s are much lower

for the constrained estimators in all three functional estimations. Also a U-shaped

IMSE curve can be detected in all three cases, showing that there exists an optimal

bandwidth minimizing the IMSE.

4Note that the 5% quantile of C̃ ′ (X) corresponds to the 95% quantile of C̃ ′′ (X) and vice versa.
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Fig. 2.2. Simulation results for n = 250

Left column from top to bottom: Unconstrained estimates Ĉ ′ (X), Ĉ ′′ (X), and

ert,τ τ Ĉ ′′ (X). Right column from top to bottom: Constrained estimates C̃ ′ (X), C̃ ′′ (X),

and ert,τ τ C̃ ′′ (X). Solid black line: True function. Solid blue line: Average estimate. Dot

blue line: 95% confidence band. Dot red line: Constraints.

2.4.3 Empirical Analysis

To investigate the empirical performance of my EL-based CLQ estimators, I apply

this method to S&P 500 index (symbol SPX) based options and estimate the option
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Fig. 2.3. Root of integrated mean squared errors for different bandwidths

price function and the state price density (a scaled second derivative of the option

price function) using real data. I focus on closing prices of European call options on

the S&P 500 index. The SPX index option is one of the most actively traded options

and has been studied extensively in empirical option pricing literature. The data are

downloaded from OptionMetrics. I collect options on May 18, 2009 for a maturity

of 61 days corresponding to the expiration on July 18, 2009. Following Aı̈t-Sahalia

and Lo (1998), Fan and Mancini (2009), I use the bid-ask average of closing price

as the option price, and delete less liquid options with implied volatility larger than

70%, or price less than or equal to 0.125. Finally I obtain a sample of 81 call option

prices with strike prices ranging from 715 to 1150. The closing spot price of the

S&P 500 index on that day was 909.71, and the risk free interest rate for the 2-

month maturity was 0.51%. The dividend yield is retrieved from the put-call parity.

Figure 2.4 presents the estimation results on this data set of daily cross-sectional

option prices. From the results we can find that the unconstrained estimate of the
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Fig. 2.4. Estimation results of S&P 500 options, July expiration on May 18, 2009

Left column from top to bottom: Unconstrained estimates Ĉ ′ (X), Ĉ ′′ (X), and

ert,τ τ Ĉ ′′ (X). Right column from top to bottom: Constrained estimates C̃ ′ (X), C̃ ′′ (X),

and ert,τ τ C̃ ′′ (X). Solid blue line: Average estimate. Dot red line: Constraints.

first derivative significantly violates the constraints at both the in-the-money and

the out-of-the-money areas. In contrast, the constrained estimate of this function is

bounded in both areas.
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3. THE CUSUM OF SQUARES TEST FOR VOLATILITY CHANGE IN A

TIME-VARYING COEFFICIENT MODEL

3.1 Introduction

Detecting structural changes in volatility is important in many aspects such as

volatility forecast, risk management, etc. Particularly, smooth changes in uncondi-

tional volatility has been viewed as a long-run component of the volatility process

(Engle and Rangel, 2008, Engle et al., 2009). In the theoretical research on structural

change tests in volatility, a large body of the literature has been devoted to the Cu-

mulative Sum (CUSUM) of Squares (hereafter CUSQ) test: Inclán and Tiao (1994),

Deng and Perron (2008b), Cavaliere and Taylor (2008), Xu (2008, 2012), etc. Be-

sides, Sensier and van Dijk (2004) applied the CUSQ test on 214 US macroeconomic

variables and found 80% of the series have structural breaks. Rapach and Strauss

(2008) investigated the empirical consequence of structural breaks for GARCH mod-

els of exchange rate volatility. They used the CUSQ test on different bilateral US

dollar exchange rate return series, and found seven out of eight containing structural

changes.

However, many theoretical and empirical studies of the CUSQ test focus on de-

meaned data, implicitly viewing the time series has an invariant mean. While our

concern is, structural changes in volatility often co-occur with changes in the level.

So in this section I reconsider the CUSQ test for structural change in volatility within

a nonparametric time-varying coefficient time series model, for example, Cai (2007).

The new CUSQ test is based on nonparametric residuals from the local linear esti-

mation of the time-varying coefficient model. By doing this I am able to obtain a

test which is robust to potential structural changes in the mean. I provide asymp-

totic theory to show that the new CUSQ test has standard null distribution and

diverges at standard rate under the alternatives. Compared with a test based on

least squares residuals, the proposed new CUSQ test enjoys correct size and good
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power properties. This is because, by estimating the model nonparametrically, we

can circumvent the size distortion problem incurred by inconsistent mean estimation.

Several simulation experiments and empirical applications are used to investigate the

size and power properties.

The remainder of this section is organized as follows. In section 3.2, first, I

introduce the time-varying coefficient regression model and briefly review the local

linear estimation method; then I define the CUSQ test based on local linear residuals.

In section 3.3 I provide limit theory for our test as well as the test based on least

squares residuals. Simulation studies are presented in section 3.4. Several empirical

examples are given in section 3.5.

3.2 The Model and the CUSQ Test

3.2.1 The Time-varying Coefficient Model

As a general framework for the proposed CUSQ test, first I introduce the time-

varying coefficient model for time series data. I consider the model specification as

in Cai(2007). For i = 1, · · · , n, suppose one has observed time series data (yi, Xi)

from the regression model:

yi = X ′iβ (zi) + ui, (3.1)

where Xi = (xi1, · · · , xid)′ with xi1 = 1, and β (zi) = (β1 (zi) , · · · , βd (zi))
′, zi = i/n.

The model is featured with time-varying coefficients in the sense that, for each k =

1, · · · , d, βk (z) is a deterministic function on the (rescaled) time domain (0, 1]. In

the case of d = 1, the model (3.1) reduces to a time trend model with the time trend

left as an unknown function.

The focus of interest is testing the hypothesis that the unconditional variance of

error terms {ui} is a constant over time. To serve this interest, I specify the error

term ui as ui = σiεi, where σ2
i = σ2 (zi) is a deterministic function on (0, 1], εi is such

that E (εi|Xi) = 0, E (ε2
i |Xi) = s2 (Xi), E (ε2

i ) = 1. Specifically, here σi accounts for



28

the (unconditional) time varying volatility and εi accounts for serial correlation and

conditional heteroscedasticity. I also assume that σ2 (z) is a positive càdlàg function

and at least twice differentiable except at a finite number of points of discontinuity,

with the second derivative function satisfying a (uniform) first-order Lipschitz con-

dition. Further, I assume that {(εi, Xi)} is strictly stationary β-mixing but {εi} and

{Xi} may not be independent. Note that the model specification is largely adopted

from Cai (2007), except for the error terms’ variance, where the (unconditional) time

dependence is explicitly separated from the conditional heteroscedasticity. Then the

test hypothesis can be formally stated as

H0 : σ2
i = σ2,

H1 : σ2
i = σ2 (zi) , zi = i/n ∈ (0, 1].

Because {ui} is not observed directly, to test the above hypothesis one must

construct a test based on estimated residuals from the model (3.1). Given observed

data {(yi, Xi) : i = 1, · · · , n}, one can use the local linear method to estimate β ( · )

nonparametrically. The local linear estimators β̂ ( · ) can be written as

β̂ (z) =
(
S0 (z)− S1 (t)S2 (z)−1 S1 (z)

)−1 (
T0 (z)− S1 (z)S2 (t)−1 T1 (z)

)
,

where for k = 0, 1, 2,

Sk (z) = n−1
∑n

i=1
(zi − z)kXiX

′
iKh (zi − z) ,

Tk (z) = n−1
∑n

i=1
(zi − z)kXiyiKh (zi − z) ,

and Kh (u) = K (u/h) /h, where K ( · ) is a kernel function, h = hn > 0 is a band-

width satisfying h→ 0 and nh→∞ as n→∞.
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3.2.2 The CUSUM of Squares Test Statistic

I use the nonparametric residuals ûi = yi − X ′iβ̂ (zi) from the local linear esti-

mation to construct a Cumulative Sums of Squares (CUSQ) test statistic. Following

Xu (2012), I consider a slightly modified CUSQ test statistic given by

Q̂ = max
1≤m≤n

n−1/2
∣∣∣∑m

i=1
û2
i −

m

n

∑n

i=1
û2
i

∣∣∣ /ω̂, (3.2)

where

ω̂2 =
∑n−1

l=−n+1
k (l/b) γ̂ (l) . (3.3)

If one denotes the long run variance (LRV) of u2
i − σ2

i by ω2, which is given by

ω2 = ξ2
∫ 1

0
σ4 (t) dt with ξ2 =

∑∞
l=−∞ ψ (l) and ψ (l) = E

[
(ε2
i − 1)

(
ε2
i−l − 1

)]
, then

ω̂2 is an estimator of ω2. In (3.3), k ( · ) is another kernel function, b = bn > 0 is an-

other bandwidth (or called a truncation parameter if k ( · ) has a bounded domain),

and γ̂ (l) is an estimator of the l-th autocovariance E
[
(u2

i − σ2
i )
(
u2
i−l − σ2

i−l
)]

, specif-

ically, γ̂ (l) = n−1
∑n

i=l+1 (û2
i − σ̂2)

(
û2
i−l − σ̂2

)
for l > 0; γ̂ (l) = γ̂ (−l) for l < 0,

where σ̂2 = n−1
∑n

i=1 û
2
i .

The CUSQ test has been considered by Xu (2012), Deng and Perron (2008b),

Nielsen and Sohkanen (2011), and many others, but most are based on directly

observed data, least squares residuals, or forecast errors from a model. Here the

proposed test statistic Q̂ is based on nonparametric residuals.

3.3 Asymptotic Properties of the CUSQ Test

In this section, I analyze the asymptotic properties of the proposed CUSQ test

Q̂. Under general conditions for nonparametric estimation, I can show that the test

has the same limit distribution (the supremum of a Brownian bridge) with a CUSQ

test based on directly observed data. As an illustration, I also clarify the limit

behavior of a CUSQ test statistic based on least squares residuals, whereas the data
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are generated from the time-varying coefficient model (3.1). To begin with, I make

the following assumptions.

Assumption 3.3.1. The regression coefficient functions β ( · ) : [0, 1] → Rd are

smooth and bounded, at least twice continuously differentiable, except at a finite num-

ber of points of discontinuity on [0, 1], and supt∈(0,1) ‖lims→t+ β (s)− lims→t− β (s)‖ 6

C for some constant C.

Assumption 3.3.2. The error term is such that ui = σiεi, where σ2
i = σ2 (zi) and

E (εi|Xi) = 0, E (ε2
i |Xi) = s2 (Xi), E (ε2

i ) = 1. The conditional variance s2 ( · ) :

[0, 1] → R+ is continuous and bounded; the unconditional variance σ2 ( · ) : [0, 1] →

R+ is a smooth and bounded cadlag function, at least twice continuously differentiable,

except at a finite number of points of discontinuity.

Assumption 3.3.3. Assume that {(εi, Xi)} is strictly stationary β-mixing. Further,

assume that there exists some δ > 0 such that E ‖Xi‖2(2+δ) < ∞, E |εi|2(2+δ) < ∞,

and the mixing coefficient b (i) is geometrically decreasing, that is, b (i) = O (i−τ ),

and τ > (2− ε) (2 + δ) /δ for some δ, ε > 0.

Assumption 3.3.4. Assume that n−1
∑n

i=1XiX
′
i

p→ Ω0, where Ω0 = E (X1X
′
1) is a

positive definite matrix. Furthermore, the LRV ξ2 =
∑∞

l=−∞E
[
(ε2
i − 1)

(
ε2
i−l − 1

)]
is strictly positive and finite.

Assumption 3.3.5. For the kernel function and bandwidth used in the local lin-

ear estimation of β ( · ), assume that, K ( · ) is symmetric and bounded, satisfies the

Lipschitz condition, and has a bounded support, say [−1, 1]; the bandwidth satisfies

h→ 0, nh2 →∞, nh8 → 0 as n→∞.

Assumption 3.3.6. For the kernel function and bandwidth used in the LRV es-

timation, assume that, k ( · ) has a bounded support [−1, 1] and |k (x)| 6 1 for

all x ∈ R, k (x) = k (−x), k (0) = 1; k (x) is continuous at 0 and for almost

all x ∈ R; |k (x)| 6
∣∣k (x)

∣∣ where k ( · ) is a nonincreasing function such that
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−∞

∣∣xk (x)
∣∣ dx < ∞; b → ∞ as n → ∞ and b = O

(
nϑ
)
, ϑ < 1/2 − 1/r where

r is such that 2 < r < 2 + δ.

Remark 3.3.1. The assumptions are largely adopted from Cai (2007), with necessary

modifications to use results from Hansen (2008), Kristensen (2009), and Cavaliere

(2004). Assumption 3.3.1 allows for both smooth and abrupt structural changes in

the regression coefficients β ( · ). For possible abrupt structural changes, the location

of break points may not be known, but the break size is bounded. The specification

of σ2 ( · ) in Assumption 3.3.2 allows for time varying unconditional variance of the

error terms.

Remark 3.3.2. The β-mixing condition in Assumption 3.3.3 is only necessary for

some U-statistic results for dependent sequences, as in Kristensen (2011), which are

used to verify a negligible term in the difference between the estimated and true sum

of squared residuals (See Lemma B.4.3 in Appendix B). In other parts of the proof,

the weaker assumption of α-mixing is sufficient. Specifically, if I put ε = 1− δ, then

Assumption 3.3.3 implies that {(εi, Xi)} is α-mixing with the mixing coefficient α (i)

satisfies α (i) = O (i−τ ), and τ > (2 + δ) (1 + δ) /δ. This is the α-mixing condition

required in Cai (2007).

Remark 3.3.3. The above mentioned α-mixing condition further implies Assump-

tion 2 in Hansen (2008), the latter is used to establish the uniform convergence rate

of β̂ (z) in Lemma B.5.1 in Appendix B. The α-mixing condition also guarantees that

{ε2
i − 1} satisfies the Assumption E in Cavaliere (2004) if one selects r, p there to

be such that 2 < r < 2 + δ, p = 2 + 2δ.

Remark 3.3.4. The bandwidth conditions in Assumption 3.3.5 are quite general.

For small positive δ, ε, the optimal bandwidth hopt = O
(
n−1/5

)
minimizing the

asymptotic mean square error satisfies Assumption 3.3.5, see Remark 5 in Cai (2007).

Assumption 3.3.6 is for the kernel function and bandwidth in the LRV estimator ω̂2,

as used in Cavaliere (2004) and Xu (2012).
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Before moving towards to the proposed CUSQ test based on nonparametric resid-

uals, I state two theorems in which I characterize the limit behavior of the test statis-

tic based on OLS residuals. If the true regression model is with time-varying coeffi-

cients as in (3.1), then in general the least squares estimation will not be consistent.

Hence a test based on OLS residuals is expected to have incorrect size. Through the

following Theorem 3.3.1 and 3.3.2 one can find what kind of size distortion the test

will suffer if the time-varying conditional mean is not consistently estimated. In the

first step, I consider a simplified case in which ui = σiεi, and the terms {εi} are inde-

pendent and identically distributed (i.i.d.). In this special case, one only need to use

an estimator of the variance of u2
i for standardization. Let V ar (u2

i ) = E
[
(u2

i − σ2
i )

2
]
,

define the variance estimator as γ (0) = n−1
∑n

i=1 (u2
i − σ2)

2
, where σ2 = n−1

∑n
i=1 u

2
i

and {ui} are the OLS residuals. Then the test statistic is modified as

Q1 = max
1≤m≤n

n−1/2
∣∣∣∑m

i=1
u2
i −

m

n

∑n

i=1
u2
i

∣∣∣ /√γ (0).

Theorem 3.3.1. Suppose that Assumptions 3.3.1-3.3.4 hold. Let m = brnc for

0 < r 6 1. If in the error terms, the part without time-varying variance, that is, {εi}

are i.i.d., then under H1 : σ2
i = σ2 (zi),

n−1/2Q1

p→ sup
r∈(0,1]

∣∣∣∫ r0 σ2 − r
∫ 1

0
σ2 + ∆ (r)

∣∣∣ /√γ∗,
where

∆ (r) =
∫ r

0
β′Ω0β − r−1

(∫ r
0
β
)′

Ω0

(∫ r
0
β
)
− r
∫ 1

0
β′Ω0β + r

(∫ 1

0
β
)′

Ω0

(∫ 1

0
β
)
,

and γ∗ is the probability limit of γ (0). Specifically,

γ∗ = [ψ (0) + 1]
∫
σ4 + 6

[∫
σ2β′Ωεβ −

∫
σ2
(∫
β
)′

Ωε

(∫
β
)]

− 3Ω40 + 6Ω22 − 4Ω13 + Ω04 −
(∫
σ2 +

∫
β′Ω0β −

(∫
β
)′

Ω0

(∫
β
))2

,
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with

ψ (0) = E
(
ε2

1 − 1
)2
,

Ωε = E
(
X1X

′
1ε

2
1

)
,

Ω40 = E
[(∫

β
)′
X1

]4

,

Ω22 = E
[(∫

β
)′
X1X

′
1

(∫
β
) ∫

(β′X1X
′
1β)
]
,

Ω13 = E
[(∫

β
)′
X1

∫
(X ′1β

′X1X
′
1β)
]
,

Ω04 = E
[∫

(β′X1X
′
1β
′X1X

′
1β)
]
.

Remark 3.3.5. From Theorem 3.3.1 one can verify that under both H0 and H1, the

test statistic based on OLS residuals diverges with the rate
√
n. The test does not

have a correct size because of the bias of least squares estimation.

In the second step, I consider a general case of serially correlated errors, in which

the error terms satisfy the mixing condition in Assumption 3.3.3. In this case, I need

to use a LRV estimator for standardization. That is, I consider the test statistic

given as follows:

Q2 = max
1≤m≤n

n−1/2
∣∣∣∑m

i=1i
u2 − m

n

∑n

i=1
u2
i

∣∣∣ /ω,
where ω2 is the LRV estimator based on OLS residuals {ui}. The construction of ω2

should be straightforward.

Theorem 3.3.2. Suppose that Assumptions 3.3.1-3.3.4 and 3.3.6 hold. Let m =

brnc for 0 < r 6 1. If the error terms {ui} are serially correlated, then under

H1 : σ2
i = σ2 (zi),

n−1/2b1/2Q2

p→ sup
r∈(0,1]

∣∣∣∫ r0 σ2 − r
∫ 1

0
σ2 + ∆ (r)

∣∣∣ /ω∗,
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where

∆ (r) =
∫ r

0
β′Ω0β − r−1

(∫ r
0
β
)′

Ω0

(∫ r
0
β
)
− r
∫ 1

0
β′Ω0β + r

(∫ 1

0
β
)′

Ω0

(∫ 1

0
β
)
,

(ω∗)2 =

(∫
k (x) dx

)[∫
σ4 −

(∫
σ2 +

∫
β′Ω0β −

(∫
β
)′

Ω0

(∫
β
))2
]
.

Remark 3.3.6. Theorem 3.3.2 shows that again a test based on OLS residuals will

diverge so it cannot be a valid test due to the size distortion. This will also be shown

in the simulation results in Section 3.4.

Now in the following Theorem 3.3.3 I present the asymptotic properties of the

proposed test based on residuals from nonparametric estimation.

Theorem 3.3.3. Suppose that Assumptions 3.3.1-3.3.6 hold. Let m = brnc for

0 < r 6 1. Under H0 : σ2
i = σ2,

Q̂ = max
1≤m≤n

n−1/2
∣∣∣∑m

i=1û
2
i −

m

n

∑n
i=1û

2
i

∣∣∣ /ω̂ ⇒ sup
r∈(0,1]

|W (r)− rW (1)| .

Under H1 : σ2
i = σ2 (zi),

n−1/2b1/2Q̂
p→ sup

r∈(0,1]

∣∣∫ r
0
σ2 − r

∫
σ2
∣∣ · [∫ σ4 −

(∫
σ2
)2
]−1/2

.

Remark 3.3.7. Theorem 3.3.3 shows that, under quite general bandwidth condition

in Assumption 3.3.5 (h→ 0, nh2 →∞, nh8 → 0 as n→∞) the test based on local

linear residuals will enjoy the same limit distribution as a test based on {ui} does.

The limit distribution is the supremum of a standard Brownian bridge, so the critical

values can be obtained by simulations. As pointed out by Deng and Perron (2008b),

the critical values at the 1%, 5%, and 10% size are 1.63, 1.36, and 1.22, respectively.
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3.4 Simulation Study

3.4.1 Simulation Designs

In this section, I study the finite-sample performance of the proposed test in

several simulation experiments. I consider the following simulation design: yi =

β (zi) + ui, where β (z) is the time varying mean and the error term is ui = σiεi.

For z ∈ (0, 1], I use various specification of the mean function considered in the

literature, such as

M0 : β (z) = 0.2 exp (δbz − 0.7) , δb = 0,

M1 : β (z) = 0.2 exp (δbz − 0.7) , δb = 0.7,

M2 : β (z) = 0.2 exp (δbz − 0.7) , δb = 1.1,

M3 : β (z) = 1.5 + δbI (z > τ) , δb = −0.1,

M4 : β (z) = 1.5 + δbI (z > τ) , δb = −0.2,

M5 : β (z) = 1.5 + δbI (z > τ) , δb = −0.3,

where M0 is a constant mean: β (z) = 0.2 exp (−0.7) ≈ 0.099; while M1 and M2

correspond to smoothly varying mean and β (z) ∈ (0.099, 0.200) in M1, β (z) ∈

(0.099, 0.300) in M2, respectively; M3-M5 are cases of constant mean except for

a single jump at τ . I use a variety of different jump points to study the effect of

mean jump on the tests under investigation. For εi, I consider two DGPs as (i)

εi ∼ iid N (0, 0.01) and (ii) GARCH(1,1): εi = φiηi, φ
2
i = µ + αε2

i−1 + βφ2
i−1 with

µ = 0.005, α = 0.1, β = 0.4, and ηi ∼ iid N (0, 1). Note that in DGP (ii) I still have
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V ar (εi) = 0.01. For the possible structural change in volatility σ2 (z), I consider the

following specifications:

V 0 : σ2 (z) ≡ 1,

V 1 : σ2 (z) = 1 + δI (z > 0.5) , δ = 0.21,

V 2 : σ2 (z) = 1 + δI (z > 0.5) , δ = 0.44,

V 3 : σ2 (z) = 1 + δI (z > 0.5) , δ = 0.69,

V 4 : σ2 (z) = 1 + δI (0.4 < z 6 0.6) , δ = 0.69,

V 5 : σ2 (z) = 1.5− 0.7 exp
(
−3 (z − 0.5)2) ,

where V 0 corresponds to no structural change under H0, V 1-V 3 are cases of a single

jump in volatility, V 4 is a non-persistent temporal jump, and V 5 represents smooth

volatility change in a narrow range (0.80, 1.17).

For each of the combinations of mean specification M0-M5 and volatility spec-

ification V 0-V 5, I fix two sample sizes n = 300 and n = 600, and the num-

ber of replications is 1000. In each replication, I use the Epanechnikov kernel

K (x) = (3/4) (1− x2) I (|x| 6 1) in the local linear estimation of the time varying

mean function, and select an optimal bandwidth by minimizing AIC as suggested

in Cai (2007). The median of selected bandwidths is reported. The Bartlett kernel

k (x) = (1− |x|) I (|x| 6 1) is used in the LRV estimation and the truncation param-

eter b is selected by the AR(1)-based plug-in data dependent bandwidth as suggested

by Andrews (1991). Rejection rates at 5% critical value are shown in Table C.1-C.8.

3.4.2 Simulation Results

The simulations results are reported in Table C.1-C.6. In each table, a column

labeled as True contains rejection rates from the CUSQ test based on simulated data

of {ui}, as if the error term is observable. The reason of including these results is, this
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will be a benchmark when I compare the two tests based on different mean estimation.

A column labeled as OLS stands for the CUSQ test based on OLS residuals; and a

column labeled as LL stands for the CUSQ test based on local linear residuals. Of

course, in the last two cases the test is performed on the {yi} series. In each table,

the results from two sample sizes n = 300 and n = 600 are presented together, so

the effects of increasing the sample size are easily seen. From results in the True and

LL columns, usually the empirical size under the null is closer to 0.05, and the power

under the alternative is larger after the increase of sample size. So I will focus on the

larger sample size in the comparison of the three tests. In general, from both the size

and power aspects, the test based on local linear residuals behaves very close to the

test based on true residuals {ui}, no matter whether a smooth mean or a jump mean

is added in. But the test based on OLS residuals show severe size distortion when the

mean specification is not a constant (in M1-M5). The size distortion will be larger

when the mean change is larger, in both the smooth change (M0-M2) and jump

cases (M3-M5). Besides the poor size property, the test based on OLS residuals also

exhibits unreliable power throughout all the simulation designs. A point needs to be

made is, both the size and power distortion can be downward or upward, it seems

that the direction of a size or power distortion depends on the numerical specification

of mean and variance. For example, despite that one might expect an inflated size

in most of the cases, a shrinking size is find in the jump mean cases (M3-M5) when

τ = 1/2 (Table C.3-C.4). Interestingly, the size will be smaller as the mean jump

becomes larger. This can be explained as follows.

As in the mean specification M3-M5, one can write a general form of constant

mean with one jump as β (z) = b0 + δbI (z > τ), that is, β (z) = b0 for 0 < z 6 τ ,

and β (z) = b1 for τ < z 6 1, with b1 = b0 + δb. With this specification of mean

jump, I can calculate the probability limit of Q from Theorem 3.3.1 and 3.3.2. For
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instance, in the case of i.i.d. error, under H0 of constant volatility, it is obtained

that n−1/2Q1

p→ supr∈(0,1] |g (r, τ, δb)| /
√
γ∗ (τ), where

g (r, τ, δb) =
∫ r

0
β2 (z) dz − r−1

(∫ r
0
β (z) dz

)2 − r
∫ 1

0
β2 (z) dz + r

(∫ 1

0
β (z) dz

)2

= rτ (1− τ) δ2
b I (0 < z 6 τ) + [1− τ/r − r (1− τ)] τδ2

b I (τ < z 6 1) ,

γ∗ (τ) = ψ (0) + 4σ2τ (1− τ) δ2
b + τ (1− τ) (1− 2τ)2 δ4

b ,

so for any τ ∈ (0, 1], τ 6= 1/2, supr∈(0,1] |g (r, τ, δb)| = O (δ2
b ) and

√
γ∗ (τ) = O (δ2

b );

but for τ = 1/2, supr∈(0,1] |g (r, 1/2, δb)| = δ2
b/8, still it is O (δ2

b ), while
√
γ∗ (1/2) =√

ψ (0) + σ2δ2
b = O (δb). Therefore, for small δb less than 1, such as those used in

the simulation, δb = 0.1, 0.2, 0.3, a mean jump at τ = 1/2 will result in smaller size

distortion towards to zero as δb increases. But for jump point other than 1/2, the

size distortion is shown to be increasing towards to one as δb increases. See Table

C.7 and C.8 for the details.

3.4.3 Additional Simulations

When applying the test procedure to many different time series variables, I find

that smooth mean change and volatility change co-exist in many macroeconomic

variables. To provide a more realistic example in simulation, I consider the following

design. Again I focus on an univariate variable yi = β (zi) + ui, this time I fix the

time varying mean β (z) as

M0′ : β (z) = 0.5z + exp
(
−4 (z − 0.5)2) ,
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and consider the following volatility changes:

V 0′ : σ2 (z) ≡ 1,

V 1′ : σ (z) = 0.5β (z) ,

V 2′ : σ (z) = β (z) ,

V 3′ : σ (z) = 1.5β (z) .

The smoothly varying mean M0′ has the same functional form as used in a simulation

design in Cai (2007), and V 0′ is under our H0, V 1′-V 3′ are cases of smooth volatility

change proportional to the mean change. The two DGPs (i.i.d. and GARCH(1,1))

for the error terms are the same, except for a rescaled variance, that is, V ar (εi) =

1 instead for V ar (εi) = 0.01. In these variance specifications, the magnitude of

volatility is manifestly larger than the mean change. For example, a proportional

volatility change σ (z) = 0.5β (z) with GARCH(1,1) error and n = 300 is presented

in Figure 3.1, in which the smoothly varying mean is near a constant mean due to

the large volatility.

The results for this set of simulations are shown in Table C.9. These results are

particularly illustrative because now the OLS residuals based test yields higher size

and lower power under the same mean specification, compared with the local linear

residuals based test. Consequently, the OLS residuals based test cannot be reliable

in both the null and the alternative.

3.5 Two Empirical Examples

To show the different implications of a CUSQ test based on different mean es-

timation method, that is, whether correct for the time-varying mean, I apply the

two tests on several empirical time series data sets. The data are obtained from the

Federal Reserve Bank of St. Louis web site. As a first example, I consider the CPI
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Fig. 3.1. Time-varying mean with proportional variance

based inflation rate. The raw data is a seasonally adjusted series of monthly CPI

index (1982-84=100) from 1947/01 to 2012/04 (n = 783). As shown in Figure 3.2,

the CPI based inflation rate might possess multiple mean changes so that it serves as

a good example for our test of volatility change under unstable mean. For this series,

the result from CUSQ test based on OLS (demeaned) residuals is 1.278 while the re-

sult from test based on local linear residuals is 1.416. So at 5% significant level OLS

based test will fail to reject the null of constant volatility while local linear based test

will not. The second example I considered is the CBOE S&P 500 3-Month Volatility

Index. I use a daily data set which is from 2007/12/04 to 2012/06/13 (n = 1139).

As seen in Figure 3.3, this series also shows obvious mean changes (well accepted as

jump of volatility). Then is the volatility of volatility also changing over time? The

result from CUSQ test based on OLS (demeaned) residuals is 2.086 while the result

from test based on local linear residuals is 1.333. So the test based on OLS residuals
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Fig. 3.2. Empirical Example: CPI Based Inflation Rate
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Fig. 3.3. Empirical Example: Option Implied Volatility

will reject the null, but the test based on local linear residuals will not reject, at 5%

significant level.
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In both the two empirical examples, the two test produce opposite results. As

shown in the previous simulation study, it is very possible that the OLS based test

leads to a wrong decision because of the co-exist inflated size and low power.
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4. FUNCTIONAL-COEFFICIENT COINTEGRATION TEST OF PURCHASING

POWER PARITY

4.1 Introduction

Stemming from the law of one price, the Purchasing Power Parity (PPP) hypoth-

esis states that nominal exchange rate between two currencies should be determined

by the two relevant national price levels so that the price levels, after expressed in a

common currency at that rate, equal to each other (Sarno and Taylor, 2002). In other

words, the nominal exchange rate should be at the level which causes the purchasing

power of a unit of one currency to be the same in both economies.

Let Pt and P ∗t denote the domestic and foreign price levels at time t respectively,

also let St denote the nominal exchange rate expressed as the foreign price of the

domestic currency at time t, then the PPP hypothesis in absolute version can be

written as

P ∗t = StPt.

Given the nonstationarity of the variables involved, empirical tests of the PPP hy-

pothesis are usually performed in the cointegration framework

st = β0 + β1p
∗
t + β2pt + ut

where st, pt, and p∗t are the natural logarithm of St, Pt, and P ∗t respectively, and

(β0, β1, β2) is a set of cointegration coefficients expected to be (0, 1,−1). Essentially, a

necessary condition for the long-run equilibrium of PPP to hold is that the deviations

from PPP, i.e., the residual ut, is stationary. Hence ut can be viewed as an equilibrium

error.

Empirical studies in the literature of cointegration tests of PPP provide mixing

results. See surveys such as Taylor and Taylor (2004). Early works in the 1980’s

either find that the real exchange rate follows a random walk or fail to establish a
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cointegration relationship (Michael et al., 1997). Later, to overcome the low power

of unit root test, long span data and panel data are considered (Sarno and Taylor,

2002). But still the long-established issue is unresolved.

Recently, among other studies, Michael et al. (1997) and Baum et al. (2001) argue

that the deviations from PPP should exhibit nonlinear behavior under the presence

of transactions costs. They postulate that the deviations may behave similar as a

unit root process in a band in which they are small relative to the costs of trading;

out of the band, international price arbitrage can cause mean-reverting movement

of exchange rate toward the long-run equilibrium of PPP. In practice, they use the

exponential smooth transition autoregressive (ESTAR) model on the residual term

ut to capture the above features.

Instead of imposing a parametric model on the residuals, I consider a flexible

functional-coefficient cointegration (FCC) model in which the cointegration relation-

ship itself may vary according to the degree of adjustment toward PPP. I use the

nonparametric estimation and testing method developed in Cai et al. (2009) and

Xiao (2009) to test the PPP hypothesis. By constructing a measure of real exchange

rate volatility at each time, I empirically test the cointegration suggested by the

PPP condition, allowing the cointegration coefficients to vary as a function of real

exchange rate volatility. Indeed, the model adopted in this study incorporates the

traditional linear cointegration model (with constant coefficients) as a special case.

The rest of this section is organized as follows. Section 4.2 introduces a measure

of real exchange rate volatility and establishes the link between this measure and

the nonlinear adjustment of real exchange rate toward PPP. Section 4.3 briefly sum-

marizes the functional-coefficient cointegration model used in my empirical study.

Section 4.4 reports the empirical results and discusses the implication of the results.



45

4.2 Nonlinear Adjustment toward PPP and Real Exchange Rate Volatility

Equilibrium models of exchange rate determination with transactions costs, such

as Dumas (1992) and Sercu et al. (1995), suggest that persistent deviations of real

exchange rate from the PPP level can exist, provided the deviations are relatively

smaller than the costs of international trade. Supporting these theoretical arguments,

persistence of deviations from PPP has been widely found in empirical studies. This

empirical observation was named as the PPP puzzle in Rogoff (1996). According to

these arguments, certain nonlinear behavior of real exchange rates might be naturally

expected: when the deviation from long-run PPP equilibrium level is small, the

exchange rate might move more like a random walk in a certain band containing

the PPP level; when the deviation is large enough (out of the band) to offset the

transactions costs, the international price arbitrage might force the exchange rate to

adjust from the present extreme level toward the PPP level.

Consistently, I consider the cointegration relationship suggested by PPP might

vary according to the intenseness of the adjustment. To verify my conjecture empiri-

cally, I need a measure of the intenseness of the real exchange rate adjustment toward

PPP level. Given the behavioral difference of the real exchange rate, I propose to

use real exchange rate volatility as that measure. The intuition here is, the average

volatility around time t will be larger if the deviation at time t is smaller, say, in the

band; on the contrary, if the deviation at time t is very large (out of the band), then

the volatility will be relatively small because the exchange rate might move toward

the same direction in several adjacent periods with similar magnitude of change.

To illustrate this point more concretely, I denote the real exchange rate as

EXt =
StPt
P ∗t
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then GRt = ln (EXt/EXt−1) is essentially the growth rate of real exchange rate. I

construct a measure of the volatility of real exchange rate at time t as the standard

deviation of GR in a short period before t:

zt =

√
d
i=1

(
GRt−i −GR

)2
/ (d− 1)

where GR =d
i=1 GRt−i/d. In the following empirical study, I try d = 3, 6, 12 in

the computation of zt as a step of robustness check. Then the functional-coefficient

cointegration model used in this empirical study is

st = β0 (zt) + β1 (zt) p
∗
t + β2 (zt) pt + ut.

It is expected that the cointegration coefficients will be more stable when the value

of zt is smaller, i.e., when the real exchange rate is experiencing more intensive

adjustment.

4.3 The Functional-Coefficient Cointegration Model

I use the functional-coefficient cointegration model proposed by Cai et al. (2009)

and Xiao (2009). The model can be written in a general form as

Yt = β (Zt)
′Xt + ut, 1 ≤ t ≤ T,

where Yt, Zt and ut are scalars, Xt = (Xt1, · · · , Xtd)
′ is a d-dimensional vector

of covariates, β ( · ) is a d-dimensional vector of cointegration coefficients varying

according to the value of Z. In this model, Yt and a part of variables in Xt are

assumed to be generated from non-stationary I (1) processes, while other variables

in Xt, together with Zt are generated from a stationary process. In my PPP test,

Xt =
(

1, ln
(
P f
t

)
, ln
(
P d
t

))
, Yt = ln (St), and Zt is a measure of real exchange rate

volatility.
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To estimate the coefficients β (z) as a function evaluated at z, I use a nonpara-

metric local linear estimator β̂ (z), which is given by

 β̂ (z)

β̂(1) (z)

 =

 T∑
t=1

 Xt

(Zt − z)Xt

⊗2

Kh (Zt − z)

−1

×

 T∑
t=1

 Xt

(Zt − z)Xt

YtKh (Zt − z)

 ,
where Kh (z) = k (z/h), h is a bandwidth parameter and k ( · ) is a kernel function

giving more weights on (Xt, Yt) with Zt near z. In the empirical study, I use the

Gaussian kernel.

To test the existence of cointegration relationship in (Xt, Yt), i.e. to test the

stationarity of ut, I use the test proposed by Xiao(2009). The test is based on the

estimated residual ût = Yt − β̂ (Zt)
′Xt from above local linear regression. Because

a constant is included in the regressors Xt, under the null of stationary ut, one can

expect ut to have zero mean and constant variance σ2
u = E (u2

t ). Thus one can run

a linear regression

û2
t = a+ bt+ et

and construct a t-ratio statistic given by

τT = b̂/ŝ (b) ,

where b̂ is the OLS estimate of b, and

ŝ (b) =

√
ω̂2/Tt=1

(
t− t

)2

with ω̂2 as a consistent nonparametric estimator of the long-run variance of u2
t . Xiao

(2009) shows that under some regularity conditions, this test statistic asymptotically

follows the standard normal distribution.
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4.4 Empirical Results

4.4.1 The Variables and Data

I investigate bilateral nominal exchange rates (period average) and price indices

of US vs Canada, Japan, France, Germany, Italy, UK. For these 6 country-pairs, the

consumer price index (CPI) and the product price index (PPI) are used as the mea-

sure of national price levels, as usually used in the empirical test of the PPP hypoth-

esis. As advocated in Xu (2003), I also use a traded-goods price index (TPI), which

is constructed as the weighted average of export and import price indices. Monthly

data from 04/1973 to 12/2008, which corresponds to the post-Bretton Woods era

of float exchange rate, of all variables are extracted from IMF International Finan-

cial Statistics (http://www.imfstatistics.org/imf/ ). During this period, sample size

might be shorter for several pairs in which Europe countries are involved due to data

availability.

4.4.2 Preliminary Unit Root Test of Individual Variables

Before forwarding to the cointegration test, I first examine the non-stationarity

of each time series. I use the augmented Dickey and Fuller (ADF) test for unit root.

Basing on the following regression equation,

∆yt = (ρ− 1) yt−1 + β0 + β1t+ α1∆yt−1 + · · ·+ αp∆yt−p + ut,

the ADF test is a t-test of the significance of ρ − 1. I also use the usual model

selection criterion to include a constant, a time trend, if the coefficients associated

with them are significant. Table C.10 in the Appendix C contains results of the ADF

test for unit root. In general, the results of unit root test are consistent with those

performed in existing researches. The result shows that the null of unit root cannot

be rejected at 1% significance level in 22 out of the 26 variables. The significant
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results might be because of the low power of ADF test and the conservative model

selection criterion used here. Moreover, even in those significant cases, the estimates

of coefficients are close to zero, suggesting a near unit root behavior. Given these

results, it can viewed that these series are I (1) processes.

4.4.3 Results of the Linear Cointegration Test

To compare with my functional-coefficient cointegration test, first I conduct the

standard linear (constant coefficient) cointegration test pioneered by Enger and

Granger. It is essentially an ADF test based on the least squares residuals. The

results of the Enger-Granger cointegration test are presented in Table C.11 in the

Appendix C. In all of the 17 cases, the null of unit root cannot be rejected for the

estimated residual series, even at the 10% significance level. Thus based on these

test results, each time I find no (linear) cointegration relationship among the three

variables under consideration. These results are close to those documented in the

literature, that is, focusing on relatively high frequency (monthly) data in the recent

float exchange rate, usually one fails to find the existence of (linear) cointegration

relationship among the bilateral nominal exchange rate and two price levels.

4.4.4 Results of the Functional-Coefficient Cointegration Test

Table C.12 in the Appendix C contains results of the Xiao’s nonparametric test

for unit root, based on the estimated local linear residuals from the functional-

coefficient cointegration model described in Section 4.3. Being different with the

Enger-Granger cointegration test, now the null hypothesis is that the error term is

stationary, that is, there is cointegration, possibly with varying coefficients. Under

the 5% significance level, the null of cointegration cannot be rejected in 13 (d = 3), 14

(d = 6), and 14 (d = 12) cases out of the total 17 case. These results are strikingly in

contrast with those of the linear (constant coefficient) cointegration test. Allowing for
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varying coefficients, I find strongly supporting evidence of the PPP hypothesis. The

cointegration relationship varies according to the degree of real exchange volatility.

To give a more direct comparison of the performance of linear (constant coeffi-

cient) cointegration (LC) test and my functional-coefficient cointegration (FCC) test,

I further apply the ADF test on the FCC estimated residuals (with zt computed by

using d = 12), and compare the test results with those based on the LC estimated

residuals. The results are presented in Table C.13 in the Appendix C. The t-values

from FCC estimated residuals are larger than those from LC estimated residuals in

14 cases, and the two are very close in the left 3 cases. The ADF test on the FCC

estimated residuals yield more significant results.

In addition to the test results, plotting the estimated cointegration coefficients as

functions of real exchange rate volatility yields clearer illustration of how the cointe-

gration relationship evolves. Figure 4.1-4.3 present the three estimated coefficients

β̂0 (z), β̂1 (z), β̂2 (z) for three PPI-based cases (three countries vs US). The over-

all impression of these graphs is, when the value of z (a measure of real exchange

volatility) is relatively smaller, which might be associated with faster and more ad-

justment towards to the PPP equilibrium, the cointegration coefficients are more

stable and numerically closer to the values suggested by the PPP hypothesis (i.e.,

(β0 (z) , β1 (z) , β2 (z)) = (0, 1,−1)), especially in the UK vs US case. While when

the value of z becomes larger and larger, the cointegration exhibit unstable behavior,

which can be understood as weaker or no cointegration when the deviation from PPP

is small.
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Fig. 4.1. The Estimated Functional Coefficients: Canada vs US, PPI (d = 6)
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Fig. 4.2. The Estimated Functional Coefficients: Germany vs US, PPI (d = 6)
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Fig. 4.3. The Estimated Functional Coefficients: UK vs US, PPI (d = 6)
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5. CONCLUSIONS AND DISCUSSIONS

Economic theory often imply that the functional relationship between economic

variables must satisfy certain shape restrictions derived from model assumptions or

model properties. In section 2, I develop an empirical likelihood based constrained

nonparametric regression method to accommodate such shape restrictions in the

estimation of a regression function and its derivatives. Under standard regularity

conditions, the proposed constrained local quadratic (CLQ) estimators are shown to

be weakly consistent and have the same first order asymptotic distribution as the

conventional unconstrained estimators. The CLQ estimators are guaranteed to be

within the inequality constraints imposed by economic theory, and display similar

smoothness as the unconstrained estimators. At a location where the unconstrained

estimator for a curve (e.g., the second derivative) violates a restriction, the corre-

sponding CLQ estimator is adjusted towards to the true function. Interestingly, one

can obtain such bias reduction even when the binding effect is from a restriction on

another curve (e.g., the first derivative). This finite sample advantage is achieved

through the joint estimation of several functions, based on the same empirical like-

lihood weights. Application on the estimation of daily option pricing function and

state-price density function confirms the better performance of the EL-based CLQ

estimation method in finite sample.

Several interesting topics for further research are worthy to be mentioned. One

direction is to pursue additional analysis on the EL-based CLQ estimators, such

as the asymptotic comparison of mean squared errors between the constrained and

unconstrained estimators. Another direction which might enrich the scope of this

research is to develop tests on shape restrictions such as monotonicity and convexity,

based on the asymptotic chi-square distribution of the log EL ratio statistic.

In section 3, I propose a new version of the CUSUM of squares (CUSQ) test.

The test is based on nonparametric residuals from a time-varying coefficient series
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regression model, which is featured with time-varying coefficients to accommodate

potential structural changes in the (conditional) mean. I provide asymptotic prop-

erties of the proposed test, and compare my test with the CUSQ test based on least

squares residuals. This comparison shows the importance of consistent estimation

of the possibly mean change in a residual based test such as the CUSQ test under

concern. With the presence of a time-varying mean, least squares estimation be-

comes inconsistent, hence a test based on the least squares residuals suffer from both

unreliable size and power. On the other hand, a test based on the nonparametric

local linear estimation will be robust to different structural change in the mean. The

size and power properties are extensively analyzed in simulation experiments. When

applying our CUSQ test to various macro and financial variables, I find important

consequence of the changing mean in test of volatility change.

In section 4, I test empirically the Purchasing Power Parity (PPP) hypothesis in

the absolute version, focusing on monthly data of seven developed countries in the

recent float exchange rate era. Different with existing cointegration tests of PPP,

most of which failed to find a cointegration relationship backed by the PPP notion,

I use a nonparametric functional-coefficient cointegration model to investigate the

possibility of unstable cointegration. The cointegration model adopted in this study

can be viewed as a more general framework which contains the conventional linear

(constant coefficient) cointegration model as a special case.

As a possible theoretical justification, my proposal of using the functional-coefficient

cointegration model can be supported by the argument of nonlinear adjustment to-

ward PPP equilibrium. Consistent with exchange rate determination theory in the

presence of transactions costs, the adjustment of real exchange rate toward long-run

PPP equilibrium level could be more intensive when the deviation is large enough to

activate international price arbitrage. Consequently, one can expect that the cointe-

gration relationship of the nominal exchange rate between two nations and the price
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levels of the two currencies could as well vary according to the intenseness of the

adjustment.

To empirically verify this statement, I construct a measure of the real exchange

rate volatility and use this measure to capture the degree of adjustment. By allowing

the cointegration coefficients to vary as functions of the real exchange rate volatil-

ity, I find supporting evidence of PPP hypothesis in the recent float exchange rate

era. Indeed, the cointegration relationship is more stable and numerically near the

value implied by PPP theory when the real exchange rate volatility is low. This em-

pirical finding can be understood as, the cointegration relationship is more obvious

when the adjustment toward PPP equilibrium is more active, usually characterized

by successive similar growth rates, accompanying with a lower real exchange rate

volatility.
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APPENDIX A

PROOFS IN SECTION 2

A.1 Proof of Lemma 2.2.1

Proof. (i) Let
(
β̃, λ̃, ν̃

)
be a saddlepoint of G∗n (β, λ, ν) solving (2.10). First we

look at the upper bounds b. Suppose there is j ∈ {0, 1, 2} such that β̃j > bj,

then there must exist ν ′j > ν̃j > 0 such that ν ′j

(
β̃j − bj

)
> ν̃j

(
β̃j − bj

)
, so

G∗n

(
β̃, λ̃, ν̃, ν̃−j, ν

′
j

)
> G∗n

(
β̃, λ̃, ν̃

)
, which contradicts with the definition of

(
β̃, λ̃, ν̃

)
.

Therefore β̃j 6 bj for all j = 0, 1, 2. This implies that ν̃
ᵀ
(
β̃ − b

)
6 0 since ν̃ > 0.

Further, if β̃j < bj, then ν̃j = 0. Together we have ν̃
ᵀ
(
β̃ − b

)
= 0. Similarly we can

show that ν̃ᵀ
(
b− β̃

)
= 0. So

G∗n

(
β̃, λ̃, ν̃

)
= Gn

(
β̃, λ̃

)
> Gn (β, λ)

for any β ∈
(
b, b
)

and λ ∈ Λ. That is,
(
β̃, λ̃

)
is a saddlepoint of Gn (β, λ) that solves

(2.9).

(ii) Let
(
β̃, λ̃

)
be a saddlepoint of Gn (β, λ) solving (2.9) and ν̃ as defined in

the lemma. We want to show that
(
β̃, λ̃, ν̃

)
is a saddlepoint of (2.10). First, since

ν̃
ᵀ
(
β̃ − b

)
= 0 and ν̃ᵀ

(
b− β̃

)
= 0 by the definition of ν̃, also since β̃ ∈

[
b, b
]
, we
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have ν̃
ᵀ
(
β̃ − b

)
> νᵀ

(
β̃ − b

)
and ν̃ᵀ

(
b− β̃

)
> νᵀ

(
b− β̃

)
for any ν = (νᵀ, νᵀ)ᵀ ∈

R6
+, hence

G∗n

(
β̃, λ̃, ν̃

)
> G∗n

(
β̃, λ̃, ν

)
. (A.1)

Second, let β̃ =
(
β̃j, β̃−j

)
such that β̃j = bj (or β̃j = bj) and β̃−j ∈

(
b−j, b−j

)
. Then

for any β ∈
[
b, b
]
, we make the same partition β = (βj, β−j) and have

G∗n

(
β, λ̃, ν̃

)
= G∗n

(
βj, β−j, λ̃, ν̃

)
= G∗n

(
βj, β̃−j, λ̃, ν̃

)
,

where the second equality holds because by definition the part in ν̃ corresponding to

β−j are zeros. Further, we have

G∗n

(
βj, β̃−j, λ̃, ν̃

)
> G∗n

(
β̃j, β̃−j, λ̃, ν̃

)

since G∗n (β, λ, ν) is globally convex in βj, and by definition of ν̃,

∂G∗n (β, λ, ν)

∂βj

∣∣∣
β̃,λ̃,ν̃

= 0.

Together we have

G∗n

(
β, λ̃, ν̃

)
> G∗n

(
β̃, λ̃, ν̃

)
. (A.2)

Finally, (A.1) and (A.2) imply that
(
β̃, λ̃, ν̃

)
is a saddlepoint of (2.10).
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A.2 Proof of Lemma 2.3.1

For the general local polynomial estimators, the asymptotic conditional bias and

variance terms are discussed in Fan and Gijbels (1996), Theorem 3.1. Following their

notations, we denote, in the case of local quadratic estimator,

S =


µ0 µ1 µ2

µ1 µ2 µ3

µ2 µ3 µ4

 , S∗ =


ν0 ν1 ν2

ν1 ν2 ν3

ν2 ν3 ν4

 , c2 =


µ3

µ4

µ5

 , c̃2 =


µ4

µ5

µ6

 ,

where µj =
∫
ujK (u) du, νj =

∫
ujK2 (u) du. Note that µ0 = 1, and for a symmetric

kernel, µ1 = µ3 = µ5 = ν1 = ν3 = 0. Then the asymptotic bias is given by

Bias
(
β̂j (x) |X

)
= eᵀj+1S

−1c2
m(3) (x)

6
h3−j + op

(
h3−j)

for j = 1, and

Bias
(
β̂j (x) |X

)
= eᵀj+1S

−1c̃2
1

24

(
m(4) (x) + 4m(3) (x)

f (1) (x)

f (x)

)
h4−j + op

(
h4−j)

for j = 0, 2. The asymptotic variances are given by

V ar
(
β̂j (x) |X

)
= eᵀj+1S

−1S∗S−1ej+1
σ2 (x)

f (x)nh1+2j
+ op

(
1

nh1+2j

)
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for j = 0, 1, 2. It is known that the leading term in the asymptotic bias is of a smaller

order for j being even than in the case for j being odd. Explicitly, we have

Bias
(
β̂0 (x) |X

)
=
h4

24

µ2
4 − µ2µ6

µ4 − µ2
2

(
m(4) (x) + 4m(3) (x)

f (1) (x)

f (x)

)
+ op

(
h4
)
,

Bias
(
β̂1 (x) |X

)
=
h2

6

µ4

µ2

m(3) (x) + op
(
h2
)
,

Bias
(
β̂2 (x) |X

)
=
h2

24

µ6 − µ2µ4

µ4 − µ2
2

(
m(4) (x) + 4m(3) (x)

f (1) (x)

f (x)

)
+ op

(
h2
)
,

V ar
(
β̂0 (x) |X

)
=

1

nh

µ2
4ν0 − 2µ2µ4ν2 + µ2

2ν4

(µ4 − µ2
2)

2

σ2 (x)

f (x)
+ op

(
1

nh

)
,

V ar
(
β̂1 (x) |X

)
=

1

nh3

ν2

µ2
2

σ2 (x)

f (x)
+ op

(
1

nh3

)
,

V ar
(
β̂2 (x) |X

)
=

1

nh5

µ2
2ν0 − 2µ2ν2 + ν4

(µ4 − µ2
2)

2

σ2 (x)

f (x)
+ op

(
1

nh5

)
.

To derive the asymptotic distribution for the estimating equations, we need to

introduce more notations. Let S−1 = T/D, where

T =


t0 t1 t2

t1 t3 t4

t2 t4 t5

 =


µ2µ4 − µ2

3 µ2µ3 − µ1µ4 µ1µ3 − µ2
2

µ2µ3 − µ1µ4 µ0µ4 − µ2
2 µ1µ2 − µ0µ3

µ1µ3 − µ2
2 µ1µ2 − µ0µ3 µ0µ2 − µ2

1

 ,

D = det (S) = µ0

(
µ2µ4 − µ2

3

)
− µ1 (µ1µ4 − µ2µ3)− µ2

(
µ2

2 − µ1µ3

)
,

then

S−1S∗S−1 =
1

D2
TS∗T.
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Note that we have already denoted

Dn =
1

nh

∑n

i=1
W0i (x)

= s0

(
s2s4 − s2

3

)
− s1 (s1s4 − s2s3)− s2

(
s2

2 − s1s3

)
,

thus we have Dn
p→ f 3 (x)D because sj

p→ f (x)µj for j = 0, 1, 2, 3, 4.

Evaluated at the true values (m0 (x) ,m1 (x) ,m2 (x))ᵀ, the three estimating equa-

tions are

1

nh

∑n

i=1
U0i (m) =

(
β̂0 (x)−m0 (x)

)
Dn,

1

nh

∑n

i=1
U1i (m) =

(
β̂1 (x)−m1 (x)

)
hDn,

1

nh

∑n

i=1
U2i (m) =

(
β̂2 (x)−m2 (x)

)
h2Dn,

so we can derive that, by assuming h→ 0, nh→∞, nh7 → 0 as n→∞,

√
nh

(
1

nh

∑n

i=1
Ui (m)− h3

6
m(3) (x) f 3 (x)Tc2

)
d→ N

(
0, σ2 (x) f 5 (x)TS∗T

)
,
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where

Tc2 =


µ3 (µ2µ4 − µ2

3)− µ4 (µ1µ4 − µ2µ3)− µ5 (µ2
2 − µ1µ3)

µ3 (µ2µ3 − µ1µ4)− µ4 (µ2
2 − µ0µ4)− µ5 (µ0µ3 − µ1µ2)

µ3 (µ1µ3 − µ2
2)− µ4 (µ0µ3 − µ1µ2)− µ5 (µ2

1 − µ0µ2)

 ,

TS∗T =


ω0 ω1 ω2

ω1 ω3 ω4

ω2 ω4 ω5

 ,

and

ω0 = t20ν0 + 2t0t1ν1 +
(
2t0t2 + t21

)
ν2 + 2t1t2ν3 + t22ν4,

ω1 = t0t1ν0 +
(
t0t3 + t21

)
ν1 + (t0t4 + t1t2 + t1t3) ν2 + (t1t4 + t2t3) ν3 + t2t4ν4,

ω2 = t0t2ν0 + (t0t4 + t1t2) ν1 +
(
t0t5 + t1t4 + t22

)
ν2 + (t2t4 + t1t5) ν3 + t2t5ν4,

ω3 = t21ν0 + 2t1t3ν1 +
(
2t1t4 + t23

)
ν2 + 2t3t4ν3 + t24ν4,

ω4 = t1t2ν0 + (t1t4 + t2t3) ν1 + (t1t5 + t2t4 + t3t4) ν2 +
(
t3t5 + t24

)
ν3 + t4t5ν4,

ω5 = t22ν0 + 2t2t4ν1 +
(
2t2t5 + t24

)
ν2 + 2t4t5ν3 + t25ν4.
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For a symmetric kernel K ( · ), remind that µ1 = µ3 = µ5 = ν1 = ν3 = 0, so t0 = µ2µ4,

t2 = −µ2
2, t3 = µ4 − µ2

2, t5 = µ2, t1 = t4 = 0, so

Tc2 =


0

µ2
4 − µ2

2µ4

0

 , TS∗T =


ω0 0 ω2

0 ω3 0

ω2 0 ω5

 ,

where

ω0 = µ2
2

(
µ2

4ν0 − 2µ2µ4ν2 + µ2
2ν4

)
,

ω2 = µ2
2

(
−µ2µ4ν0 +

(
µ4 + µ2

2

)
ν2 − µ2ν4

)
,

ω3 = µ2
2ν2 (µ4/µ2 − µ2)2 ,

ω5 = µ2
2

(
µ2

2ν0 − 2µ2ν2 + ν4

)
.
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A.3 Proof of Lemma 2.3.2

Lemma 2.3.2 states the stochastic order for the squared sums of Ui (m). The proof

is similar as that of Lemma 2 in Qin and Tsao (2005). Using the same notation as

in Section 2.2, we let Ki = K ((Xi − x) /h), and

W0i (x) =

[(
s2s4 − s2

3

)
− (s1s4 − s2s3)

(
Xi − x
h

)
−
(
s2

2 − s1s3

)(Xi − x
h

)2
]
Ki

=

[
T0 + T1

(
Xi − x
h

)
+ T2

(
Xi − x
h

)2
]
Ki,

W1i (x) =

[
(s2s3 − s1s4)−

(
s2

2 − s0s4

)(Xi − x
h

)
− (s0s3 − s1s2)

(
Xi − x
h

)2
]
Ki

=

[
T1 + T3

(
Xi − x
h

)
+ T4

(
Xi − x
h

)2
]
Ki,

W2i (x) =

[(
s1s3 − s2

2

)
− (s0s3 − s1s2)

(
Xi − x
h

)
−
(
s2

1 − s0s2

)(Xi − x
h

)2
]
Ki

=

[
T2 + T4

(
Xi − x
h

)
+ T5

(
Xi − x
h

)2
]
Ki,

then for j = 0, 1, 2,

∑n

i=1
Uji (m) =

∑n

i=1
Wji (x)

[
Yi −mj (x) (Xi − x)j

]
.

The conclusion in Lemma 2.3.2 can be verified as follows. Under Assumption 2.3.1,

2.3.2, and 2.3.3, we state the follow Lemma A.3.1-Lemma A.3.6.

Lemma A.3.1. 1
nh

∑n

i=1
U2

0i (m0) = σ2 (x) f 3 (x)ω0 + op (1).
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Proof. Write

1

nh

∑
U2

0i (m0) =
1

nh

∑
W 2

0i (x) [Yi −m (x)]2

=
1

nh

∑
W 2

0i (x) [Yi −m (Xi)]
2

+
2

nh

∑
W 2

0i (x) [Yi −m (Xi)] [m (Xi)−m (x)]

+
1

nh

∑
W 2

0i (x) [m (Xi)−m (x)]2

= J1 + 2J2 + J3.

First,

J1 = T 2
0

1

nh

∑
K2
i σ

2 (Xi)u
2
i + 2T0T1

1

nh

∑(
Xi − x
h

)
K2
i σ

2 (Xi)u
2
i

+
(
2T0T2 + T 2

1

) 1

nh

∑(
Xi − x
h

)2

K2
i σ

2 (Xi)u
2
i

+ 2T1T2
1

nh

∑(
Xi − x
h

)3

K2
i σ

2 (Xi)u
2
i + T 2

2

1

nh

∑(
Xi − x
h

)4

K2
i σ

2 (Xi)u
2
i ,

since for j = 0, 1, 2, 3, 4,

1

nh

∑(
Xi − x
h

)j
K2
i σ

2 (Xi)u
2
i = E

[(
X1 − x
h

)j
1

h
K2

1σ
2 (X1)u2

1

]
+ op (1)

= σ2 (x) f (x)

∫
ujK2 (u) du+ op (1)

= σ2 (x) f (x) νj + op (1) ,
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and for j = 0, 1, 2, 3, 4,

Tj = f 2 (x) tj + op (1) ,

so

J1 = σ2 (x) f 3 (x)
[
t20ν0 + 2t0t1ν1 +

(
2t0t2 + t21

)
ν2 + 2t1t2ν3 + t22ν4

]
+ op (1)

= σ2 (x) f 3 (x)ω0 + op (1) .

Second, J2 = op (1) since for j = 0, 1, 2, 3, 4,

1

nh

∑(
Xi − x
h

)j
K2
i σ (Xi)ui (m (Xi)−m (x))

= E

[(
X1 − x
h

)j
1

h
K2

1σ (X1)u1 (m (X1)−m (x))

]
+ op (1)

= E

[(
X1 − x
h

)j
1

h
K2

1σ (X1)E (u1|X1) (m (X1)−m (x))

]
+ op (1)

= op (1) .

Third, J3 = op (1) since for j = 0, 1, 2, 3, 4,

1

nh

∑(
Xi − x
h

)j
K2
i [m (Xi)−m (x)]2

=
1

nh

∑(
Xi − x
h

)j
K2
i

[
m(1) (x) (Xi − x) + op (h)

]2
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=

(
m(1) (x)

)2
h

n

∑(
Xi − x
h

)j+2

K2
i + op (h)

2m(1) (x)

n

∑(
Xi − x
h

)j+1

K2
i

+ op
(
h2
) 1

nh

∑(
Xi − x
h

)j
K2
i

=
(
m(1) (x)

)2
h2 [νj+2f (x) + op (1)] + op (h) 2m(1) (x)h [νj+1f (x) + op (1)]

+ op
(
h2
)

[νjf (x) + op (1)]

= Op

(
h2
)

+ op
(
h2
)

= op (1) .

where the first equality is because the kernel function is bounded in [−1, 1].

Lemma A.3.2. 1
nh

∑n

i=1
U2

1i (m1) = [σ2 (x) +m2 (x)] f 3 (x)ω3 + op (1).

Proof. Write

1

nh

∑
U2

1i (m1) =
1

nh

∑
W 2

1i (x)
[
Yi −m(1) (x) (Xi − x)

]2
=

1

nh

∑
W 2

1i (x) [Yi −m (Xi)]
2

+
2

nh

∑
W 2

1i (x) [Yi −m (Xi)]
[
m (Xi)−m(1) (x) (Xi − x)

]
+

1

nh

∑
W 2

1i (x)
[
m (Xi)−m(1) (x) (Xi − x)

]2
= J1 + 2J2 + J3,
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where J1 = σ2 (x) f 3 (x)ω3 + op (1), J2 = op (1) because of similar proof for corre-

sponding parts in Lemma A.3.1. Next,

J3 =
m2 (x)

nh

∑
W 2

1i (x) +
2m (x)

nh

∑
W 2

1i (x)
[
m (Xi)−m (x)−m(1) (x) (Xi − x)

]
+

1

nh

∑
W 2

1i (x)
[
m (Xi)−m (x)−m(1) (x) (Xi − x)

]2
= m2 (x) J4 + 2m (x) J5 + J6,

where m2 (x) J4 = m2 (x) f 3 (x)ω3 + op (1), since for j = 0, 1, 2, 3, 4,

1

nh

∑(
Xi − x
h

)j
K2
i = E

[(
X1 − x
h

)j
1

h
K2

1

]
+ op (1) = f (x) νj + op (1) ,

and for j = 0, 1, 2, 3, 4,

Tj = f 2 (x) tj + op (1) .

Also,

J5 =
1

nh

∑
W 2

1i (x)

[
1

2
m(2) (x) (Xi − x)2 + op

(
h2
)]

=
m(2) (x)

2nh

∑
W 2

1i (x) (Xi − x)2 + op
(
h2
)
J4

= Op

(
h2
)

+ op
(
h2
)

= op (1) ,

J6 =
1

nh

∑
W 2

1i (x)

[
1

2
m(2) (x) (Xi − x)2 + op

(
h2
)]2

= Op

(
h4
)

+ op
(
h4
)

= op (1) .
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Lemma A.3.3. 1
nh

∑n

i=1
U2

2i (m2) = [σ2 (x) +m2 (x)] f 3 (x)ω5 + op (1).

Proof. Write

1

nh

∑
U2

2i (m2) =
1

nh

∑
W 2

2i (x)

[
Yi −

1

2
m(2) (x) (Xi − x)2

]2

=
1

nh

∑
W 2

2i (x) [Yi −m (Xi)]
2

+
2

nh

∑
W 2

2i (x) [Yi −m (Xi)]

[
m (Xi)−

1

2
m(2) (x) (Xi − x)2

]
+

1

nh

∑
W 2

2i (x)

[
m (Xi)−

1

2
m(2) (x) (Xi − x)2

]2

= J1 + 2J2 + J3,

where J1 = σ2 (x) f 3 (x)ω5 + op (1), J2 = op (1) because of similar proof for corre-

sponding parts in Lemma A.3.1. Next, let

A1 = m (Xi)−m (x)−m(1) (x) (Xi − x)− 1

2
m(2) (x) (Xi − x)2 = op

(
h2
)
,

A2 = m (x) +m(1) (x) (Xi − x) ,

then

J3 =
1

nh

∑
W 2

2i (x)A2
1 +

2

nh

∑
W 2

2i (x)A1A2 +
1

nh

∑
W 2

2i (x)A2
2

= J4 + 2J5 + J6,
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where

J4 =
1

nh

∑
W 2

2i (x)
[
op
(
h2
)]2

= op
(
h4
)
,

J5 =
m (x)

nh

∑
W 2

2i (x)
[
op
(
h2
)]

+
m(1) (x)

nh

∑
W 2

2i (x)
[
op
(
h2
)

(Xi − x)
]

= op
(
h2
)

+ op
(
h3
)
,

J6 =
m2 (x)

nh

∑
W 2

2i (x) +
2m (x)m(1) (x)

nh

∑
W 2

2i (x) (Xi − x)

+

[
m(1) (x)

]2
nh

∑
W 2

2i (x) (Xi − x)2

= J7 +Op (h) +Op

(
h2
)
,

and J7 = m2 (x) f 3 (x)ω5 + op (1) as J4 in Lemma A.3.2. So J3 = m2 (x) f 3 (x)ω5 +

op (1).

Lemma A.3.4. 1
nh

∑n

i=1
U0i (m0)U1i (m1) = σ2 (x) f 3 (x)ω1 + op (1).
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Proof. Write

1

nh

∑
U0i (m0)U1i (m1)

=
1

nh

∑
W0i (x)W1i (x) [Yi −m (x)]

[
Yi −m(1) (x) (Xi − x)

]
=

1

nh

∑
W0i (x)W1i (x) [Yi −m (Xi)]

2

+
1

nh

∑
W0i (x)W1i (x) [Yi −m (Xi)]

[
m (Xi)−m(1) (x) (Xi − x)

]
+

1

nh

∑
W0i (x)W1i (x) [Yi −m (Xi)] [m (Xi)−m (x)]

+
1

nh

∑
W0i (x)W1i (x) [m (Xi)−m (x)]

[
m (Xi)−m(1) (x) (Xi − x)

]
= J1 + J2 + J3 + J4,

where J1 = σ2 (x) f 3 (x)ω1 + op (1), J2 = J3 = op (1) because of similar proof for

corresponding parts in Lemma A.3.1, and

J4 =
1

nh

∑
W0i (x)W1i (x) [m (Xi)−m (x)]2

+
1

nh

∑
W0i (x)W1i (x) [m (Xi)−m (x)]

[
m (x)−m(1) (x) (Xi − x)

]
= J41 + J42,
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where J41 = op (1) as J3 in Lemma A.3.1, and

J42 =
1

nh

∑
W0i (x)W1i (x)

[
m(1) (x) (Xi − x) + op (h)

] [
m (x)−m(1) (x) (Xi − x)

]
=
m (x)

nh

∑
W0i (x)W1i (x)

[
m(1) (x) (Xi − x) + op (h)

]
− m(1) (x)

nh

∑
W0i (x)W1i (x)

[
m(1) (x) (Xi − x) + op (h)

]
(Xi − x)

= Op (h) + op (h) +Op

(
h2
)

+ op
(
h2
)

= op (1) .

Lemma A.3.5. 1
nh

∑n

i=1
U0i (m0)U2i (m2) = σ2 (x) f 3 (x)ω2 + op (1).

Proof. Write

1

nh

∑
U0i (m0)U2i (m2)

=
1

nh

∑
W0i (x)W2i (x) [Yi −m (x)]

[
Yi −

1

2
m(2) (x) (Xi − x)2

]
=

1

nh

∑
W0i (x)W2i (x) [Yi −m (Xi)]

2

+
1

nh

∑
W0i (x)W2i (x) [Yi −m (Xi)]

[
m (Xi)−

1

2
m(2) (x) (Xi − x)2

]
+

1

nh

∑
W0i (x)W2i (x) [Yi −m (Xi)] [m (Xi)−m (x)]

+
1

nh

∑
W0i (x)W2i (x) [m (Xi)−m (x)]

[
m (Xi)−

1

2
m(2) (x) (Xi − x)2

]
= J1 + J2 + J3 + J4,
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where J1 = σ2 (x) f 3 (x)ω2 + op (1), J2 = J3 = op (1) because of similar proof for

corresponding parts in Lemma A.3.1, and

J4 =
1

nh

∑
W0i (x)W2i (x) [m (Xi)−m (x)]2

+
1

nh

∑
W0i (x)W2i (x) [m (Xi)−m (x)]

[
m (x)− 1

2
m(2) (x) (Xi − x)2

]
= J41 + J42,

where J41 = op (1) as J3 in Lemma A.3.1, and

J42 =
1

nh

∑
W0i (x)W2i (x)

[
m(1) (x) (Xi − x) + op (h)

] [
m (x)− 1

2
m(2) (x) (Xi − x)2

]
=
m (x)

nh

∑
W0i (x)W2i (x)

[
m(1) (x) (Xi − x) + op (h)

]
− m(2) (x)

2nh

∑
W0i (x)W2i (x)

[
m(1) (x) (Xi − x) + op (h)

]
(Xi − x)2

= Op (h) + op (h) +Op

(
h3
)

+ op
(
h3
)

= op (1) .

Lemma A.3.6. 1
nh

∑n

i=1
U1i (m1)U2i (m2) = [σ2 (x) +m2 (x)] f 3 (x)ω4 + op (1).
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Proof. Write

1

nh

∑
U1i (m1)U2i (m2)

=
1

nh

∑
W1i (x)W2i (x)

[
Yi −m(1) (x) (Xi − x)

] [
Yi −

1

2
m(2) (x) (Xi − x)2

]
=

1

nh

∑
W1i (x)W2i (x) [Yi −m (Xi)]

2

+
1

nh

∑
W1i (x)W2i (x) [Yi −m (Xi)]

[
m (Xi)−

1

2
m(2) (x) (Xi − x)2

]
+

1

nh

∑
W1i (x)W2i (x) [Yi −m (Xi)]

[
m (Xi)−m(1) (x) (Xi − x)

]
+

1

nh

∑
W1i (x)W2i (x)

[
m (Xi)−m(1) (x) (Xi − x)

] [
m (Xi)−

1

2
m(2) (x) (Xi − x)2

]
= J1 + J2 + J3 + J4,

where J1 = σ2 (x) f 3 (x)ω4 + op (1), J2 = J3 = op (1) because of similar proof for

corresponding parts in Lemma A.3.1, and

J4 =
1

nh

∑
W1i (x)W2i (x)

[
m (Xi)−m (x)−m(1) (x) (Xi − x) +m (x)

]
[
m (Xi)−m (x)−m(1) (x) (Xi − x)− 1

2
m(2) (x) (Xi − x)2 +m (x) +m(1) (x) (Xi − x)

]
=

1

nh

∑
W1i (x)W2i (x) [op (h) +m (x)]

[
op
(
h2
)

+m (x) +m(1) (x) (Xi − x)
]

=
m2 (x)

nh

∑
W1i (x)W2i (x) +

m (x)m(1) (x)

nh

∑
W1i (x)W2i (x) (Xi − x) + op (h)

= J5 +Op (h) + op (h) ,

where J5 = m2 (x) f 3 (x)ω4 + op (1) as J4 in Lemma A.3.2.
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A.4 Proof of Theorem 2.3.1

Proof. Write λ (m) = ρθ where ρ > 0 and ‖θ‖ = 1. Also we need to denote

U =
∑2

j=0

[
1
nh

∑n
i=1 Uji (mj)

]
for j = 0, 1, 2, and U = 1

nh

∑n
i=1 Ui (m)Ui (m)ᵀ. Note

that

pi =
1

n (1 + ρθᵀUi (m))
∈ [0, 1] ,

from which we have 1 + ρθᵀUi (m) > 0. From the three EL weighted estimating

equations,
∑n

i=1 piUi (m) = 0, we have

0 =

∥∥∥∥ 1

nh

∑n

i=1

Ui (m)

1 + ρθᵀUi (m)

∥∥∥∥
>

∣∣∣∣ 1

nh

∑n

i=1

θᵀUi (m)

1 + ρθᵀUi (m)

∣∣∣∣
=

∣∣∣∣θᵀ( 1

nh

∑n

i=1
Ui (m)− ρ 1

nh

∑n

i=1

Ui (m) [θᵀUi (m)]

1 + ρθᵀUi (m)

)∣∣∣∣
> ρθᵀ

(
1

nh

∑n

i=1

Ui (m)Ui (m)ᵀ

1 + ρθᵀUi (m)

)
θ −

∣∣U ∣∣
>

ρ

1 + ρZn
θᵀUθ −

∣∣U ∣∣ ,
where in the right hand side of the last inequality, Zn = max

16i6n
‖Ui (m)‖ so Zn >

θᵀUi (m) for each i. Therefore

ρ

1 + ρZn
θᵀUθ 6

∣∣U ∣∣



83

implies

ρ
(
θᵀUθ − Zn

∣∣U ∣∣) 6
∣∣U ∣∣ .

Since (i) by Lemma 2.3.1,
∣∣U ∣∣ = Op

(
(nh)−1/2 + h3

)
, (ii) by Lemma 2.3.2, U =

ΩU + op (1), (iii) Zn = op
(
n1/s

)
from the assumption of E |Yi|s < ∞ for s > 2, we

have

‖λ (m)‖ = ρ = Op

(
(nh)−1/2 + h3

)
.

Moreover, by a Taylor expansion of the EL weighted estimating equations at

λ = 0, we have

0 =
1

nh

∑n

i=1
Ui (m)−

[
1

nh

∑n

i=1
Ui (m)Ui (m)ᵀ

]
λ (m) + o (‖λ (m)‖) ,

hence

λ (m) =

[
1

nh

∑n

i=1
Ui (m)Ui (m)ᵀ

]−1 [
1

nh

∑n

i=1
Ui (m)

]
+ op

(
(nh)−1/2 + h3

)
.
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A.5 Proof of Lemma 2.3.3

Proof. Without losing generality, for the saddlepoint
(
β̃, λ̃, ν̃

)
of G∗n (β, λ, ν), we

only consider the case ν̃ = 0. That is, the inequality constraints b 6 β 6 b are not

binding in the large sample context. Therefore the ”inner” optimization problem

max
λ∈Λ,ν∈R6

+

∑n

i=1
log (1 + λ (β)ᵀ Ui (β)) + nνᵀ (b− β) + nνᵀ

(
β − b

)

is simplified as

l (β) = max
λ∈Λ

∑n

i=1
log (1 + λ (β)ᵀ Ui (β)) .

We point out that the following proof also holds without this simplification.

Denote β =
(
β0, β1, β2,

)ᵀ
, and for j = 0, 1, 2, βj = mj − h2−juj, where uj ∈ R

is such that u = (u0, u1, u2)ᵀ, ‖u‖ = 1. First, following the argument in the proof of

Lemma 1 in Qin and Lawless(1994), we establish a lower bound for l (β) at β. To

do this, notice that:

(i) by Lemma 2.3.1,

1

nh

∑n

i=1
Uji
(
βj
)

= h2uj

[
1

nh

∑n

i=1
Wji (x)

(
Xi − x
h

)j]
+

1

nh

∑n

i=1
Uji (mj)

= h2ujf
3 (x)D + op

(
h2
)

+Op

(
(nh)−1/2 + h3

)
= h2ujf

3 (x)D + op
(
h2
)
,

since Dn = 1
nh

∑n
i=1 Wji (x) ((Xi − x) /h)j = f 3 (x)D + op (1);
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(ii) by Lemma 2.3.2,

1

nh

∑n

i=1
Ui
(
β
)
Ui
(
β
)ᵀ

=
1

nh

∑n

i=1
Ui (m)Ui (m)′ + op (1) = ΩU + op (1) ,

where

1

nh

∑n

i=1
U2

0i

(
β0

)
=

1

nh

∑n

i=1
U2

0i (m0) +Op

(
h3
)
,

1

nh

∑n

i=1
U2

1i

(
β1

)
=

1

nh

∑n

i=1
U2

1i (m1) +Op

(
h2
)
,

1

nh

∑n

i=1
U2

2i

(
β2

)
=

1

nh

∑n

i=1
U2

2i (m2) +Op

(
h2
)
,

1

nh

∑n

i=1
U0i

(
β0

)
U1i

(
β1

)
=

1

nh

∑n

i=1
U0i (m0)U1i (m1) +Op

(
h2
)
,

1

nh

∑n

i=1
U0i

(
β0

)
U2i

(
β2

)
=

1

nh

∑n

i=1
U0i (m0)U2i (m2) +Op

(
h2
)
,

1

nh

∑n

i=1
U1i

(
β1

)
U2i

(
β2

)
=

1

nh

∑n

i=1
U1i (m1)U2i (m2) +Op

(
h2
)
.

As in the proof of Theorem 2.3.1, from (i) and (ii), we have

λ
(
β
)

=

[
1

nh

∑n

i=1
Ui
(
β
)
Ui
(
β
)ᵀ]−1 [

1

nh

∑n

i=1
Ui
(
β
)]

+ op
(
h2
)

(A.3)

= Op

(
h2
)
.
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Therefore by a Taylor expansion at λ = 0 and by (A.3),

l
(
β
)

= nh{λ
(
β
)ᵀ [ 1

nh

∑n

i=1
Ui
(
β
)]
− 1

2
λ
(
β
)ᵀ [ 1

nh

∑n

i=1
Ui
(
β
)
Ui
(
β
)ᵀ]

λ
(
β
)

+ op

(∥∥λ (β)∥∥2
)
}

=
nh

2

[
1

nh

∑n

i=1
Ui
(
β
)]ᵀ [ 1

nh

∑n

i=1
Ui
(
β
)
Ui
(
β
)ᵀ]−1 [

1

nh

∑n

i=1
Ui
(
β
)]

+ op
(
nh5
)

=
nh

2

[
h2uf 3 (x)D + op

(
h2
)]ᵀ

Ω−1
U

[
h2uf 3 (x)D + op

(
h2
)]

+ op
(
nh5
)

> nh5 (c− ε) ,

where c− ε > 0 and c is the smallest eigenvalue of f 6 (x)D2
(
uᵀΩ−1

U u
)
.

Similarly,

l (m) =
nh

2

[
1

nh

∑n

i=1
Ui (m)

]ᵀ [
1

nh

∑n

i=1
Ui (m)Ui (m)′

]−1 [
1

nh

∑n

i=1
Ui (m)

]
+ op

(
nh
(

(nh)−1/2 + h3
)2
)

=
nh

2
Op

(
(nh)−1/2 + h3

)ᵀ
Ω−1
U Op

(
(nh)−1/2 + h3

)
+ op

(
nh7
)

= Op

(
nh7
)
.

Since l (β) is continuous in the interior of

{
β (x) : |βj (x)−mj (x)| 6 h2−j, j = 0, 1, 2

}
, (A.4)
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l (β) attains minimum value β̃ in (A.4). Moreover, we have

∂l (β)

∂β

∣∣∣
β=β̃

= (∂λ (β)ᵀ /∂β)
∑n

i=1

Ui (β)

1 + λ (β)ᵀ Ui (β)

∣∣∣
β=β̃

+
∑n

i=1

(∂Ui (β)ᵀ /∂β)λ (β)

1 + λ (β)ᵀ Ui (β)

∣∣∣
β=β̃

(A.5)

= 0

Note that we already have

g1n

(
β̃, λ̃

)
=

1

nh

∑n

i=1

Ui (β)

1 + λ (β)ᵀ Ui (β)

∣∣∣
β=β̃

= 0

as discussed in Remark 2.2.1. Therefore by (A.5),

∑n

i=1

(∂Ui (β)ᵀ /∂β)λ (β)

1 + λ (β)ᵀ Ui (β)

∣∣∣
β=β̃

= 0,

where ∂Ui (β)ᵀ /∂β = diag
{
−Wji (x) (Xi − x)j

}
. Denote H3 = diag {hj}, then

Di (x) = (∂Ui (β)ᵀ /∂β)H−1
3 and

g2n

(
β̃, λ̃

)
=

1

nh

∑n

i=1

Di (x)λ (β)

1 + λ (β)ᵀ Ui (β)

∣∣∣
β=β̃

= 0.
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A.6 Proof of Theorem 2.3.2

Proof. Taking derivatives of g1n (β, λ) and g2n (β, λ) and evaluating at (m, 0), we

have

∂g1n (m, 0)

∂βᵀ
=

1

nh

∑n

i=1
(∂Ui (β)ᵀ /∂β) =

[
1

nh

∑n

i=1
Di (x)

]
H3,

∂g1n (m, 0)

∂λᵀ
= − 1

nh

∑n

i=1
Ui (m)Ui (m)ᵀ ,

∂g2n (m, 0)

∂βᵀ
= 0,

∂g2n (m, 0)

∂λᵀ
=

1

nh

∑n

i=1
Di (x) .

Note that 1
nh

∑n
i=1Di (x) = −DnI3 since Dn = 1

nh

∑n
i=1 Wji (x) ((Xi − x) /h)j for

j = 0, 1, 2. By Taylor expanding g1n

(
β̃, λ̃

)
and g2n

(
β̃, λ̃

)
at (m, 0), we have

0 = g1n

(
β̃, λ̃

)
= g1n (m, 0) +

∂g1n (m, 0)

∂βᵀ

(
β̃ −m

)
+
∂g1n (m, 0)

∂λᵀ

(
λ̃− 0

)
+ op (δ)

=
1

nh

∑n

i=1
Ui (m)−DnH3

(
β̃ −m

)
−
[

1

nh

∑n

i=1
Ui (m)Ui (m)ᵀ

](
λ̃− 0

)
+ op (δ) ,

0 = g2n

(
β̃, λ̃

)
= g2n (m, 0) +

∂g2n (m, 0)

∂βᵀ

(
β̃ −m

)
+
∂g2n (m, 0)

∂λᵀ

(
λ̃− 0

)
+ op (δ)

= 0 + 0
(
β̃ −m

)
−DnI3

(
λ̃− 0

)
+ op (δ) ,
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where δ =
∥∥∥H3

(
β̃ −m

)∥∥∥+
∥∥∥λ̃∥∥∥. Hence we have

(H3

(
β̃ −m

)
λ̃

)
= Ω−1

g

(
1
nh

∑n
i=1 Ui (m) + op (δ)

op (δ)

)
,

where

Ωg =

 DnI3
1
nh

∑n
i=1 Ui (m)Ui (m)ᵀ

0 DnI3

 p→

 f 3 (x)DI3 −ΩU

0 f 3 (x)DI3

 .

By this result, and 1
nh

∑n
i=1 Ui (m) = Op

(
(nh)−1/2 + h3

)
, it can be shown that δ =

Op

(
(nh)−1/2 + h3

)
. For the limit distribution of β̃, we have

H3

(
β̃ −m

)
= D−1

n

[
1

nh

∑n

i=1
Ui (m)

]
+ op

(
(nh)−1/2 + h3

)
,

that is, for j = 0, 1, 2,

β̃j (x)−mj (x) = h−j
1
nh

∑n

i=1
Wji (x)

[
Yi −mj (x) (Xi − x)j

]
1
nh

∑n

i=1
Wji (x)

(
Xi−x
h

)j + h−jop

(
(nh)−1/2 + h3

)

= β̂j (x)−mj (x) + op

((
nh1+2j

)−1/2
+ h3−j

)
.



90

Thus

√
nh1+2j

(
β̃j (x)−mj (x)

)
=
√
nh1+2j

(
β̂j (x)−mj (x)

)
+
√
nh1+2jop

((
nh1+2j

)−1/2
+ h3−j

)
=
√
nh1+2j

(
β̂j (x)−mj (x)

)
+ op

(
1 +
√
nh7
)
.
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APPENDIX B

PROOFS IN SECTION 3

Throughout the following proofs, I use ‖ · ‖ to denote the Euclidean norm for a

vector or a matrix, that is, ‖X‖ =
√∑d

k=1x
2
k, ‖M‖ =

√∑d
k=1

∑d
l=1m

2
kl. I also use

C as a generic constant. For notational simplicity, I will use βi instead of β (zi), and∫
β instead of

∫
β (z) dz when it does not cause confusion.

B.1 Proof of Theorem 3.3.1

Proof. The conclusion of Theorem 3.3.1 follows from two results. First,

n−1
∣∣∣∑m

i=1u
2
i −

m

n

∑n
i=1u

2
i

∣∣∣ p→ sup
r∈(0,1]

∣∣∣∫ r0 σ2 − r
∫ 1

0
σ2 + ∆ (r)

∣∣∣ (B.1)

with

∆ (r) =
∫ r

0
β′Ω0β − r−1

(∫ r
0
β
)′

Ω0

(∫ r
0
β
)
− r
∫ 1

0
β′Ω0β + r

(∫ 1

0
β
)′

Ω0

(∫ 1

0
β
)
.

Second,

γ (0)
p→ [ψ (0) + 1]

∫
σ4 + 6

[∫
σ2β′Ωεβ −

∫
σ2
(∫
β
)′

Ωε

(∫
β
)]

(B.2)

− 3Ω40 + 6Ω22 − 4Ω13 + Ω04 −
(∫
σ2 +

∫
β′Ω0β −

(∫
β
)′

Ω0

(∫
β
))2

.
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We will show them in the following.

Proof of (B.1). The OLS estimator can be written as

β = (
∑n

i=1XiX
′
i)
−1∑n

i=1Xiyi

= (
∑n

i=1XiX
′
i)
−1∑n

i=1XiX
′
iβi + (

∑n
i=1XiX

′
i)
−1∑n

i=1Xiui,

and the OLS residuals are ui = yi −X ′iβ. By standard calculation, we have

∑n
i=1u

2
i =

∑n
i=1u

2
i − 2

∑n
i=1

(
β − βi

)′
Xiui +

∑n
i=1

(
β − βi

)′
XiX

′
i

(
β − βi

)
=
∑n

i=1u
2
i − 2

∑n
i=1β

′
iXiX

′
i (
∑n

i=1XiX
′
i)
−1∑n

i=1Xiui + 2
∑n

i=1β
′
iXiui

+
∑n

i=1β
′
iXiX

′
iβi −

∑n
i=1β

′
iXiX

′
i (
∑n

i=1XiX
′
i)
−1∑n

i=1XiX
′
iβi

−
∑n

i=1X
′
iui (

∑n
i=1XiX

′
i)
−1∑n

i=1Xiui,

so n−1/2
(∑m

i=1u
2
i − m

n

∑n
i=1u

2
i

)
= T0 − 2T1 + 2T2 + T3 − T4 − T5, where

T0 = n−1/2
[∑m

i=1u
2
i −

m

n

∑n
i=1u

2
i

]
,

T1 = n−1/2
∑m

i=1β
′
iXiX

′
i (
∑m

i=1XiX
′
i)
−1∑m

i=1Xiui

− n−1/2m

n

∑n
i=1β

′
iXiX

′
i (
∑n

i=1XiX
′
i)
−1∑n

i=1Xiui,

T2 = n−1/2
[∑m

i=1β
′
iXiui −

m

n

∑n
i=1β

′
iXiui

]
,

T3 = n−1/2
[∑m

i=1β
′
iXiX

′
iβi −

m

n

∑n
i=1β

′
iXiX

′
iβi

]
,
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T4 = n−1/2
∑m

i=1β
′
iXiX

′
i (
∑m

i=1XiX
′
i)
−1∑m

i=1XiX
′
iβi

− n−1/2m

n

∑n
i=1β

′
iXiX

′
i (
∑n

i=1XiX
′
i)
−1∑n

i=1XiX
′
iβi,

T5 = n−1/2
∑m

i=1X
′
iui (

∑m
i=1XiX

′
i)
−1∑m

i=1Xiui

− n−1/2m

n

∑n
i=1X

′
iui (

∑n
i=1XiX

′
i)
−1∑n

i=1Xiui.

To verify the limit results of these terms, we need: (i) n−1
∑n

i=1XiX
′
i

p→ Ω0 due to the

assumption that {Xi} are ergodic for second moments; (ii) n−1
∑n

i=1XiX
′
iβi

p→ Ω0

∫
β

since E (n−1
∑n

i=1XiX
′
iβi) = Ω0n

−1
∑n

i=1βi = Ω0

(∫
β +O (n−1)

)
by the Riemann

sum approximation of an integral, and for k, l = 1, · · · , d, V ar (n−1
∑n

i=1xikxilβl (zi))→

0 by a similar argument as in Cai (2007), Lemma 2; (iii) n−1
∑n

i=1β
′
iXiX

′
iβi

p→∫
β′Ω0β; (iv) n−1

∑n
i=1Xiui

p→ 0; (v) n−1
∑n

i=1β
′
iXiui

p→ 0, by the LLN for martin-

gale difference sequence. Then by (i)-(v), we have,

n−1/2T0
p→
∫ r

0
σ2 − r

∫ 1

0
σ2,

n−1/2T1
p→ 0,

n−1/2T2
p→ 0,

n−1/2T3
p→
∫ r

0
β′Ω0β − r

∫ 1

0
β′Ω0β,

n−1/2T4
p→ r−1

(∫ r
0
β
)′

Ω0

(∫ r
0
β
)
− r

(∫ 1

0
β
)′

Ω0

(∫ 1

0
β
)
,

T5 = n−1/2Op (1)
p→ 0.



94

Now it can be seen that T0, T3, and T4 dominate the other terms, so (B.1) holds.

Proof of (B.2). In the case of i.i.d. errors, instead of using the LRV estimator,

we only need to use an estimator of the variance of {u2
i } to standardize the CUSQ

statistic. Define the variance estimator based on OLS residuals as

γ (0) = n−1
∑n

i=1

(
u2
i − σ2

)2
= n−1

∑n

i=1
u4
i −

(
σ2
)2
, (B.3)

where σ2 = n−1
∑n

i=1 u
2
i . For σ2, again by (i)-(v), we have

σ2 p→
∫
σ2 +

∫
β′Ω0β −

(∫
β
)′

Ω0

(∫
β
)
. (B.4)

For the first term in (B.3), write

1

n

∑n

i=1
u4
i =

1

n

∑n

i=1
u4
i −

4

n

∑n

i=1

(
β − βi

)′
Xiu

3
i +

6

n

∑n

i=1

[(
β − βi

)′
Xi

]2

u2
i

− 4

n

∑n

i=1

[(
β − βi

)′
Xi

]3

ui +
1

n

∑n

i=1

[(
β − βi

)′
Xi

]4

,

where

1

n

∑n

i=1

[(
β − βi

)′
Xi

]4

=
1

n

∑n

i=1

(
β
′
Xi

)4

− 4

n

∑n

i=1

(
β
′
Xi

)3

(β′iXi) +
6

n

∑n

i=1

(
β
′
Xi

)2

(β′iXi)
2

− 4

n

∑n

i=1

(
β
′
Xi

)
(β′iXi)

3
+

1

n

∑n

i=1
(β′iXi)

4
.
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Let Ωε = E (X1X
′
1ε

2
1), then under H1 of time varying unconditional volatility,

E (XiX
′
iu

2
i ) = σ2

i Ωε for each i = 1, · · · , n. Also, let

Ω40 = E
[(∫

β
)′
X1

]4

,

Ω22 = E
[(∫

β
)′
X1X

′
1

(∫
β
) ∫

(β′X1X
′
1β)
]
,

Ω13 = E
[(∫

β
)′
X1

∫
(X ′1β

′X1X
′
1β)
]
,

Ω04 = E
[∫

(β′X1X
′
1β
′X1X

′
1β)
]
,

then because

1

n

∑n

i=1
u4
i

p→
[
E
(
ε2

1 − 1
)2

+ 1
] ∫

σ4,

1

n

∑n

i=1

(
β − βi

)′
Xiu

3
i

p→ 0,

1

n

∑n

i=1

[(
β − βi

)′
Xi

]2

u2
i

p→
∫
σ2β′Ωεβ −

∫
σ2
(∫
β
)′

Ωε

(∫
β
)
,

1

n

∑n

i=1

[(
β − βi

)′
Xi

]3

ui
p→ 0,

and 1
n

∑n
i=1

(
β
′
Xi

)4 p→ Ω40, 1
n

∑n
i=1

(
β
′
Xi

)3

(β′iXi)
p→ Ω40, 1

n

∑n
i=1

(
β
′
Xi

)2

(β′iXi)
2 p→

Ω22, 1
n

∑n
i=1

(
β
′
Xi

)
(β′iXi)

3 p→ Ω13, 1
n

∑n
i=1 (β′iXi)

4 p→ Ω04, we have (B.2) holds.
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B.2 Proof of Theorem 3.3.2

Proof. In the case of serially correlated errors, (B.1) still holds1. For the denominator

of the CUSQ statistic, we want to show that under Assumption 3.3.6,

b−1ω2 p→
(∫

k (x) dx

)[∫
σ4 −

(∫
σ2 +

∫
β′Ω0β −

(∫
β
)′

Ω0

(∫
β
))2
]
. (B.5)

Consider the LRV estimator ω2 =
∑n−1

l=−n+1 k (l/b) γ (l) based on OLS residuals,

where γ (l) = n−1
∑n

i=l+1 (u2
i − σ2)

(
u2
i−l − σ2

)
, σ2 = n−1

∑n
i=1 u

2
i . We decompose

γ (l) as

γ (l) = n−1
∑n

i=l+1

(
u2
i − σ2

) (
u2
i−l − σ2

)
= T1l + T2l + T3l + T4l + T5l,

where

T1l = n−1
∑n

i=l+1

(
u2
i − σ2

i

) (
u2
i−l − σ2

i−l
)
,

T2l = n−1
∑n

i=l+1

(
u2
i − σ2

i

) (
σ2
i−l − σ2

)
,

T3l = n−1
∑n

i=l+1

(
σ2
i − σ2

) (
u2
i−l − σ2

i−l
)
,

T4l = n−1
∑n

i=l+1

(
σ2
i − σ2

) (
σ2
i−l − σ2

)
,

T5l = n−1
∑n

i=l+1

(
u2
i − u2

i

) (
u2
i−l − u2

i−l
)

+ n−1
∑n

i=l+1

(
u2
i − u2

i

) (
u2
i−l − σ2

)
+ n−1

∑n

i=l+1

(
u2
i − σ2

) (
u2
i−l − u2

i−l
)
.

1The only change in the proof is that we need to use a LLN for mixingales to establish (iv) and (v).
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Note that the four terms T1l, T2l, T3l, and T4l are the same as defined in Xu (2012,

proof of Theorem 1) except for that our σ2 is based on ui instead of ui. So we follow

the notation there and let

ω2 = γ (0) + 2
∑n−1

l=1
k (l/b) γ (l) = T1 + T2 + T3 + T4 + T5,

where Ti = Ti0 + 2
∑n−1

l=1 k (l/b)Til, i = 1, 2, 3, 4, 5. As shown in Xu (2012, proof of

Theorem 1), we have T1
p→ ω2, b−1T2 = Op

(
n−1/2

)
, b−1T3 = Op

(
n−1/2

)
. For T4,

since for 0 6 l 6 b, l→∞, l/n→ 0 as n→∞, also by (B.4),

T4l = n−1
∑n

i=l+1
σ2
i σ

2
i−l − σ2n−1

∑n

i=l+1
σ2
i − σ2n−1

∑n

i=l+1
σ2
i−l +

(
σ2
)2

(n− l) /n

p→
∫
σ4 −

(∫
σ2
)2

+
(∫
β′Ω0β −

(∫
β
)′

Ω0

(∫
β
))2

,

so

b−1T4
p→
(∫

k (x) dx

)[∫
σ4 −

(∫
σ2
)2

+
(∫
β′Ω0β −

(∫
β
)′

Ω0

(∫
β
))2
]
, (B.6)

where we have used

b−1
∑n−1

l=−n+1
k (l/b)

l=bnsc
= nb−1

∑n−1

l=−n+1

∫ (l+1)/n

l/n

k (bnsc /b) ds

= nb−1

∫ 1

−1+1/n

k (bnsc /b) ds x=ns/b
=

∫ n/b

(−n+1)/b

k (bxbc /b) dx→
∫
k (x) dx.
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Then it remains to find the limit of T5. Denote

e2i =
(
β − βi

)′
Xiui, e3i =

(
β − βi

)′
XiX

′
i

(
β − βi

)
,

An2,l = n−1
∑n

i=l+1
(e2i + e2i−l) , An3,l = n−1

∑n

i=l+1
(e3i + e3i−l) ,

An12 = n−1
∑n

i=l+1

(
e2iu

2
i−l + e2i−lu

2
i

)
, An13 = n−1

∑n
i=l+1

(
e3iu

2
i−l + e3i−lu

2
i

)
,

An22 = n−1
∑n

i=l+1e2ie2i−l, An23 = n−1
∑n

i=l+1 (e2ie3i−l + e2i−le3i) ,

An33 = n−1
∑n

i=l+1e3ie3i−l,

then

T5l = σ2 (2An2,l − An3,l)− 2An12 + An13 + 4An22 − 2An23 + An33,

and we can show that

An2,l
p→ 0,

An3,l
p→ 2

[∫
β′Ω0β −

(∫
β
)′

Ω0

(∫
β
)]
,

An12
p→ 0,

An13
p→
∫
β′E

(
X1X

′
1u

2
1−l
)
β −

(∫
β
)′ ∫

E
(
X1X

′
1u

2
1−l
) (∫

β
)

+
∫
β′E

(
X1X

′
1u

2
1+l

)
β −

(∫
β
)′ ∫

E
(
X1X

′
1u

2
1+l

) (∫
β
)
,

An22
p→
∫
β′E

(
X1X

′
1−lu1u1−l

)
β −

(∫
β
)′ ∫

E
(
X1X

′
1−lu1u1−l

) (∫
β
)
,

An23
p→ E

[(∫
β
)′ ∫

X1u1

∫ (
β′X1−lX

′
1−lβ

)]
− E

[∫
β′X1u1β

′X1−lX
′
1−lβ

]
+ E

[(∫
β
)′ ∫

X1−lu1−l
∫

(β′X1X
′
1β)
]
− E

[∫
β′X1−lu1−lβ

′X1X
′
1β
]
,
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and

An33 = n−1
∑n

i=l+1

(
β − βi

)′
XiX

′
i

(
β − βi

) (
β − βi−l

)′
Xi−lX

′
i−l
(
β − βi−l

)
= a11 − 2a12 + a13 − 2a21 + 4a22 − 2a23 + a31 − 2a32 + a33,

a11 = n−1
∑n

i=l+1

(
β
′
XiX

′
iβ
)(

β
′
Xi−lX

′
i−lβ

)
p→ E

[(∫
β
)′
X1X

′
1

(∫
β
) (∫

β
)′
X1−lX

′
1−l
(∫
β
)]
,

a12 = n−1
∑n

i=l+1

(
β
′
XiX

′
iβ
) (
β′i−lXi−lX

′
i−lβ

)
p→ E

[(∫
β
)′
X1X

′
1

(∫
β
) (∫

β
)′
X1−lX

′
1−l
(∫
β
)]
,

a13 = n−1
∑n

i=l+1

(
β
′
XiX

′
iβ
) (
β′i−lXi−lX

′
i−lβi−l

)
p→ E

[(∫
β
)′
X1X

′
1

(∫
β
) ∫ (

β′X1−lX
′
1−lβ

)]
,

a21 = n−1
∑n

i=l+1

(
β′iXiX

′
iβ
) (
β
′
Xi−lX

′
i−lβ

)
p→ E

[(∫
β
)′
X1X

′
1

(∫
β
) (∫

β
)′
X1−lX

′
1−l
(∫
β
)]
,

a22 = n−1
∑n

i=l+1

(
β′iXiX

′
iβ
) (
β′i−lXi−lX

′
i−lβ

)
p→ E

[(∫
β
)′
X1

(∫
X ′1β

′X1−l
)
X ′1−l

(∫
β
)]
,

a23 = n−1
∑n

i=l+1

(
β′iXiX

′
iβ
) (
β′i−lXi−lX

′
i−lβi−l

)
p→ E

[(∫
β
)′
X1

∫ (
X ′1β

′X1−lX
′
1−lβ

)]
,

a31 = n−1
∑n

i=l+1 (β′iXiX
′
iβi)

(
β
′
Xi−lX

′
i−lβ

)
p→ E

[∫
(β′X1X

′
1β)
(∫
β
)′
X1−lX

′
1−l
(∫
β
)]
,

a32 = n−1
∑n

i=l+1 (β′iXiX
′
iβi)

(
β′i−lXi−lX

′
i−lβ

)
p→ E

[(∫
β′X1X

′
1β
′X1−l

)
X ′1−l

(∫
β
)]
,

a33 = n−1
∑n

i=l+1 (β′iXiX
′
iβi)

(
β′i−lXi−lX

′
i−lβi−l

) p→ E
[∫
β′X1X

′
1β
′X1−lX

′
1−lβ

]
.
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Together, for T5 = T50 + 2
∑n−1

l=1 k (l/b)T5l, we have

b−1T5
p→
(∫

k (x) dx

){
− 2

[∫
σ2 +

∫
β′Ω0β −

(∫
β
)′

Ω0

(∫
β
)]

×
[∫
β′Ω0β −

(∫
β
)′

Ω0

(∫
β
)]}

. (B.7)

Finally, since b−1Ti
p→ 0, i = 1, 2, 3, and by (B.6) and (B.7), we can get (B.5).

B.3 Proof of Theorem 3.3.3

Proof. The CUSQ test statistic based on local linear residuals {ûi} is

Q̂ = max
1≤m≤n

n−1/2
∣∣∣∑m

i=1û
2
i −

m

n

∑n
i=1û

2
i

∣∣∣ /ω̂.
Consider the numerator first. Note that ûi = yi−X ′iβ̂i, where β̂i = β̂ (zi) is the local

linear estimator evaluated at zi, we have

n−1
∑n

i=1û
2
i

= n−1
∑n

i=1u
2
i − 2n−1

∑n
i=1

(
β̂i − βi

)′
Xiui + n−1

∑n
i=1

(
β̂i − βi

)′
XiX

′
i

(
β̂i − βi

)
= An1 − 2An2 + An3.

By Lemma B.4.2 and Lemma B.4.3 below,
√
nAn2 = op (1),

√
nAn3 = op (1), so

n−1/2
∑n

i=1û
2
i = n−1/2

∑n
i=1u

2
i + op (1) .
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Then by Lemma 1 in Cavaliere (2004), we can show that, for m = 1, · · · , n,

n−1/2
∑m

i=1u
2
i −

m

n

(
n−1/2

∑n
i=1u

2
i

)
⇒ ω [Wσ (r)− rWσ (1)] ,

where ω2 = ξ2
∫ 1

0
σ4 and ξ2 =

∑∞
l=−∞E

[
(ε2
i − 1)

(
ε2
i−l − 1

)]
is the LRV of ε2

i − 1,

Wσ (r) =
(∫ 1

0
σ4
)−1/2 ∫ r

0
σ2dW is a Brownian functional, also called a time-deformed

Brownian motion in the sense that Wσ (r) = W (η (r)), with η (r) =
∫ r

0
σ4/

∫ 1

0
σ4.

Note that under H0, Wσ (r) reduces to a standard Brownian motion W (r) and

ω2 = σ4ξ2. So under H0,

n−1/2
(∑m

i=1û
2
i −

m

n

∑n
i=1û

2
i

)
= n−1/2

(∑m
i=1u

2
i −

m

n

∑n
i=1u

2
i

)
+ op (1)

⇒ ω [W (r)− rW (1)] ,

and

max
1≤m≤n

n−1/2
∣∣∣∑m

i=1û
2
i −

m

n

∑n
i=1û

2
i

∣∣∣⇒ ω sup
r∈(0,1]

|W (r)− rW (1)| . (B.8)

Under H1, since An2 = op (1), An3 = op (1) by Lemma B.4.2 and Lemma B.4.3, we

have

n−1
∑n

i=1û
2
i = n−1

∑n
i=1u

2
i + op (1) =

∫ 1

0
σ2 + op (1) .
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Then as shown in the proof of Theorem 1 in Xu (2012), under H1,

n−1
(∑m

i=1û
2
i −

m

n

∑n
i=1û

2
i

)
= n−1

(∑m
i=1u

2
i −

m

n

∑n
i=1u

2
i

)
+ op (1) (B.9)

p→
∫ r

0
σ2 − r

∫ 1

0
σ2. (B.10)

For the denominator, as in the proof of Theorem 3.3.2, we decompose γ̂ (l) as

γ̂ (l) = n−1
∑n

i=l+1

(
û2
i − σ̂2

) (
û2
i−l − σ̂2

)
= T1l + T2l + T3l + T4l + T5l,

where

T1l = n−1
∑n

i=l+1

(
u2
i − σ2

i

) (
u2
i−l − σ2

i−l
)
,

T2l = n−1
∑n

i=l+1

(
u2
i − σ2

i

) (
σ2
i−l − σ̂2

)
,

T3l = n−1
∑n

i=l+1

(
σ2
i − σ̂2

) (
u2
i−l − σ2

i−l
)
,

T4l = n−1
∑n

i=l+1

(
σ2
i − σ̂2

) (
σ2
i−l − σ̂2

)
,

T5l = n−1
∑n

i=l+1

(
û2
i − u2

i

) (
û2
i−l − u2

i−l
)

+ n−1
∑n

i=l+1

(
û2
i − u2

i

) (
u2
i−l − σ̂2

)
+ n−1

∑n

i=l+1

(
u2
i − σ̂2

) (
û2
i−l − u2

i−l
)
,

and let

ω̂2 = γ̂ (l) + 2
∑n−1

l=1
k (l/b) γ̂ (l) = T1 + T2 + T3 + T4 + T5,
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where Ti = Ti0 + 2
∑n−1

l=1 k (l/b)Til, i = 1, 2, 3, 4, 5. Again we have T1
p→ ω2. For the

other terms, first, note that

σ̂2 = An1 − 2An2 + An3 =
∫
σ2 + op (1)

since An1 = n−1
∑n

i=1u
2
i =

∫
σ2 + op (1) by a LLN for mixing sequences, and An2 =

op (1), An3 = op (1) by Lemma B.4.2 and Lemma B.4.3. So we have b−1T2 =

Op

(
n−1/2

)
, b−1T3 = Op

(
n−1/2

)
. For T4, since

T4l = n−1
∑n

i=l+1
σ2
i σ

2
i−l − σ̂2n−1

∑n

i=l+1
σ2
i − σ̂2n−1

∑n

i=l+1
σ2
i−l +

(
σ̂2
)2

(n− l) /n

p→
∫
σ4 −

(∫
σ2
)2
,

we have b−1T4
p→
(∫

k (x) dx
) [∫

σ4 −
(∫
σ2
)2
]
, with the limit being zero under H0.

For T5, again we write

T5l = σ̂2 (2An2,l − An3,l)− 2An12 + An13 + 4An22 − 2An23 + An33,

where we have used the same notations An12, An13, An22, An23, An33 as in the proof

of Theorem 3.3.2, with β̂i instead of β in these terms. σ̂2 (2An2,l − An3,l) = op (1)

by Lemma B.4.2 and Lemma B.4.3. Let E = ∪Jj=0 (τj + h, τj+1 − h) with τ0 = 0,

τJ+1 = 1, and {τj ∈ (0, 1) : j = 1, · · · , J} being points of discontinuity for β ( · ).
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Then by Lemma B.4.1, B.4.2, and B.4.3 and the stationarity of {(εi, Xi)}, under

both H0 and H1 we have

|An12| 6 sup
∥∥∥β̂i − βi∥∥∥n−1

∑n
i=l+1,ti∈E

(
‖Xi‖ |ui|u2

i−l + ‖Xi−l‖ |ui−l|u2
i

)
+ n−1Op (h) ,

|An13| 6 sup
∥∥∥β̂i − βi∥∥∥2

n−1
∑n

i=l+1,ti∈E
(
‖XiX

′
i‖u2

i−l +
∥∥Xi−lX

′
i−l
∥∥u2

i

)
+ n−1Op (h) ,

|An22| 6 sup
∥∥∥β̂i − βi∥∥∥2

n−1
∑n

i=l+1,ti∈E ‖Xi‖ |ui| ‖Xi−l‖ |ui−l|+ n−1Op (h) ,

|An23| 6 sup
∥∥∥β̂i − βi∥∥∥3

n−1
∑n

i=l+1,ti∈E
(
‖Xi‖ |ui|

∥∥Xi−lX
′
i−l
∥∥+ ‖Xi−l‖ |ui−l| ‖XiX

′
i‖
)

+ n−1Op (h) ,

|An33| 6 sup
∥∥∥β̂i − βi∥∥∥4

n−1
∑n

i=l+1,ti∈E
(
‖XiX

′
i‖
∥∥Xi−lX

′
i−l
∥∥)+ n−1Op (h) .

So T5l = op (1), and therefore T5 = op (1). Combining the results of T1 to T5, we have

ω̂2 p→ ω2 (B.11)

under H0, where ω2 = σ4ξ2, ξ2 =
∑∞

l=−∞ ψ (l), ψ (l) = E
[
(ε2
i − 1)

(
ε2
i−l − 1

)]
; and

ω̂2 = ω2 + b

(∫
k (x) dx

)[∫
σ4 −

(∫
σ2
)2
]

+Op

(
bn−1/2

)
(B.12)

under H1.

The conclusion of Theorem 3.3.3 under H0 follows from (B.8) and (B.11), and

the conclusion under H1 follows from (B.9) and (B.12).
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B.4 Proof of Lemmas

Lemma B.4.1. Suppose that Assumptions 3.3.1-3.3.6 hold, also assume λmax (Ω0) 6

C for some 0 < C < ∞, where λmax (Ω0) is the largest eigenvalue of Ω0. Let

E = ∪Jj=0 (τj + h, τj+1 − h) with τ0 = 0, τJ+1 = 1, {τj ∈ (0, 1) : j = 1, · · · , J} are

points of discontinuity for β ( · ). Then

sup
t∈E

∥∥∥β̂ (z)− β (z)
∥∥∥ = Op

(√
log n

nh

)
+Op

(
h2
)
.

Proof. The proof is similar to the proof of Theorem 10 in Hansen (2008). Let D (z) =

S0 (z) − S1 (z)S2 (z)−1 S1 (z), and let µk =
∫
ukK (u) du for k = 0, 1, 2. By Lemma

B.5.1 and Lemma B.5.2, we have

sup
z∈E
‖T0 (z)− S0 (z) β (z)‖ = Op

(√
log n/ (nh)

)
+Op

(
h2
)
,

sup
z∈E

∥∥h−1 (T1 (z)− S1 (t) β (z))
∥∥ = Op

(√
log n/ (nh)

)
+Op (h) ,

sup
z∈(h,1−h)

∥∥h−kSk (z)− µkΩ0

∥∥ = Op

(√
log n/ (nh)

)
, k = 0, 1, 2,

sup
z∈(h,1−h)

‖D (z)− Ω0‖ = Op

(√
log n/ (nh)

)
.

Since

β̂ (z)− β (z) = D (t)−1 [(T0 (z)− S0 (z) β (z))− S1 (z)S2 (z)−1 (T1 (z)− S1 (z) β (z))
]
,
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we have

sup
z∈E

∥∥∥β̂ (z)− β (z)
∥∥∥ 6 Ω−1

0 sup
z∈E
‖T0 (z)− S0 (z) β (z)‖

+ Ω−1
0 sup

z∈E

∥∥h−1S1 (z)
∥∥µ−1

2 Ω−1
0 sup

z∈E

∥∥h−1 (T1 (z)− S1 (z) β (z))
∥∥

= Op

(√
log n/ (nh)

)
+Op

(
h2
)
.

Lemma B.4.2. Suppose that Assumptions 3.3.1-3.3.6 hold. Then

√
n |An3| = Op

(
log n/

(√
nh
))

+Op

(√
nh4
)

= op (1) .

Proof. Since An3 = n−1
∑n

i=1

(
β̂i − βi

)′
XiX

′
i

(
β̂i − βi

)
, by Lemma B.4.1,

√
n |An3| 6

√
nsup
z∈E

∥∥∥β̂ (z)− β (z)
∥∥∥2

n−1
∑n

i=1,zi∈E ‖XiX
′
i‖+ n−1/2Op (h)

=
√
n

(
Op

(
log n

nh

)
+Op

(
h4
))

Op (1) + op (1) = op (1) ,

given that h→ 0, nh2 →∞, nh8 → 0 as n→∞.

Lemma B.4.3. Suppose that Assumptions 3.3.1-3.3.6 hold. Then

√
n |An2| = op (1) .
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Proof. We follow the same steps as in Kristensen (2011, proof of Lemma B.2). Here

An2 is analogous to the term Swg−ĝ,e in that lemma except for that we use the local

linear estimator of β (z) while Kristensen (2011) uses the local constant estimator.

To start with, we introduce the following notations. For k = 0, 1, 2, define

S∗k (z) = n−1
∑n

i=1
(zi − z)kXiX

′
iβiKh (zi − z) ,

T ∗k (z) = n−1
∑n

i=1
(zi − z)kXiuiKh (zi − z) .

Note that An2 = n−1
∑n

i=1

(
β̂i − βi

)′
Xiui, where because

β̂ (z)− β (z)

= D (t)−1 [T0 (z)− S1 (z)S2 (z)−1 T1 (z)−D (z) β (z)
]

= D (z)−1 [T0 (z)− S0 (z) β (z)]−D (z)−1 S1 (z)S2 (z)−1 [T1 (z)− S1 (z) β (z)]

= Ω−1
0 [S∗0 (z)− Ω0β (z)] + Ω−1

0 T ∗0 (z)− Ω−1
0 (S0 (z) β (z)− Ω0β (z))

−D (z)−1 (D (z)− Ω0) Ω−1
0 [T0 (z)− S0 (z) β (z)]

−D (z)−1 S1 (z)S2 (z)−1 [T1 (z)− S1 (z) β (z)] ,
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we can write An2 = Bn1 +Bn2 −Bn3 −Bn4 −Bn5, where

Bn1 = n−1
∑n

i=1 [S∗0 (zi)− Ω0β (zi)]
′Ω−1

0 Xiui,

Bn2 = n−1
∑n

i=1T
∗
0 (zi)

′Ω−1
0 Xiui,

Bn3 = n−1
∑n

i=1 [S0 (zi) β (zi)− Ω0β (zi)]
′Ω−1

0 Xiui,

Bn4 = n−1
∑n

i=1 [T0 (zi)− S0 (zi) β (zi)]
′Ω−1

0 (D (zi)− Ω0)D (zi)
−1Xiui,

Bn5 = n−1
∑n

i=1 [T1 (zi)− S1 (zi) β (zi)]
′ S2 (z)−1 S1 (z)D (zi)

−1Xiui.

We now prove that for some ε, δ > 0:

Bn1 = Op

(
n−1+ε/2h−(1+δ)/(2+δ)

)
+Op

(
n−1/2h2

)
, (B.13)

Bn2 = Op

(
n−1+ε/2h−(1+δ)/(2+δ)

)
, (B.14)

Bn3 = Op

(
n−1+ε/2h−(1+δ)/(2+δ)

)
+Op

(
n−1/2h2

)
, (B.15)

Bn4 = Op (log n/ (nh)) +Op

(
h4
)
, (B.16)

Bn5 = Op (log n/ (nh)) +Op

(√
h log n/n

)
. (B.17)

Then under the conditions n→∞, h→ 0, n1−ε/2h(1+δ)/(2+δ) →∞ (which is trivially

implied by nh→∞ for small ε and δ), we have
√
nBn1 =

√
nBn2 =

√
nBn3 = op (1);

further, under nh8 → 0,
√
nBn4 =

√
nBn5 = op (1). This will complete the proof of

Lemma B.4.3.
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It remains to show (B.13)-(B.17). By following the same arguments as in Kris-

tensen (2011, proof of Claim B.2.1), we will rely on some results of U -statistics for

weakly dependent processes to prove (B.13)-(B.15). We briefly describe the proof

for (B.13), then (B.14) and (B.15) will follow trivially. Define wi = (zi, Xi, ui) and

a (wi, wj) =
[
Kh (zj − zi)XjX

′
jβj − Ω0βi

]′
Ω−1

0 Xiui,

φ (wi, wj) = a (wi, wj) + a (wj, wi) ,

Un =
1

n (n− 1)

∑n
i=1

∑
j>iφ (wi, wj) .

By viewing ti as i.i.d. uniform random variables independent of (Xi, ui), we can write

Bn1 = n−1
∑n

i=1 [S∗0 (zi)− Ω0β (zi)]
′Ω−1

0 Xiui = n−2
∑n

i=1

∑n
j=1a (wi, wj)

= n−1 (n− 1)Un + n−2
∑n

i=1a (wi, wi) ,

where Un can be viewed as an U -statistic, and n−2
∑n

i=1a (wi, wi) = Op (n−1). For

the U -statistic Un, we can further use the Hoeffding decomposition to write

Un = 2n−1
∑n

i=1φ (wi) +Rn,
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where

φ (w) = E [φ (w,wj)] = E [a (w,wj)] + E [a (wj, w)]

=
[∫ 1

0
Kh (s− z) β (s) ds− β (z)

]′
Xe+ 0,

with w = (z,X, e), andRn is a remainder. It can be shown thatRn = Op

(
n−1+ε/2sn,δ

)
,

where sn,δ = supi,j E
[
|φ (wi, wj)|2+δ

]1/(2+δ)

= O
(
h−(1+δ)/(2+δ)

)
.2 For the first term

in the Hoeffding decomposition, we can show that

n−1
∑n

i=1φ (wi) = Op

(
n−1/2h2

)
.

This is verified by noticing E
[
n−1
∑n

i=1φ (wi)
]

= 0, and

E
[(
n−1
∑n

i=1φ (wi)
)2
]

= n−2
∑n

i=1E
[
φ (wi)

2]+ n−2
∑n

i=1

∑
j 6=iE

[
φ (wi)φ (wj)

]
= Bn6 +Bn7,

where we can show that Bn6 = O (n−1h4) and Bn7 = O
(
n−1h4/(1+δ)

)
.

For (B.16), we have

|Bn4| 6 sup
z∈E
‖T0 (z)− S0 (z) β (z)‖ sup

z∈E

∥∥Ω−1
0 (D (z)− Ω0)

∥∥ ∗
n−1
∑n

i=1,zi∈E

∥∥D (zi)
−1
∥∥ ‖Xi‖ |ui|+ n−1Op (h) ,

2In Kristensen’s proof, sn,δ = O
(
h−(1+δ)/(2+δ)

)
is shown but then viewed as O (1) by mistake.



111

where by Lemma B.5.1,

sup
z∈E
‖T0 (z)− S0 (z) β (z)‖ = Op

(√
log n/ (nh)

)
+Op

(
h2
)
,

and by Lemma B.5.2,

sup
z∈E

∥∥Ω−1
0 (D (z)− Ω0)

∥∥ = Op

(√
log n/ (nh)

)
,

also, n−1
∑n

i=1

∥∥D (zi)
−1
∥∥ ‖Xi‖ |ui| = Op (1). So |Bn4| = Op (log n/ (nh)) + Op (h4).

For (B.17), we have

|Bn5| 6 sup
z∈E

∥∥h−1 [T1 (z)− S1 (z) β (z)]
∥∥ sup
z∈E

∥∥∥(h−2S2 (z)
)−1

h−1S1 (z)
∥∥∥ ∗

n−1
∑n

i=1,zi∈E

∥∥D (zi)
−1
∥∥ ‖Xi‖ |ui|+ n−1Op (h) ,

where by Lemma B.5.1, supz∈E ‖h−1 [T1 (z)− S1 (z) β (z)]‖ = Op

(√
log n/ (nh)

)
+

Op (h), and by Lemma B.5.2, supz∈E

∥∥∥(h−2S2 (z))
−1
h−1S1 (z)

∥∥∥ = Op

(√
log n/ (nh)

)
.

So |Bn5| = Op (log n/ (nh)) +Op

(
h
√

log n/ (nh)
)

.

B.5 Proof of Auxiliary Lemmas

We provide the following results of uniform convergence rate.
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Lemma B.5.1. Under Assumptions 3.3.1-3.3.6, for k = 0, 1,

sup
z∈E
‖Tk (z)− Sk (z) β (z)‖ = Op

(
hk
√

log n

nh

)
+Op

(
h2
)
,

where E = ∪Jj=0 (τj + h, τj+1 − h) with τ0 = 0, τJ+1 = 1, {τj ∈ (0, 1) : j = 1, · · · , J}

are points of discontinuity for β ( · ).

Proof. Let Tk (z)− Sk (z) β (z) = Mk (z) + T ∗k (z), where

Mk (z) = n−1
∑n

i=1
(zi − z)kXiX

′
i (β (zi)− β (z))Kh (zi − z) ,

T ∗k (z) = n−1
∑n

i=1
(zi − z)kXiuiKh (zi − z) ,

then under H0, by Theorem 2 in Hansen (2008), or under H1, by Theorem 1 in

Kristensen (2009),

sup
z∈E

∥∥h−kMk (z)− E
[
h−kMk (z)

]∥∥ = Op

(√
log n/ (nh)

)
,

sup
z∈E

∥∥h−kT ∗k (z)− E
[
h−kT ∗k (z)

]∥∥ = Op

(√
log n/ (nh)

)
.
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Now it is sufficient to show that supz∈E ‖E [Mk (z)]‖ = O (h2) since E [T ∗k (z)] = 0.

Uniformly over z ∈ E, by change of variable and Taylor expansion arguments,

E
[
h−kMk (z)

]
=

∫ 1

0

Ω0 (β (s)− β (z))

(
s− z
h

)k
Kh (s− z) ds+O

(
n−1
)

= hβ(1) (z) Ω0

∫ (1−z)/h

−z/h
uk+1K (u) du+O

(
h2
)

= hβ(1) (z) Ω0µk+1 +O
(
h2
)
,

so for k = 0, 1, supz∈E ‖E [Mk (z)]‖ = O (h2) since µ0 = 1, µ1 = 0.

Lemma B.5.2. Under Assumptions 3.3.1-3.3.6, we have

sup
z∈(h,1−h)

‖D (z)− Ω0‖ = Op

(√
log n

nh

)
.

Proof. Note that for k = 0, 1, 2,

h−kSk (z) = n−1
∑n

i=1
XiX

′
i

(
zi − z
h

)k
Kh (zi − z) ,

where as in the proof of Lemma B.5.1, supz∈(h,1−h)

∥∥h−kSk (z)− E
[
h−kSk (z)

]∥∥ =

Op

(√
log n/ (nh)

)
. Also, by the Riemann sum approximation of an integral, uni-

formly over z ∈ (h, 1− h), E
[
h−kSk (z)

]
= µkΩ0 + O (n−1). Again by µ0 = 1,
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µ1 = 0, we have E [S0 (z)] = Ω0 + O (n−1), E [h−1S1 (z)] = O (n−1), E [h−2S2 (z)] =

µ2Ω0 +O (n−1). Thus

sup
z∈(h,1−h)

‖S0 (z)− Ω0‖ = Op

(√
log n/ (nh)

)
,

sup
z∈(h,1−h)

∥∥h−1S1 (z)
∥∥ = Op

(√
log n/ (nh)

)
,

sup
z∈(h,1−h)

∥∥h−2S2 (z)− µ2Ω0

∥∥ = Op

(√
log n/ (nh)

)
.

So

sup
z∈(h,1−h)

‖D (z)− Ω0‖

6 sup
z∈(h,1−h)

‖S0 (z)− Ω0‖+ sup
z∈(h,1−h)

∥∥∥h−1S1 (z)
[
h−2S2 (z)

]−1
h−1S1 (z)

∥∥∥
= Op

(√
log n/ (nh)

)
.
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APPENDIX C

TABLES

Table C.1
Size and power under mean specification M0-M2: IID error

n = 300 n = 600
DGP True OLS LL h med True OLS LL h med

M0 V0 0.034 0.032 0.034 1.00 0.040 0.039 0.040 1.00

V1 0.142 0.137 0.141 1.00 0.282 0.282 0.279 1.00

V2 0.443 0.444 0.434 1.00 0.792 0.780 0.781 1.00

V3 0.782 0.777 0.760 1.00 0.981 0.980 0.983 1.00

V4 0.119 0.116 0.120 1.00 0.297 0.302 0.302 1.00

V5 0.090 0.091 0.092 1.00 0.159 0.158 0.157 1.00

M1 V0 0.026 0.043 0.025 0.98 0.031 0.065 0.035 0.90

V1 0.135 0.155 0.125 1.00 0.252 0.316 0.248 0.92

V2 0.421 0.413 0.425 1.00 0.786 0.791 0.788 0.94

V3 0.785 0.764 0.777 1.00 0.980 0.982 0.979 1.00

V4 0.108 0.061 0.106 1.00 0.289 0.164 0.291 1.00

V5 0.094 0.145 0.095 0.96 0.147 0.307 0.134 0.86

M2 V0 0.034 0.232 0.033 0.76 0.042 0.609 0.035 0.44

V1 0.110 0.387 0.113 0.76 0.275 0.802 0.266 0.48

V2 0.413 0.584 0.409 0.80 0.786 0.935 0.784 0.48

V3 0.776 0.823 0.768 0.80 0.990 0.994 0.986 0.50

V4 0.104 0.088 0.106 0.76 0.274 0.220 0.281 0.46

V5 0.091 0.440 0.087 0.70 0.139 0.902 0.138 0.42

Note: ”True” stands for the CUSQ test based on the error term series (without

mean); ”OLS” stands for the test based on OLS residuals; ”LL” stands for the test

based on local linear residuals. ”h med” stands for the median of selected bandwidths

by AIC. The mean specifications are M0: β (z) = 0.2 exp (−0.7) ≈ 0.099; M1:

β (z) = 0.2 exp (0.7z − 0.7) ∈ (0.099, 0.200); M2: β (z) = 0.2 exp (1.1z − 0.7) ∈
(0.099, 0.300).
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Table C.2
Size and power under mean specification M0-M2: GARCH(1,1) error

n = 300 n = 600
DGP True OLS LL h med True OLS LL h med

M0 V0 0.076 0.079 0.076 1.00 0.069 0.067 0.069 1.00

V1 0.140 0.140 0.141 1.00 0.271 0.271 0.271 1.00

V2 0.394 0.381 0.389 1.00 0.682 0.682 0.685 1.00

V3 0.676 0.667 0.664 1.00 0.934 0.931 0.932 1.00

V4 0.115 0.117 0.123 1.00 0.259 0.252 0.252 1.00

V5 0.114 0.108 0.108 1.00 0.195 0.201 0.198 1.00

M1 V0 0.062 0.069 0.057 0.96 0.071 0.082 0.073 0.94

V1 0.140 0.157 0.139 1.00 0.239 0.301 0.236 0.94

V2 0.398 0.403 0.385 1.00 0.666 0.688 0.666 0.96

V3 0.676 0.684 0.668 1.00 0.952 0.951 0.948 0.94

V4 0.093 0.062 0.095 1.00 0.261 0.162 0.266 0.94

V5 0.098 0.137 0.098 0.94 0.158 0.265 0.149 0.90

M2 V0 0.051 0.251 0.056 0.66 0.067 0.559 0.065 0.46

V1 0.140 0.394 0.142 0.74 0.267 0.710 0.263 0.46

V2 0.398 0.575 0.396 0.76 0.695 0.898 0.686 0.48

V3 0.672 0.756 0.657 0.76 0.944 0.976 0.944 0.56

V4 0.104 0.102 0.115 0.72 0.230 0.196 0.229 0.48

V5 0.108 0.419 0.107 0.66 0.184 0.806 0.181 0.42

Note: ”True” stands for the CUSQ test based on the error term series (without

mean); ”OLS” stands for the test based on OLS residuals; ”LL” stands for the test

based on local linear residuals. ”h med” stands for the median of selected bandwidths

by AIC. The mean specifications are M0: β (z) = 0.2 exp (−0.7) ≈ 0.099; M1:

β (z) = 0.2 exp (0.7z − 0.7) ∈ (0.099, 0.200); M2: β (z) = 0.2 exp (1.1z − 0.7) ∈
(0.099, 0.300).
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Table C.3
Size and power under mean specification M3-M5: τ = 0.5, IID error

n = 300 n = 600
DGP True OLS LL h med True OLS LL h med

M3 V0 0.042 0.023 0.041 0.14 0.049 0.027 0.049 0.10

V1 0.133 0.076 0.141 0.16 0.269 0.154 0.268 0.10

V2 0.443 0.305 0.436 0.16 0.794 0.645 0.801 0.10

V3 0.781 0.655 0.767 0.16 0.982 0.955 0.983 0.12

V4 0.092 0.049 0.119 0.16 0.290 0.166 0.317 0.10

V5 0.097 0.044 0.077 0.14 0.179 0.091 0.142 0.10

M4 V0 0.040 0.005 0.041 0.08 0.041 0.006 0.051 0.06

V1 0.136 0.021 0.150 0.08 0.275 0.043 0.309 0.06

V2 0.456 0.104 0.472 0.08 0.811 0.274 0.816 0.06

V3 0.791 0.318 0.780 0.08 0.982 0.776 0.986 0.06

V4 0.097 0.019 0.137 0.08 0.267 0.047 0.380 0.06

V5 0.085 0.011 0.057 0.08 0.156 0.024 0.094 0.04

M5 V0 0.030 0.003 0.054 0.06 0.038 0.010 0.069 0.04

V1 0.144 0.010 0.161 0.06 0.288 0.012 0.347 0.04

V2 0.444 0.032 0.472 0.06 0.799 0.107 0.833 0.04

V3 0.780 0.100 0.789 0.06 0.970 0.377 0.984 0.04

V4 0.102 0.001 0.182 0.06 0.326 0.021 0.440 0.04

V5 0.086 0.009 0.053 0.04 0.154 0.013 0.076 0.04

Note: ”True” stands for the CUSQ test based on the error term series (without mean);

”OLS” stands for the test based on OLS residuals; ”LL” stands for the test based on local

linear residuals. ”h med” stands for the median of selected bandwidths by AIC. The mean

specifications are M3: β (z) = 1.5 − 0.1I (z > 0.5); M4: β (z) = 1.5 − 0.2I (z > 0.5);
M5: β (z) = 1.5− 0.3I (z > 0.5).
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Table C.4
Size and power under mean specification M3-M5: τ = 0.5, GARCH(1,1) error

n = 300 n = 600
DGP True OLS LL h med True OLS LL h med

M3 V0 0.053 0.031 0.047 0.14 0.061 0.036 0.068 0.10

V1 0.179 0.113 0.168 0.16 0.263 0.172 0.254 0.10

V2 0.415 0.321 0.424 0.16 0.682 0.577 0.671 0.12

V3 0.723 0.596 0.697 0.16 0.924 0.873 0.926 0.12

V4 0.124 0.065 0.124 0.14 0.277 0.192 0.319 0.10

V5 0.118 0.078 0.110 0.14 0.194 0.123 0.157 0.10

M4 V0 0.059 0.009 0.057 0.08 0.049 0.014 0.064 0.06

V1 0.143 0.031 0.146 0.08 0.271 0.057 0.278 0.06

V2 0.378 0.094 0.371 0.08 0.684 0.310 0.702 0.06

V3 0.692 0.306 0.688 0.08 0.928 0.703 0.934 0.06

V4 0.101 0.023 0.131 0.08 0.239 0.058 0.327 0.06

V5 0.136 0.038 0.098 0.08 0.182 0.046 0.134 0.04

M5 V0 0.072 0.006 0.059 0.06 0.074 0.004 0.094 0.04

V1 0.160 0.009 0.162 0.06 0.296 0.026 0.328 0.04

V2 0.415 0.045 0.421 0.06 0.689 0.115 0.717 0.04

V3 0.665 0.135 0.654 0.06 0.941 0.384 0.946 0.04

V4 0.104 0.007 0.160 0.06 0.220 0.022 0.334 0.04

V5 0.121 0.009 0.081 0.06 0.186 0.022 0.117 0.04

Note: ”True” stands for the CUSQ test based on the error term series (without mean);

”OLS” stands for the test based on OLS residuals; ”LL” stands for the test based on local

linear residuals. ”h med” stands for the median of selected bandwidths by AIC. The mean

specifications are M3: β (z) = 1.5 − 0.1I (z > 0.5); M4: β (z) = 1.5 − 0.2I (z > 0.5);
M5: β (z) = 1.5− 0.3I (z > 0.5).
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Table C.5
Size and power under mean specification M3-M5: τ = 0.45, IID error

n = 300 n = 600
DGP True OLS LL h med True OLS LL h med

M3 V0 0.039 0.031 0.037 0.14 0.038 0.048 0.046 0.10

V1 0.143 0.025 0.132 0.14 0.296 0.047 0.261 0.10

V2 0.456 0.169 0.423 0.16 0.798 0.421 0.765 0.10

V3 0.775 0.482 0.741 0.16 0.984 0.857 0.980 0.12

V4 0.113 0.077 0.139 0.14 0.306 0.226 0.336 0.10

V5 0.078 0.066 0.065 0.14 0.159 0.142 0.119 0.10

M4 V0 0.034 0.118 0.041 0.08 0.038 0.351 0.042 0.06

V1 0.163 0.019 0.127 0.08 0.271 0.035 0.262 0.06

V2 0.448 0.009 0.399 0.08 0.801 0.017 0.745 0.06

V3 0.759 0.051 0.684 0.08 0.983 0.111 0.978 0.06

V4 0.097 0.174 0.151 0.08 0.284 0.458 0.391 0.06

V5 0.094 0.159 0.058 0.08 0.175 0.458 0.112 0.06

M5 V0 0.034 0.526 0.058 0.06 0.040 0.957 0.073 0.04

V1 0.145 0.180 0.145 0.06 0.297 0.561 0.290 0.04

V2 0.430 0.042 0.383 0.06 0.799 0.128 0.780 0.04

V3 0.749 0.007 0.686 0.06 0.989 0.016 0.977 0.04

V4 0.107 0.465 0.186 0.06 0.300 0.904 0.439 0.04

V5 0.092 0.592 0.058 0.06 0.146 0.982 0.089 0.04

Note: ”True” stands for the CUSQ test based on the error term series (without mean);

”OLS” stands for the test based on OLS residuals; ”LL” stands for the test based on local

linear residuals. ”h med” stands for the median of selected bandwidths by AIC. The mean

specifications are M3: β (z) = 1.5− 0.1I (z > 0.45); M4: β (z) = 1.5− 0.2I (z > 0.45);
M5: β (z) = 1.5− 0.3I (z > 0.45).
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Table C.6
Size and power under mean specification M3-M5: τ = 0.45, GARCH(1,1) error

n = 300 n = 600
DGP True OLS LL h med True OLS LL h med

M3 V0 0.063 0.056 0.053 0.14 0.059 0.084 0.069 0.10

V1 0.148 0.054 0.140 0.14 0.261 0.077 0.234 0.10

V2 0.390 0.176 0.366 0.16 0.668 0.358 0.638 0.10

V3 0.670 0.422 0.623 0.18 0.923 0.745 0.915 0.12

V4 0.093 0.095 0.115 0.16 0.252 0.219 0.301 0.10

V5 0.129 0.096 0.112 0.14 0.187 0.166 0.151 0.10

M4 V0 0.069 0.142 0.060 0.08 0.067 0.358 0.081 0.06

V1 0.152 0.032 0.136 0.08 0.244 0.060 0.215 0.06

V2 0.385 0.023 0.347 0.08 0.669 0.021 0.615 0.06

V3 0.659 0.070 0.608 0.08 0.928 0.112 0.910 0.06

V4 0.113 0.166 0.151 0.08 0.243 0.443 0.299 0.06

V5 0.126 0.197 0.089 0.08 0.172 0.475 0.124 0.04

M5 V0 0.070 0.491 0.077 0.06 0.061 0.939 0.079 0.04

V1 0.177 0.182 0.140 0.06 0.271 0.576 0.253 0.04

V2 0.426 0.057 0.370 0.06 0.692 0.175 0.659 0.04

V3 0.677 0.016 0.626 0.06 0.932 0.033 0.917 0.04

V4 0.109 0.450 0.169 0.06 0.223 0.871 0.346 0.04

V5 0.113 0.576 0.096 0.04 0.176 0.974 0.127 0.04

Note: ”True” stands for the CUSQ test based on the error term series (without mean);

”OLS” stands for the test based on OLS residuals; ”LL” stands for the test based on local

linear residuals. ”h med” stands for the median of selected bandwidths by AIC. The mean

specifications are M3: β (z) = 1.5− 0.1I (z > 0.45); M4: β (z) = 1.5− 0.2I (z > 0.45);
M5: β (z) = 1.5− 0.3I (z > 0.45).
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Table C.7
Size distortion under different mean jump: IID error

n = 300
τ = 0.3 τ = 0.4 τ = 0.45 τ = 0.5

DGP OLS LL OLS LL OLS LL OLS LL

M3 V0 0.258 0.034 0.078 0.036 0.035 0.040 0.023 0.041

M4 V0 1.000 0.056 0.744 0.042 0.111 0.049 0.005 0.041

M5 V0 1.000 0.066 1.000 0.057 0.509 0.054 0.003 0.054

n = 600
τ = 0.3 τ = 0.4 τ = 0.45 τ = 0.5

DGP OLS LL OLS LL OLS LL OLS LL

M3 V0 0.580 0.038 0.166 0.041 0.055 0.051 0.027 0.049

M4 V0 1.000 0.068 0.991 0.053 0.325 0.065 0.006 0.051

M5 V0 1.000 0.075 1.000 0.082 0.980 0.085 0.010 0.069

Note: ”OLS” stands for the test based on OLS residuals; ”LL” stands for the test based

on local linear residuals. The mean specifications are M3: β (z) = 1.5− 0.1I (z > τ); M4:

β (z) = 1.5− 0.2I (z > τ); M5: β (z) = 1.5− 0.3I (z > τ).

Table C.8
Size distortion under different mean jump: GARCH(1,1) error

n = 300
τ = 0.3 τ = 0.4 τ = 0.45 τ = 0.5

DGP OLS LL OLS LL OLS LL OLS LL

M3 V0 0.281 0.059 0.105 0.062 0.056 0.054 0.031 0.047

M4 V0 0.999 0.079 0.670 0.080 0.149 0.063 0.009 0.057

M5 V0 1.000 0.088 1.000 0.087 0.535 0.071 0.006 0.059

n = 600
τ = 0.3 τ = 0.4 τ = 0.45 τ = 0.5

DGP OLS LL OLS LL OLS LL OLS LL

M3 V0 0.523 0.068 0.193 0.065 0.076 0.062 0.036 0.068

M4 V0 1.000 0.071 0.974 0.070 0.343 0.065 0.014 0.064

M5 V0 1.000 0.100 1.000 0.093 0.942 0.088 0.004 0.094

Note: ”OLS” stands for the test based on OLS residuals; ”LL” stands for the test based

on local linear residuals. The mean specifications are M3: β (z) = 1.5− 0.1I (z > τ); M4:

β (z) = 1.5− 0.2I (z > τ); M5: β (z) = 1.5− 0.3I (z > τ).



122

Table C.9
Smooth mean change and proportional volatility change in H1

IID error

n = 300 n = 600
DGP True OLS LL h med True OLS LL h med

M0’ V0’ 0.034 0.055 0.033 0.32 0.029 0.074 0.029 0.26

V1’ 0.504 0.058 0.500 0.22 0.923 0.167 0.924 0.20

V2’ 0.498 0.208 0.484 0.32 0.925 0.582 0.922 0.28

V3’ 0.502 0.350 0.497 0.40 0.927 0.793 0.930 0.32

GARCH(1,1) error

n = 300 n = 600
DGP True OLS LL h med True OLS LL h med

M0’ V0’ 0.056 0.061 0.053 0.32 0.058 0.094 0.059 0.26

V1’ 0.416 0.072 0.414 0.23 0.817 0.174 0.813 0.20

V2’ 0.402 0.206 0.402 0.32 0.812 0.468 0.811 0.28

V3’ 0.399 0.296 0.404 0.40 0.825 0.661 0.824 0.32

Note: ”OLS” stands for the test based on OLS residuals; ”LL” stands for the test based on

local linear residuals. The mean specification is M0’: β (z) = 0.5z+ exp
(
−4 (z − 0.5)2)

.

The variance specifications are V0’: σ2 (z) ≡ 1; V1’: σ (z) = 0.5β (z); V2’: σ (z) = β (z);
V3’: σ (z) = 1.5β (z).
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Table C.10
Results of the Unit Root Test on Each Variable

Test Statistics Test Statistics
Variable Model coef. t-value Variable Model coef. t-value

CANADA JAPAN
ER C(12) -0.013 -2.523 ER CT(11) -0.022 -2.834*
CPI C(12) -0.002 -3.374** CPI CT(7) -0.022 -6.228***
PPI C(13) -0.004 -3.612*** PPI C(13) -0.006 -2.752*
TPI C(13) -0.008 -3.139** TPI C(13) -0.013 -2.180

FRANCE GERMANY
ER C(3) -0.015 -2.134 ER C(1) -0.003 -1.267
CPI CT(7) -0.001 -1.139 CPI C(9) -0.002 -1.905
PPI No Data Available PPI C(6) -0.004 -2.529
TPI N(12) 0.000 -1.762 TPI C(14) -0.009 -1.933

ITALY UK
ER C(1) -0.008 -1.963 ER C(8) -0.022 -2.814*
CPI CT(13) -0.001 -1.000 CPI CT(13) -0.006 -3.569***
PPI CT(2) -0.022 -3.266** PPI C(14) -0.005 -6.420***
TPI C(14) -0.008 -3.215** TPI C(9) -0.007 -2.204

US
CPI C(13) -0.001 -2.687*
PPI CT(14) -0.011 -2.848*
TPI C(13) -0.005 -2.904**

Note:

1. ER represents nominal exchange rates; CPI , PPI , TPI represent consumer price

index, producer price index, trade price index, respectively. All variables are in the

log form.

2. Critical values are -2.57 for 10%(*), -2.87 for 5%(**), -3.44 for 1%(***) Hamilton

(1994) p763 Table B.6.

3. ”CT”, ”C”, ”N” represent ”constant and time trend”, ”constant only”, ”none”,

respectively.

4. Numbers in the parentheses are orders of lagged dependent variables, selected by a

data-driven lag selection procedure in Ng and Perron (1995).
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Table C.11
Results of the Linear Cointegration Test

OLS Est. of Coef.s Residual Based Test

# of obs. β̂0 β̂1 β̂2 coef. t-value
CANADA

CPI-based 429 -0.489 0.733 -0.567 -0.020 -2.826
PPI-based 429 0.290 1.347 -1.368 -0.026 -2.369
TPI-based 429 0.761 0.999 -1.107 -0.032 -2.119

JAPAN
CPI-based 429 7.900 0.136 -0.840 -0.022 -2.675
PPI-based 429 4.683 1.124 -1.150 -0.020 -2.620
TPI-based 429 4.412 1.032 -0.964 -1.789 -0.035

FRANCE
CPI-based 309 2.407 2.359 -2.574 -0.029 -2.422
PPI-based No Data Available
TPI-based 108 11.556 -0.984 -1.150 -0.135 -2.963

GERMANY
CPI-based 225 -15.644 7.278 -4.114 -0.045 -2.377
PPI-based 213 -5.347 3.592 -2.445 -0.033 -1.834
TPI-based 309 -3.148 2.305 -1.570 -0.078 -3.031

ITALY
CPI-based 309 9.377 1.437 -1.902 -0.022 -2.345
PPI-based 216 9.190 0.638 -1.069 -0.025 -2.119
TPI-based 309 9.047 1.266 -1.570 -0.062 -2.986

UK
CPI-based 429 0.425 1.118 -1.326 -0.029 -3.016
PPI-based 429 0.197 0.697 -0.863 -0.037 -3.429
TPI-based 348 1.368 1.254 -1.682 -0.050 -2.914

Note:

1. Critical values are -3.45 for 10%, -3.77 for 5%, and -4.31 for 1% if all the three

variables (nominal exchange rate, domestic price index, foreign price index) do not

have a time trend component. (Refer to Hamilton (1994) p766 Table B.9 Case II)

2. Critical values are -3.52 for 10%, -3.80 for 5%, and -4.36 for 1% if at least one of the

three variables has a time trend component. (Refer to Hamilton (1994) p766 Table

B.9 Case III)
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Table C.12
Results of the Functional-Coefficient Cointegration Test

d = 3 d = 6 d = 12 d = 3 d = 6 d = 12
CANADA GERMANY

CPI-based 4.507 4.124 2.634 0.384 0.891 -1.313
PPI-based -0.982 -0.724 -0.947 3.147 3.208 2.858
TPI-based 0.403 0.015 -0.082 3.298 2.338 2.369

JAPAN ITALY
CPI-based -1.193 -1.219 -1.555 0.810 0.793 0.677
PPI-based 1.325 1.044 0.821 -1.334 -1.044 -1.352
TPI-based 0.640 0.819 0.346 0.609 0.169 -0.661

FRANCE UK
CPI-based -0.026 0.387 0.321 -1.030 -1.142 -1.370
PPI-based No Data Available -1.840 -1.927 -1.911
TPI-based 0.484 1.340 1.295 -2.088 -1.825 -0.877

Note:

1. The values of t-statistic of the test suggested in Xiao (2009) are reported in the above

table for 3 differently computed variables zt: d = 3, d = 6, and d = 12.

2. Under the null of stationary residual (i.e. there is cointegration, possibly with varying

coefficients), the test statistic asymptotically follows the standard normal distribu-

tion. Critical values are 1.645 for 10%, 1.960 for 5%, and 2.576 for 1% significance

level.
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Table C.13
Linear vs Functional-Coefficient Cointegration Test: A Comparison

CC Residual FC Residual CC Residual FC Residual
coef. t-value coef. t-value coef. t-value coef. t-value

CANADA GERMANY
CPI-based -0.020 -2.826 -0.047 -3.187 -0.045 -2.377 -0.079 -2.156
PPI-based -0.026 -2.369 -0.041 -2.395 -0.033 -1.834 -0.039 -1.931
TPI-based -0.032 -2.119 -0.140 -5.618 -0.078 -3.031 -0.112 -4.238

JAPAN ITALY
CPI-based -0.022 -2.675 -0.033 -2.636 -0.022 -2.345 -0.050 -2.308
PPI-based -0.020 -2.620 -0.068 -3.886 -0.025 -2.119 -0.090 -3.083
TPI-based -1.789 -0.035 -0.064 -2.832 -0.062 -2.986 -0.168 -5.368

FRANCE UK
CPI-based -0.029 -2.422 -0.103 -3.584 -0.029 -3.016 -0.064 -3.930
PPI-based No Data Available -0.037 -3.429 -0.056 -3.526
TPI-based -0.135 -2.963 -0.597 -4.827 -0.050 -2.914 -0.101 -3.690

Note: Refer to the note after Table C.11.


