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ABSTRACT

Communication Algorithms for Wireless Ad Hoc Networks. (August 2012 )

Saira Viqar, B.S, NUST Pakistan; M.S., NUCES Pakistan

Chair of Advisory Committee: Dr. Jennifer L. Welch

In this dissertation we present deterministic algorithms for reliable and efficient

communication in ad hoc networks. In the first part of this dissertation we give

a specification for a reliable neighbor discovery layer for mobile ad hoc networks.

We present two different algorithms that implement this layer with varying progress

guarantees. In the second part of this dissertation we give an algorithm which allows

nodes in a mobile wireless ad hoc network to communicate reliably and at the same

time maintain local neighborhood information. In the last part of this dissertation

we look at the distributed trigger counting problem in the wireless ad hoc network

setting. We present a deterministic algorithm for this problem which is communi-

cation efficient in terms of the the maximum number of messages received by any

processor in the system.
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1. INTRODUCTION

One of the most interesting and important applications of distributed algorithms

is in the field of wireless ad hoc networks. A wireless ad hoc network consists of

autonomous computing nodes which communicate with each other through wireless

transmissions. The nodes do not have access to a centralized communication infras-

tructure and are generally unaware of the network topology. The communication

medium is shared and hence, only one node in a local neighborhood may transmit

a message at a particular time. If multiple neighboring nodes send messages simul-

taneously then a collision might occur at the receiving node, disrupting the message

transmission. Thus nodes have to coordinate their activities in a distributed fash-

ion, in order to facilitate basic communication tasks such as propagating a single

message throughout the network. In case the nodes are mobile, even keeping track

of the local neighborhood topology is an ongoing process. Furthermore, nodes in

wireless ad hoc networks are also resource-constrained, hence developing algorithms

that are communication efficient is essential not only for reducing contention but also

for conserving power.

In this dissertation we focus on developing deterministic algorithms for reliable

and efficient communication in ad hoc networks. This work covers the following

areas:

1. Reliable neighbor discovery with an abstract MAC layer

2. Neighbor knowledge and deterministic collision free communication.

3. Communication efficiency for distributed trigger counting.

This thesis follows the style of Distributed Computing .



2

The first problem we consider is keeping track of the local neighborhood topology

as nodes continuously move in and out of each other’s transmission and interference

range. We assume that nodes are mobile but there is a bound on the maximum

speed of the nodes. We focus on deterministic algorithms and use the simple unit

disk graph (UDG) model. We consider the problem using two different approaches.

The first is a modular approach in which the neighbor discovery problem is seen as a

separate layer built upon the medium access layer (or MAC layer, which handles con-

tention among the nodes so that messages from nodes may be received by neighbors

without collisions). In the second approach the two layers are integrated together.

The modular approach simplifies the design and verification of the algorithm, and

allows more fine-grained analysis. However, in the integrated approach the neighbor

discovery protocol may benefit from feed back from the medium access protocol and

vice versa.

In the first part of this dissertation we define a reliable neighbor discovery layer for

mobile ad hoc networks and present two algorithms (which have appeared in [15]),

that implement this layer as a service with varying progress guarantees. Our al-

gorithms are implemented atop an abstract MAC layer [36], which deals with the

lower level details of collision detection and contention. We first describe a basic

region-based neighbor discovery protocol with weak progress guarantees. This pro-

tocol does not guarantee communication links when nodes move quickly across region

boundaries. To overcome this limitation, we describe a technique that uses a basic

neighbor discovery protocol as a black box and boosts its progress guarantees. The

key idea behind this technique is to use multiple partitions overlayed in a specific

way, and associate with each partition an instance of the basic neighbor discovery

protocol. We show the output of these instances can be composed in a way that

provides stronger progress guarantees.
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The second part of this dissertation gives a solution where neighbor discovery

and medium access are integrated into one layer. The algorithm (published in [48]),

allows nodes in a mobile wireless ad hoc network to communicate reliably and at

the same time maintain local neighborhood information. It is assumed that nodes

are located on a two-dimensional plane and may be in continuous motion. In our

solution we tile the plane with hexagons. Each hexagon is assigned a color from a

finite set of colors. Two hexagons of the same color are located sufficiently far apart

so that nodes in these two hexagons cannot interfere with each other’s broadcasts.

Based on this partitioning we develop a periodic deterministic schedule for mobile

nodes to broadcast. This schedule guarantees collision avoidance. Broadcast slots

are tied to geographic locations instead of nodes and the schedule for a node changes

dynamically as it moves from tile to tile. The schedule allows nodes to maintain

information about their local neighborhood. This information in turn is used to

keep the schedule collision-free. We demonstrate the correctness of the algorithm,

and discuss how the periodic schedule can be adapted for different scenarios.

In the last part of this dissertation we look at the distributed trigger counting

problem. Suppose that there are n processors forming a clique, and external events

cause triggers at each processor. An alert is to be raised for the user when the total

number of triggers reaches a certain value w. We present a deterministic algorithm

which is communication efficient in terms of the the maximum number of messages

received by any processor in the system, i.e., the MaxRcvLoad, as compared to

previous deterministic algorithms. We also give a lower bound for the MaxRcvLoad.

This problem has many applications in ad hoc networks.

In the remainder of this section we provide an overview of the three different

topics covered. We provide the motivation for these solutions and also outline our

contributions.
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1.1 Reliable Neighbor Discovery with an Abstract MAC Layer

In mobile ad hoc networks (MANETs), the underlying communication graph

changes over time. In this setting, it is not obvious how to define the neighbor set

of a node in a way which is useful for user layer algorithms. For example, if two

nodes are within communication range at a time instant, should they be considered

neighbors even if they will not remain in communication range for enough time to

exchange a message?

We define a reliable neighbor discovery layer which establishes links over which

message delivery is guaranteed. We present two algorithms that implement such a

layer with varying progress properties.

These algorithms are implemented on top of a Medium Access Control (MAC)

Layer which provides upper bounds on the time for message delivery thereby ab-

stracting away the lower level details of collision detection, contention and scheduling.

We follow the specification of an abstract MAC layer presented in [36] (with imple-

mentation details provided in [31]). This modular approach makes the algorithm

easier to design, understand and verify. However, dealing with arbitrary mobility

patterns while trying to maximize the time that links remain up, is still non-trivial.

A performance comparison of this modular approach versus an approach where the

neighbor discovery layer and MAC layer are merged is still an open problem.

We first implement a basic region-based neighbor discovery protocol which relies

on sending notification messages when nodes enter and exit regions to set up the

communication links. The main challenge is figuring out when messages need to be

sent to guarantee they reach their intended destination despite the continuous motion

of the nodes. However, this basic neighbor discovery protocol does not guarantee

communication links when nodes are moving quickly across region boundaries. To
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this end, we use a technique that overlays multiple region partitions, associating with

each region partition a basic neighbor discovery protocol instance. The output of

each instance is then composed in a way which provides stronger progress guarantees.

Motivation. Many existing user level algorithms assume a neighbor discovery

service which provides guarantees message delivery between neighbors. For exam-

ple, the leader election algorithm of [27], the token circulation algorithm of [38], and

the mutual exclusion algorithm of [50], all require an underlying neighbor discov-

ery service. These problems are important primitives in distributed computing. In

addition to these, even the most basic of tasks in mobile ad-hoc networks, such as

routing [6,40,41] or broadcasting [7,44] also require accurate and up-to-date knowl-

edge about neighbor nodes. For example, [45] implements coordinate based routing

by assuming nodes know the location of their two-hop neighbors. Similarly, [40]

describes a routing algorithm for multi-hop wireless network that assumes one-hop

neighbor information.

Contributions. The main contributions of this work are:

1. We describe a specification for a reliable neighbor discovery layer. We consider

two different progress conditions.

2. We present a basic region-based neighbor discovery protocol for MANETs

which meets the above specification with the weaker progress guarantee.

3. We describe a technique to boost the progress guarantees of a neighbor discov-

ery protocol using overlayed region partitions.
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1.2 Neighbor Knowledge and Collision Avoidance

In this part of our work we deal with the interrelated problems of neighborhood

knowledge and coordinating the transmissions of mobile nodes so that reliable com-

munication can take place. The problem is complicated by the fact that the nodes

may be in continuous motion and hence the local neighborhood topology never sta-

bilizes.

Motivation. Previous solutions to the problem adopt a probabilistic approach,

including the hello protocols (cf. [6]) and reservation based MAC protocols (cf. [5,

29]). All of these protocols experience some probability of error, due to collisions

in the wireless communication caused by two or more nodes broadcasting at the

same time and thus disrupting the receipt of the message. Many applications can

tolerate such errors. However, for some real time, mission critical applications, even

a small probability of error might have severe penalties. We present a deterministic

collision-free protocol which guarantees reliable communication despite the inherent

drawbacks of a wireless ad hoc environment where nodes may be continuously in

motion. Our protocol can be used to build a reliable communication infrastructure

to meet the requirements of such mission critical applications.

Such a reliable communication infrastructure is of particular importance in ap-

plications for vehicular ad hoc networks (VANETs). These applications ensure the

safety of drivers by warning them about collisions with other vehicles (cf. [39]) or

advising drivers about adverse traffic conditions (e.g., rain, snow and fog). A proto-

col with deterministic guarantees is essential under such conditions since human life

is at stake. It can also be used to relay information from the anti-skid systems and

fog-probing radars already present in vehicles to police cars, ambulances, and snow-

plows (cf. [49]). Our system model which consists of nodes moving arbitrarily on the
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plane with bounded speed is in accordance with the motion of vehicles on highways,

as well as on parallel roads and intersections in urban areas. In addition to VANETs

our protocol also has applications in the area of robotic sensor networks [42] used for

rescue and reconnaissance missions.

We also address the issue of deterministically maintaining up-to-date information

about the local neighborhood of a node. The maintenance of this neighborhood

knowledge is a part of our proposed solution and is interleaved with the collision-free

schedule. It is also a significant problem in its own right–information about nearby

nodes is required for numerous tasks in a mobile ad hoc network. For instance,

neighborhood knowledge is needed for routing (cf. [6,40,41]), broadcasting (cf. [4,7,

44]), distributed token circulation (cf. [38]), etc.

Contributions. The main contributions of this research are as follows

1. We develop a reliable communication scheme for mobile nodes which is collision-

free.

2. We develop a deterministic technique for mobile nodes to maintain neighbor-

hood knowledge as they move in and out of each others’ broadcast range.

3. We discuss a technique for initial discovery of nodes already present in com-

munication range when a node starts up.

The first two parts of our scheme mentioned above are interdependent on each other.

Thus in our scheme, it is necessary for nodes to possess local neighborhood knowledge

to transmit messages in a collision-free way. Since nodes can transmit without having

collisions, they can maintain information about their local neighborhood in a timely

and efficient way.
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1.3 Communication Efficiency for Distributed Trigger Counting in Sensor

Networks

The third part of this dissertation focuses on the communication efficiency of the

distributed trigger counting problem. In this problem, introduced by [10], we assume

that there are n processors, and triggers may be received by these processors due

to external events. An alert is to be raised for the user when the total number of

triggers reaches a certain value w which is specified by the user. Each processor may

receive a different number of triggers. The order in which different processors receive

triggers is not known in advance.

We assume an asynchronous computation model where the network topology is

a clique. Message delivery is guaranteed. Furthermore, processors and links do not

fail.

Motivation. Such an algorithm has applications in the field of sensor networks

and distributed monitoring. In sensor networks sensors may be deployed to count

the number of vehicles and raise an alert when a certain threshold is exceeded. They

can similarly be deployed to count the number of sightings of a particular species of

wildlife.

Contributions. The main contributions of this section are as follows:

1. We develop a deterministic algorithm for the trigger counting problem.

2. Our algorithm is communication efficient in terms of the MaxRcvLoad, de-

fined as the maximum number of messages received by any processor in the

system. The MaxRcvLoad of our algorithm is O(log n logw+
√
n log n logw),

compared to the best previous deterministic algorithms with a MaxRcvLoad

of O(n logw) [21].
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3. We also give a lower bound of Ω(logw) for MaxRcvLoad for the case where

the network graph is a tree. There are no previous lower bounds for the

MaxRcvLoad.

1.4 Organization

The remainder of this dissertation is organized as follows. In Section 2 we give an

overview of the related work for all three topics covered in this dissertation. In Section

3 of this dissertation we present the reliable neighbor discovery algorithms (which

have appeared in [15]). In Section 4 we give our algorithm for neighbor discovery

and medium access (published in [48]). In Section 5 we present our algorithm for the

distributed trigger counting problem. In Section 6 we summarize our contributions

and discuss future work.
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2. RELATED WORK

There has been a lot of related work for all three problems addressed in this thesis.

In this section we give an overview of the related results for all three problems.

2.1 Reliable Neighbor Discovery with an Abstract MAC Layer

There has been a lot of previous work related to neighbor discovery. For example

in hello protocols [6], nodes transmit periodic hello messages to discover neighbors.

The set of neighbors is updated to reflect the information received in the hello mes-

sage. If a hello message is not received from a neighbor for too long a time then

it is discarded from the neighbor set. However, these approaches provide no formal

guarantees and require sending messages periodically. In contrast, in our approach

the number of messages sent depends on the frequency with which nodes cross re-

gion boundaries. Therefore, for example, if two nodes remain in the same regions

forever, they need not exchange additional messages to maintain the status of the

link between them.

Much previous work focuses on static networks. For example, in [8] a deter-

ministic algorithm for computing two-hop neighbors in static networks is presented.

In [37] a technique is presented for secure neighbor discovery for static networks.

Similarly, [35] presents a deterministic protocol for neighbor discovery in static cog-

nitive radio networks. Lastly, [47] considers neighbor discovery in static networks

with directional antennas.

A topology discovery algorithm for mobile nodes is given in [11]; however, it is

assumed that few nodes move and that their speed is severely constrained. An asyn-

chronous neighbor discovery and rendezvous protocol is presented in [16]. However,
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the focus of this protocol is to allow the nodes to operate at low duty cycles. Also,

the protocol only caters to a rendezvous between just two nodes. An energy-efficient

algorithm for node discovery is also presented in [17]. However, the emphasis in that

work is on detecting the temporal patterns of node arrivals and scheduling a wake-up

based on expected hourly activity.

In [48] the authors focus on maintaining neighbor knowledge in mobile nodes;

however, they do not address the problem of nodes discovering neighbors at system

start-up. An algorithm for neighbor discovery similar to ours, but with weaker

progress guarantees, is presented in [14]. Specifically, a pair of nodes need to remain

in the same region in order to set up a communication link. Although this is useful

when all communication occurs between nodes in the same region, it cannot be used

in more general settings. Even if all nodes are static and very close to each other,

if they are dispersed across regions, the resulting neighbor graph will always be

disconnected. The work presented here is an extension of the work presented in [15].

So far we have referred to three different layers: the user layer, the neighbor

discovery layer, and the MAC layer. We have already discussed in detail the related

work that concerns the neighbor discovery layer, but there is a lot of related work

for various communication tasks in the other layers. For example, the authors in [33]

and [34] deal with conflict resolution for multiple-access channels, which can be used

as building blocks of a MAC layer. Another problem is broadcasting or one-to-

many communication, in which a message from a source node is to be delivered

to all nodes in the network, over multiple hops. Broadcast algorithms [1, 13] are

typically implemented on top of both a neighbor discovery layer and a MAC layer.

A comparison of the modular approach (separate neighbor discovery, MAC, and

broadcast layer) versus an approach where the neighbor discovery layer and MAC

layer (and perhaps the broadcast layer) are merged is still an open problem.
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2.2 Neighbor Knowledge and Collision Avoidance

Much of the previous work on collision-free broadcasting in wireless ad hoc net-

works assumes static nodes. For example, Gandhi et al. consider the problem of

collision-free broadcasting in wireless ad hoc networks with static nodes in [20]. The

authors focus on how to minimize latency and retransmissions in such a network,

and show that their algorithm is O(1) of optimal in terms of both. In their algorithm

they construct a broadcast tree and then use it to schedule transmissions such that

all nodes receive a message in a collision-free manner. However, they suggest that

for dynamic network topologies, construction and maintenance of broadcast trees

is not efficient. Prabh et al. also present a distributed transmission scheduling al-

gorithm for hexagonal wireless ad hoc networks in which nodes remain static [43].

The algorithm provides network-wide conflict-free packet transmission and gives a

guarantee on transmission latency. They also give a clock synchronization algorithm

for scheduling based on overheard messages sent by neighbors. They assume that

there is a base station or sink node at the center of the network. Their focus is on

convergecast or many to one communication. They also mention that their assumed

topology of nodes is an oversimplification of real topologies. The network topology

is cluster-based, and CDMA is used for intra-cluster communication. It is assumed

that cluster heads maintain the transmission schedule of nodes in their own cluster.

The authors suggest that CDMA is not scalable for multi-hop transmission, and

hence a conflict-free schedule is given for inter-cluster communication.

Certain protocols which handle node mobility rely on the presence of centralized

infrastructure. For example Arumugam et al. give a self-stabilizing, deterministic

TDMA algorithm for sensor networks [2]. Their system architecture has three lay-

ers: (1) the token circulation layer, (2) the TDMA layer, and (3) the application
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layer. The TDMA layer implements a distance-2 coloring algorithm which is used

to compute TDMA slots. The addition and removal of sensors is allowed, however,

they assume the presence of a base station which maintains a spanning tree of the

network and is responsible for token circulation. There is no discussion of how the

algorithm would behave if the nodes were in continuous motion. Like our work they

also assume that time synchronization is present during token circulation. Local

neighborhood knowledge is also assumed.

In [32] the authors assume that the sensors are located exactly at the points

of a regular lattice. For mobile sensors they suggest that the lattice points should

be spaced finely enough so that just one sensor is within the Voronoi region of a

single lattice point. However they do not consider the case of sensors crossing the

boundaries of Voronoi regions while they transmit. Furthermore, making the lattice

points closer together would lead to a highly inefficient schedule with a very large

number of transmission slots. We have used the concept of tiling the plane in order

to get a deterministic schedule, however, we have also addressed the issues that arise

when fast moving nodes cross the boundaries of tiles.

In [3] Baldoni et al. consider a model in which nodes can move arbitrarily on the

plane with a bound on the speed. They show that using conventional assumptions of

node connectivity, it is impossible to carry out geocasting (transmitting information

to nodes within a specific geographical area). A stronger version of connectivity, in

which nodes remain neighbors for a certain interval of time, is needed to solve the

problem of geocast.They present bounds for the speed of nodes in relation to the

speed of information propagation for mobile ad hoc networks, as well as bounds for

the number of rounds required for reliable message delivery. However, they do not

give a constructive solution to the problem of collision-free communication among

mobile nodes. In [28] Ioannidou presents a model for mobile ad hoc networks based
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on tiling the plane with hexagons. This model is then used to implement dynamic

quorum systems. The hexagons are assumed to be surrounded by circles called

camases, which represent bounds on how far nodes can travel within a particular

interval of time. However, the authors assume that there is no interference in the

network, that is, collision avoidance is performed by a lower layer of the network.

2.3 Communication Efficiency for Distributed Trigger Counting in Sensor

Networks

The trigger counting problem has been investigated previously. In [10] a random-

ized algorithm LayeredRand, is presented with MaxRcvLoad equal to O(log n logw)

with high probability. The authors in [10] look at the problem in an asynchronous

message passing system. They consider a clique with point-to-point links. In their

solution it is assumed that nodes are divided into layers. Processors in each layer

aggregate a certain number of triggers and send this information to some processor

in the upper layer chosen uniformly at random.

A randomized algorithm is also presented in [9] which has MaxRcvLoad equal

to O(log n + logw) with high probability. This algorithm is similar to the above

mentioned LayeredRand algorithm however, it is more complicated and the number

of rounds required for termination is not guaranteed as in LayeredRand.

The authors of [21] give a deterministic algorithm for which the MaxRcvLoad is

O(n logw). In [21] it is also shown that any deterministic algorithm for the trigger

counting problem must have message complexity Ω(n log(w/n)). However, there are

no bounds for the MaxRcvLoad.

In [19] the authors study the trigger counting problem. However, they call it

the threshold detection problem. The authors give a lower bound of Ω(logw) for
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the average message complexity of any randomized protocol with constant failure

probability which solves the threshold detection problem. They also give a random-

ized protocol and then convert this protocol into a deterministic protocol in a model

called the transmissions model. In this model if a node transmits a message, this

message is delivered to all its neighbors in the network. In this model, for the de-

terministic protocol, the maximum number of transmissions made by any node is

O(log2w log2 n). In contrast our protocol is for the point-to-point model and we

consider communication efficiency in terms of the maximum number of messages

received by any node.
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3. RELIABLE NEIGHBOR DISCOVERY FOR MANETS 1

3.1 Introduction

In mobile ad hoc networks (MANETs), the underlying communication graph

changes over time. However in this setting, it is not obvious how to define the

neighbor set of a node in a way which is useful for user layer algorithms. For example,

if two nodes are within communication range at a time instant, should they be

considered neighbors even if they will not remain in communication range for enough

time to exchange a message? In this section we define a reliable neighbor discovery

layer which establishes links over which message delivery is guaranteed. User layer

algorithms can then use this neighbor discovery layer to solve application problems.

We then present two algorithms that implement a reliable neighbor discovery layer

with different progress guarantees.

These algorithms are implemented on top of a Medium Access Control (MAC)

Layer which provides upper bounds on the time for message delivery thereby ab-

stracting away the lower level details of collision detection, contention and schedul-

ing. We follow the specification of an abstract MAC layer presented in [36] (with

implementation details provided in [31]). This modular approach makes the algo-

rithm easier to design, understand and verify. Moreover, it allows us to focus on the

challenge of dealing with arbitrary mobility patterns while trying to maximize the

time that the links remain up while guaranteeing all links are “reliable”.

We first describe a basic region-based neighbor discovery protocol which relies

on sending notification messages when nodes enter and exit regions to set up the

1Part of this section is reprinted with permission from Cornejo, A., Viqar, S., Welch, J.L.: Re-
liable neighbor discovery for mobile ad hoc networks. In: Proceedings of the DIALM-POMC
Joint Workshop on Foundations of Mobile Computing, pp. 63–72, Copyright 2010 ACM, Inc.
http://doi.acm.org/10.1145/1860684.1860699
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communication links. The correctness of this algorithm hinges on figuring out when

messages need to be sent to guarantee they reach their intended destination despite

the continuous motion of the nodes. However, this basic neighbor discovery protocol

does not guarantee communication links when nodes are moving quickly across region

boundaries. To handle nodes crossing the region boundaries, we present a second

protocol (the uniform neighbor discovery protocol) which runs multiple instances of

the basic region-based neighbor discovery protocol, each of them using a different

region partition. We then describe how by composing the output of each of the

instances appropriately, we can guarantee a reliable neighbor discovery protocol with

stronger progress guarantees. We show that this protocol can be used with region

partitions that are either regular square tilings, or regular hexagonal tilings.

We also describe an additional property of a neighbor discovery layer called co-

ordination. Depending on the level of coordination, a communication link between

two nodes may be established at the same time at both endpoints or it may come

up at different times at the two endpoints. We show that the basic neighbor dis-

covery protocol provides a higher level of coordination as compared to the uniform

neighbor discovery protocol. We also discuss the impact of coordination on different

applications.

3.2 System Model

The Timed I/O Automata (TIOA) modeling formalism [30] is used to model

the mobile ad hoc network (MANET). We consider a system with n nodes (or users)

which are executing in a MANET environment and communicate using a local broad-

cast primitive.
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We use R to denote the physical space in which the nodes reside, also referred

to as the deployment space. We assume R to be a closed, bounded and connected

subset of R2. We assume all nodes agree on some partition of the deployment space

into regions. This region partition is defined as follows:

Definition 1. Let U be the index set for regions in the deployment space. A region

partition divides R into a set of regions {Ru}u∈U such that: 1) For each u ∈ U , Ru

is a closed and connected subset of R. 2) For any u, v ∈ U , Ru and Rv may overlap

only at their boundaries. 3) Each point in R must occur in at least one region. A

pair of regions with a nonempty intersection are said to be neighboring regions.

We refer to the graph induced by the neighborhood relation of the region partition

scheme as the region graph. We say region Ri and region Rj (or a node a in region

Ri and a node b in region Rj) are ` hops apart if the shortest path between Ri and

Rj in the region graph is of length `.

We assume that nodes have access to their current location, which can be achieved,

for example, through GPS. Note that this is not an unrealistic assumption for

VANETs (Vehicular Ad Hoc Networks) or other outdoor mobile networks such as

rescue robots. CarTel [23] is one example of a mobile system where each vehicle is

equipped with a GPS. For indoor environments mobile nodes may use localization

schemes using beacons or receivers which locate the mobile device either by trans-

mitting periodic signals, or by listening to the transmissions of the mobile device.

Such a scheme is presented in [46].

There is a trajectory function for each node which specifies the motion of the

node by giving its location at an instant of time. We assume that a node’s trajectory

function is known to that node with enough anticipation to communicate with other

nodes before leaving or entering a region. Since in real deployments the speed of
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motion is much slower compared to the communication speed, this is not a limiting

assumption for MANETs where mobility is controlled by a motion planner. Due to

the motion planning algorithm, the speed and trajectory of the node are predeter-

mined. Furthermore, information about the entire trajectory is not required. The

only information required is that a node is going to cross a region boundary in the

near future.

Also in vehicular ad hoc networks (VANETs) where the motion is not directly

controlled by a motion planner, the movement is not erratic and it is usually slow

enough (compared to the communication speed) to be reliably predicted. Even if the

one-hop message delay is of the order of a hundred milliseconds, vehicles traveling

at 200 km per hour can only cover 5.55 meters ≤ 6 meters in this time interval.

There are five components in the system: the network layer, the abstract MAC

layer, the MAC Broker layer, the neighbor discovery layer, and the user layer (see

Figure 3.1, and Table 3.1).

3.2.1 The Network Layer

The network layer captures the physical behavior of the network. We assume

that it provides other system components with location and time information.

We use Gcomm to denote the directed graph whose vertices are the nodes and

whose directed edges indicate which nodes are within the communication range of

which other nodes. Similarly, Ginterf denotes the directed graph whose vertices are

the nodes and whose directed edges indicate which nodes are within the interference

range of which other nodes. Since the communication and interference graphs can

change dynamically over time during the execution, we can view Gcomm and Ginterf

as mappings from network states to directed graphs.
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Fig. 3.1.: MANET system block diagram.

Note that two nodes may have different broadcast and interference ranges. Let

rmin be the minimum broadcast radius among all the nodes. For the region partition

in use, we assume there exists a fixed parameter k such that any two points which

are k hops apart in the region graph, are at distance at most rmin. This in turn

implies that when two nodes are in regions separated by at most k hops, they are

within communication range.

3.2.2 The Abstract MAC Layer

We present a slight simplification of the MAC layer specification [36] by ignoring

the functionality to abort messages in transit. The abstract MAC layer provides

reliable local broadcast with timing guarantees. It also provides acknowledgement
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Table 3.1: Interface actions for the MANET system.

Automaton Action Description 

Abstract MAC Layer 

bcast(m)i Reliable local broadcast of message m at node i.

rcv(m)i Reception of message m at node i.

ack(m)i Acknowledgement for message m at node i.

MAC Broker 

bcast_usr(m)i
Local reliable broadcast of an application message m
at node i.

rcv_usr(m)i Reception of an application message m at node i.

bcast_ndp(m)i
Local reliable broadcast of neighbor discovery 
message m at node i.

rcv_ndp(m)i Receiving neighbor discovery message m. 

Neighbor Discovery Layer 
link_up(j)i A link is up for node j at node i.

link_down(j)i A link is down for node j at node i.

that a message has been delivered with success to all nodes in the local neighborhood.

This is done through interface actions bcast(m)i, ack(m)i, and rcv(m)i. There is

a guaranteed upper bound on the worst-case time for message delivery to nearby

recipients given by F+
rcv. Similarly, F+

ack gives the upper bound on the total time

for the sender to get an acknowledgement. These time bounds are constant and we

assume that they are available to algorithms implemented on top of the abstract

MAC layer. These time bounds take into account the maximum possible amount of

contention, as defined by the node degrees that occur in the dynamic communication

graph (Gcomm) induced by the motion of the nodes.

Note that these time bounds are only for one-hop message delays. In case the

total number of nodes in the network is not known, the message delay over multiple

hops may be unbounded. These one-hop message delays are related to the maximum

contention in the network, which can be bounded if there is a bound on the maximum

degree of a node. Hence, it is not an unreasonable assumption to have bounded one-

hop message delays. In addition, if such bounds are provided by the MAC layer only
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with a high probability then, a protocol implemented on top of such a MAC layer

can provide correctness guarantees with high probability.

The cost of implementing this abstract MAC layer exactly as described in [36]

might be prohibitively large. However, it is possible to provide similar guarantees

with a high probability (see [31]).

The MAC layer assumes well-formedness conditions for upper layers. In partic-

ular, it assumes that a user process does not submit a bcast until after its previous

bcast has had a matching ack returned. There are also constraints on message be-

havior. In particular, if a bcast(m)i event causes a rcv(m)j event, then at some

point between these events nodes i and j have to be within interference range. If a

bcast(m)i event causes an ack(m)i event and for every point in between these two

event nodes i and j are in communication range, then a rcv(m)j caused by the bcast

is guaranteed to precede the ack. Additionally, there are no duplicate receives or

acknowledgements, and no receives after acknowledgements. Finally, every bcast(m)i

causes an ack(m)i.

3.2.3 The MAC Broker Layer

As its name suggests, this layer acts as a broker between the MAC layer and both

the user and neighbor discovery layers. It provides the following three guarantees:

1) Well-formedness: A message is not broadcast through the abstract MAC layer

before the ack of the preceding messages has been received.

2) Priority: User messages are only sent when there is no pending neighbor discovery

message (described in Subsection 2.4).

3) Routing: Received messages are routed correctly to either the neighbor discovery

or the user layer.



23

To prioritize, the messages received through bcast usr(m)i and bcast ndp(m)i are

pushed into different queues. Whenever the bcast(m)i action is triggered, a user

message is only routed when the neighbor discovery message queue is empty. We

assume that neighbor discovery messages are infrequent compared to user messages.

Hence, there is no starvation of the user messages caused by too many neighbor

discovery messages. To limit the bandwidth requested by the user layer (and prevent

starvation), we impose the restriction that the size of both message queues should

not exceed some constant q. It is assumed that the user layer respects this restriction.

To route the messages a flag is attached to the message before pushing it in

the queue. When receiving a message through the input action rcv(m)i this flag is

removed and used to trigger either a rcv usr(m′)i or a rcv ndp(m′)i action.

3.2.4 The Reliable Neighbor Discovery Layer

The reliable neighbor discovery layer automaton for node i has four actions,

bcast ndp(m)i, rcv ndp(m)i, link up(j)i and link down(j)i (where j 6= i). The first

two are used to broadcast and receive messages through the MAC broker. The

link up(j)i action signals the user that a reliable communication link has been

established between node i and j from the perspective of node i. Similarly the

link down(j)i action signals the user that a previously established communication

link between node i and j is down from the perspective of node i.

Definition 2 (Well-Formedness). At a node i, for any j, the actions link up(j)i and

link down(j)i alternate.

Let actionji (t) ∈ {link up(j)i, link down(j)i} be the most recent link event for

link (i, j) at node i at time t. If actionji (t) = link up(j)i then we say link (i, j) is Up

at time t, otherwise we say link (i, j) is Dn at time t.
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To avoid unhelpful “solutions” where all links remain Dn independent of the

environment we define a progress condition.

Definition 3 ((a, b, k)-Weak Progress). There exist constants a, b ∈ R+ and k ∈ N,

such that for all times t1 and t2 where t2 ≥ t1 + a + b, and for any nodes i and j:

if i is in region Ri and j is in region Rj throughout [t1, t2], where Ri and Rj are at

most k hops apart (which implies a distance of at most rmin between i and j), the

links (i, j) and (j, i) are Up during the time interval [t1 + a, t2 − b].

The previous progress definition has some limitations (which are discussed in

detail in Section 3.4). Hence we define the following (stronger) progress condition

which does not require nodes to stay in the same region throughout the time inter-

val; instead they only need to stay close enough to each other throughout the time

interval.

Definition 4 ((a, b, k)-Uniform Progress). There exist constants a, b ∈ R+ and k ∈

N, such that for all times t1 and t2 where t2 ≥ t1 + a+ b, and for any nodes i and j:

if at every time t ∈ [t1, t2] nodes i and j remain at most k hops apart (which implies

a distance of at most rmin between i and j), the links (i, j) and (j, i) are Up during

the time interval [t1 + a, t2 − b].

We introduce a validity condition to avoid unhelpful “solutions” where all links

are kept in the Up state independent of the environment.

Definition 5 (k-Validity). If (i, j) is Up at time t, then nodes i and j are in regions

which are at most k hops apart at time t (and thus they are within distance rmin).

We add a condition to guarantee reliable message delivery between neighboring

nodes.
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Definition 6 (Reliability). If node i broadcasts a message at time t, and the link

(i, j) is Up, the message is delivered to j exactly once. Also if a message is delivered

to node j, then it was previously sent by some node.

3.2.5 The User Layer

The user layer automaton is a composition of separate (and non-interacting) au-

tomata for the users {1, . . . , n}. A user learns about the state of its neighbors through

the link up and link down output actions of the neighbor discovery automaton. Sim-

ilarly it broadcasts and receives messages through the MAC broker automaton using

the bcast usr and rcv user actions.

3.3 Basic Neighbor Discovery Protocol

Here we describe the basic neighbor discovery protocol (referred to as BNDP),

which satisfies the reliable neighbor discovery layer specifications with weak progress.

The protocol relies on nodes sending notification messages tagged with their ids,

whenever nodes are about to change regions.

When a node i is about to exit a region, it broadcasts a leave message some

time before leaving. This leave message includes the region i will be moving into,

or null if i will not be in the next region sufficiently long to establish a link. Using

the information received in the leave message, i’s neighbors determine if they should

begin tearing down the corresponding link with i.

When a node i enters a new region and determines that it is going to remain

there for sufficiently long, it broadcasts a join message. The recipients of the join

message will start setting up the corresponding link to i if they have not already

done so. The join message also serves as a request to learn the ids of the recipients.
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Specifically, when a node receives a join message from i, it first checks if it is going

to remain in its current region for sufficiently long, in which case it responds with a

join reply message.

The timing of these messages ensures that the proper semantics of the corre-

sponding links are maintained. This means that the overhead for setting up and

tearing down links is taken into account, and reliable message delivery is guaranteed

when a link is in the Up state.

Suppose the time overhead for setting up a link between two neighbors is given by

δLU , and the time overhead for tearing down a link is given by δLD. A node broadcasts

a join message upon entering a new region only if it is going to remain there for

at least the amount of time required to set up a link and to tear it down. Thus a

node broadcasts a join message if it is going to remain in its new region for at least

δLU +δLD+L time in the future where L ≥ 0 is a user-provided parameter. Similarly,

a node should broadcast a leave message δLD time before leaving the region to make

sure the link is destroyed before the nodes are (potentially) out of transmission range.

A node sends a join reply message in response to a join message if it will remain

in its region for δLU + δLD time, to allow sufficient time to set the link up and then

tear it down at both ends before either node leaves the region.

The exact time overhead for setting up a link (δLU) can be determined in terms

of the delays provided by the underlying MAC layer. This is the time overhead

incurred in sending the join message and getting back the corresponding join reply

message. Now we argue that δLU = 2F+
rcv + 3F+

ack (see Figure 3.2). Recall that all

messages are sent through the MAC Broker, which could wait up to F+
ack time to

get the ack from the preceding message before sending a new message. Hence, from

the time the join message is sent by the neighbor discovery protocol, it might take

up to F+
ack + F+

rcv time before it is received. When a receiver gets the join message,
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Fig. 3.2.: Time required for setting up a link.

it will respond with a join reply message to the sender if it determines both nodes

will remain within k hops for sufficient time. However, to prevent the receiver from

being swamped with pending join messages (each of which would potentially require

a join reply message), join reply messages are buffered in intervals of F+
ack so that

multiple join messages can be answered using a single join reply message.

Consider the following scenario. Suppose that node i is in region Ri of the

network. Now suppose that n−1 nodes move into region Ri and send join messages.

Using a naive strategy will result in node i sending n − 1 join replies. This would

result in overflow in the Neighbor Discovery Protocol message queue in the MAC

Broker layer. Therefore we have node i wait for F+
ack time and collect the join

messages and responds with one join reply message. This guarantees that no more

than one message every F+
ack units is sent by the Neighbor Discovery Protocol layer

to the MAC Broker layer. As before, it may take up to F+
ack +F+

rcv units of time from

when the join reply message gets sent to the MAC Broker to when it gets received.

Therefore δLU = 2F+
rcv + 3F+

ack.
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The time overhead for tearing down a link (δLD) can similarly be determined. This

time bound should be sufficient to allow the leave message to be received. Moreover,

it should also allow any node which receives the leave message to deliver all messages

which were previously sent to the originator of the leave message. Specifically δLD =

2F+
rcv + (q + 1)F+

ack (see Figure 3.3), where q is the maximum size of the queue. As

before, the first F+
rcv + F+

ack time units allow the leave to be processed by the MAC

Broker and to be delivered to its destination. Depending on the information received

in a leave message a node may decide to tear down the link to the originator of the

message. Regardless of this, the next qF+
ack time units allow the MAC broker to send

any messages which were queued before the leave message was received. (Recall that

the maximum queue size is given by q, and each message can incur a maximum delay

of F+
ack before it is sent.) The remaining F+

rcv time units allow the last message of

the queue to reach its destination.

Other relevant details of the algorithm which we have not yet mentioned, are

that it keeps track of the set of neighbors using a set S, which is both checked before

either the link down or link up actions are executed, and updated after executing

them. Also to avoid conflicts a node always discards any message it receives from a

node which is more than k hops away.

Note that nodes that remain in regions for less than δLU + δLD never establish

links in the described protocol, since due to their motion across region boundaries

they might not be able to receive messages reliably.

For BNDP the number of messages sent depends on the number of times nodes

cross region boundaries. This is because every time a node crosses a boundary two

messages (a leave and a join) are sent. Other nodes in the neighborhood send

join reply messages in response. The number of join reply messages corresponding

to one boundary crossing is bounded by the maximum degree of Gcomm. As described
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Fig. 3.3.: Time required for taking down a link.

above, the timing of these messages depends on the delay bounds provided by the

abstract MAC layer and the maximum queue size q of the MAC broker layer.

The detailed TIOA code for the protocol is given in the appendix. In the next

section we will describe a protocol that allows such nodes to maintain communication

links.

3.3.1 Correctness Proof.

In this subsection, we show that the basic neighbor discovery protocol described

satisfies the well-formedness, weak progress, validity, and reliability defined in Section

3.2. Specifically, it satisfies the (a, b, k)-weak progress condition with constants a =

δLU and b = δLD + L where L ≥ 0 is a user-provided parameter.

Theorem 1. BNDP satisfies the well-formedness condition.
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Proof. Consider nodes i and j. Observe that node j is only added to the neighbor

set of node i with executing the link up(j)i action, and it is only removed when

executing the link down(j)i action.

Suppose that node i performs a link up(j)i, thereby adding node j to its neighbor

set. Node i can only perform another link up(j)i if it receives a join or a join reply

message. In both cases it first checks if j is already in the neighbor set, and therefore

it cannot perform two consecutive link up(j)i actions.

Now suppose that node i performs a link down(j)i, thereby removing node j

from its neighbor set. Node j can only perform another link down(j)i if it receives

a leave message from node j or performs a leave region action. For both cases it

checks its neighbor set to see if j is present in it before doing a link down(j)i, and

therefore it cannot perform two consecutive link down(j)i actions.

Theorem 2. BNDP satisfies the (a, b, k)-weak progress condition.

Proof. Let a = 2F+
rcv + 3F+

ack = δLU and b = 2F+
rcv + (q + 1)F+

ack + L = δLD + L. Fix

time t1 and t2 where t2 ≥ t1 + a+ b, and assume throughout the interval [t1, t2] node

i is in region Ri, node j is in region Rj, where Ri and Rj are at most k hops apart.

Let t ≤ t1 be the earliest time such that i and j are k hops apart throughout

the interval [t, t1]. At time t it follows that either node i entered region Ri, or

node j entered region Rj (or both events happened simultaneously). Without loss of

generality, suppose i entered region Ri at time t. Then node i would have initiated

the link establishment procedure by sending a join message at time t. Moreover, this

procedure takes time a = δLU by construction, and hence starting at time t+a ≤ t1+a

both (i, j) and (j, i) are Up.
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The link tear down is not initiated by either endpoint until b = δLD time before

leaving their respective regions, which by assumption, is no earlier than t2− b (since

b = δLD). So (i, j) and (j, i) remain up until at least t2−b and the theorem follows.

Theorem 3. BNDP satisfies the k-validity condition.

Proof. Suppose by contradiction that at time t link (j, i) is Up, but node i and node

j are more than k hops apart.

Since messages from nodes which are more than k hops away are always ignored,

then for (j, i) to be Up at time t it must be that node i sent a join (or join reply)

message when it has k hops away from j and this message was received by j before

time t. Let t′ < t be the last time that node i sent a join (or join reply) message

when it was at most k hops away from j and which was received by node j before

time t.

Moreover, since by assumption at time t they are more than k hops apart, let

t′′ ∈ (t′, t] be the last time before time t but after after time t′ that one of the nodes

left a region as to become more than k hops apart.

If node j sent the leave message, then it would have set link (j, i) to Dn imme-

diately. On the other hand, if node i sent the leave message, then it sent it at time

t′′−δLD and it will be received by node j at time t′′−δLD+F+
rcv+F+

ack < t′′, at which

point node j would set the link (j, i) to Dn. In either case since by assumption the

last join (or join reply) message received by j from i while they were k hops apart

was received at time t′ < t′′, this implies that the link (j, i) remains Dn at time t –

a contradiction.

Theorem 4. BNDP satisfies the reliability condition.

Proof. Suppose that link (i, j) is Up at time t and node i sends a message at time t.

We will show this message is delivered by j. The fact that the message is delivered
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exactly once, and messages are only delivered if they were in fact generated by a

node follows from the properties of the MAC layer.

Since (i, j) is Up at time t, then by the validity condition node i is in region Ri,

and node j is in region Rj, where Ri and Rj are at most k hops apart. If throughout

the interval [t, t + δLD − F+
rcv − F+

ack] nodes i and j remain at most k hops apart,

then node i has sufficient time to empty its message queue and these messages will

be successfully delivered to node j while it is still within communication range. We

will show that this is the case.

Hence, let t′ > t be the first time that node i and j become separated by more

than k hops. This means at time t′ either node i or node j left a region. If node i left

a region then it sent a leave message at time t′− δLD and immediately set link (i, j)

to Dn. However since by assumption at time t the link is Up then t′ > t + δLD and

the theorem holds. Otherwise, node j left a region and sent a leave message at time

t′ − δLD. This message was then processed by node i setting link (i, j) to Dn before

time t′ − δLD + F+
rcv + F+

ack. Therefore t′ > t + δLD − F+
rcv − F+

ack and the theorem

holds.

3.4 Uniform Neighbor Discovery

The weak progress condition only requires that links should be formed between

relatively “stable” nodes. In other words, links are only required between a pair of

nodes which do not cross any region boundaries and either remain inside the same

region or remain in two regions that are close. In contrast, uniform progress requires

links between nodes which stay close to each other for sufficiently long intervals of

time, irrespective of whether they cross region boundaries.
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We showed in Section 3.3, Theorem 2, that the basic neighbor discovery protocol

guarantees weak progress. However, it does not guarantee uniform progress. Hence

the basic neighbor discovery protocol does not guarantee links between nodes which

stay close together during arbitrarily long intervals of time, but keep crossing bound-

aries. This can be restrictive in environments where nodes frequently cross region

boundaries. In this section we present a uniform neighbor discovery protocol which

guarantees uniform progress, and allows nodes which stay close for a sufficient time

to form links, even if they cross region boundaries during that time.

Before we describe in detail how to implement the uniform neighbor discovery

protocol, let us define some properties related to the motion of nodes, which are

used to guarantee uniform progress. Note that in the following definition a and b

correspond to the same constants given in the definition of (a, b, k)-weak progress.

Definition 7. Suppose that Z is a region partitioning scheme. We say a node v ∈ V

is stable in partition Z at time t, if ∀t ∈ [t− a, t+ b] v stays in the same region with

respect to Z and does not cross any region boundary which belongs to Z.

Definition 8. We say a node is jittering in partition Z at time t, if it is not stable

in Z at time t.

Note that weak progress requires that nodes stay in one region for a certain

interval of time in order to guarantee a link. Hence, weak progress requires only

stable nodes to form links. Uniform progress on the other hand, requires not only

stable nodes to form links, but also jittering nodes that are sufficiently close for some

period of time.

From now on we assume that there exists some constant c ∈ R that bounds

the maximum speed of the nodes. Since in real deployments motion speed is al-
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ways bounded, and the communication speed is orders of magnitude faster than the

physical speed of the nodes, we do not expect this assumption to be a limitation.

In Figure 3.4 a) the node is jittering in the solid line partition, but not in the

dashed line partition where it is stable. This is a key observation related to the

stability property of nodes which we use in order to guarantee uniform progress.

3.4.1 Stability and Displaced Grid Partitions

In this section we discuss the motion of nodes with respect to regular partitions

of the plane, and how these partitions can help in boosting the progress guarantees

provided by BNDP. We only consider regular grid partitions or square tilings of the

plane. Other types of partitions such as hexagonal tilings of the plane are discussed

in Section 3.4.4.

Regular grid partitions can be thought of as consisting of two set of lines. Lines

in the same set are parallel to each other and uniformly spaced. Lines from different

sets are perpendicular to each other and intersect at only one point. We consider

only grid partitions which are aligned with the x- and y-axis. Hence, one set of lines

can be referred to as horizontal lines, while the other set can be referred to as vertical

lines.

Definition 9. Let Z0 be a grid partition where ` is the distance between two parallel

lines. We define the set of w grid partitions Zw = {Z0, . . . ,Zw−1} as consisting of

identical axis-aligned partitions displaced from each other by a distance of i · `
w

along

both the horizontal and vertical axes.

If a node is jittering with respect to a partition, it means that it has crossed at

least one boundary line of that partition during time interval [t− a, t + b] (where a

and b refer to the constants in the definition of (a, b, k)-weak progress).
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We now show a result concerning the motion of nodes with respect to Z2.

Theorem 5. For the set of regular grid partitions Z2 there exists a node motion that

respects a speed limit of c, where c > 0, while jittering in both partitions.

Proof Sketch. For the set Z2 any horizontal line of one partition intersects with

any vertical line of the second partition at a single point. Therefore, it is possible to

define a motion such that the node speed never exceeds c and the node is jittering

on both partitions (see Figure 3.4 b)).

In the following we show an important result concerning a set of three or more

displaced grid partitions. We show that for the case of three or more partitions, a

node can jitter in at most two partitions at time t. Again a and b here refer to the

same constants given in the definition of (a, b, k)-weak progress.

Lemma 1. For any set of three or more regular, axis-aligned grid partitions, such

that the minimum distance between two parallel lines is x, a node which has a maxi-

mum speed of x/(a+b) during the interval [t−a, t+b], jitters in at most two partitions

at time t.

Proof. Let us suppose in contradiction that a node respects a speed limit of x/(a+b)

during the interval [t − a, t + b] and jitters with respect to three or more partitions

at time t. This implies that it crosses one region boundary of three or more distinct

partitions during the time interval [t−a, t+b]. Since at least two of these boundaries

are parallel to each other and the distance between them is x, the node must have a

speed which is strictly greater than x/(a+ b). This is a contradiction.

The above lemma concerns the stability of a single node. However, for our prob-

lem we have to consider links formed between pairs of nodes. Hence, it is important

to investigate the stability properties of a pair of nodes with respect to displaced
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partitions. Lemma 1 leads to the following corollary, which shows that even four dis-

placed partitions are not sufficient for two nodes to be stable in the same partition.

Corollary 1. Consider any set of four regular, axis-aligned grid partitions and any

speed limit c > 0. It is possible for two nodes to respect the speed limit of c, while

not being stable in the same partition.

Proof. Consider two nodes i and j. Suppose that node i is jittering in subset A of the

partitions at time t, where |A| ≤ 2 by Lemma 1, and node j is jittering in subset B

of the partitions at time t, where |B| ≤ 2 by Lemma 1. It may be that |A|+ |B| = 4

and A ∩ B = ∅. In this case there is no partition in which both nodes are stable at

the same time.

Finally we show that a set of five identical displaced partitions is sufficient to

guarantee the stability property for a pair of nodes.

Lemma 2. For any set of five or more regular, axis-aligned grid partitions, such

that the minimum distance between two parallel lines is x, and a pair of nodes i and

j which have a maximum speed of x/(a + b) during the interval [t − a, t + b], there

exists a partition where both i and j are stable at time t.

Proof. Consider two nodes i and j. Suppose that node i is jittering in subset A of

the partitions at time t, where |A| ≤ 2 by Lemma 1, and node j is jittering in subset

B of the partitions at time t, where |B| ≤ 2 by Lemma 1. Since, |A| + |B| ≤ 4, at

least one partition is not in A ∪ B, and there exists at least one partition at time t,

where both nodes i and j are stable.

This leads us to the following Theorem, which shows that we can use the set of

partitions Z5, as defined earlier, in order to help achieve the desired stability property

for a pair of nodes
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(a) Jittering in a single par-
tition

(b) Jittering in Z2. (c) Jittering in Z3.

Fig. 3.4.: Jittering trajectories

Theorem 6. If two nodes respect a speed limit of `/5(a + b) during the interval

[t − a, t + b], there exists a partition Zi ∈ Z5 (for which x = `/5) with respect to

which both nodes are stable at time t.

3.4.2 Uniform Neighbor Discovery Protocol

In this section we present the uniform neighbor discovery protocol (UNDP) which

guarantees uniform progress by using the stability properties of nodes with respect

to a set of five displaced partitions as discussed in the previous subsection.

The main idea used to implement UNDP is to simultaneously execute five in-

stances of BNDP, each associated with one of five identical, displaced partitions. In

particular we use the set Z5 of identical partitions as defined in the previous sub-

section and run a separate instance of BNDP for each of the five partitions. We

then compose the output of these five instances to get the desired uniform progress

guarantee. Figure 3.5 shows the detailed interactions between different components.

We show that this technique of composing the output of different BNDP in-

stances provides stronger guarantees, however, these guarantees apply to a smaller



38

BNDP1 BNDP2 BNDP3 BNDP4 BNDP5

MP1 MP2 MP3 MP4 MP5

OR-
Combiner

link_up(j)i link_down(j)i

rcv(m)i

bcast_msg_ndp(m)i

rcv(m)i rcv(m)ircv(m)ircv(m)i

Fig. 3.5.: Uniform neighbor discovery block diagram. Each BNDP instance has a
message processing (MP) automaton associated with it.

neighborhood area as compared to BNDP. This means that if we set the maximum

hop distance as k′ for each instance of BNDP, then after composition, the final UNDP

output will guarantee uniform progress for nodes which have k = k′ − 1 as the max-

imum hop distance between them. We discuss the trade-off between progress and

hop distance in detail at the end of this section.

All messages sent and received by each BNDP instance must be routed to the

correct instance of BNDP at the other node. For this purpose we have a message

processing (MP) automaton with each BNDP instance which attaches an id to each

message sent and removes the ids of received messages. The id associates each

message with a particular partition among the set of five partitions and hence, with

a particular instance of BNDP.
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In order to compose the outputs of the five BNDP instance we have an OR-

Combiner automaton. The OR-Combiner receives the output of each of the five

instances and outputs a link up(j) if there exists any BNDP instance for which node

j is a neighbor (i.e. the first time that a link up(j) happens for any BNDP instance).

The OR-Combiner outputs a link down(j) if there exists no BNDP instance for which

j is a neighbor.

3.4.3 Proof of Correctness for the Uniform Neighbor Discovery Protocol

Theorem 7. UNDP satisfies the well-formedness condition.

Proof. UNDP satisfies well-formedness since the output of the OR-Combiner is com-

posed of the outputs of the BNDP instances and BNDP satisfies the well-formedness

condition.

Theorem 8. UNDP satisfies the k-validity and reliability conditions.

Proof. The output of the OR-Combiner is composed of the outputs of the BNDP

instances. A link between two nodes i and j is Up at time t, if it is Up in at least

one of the BNDP instances. Since BNDP satisfies validity and safety, the distance

between i and j is less than rmin, and a message sent by node i at time t is received

by node j.

The (a, b, k)-uniform progress condition states that nodes which remain at most

k hops apart during some time interval should be guaranteed a communication link.

Since the number of hops between two nodes is measured with respect to a single

partition,

we pick one of the five partitions arbitrarily and define the number of hops with

respect to it.
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However, the algorithm actually provides stronger connectivity guarantees, since

the link between two nodes remains Up as long as the nodes remain k hops apart

with respect to any partition (the partition can be different for every time instant).

Before we show that UNDP guarantees uniform progress, let us define some terms.

Definition 10. Suppose we have two points p and q on the plane. If we draw a

straight line segment U which connects p and q, hopZy (p, q) is the number of vertical

lines (parallel to the y-axis) belonging to partition Z which intersect U .

Definition 11. Suppose we have two points p and q on the plane. If we draw a

straight line segment U which connects p and q, hopZx (p, q) is the number of horizontal

lines (parallel to the x-axis) belonging to partition Z which intersect U .

Definition 12. Let hopZ(p, q) be the number of hops between two points p and q with

respect to partition Z in the region graph of partition Z as defined in Section 3.2.

From the definition of hops with respect to grid partitions we have:

hopZ(p, q) = max(hopZx (p, q), hopZy (p, q))

Lemma 3. Consider a set of identical but displaced grid partitions and a pair of

points. The hop distance between the two points varies by at most one hop between

partitions.

Proof. Suppose that A and B are two partitions which are identical but displaced.

Now suppose, without loss of generality that for two points p and q hopB(p, q) ≥

hopA(p, q). Now suppose that hopAx (p, q) = xa and hopAy (p, q) = ya. Since the

partitions are identical but displaced from each other by some distance, there may
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be only one more horizontal line from partition B between points p and q, than from

partition A. The same is true of vertical lines. Hence we have the following:

hopBx (p, q) ≤ xa + 1

hopBy (p, q) ≤ ya + 1

However we know that:

hopB(p, q) = max(hopBx (p, q), hopBy (p, q))

Hence we have:

hopB(p, q) ≤ max(xa + 1, ya + 1)

= hopA(p, q) + 1

From this we have:

hopB(p, q) ≤ hopA(p, q) + 1

We can now prove that UNDP satisfies the uniform progress guarantee.

Theorem 9. UNDP satisfies the (a, b, k)-uniform progress condition.
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Proof. Consider two nodes i and j which remain k hops apart with respect to one

out of the five partitions during time interval [t−a, t+b] and have a maximum speed

of `/5(a+ b) during this time interval.

These nodes are stable in at least one partition due to Theorem 6. Since these

nodes are k hops apart in one partition, they are k′ = k + 1 hops apart in all five

partitions due to Lemma 3. This means these nodes are k′ = k+ 1 hops apart in the

partition in which they are stable. We also know that the BNDP instance associated

with this partition guarantees weak progress. This means that the link (i, j) remains

Up with respect to this partition during time interval [t − a, t + b]. This further

implies that the link remains Up in the output of the OR-Combiner. Hence, uniform

progress is guaranteed.

Note that the stronger progress guarantees associated with UNDP apply to a

smaller neighborhood area (k = k′ − 1 hops) as compared to BNDP (k′ hops). If we

increase the value of k′ and fit a larger number of regions inside the circle of radius

rmin, we can decrease the difference between the area covered by k = k′−1 hops and

k′ hops. However, since we now have more regions in the same area, a mobile node

may have to cross more region boundaries while following a certain motion pattern.

This means that more messages would be sent, since every time a node crosses a

boundary two messages (leave and join) are sent by the crossing node and other

nodes in the neighborhood send join reply messages. These join reply messages are

bounded by the maximum degree of Gcomm.

In addition to this, the value of parameter k cannot be increased beyond a certain

value. As k increases, x, which is the minimum distance between two parallel line

boundaries that belong to distinct partitions, becomes smaller. This means that

nodes traveling with a certain speed can now cross two boundaries that belong to
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distinct partitions, in a smaller interval of time. However, nodes must respect a speed

limit of x/(a+ b). The parameters a and b depend on the queue size q, and the delay

bounds provided by the abstract MAC layer: F+
rcv, and F+

ack. These delay bounds

depend on the implementation of the abstract MAC layer and are independent of the

neighbor discovery layer. Reducing q which is the size of the queue means placing

stricter requirements on the user layer to prevent overflow. Hence, it may not be

possible to reduce the values of a and b beyond a certain point. Therefore, in order

to tolerate fast node speeds, k should not be increased beyond a certain threshold.

3.4.4 Stability and Displaced Hexagonal Partitions

In this section we will prove a simple result which allows us to translate the main

results we showed for regular grid partitions for a particular family of hexagonal

partitions. The most important consequence is that there is a family of 5 regular

hexagonal partitions which is sufficient to guarantee the stability of any pair of nodes

in at least one partition (assuming reasonable speed limits). Note that we do not

characterize the optimal placement of these partitions.

Hexagons, like squares, form a regular tiling of the plane and provide a close ap-

proximation to the circular wireless broadcast range of mobile nodes. In a hexagonal

tiling of the plane the boundaries between different regions can be described by the

union of three sets of line segments. Line segments from the same set are parallel or

on the same line and line segments from different sets may intersect with each other.

Let H0 be a hexagonal partition where h is the distance between any two par-

allel sides of a hexagon. We consider a family of p hexagonal partitions Hp =

{H0, . . . ,Hp−1}, where partition Hi is a copy of H0 displaced by i · h
p
. This displace-

ment is along any axis which is perpendicular to any two parallel sides of a hexagon
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(see Figure 3.6). For the purpose of this discussion, we will assume the displacement

is along the horizontal axis.

It will be convenient to group the boundaries of each partition into three groups of

parallel line segments, and prove some properties about these groups. We summarize

these properties in the next lemma.

Fig. 3.6.: Hexagonal partitions.

Lemma 4. The region boundaries of the family Hp can be separated into three sets

of line segments R, S and T (where segments from the same set are either parallel

or lie on the same line), such that:

The intersections between two region boundaries that belong to distinct region

partitions involve only one line segment from the set S and one line segment from T

(and never a line from R).

Proof. First, let us cover the space by two disjoint sets of horizontal strips

There is a single set of parallel line segments (specifically vertical line segments)

in the strips of type B, let R denote the set of these line segments. Since the region

partitions in Hp are displaced horizontally, it should be evident that no two line

segments in R intersect.

In contrast, in the strips of type A there are two sets of parallel line segments,

which we group into the sets S and T , each of them containing parallel line segments.
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As before, since the region partitions in Hp are displaced horizontally (and neither

the lines in S or T are horizontal), it should be evident that no two line segments in

S (and no two line segments in R) intersect.

Moreover, for a line segment x ∈ R and y ∈ S (or y ∈ T ) it is also never the case

that x and y intersect if they belong to different region partitions. In other words, if

the partition boundaries of two regions A and B (of two different partitions) intersect,

it is always the case that they intersect at the point where a line segment x ∈ S and

a line segment y ∈ T intersect.

The key property that allowed us to show the main results of Section 3.4.1 was

that a regular grid partition consists of two sets of lines, and lines from the same set

never intersect, while lines from different sets always intersect. On the other hand,

with Hp we now have three sets of parallel line segments, R, S and T . However,

from the previous result we know that intersections of two different partition never

involve lines from the set R, and they always involve one line from S and one line

from T .

This allows us to obtain analogous versions of Theorems 5, and 6 for hexagonal

partitions, if a node respects a speed limit of x/(a + b) (where x is the minimum

distance between two parallel lines that belong to distinct partitions) during the

interval [t− a, t+ b].

3.5 Coordination

In this section we discuss coordination between the endpoints of a link in the

context of neighbor discovery. In an asynchronous network, each endpoint may have

a different perspective on the status of a particular communication link. Depending

on the level of coordination between the two endpoints, the link may be established
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at the same time at both endpoints or it may come up at different times at the

two endpoints. The underlying neighbor discovery protocol may control link status

notifications to provide different levels of coordination, according to the requirements

of different applications. We define three different types of coordination conditions

for neighbor discovery:

1. Coordinated Neighbor Discovery

2. Loosely Coordinated Neighbor Discovery.

3. Uncoordinated Neighbor Discovery.

Each of these specifications is defined by the level of coordination between the

two endpoints of a communication link. In coordinated neighbor discovery, the link

comes Up and goes Dn at the same time at the two endpoints. Coordinated neighbor

discovery is defined by the following requirement:

Definition 13 (Coordinated Neighbor Discovery).

A link up at one endpoint occurs at time t if and only if a link up at the other

endpoint occurs at time t. There is an analogous condition for link downs.

This specification is restrictive and may be costly to implement. However, since

the events are perfectly coordinated at the two endpoints, it may be beneficial under

certain circumstances.

In loosely coordinated neighbor discovery, we relax this requirement. The link

can come Up at different times at the two endpoints. The same is true for links

going Dn. However, whenever the link goes Up (resp. Dn) at one endpoint, there is

a corresponding Up (resp. Dn) event at the other endpoint before a Dn (resp. Up)

event occurs at either endpoint. Loosely coordinated neighbor discovery is defined

by the following requirement.
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Fig. 3.7.: Different levels of coordination in neighbor discovery.

Definition 14 (Loosely Coordinated Neighbor Discovery). If a link up(j)i (resp.,

link down(j)i) occurs at node i at time t1, then a link up(i)j (resp., link down(i)j)

must occur at node j at some time t2 > t1 before a link down (resp., link up) can

occur at either node after time t1.

This can also be stated in terms of the following conditions:

1. If link (i, j) is Up during time interval [t1, t2] then link (j, i) cannot go through

the states Up, Dn, Up during time interval [t1, t2].

2. If link (i, j) is Dn during time interval [t1, t2] then link(j, i) cannot go through

the states Dn, Up, Dn during time interval [t1, t2].

Intuitively if there is a link up at one endpoint then there is a corresponding link up

at the other end before there is a link down at either end and vice versa.
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In uncoordinated neighbor discovery there is no coordination required between

the two endpoints of the link. The status of the link can go Up or Dn arbitrarily

at the two nodes between which the link is present. Note that even without any

coordination, message delivery is guaranteed. That is, if the link is up at node i and

it sends a message to node j then this message will be delivered to node j even if

the link is down at node j due to Reliability. These different levels of coordination

are shown in Figure 3.7.

3.5.1 Coordination and BNDP

We now prove that BNDP guarantees loose coordination.

Theorem 10. BNDP satisfies the loose coordination condition.

Proof. If link (i, j) is Up during time interval [t1, t2] then link (j, i) cannot go through

the states Up, Dn, Up during time interval [t1, t2]. To prove this fix nodes i and j

where the directed edges (i, j) and (j, i) are both in the Up. Suppose the edge (j, i)

switches to the Dn state at time t1 ≤ t ≤ t2 while the edge (i, j) remains Up. The

state change Up → Dn of edge (j, i) was caused by either a leave region action or

by the reception of a leave message. It suffices to show that in either case the edge

(j, i) can’t switch back to Up before the edge (i, j) switches to the Dn state.

If node j executed leave region at time t it will broadcast a leave message. Thus

by time at most t+F+
rcv node i would have received the leave message and switched

to the Dn state as well, and node j cannot go to state Up before t+ δLD > t+F+
rcv .

If node j processed a leave message at time t, the message was sent by node i

at time t′ (where t ≥ t′ ≥ t − F+
rcv). This means node i became inactive at t′ and

switched to Dn state. However, link (j, i) can only switch back to Up when node
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j receives a join or join reply message from node i. Since nodes only send these

messages when active, this will not happen until t′ + δLD at the earliest.

If link (i, j) is Dn during time interval [t1, t2] then link(j, i) cannot go through

the states Dn, Up, Dn during time interval [t1, t2]. To show this fix nodes i and j

where the directed edges (i, j) and (j, i) are both in the Dn state. Suppose the edge

(j, i) switches to the Up state at time t1 ≤ t ≤ t2 while the edge (i, j) remains Dn.

The state change Dn → Up of edge (j, i) was triggered by the reception of a join

or a join reply message from node i. It suffices to show that in either case the edge

(j, i) can’t switch back to Dn before the edge (i, j) switches to the Up state.

If node j processed a join message at time t it was sent by node i at time t′

(where t ≥ t′ ≥ t − F+
rcv). By time t′′ (where t + F+

ack + F+
rcv ≥ t′′ ≥ t) node i

receives the corresponding join reply message and switches to the Up state (note

that t + F+
ack time is required for the batch processing of join messages ). Node j

can only switch back to Dn by either executing a leave region or receiving a leave.

However, since it sent a join reply at time t+F+
ack it will execute leave region at time

t+δLU ≥ t+F+
ack+F+

rcv at the earliest. Moreover it cannot receive the leave message

before it is sent by node i, and this won’t happen until t′+ δLU +L ≥ t+F+
ack +F+

rcv

at the earliest, since node i sent a join at time t′.

If node j processed a join reply message at time t it was sent by node i at time t′

(where t ≥ t′ ≥ t−F+
rcv). Therefore at time t′ node i was active and in the Up state,

the earliest it can switch to a Dn state is at time t′ + δLU ≥ t, but this contradicts

the assumption that (i, j) was Dn.
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3.5.2 Coordination and UNDP

Now we show that although UNDP satisfies uniform progress, it does not guar-

antee even loose coordination. We show this by means of a counter-example, where

we assume that k = 2. Consider the motion pattern shown in Figure 3.8. The time

line for links between nodes i and j is shown in Figure 3.9. Suppose that at time

t both nodes i and j are neighbors in one grid partition only (the dotted partition

in Figure 3.8) as shown by their original positions in Figure 3.8. Let us call this

partition x. Then in a small interval of time the following events occur. First node

j crosses the boundary of a another grid partition (the dashed partition in Figure

3.8). Let us call this partition y. Node j sends a join message for partition y. Then

node j does a link down(i)j for partition x and sends a leave message for partition

x, since it is about to cross the boundary of partition x. Node i then crosses the

boundary of grid partition y.

After this node i receives the join message sent by node j and does a link up(j)i

for partition y. Node i then receives the leave message sent by node j and does a

link down(j)i for partition x. Node i sends a join reply in response to the earlier

join message. Node j receives this and does a link up(i)j for partition y.

The resulting link status for partitions x and y is shown. The link between nodes

i and j remains down in all the other three grid partitions since they are more than

k hops apart (for k = 2). Combining the outputs of partitions x and y causes a

violation of loose coordination.

3.5.3 Impact on Applications

In this section we discuss the impact of coordination on different applications. We

consider two different application layer algorithms which assume neighbor discovery
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layers with different levels of coordination. In one case it may be shown that although

loose coordination is assumed, no coordination is actually required. Hence, it may

be beneficial when designing algorithms for mobile ad hoc networks to consider how

much coordination is sufficient and necessary.

The first algorithm is a mutual exclusion algorithm presented in [50] which as-

sumes coordinated neighbor discovery. However, closer analysis reveals that coordi-

nated neighbor discovery is not necessary for the correctness of the algorithm. In

fact, loose coordination is sufficient. But without loose coordination, mismatched

link ups and link downs for the link between two nodes can cause starvation of one

of the nodes. Hence, the algorithm may be used with Basic-NDP, at the expense of

uniform progress.

The second algorithm is a leader election algorithm presented in [27]. Here the

authors assume loose coordination so that nodes may transition appropriately from

learning about each other to being neighbors. However, no coordination is actually

required, since there is no information lost if mismatched link ups and link downs

occur at the two endpoints of a link. The algorithm can be used with UNDP and

benefit from uniform progress.

There are also other algorithms which can be used with UNDP without being

modified. For instance, the token circulation algorithms presented in [38] assume an

uncoordinated neighbor discovery layer.

In conclusion, Basic-NDP provides loose coordination, however, only weak progress

is guaranteed. In contrast UNDP provides stronger progress, however, there is no

guarantee even of loose coordination between endpoints, which may be useful for

certain applications.
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4. NEIGHBOR KNOWLEDGE AND COLLISION AVOIDANCE1

4.1 Introduction

In this section we focus on the problem of maintaining information about neigh-

boring nodes and learning about neighbors as they enter communication range. We

present a deterministic solution for nodes in a mobile wireless ad hoc network to

communicate reliably and maintain local neighborhood information. The nodes are

located on a two-dimensional plane and may be in continuous motion. In our so-

lution we tile the plane with hexagons. Each hexagon is assigned a color from a

finite set of colors. Two hexagons of the same color are located sufficiently far apart

so that nodes in these two hexagons cannot interfere with each other’s broadcasts.

Based on this partitioning we develop a periodic deterministic schedule for mobile

nodes to broadcast. This schedule guarantees collision avoidance. Broadcast slots

are tied to geographic locations instead of nodes and the schedule for a node changes

dynamically as it moves from tile to tile. The schedule allows nodes to maintain in-

formation about their local neighborhood. This information in turn is used to keep

the schedule collision-free. We demonstrate the correctness of our algorithm, and

discuss how the periodic schedule can be adapted for different scenarios. The peri-

odic schedule, however, does not address the problem of initial neighbor discovery

at start-up. We give a separate algorithm for this problem of initially discovering

nodes present within communication range at start-up.

Our work is inspired by that of Ellen et al. [18], in which a collision-free schedule

is presented for nodes that are restricted to moving along a one-dimensional line

1Part of this section is reprinted with kind permission from Springer Science and Business Me-
dia, from Viqar, S., Welch, J.L.: Deterministic collision free communication despite continuous
motion. In: ALGOSENSORS, pp. 218–229, Copyright Springer-Verlag Berlin Heidelberg 2009.
http://dx.doi.org/10.1007/978-3-642-05434-1 22.
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(such as along a highway). Their work is particularly relevant for Vehicular Ad Hoc

Networks (VANETs) since vehicles often move along highways laid out in straight

lines. In that work, the line is partitioned into equal-size segments. The segments

are partitioned into a finite number of classes (or colors) in a way that guarantees

that simultaneous broadcasts by two nodes in different segments with the same color

do not interfere. A schedule is developed that accommodates the node mobility;

this schedule is then used to facilitate a scheme to ensure that each node learns

about other nodes before they get too close to each other. Their results, however,

are not applicable to two-dimensional VANETs with multiple lanes, parallel roads

and intersections since the nodes are restricted to one dimension. In this work we

no longer restrict nodes to moving on a one-dimensional straight line and consider

the general case of nodes moving arbitrarily on a two-dimensional plane. Hence our

work is not only applicable to two-dimensional VANETs but also any other type of

two-dimensional MANETs.

In our solution we use a combination of Space Division Multiplexing (SDM)

and Time Division Multiplexing (TDMA). For the SDM part of our algorithm we

consider the plane to be tiled with hexagons. We partition the hexagons into a

finite set of colors such that nodes in different hexagons of the same color cannot

interfere with each other’s broadcasts. The partitioning is shown in a simple example

in Figure 4.1. The partitioning allows nodes in different geographic locations to

broadcast simultaneously without collisions. We also take into consideration the

fact that nodes may be in motion as they broadcast. Based on this partitioning,

we develop an efficient periodic deterministic schedule for mobile nodes to transmit

which guarantees collision avoidance. The schedule is based on TDMA and ensures

that nodes in different colored hexagons never broadcast at the same time. The

schedule ensures that every node learns about other nodes before they have entered
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Fig. 4.1.: An example of a partitioning. Hexagons are partitioned into seven classes.
Hexagons of the same color or partition broadcast at the same time.

a certain distance inside its broadcast radius. A preliminary version of this work

appears in [48].

4.2 Definitions

We consider a set of n nodes which move on a two-dimensional plane. Each

mobile node has a unique identifier from a set I. This set is bounded in size. The

mobile nodes may fail at any time. We only consider crash failures. For each node

there is a trajectory function which specifies the motion of the node by giving the

location of the node on the plane at every time. We assume that a node’s trajectory

remains constant for a certain fixed interval of time (this interval is defined in the

next section). The maximum speed of the nodes has an upper bound given by σ.
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Communication between nodes takes place through wireless broadcast. The

transmission radius of the wireless network is given by R and the interference radius

is given by R′. If we consider two nodes p and p′ such that p broadcasts and p′

remains within distance R of p during the broadcast, then the message sent by p will

arrive at p′. If there is no other transmitting node within the interference radius

R′ of p′ during the broadcast slot of p the message will be received by p′ and p′

successfully learns the contents of the message.

Each node has access to the current time (through GPS etc.). Hence, its location

at a particular time can be determined from its trajectory function. Notice that the

presence of a GPS device is a realistic assumption for vehicular ad hoc networks.

Nodes begin transmitting at fixed intervals of time. A broadcast slot is the time it

takes for a node to complete its transmission so that its message arrives at all nodes

in broadcast range.

We assume there exists an upper bound on the number of nodes per unit area.

This upper bound on the density of nodes is realistic since nodes cannot be infinitely

small in size.

4.2.1 Problem Definition

The aim of this work is to provide a deterministic collision-free schedule for mobile

nodes such that every node gets infinitely many opportunities to broadcast. This

schedule can serve as the Medium Access Control (MAC) layer for mobile ad hoc

networks where nodes may be in continuous motion for long periods of time.
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Fig. 4.2.: If a and b are in adjacent hexagons at the beginning of a phase they can
receive each other’s broadcasts since ρ + 2muσ ≤ R. On the other hand if a and b
are in hexagons allocated the same slot they can broadcast without collision since
λ− 2muσ ≥ R +R′.

4.3 Algorithm Overview

In our solution we assume that the plane is tiled with hexagons. Our choice of

hexagons is based on two factors. Hexagons can form a regular tiling of the plane,

and they give a good approximation of the circular broadcast range of wireless nodes.

In our algorithm (see Algorithm 1) mobile nodes are dynamically scheduled to

broadcast depending on the geographic location of the tile they occupy at a particular

instant of time. The size of these hexagonal tiles depends on the broadcast radius R of

the mobile nodes. Roughly we require that R spans a little more than two tiles. This

ensures that nodes in adjacent hexagons are within each others’ broadcast radius.

A set of m contiguous hexagonal tiles are grouped together to form a supertile.

Each tile in a supertile is assigned a different color. These supertiles also tile the

plane. Corresponding hexagons which lie at the same position in two different su-

pertiles share the same color and are scheduled to broadcast simultaneously. By
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carefully selecting the number of tiles m in a supertile and its shape, we ensure that

tiles of the same color in adjacent supertiles are located far enough apart, so that

nodes in these tiles can broadcast simultaneously without causing a collision at any

receiving node. Note that collision-freedom is ensured despite the fact that the nodes

maybe in continuous motion while they broadcast.

The choice of m depends on the actual values of the broadcast radius R, the

interference radius R′, and the upper bound σ on the maximum speed of the nodes.

Roughly, the supertile should be large enough so that nodes in tiles assigned the

same color remain more than R+R′ apart, even if they are moving straight toward

each other. We assume that the tiling of the plane and the assignment of colors

to tiles is predetermined and known to all the mobile nodes in advance. Tiling the

plane in this way is a form of space division multiplexing (SDM) since the mobile

nodes are separated in space to prevent interference. In addition to this, we perform

Time Division Multiplexing inside the hexagons and the supertiles. A fixed number

of broadcast slots (given by u) are grouped together to form a round. Each round

corresponds to one hexagon, and is the time allocated to all the nodes in one hexagon

to schedule their broadcasts. In order to cover all the hexagons in one supertile we

then require m rounds; one for each color. We define this as one phase. The length

of one phase is then equal to mu broadcast slots. The assignment of the m rounds

in a phase to different colored tiles forms an ordering of the colors with respect to

time. Note that the ordering of colors can change from phase to phase depending on

the schedule. In Section 4.5 we discuss different types of schedules.

Slots are allocated to mobile nodes only at the beginning of every phase. Hence at

the start of every phase a mobile node determines the color of the hexagonal tile it is

located in. It can then determine which one of the m rounds in that phase it should

broadcast in. Furthermore, at the start of every phase, a mobile node possesses
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knowledge about all other nodes present in its own tile (owing to the maintenance

of local neighborhood knowledge). Specifically it is aware of the identifiers of these

nodes. Based on the rank of its own identifier in this set of identifiers, it can select

one of the u slots in its round, to carry out its broadcast. Hence, at the start of a

phase, every node in every tile knows exactly which slot to broadcast in. Note that

we assume that the maximum number of nodes that can occupy a tile at any instant

is bounded by v < u. This allows us to have fixed length rounds and phases. The

first v slots of a round are used by the nodes to perform broadcasts. The remaining

u− v slots can be used by other protocols or applications.

As mentioned earlier, the size of the tiles and supertiles is also influenced by σ,

the upper bound on node speed, because σ determines the maximum distance that a

node can travel in one phase. Since the length of a phase is mu slots, this distance is

given by muσ. We require that R should be larger than the diameter of two tiles by

at least 2muσ. We also require that tiles of the same color be separated at least by

R+R′ in addition to 2muσ. Suppose that a node moves out of its tile before its turn

to broadcast in a phase. These constraints will ensure that its broadcast still reaches

its neighbors, without causing a collision. In essence, the broadcasts of all the nodes

in one supertile are separated in time and cannot interfere. Only nodes present in

all tiles of the same color throughout the plane broadcast simultaneously. However,

these nodes are always sufficiently separated and cannot interfere with each others’

broadcasts.

The pseudocode for the algorithm is given below. The function clock() returns the

current time, and location() returns the current location of the node. The function

findColor() takes as argument the location of the node. It uses the fixed division of

the plane into tiles and supertiles to determine which color tile the node is located

in. A node includes its trajectory function in its broadcast packet so that neighbors
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can calculate the location of the node at the beginning of the next phase. We assume

that a node’s trajectory remains unchanged for the duration of at least one phase.

This is to ensure that neighbors can have up to date information about a node’s

trajectory until it broadcasts new information.

Algorithm 1 Code for node p

id {node p’s id}
trajectory {p’s trajectory}
N {set of “neighboring” nodes; initially contains all nodes within p’s own and adjacent hexagons;
each entry q consists of q.id and q.trajectory}
S {set of nodes that might become neighbors; initially empty; candidates are collected during
each phase}
when receive a message(id, trajectory) from node q

S := S ∪< id, trajectory >
when clock() = πmu, for some integer π{the beginning of phase π}

N := ∅ {N is the set of neighbors of a node}
loc := location() {(x, y) coordinates, based on p’s trajectory and current time}
hex := findHex(loc){calculate hexagon containing loc}
color := findColor(hex) {calculate color of hexagon(expressed as an integer)}
∀y ε S{update neighbor set}

if (y.trajectory(πmu) ∈ Hex(loc)) {determine neighbors}
N := N ∪ y {N is the set of neighbors}

i := getRank(N){get rank of p’s id in set N; smallest id in N has rank 1, etc.}
slot := color + (i− 1){this is the slot to broadcast in}
S := ∅

when clock() mod mu = slot{time to broadcast}
broadcast(id, trajectory)

4.4 Analysis

4.4.1 Collision Avoidance

We require the following constraint (C1) for collision avoidance (see Figure 4.2).

C1. Let the minimum distance between simultaneously transmitting hexagons be

λ . Then we require λ− 2muσ ≥ R +R′.
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The following lemma shows that under constraint (C1) the algorithm ensures

collision avoidance. Consider two nodes present right at the boundary of different

hexagons of the same color at the beginning of a phase. They are separated only

by the minimum possible distance (λ). Even if they are moving directly toward

each other throughout the current phase, their broadcasts will not cause a collision.

Hence, a node can cross the boundary of its original hexagon during a phase safely

(without causing collisions). This property is maintained from phase to phase.

Lemma 1. If (C1) holds then every broadcast that arrives at a node is received.

Proof. Suppose that this is not the case. Then there are three distinct processors p,

q and r and a broadcast slot j such that p and r broadcast during slot j and q is

within distance R of p throughout slot j, and q is within distance R′ of r at some

time during slot j. Thus at some time during slot j, processors p and r are at most

distance R + R′ apart. Let j′ be the first slot in the phase that contains slot j. At

the beginning of slot j′, processors p and r are more than distance λ apart. This

is because they have been assigned the same broadcast slot in the same round and

hence, they are in hexagons which transmit at the same time. By assumption such

hexagons are separated by distance λ. From the beginning of slot j′ until the end of

slot j is (j − j′ + 1)u ≤ mu units of time. During this period of time they can each

travel distance at most muσ, and so they are more than distance λ−2muσ ≥ R+R′

apart during slot j. This is a contradiction.

4.4.2 Maintenance of Neighborhood Knowledge

We assume that at start-up all nodes have information about nodes in their own

hexagon and in adjacent hexagons, that is all nodes know the trajectory function of
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nodes that are within their own hexagon or in adjacent hexagons. This is stated in

assumption (A1).

A1. At the beginning of phase 0, every node knows the id and trajectory of every

other node in its own hexagon and in adjacent hexagons.

Later in Section 4.7 we show how to relax this assumption.

We introduce constraint (C2) in order to ensure the maintenance of neighborhood

knowledge (see Figure 4.2). Lemma 2 shows that nodes maintain knowledge about

nodes in their own and adjacent hexagons.

C2. Let the distance between the farthest points on the boundary of adjacent

hexagons be equal to ρ. We require that ρ+ 2muσ ≤ R.

Lemma 2. If assumption (A1) and constraints (C1) and (C2) hold, then at the

beginning of each phase π (π ≥ 0) of Algorithm 1 every node knows about every node

that is in its own or an adjacent hexagon.

Proof. By induction on π.

Basis : π = 0; By assumption (A1) and constraint (C2) the lemma holds for

phase 0.

Induction: let us assume the lemma holds for π and prove it for π + 1.

Consider two nodes p and q that are not in adjacent hexagons at the beginning

of phase π. p is in hexagon h1 and q is in hexagon h2 at the beginning of phase π.

Suppose that at the beginning of phase π+ 1 they move into adjacent hexagons. We

need to prove that p learns about q by the end of phase π. Similar arguments hold

for q learning about p. Since p and q can only cover distance muσ in phase π, at

worst they must be distance ρ + 2muσ apart, at the beginning of phase π, in order

to become neighbors in phase π + 1.
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By constraint (C2) q will remain within distance R of node p till the end of phase

π, since it can only cover distance muσ during phase π. Hence, by Lemma 1 p will

receive its broadcast and learn about node q before the end of phase π.

4.5 Schedules

A schedule defines the order in which the rounds are allocated to different colored

tiles in a supertile. A schedule can span multiple phases, and each phase can have a

different ordering of the m colors. We define a schedule to be periodic if the sequence

of colors repeats after a fixed number of phases. For a particular execution of the

algorithm the schedule for all supertiles is the same and known a priori. In this

section we present a general framework for schedules in terms of liveness, fairness,

and directional bias; these terms are defined subsequently. We also discuss the

advantages of particular schedules through examples.

A particular execution of the algorithm is defined to be safe if no collisions occur

during the entire execution. The constraints that we have discussed so far ensure

safety. In particular the distribution of colors on the plane avoids inter-tile collisions,

whereas neighborhood knowledge together with the TDMA performed in each round

prevents intra-tile collisions. In order to ensure liveness during an execution we

require the following condition:

• Every color present in a supertile is allocated at least one round in the schedule.

Furthermore in order to ensure fairness we require the following:

• Each color is allocated the same number of rounds in the schedule.

A schedule is defined to have directional bias if it favors the propagation of in-

formation in one particular direction. We start by considering schedules with a time
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Path a: Boundary Path

Path b: Horizontal Path

Path c: Multiple Paths in 

Different Directions

Fig. 4.3.: Information should flow on all paths without directional bias.

period equal to one phase. In such schedules each color is allocated exactly one round

during one phase and the sequence of colors is the same for every phase. However,

such schedules can suffer from directional bias. The following example illustrates

this. Suppose that we have a schedule in which slots are allocated from left to right

and top to bottom in a supertile in one phase. This schedule is biased in favor of

propagating information rightwards. A similar argument holds for information trav-

eling downwards. Consider the horizontal path b shown in Figure 4.3. Suppose that

information has to travel on this path from one node to another in the rightward
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direction. The information will propagate at a rate of one supertile per phase. Now

suppose that the information has to travel leftwards. This will occur at a rate of only

one hop per phase which is considerably slower. So the schedule is biased in favor

of the information traveling rightwards and downwards. This shows that a schedule

which is optimal for a certain path may perform poorly for some other path.

We can modify the schedule depending on the requirements of the application.

For example for VANETs with parallel roads we can have alternating left to right

and right to left allocation of rounds along each road, depending how the road tra-

verses a supertile. Instead of delving into the requirements of particular applications,

however, we construct a generalized schedule which is neutral in terms of directional

bias.

In order to avoid the above mentioned directional bias we consider cases where the

time period is more than one phase. Hence, the order in which rounds are allocated

to colors can change from phase to phase. We seek a schedule that is efficient and

that is not biased toward speeding up information propagation in one direction at

the expense of another direction. From the above examples it is clear that we should

alternate between all directions in order to have an unbiased schedule. Consider

the paths in example c shown in Figure 4.3. The schedule should favor propagation

along all six paths from the center equally. The most obvious way this can be

achieved is if we allocate slots in a circular fashion. We can allocate slots in a

supertile in concentric circles, starting from the center of the supertile going toward

its boundaries, in one phase. This enables the propagation of information from the

center of the supertile toward its boundaries. In the next phase we can allocate

slots starting at the boundaries of the supertile, going toward the center. This will

facilitate the propagation of information toward the center of the supertile.
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Fig. 4.4.: An example of the network division into regions where m=91.

Finally the phases alternate between anticlockwise phases and clockwise phases.

The motivation for this is demonstrated by path a in Figure 4.3. The clockwise

phase will allow efficient propagation from right to left whereas the anticlockwise

phase will allow efficient propagation from left to right. The resulting schedule

consists of a allocation of broadcast slots in concentric circles in which the hexagons

take turns in one phase going in a clockwise manner outwards and in the next phase

going anticlockwise inwards. The next two phases follow an anticlockwise outwards
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pattern and a clockwise inwards pattern. The periodicity of this final schedule is

four phases. This schedule is depicted in Figure 4.4.

4.5.1 An Example of the Network Tiling

In this section we show that the schedule developed above is practically feasible,

under the given constraints. We use the default values for R (the broadcast radius)

and R′(the interference radius) given in the IEEE 802.11 standard [24] which are

250 meters and 550 meters respectively. Suppose we take the duration of a phase

to be equal to 100 milliseconds, and σ to be equal to 200 km per hour. This is

a reasonable assumption for VANETs. Using these values, we can show that the

maximum distance that a node can travel in one phase is 5.55 meters ≤ 6 meters,

which we take as the value of muσ. We want to maximize the size of the hexagons

so that we can have fewer hexagons in between two hexagons which are allocated

slots at the same time. This will allow us to minimize m and have fewer broadcast

slots in one phase. Hence, taking ρ + 2muσ = 250 meters we calculate the side of

a hexagon (given by s) to be equal to 65.8 meters. From constraint (C1) we know

that λ ≥ R + R′ + 2muσ = 250 + 550 + 12 = 812 meters. The distance between

two hexagons of the same color has to be greater than or equal to λ = 812 meters.

To calculate the distance in terms of s the side of a hexagon, we divide by s = 65.8,

hence d812/65.8e = 13. Therefore the distance between hexagons of the same color

should be greater than or equal to 13 times the side of a hexagon. An example

of such a tiling of the network is given in Figure 4.4. Here each region consists of

91 hexagons, hence m = 91. This tiling is formed with regions which consist of

concentric rings of hexagons and may not be optimal in terms of m for the given

values of R and R′. However, the shape of the regions is relatively regular, which
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Schedules Average Number of Rounds

Spiral 87.64828

Left to Right 293.16553

Random 275.25516

Fig. 4.5.: Average number of rounds for information propagation on paths between
all node pairs on the boundary tiles of a supertile.

makes it easier to formulate a schedule and perform analysis. Note that using the

final schedule given in Section 4.5 each node gets to transmit once during a phase.

4.6 Simulation Results

We performed a simulation for the comparison of the speed of information prop-

agation for different schedules. We considered information propagation on paths

between all node pairs on the boundary tiles of one supertile (of the same size as

shown in Figure 4.4). In order to compare different schedules we assumed that there

is at least one correct node in each hexagon at all times and nodes remain static. We

considered three different schedules: random, left to right and spiral (as described in

Section 4.5).

The results show that the spiral schedule has on average lower propagation delay

in terms of rounds (see Figure 4.5). Thus information can propagate faster (on

average) across supertiles using this schedule.

The results show that the maximum propagation delay is 125 rounds for the spiral

schedule, whereas for the other schedules it goes as high as 850 rounds, as shown in

Figure 4.6 . For some paths the random and let to right schedule perform better than

the spiral schedule, however, on average the spiral schedule requires fewer number of

rounds.
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Fig. 4.6.: Comparison of information propagation on paths between all node pairs
on the boundary tiles of a supertile.

4.7 Initializing Nodes at Start-Up

Assumption (A1) about initial neighbor knowledge, which is required for Algo-

rithm 1, is quite restrictive. It states that at the beginning of phase 0, every node

knows the id and trajectory of every other node in its own hexagon and in adjacent

hexagons. We define the terms neighbors, and neighborhood with respect to a node

p to mean other nodes in its own hexagon and in adjacent hexagons at a particular

instant of time. In this section we give an initialization algorithm for gaining initial

knowledge about neighbors, so that assumption (A1) can be relaxed. This initializa-

tion algorithm runs during an initialization phase (see Figure 4.7). After this phase

is over, nodes start executing Algorithm 1, for neighbor knowledge maintenance.

Instead of assumption (A1) we now require the following constraints on nodes:

A2. For simplicity we assume that nodes start up at the same time. A discussion

on how to deal with nodes that wake up at different times is given later.

A3. We assume that nodes remain within their original hexagon during the initial-

ization phase.
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Phase 0: 
Initialization Phase

1 round = O(v log n) broadcast slots 

Phase 1 onwards: 
Neighbor Knowledge Maintenance

1 round = u broadcast slots 

...
round
0

round 
m-1=7

round
0

round
7

round
0

round
7

... ......

Fig. 4.7.: Initialization phase and neighbor knowledge maintenance (assuming m =
8).

Throughout this section, for simplicity we consider initial knowledge to include

only the ids of nodes, even though assumption (A1) refers to both ids and trajectories.

We assume that the trajectory function of a node may be expressed succinctly and

it may be appended to the id when a node sends a message.

Our initialization algorithm is based on a previous deterministic algorithm for

gossiping (all-to-all communication), given in [22]. This previous algorithm from [22]

is complicated and deals with arbitrary network topologies. We modify this algorithm

and make it simpler and more efficient, since we deal only with neighboring nodes

forming a clique, instead of arbitrary topologies.

The time complexity of the algorithm given in [22] is O(v log2 n log2 v), where v

is the total number of nodes present in the network and n is the size of the name

space of the ids. The model of wireless broadcast given in [22] assumes that the

actual number of nodes that participate in the protocol is much smaller than the

name space of node identifiers. This assumption fits in with our model since there

can be at most v nodes in one hexagon at one instant of time and v is much smaller

than the size of the name space n.

The efficiency of the algorithm given in [22] algorithm lies in the fact that the

worst case time complexity is polylogarithmic in n rather than linear in n. Our modi-
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fications for the case of a clique result in a more efficient O(v log n) time initialization

algorithm.

4.7.1 Definitions

Our initialization algorithm is based on using selective families (a variant of su-

perimposed codes [25]). These selective families are families of subsets of {1, 2, ..., n}.

Before we describe the initialization algorithm in detail, here are some definitions:

Definition 15. A set S hits a set X if and only if |S ∩X| = 1.

Definition 16. A set S avoids a set X if and only if S ∩X = ∅.

Definition 17. Given positive integers n and v where v < n, a family S of subsets

of {1, 2, ..., n} is a v-selector over {1, 2, ..., n}, if for any two disjoint sets X, Y ⊆

{1, 2, ..., n} with v/2 ≤ |X| ≤ v and |Y | ≤ v, there exists a set in S which hits X

and avoids Y .

It has been shown in [12] that for each pair of positive integers n and v where v <

n, there exists a v-selector over {1, 2, ..., n}, of size O(v log n) (i.e. |S|= O(v log n),

where S is the family of subsets which forms the v-selector).

The authors in [22] show the following (Lemma 1 in [22]) :

Lemma 3. Let S be a v-selector over {1, 2, ..., n} and let V be any subset of {1, 2, ..., n}

such that v ≤ |V | ≤ 2v. Let Y be the set of all elements y ∈ V such that there exists

a set Z in S which hits V on y, i.e., Z ∩ V = {y}. Then Y contains more than half

of the elements of V .

Selectors may be used to provide some guarantees on how many nodes in a neigh-

borhood can transmit without message collisions. In the context of radio broadcasts,
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the subsets of a selector can be thought of as forming a transmission schedule for the

nodes. The subsets can be arranged in an arbitrary order which is fixed and known

to all the nodes. Suppose this order is given by (s1, ..., sm) where each si is a set of

node ids. Then for i = 1, 2, ...,m, at step i, all the nodes with ids in si transmit their

message.

Lemma 3 may be applied to our problem as follows. There can be no more than v

nodes in one hexagon at one time. Let V be the set of ids of the nodes in a hexagon;

we know that |V | ≤ v. Let V ′ be any subset of the n ids such that |V ′| = v and V

is a subset of V ′. The v-selector then contains more than |V ′|/2 sets each of which

contain exactly one id from V ′. If S is one of the sets that contains exactly one id

from V ′, say x, then when the schedule instructs all nodes with ids in S to broadcast,

the node with id x, if present in the hexagon, transmits alone. In this way, if there

are initially v = |V | ≤ 2v nodes in the hexagon, then a v-selector can be used, and

more than half of the nodes in the hexagon will be able to transmit alone. However,

nodes that transmit alone cannot detect that they have done so. These nodes must

be informed that they should stop participating in the schedule in order to allow

other nodes the chance to transmit their ids. If there are fewer than v nodes in

the hexagon initially then the guarantees of Lemma 3, regarding more than half the

nodes transmitting alone, do not hold. In this case the size of the selector must be

adjusted to match the number of nodes present.

4.7.2 An O(v log n) Time Algorithm

In this section we describe our O(v log n) time initialization algorithm which al-

lows nodes to gain initial knowledge about the ids of nodes within their neighborhood.

For simplicity we assume that v is a power of two.
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Algorithm 2 Initialization Algorithm: code for node p

id {node p’s id}
id list {list of node ids received so far and p’s own id}
leader := ⊥ {the id of the leader node in an iteration}
total slots {the total number of broadcast slots which is O(v logn)}
passive := false {flag to stop broadcasting id, initially false}
S0,S1, ...,Slog2 v {each Si is a v/2i-selector of size O((v/2i) logn), Si

j is the jth set in Si}

1: for i = 0 to log2 v do {there are log2 v + 1 iterations}
2: leader := ⊥
3: for j = 1 to |Si| do
4: if id ∈ Si

j & passive = false then

5: broadcast(〈id, leader〉)
6: else {either not scheduled to broadcast or passive = true, so listen}
7: if receive a message(〈idq , leaderq〉) from node q then
8: id list := id list ∪ {idq}
9: if leader = ⊥ then {this is the first message received during current iteration}
10: if id = leaderq then {if other nodes have set leader to p}
11: leader := id {p sets itself as the leader}
12: else
13: leader := idq {leader now contains the id of sender of the message}
14: if id = leader then
15: broadcast(id list) {the leader sends all ids at the end of this iteration}
16: passive := true {if leader then it becomes passive}
17: else if receive a message(id listq) from node q then
18: id list := id list ∪ id listq
19: if id ∈ id listq then
20: passive := true {if a node receives its own id then it becomes passive}
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The initialization algorithm runs in the the initialization phase, consisting of m

rounds. Each round consists of O(v log n) broadcast slots (see Figure 4.7). Nodes

in each hexagon run their own instance of the initialization algorithm, separated in

time from nodes in neighboring hexagons. Each hexagon in a supertile has a separate

round assigned to it during the initialization phase, for this purpose (see Figure 4.7).

In this way there is no interference between the transmissions of nodes in different

hexagons. If a node p is located in a hexagon of color ci, where 0 ≤ i < m during

the initialization phase, then it runs the code given in Algorithm 2 during round

i of the initialization phase. During other rounds of the initialization phase, node

p listens to the transmissions of nodes in other hexagons, and collects their ids. If

a node q in an adjacent hexagon transmits without collision during a round j 6= i

then p successfully receives its message and gets to know its id. This is because

ρ + 2muσ ≤ R due to (C1), where ρ is the distance between the farthest points on

the boundary of adjacent hexagons.

We now describe an iterative procedure that is carried out during each round.

This procedure requires log2 v+ 1 iterations. In the first iteration we use a v-selector

to schedule node transmissions. In each subsequent iteration, a smaller and smaller

selector is used to schedule node transmissions. Specifically, in each iteration i, where

0 ≤ i ≤ log2 v, a v/2i-selector is used (lines 3 and 4 of Algorithm 2).

Let active nodes be defined as those nodes for which passive is false in Algorithm

2. These are nodes which have not yet transmitted their ids successfully without col-

lision, or they have done so but do not know about it (since nodes cannot detect

whether their own transmissions are received by other nodes). During each iteration,

some active nodes may be able to transmit alone without collision due to the prop-

erties of the selector used to schedule transmissions. Specifically, if during iteration
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i there are x active nodes such that v/2i ≤ x ≤ v/2i−1, then more than half of these

nodes will transmit without collision due to Lemma 3.

Let passive nodes be defined as those nodes for which passive is true in Algorithm

2. If a node gets to broadcast without collision during iteration i, and it detects that

it has done so by receiving confirmation from other nodes, it becomes a passive node

and does not participate in subsequent iterations. The number of active nodes is

reduced as the iterations progress. We show that eventually, after log2 v iterations,

the number of active nodes is reduced to one or less. After this point in time, just one

additional iteration is required after which all nodes in the hexagon have transmitted

their ids successfully and gained knowledge about each other’s ids.

Since transmitting nodes cannot detect whether their own transmissions are re-

ceived by other nodes, in order to inform these nodes to stop participating we employ

a leader election mechanism. The leader node informs all nodes whose ids have been

transmitted successfully in the current iteration to stop participating so they can

transition from active to passive. It does so by transmitting their ids in a designated

leader slot (lines 14-20 of Algorithm 2). These nodes, upon receiving their ids from

the leader, change from active to passive and do not perform any more transmissions.

After the leader node performs its transmission, the remaining active nodes run a

selector of smaller size. This process is carried out iteratively.

Leader election is carried out in each iteration simply by electing the first node

whose id is successfully received in that iteration. Suppose that the id of this node is

w0. For all nodes other than w0, this id is received in the slot in which w0 transmits

alone during the current iteration. Nodes other than w0 then include w0’s id in the

messages they transmit. For w0 itself, it receives its own id the second time a node

transmits alone during the current iteration. Hence, a node which receives its own id

in the first message that it receives successfully during the current iteration, knows
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The number of broadcast slots is halved in each iteration

iteration 
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slot

iteration 
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leader 

slot
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slot
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iteration 
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Fig. 4.8.: One round of the initialization phase; total number of broadcast slots is
O(v log n).

that it is the leader. Node w0 is then allocated a broadcast slot at the end of the

current iteration of the schedule, where it sends all the ids it has collected (see Figure

4.8).

The algorithm described above is non-constructive because of the use of selec-

tors; however, in [26] the authors present an explicit construction of v-selectors of

size O(v logO(1) n). Using this explicit construction, our algorithm can be made con-

structive with a slowdown of O(logO(1) n).

We now show that by the end of Algorithm 2, the id list of a node contains the

ids of all nodes in its own hexagon.

Lemma 4. In each iteration of the initialization algorithm if two or more nodes

transmit without collisions then one node is elected as the leader, otherwise no node

is elected as the leader.

Proof. The leader variable is reset at the beginning of each iteration of the algorithm

(line 2 of Algorithm 2). The id in the first message received successfully by a node

at the start of an iteration is assigned to the leader variable (line 9 of Algorithm 2).

For a particular node p there are two possibilities. Suppose node p was not the first

node to transmit without message collision in iteration i. In this case it will receive

the message of the first node to transmit successfully and store its id in the leader
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variable (line 13 of Algorithm 2). After this no change will be made to leader during

iteration i. On the other hand suppose node p was the first to transmit successfully

during iteration i. Then the second node to transmit successfully will include p’s id

in its message (line 5 of Algorithm 2). p will then receive its own id and set itself as

the leader for iteration i (line 11 of Algorithm 2).

If node p is the only node to transmit successfully during the current iteration,

then it will not receive any messages, and no leader is elected.

If no node transmits successfully during the current iteration, then no messages

will be received at any node, and no leader is elected.

Lemma 5. In iteration i of the initialization algorithm if x ≥ 2 nodes transmit

without collisions then we have the following:

1. For all nodes p present in the hexagon, id listp contains the ids of all these x

nodes.

2. These x nodes become passive after iteration i.

Proof. In iteration i of the initialization protocol if two or more nodes transmit

without collision then by Lemma 4 one of these nodes is elected leader during that

iteration. At the end of iteration i the leader successfully receives the ids of all nodes

that transmit without collisions. During the leader slot after iteration i, the leader

transmits the entire list of ids it has learnt so far (line 15 of Algorithm 2). Since the

leader elected during iteration i alone transmits during the leader slot after iteration

i, all nodes in the hexagon successfully receive the entire list of ids transmitted by

the leader. The leader then becomes passive (line 16 of Algorithm 2).

If a node finds its own id in this list, it becomes passive (refer to line 20 of

Algorithm 2). Hence, all x nodes that transmitted successfully during iteration i

become passive.
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Lemma 6. If a node p becomes passive then p ∈ id listx for all nodes x present in

the hexagon occupied by p.

Proof. A node p becomes passive by setting passive to true in line 16 or line 20 of

Algorithm 2. Suppose this occurs in iteration i. This means node p was either the

leader in iteration i, or it received id listq and p’s id was in id listq. If p was the

leader in iteration i this means it received a message earlier during iteration i from

another node containing p’s id (line 7 of Algorithm 2). In both cases p received a

message from another node containing its own id. This means at least one other

node, say q, in p’s hexagon has p’s id in its id list. This in turn means that p

transmitted alone in the hexagon at some previous point in time. Since all the nodes

in a hexagon form a clique, if p transmitted alone and q received its message then all

other nodes in the hexagon also received p’s message during the same transmission.

Hence, for all nodes x in the hexagon p ∈ id listx.

Lemma 7. If only one node remains active at the beginning of the last iteration then

it transmits alone during the last iteration and all other nodes in the hexagon learn

its id.

Proof. In the last iteration a (v/2log2 v = 1)-selector is used. If only one active node

is left during this iteration, then due to Lemma 3, it transmits its id alone. All

other nodes learn its id, even though this node itself does not receive confirmation

of this.

Theorem 1. If there are v or fewer nodes in a hexagon initially then at the end of

the initialization algorithm, for all nodes p in the hexagon, id listp contains the ids

of all nodes present in the hexagon.

Proof. If a node p is alone in the hexagon, then id listp is initialized so that it

contains the id of p.
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Now we are left with the case where there are originally x ≥ 2 nodes initially

in the hexagon. In this case if only one active node remains at the beginning of

the last iteration, this last remaining active node may or may not transition to a

passive state, however, due to Lemma 7, other nodes learn its id. Note that all other

nodes have already transitioned to being passive, hence, by Lemma 6 all nodes in

the hexagon know each other’s ids.

Now suppose there are two or more active nodes at the beginning of the last iter-

ation. We will show that this leads to a contradiction using an inductive argument.

Let activeibeg, and activeiend be the number of active nodes at the beginning and end

of iteration i, respectively. Note that:

activeiend = activei+1
beg (4.1)

Claim 1. If there are two or more active nodes at the beginning of the last iteration,

then for all rounds 0 ≤ i ≤ log2 v we have activeibeg ≥ v/2i−1.

Claim 1 implies that for i = 0:

active0
beg ≥ v/20−1 = 2v

This is a contradiction, since there cannot be more than v nodes in a hexagon

initially.

We now prove Claim 1. The proof is by induction on i.

(Basis: i = log2 v)
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By assumption, at the beginning of the last iteration there are at least two active

nodes:

active
log2 v
beg ≥ 2

Hence, activeibeg ≥ v/2i−1 is true since

v/2log2 v−1 ≥ 2

(Inductive Case)

Assuming activeibeg ≥ v/2i−1 we show that activei−1
beg ≥ v/2i−2. We know from (1)

that:

activeibeg = activei−1
end

Hence, we then have by assumption:

activei−1
end ≥ v/2i−1 (4.2)

Suppose in contradiction v/2i−2 > activei−1
beg . Then by (2) we have the following:

v/2i−2 > activei−1
beg ≥ v/2i−1
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In this case, by Lemma 3 more than half the nodes active at the beginning of

iteration i−1 transmit alone during iteration i−1. We also know that there are two

or more active nodes present in every iteration, hence, activei−1
beg ≥ activei−1

end ≥ 2.

Hence, due to Lemma 3, two or more nodes transmit alone and, due to Lemma 5

all these nodes become passive by the end of iteration i − 1. Due to Lemma 3 the

number of active nodes at the end of iteration i − 1 is less than half of the number

of active node at the beginning of iteration i− 1. We then have:

activei−1
beg ≥ 2(activei−1

end) (4.3)

From (1) and (3):

activei−1
beg = activei−2

end ≥ 2(activei−1
end) (4.4)

From (4) and (2):

2(activei−1
end) ≥ 2v/2i−1 ≥ v/2i−2 (4.5)

Hence, from (5) and (3):

activei−1
beg ≥ v/2i−2

(End of proof of Claim 1.)
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We now show that at the end of the entire initialization phase nodes know about

all nodes in their own and adjacent hexagons. This is because by the end of the

initialization phase nodes in all hexagons get their turn to run Algorithm 2 during

the assigned round. During other rounds nodes collect the ids of nodes from adjacent

hexagons. Due to constraint (C1), which states that ρ + 2muσ ≤ R, nodes receive

transmissions from nodes in adjacent hexagons. Hence, nodes learn the ids of all

nodes in adjacent hexagons.

Theorem 2. At the end of the initialization phase, for all nodes p, id listp contains

the ids of all nodes present in p’s adjacent hexagons.

Proof. At the end of the initialization phase nodes in all hexagons have completed the

initialization algorithm. Only nodes in hexagons of the same color run the algorithm

simultaneously. Hence, there are no message collisions between nodes from different

hexagons. Since ρ + 2muσ ≤ R due to (C1), where ρ is the distance between the

farthest points on the boundary of adjacent hexagons, nodes receive the transmissions

of nodes in adjacent hexagons. Due to this, and assumption (A3), for all nodes p,

id listp contains the ids of all nodes present in p’s own and adjacent hexagons.

Note that a node p may receive a message from a node q which is within distance

R, but not in p’s own hexagon or in an adjacent hexagon, during the initialization

phase. As a result p includes q’s id in id listp. However, since p also knows q’s

trajectory information, it can determine whether q is its neighbor or not, at the start

of the next phase.

Theorem 3. The initialization algorithm requires O(v log n) broadcast slots.

Proof. In the first iteration of the initialization algorithm, a v-selector with length

O(v log n) is run. In each subsequent iteration, a smaller and smaller selector is used
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to schedule node transmissions. Specifically, in each iteration i, a v/2i-selector of

length O(v/2i log n) is used. The length of the selector decreases by exactly half in

each iteration. Hence, the total number of broadcast slots used for the log2 v + 1

iterations is O(v log n).

4.7.3 Nodes Starting Up at Different Times

In the above discussion we assumed that all nodes start up at the same time

and remain within their original hexagon during the initialization phase. One way in

which to accommodate nodes starting up at different times is to run the initialization

algorithm repeatedly. In order not to make the phases too long, the initialization

algorithm may only be run as part of the lth phase (and each round in the lth phase

has an extra O(v log n) broadcast slots). The value of l can be adjusted according to

the number of new nodes which wake up as time passes. Thus l can be made larger

if fewer nodes are expected to join in. This means that the initialization algorithm

is run after a long period of time. However, new nodes have to remain in the same

hexagon for at least the time that they participate in the initialization algorithm.

Furthermore, nodes cannot join in if they start up while the initialization algorithm

is running. In this case nodes must wait for the current instance of the algorithm to

finish and participate in the next instance.

4.7.4 Other collision detection models

In our model we assume that nodes do not possess collision detection capabili-

ties. Hence, nodes cannot distinguish between message collision and silence. Fur-

thermore, while a node is transmitting it has no way of knowing whether its message

was successfully received by its neigbors or not. This is a very weak model. The ini-
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tialization algorithm described above also works correctly for stronger models where

it is assumed that nodes possess collision detection capabilities (that is, nodes can

distinguish between silence and message collision).

However, our algorithm cannot tolerate spurious messages (that is, messages may

be received despite message collisions, but the content of the original message from

the sender may be altered due to a collision).

The initialization algorithm also cannot handle the case where due to a message

collision some nodes within broadcast range of the sender do not receive the message,

while other nodes are able to receive the message successfully. Also, if there is un-

certainty associated with the communication link, meaning even if a node transmits

alone it is not guaranteed that its neighboring nodes will receive its message, then

the algorithm will not work.
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5. A DETERMINISTIC ALGORITHM FOR TRIGGER COUNTING

5.1 Introduction

In the distributed trigger counting problem, introduced by [10], it is assumed

that there are n processors in an asynchronous system with point-to-point links, and

triggers may be received by these processors due to external events. An alert is

to be raised for the user when the total number of triggers reaches a certain value

w which is specified by the user. Each processor may receive a different number

of triggers. The number of triggers received by each processor and the order in

which different processors receive triggers is not known in advance. We present a

deterministic algorithm for this problem which is communication efficient in terms of

the MaxRcvLoad, which is defined as the maximum number of messages received by

any processor in the system. For applications in sensor networks, a low MaxRcvLoad

may lead to energy conservation and low levels of congestion in the network. The

MaxRcvLoad of our algorithm is O(log n logw +
√
n log n logw), compared to the

best previous deterministic algorithms in the same model [21], which have a worst

case MaxRcvLoad of O(n logw).

System Model. In this work we assume an asynchronous computation model. We

consider the situation where the network topology is a clique. This is a first step

toward more general multi-hop network topologies. Message delivery is guaranteed

and there are no spurious messages. Furthermore, processors and links do not fail.

The links are assumed to be FIFO.

Table 5.1 gives a summary of the previous results related to the trigger counting

problem as discussed in Section 2.
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Table 5.1: Summary of related work.

Algorithm Type MaxRcvLoad

Centralized [21] Deterministic O(n logw)
LayeredRand [10] Randomized O(logw logw)
CoinRand [9] Randomized O(log n+ logw)

DeterministicTriggerCounting Deterministic O(log n logw +
√
n log n logw)

1

2 3

4 5 6 7

Layer 0

Layer 1

Layer 2

Fig. 5.1.: Nodes are divided into layers. A binary tree structure is used to transmit
end-of-round messages. Each layer corresponds to one level of the tree. The nodes
are numbered accordingly.

5.2 The DeterministicTriggerCounting Algorithm

The pseudo-code for our algorithm, called DeterministicTriggerCounting, is

given in Algorithm 3. It is expressed in the timed I/O Automata (TIOA) mod-

elling formalism [30]. DeterministicTriggerCounting is motivated by the earlier

LayeredRand algorithm given in [10]. In that algorithm it is assumed that there is a

designated root processor which collects the triggers. It is assumed that n = 2L− 1,

for some integer L. The processors are divided into L layers. The root is the only

processor in layer 0. There are 2` processors in layer `. Layer L− 1 is called the leaf

layer.
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In LayeredRand each processor maintains a count of the triggers which are still

to be received in a local variable ŵ. For each layer ` a threshold value τ` is defined

as follows:

τ` = dŵ/(4 · 2` · log2(n+ 1))e

Each processor x at level ` maintains a counter Cx to keep track of the triggers

received so far by itself and processors in layers below. Each time a trigger is received

by non-root processor x, Cx is incremented (line 12 of Algorithm 3). .

In LayeredRand if Cx ≥ τ` then processor x chooses a processor z uniformly at

random from layer `− 1, and a message called a coin is sent by processor x to z. Cx

is updated: Cx = Cx − τ`. If a coin is received by processor x from a processor in a

lower layer then Cx is updated as follows: Cx = Cx + τ`+1.

The LayeredRand algorithm works in asynchronous rounds. The local variable

ŵ is updated at the beginning of each round by the root node to indicate how many

triggers remain to be collected. The root node initiates an end-of-round procedure at

the end of each round. The end-of-round messages are transmitted from the root to

the leaf layer along a binary tree structure overlayed on the clique (see Figure 5.1).

The nodes in each layer form each successive level of the binary tree. The binary tree

structure helps to keep MaxRcvLoad low for the root. The value of τ` is higher for

layers closer to the root. This means that coins are sent to the root less frequently

as compared to lower layers.

The root initiates an end-of-round procedure when Croot ≥ dŵ/2e. It sends

round reset messages to its children. These round reset messages propagate down

the links of the binary tree. In response, the non-root processors send a count of
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how many triggers have been received so far to the root. Through the end-of-round

procedure the root gets the count of w′, the total number of triggers received by all

processors in the current round. It then sets ŵ = ŵ − w′ and broadcasts ŵ to all

processors down the tree. If ŵ = 0 then the root raises an alert for the user. The

end-of-round procedure is described in detail at the end of this section.

The only difference between our algorithm and the LayeredRand algorithm

is that instead of picking a processor from level ` − 1 uniformly at random, in

DeterministicTriggerCounting there is a fixed iterative order for picking layer `−1

processors, in order to send a coin. This fixed iterative order is a permutation of

layer ` − 1 processor ids. Each layer ` processor has its own permutation of layer

`− 1 processor ids.

In order to define this permutation we assume that the n processors in the network

are numbered from 1 to n according to the layer which they belong to (see Figure

5.1). Then πi is defined as the permutation of layer ` − 1 processor numbers at

processor i in layer `. Define ⊕ as addition modulo 2`−1. Then πi is given by:

(bi/2c ⊕ 0) + 2`−1, (bi/2c ⊕ 1) + 2`−1, (bi/2c ⊕ 2) + 2`−1, ..., (bi/2c ⊕ 2`−1) + 2`−1

The permutations are defined such that two processors from layer ` share the

same permutation.

Processor i from level ` selects all the 2`−1 processors in level ` − 1 one by one,

according to its permutation of level ` − 1 processors. The variable next in Algo-

rithm 3 is updated to the next id in this permutation, with wrap-around (line 23 of

Algorithm 3). Each time a coin is generated at processor i, it is sent to the next

processor in the permutation. See Figure 5.2 for an illustration of the permutation.
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Algorithm 3 Code for processor i

automaton DeterministicTriggerCounting()
states
round num : N := 1, C : N := 0, D : N := 0 {counters for round number and triggers}
` : N {layer of node i}
i : N {sequence number of processor in its layer}
next : N := bi/2c mod 2`−1 + 2`−1 {processor to which the next coin will be sent}
ŵ : N := w {number of triggers left}
τ : N := dŵ/(4 · 2` · log2(n+ 1))e {number of triggers to be collected in a coin}
trigger queue : Seq[T ] := � {used to store triggers received}
coin queue : Seq[M ] := � {used to store coins received}
eor message queue : Seq[M ] := � {used to store end-of-round messages received}
send queue : Seq[M ] := � {used to store messages which are to be sent}
suspend : Bool := false {indicates whether triggers and coins should be processed}
root : Bool {true if x is the root}
leaf : Bool {true if x is a leaf}
reduce count : N:=0 {count of reduce messages received in current round}
d:=0 {local variable for storing triggers sent by child processors }

transitions

1. output send(m, j) {send message m to process j}
2. pre m = head(send queue);
3. eff send queue := tail(send queue);

4. input receive trigger(t) {a trigger is received due to an external event}
5. eff trigger queue := trigger queue ` t;

6. input receive coin(c) {receive a coin from a lower layer}
7. eff coin queue := coin queue ` c;

8. input receive eor message(m, j) {receive end-of-round message m from process j}
9. eff eor message queue := eor message queue ` m;

10. internal process trigger(t) {remove trigger from the trigger queue and add to the C and D counter}
11. pre suspend = false ∧ t = head(trigger queue);
12. eff C := C + 1;
13. D := D + 1; {D is never reset}
14. trigger queue := tail(trigger queue);

15. internal process coin(c) {add the count of triggers in the received coin to C}
16. pre suspend = false ∧ c = head(coin queue);
17. eff if c.round num = round num then C := C + τ/2;
18. coin queue := tail(coin queue);
19. endif;

20. internal send coin() {a coin should be sent to the upper layer if C exceeds τ}
21. pre suspend = false ∧ ¬root ∧ C ≥ τ ;
22. eff send queue := send queue ` [[coin, i, round num], next];
23. next := (next+ 1) mod 2`−1 + 2`−1; {next is reset according to πi}
24. C := C − τ ; {subtract the number of triggers in one coin from C}

25. internal end round() {root starts end-of-round procedure}
26. pre suspend = false ∧ root ∧ C ≥ ŵ/2; {the threshold for C has been exceeded at the root}
27. eff send queue := send queue ` [[round reset], 2i];
28. send queue := send queue ` [[round reset], 2i+ 1];
29. suspend := true; {trigger and coin processing is suspended during the end-of-round procedure}
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30. internal process message(m) {process end-of-round messages}
31. pre m = head(eor message queue);
32. eff
33. eor message queue := tail(eor message queue);
34. if m.type = round reset then
35. suspend = true; {suspend trigger and coin processing if round reset is received from parent}
36. send queue := send queue ` [[round reset], 2i];
37. send queue := send queue ` [[round reset], 2i+ 1];
38. if leaf then send queue := send queue ` [[reduce, round num,D], bi/2rfloor];
39. endif; {when round reset reaches each leaf, D counter value is sent to the parent processor}
40. endif;
41. if m.type = reduce ∧m.round num = round num then
42. d := d+m.D; {D from both children added in d}
43. reduce count := reduce count+ 1; {count the number of reduce messages}
44. if reduce count = 2 ∧ ¬root then {received reduce message from both children}
45. reduce count := 0;
46. send queue := send queue ` [[reduce, round num,D + d], bi/2rfloor];
47. endif; {reduce message contains sum of D values of all descendants}
48. if reduce count = 2 ∧ root then ŵ := ŵ −D − d; {root receives reduce }
49. reduce count := 0;
50. if ŵ = 0 then{if all the triggers have been received then terminate}
51. raise alert;
52. terminate;
53. else
54. round num := round num+ 1; {root increments the round number}
55. C := 0;
56. send queue := send queue ` [[inform, round num, ŵ], 2i];
57. send queue := send queue ` [[inform, round num, ŵ], 2i+ 1];
58. endif;
59. d := 0;
60. endif;
61. endif;
62. if m.type = inform then{if inform is received from the parent}
63. ŵ := m.ŵ; {initialize ŵ for the next round}
64. τ := dŵ/(4 · 2` · log2(n+ 1))e;
65. τ/2 := dŵ/(4 · 2`+1 · log2(n+ 1))e;
66. C := 0;
67. round num := m.round num; {reset the round number}
68. send queue := send queue ` [[inform, round num, ŵ], 2i];
69. send queue := send queue ` [[inform, round num, ŵ], 2i+ 1];
70. suspend := false;
71. endif;
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9 13 14 15

Fig. 5.2.: The ordering for sending coins from layer 2 to layer 3.

5.2.1 End-of-Round Procedure

We now describe the end-of-round procedure in detail. The root sends round reset

messages to its children when Croot ≥ dŵ/2e (line 25 of Algorithm 3). When a child

processor receives the round reset message from its parent processor it suspends

trigger and coin processing and sends the round reset message to both its children

in the binary tree (line 34 of Algorithm 3). Triggers and coins are buffered in the

trigger queue and the coin queue respectively, to be processed later when the end-

of-round procedure is over.

When a leaf processor receives the round reset message it sends a reduce message

to its parent in the binary tree along with its round num and its D counter (line

38 of Algorithm 3). The D counter ensures that an up-to-date value of the triggers

received at each processor is sent to the root during the end-of-round procedure.

Upon receiving the reduce message from both its child processors in the binary

tree, a non-root processor sends the sum of its own D counter value and the D
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counter values of its children, to its parent processor in the binary tree (line 44 of

Algorithm 3).

Upon receiving the reduce message from both its child processors in the binary

tree, the root processor subtracts from ŵ its own D counter value and the values

received from its children (line 48 of Algorithm 3). If ŵ is equal to zero the threshold

has been reached and the root raises an alert. Otherwise the root processor sends an

inform message along with the incremented round num value, and the new value

of ŵ to both its child processors (line 53 of Algorithm 3).

When a child processor receives the inform message from its parent processor

it resets its C counter, and updates its ŵ, round num, and τ values (line 62 of

Algorithm 3). After this it resumes trigger and coin processing (line 70 of Algorithm

3).

We assume there is an underlying point-to-point automaton with interface actions

send(m, j) for sending a messagem to processor j, receive coin(c) for receiving a coin

from another processor, and receive eor message(m, j) for receiving an end-of-round

message from processor j. There is also a separate automaton which interacts with

the external environment and has interface action receive trigger(t) which represents

a trigger being received from the environment.

5.3 Analysis of DeterministicTriggerCounting

The analysis for the correctness of the algorithm and the worst case bound on

message complexity remain almost the same as those given for LayeredRand in [10].

This is because in our algorithm only the order of processors to which coins are sent

may be different from LayeredRand. For completeness, in this section we give a more
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detailed proof of correctness for Algorithm 3 compared to the proof of correctness

provided in [10].

First of all we show that whenever the root enters a new round it eventually

starts the end-of-round procedure.

Lemma 5. If an alert is never raised then round num i for the root grows without

bound.

Proof. We will show that for every value of round num i, if the root does not raise

the alert (line 50 to 52 of Algorithm 3) then the root eventually executes end round().

The proof is by induction on the i.

(Basis: i = 1) In this case ŵ = w.

Suppose that at time t the system has received all remaining ŵ triggers. We

now show that if the root has not already executed end round() at or before time

t it eventually does so after time t. This is because eventually after time t all

coin messages in the system are delivered, and all ŵ triggers are counted in the C

counters of some processors (due to line 12 and 17 of Algorithm 3). At this point for

all processors x we have:

n∑
x=1

Cx = ŵ

Summing the C counters excluding the root we have:



94

n∑
x=2

Cx ≤
L−1∑
`=1

2`(τ` − 1)

=
L−1∑
`=1

2`(dŵ/(4 · 2` · log2(n+ 1))e − 1)

≤
L−1∑
`=1

2`(ŵ/(4 · 2` · log2(n+ 1)))

≤ (L− 1)ŵ/(4 log2(n+ 1))

≤ ŵ/4

Hence, for the root, C ≥ dŵ/2e, and the root executes end round().

(Inductive Case)

Assuming the root executes end round() for round i − 1 we show that the root

executes end round() for round i.

Consider the point in time when the root sets round num to i > 1 (line 54 of

Algorithm 3). Let the initial value of ŵ for round i be ŵi. The value of ŵi is set to

ŵ −D − d immediately before this, say at time t (line 48 of Algorithm 3). First of

all we show that at time t, suspend = true for all processors in the system. This

is because the root has executed end round() for round i − 1 and set its value of

suspend to true (line 29 of Algorithm 3). Since we assume reliable communication,

all processors have received the round reset message propagated down from the

root (line 34 of Algorithm 3) and also set suspend to true (line 35 of Algorithm

3). Furthermore, the root increments round num to i only when all the processors

including leaf processors have received round reset messages, and reduce messages

have been propagated from each child node to its parent in the binary tree, including

the children of the root (line 48 of Algorithm 3).
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We can see that at any processor, process trigger() or process coin() will not

be executed until suspend is set to true again and round num is set to i. This

happens when inform messages travel down the binary tree from the root (line 62

of Algorithm 3). Also the total number of triggers counted by the root at time t is

D+ d. For each processor, its contribution to d is the number of triggers it received

before it set suspend to true (line 38 and 46 of Algorithm 3). Therefore, all remaining

ŵi triggers, since they have either not been processed yet or not been received yet,

will be counted in round i or later rounds.

Suppose that at time t′ > t the system has received all remaining ŵi triggers.

We now show that if the root has not already executed end round() for round i at

or before time t′ it eventually does so after time t′. This is because eventually after

time t′ all triggers from the trigger queue are processed, since suspend is set to true

when the inform message is received. All coin messages in the system are delivered,

and all ŵi triggers are counted in the C counters of some processor. At this point

for all processors x we have:

n∑
x=1

Cx = ŵi

Summing the C counters excluding the root we have:
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n∑
x=2

Cx ≤
L−1∑
`=1

2`(τ` − 1)

=
L−1∑
`=1

2`(dŵ/(4 · 2` · log2(n+ 1))e − 1)

≤
L−1∑
`=1

2`(ŵ/(4 · 2` · log2(n+ 1)))

≤ (L− 1)ŵ/(4 log2(n+ 1))

≤ ŵ/4

Hence, for the root, C ≥ dŵi/2e, and the root eventually executes end round().

Lemma 6. The root does not raise an alert before w triggers have occurred in the

system.

Proof. For each round ŵ is initialized at the root by subtracting the sum of the

D counter of all processors, propagated to the root through reduce messages. D

counters are never reset and count only the triggers received by a particular processor

itself. Furthermore, suspend is set to true before the D count is sent to the parent

of a processor. A node only sets suspend to false after incrementing round num (in

line 70 of Algorithm 3). Therefore, each trigger is only counted once by the root.

Theorem 11. Algorithm 3 detects when w triggers have been received by the system.

Proof. If during the end-of-round procedure the root detects that ŵ = 0, it raises an

alert and then terminates (in line 50 of Algorithm 3). This together with Lemma 5

and 6 shows that Algorithm 3 correctly detects when w triggers have been received

by the system.
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5.3.1 Bound on the Total Message Complexity and MaxRcvLoad

Here we analyze the total message complexity of Algorithm 3 and show that

the MaxRcvLoad is bounded by O(log n logw +
√
n log n logw). Fix an arbitrary

execution of Algorithm 3.

Lemma 7. The total number of rounds in the execution is at most dlog2we.

Proof. As soon as the root node detects C ≥ ŵ/2, it initiates an end-of-round pro-

cedure. Thus ŵ drops by a factor of two in each successive asynchronous round.

Algorithm 3 terminates when the root detects that ŵ = 0.

Lemma 8. Suppose that for two processors i and j, round numi = round numj,

then we have ŵi = ŵj.

Proof. This is because ŵ and round num are both updated upon receiving an inform

message, and the root sends only one inform message for one value of round num.

In the following lemma we give an upper bound for the total number of coins

received by the layer above the leaf layer (i.e., layer L − 2). The leaf layer has the

minimum τ value. This means that for a particular round num leaf processors send

coins upon receiving the least number of triggers, as compared to processors in other

layers. If all triggers are received by leaf processors rather than processors in other

layers, then the most number of coins messages will be sent. Hence, the upper bound

for total number of coins received by layer L− 2 is also the upper bound for the rest

of the layers.

Lemma 9. The maximum number of coins received by all processors in layer L− 2

during the execution of Algorithm 3 is d4(2L−1 log2 n log2w)e.
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Proof. Consider round r (as indicated by round num in Algorithm 3), and let ŵ = wi

for a processor i from layer L− 2 in round r. Then for all processors in layer L− 2

and L − 1 for which round num = r, we have ŵ = wi due to Lemma 8. Note that

for round num = r any processor will only process coins which have round number

r (line 17 of Algorithm 3).

Suppose that ŵ is the total number of triggers which are still to be collected

when the root transitions to round number r. In the worst case all these triggers

may occur before any processor in layer L− 2 or layer L− 1 transitions to the next

round (i.e., r + 1), and the coins associated with these triggers are received by layer

L−2 processors while round num = r for all layer L−2 processors. This is the worst

case since the maximum number of coins will be received by layer L−2 processors for

round num = r in this case. In this case for round r the maximum number of coins

received by all processors in layer L − 2 is ŵ/(τL−1) ≤ 4(2L−1 log2 n) (substituting

the value of τL−1). Thus in total the maximum number of coins received by layer

L− 2 is d4(2L−1 log2 n log2w)e due to Lemma 7.

In the above analysis end-of-round messages may be ignored since a constant

number of end-of-round messages (round reset, reduce, and inform messages) are

sent in each round along the links of the binary tree structure. The total message

complexity of Algorithm 3 is determined by summing up the total number of coins

sent over all layers and is given by Theorem 12. The analysis is the same as that

given in Lemma 1 in [10].

Theorem 12. The message complexity of DeterministicTriggerCounting is given by

O(n log n logw).

Proof Sketch. Here we give the main idea for the proof of the above theorem.

The number of coins sent in each round is:
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L−1∑
`=1

ŵ/τ` ≤
L−1∑
`=1

4 · 2` · log2 n ≤ 4 · (n− 1) · log2 n

The total number of coins sent in all rounds is then O(n log n logw).

We analyze the MaxRcvLoad by determining the number of coins received by

any node. It is obvious that leaf nodes do not receive any coins. In order to determine

the MaxRcvLoad let us define the following terms.

Definition 18. Define X as the total number of coins sent from layer `+ 1 to layer

`. We know from Lemma 9 that X = d4(2`+1 log2 n log2w)e.

Definition 19. Suppose that processor i in layer `+ 1 sends si coins out of the total

X coins. Let si = ai · 2` + bi where ai ≥ 0 and 0 ≤ bi < 2` (note that bi is the

remainder after dividing si by 2`).

We know that these si coins are sent iteratively to layer ` processors according

to πi, as indicated by the next variable in Algorithm 3. Note that next is not reset

at the beginning of the asynchronous rounds.

Also note thatX =
∑2`+2−1

i=2`+1 si. Each processor in layer ` receives either
∑2`+2−1

i=2`+1 ai

or
∑2`+2−1

i=2`+1 ai + 1 coins from processor i.

Definition 20. Let the last bi coins sent by processor i in layer ` + 1 be called the

remainder coins of i.

Lemma 10.
∑2`+2−1

i=2`+1 ai = O(log n logw).
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Proof.

2`+2−1∑
i=2`+1

ai

=
2`+2−1∑
i=2`+1

ai · 2`/2`

≤(1/2`)
2`+2−1∑
i=2`+1

(ai · 2` + bi)

=(1/2`)
2`+2−1∑
i=2`+1

si

=X/2`

= O(log n logw)

Before we proceed let us define the following terms.

Definition 21. For two processors with numbers p and q, where p is from layer `

and q is from layer `+ 1, define dist(p, q) as follows:

p− bq/2c+ 1 if p ≥ bq/2c

p− (2` − (bq/2c mod 2`)) + 1 if p < bq/2c

Note that dist(p, q) is the minimum number of coins q must send in order to send

a coin to p (in accordance with πq).
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Definition 22. For a processor j from layer ` and a processor i from layer `+ 1 let

cji = 1 if bi ≥ dist(j, i), and cji = 0 otherwise.

Definition 23. Let δi = bi/2c be the first element of πi.

In the following lemma we show that if we consider only the remainder coins of

layer ` + 1 processors and c of these are received by one layer ` processor, then the

sum of all the remainder coins of layer `+ 1 processors is Ω(c2).

Lemma 11. For all c > 0 if there exists a processor j for which
∑2`+2−1

i=2`+1 c
j
i = c then∑2`+2−1

i=2`+1 bi = Ω(c2)

Proof. Each layer ` + 1 processor i starts sending coins beginning with processor

δi=bi/2c. It then sends coins to layer ` processors with increasing processor numbers

and wraps around when the layer ` processor with the greatest number is reached.

Since j receives c coins and only one coin can be received by j from each layer `+ 1

processor i due its last bi coins (remainder coins), there exist c layer `+ 1 processors

for which bi ≥ dist(j, i). Order each of these c layer ` + 1 processors in increasing

order of dist with respect to j. Suppose that this ordering is given by p1, p2, ..., pc.

Then we have dist(j, p1) ≥ 1, and dist(j, p2) ≥ 1. Since only two processors in layer

` + 1 have the same value of offset, we have dist(j, p3) ≥ 2, and dist(j, p4) ≥ 2. In

general we have dist(j, pi) ≥ di/2e. Since dist(j, pi) represents the least number of

coins sent by pi, we have:

2

c/2∑
i=1

i ≤
2`+2−1∑
i=2`+1

bi

From this we have that:
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2

c/2∑
i=1

i = c2/4 + c/2 ≤
2`+2−1∑
i=2`+1

bi

Hence,
∑2`+2−1

i=2`+1 bi is Ω(c2).

Lemma 12. For all processors j in layer `
∑2`+2−1

i=2`+1 c
j
i = O(

√
n log n logw)

Proof. Suppose c is the number of coins received by processor j. From Lemma 11

we have

2`+2−1∑
i=2`+1

bi = Ω(c2)

Hence:

c = O(

√√√√2`+2−1∑
i=2`+1

bi)

We also have:

c =
2`+2−1∑
i=2`+1

cji

Due to Lemma 9 we have:
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2`+2−1∑
i=2`+1

bi ≤ 4(n/2) log2 n log2w

Therefore, we have:

c =
2`+2−1∑
i=2`+1

cji = O(
√
n log n logw)

In Lemma 10 we considered all coins sent by layer ` + 1 processors except re-

mainder coins, whereas, in Lemma 12 we considered only remainder coins. The

MaxRcvLoad is given by the sum of the contribution from remainder coins and

non-remainder coins. Hence, we have the following:

Theorem 13. The MaxRcvLoad for Algorithm 3 is O(log n logw+
√
n log n logw).

Proof. From Lemma 10 and 12 we have that the MaxRcvLoad for DeterministicTrig-

gerCounting is O(log n logw +
√
n log n logw). A constant number of end-of-round

messages are sent to each processor during the end-of-round procedure at the end

of each round. Since there are O(log n) rounds, these messages do not affect the

MaxRcvLoad.

5.4 Lower Bound

In this section we show that for any deterministic algorithm which solves the trig-

ger counting problem in a tree where the root has constant degree, at least one node



104

must receive Ω(logw) messages. The lower bound is for the case of all algorithms in

which there is a designated root node, fixed in advance, which raises the alert when

the threshold is reached.

First of all we give a lower bound of Ω(logw) for the MaxRcvLoad when n is

fixed and w grows without bound with respect to n. This follows from the lower

bound of Ω(n log(w/n)) given in [21] for the total number of messages. This lower

bound is stated as follows:

Theorem 14. The total number of messages exchanged by any algorithm which

solves the trigger counting problem is (as shown in [21])

Ω(n log(w/n)) if w ≥ n

Ω(w) if w < n

Lemma 13. For any deterministic algorithm which solves the trigger counting prob-

lem where n is fixed and w grows without bound with respect to n, the MaxRcvLoad

is Ω(logw).

Proof. The total number of messages sent by any deterministic algorithm for the

trigger counting problem is Ω(n log(w/)) by Theorem 14. By the pigeonhole principle,

at least one of the n nodes receives Ω(log(w/n)) messages. Hence, the MaxRcvLoad

is Ω(log(w/n)) = Ω(log(w)), since n is fixed and w grows without bound with respect

to n.

We now show a lower bound for the case of a tree in which the designated root

node has constant degree.
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Theorem 15. For any deterministic algorithm which solves the trigger counting

problem for a tree where the designated root node has constant degree c, the

MaxRcvLoad is Ω(logw).

Proof. Suppose that there exists an algorithm A which solves the trigger counting

problem for such a tree and has MaxRcvLoad o(logw). We can then use algorithm

A to solve the trigger counting problem for c + 1 nodes which form a star network,

where c is the degree of the root node in the tree, using an algorithm A′, which is as

follows:

• In algorithm A′ the node at the center of the star network simulates the be-

haviour of the root node in the tree.

• Other nodes in the star network simulate the behaviour of the c neighbors of

the root, including message passing on the links with their descendants.

• Each time a node other than the root node in the tree sends a message to the

root node of the tree in algorithm A, the node simulating it in the star network

sends a message to the center node of the star in algorithm A′.

• The center node raises the alert for the user in algorithm A′ when the root

node in the simulated tree raises the alert in algorithm A.

Algorithm A terminates correctly when the threshold is reached and the root

node in the tree raises an alert for the user. At this time no node has received

greater than o(logw) messages in total on all of its incoming links. Hence, algorithm

A′ terminates correctly and the center node raises the alert when the threshold is

reached. At this time no node in the start network has received greater than o(logw)

messages in total on all of its incoming links. However, we already showed in Lemma

13 that one node must receive at least Ω(logw) messages. This is a contradiction.
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6. CONCLUSION

In this section we summarize our results and outline the future work for the three

different topics addressed in this thesis.

6.1 Reliable Neighbor Discovery with an Abstract MAC Layer

We have given a specification for a reliable neighbor discovery layer, with two

different progress conditions. We have presented two different protocols, Basic-NDP

which satisfies weak progress and provides loose coordination between mobile nodes

and UNDP which provides uniform progress at the expense of loose coordination.

We have discussed different algorithms which may be used with either Basic-NDP

or UNDP, depending on the requirements.

As future work, we would like to extend the service presented to handle the

presence of faulty nodes. Another interesting thread would be to compare the cost

of this service against another which dispenses with the MAC layer by implementing

directly on the physical layer. Another direction would be to extend this work to

three dimensions and use three dimensional partitions.

6.2 Neighbor Knowledge and Collision Avoidance

We have presented a deterministic schedule for nodes in a MANET, which avoids

collisions and allows nodes to maintain information about neighboring nodes. We

have also given an initialization algorithm for nodes to learn about neighbors at

start-up.

It remains open to analyze the rate of information propagation for our schedule,

between two mobile nodes located initially at some distance on the plane. Lower
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bounds on the density of nodes may have to be specified, so that there are no gaps

in the flow of information.

Another interesting problem would be to analyze the problem of neighbor knowl-

edge maintenance for clusters of nodes moving on the plane. Connectivity constraints

for clusters would have to be specified. Also we would have to specify what is meant

by two dynamic node clusters merging on the plane.

It would be of interest to explore the fundamental limitations of deterministic

solutions through lower bounds on performance or impossibility results.

6.3 Communication Efficiency for Distributed Trigger Counting in Sensor

Networks

We have presented a deterministic algorithm which achieves better MaxRcvLoad

as as compared to previous deterministic algorithms. We also gave a lower bound

of Ω(logw) for the MaxRcvLoad. Future work includes tightening the gap between

upper and lower bounds. It would also be interesting to investigate whether there

is a gap between the lower bounds for deterministic and randomized algorithms.

Another direction would be to consider node failures, and network graphs other than

cliques. Algorithms for broadcast instead of point-to-point communication may also

be developed.
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APPENDIX A

APPENDIX: TIOA CODE

We describe the algorithms using the TIOA formalism [30].

For simplicity we define the function hops : {Ru}u∈U×{Ru}u∈U → N that receives

two regions and returns the number of hops between them. If one of the regions is

null it returns ∞. Similarly, we define the function getregion : R2 → 2U that

maps any point in the deployment space to a set of regions that contain such point.

When queried in a region boundary it returns the set of regions that share the

boundary, otherwise it returns a singleton set with the current region. For the

neighbor discovery protocol we assume a TIOA trajectory that stops time whenever

a precondition is enabled. However since formally there is no first time when a node

enter or leaves a region (left-open intervals) we define a TIOA trajectory for the

enter region action as:

∃u : Region (u 6= val(region))∧

curreg /∈ getregion(trajnow) ∧ u ∈ getregion(trajnow)∧

curreg ∈ getregion(trajnow−ε) ∧ u ∈ getregion(trajnow−ε)

where ε > 0 is a small constant describing the slack, and depending on the motion

of the agents with respect to the size of the regions. A similar predicate is assumed

for the leave region action.
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Algorithm 4 Neighbor Discovery Protocol

automaton NDP(i:N, traj:Traj, F+
ack:R, L:R, k:N,δLU :R,δLD:R)

states
active : Bool := false;
sendbuffer : Seq[M ] := �;
recvbuffer : Seq[M ] := �;
eventqueue : Seq[Ev] := �;
S : Set[N] := �;
regs : Map[N, Region] := empty;
curreg : Null[Region] := nil;
newreg : Null[Region] := nil;
jointrigger : R := −1;
now : R := 0;

transitions
output bcast(m, i) // broadcast message m

pre m = head(sendbuffer);
eff sendbuffer := tail(sendbuffer);

input rcv(m, i) // message m is received
eff recvbuffer := recvbuffer ` m;

internal enter region(i)
pre eventqueue = � ∧ getregion(traj[now]) 6= val(curreg);
eff curreg := embed(getregion(traj[now]));

if ∀t : R(t ≥ now ∧ t ≤ now + δLU + L+ δLD//if staying in new region long enough
⇒ getregion(traj[t]) = val(curreg)) then

sendbuffer := sendbuffer ` [[join, val(curreg), nil], i]; //send join message
active := true; // set active flag to true

internal leave region(i)
pre eventqueue = � ∧ active //if active flag is set to true
∧getregion(traj[now + δLD]) 6= val(curreg); //about to cross boundary of curent region

eff newreg := embed(getregion(traj[now + δLD]));
active := false;
if ∃t : R(t ≥ now + δLD∧

t ≤ now + δLD + δLU + L+ δLD

⇒ getregion(traj[t]) 6= val(newreg)) then
newreg := nil; //if not staying in the new region for sufficiently long

sendbuffer := sendbuffer `
[[leave, val(curreg), newreg], i]; //send leave region message

for j : N in S
if hops(regs[j], val(newreg)) > k then
eventqueue := eventqueue ` [down, j, regs[j]]; //do a link down
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internal process message(m, i)
pre eventqueue = � ∧m = head(recvbuffer)
∧getregion(traj[now]) = val(curreg);

eff recvbuffer := tail(recvbuffer);
if m.sender ∈ S then
regs := update(regs,m.sender,m.msg.reg);

if hops(m.msg.reg, val(curreg)) ≤ k then //message from neighbor within k hops
if m.msg.type = join ∧m.sender /∈ S∧ //join received and sender not in neighbor set

(∀t : R(t ≥ now ∧ t ≤ now + δLU + δLD //if in current region for sufficiently long
⇒ getregion(traj[t]) = val(curreg))) then

if jointrigger = −1 then

jointrigger := now + F+
ack; //send join reply after F+

ack
eventqueue := eventqueue ` [up,m.sender,m.msg.reg]; //do a link up

if m.msg.type = leave ∧m.sender ∈ S∧ //if a leave message is received
hops(val(m.msg.dest), val(curreg)) > k then //if sender will not be within k hops

eventqueue := eventqueue `
[down,m.sender, regs[m.sender]]; // do a link down

if m.msg.type = join reply ∧m.sender /∈ S// if join reply sender is not in neighbor set
∧active then //check active flag

eventqueue := eventqueue ` [up,m.sender,m.msg.reg]; // do a link up

internal send join reply(i) // batch processing of join reply messages
pre eventqueue = � ∧ jointrigger = now;
eff jointrigger := −1;
sendbuffer := sendbuffer `

[[join reply, val(curreg), nil], i];

output link down(j, i)
pre ∃reg : Region(head(eventqueue) = [down, j, reg]);
eff S := S − j; // remove node j from neighbor set after doing a link down
regs := remove(regs, j);
eventqueue := tail(eventqueue);

output link up(j, i)
pre ∃reg : Region(head(eventqueue) = [up, j, reg]);
eff S := S ∪ j; // add node j to neighbor set after doing a link up
regs := update(regs, j, head(eventqueue).reg);
eventqueue := tail(eventqueue);
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Algorithm 5 MAC Broker

vocabulary BrokerTypes(M : Type)
types
MessageType : Enumeration[usr, ndp],
P : Tuple[msg : M, id : MessageType]

end
automaton MACBroker(i : Nat, q : Nat,M : Type)

imports BrokerTypes(TypeM)
signature

input bcast usr(m : M, consti), bcast ndp(m : M, consti)
output rcv usr(m : M, consti), rcv ndp(m : M, consti)
outputbcast(m : P, consti)
input ack(m : P, consti), rcv(m : P, consti)

states
usr out queue : Seq[P ] := �;
ndp out queue : Seq[P ] := �;
usr in queue : Seq[M ] := �;
ndp in queue : Seq[M ] := �;
cts : Bool := true;

transitions
input bcast ndp(m, i)

eff if len(usr out queue) + len(ndp out queue) < q then
ndp out queue := ndp out queue ` [m,ndp];

input bcast usr(m, i)
eff if len(usr out queue) + len(ndp out queue) < q then
usr out queue := usr out queue ` [m,usr];

output rcv ndp(m, i)
pre m = head(ndp in queue);
eff ndp in queue := tail(ndp in queue);

output rcv usr(m, i)
pre m = head(usr in queue);
eff usr in queue := tail(usr in queue);

output bcast(p, i)
pre cts = true ∧ (p = head(ndp out queue) ∨ (p = head(usr out queue)
∧ndp out queue = �));

eff cts := false;
if len(ndp out queue) > 0 then
ndp out queue := tail(ndp out queue);

else
usr out queue := tail(usr out queue);

input rcv(p, i)
eff if p.id = ndpthen

ndp in queue := ndp in queue ` p.msg;
else
usr in queue := usr in queue ` p.msg;

input ack(m, i)
eff cts := true;
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