
DESIGN AND IMPLEMENTATION OF VOLTAGE BASED HUMAN INSPIRED

FEEDBACK CONTROL OF A PLANAR BIPEDAL ROBOT AMBER

A Thesis

by

MURALI KRISHNA PASUPULETI

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

August 2012

Major Subject: Electrical Engineering



DESIGN AND IMPLEMENTATION OF VOLTAGE BASED HUMAN INSPIRED

FEEDBACK CONTROL OF A PLANAR BIPEDAL ROBOT AMBER

A Thesis

by

MURALI KRISHNA PASUPULETI

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Approved by:

Chair of Committee, Aaron D. Ames
Committee Members, Aniruddha Datta

John Valasek
Prasad Enjeti

Head of Department, Costas N. Georghiades

August 2012

Major Subject: Electrical Engineering



iii

ABSTRACT

Design and Implementation of Voltage Based Human Inspired Feedback Control of

A Planar Bipedal Robot AMBER. (August 2012 )

Murali Krishna Pasupuleti, B.Tech, National Institute of Technology at Warangal

Chair of Advisory Committee: Dr. Aaron D. Ames

This thesis presents an approach towards experimental realization of underac-

tuated bipedal robotic walking using human data. Human-inspired control theory

serves as the foundation for this work. As the name, “human-inspired control,”

suggests, by using human walking data, certain outputs (termed human outputs)

are found which can be represented by simple functions of time (termed canonical

walking functions). Then, an optimization problem is used to determine the best fit

of the canonical walking function to the human data, which guarantees a physically

realizable walking for a specific bipedal robot. The main focus of this work is to

construct a control scheme which takes the optimization results as input and deliv-

ers human-like walking on the real-world robotic platform - AMBER. To implement

the human-inspired control techniques experimentally on a physical bipedal robot

AMBER, a simple voltage based control law is presented which utilizes only the

human outputs and canonical walking function with parameters obtained from the

optimization. Since this controller does not require model inversion, it can be im-

plemented efficiently in software. Moreover, applying this methodology to AMBER,

experimentally results in robust and efficient “human-like” robotic walking.
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NOMENCLATURE

ya Actual outputs of the robot

(fR, gR) Affine control system of hybrid system

θ Angular configuration of the robot

θ̇ Angular velocity configuration of the robot

ra Armature resistance of DC motor

Eb Back e.m.f of the DC motor

yH Canonical walking function

fcl Closed-loop control system

QR Configuration space of the robot

(fRv, gRv) Control system with voltage input

ε Controller gain

ia Current in the armature of DC motor

ωd Damped natural frequency

ζ Damping ratio

A Decoupling matrix

vhip Desired forward velocity of the hip

XR Domain of hybrid system

(θ∗, θ̇∗) Fixed point of the periodic orbit with control gain ε

HZD Full hybrid zero dynamics surface

KP Gain matrix

hR Height of swing foot

yα Human-inspired output

H C R Hybrid control system

J Inertia of the rotor of DC motor

Lc Length of calf link

Lt Length of thigh link
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Ltor Length of torso link

B Lie derivative

δphip Linearized forward hip position

δpRhip Linearized hip position of the robot

δmnsl Linearized non-stance leg slope

Kω Motor speed constant matrix

ωn Natural frequency

θnsh Non-stance hip angle

θnsk Non-stance knee angle

α∗ Optimization fit for canonical walking function w.r.t human data

α Parameter vector

τ Parameterized time

T Period of the orbit

O Periodic orbit with fixed point

P Poincaré map

(ϑ(α), ϑ̇(α)) Point on the intersection of the HZD surface and the guard

∆R Reset map of hybrid system

ω̇ Rotor angular acceleration of the DC motor

ω Rotor angular speed of the DC motor

2D Sagittal plane motion

UR Set of admissible controls

kω Speed constant of the DC motor

θsf Stance ankle angle

θsh Stance hip angle

θsk Stance knee angle

x State space

SR Switching surface of hybrid system

TQR Tangent space of the configuration space QR
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Kϕ Torque constant matrix

kϕ Torque constant of the DC motor

u Torque input

θtor Torso angle

Bv Virtual friction

Jv Virtual inertia

B Viscous friction of DC motor

Vin Voltage input

Zα Zero dynamics surface
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1. INTRODUCTION

Humans intrinsically display the following five major characteristics during walk-

ing — efficiency, naturalism, stability, simplicity, and versatility. Humans are also

exceptional at adapting their walking gait based on the nature of the terrain; this

enables them to navigate locations that wheeled robots cannot go. Hence, to achieve

bipedal robotic walking which can display various motion primitives, i.e., walking

on flat-ground, slopes, stairs and uneven terrain, it is natural to look to human-

data [1–4] for inspiration in the design of formal controllers. Though human walking

is a result of complex neuro-muscular interactions, it seems that the aforementioned

high-dimensional walking behavior can be characterized by low-dimensional repre-

sentation; for example, human walking behavior on flat-ground and uneven ter-

rain appears to be controlled by task-based central pattern generators in the spinal

cord [5–8]. This special property motivates the construction of a human-inspired

controller for bipedal robots, which can help robots to navigate like humans in the

real-world environments. Thereby, this advancement paves the way for development

of prosthetic legs which can help the lower limb amputees regain their normal walk-

ing gait. The philosophy behind this work is “simplicity implies robustness,” so the

main objective of this thesis is to develop a framework which can seamlessly integrate

human walking data to design control algorithms which are simple, computationally

tractable and therefore easily realizable on physical robots.

Numerous approaches which aim to find the underlying “simplicity” in bipedal

walking have been explored. Some of the first fundamental work in this area was

by Marc Raibert, with the idea of achieving locomotion through the use of inverted

pendulum models to create single-legged hoppers [9], and Tad Mcgeer who introduced

the concept of passive walking [10], which has also been realized on robots with

efficient actuation [11]. Passive walking lead to the notion of controlled symmetries

This thesis follows the style of IEEE Transactions on Control Systems Technology .
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[12], which allows for low energy walking, and the inverted pendulum models have led

to the Spring Loaded Inverted Pendulum (SLIP) models for running robots [13–15].

In addition to these “minimalist” approaches, several methods have been proposed

to directly bridge the gap between biomechanics and control theory by looking at

human walking data to build models for bipedal robotic walking (see [16–18] to name

a few). Finally, by combining many of the above approaches significant strides have

been made in underactuated bipedal walking (no feet) by using the idea of virtual

constraints and hybrid zero dynamics (HZD) [19, 20], which resulted in amazingly

robust walking even on rough terrain.

Several experimental and commercial robotic models were built which aim to

traverse flat-ground, uneven terrain, and sloped surfaces. Majority of them can be

classified into the following groups: planar bipeds [20–22], humanoids [23–26], 3D

bipeds [27–29] and bipeds with compliance [11, 30, 31]. While some of the planar

bipeds mentioned do not have knees, other models including the 3D bipeds and

humanoids use quasi-dynamic approaches leading them to very slow walking speed

and marginal ability to reject disturbances. Only the robots with in-built compliance

have displayed the power efficient and dynamically stable properties required for the

robots to navigate environments where humans can go. However, adding compliance

via the use of stiffness actuators (or) springs, increases the cost of the robot and

complexity of control. Moreover, the robot structures are not extensible for building

prosthetics. HZD based walking has shown promise in achieving fast response to

large disturbances [30], and it represents bipedal walking in a very simple and elegant

fashion. Implementing a HZD controller on a biped involves the determination of

the parameters of the robot through identification experiments [32], which are not

only very exhaustive and time consuming but are also not scalable to changes in

hardware (or) robot structure.

This work attempts to overcome the limitations posed by a HZD controller (which

uses traditional polynomial representations), by using outputs and canonical walk-
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Eventually the proposed method can have it naturally
walk like human.

2. MODELING THE DYNAMICS OF HUMAN
AND BIPED ROBOT'S GAIT

It is difficult that lots ofjoints are attached to a biped
robot to have it move like human. It is difficult not only
to analyze the dynamics of the human that has
deformable muscles and joints but also for robot to
completely imitate human's complex structure.
Therefore, the most of the biped robot have been
modeled as the 5-link biped model. In order to realize a
complex gait of human on the simplified biped robot,
the dynamics of the human have to be associated with
its one.
Modeling the dynamics of the human gait have been

worked by lots of physiologists. They make it show that
the dynamics of human gait takes place on the sagittal
plane, or the plane bisecting the human body as shown
in Fig. 1. [6]

Fig. 1 Definition of sagittal, frontal and transverse
plane.

The fact that the dynamics of human's gait can be
limited on the sagittal plane shows the possibility that
human's gait pattern can be applied to the 5-link biped
model.

The 5-link biped model is constructed as shown in
Fig. 2. The biped model above consists of five rigid
links, one link for trunk, two links for thigh, and two
links for shank. These links are connected via five
rotating joints, which is friction free and driven by
independent servo motor. The trunk part of the model is
designed as an inverted pendulum and it is worked out
for the stabilization of the biped robot by swinging
forwards and backwards to compensate the walking
trajectory.

Fig. model

This 5-link biped model parameters are represented
as follows:

di : the distance from joint i to COM of link i
/i : the inertia moment of link i
Oi : the angle of link i

(xe .ye) the coordinate of supporting point
(xb 'Yb) the coordinate of the tip of the swing limb

'Ci :the torque of link i

Since the left leg in the biped robot's gait is / 2
phase out of right leg, the angle, angular speed, and
angular acceleration of one leg can estimate angular
parameters of the other leg. For measuring these
parameters, a subject puts on the helpful walking device
and attaches four markers to his head, pelvis, knee, and
ankle as shown in Fig. 3. These parameters of human's
joints are measured from sequential images of the
human gait on sagittal plane.

Fig. 3 Location of the markers and approximation of
model using a 5-link biped model

To associate the 5-link biped robot's gait with the
human' gait, torques applied to the human joints are
analyzed during walking. The analysis makes it to
estimate how much torques are applied to joints of
5-link biped robot. This paper uses the average length
and mass of each human link, and calculates the
human's joint torques and the robot's ones using
dynamic model of Lagrangian equation[7,8].

Sagittal
Plane

DSP SSP DSP

0 Td Td-T, 2Td-T,

Fig. 4 Walking phases on the sagittal plane.

The biped robot's gait is composed periodically of
Double Support Phase(DSP) and Single Support
Phase(SSP). On the DSP, both of the leg are in contact
with the ground, and on the SSP, one leg of the biped
robot swings and the other leg is in contact with it. In
Fig. 4, Td and Ts are times of DSP and SSP period
respectively. Torques applied to the biped robot's joints
for each of the periods are represented as follows:

2.1 Single Support phase(SSP)
The SSP is a state that one leg of the biped robot

swings and the other leg is in contact with the ground.
The dynamics of the 5-link biped on the SSP can be
derived from Lagrangian equation as shown in Eq. (1).

D(6)0 + H(6, 0)0 + G(O) = T (1)

31

(a)

Auton Robot (2009) 27: 277–290 285

Fig. 4 The biped prototype: ERNIE’s experimental setup

Table 1 Link parameters for ERNIE

Model parameter Units Link Value

Mass kg torso 13.6

femur 1.5

tibia 1.0

Length m torso 0.28

femur 0.36

tibia 0.36

Mass center1 m torso 0.14

femur 0.13

tibia 0.12

Inertia2 kg m2 torso 0.09

femur 0.02

tibia 0.02

Motor rotor inertia kg m2 – 2.09 × 10−5

Gearhead ratio – – 91

Gearhead inertia kg m2 – 1.5 × 10−6

1The mass center of each link is measured along the link axis from the
nearest joint.
2The link inertia is measured with respect to its mass center.

5.1 Experimental setup

Figure 4 is a photograph of ERNIE’s experimental setup
when ERNIE is on a treadmill. Table 1 gives ERNIE’s geo-
metric and inertial parameters as determined from a CAD
solid model assembly composed of the individual parts from
which all of the specialized components were manufactured.
ERNIE’s legs are made primarily of carbon fiber to re-
duce the total mass without compromising structural rigid-
ity. ERNIE has four brushless DC motors with gearheads
attached directly to the motor shafts. These motor-geadhead
combinations are located in the torso and drive the hip and
knee joints via steel cable-pulley combinations. This design
results in light legs.

As an experimental biped, ERNIE has large number of
sensors installed. Each actuated joint is equipped with a
5 k� potentiometer that is attached to the shaft of the joint
to measure the joint’s angular displacement. A potentiome-
ter of the same type is used to measure the torso angle with
respect to the boom. Encoders are attached directly to the
shafts of each motor to measure the motor shaft’s angular
displacement. Two additional encoders are used to measure
the boom angular positions in the vertical and horizontal
planes. For each track of the treadmill, an encoder signal
is provided from the treadmill to measure the distance trav-
eled. This signal is used to compute ERNIE’s relative posi-
tion with respect to the treadmill.

To detect ground contact, a force sensitive resistor (FSR)
is inserted between the foot and tibia of each leg in such a
way that the pressure on the FSR increases when the foot
is on the ground. A voltage divider is used to measure the
change in pressure. Since the pressure measurement suffers
from significant drift, the signal is numerically differenti-
ated, and detection of foot touchdown is based on a thresh-
old of the differentiated signal.

ERNIE’s real-time control platform is a dSPACE DS1103
system. This system features a PowerPC 604e processor
running at 400 MHz, 2 MB SRAM local memory, and
128 MB SDRAM global memory. Other features include 20
ADC channels, 8 DAC channels, 6 digital incremental en-
coder channels, and 32 bits of digital I/O.

To provide frontal plane stabilization, a boom is attached
to ERNIE with a revolute joint and to the wall with a pair of
intersecting revolute joints. The three revolute joints of the
boom system intersect at a single point.

Due to limited lab space, ERNIE is configured to walk on
a treadmill. The treadmill has a split track. ERNIE is located
such that only one leg falls on each track. With this configu-
ration, the potential for coupling in the legs’ motions due to
lateral compliance in the track is minimized.

6 An example of the walking controller design

In this section, an example is given that illustrates the
walking controller design procedure. In this case study, the
switching policy is designed such that the biped is able to
walk stably and the step-wise average walking rate follows
a desired average walking rate to realize speed tracking.

The model used in this example is the model of Sect. 2
specialized to ERNIE. Sixth-degree Bézier polynomials
were used to define hd(q), and θ was defined as θ :=
−q5 − q1 − q3/2 as given in Fig. 1. This choice of θ cor-
responds to the angle of the virtual support leg, that is, the
line connecting the stance leg end to the hip, with respect to
the vertical direction. This choice of θ is clearly monotonic
over a step whenever the hip’s horizontal displacement is
monotonic.

(b)

Fig. 1.1.: (a.) Planes of motion for human body [33]. (b.) ERNIE [34].

ing functions which intrinsically capture the major characteristics of human walking

behavior. The main contribution of this thesis is to design an experimental test

bed - AMBER, which can serve as the foundation for the implementation of human-

inspired control theory developed by Ames et. al [35, 36]. Human-inspired control

approach on AMBER thus aims to further bridge the gap between robotics and con-

trol by using human walking data to formally design controllers (as first discussed

in [35]). Specifically, by considering human walking data obtained through motion

capture of subjects walking on flat ground, it was found that certain outputs (or

virtual constraints) of the human as calculated from this data can be represented by

a special class of functions, termed canonical walking functions and can be character-

ized as time response of a linear spring-mass-damper system. Thus, humans appear

to act like linear spring-mass-damper systems when walking on flat-ground. By form-

ing an optimization algorithm, where the cost is the least squares fit of the human

walking functions to the human walking data, parameters for a human-inspired con-

troller that provably results in stable underactuated robotic walking that is as close

as possible to human walking are found. Utilization of similar off-line model-based

optimization techniques to generate stable walking gaits have been explored in the

past, for example see [19, 37, 38]. Using the human-inspired outputs which resulted
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in stable robotic walking in simulation, on AMBER — an underactuated bipedal

robot designed to walk in sagittal plane (Fig. 1.1a) — a simple voltage-based pro-

portional (P) feedback control law on the outputs is defined. Since the actuators

of AMBER are powered by DC motors, this naturally lends itself to simple imple-

mentation on the physical robot. The end result is that the voltage applied to the

motors is directly proportional to the difference between the outputs of the robot

and the outputs of the robot, as represented by the canonical walking functions. The

experimental setup for this thesis is inspired from the earlier work on the following

planar biped platforms: ERNIE and RABBIT (see Fig. 1.1b and 1.2a).

The goal behind experimentally implementing the formal results of the human-

inspired control approach to bipedal robotic walking is to establish our hypothesis,

that the inherent robustness present in the human outputs which are chosen, can be

utilized to create simple and efficient feedback control strategies to enhance the design

process for prosthetic legs. Experimental implementation of the algorithms developed

on AMBER resulted in bipedal robotic walking that is efficient, robust and “human-

like.” Formal proof of the stability of the controller is out of scope of this work,

but the stability of the proposed voltage-based control scheme is verified numerically

through simulation studies by adding motor model to the hybrid model of the robot

(see [39]). Voltage-based controllers with provable stability using adaptive control

laws were explored for robotic manipulators [40, 41], but voltage-based approaches

with formal stability proof for hybrid control systems are still an open problem.

Using the proposed P-control, a very good agreement between the simulation and

experimental data is observed, which indicates a direct connection between the formal

methods and implementation. The experimental output data of the robot can also

be related back to the human output data from which the controller was derived

and for which there is a strong similarity showing that “human-like” walking is

achieved. In addition to the stable walking, the robot exhibits robustness in walking

even under the influence of a wide variety of disturbances like push-pull, knee strike,
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(a) (b)

Fig. 1.2.: (a.) RABBIT [19]. (b.) AMBER.

tripping, obstacles (as high as 6cm) and even with hits from wooden blocks (see

[42]). This complex feat of robust walking was achieved by using minimal actuation

and simple sensors — low power DC motors (11 W), position encoders and contact

switches. Hence, simplicity of the voltage-based P-control on human-inspired outputs

adheres closely to the philosophy that “simplicity implies robustness,” this renders

the walking algorithm and the resulting robotic walking efficient and robust.
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The remainder of this thesis is organized into four chapters. Chapter 2 will

present the mathematical modeling for the AMBER (see Fig. 1.2b), i.e., description

of domains, guards, constraints and reset maps for a 5-link planar robot. Once the

hybrid control system model of AMBER is represented, an overview of the human-

inspired control for AMBER is presented. Chapter 3 presents the walking obtained

in simulation using human-inspired optimization with constraints and describes the

methodology behind selection of voltage-based approach with identification exper-

iments on AMBER. In Chapter 4, the voltage-based proportional control law on

canonical walking functions is presented along with the flowcharts of algorithms used

for experimental implementation. After having achieved walking using P-control, a

comparison is made between the walking obtained in the simulation and the one

obtained in the physical biped. This is followed by conclusions with scope for future

work in Chapter 5.
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2. HUMAN-INSPIRED CONTROL FOR AMBER

AMBER (short for A & M Bipedal Experimental Robot) is a 2D bipedal robot

with 5 links (2 calves, 2 thighs and a torso, see Fig. 2.1). AMBER is 61cm tall with

a total mass of 3.3Kg. It is made from aluminum with carbon fiber calves, powered

by 4 Maxon DC motors and controlled through LabVIEWTM software by National

Instruments. The robot has point feet, and is thus underactuated at the ankle. In

addition, since this robot is built for only 2D walking, it is supported in the lateral

plane via a boom; this boom does not provide support to the robot in the sagittal

plane. This means that the torso, through which the boom supports the robot, can

freely rotate around the boom. The boom is fixed rigidly to a sliding mechanism

(see Fig. 2.1), which allows the boom and consequently the biped, to move its hip

front, back, up and down with minimum friction. The sliding mechanism is rested

on a pair of parallel rails.

1
5

3

3

3

2

4

2

7

6

Fig. 2.1.: AMBER experimental setup. Parts marked are (1): NI cRIO, (2): Maxon
DC motors located in the calf and the torso, (3): Encoders on boom and the joints,
(4): Contact switch at the end of the foot, (5): Boom, (6): Wiring with sheath
protection, (7): Slider for restricting the motion to the sagittal plane.
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Model Parameters
Parameter Mass Length Inertia x-axis Inertia z-axis

g mm ×103 g mm2 ×103 g mm2

Stance calf 213.79 312.27 1967.37 119.69
Stance knee 606.15 282.37 6494.94 418.37

Torso 804.83 9.97 3730.23 3577.19
Non-stance knee 606.15 282.37 6494.94 418.37
Non-stance calf 213.79 312.37 1967.37 119.69

(c)

Fig. 2.2.: Notations used for (a.) masses and lengths of the links and (b.) angle
conventions. (c.) Table with the masses, lengths and inertia properties for AMBER.

Let Lc, Lt, Ltor be the lengths of the calf, thigh and torso respectively (as shown

in Fig. 2.2a) and θ = (θsf , θsk, θsh, θnsh, θnsk)
T be the angles of stance foot (foot of the

stance leg), stance knee (knee of the stance leg), stance hip, non-stance (swing leg)

hip and non-stance knee respectively. These variables form the configuration space

of the robot, QR, and are shown in Fig. 2.2b. The parameter values which are used

for modeling purposes are presented in Fig. 2.2c. Note that every time the swing

foot hits the ground, the stance and non-stance nomenclatures are switched in the

physical biped.
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2.1 Hybrid Systems

Formally, the bipedal robot can be represented as a hybrid system (see [35,36,43]

for a formal definition):

H C R = (XR, UR, SR,∆R, fR, gR), (2.1)

where XR ⊂ TQR is the domain given by the constraint hR ≥ 0, where hR is the

height of the swing foot, UR ⊂ R4 is the set of admissible controls, SR ⊂ XR is the

guard given by hR = 0, ∆R is the reset map which provides an instantaneous change

in velocity at foot strike, and ẋ = fR(x) + gR(x)u, with x = (θT , θ̇T )T ∈ R10 and

u the torque input, is a control system obtained from the Lagrangian of the robot

(which includes the mass and inertia of all links, the motors and the boom). Since

the robot is controlled by DC motors, the controller design takes into consideration

of the DC motor models which results in the control system ẋ = fRv(x) + gRv(x)Vin

with voltage, Vin, being the control input (see [44] for more information on modeling

of AMBER).

2.2 Periodic Orbits

By applying the input (u or Vin) derived from the feedback controller, if it leads

to bipedal robotic walking then it corresponds to stable periodic orbits in hybrid

systems. For simplicity, only periodic orbits of hybrid systems with fixed points

on the guard (for more general definitions, see [43, 45]) is presented. Let ϕ(t, x0)

be the solution to ẋ = fcl(x) with initial condition x0 ∈ XR, where fcl(x) is the

closed-loop control system representation. For x∗ ∈ SR, ϕ is periodic with period

T > 0 if ϕ(T,∆(x∗)) = x∗. A set O is a periodic orbit with fixed point x∗ if O =

{ϕ(t, x∗) : 0 ≤ t ≤ T} for a periodic solution ϕ. Associated with a periodic orbit is a
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Poincaré map [45]. In particular, taking SR to be the Poincaré section, one obtains

the Poincaré map P : SR → SR which is a partial function:

P (x) = ϕ(TI(x),∆(x)),

where TI is the time-to-impact function [19]. As with smooth dynamical systems,

the stability of the Poincaré map determines the stability of the periodic orbit O.

In particular, the Poincaré map is (locally) exponentially stable (as a discrete time

system xk+1 = P (xk)) at the fixed point x∗ if and only if the periodic orbit O is

(locally) exponentially stable [46]. Although it is not possible to analytically compute

the Poincaré map, it is possible to numerically compute its Jacobian. Thus, if the

eigenvalues of the Jacobian have magnitude less than one, the stability of the periodic

orbit O has been numerically verified.

2.3 Human Walking Experiment

The data presented in this thesis was collected using the Phase Space System. It

consisted of 12 high precision cameras positioned to allow 3D spatial measurements

of a number of LED sensors to an accuracy within one millimeter. The positions

of the sensors were collected at 480 Hz. Prior to the experiment the cameras were

calibrated and placed to achieve a millimeter level of accuracy for a space of 5 by 5

by 5 meters cubed. 8 LED sensors were placed on each leg as pictured in Fig. 2.3,

with 1 LED sensor placed on the front and back sternum as well as the navel. Each

trial of the experiment required the subject to walk 3 meters along a line drawn on

the floor. Each subject performed 11 trials in a single experiment. Overall, data was

collected from 9 subjects: 2 female and 7 male subjects with ages ranging between 17

and 30, heights ranging between 160.0cm and 188.5cm, and weights ranging between

47.7kg and 90.9kg. Note that the human data is collected from two experiments

separately. The data of the first 5 subjects is taken from one experiment and the
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Fig. 2.3.: Straight line human walking experiment with LED sensors placed on
various sections of the human subject.

data for the other 4 subjects is collected from the experiment one year later. The two

experiments have the same setup and took place at the same lab. Although the data

is collected from two experiments, the analysis results are the same. This fact shows

that the data analysis processing algorithm is repeatable. The walking tile for the

post-processed mean human walking data, which is used to design human-inspired

controllers is presented in Fig. 2.4.

Fig. 2.4.: Walking tile using mean human data obtained from the human walking
experiments.
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2.4 Human-Inspired Functions

By considering human walking data (as described in [35]), its found that certain

outputs (or virtual constraints), computed from the human joint data, display sim-

ple behavior; this core observation will be central to the design of human-inspired

controllers. The goal of picking the outputs is to elucidate the underlying structure

of walking through a low-dimensional representation. In particular, the following

collection of outputs yields such a representation:

1. The linearization of the x-position of the hip, phip, given by:

δphip(θ) = Lc(−θsf ) + Lt(−θsf − θsk), (2.2)

2. The linearization of the slope of the non-stance leg mnsl, (the tangent of the

angle between the z-axis and the line on the non-stance leg connecting the

ankle and hip), given by:

δmnsl(θ) = −θsf − θsk − θsh + θnsh +
Lc

Lc + Lt
θnsk. (2.3)

3. The angle of the stance knee, θsk,

4. The angle of the non-stance knee, θnsk,

5. As mentioned above, the angle of the torso from vertical,

θtor(θ) = θsf + θsk + θsh. (2.4)

It is important to note that the linearized form of these outputs, rather than

their original nonlinear form [35], is considered to allow for more efficient software

implementation.
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Fig. 2.5.: Mean of the trajectories of the human outputs from all test subjects put
together. The grey shaded area indicates the standard deviation from the mean
trajectory. The red lines are the fits of the canonical walking functions to the mean
human data.

Inspection of these outputs, as computed from the human data and shown in

Fig. 2.5, reveals that they appear to display very simple behavior. In the case of the

(linearized) position of the hip, it appears to essentially be a linear function of time:

δpdhip(t, v) = vhipt, (2.5)

The remaining outputs, (the non-stance slope δmnsl, the stance knee θsk, the non-

stance knee θnsk and the torso angle θtor) appear to act like a second order linear

system. This motivated the introduction of the canonical walking function [36]:

yH(t, α) = e−α4t(α1 cos(α2t) + α3 sin(α2t)) + α5. (2.6)

which is simply the time solution to a linear mass-spring damper system, with α4 =

ζωn, where ζ is the damping ratio and ωn is the natural frequency, α2 = ωd, where

ωd = ωn
√

1− ζ2 is the damped natural frequency, α1 = c0 and α3 = c1, where

c0, c1 are determined by the initial conditions of the system and α5 = g, where g

is the gravity related constant. Performing a least squares fit of the human output

data with these functions results in near unity correlations, implying that for the

specific outputs chosen humans appear to act like linear mass-spring-damper systems.
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This is an important conclusion because it illustrates the simplicity in behavior that

humans display when walking. Moreover, utilizing these functions in the control

implementation on AMBER will result in behavior that mimics “compliant systems”

even without the mechanical use of springs and dampers.

2.4.1 Human-Inspired Outputs

Having obtained outputs from the inspection of human data, the goal will be

to construct a controller that drives the outputs of the robot to the outputs of the

human, as represented by the canonical walking function: ya(θ(t))→ yd(t, α), with:

yd(t, α) =


yH(t, αnsl)

yH(t, αsk)

yH(t, αnsk)

yH(t, αtor)

 , ya(θ) =


δmnsl(θ)

θsk

θnsk

θtor(θ)

 , (2.7)

where yH(t, αi), i ∈ {nsl, sk, nsk, tor} is the canonical walking function (2.6) but

with parameters, αi specific to the output being considered. By grouping these

parameters with the velocity of the hip, vhip, that appears in (2.5) results in the

vector of parameters α = (vhip, αnsl, αsk, αnsk, αtor).

In order to remove the time dependence of yd(t, α), the time is parameterized

using the (linearized) position of the hip as it’s accurately described by a linear

function of time. This motivates the following parametrization of time:

τ(θ) =
δpRhip(θ)− δpRhip(θ+)

vhip
, (2.8)
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where pRhip(θ+) is the position of the hip of the robot at the beginning of a step1

where θ+ is a point where the height of the non-stance foot is zero, i.e., hR(θ+) = 0.

Using the parametrization of time, the human-inspired output is defined as follows:

yα(θ) = ya(θ)− yd(τ(θ), α), (2.9)

2.4.2 Human-Inspired Control

Consider again the affine control system (fR, gR) associated with the hybrid model

of AMBER (2.1). The human outputs were explicitly chosen so that the decoupling

matrix, A(θ, θ̇) = LgRLfRyα(θ, θ̇) with L the Lie derivative, is nonsingular. Therefore,

the human-inspired outputs are (vector) relative degree 2, hence a torque-based

controller can be defined as:

u(α,ε)(θ, θ̇) = −A−1(θ, θ̇)
(
L2
fR
yα(θ, θ̇) + 2εLfRyα(θ, θ̇) + ε2yα(θ)

)
. (2.10)

In other words, input/output linearization (see [47]) is applied to obtain the linear

system on the human-inspired outputs: ÿα = −2εẏα − ε2yα. This system is expo-

nentially stable, implying that for ε > 0 the control law u(α,ε) drives yα → 0. More

generally, it renders the zero dynamics surface:

Zα = {(θ, θ̇) ∈ TQR : yα(θ) = 0, LfRyα(θ, θ̇) = 0} (2.11)

invariant and exponentially stable for the continuous dynamics. Yet this property

does not hold for the hybrid dynamics since discrete impacts in the system cause

the state to be “thrown” off of the zero dynamics surface. Therefore, the goal is to

achieve hybrid zero dynamics: ∆R(SR ∩ Zα) ⊂ Zα, i.e., render the zero dynamics

1Note that we can assume that the initial position of the human is zero, while this cannot be
assumed for the robot since the initial position of the hip will depend on the specific choice of
configuration variables for the robot.
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surface invariant through impact. This will imply that the behavior of the robot will

be characterizable by the “virtual model” that motivated the output functions under

consideration, and will thus allow us to guarantee the existence of walking gaits.

2.4.3 Optimization Algorithm

This section presents the main theorem that will be used to generate the con-

trol parameters that will be experimentally implemented on AMBER to obtain

robotic walking. From the mean human walking data, discrete times, tH [k], and

discrete values for the human output data, yHi [k] and the canonical walking func-

tions, ydi (t, αi) for i ∈ Output = {hip, nsl, sk, nsk, tor} are obtained; for example,

yHnsl[k] = yH(kT, αnsl), where T is the discrete time interval and k ∈ Z. Then the

following human-data cost function is defined:

CostHD(α) =
K∑
k=1

∑
i∈Output

(
yHi [k]− ydi (tH [k], αi)

)2
(2.12)

which is simply the sum of squared residuals. To determine the parameters for the

human walking functions, the following optimization problem is solved:

α∗ = argmin
α∈R21

CostHD(α) (2.13)

which yields the least squares fit of the mean human output data with the canonical

walking functions. While this provides a α∗ that yields a good fit of the human

data (see Fig. 2.5), these parameters will not result in robotic walking due to the

differences between the robot and a human. Therefore, the goal is to determine these

parameters which provide the best fit of the human data while simultaneously guar-

anteeing stable robotic walking for AMBER. This motivates the following theorem:
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Theorem 2.4.1 The parameters α∗ solving the constrained optimization problem

[35, 36]:

α∗ = argmin
α∈R21

CostHD(α) (2.14)

s.t y(ϑ(α)) = 0 (C1)

dyα(∆θϑ(α))∆θ̇(ϑ(α))ϑ̇(α) = 0 (C2)

dhR(ϑ(α))ϑ̇(α) < 0 (C3)

DZ(ϑ(α)) < 0 (C4)

0 < ∆Z(ϑ(α)) < 1 (C5)

yield hybrid zero dynamics: ∆R(SR ∩ Zα∗) ⊂ Zα∗. Moreover, there exists an ε̂ > 0

such that for all ε > ε̂ the hybrid system H (α∗,ε)
R , obtained by applying the control

law (2.10) to the hybrid control system (2.1), has a stable periodic orbit with fixed

point (θ∗, θ̇∗) ∈ SR ∩ Zα∗ that can be explicitly computed.

A detailed explanation of all the elements utilized in this Theorem can be found

in [36]. Of particular importance is the point (ϑ(α), ϑ̇(α)) ∈ SR ∩ Zα which is a

point on the intersection of the zero dynamics and the guard that can be explicitly

computed in terms of the parameters α. This point is used to ensure hybrid zero

dynamics through (C1)-(C3), and guarantees the existence of a stable periodic orbit

in the zero dynamics surface through (C4) and (C5) which implies the existence of

a stable walking gait for sufficiently large ε.

The walking gait of the robot that we achieve using Theorem 2.4.1 should also

be physically realizable. In particular, constraints that demand torques (2 Nm)

and angular velocities (6.5 rad/s) that are within the limits of the DC motors, pro-

duce a good step length, and most importantly prevent the swing foot from scuffing

(which appears to directly relate to stability of the walking gait) are added to the

optimization problem which ensures that the resulting control parameters will ex-
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perimentally result in walking with AMBER. More details on formulation of the

optimization problem with physical realizability conditions and results can be found

in [35,36,39].
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3. EVOLUTION OF CONTROL LAW IMPLEMENTATIONS FOR AMBER

There are numerous methods for achieving stable and sustainable robotic walking,

starting from passive walking to using controlled symmetries to following a certain

set of trajectories (see [48], [10], [19] and [11]). Since the objective of this thesis is

to achieve walking in an underactuated robot (without feet), it is natural to look

to the seminal work of Grizzle et. al which builds upon the concept of tracking

parameterized trajectories described by Bézier polynomials [19]. But before doing

that, Ames et. al decided to look at humans for getting inspiration for walking [49].

Even though it is hard, it is important to understand and make a detailed and a

comprehensive analysis of human walking. That was how the concept of human-

inspired control was born. Capturing and observing the data from human walking

experiments was the next logical step and the coming sections will explain in detail

about the evolution of the control laws used to experimentally achieve the goal of

robust and stable “human-like” robotic walking on AMBER using human walking

data.

By implementing the human-inspired optimization problem i.e., Theorem 2.4.1

in MATLABTM, the resulting optimized parameters α∗ (see Table 3.1) yields a hy-

brid system which satisfies the HZD criterion and physical realizability conditions.

Moreover, the same optimization automatically generates a fixed point to a stable

periodic orbit; this is verified by picking ε = 10 in (2.10) and checking the eigenvalues

of the linearization of the Poincaré map for which the maximum magnitude is 0.8286

(and hence less than 1). The periodic orbits, outputs and joint angles of the walking

gait obtained are shown in Fig. 3.1a, 3.1b and 3.1c respectively. Fig. 3.1d shows

that the torques are well within the limits, 2 Nm; which consequently means that

the canonical walking functions are definitely realizable, to obtain robotic walking

on AMBER.
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Fig. 3.1.: (a.) Phase portraits for the walking gait obtained from simulation using
human-inspired control. (b.) Canonical walking functions resulting from the human-
inspired optimization with constraints. (c.) Joint angles and (d.) torque input
trajectories for a single step of the robot walking in simulation using input/output
linearization technique [44].

3.1 Time-based Tracking Controller on Angles

Using the hip and knee angle trajectories (Fig. 3.1c) obtained from simulating

robotic walking using torque-based human-inspired control, a PID controller (as

shown in Fig. 3.2) is implemented in LabVIEW, to validate the physical realizability
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Table 3.1: Table containing parameter values of the canonical human walking
functions obtained from running the human-inspired optimization with the con-
straints [44].

yH = e−α4t(α1 cos(α2t) + α3 sin(α2t)) + α5

Fun. vhip α1 α2 α3 α4 α5 Cor.
δphip 0.4401 * * * * * 0.9991
δmnsl * 0.2374 6.0244 0.1346 0.7820 -0.0459 0.8899
θsk * -0.0436 15.6312 -0.0320 -0.2430 0.3271 0.8180
θnsk * -0.3632 -9.6707 -0.1165 -0.4538 0.7097 0.9891
θtor * -0.0000 -0.0000 0 0 -0.0000 0

of the human-inspired control theory. As the controller implements a time-based

tracking technique, it has no disturbance rejection in state space i.e., it has no guar-

antee of achieving sustained and stable periodic walking behavior. Owing to the

strength of human-inspired optimization technique to produce a walking gait which

satisfies the torque and angular velocity constraints, trajectory tracking consistently

resulted in 5-10 steps of robotic walking on AMBER. Fig. 3.3 shows the walking tile

of AMBER for a single step with this controller. This initial step towards successfully

implementing the results of human-inspired control theory experimentally, served as

an impetus to explore for a more robust state-based feedback control solution.

3.2 System Identification Experiments for Voltage-based Control

For obtaining dynamically stable bipedal walking, torque-based PD control on

output functions (or virtual constraints) is widely used (see [50]). With electric

motors, implementing a torque-based controllers involves a secondary control loop

which generates a voltage equivalent to the current (torque) set-point generated

from the primary PD control. Moreover, for bipeds with electrical actuators, the

hybrid control system models doesn’t take into account of the motor parameters,

which can lead to higher control costs. Torque-based approach has two stages of

control to produce a voltage input, which requires additional hardware resources and
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Fig. 3.2.: PID tracking controller on angle trajectories (see Fig. 3.1c), derived from
the simulation of AMBER walking.

sensors. Hence, an alternative approach which can directly produce the voltage to the

electric motor with minimal sensing is considered. This section presents the system

identification experiments on AMBER, conducted for the purpose of validating a

direct voltage-based DC motor control approach to obtain robotic walking. The

experimental identification data in conjunction with the desired dynamic walking

gait properties of AMBER — speed and acceleration data (obtained from simulated

walking shown in Fig. 3.1), gives directly the voltage input. Voltage equivalent of

the desired torque for the same walking gait (Fig. 3.1), is considered to highlight the

effectiveness of the proposed direct voltage-based approach.
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Fig. 3.3.: Trajectory tracking results for AMBER, experiment vs simulation: (a.)
hip angles, (b.) knee angles and (c.) walking tile over one step.

For DC motors with small inductance, the voltage (Vin) required is given by:

Vin = iara + Eb (V1)

Eb = kωω (V2)

kϕia = Jω̇ +Bω (V3)

where ia is current in the motor armature, ra is armature resistance, Eb is back e.m.f,

kω is speed constant, kϕ is torque constant, ω is speed, J is inertia and B is friction
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1
Jvs + Bv

DC Motor, Gears,
 Links and Chains

NI 9505 DC Motor Drive Absolute Encoder 
at the Joint

Fig. 3.4.: Block diagram of the identification experiment carried out for a configu-
ration under test.

coefficient of motor and load. Substituting the value of ia from V3 into V1, we have

V4, whose transfer function is given by V5.

Vin = Jvω̇ +Bvω (V4)

Vin(s) =
kpω(s)

1 + tps
(V5)

where Jv is virtual inertia and Bv is virtual friction of load, gearbox and motor

reflected towards the motor end, kp = 1
Bv

and tp = Jv
Bv

. The form of V5 (first-order

transfer function), is amenable for the system identification procedures as shown in

Fig. 3.4.

Configuration of various combinations for the identification experiments carried

out is given in Fig. 3.5. Feeding a reference sinusoidal voltage input to the motor

and recording the speed at the motor end (see Fig. 3.6), the parameters kp, tp can

be found for all the links actuated by the motors. The data recorded in every

experiment is given to System Identification Toolbox in MATLABTM [51], which

gives the coefficients— kp, tp of the linear model between voltage and angular velocity
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a. Hip Motor With Thigh Link

Experiment 2

Hip Motor With Thigh 
and Calf Link

Experiment 1

 
b. Knee Motor with Calf Link
 
c. Hip Motor With Torso Link

Hip Motor

Gear Ratio (157:1)

Thigh

Knee Motor

Gear Ratio (157:1)

Calf

DC Motor

Fig. 3.5.: Configurations for the various identification experiments carried out on
AMBER. Transmission mechanism used for knee links is chain and sprocket, while
hips are directly driven by the DC motor.

from which values for Jv and Bv are calculated. The identified data collected for all

the joints is tabulated in Table 3.2.
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Fig. 3.6.: Sample input (voltage) and output (speed) data given to the MATLAB
system identification toolbox.

Table 3.2: Summary of the results for the identification experiments used to es-
timate the first-order transfer function parameters of the transmission mechanisms
w.r.t DC motor joints from the speed and voltage data.

Motor Joint Virtual Inertia Virtual Friction

Swing Knee 4.4 E-4 0.026

Swing Hip 12.3 E-4 0.026

Stance Hip 2.74 E-4 0.024

Stance Knee 4.26 E-4 0.025

3.2.1 Construction of Voltage Trajectories

Using the speed and acceleration data from simulation, Jv and Bv from identifi-

cation experiments, voltage trajectories for a single step of a robot are constructed
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Fig. 3.7.: Torque-based vs. Voltage-based input trajectories for one step: con-
structed using the values of speed, acceleration and torque from the simulation walk-
ing data for AMBER (Fig. 3.1).

for all the joints using V4. Utilizing the simulated torque (u) and speed data, the

equivalent voltage profiles are generated using V6.

Vin = (u/kϕ)ra + kωω (V6)

Hence for a given walking gait (Fig. 3.1), the voltage trajectories that would be

needed in the case of a traditional torque-based control and a direct voltage-based
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control using identification data, display a close agreement for a DC motor model

with negligible inductance as seen in Fig. 3.7.

Fig. 3.8.: Walking tile of AMBER: experiment gait obtained by directly feeding
the voltage-based profiles (as seen in Fig. 3.7) to DC motors vs simulation gait
obtained using input/output linearization on outputs obtained from human-inspired
optimization (Fig. 3.1).

Hence, this experimental procedure serves as a foundation for the utility of a

direct voltage-based approach for the control of AMBER instead of a torque-based

approach. With AMBER suspended using a rope with marginal foot contact with

the ground and feeding these time-based voltage profiles directly to the DC mo-

tor drives, the robot displayed a walking motion which is similar to the simulated

walking (see Fig. 3.8). This was a good indication of the applicability of direct

voltage-based control approach for continuous dynamics behavior. But bipeds are

hybrid control systems and have a discrete dynamics during foot impacts, so by de-

vising a voltage-based approach which incorporates the configuration of the robot

with discrete dynamics behavior, it could potentially result in walking. This line of

thought provided the idea for using voltage-based proportional control on the out-

puts which are hybrid zero dynamics compliant for experimental implementation on

AMBER.
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4. VOLTAGE-BASED P-CONTROL IMPLEMENTATION ON AMBER

The control law (2.10) used for human-inspired control simulation, linearizes the

dynamics of AMBER through model inversion, which requires exact values of masses,

inertias and dimensions of the robot. This is not only complex to implement but

realizing it on AMBER could potentially consume both time and resources, and

achieving walking may still not be guaranteed due to a potentially inexact model.

Therefore, a different approach is considered by arguing that due to the “correct”

choice of output functions—and specifically the human-inspired outputs—it is pos-

sible to obtain walking through simple controllers that are easy to implement and

inherently more robust. Specifically, a voltage-based proportional controller on the

human-inspired outputs is presented, and it was verified through simulation that

robotic walking is obtained on AMBER. The simplicity of this controller implies

that it can be efficiently implemented in software, and the details of this imple-

mentation are presented in this chapter, followed by the experimental results, which

show that “human-like” bipedal robotic walking could be obtained on AMBER that

is both efficient and robust.

4.1 Human-Inspired Voltage Control

Even if walking is obtained formally through input/output linearization, i.e.,

model inversion, the controllers are often implemented through PD control on the

torque (see, for example, [32]). Since AMBER is not equipped with torque sensors,

an alternative method for feedback control implementation is considered. Because

AMBER is powered by DC motors, the natural input to consider is voltage, Vin,

which indirectly affects the torques acting on the joints. Let Vnsl, Vsk, Vnsk and Vtor

be the voltage input to the motors at the non-stance hip, stance knee, non-stance
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knee and stance hip, respectively. Define the following human-inspired proportional

(P) voltage control law:

Vin =


Vnsl(θ)

Vsk(θ)

Vnsk(θ)

Vtor(θ)

 = −Kpyα(θ), (4.1)

where Kp is the constant matrix with its diagonal entries being the proportional gain

of 1.75 for each of the motors and its non-diagonal entries are zero since the motors

are controlled independently. This controller can be applied to the control system

ẋ = fRv(x) + gRv(x)Vin modeling the bipedal robot in conjunction with the motors.

It can be seen that the control law (proportional control) solely depends on the

generalized coordinates of robot (angles), θ, and not on the angular velocities. This

marks a drastic change from the traditional ways of computing control. Evidently,

and importantly, this avoids computation of angular velocities of the joints, which

would have been computationally expensive and inaccurate.

It is important to note that the voltage-based P-controller (4.1) is equivalent to a

PD torque controller, where the derivative (D) constant is specified by the properties

of the motor:

Vin = −Kpyα(θ) = Raia +Kωω =⇒ u(θ, θ̇) = −KϕR
−1
a Kpyα(θ)−KϕR

−1
a Kωθ̇

where Kϕ is the torque constant matrix, and Kω is the motor constant matrix. Hence,

the control being applied is, in the end, related to the conventional torque PD control

methods adopted in literature (see [50]). Fig. 3.7 supports this analytical observation

of similarity between torque-based PD control and voltage-based P-control, for a DC

motor with inductance neglected.
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Fig. 4.1.: Walking gait for AMBER obtained in simulation through P-voltage con-
trol.

4.2 Simulation Results

To obtain walking in simulation with AMBER using P-control on outputs, hybrid

model H C R of the robot is constructed which is given by (2.1). Applying the

human-inspired controller (2.10) and solving the optimization problem subject to

the additional constraints results in a hybrid system H (α∗,ε)
R that provably has a

stable periodic orbit, i.e., a stable walking gait. The parameters α∗ are then used

in the voltage-based P-control, and the resulting closed loop system, which includes

the mechanical and electrical models of AMBER is simulated. This results in a

new periodic orbit (that is “near” the periodic orbit for the human-inspired torque

controller). The resulting walking that is obtained through P-control is shown in

Fig. 4.1, along with the periodic orbit, joint angles, torques and voltages.
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4.3 Experimental Implementation and Results

AMBER’s experimental set up consists of three main segments- controller, actu-

ators and sensors. Controller is implemented using LabVIEW Real Time (RT) and

FPGA. Real Time Processor is used for floating point operations, while FPGA inter-

acts with I/O devices, provides parallel execution and silicon hardware level speed

of nanosecond operations for time critical logic, which makes the combination of RT

and FPGA ideal for controlling a complex machine like a biped. DC motors are

used to actuate all the joints of the robot, with absolute encoders on all joints, torso

and contact switches at foot ends providing sensing mechanisms used to implement

feedback control law. The biped is powered from an off-board power supply and

all interconnections are established through wires. Before the experiment is started,

the treadmill speed (resolution of 0.1 mph) is adjusted to be roughly equal to the

desired average speed of walking (0.8 mph) and then the speed is fine tuned using

an autotransformer which changes the supply voltage to treadmill. In this manner,

the net effect of the walking is close to the flat ground walking. The robot is then

powered on and slowly lowered down to the treadmill, after couple of steps, the robot

steadily falls into a limit cycle to achieve robust walking. Before the experiment is

stopped, the robot is held by the experimenter to avoid it falling on the ground and

then lifted off the treadmill. Protection scheme is implemented for AMBER upon

detection of undesired behavior, when the encoder fails (or) when joint angles fall

out of prescribed range of motion, the robot is powered off.

Table 4.1 gives the list of components used and specifications associated with

each of them and Fig. 2.1 gives the the locations of various sensors and actuators on

biped, since the robot is symmetrical, locations are highlighted on only one of the

legs. The rest of this section is devoted to explaining control law implementation

algorithms, control of DC motor, angle calculation using absolute encoder, guard

detection using foot switch and finally the results of AMBER walking are presented.



33

Table 4.1: Summary of the components used for bipedal walking with AMBER.

Component Manufacturer Model Number Specifications

DC Motor Maxon 222052 11W, 18V

Gear Maxon 143989 157:1

Absolute
Encoder

US Digital MAE3 4096
counts/rev

Contact
Switch

Honeywell AML21CBA2BA SPDT

Real Time
Controller

NI cRIO 9024 800 MHz, 512
MB DRAM

Chassis NI cRIO 9114 8-Slot,Virtex5-
LX50 FPGA

DC Motor
Drive

NI NI 9505 24V

Power Supply NI NI PS 16 24V,10A

Treadmill TreadDesk The Tread 0.5 mph-4 mph

4.4 Implementation of Feedback Control Law

Overview of the implementation of voltage based P-control on human-inspired

outputs for AMBER is presented in Fig. 4.2. This section presents the algorithmic

implementation for each module in the form of flowcharts. Fig. 4.3 presents the

architectural overview of interaction between controller modules and data logging

module. Data Logging is performed using network published variables. They stream

the data between the Host PC (Fig. 4.4) and RT using a 100ms thread via an

ethernet connection. Host PC has file I/O, hence it is used to store joint angles

and voltage data used for control law implementation. Control law is implemented

across both LabVIEW - RT (Fig. 4.5) and FPGA (Fig. 4.6) modules. From the

FPGA resource utilization summary (39%) and total power consumption per step

(27 W), it is evident that the control law is not resource intensive for implementation

purposes. This highlights the effectiveness and simplicity of the algorithm used to

implement the control law and this is potentially one of the reasons why the walking

obtained was so robust.
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Fig. 4.2.: Schematic of experimental implementation of the voltage-based propor-
tional controller on the human-inspired outputs.
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Fig. 4.3.: Overview of the functional behaviour with interface protocols used be-
tween Host, RT and FPGA LabVIEW modules.

4.4.1 Brushed DC Motor Control

Pulsed Width Modulation (PWM) technique is used to control the voltage applied

to the brushed DC motor, which effectively controls the torque and speed of DC
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Fig. 4.4.: Flowchart representation of the Host algorithm.

motor operation. Resistance of motor (6.44 Ω) is large when compared to inductance

(0.309 mH), hence it was possible to implement a P-control, since the dynamics of

current can be ignored. The control law which is depicted in Fig. 4.2, produces PWM

count equivalent to the duty cycle of the PWM pulse i.e., voltage that needs to be

applied to the motor. Then, the FPGA generates a PWM pulse which will be given

to NI 9505 DC motor module and the sign of the PWM count specifies the drive
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Fig. 4.5.: Flowchart representation of the LabVIEW RT algorithm.

direction (see Fig. 4.7). The H-bridge controller inside NI 9505 module operates at

20 KHz, while the FPGA operates at 40 MHz which corresponds to 2000 FPGA

clock tick counts. Since the motor is rated at 18 V and module can supply 24 V,

the maximum duty cycle is limited to 75%. There is a minimum restriction of pulse

width of 2 µs, this results in a usable duty cycle range of 4% to 75% for the control

of DC motor.
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Fig. 4.6.: Flowchart representation of the LabVIEW FPGA algorithm.

4.4.2 Absolute Encoder Logic and Operation

Absolute encoder sends a PWM pulse to NI 9505 module with pulse width pro-

portional to the angle of rotation (see Fig. A.2b). The scaling factor that is used to

calculate the angles for various joints from the encoder pulses can be obtained from

the data sheet.

In short, 4097 µs of encoder pulse width is equivalent to 2π radians of one com-

plete rotation. By using 40 MHz clock to sample this encoder pulse (1 FPGA count

= 0.025 µs) as shown in Fig. 4.8, we get 163880 counts for every rotation, which

results in 26082 counts/radian. Hence by determining the counts registered, angle of
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Fig. 4.7.: Schematic for the generation of PWM signal for DC motor control in
LabVIEW FPGA.

a joint is calculated. Encoder calibration is done prior to starting of the experiment

to determine the zero degree position for every joint, relative to which all angles of

that respective joint are calculated during the experiment. Protection is built into

the system based on encoder values, the motors will be powered down when any of

encoder doesn’t work (or) range of motion on any of joints exceeds the set limits.

4.4.3 Pushbutton Contact Switches Operation

The pushbutton switches are used at the end of each foot, they are Single Pole

Double Throw (SPDT) type. So when the button is in pressed position it sends a

Logic 0 to FPGA, when it is in relaxed position it sends a Logic 1. The FPGA logic

that is used to detect the guard and initiate the switching of legs is shown in Fig.4.9

.The following variable- L/R stance is used for to keep track of which leg is stance

leg. So when left leg is stance leg, the watchdog in the controller looks every 5 ms

to see whether right leg hit the guard and vice versa, when the right leg is in stance

position. Debounce logic for 0.2 s is implemented, which discards any swing leg
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connection diagram.

contact happening in less than 0.2 s from the previous guard. Hence this debounce

logic eliminates false steps where swing leg hits the ground behind the stance leg.

4.5 Results

Implementing the proposed voltage-based P-controller on AMBER, results in

bipedal robotic walking (see [53] for a video of AMBER walking and responding to

external disturbances). Fig. 4.10 presents the summary of the resource utilization

for the controller implementation on AMBER. Walking tiles for the experimental

walking obtained on AMBER using this control scheme is shown in the Fig. 4.11,

where they are compared against the simulated walking behavior. The similarity

between the experimental and simulated behavior can be further seen by by compar-



40

Fig. 4.9.: LabVIEW FPGA implementation of guard detection with debounce logic
for 0.2 seconds.

ing the joint angles predicted in simulation and the joint angles seen experimentally.

Even though there is no direct control on angles, as shown in Fig. 4.12, owing to the

controller driving the actual outputs of robot to the desired outputs, angle tracking

displays a very good matching with the simulated gait. Due to the human-inspiration

for the controller design, the walking achieved by AMBER is efficient, robust and

“human-like.” The specific cost of transport (electrical) for AMBER walking at 0.44

m/s is 1.88 using an average power of roughly 27 W, which is very low compared to

commercial robots like Honda [11] and it also has the least installed power to weight

ratio (W/Kg) among the robots with no compliance as indicated in Table 4.2, which

is a critical aspect in reduction of total cost of equipment by reducing the size of

motors and the rating of power supplies. In addition, the walking achieved with

AMBER is incredibly robust; with no changes to the controller, AMBER can suc-

cessfully navigate over rough terrains with ease (a video of this can be found at [42]).

Finally, on comparison of the outputs observed on AMBER to the human output
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data from which the controller was originally derived (see Fig. 4.13), demonstrates

that the walking is remarkably “human-like” despite the vast differences between

AMBER and a human.

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

Time (s)

P
o
w

er
(W

)

Electric Power Consumption

 

 

Instantaneous Power

 

 

Average Power

(a)

16 Shishir Nadubettu Yadukumar, Murali Pasupuleti and Aaron Ames

Fig. 9: Guard Detection Logic

Component Total Used
(%)

Slices 7200 39
Slice Registers 28800 20.8
Slice LUTs 28800 28.1
DSP48s 48 20.8
Block RAMs 48 0

Fig. 10: Summary of
FPGA Resources Used

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Time (s)

A
n
g
le

(r
a
d
)

Position - Simulation Vs Experiment

θd
sk

θa
sk

(a) S Knee Angle

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0.2

0.4

0.6

0.8

1

1.2

Time (s)

A
n
g
le

(r
a
d
)

Position - Simulation Vs Experiment

θd
nsk

θa
nsk

(b) NS Knee Angle

0 0.2 0.4 0.6 0.8 1 1.2 1.4
−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

Time (s)

A
n
g
le

(r
a
d
)

Position - Simulation Vs Experiment

θd
sh

θa
sh

(c) S Hip Angle

0 0.2 0.4 0.6 0.8 1 1.2 1.4
−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

Time (s)

A
n
g
le

(r
a
d
)

Position - Simulation Vs Experiment

θd
nsh

θa
nsh

(d) NS Hip Angle

0 0.2 0.4 0.6 0.8 1 1.2 1.4
−15

−10

−5

0

5

Time (s)

V
o
lt
a
g
e

(V
)

Voltage - Simulation Vs Experiment

V d
sk

V a
sk

(e) S Voltage

0 0.2 0.4 0.6 0.8 1 1.2 1.4
−20

−15

−10

−5

0

5

10

15

20

Time (s)

V
o
lt
a
g
e

(V
)

Voltage - Simulation Vs Experiment

V d
nsk

V a
nsk

(f) NS Knee Voltage

0 0.2 0.4 0.6 0.8 1 1.2 1.4
−10

−5

0

5

10

Time (s)

V
o
lt
a
g
e

(V
)

Voltage - Simulation Vs Experiment

V d
sh

V a
sh

(g) S Hip Voltage

0 0.2 0.4 0.6 0.8 1 1.2 1.4
−2

−1

0

1

2

3

4

5

6

Time (s)

V
o
lt
a
g
e

(V
)

Voltage - Simulation Vs Experiment

V d
nsh

V a
nsh

(h) NS Hip Voltage

Fig. 11: Tracking Data for Angles and Voltages- Simulation v Experimental.
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4 Conclusions

The objective of this paper of realizing dynamically stable walking has been
achieved using voltage based human-inspired control. This when combined with
usage of light weight materials -aluminium and carbon fiber in the construction of
robot have enabled us to use very low power actuators for all joints (11W). Sim-
plicity of the algorithmic implementation of control law also contributed to low
computation overhead there by enabling us to use a time step of 5ms for each calcu-
lation and minimal hardware (39% of FPGA resources). With no actuation at ankles,
the overall energy efficiency is enhanced, which enabled us to have the lowest in-
stalled W/kg when compared with the contemporary robots, as shown in the Section
3. While it must be pointed out that some of the robots also carry support electron-

(b)

Fig. 4.10.: (a.) Plot representing the values of instantaneous and average power
consumed by AMBER over a single step. (b.) Summary of FPGA device utilization
after post-synthesis mapping [54].

Fig. 4.11.: Walking tile of AMBER experiment vs simulation for one step using
voltage-based P-control (see video at [53]).



42

Table 4.2: Comparison of installed power to weight ratio
(W/Kg) of AMBER with contemporary bipedal robots.

Robot Compliance Value Reference

AMBER No 13.2 44W, 3.33kg

ERNIE Yes 53.7 1 KW1, 18.6kg [19]

RABBIT No 93.2 2.98 KW2, 32kg [19]

NAO H25 V3.3 No 35.4 177W3, 5kg [55]

DARWIN No 27.6 80W4, 2.9kg [56]

MABEL Yes 58.6 3.28 KW5, 56kg [50]

Cornell Biped Yes 1.5 19W6, 12.7kg [11]
1 EC 45-136212 (250 W) , so for 4 motors total power= 1 KW
2 RS 420J performace curves indicate 1 HP motor, so for 4 motors

total power= 2.98 KW
3 Type1: RE-MAX 17 (4W), Type2: RE-MAX 24 (11W). Type1

Motors on Head-2 , Type1 Motors on Arms -12 , Type2 Motors
on Legs- 11. Total power for 25 motors = 177W

4 Specifications of Dynamixel RX-28 at 12 V has values of RE-
MAX 17 motor(4W) with 1:193 gear ratio, so for 20 motor mod-
ules total power= 80 W

5 QBO5600-X0X (843.892 W)- 2 ,QBO5601-X0X(798.605 W) - 2 ,
so for 4 motors total power= 3.28 KW

6 For two 9.5 Watt 6.4 oz MicroMotors, total power= 19 W

4.6 Subject to Uneven Terrain: Robust Walking

In order to verify the robustness of the walking obtained from the flat-ground

optimization i.e., by implementing P-control using α∗, the biped is made to walk on

rough terrain with a change of 1.94 cm in terrain height by placing wooden blocks in

the walking path of the robot and AMBER could compensate the changes in terrain

and recover the normal walking gait after overcoming the disturbance, as can be

seen in Fig. 4.14, and the walking video with AMBER responding to wide array of

disturbances is available at [53].
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(d) Non-Stance Hip Trajectory

Fig. 4.12.: Experimental vs simulation data for 10 walking steps of AMBER using
P-Control: blue lines indicate the experimental values for the joint angles, while the
red lines indicate the joint angles for the simulation.
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Fig. 4.13.: Mean of the trajectories of the human outputs from all test subjects put
together are plotted in here. The grey shaded area indicate the standard deviation
from the mean trajectory. The black lines are the fits of the canonical functions to
the mean human data. Red lines are human-inspired optimization fits of walking
functions for AMBER with constraints in simulation. Blue lines correspond to the
experimental values of the actual outputs of AMBER during walking.

Fig. 4.14.: Tile of AMBER walking over an obstacle of 1.94 cm and recovering the
walking gait with voltage-based P-control.
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5. CONCLUSIONS AND FUTURE CHALLENGES

This thesis work successfully translated formal methods in human-inspired control

to efficient algorithmic implementation and, finally, experimentally realized walking

on AMBER. Specifically, identification experiments were presented that form the

foundation for voltage-based P-control approach for obtaining walking on AMBER.

The simplicity of the algorithmic implementation of this control law resulted in low

computation overhead, time step of 5ms for each calculation, and minimal hardware

resources (39% of the FPGA). With no actuation at ankles, the overall energy effi-

ciency is enhanced, which enabled AMBER to have the lowest installed W/Kg when

compared with the contemporary robots, as shown in Table 4.2. While it must be

pointed out that some of the robots also carry support electronics which has resulted

in them having higher power requirement, the proposed method of voltage-based

P-control on human-inspired outputs can result in robust walking with a very good

cost of transport. While achieving a walking gait that is very close to the natural

human walking gait, the biped is also tolerant to changes in terrain (6cm), change

of treadmill speeds ( 12.5%) and even force disturbances on all of the links of the

robot. It must be highlighted that the proposed voltage-based control law is de-

pendent only on the configuration variables as opposed to using speed and current

feedback, and this constitutes the inherent simplicity and advantage of indirectly

affecting the torque produced at a joint. This simplicity results in robust walking

both in simulation as well as in the experiment.

Future challenges include but are not limited to implementing motion primitives:

walking at multiple speeds, start/stop of the robot, walking up/down stairs and run-

ning, with smooth transitions between each of the modes. Building compliance into

the rigid robot structure with implementation of ankle control and foot placement

will be a good addition, as it would result in more anthropomorphic appearance

with improved energy efficiency. The next research step would be to transfer the
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ideas used for 2D walking to implement 3D bipedal robotic walking and running

using human-inspired control techniques for the design of prosthetic legs, with the

ultimate goal of helping humans with lower limb amputation to gain their natural

walking gait.
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APPENDIX A

ADDITIONAL FIGURES
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Fig. A.1.: Voltage-based P-control experiment vs simulation for one step: black lines
indicate the actual voltage applied to a DC motor based on AMBER configuration
during experimental walking, while the red lines indicate the voltage input generated
in simulation using a reduced DC motor model with inductance ignored.
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Operating Range
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Fig. A.2.: (a.) DC motor operation: speed vs torque characteristics ( [57]). (b.)
PWM pulse recieved from the absolute encoder which is used to calculate the joint
angles.
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APPENDIX B

LABVIEW FPGA SUBMODULES

(a)

(b)

(c) (d)

Fig. B.1.: LabVIEW FPGA schematic used for angle calculation and error flag
generation from absolute encoder pulse.
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(a)

(b)

Fig. B.2.: LabVIEW FPGA schematic used for discrete dynamics operation —
angles (leg) switching after guard detection.
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