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ABSTRACT 

 

A Hierarchical Multiscale Approach to History Matching and Optimization for 

Reservoir Management in Mature Fields. (August 2012) 

 

Han-Young Park, B.S., Hanyang University, Seoul, Korea; 

M.S., Texas A&M University, College Station, Texas, USA 

Chair of Advisory Committee: Dr. Akhil Datta-Gupta 

 

Reservoir management typically focuses on maximizing oil and gas recovery from a 

reservoir based on facts and information while minimizing capital and operating 

investments. Modern reservoir management uses history-matched simulation model to 

predict the range of recovery or to provide the economic assessment of different field 

development strategies. Geological models are becoming increasingly complex and 

more detailed with several hundred thousand to million cells, which include large sets of 

subsurface uncertainties. Current issues associated with history matching, therefore, 

involve extensive computation (flow simulations) time, preserving geologic realism, and 

non-uniqueness problem. Many of recent rate optimization methods utilize constrained 

optimization techniques, often making them inaccessible for field reservoir management. 

Field-scale rate optimization problems involve highly complex reservoir models, 

production and facilities constraints and a large number of unknowns. 



 iv 

We present a hierarchical multiscale calibration approach using global and local 

updates in coarse and fine grid. We incorporate a multiscale framework into hierarchical 

updates: global and local updates. In global update we calibrate large-scale parameters to 

match global field-level energy (pressure), which is followed by local update where we 

match well-by-well performances by calibration of local cell properties. The inclusion of 

multiscale calibration, integrating production data in coarse grid and successively finer 

grids sequentially, is critical for history matching high-resolution geologic models 

through significant reduction in simulation time.  

For rate optimization, we develop a hierarchical analytical method using streamline-

assisted flood efficiency maps. The proposed approach avoids use of complex 

optimization tools; rather we emphasize the visual and the intuitive appeal of streamline 

method and utilize analytic solutions derived from relationship between streamline time 

of flight and flow rates. The proposed approach is analytic, easy to implement and well-

suited for large-scale field applications. 

Finally, we present a hierarchical Pareto-based approach to history matching under 

conflicting information. In this work we focus on multiobjective optimization problem, 

particularly conflicting multiple objectives during history matching of reservoir 

performances.  We incorporate Pareto-based multiobjective evolutionary algorithm and 

Grid Connectivity-based Transformation (GCT) to account for history matching with 

conflicting information. 

The power and effectiveness of our approaches have been demonstrated using both 

synthetic and real field cases. 
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NOMENCLATURE 

  

GA = Genetic algorithm 

RSM = Response surface methodology 

DOE = Design of experiments, experimental design 

mi = A genome of model multipliers 

T = Temperature in heat-bath algorithm 

Sw = Water saturation 

Fw = Fractional flow of water 

t
~

  = Optimal generalized travel time (GTT) shift 

R  = Permeability update needed in local update 

S = Sensitivity matrix of GTT w.r.t. permeability 

L = Second spatial-difference operator 

β1 = Weight for norm penalty term in LSQR 

β2 = Weight for roughness penalty term in LSQR 

PVc = Pore volume for coarse cell 

PVf = Pore volume for fine cell 

Kc = Permeability for coarse cell 

Kf = Permeability for fine cell 

TRANXc = Transmissibility in X-direction for coarse cell 

TRANXf = Transmissibility in X-direction for fine cell 

        ij  = Average total TOF for the connection between well i and j 

ij  = Global update coefficient for the connection between well i and j 

ij  = Local update coefficient for the connection between well i and j 

ijq  = Total flux for the connection between well i and j 

ijsln ,  = Number of streamlines for connecting well i and j 



 ix 

ijk  = k
th

 streamline’ total TOF in the connection between well i and j 

ijk  
= k

th
 streamline’s global update coefficient  in the connection between  

   well i and j 

ijl  
= l

th
 streamline’s global update coefficient  in the connection between well  

   i and j 

ijS  
= Sensitivity coefficient: changes in arrival time at producer i with respect  

   to change in flow rate of well j 

ifslN ,  = Number of fast streamlines between well i  and j 

wS  = Water saturation, fraction 

wfS  = Water flood front saturation, fraction 

wf  = Fractional flow, dimensionless 

S = Parameter space 

O = Objective space 

  = Logic symbol meaning ‘for all’ 

  = Logic symbol meaning ‘there exists’ 

  = Logic symbol meaning ‘and’ 

Tij = Trade-off between objective i an j 

  = Weight factor 
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1CHAPTER I  

INTRODUCTION AND STUDY OBJECTIVES 

 

 

1.1 Introduction 

 

The purpose of reservoir management is to maximize oil and gas recovery from a 

reservoir on the basis of facts and information while minimizing capital investment and 

operating expenses. Modern reservoir management using reservoir simulation model 

uses history matched model to predict the range of recovery or to provide the economic 

assessment of different field development strategies. Geologic models are becoming 

more complex with millions of grid cells where large sets of subsurface uncertainties 

including faults, flow channels, and barriers are embedded. Current issues about history 

matching are: extensive computation time associated with flow simulations, preserving 

geological realism, and non-uniqueness issues. Rate optimization is also receiving 

interests in the area of reservoir management, which is generally preceded by history 

matching.  Most history matching and optimization problems in petroleum industry have 

several (potentially conflicting) objectives to be satisfied. These problems are typically 

treated as single objective optimization problem by aggregating all objectives into a 

scalar function resulting in incomplete exploration of the solution space. The motivation 

of this research is to develop novel and efficient approaches for history matching and 

rate optimization, specifically for large-scale application in mature fields and for 

handling conflicting multiobjectives. 

 

 

 

___________ 

This dissertation follows the style of SPE Journal. 



 2 

1.2 Overview of History Matching and Rate Optimization 

 

Reservoir simulation models are becoming more complex and detailed with several 

hundred thousand to millions cells. The full field models often consist of many wells and 

include decades of production history. The complexity of the models results in a large 

number of model parameters that are directly related to the problem of significant 

computational expense of deriving sensitivities of model parameters to production 

response. It often limits the use of assisted history matching techniques and application 

of probabilistic methods because of long simulation time. Excessive reservoir simulation 

run time is a key obstacle specifically for history matching such large and complex 

reservoir models.  

There have been many studies related to reconciling high resolution geological 

models to production data. They can be classified broadly into three categories: gradient-

based methods, sensitivity-based methods, and derivative-free methods. Gradient-based 

methods have been widely used for automatic history matching but it converges 

typically slow (Gill et al. 1981; McCormick and Tapia 1972). Sensitivity-based method 

uses computed sensitivities that are simply partial derivatives that define the change in 

production response because of small changes in reservoir parameters. Sensitivity-based 

methods have been known to be attractive because of faster convergence compared to 

gradient-based methods (Bissell et al. 1992). In particular, the streamline-assisted 

generalized travel time inversion (GTTI) technique has proven to be an efficient means 

for computing the parameter sensitivities (Cheng et al. 2005; Cheng et al. 2004; Datta-

Gupta et al. 2001) because the sensitivities are obtained in a single forward simulation 

run. The GTTI history matching approach has been applied successfully to several field 

cases (Cheng et al. 2004; Hohl et al. 2006; Qassab et al. 2003; Rey et al. 2009). The 

derivative-free methods such as simulated annealing and genetic algorithms are 

relatively simple to implement but are limited to applications with small number of 

parameters because of the computational burden (Oliver et al. 2001).  
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Because reservoir simulation models deal with substantial modeling uncertainties, 

stochastic approaches are necessary to quantify the uncertainties using multiple 

realizations rather than generating one unique solution. Deterministic approach itself can 

be not sufficient for such complex reservoirs embedded with lots of uncertainties. If the 

initial model does not capture large-scale structural and stratigraphic features 

appropriately, the solution from the deterministic approach can result in unrealistic 

updates to the reservoir model. Stochastic search techniques have, therefore, become 

more popular in the history matching process to avoid the problem of convergence to 

local optimum nearest to the initial starting point (Cheng et al. 2008). Global search 

techniques include simulated annealing (SA) (Galassi et al. 2009; Kirkpatrick et al. 

1983; Ouenes et al. 1994), Markov chain Monte Carlo (MCMC) (Ma et al. 2008; 

Sambridge and Mosegaard 2002) and genetic algorithms (GA) (Holland 1992) , which 

have been known to be effective for history matching problems (Bittencourt and Horne 

1997; Floris et al. 2001; Romero and Carter 2001; Schulze-Riegert et al. 2002; Williams 

et al. 2004). Computational inefficiency is an issue for these methods because they 

require large number of flow simulation runs. It becomes computationally prohibitive for 

long simulation run times when the parameter space is very large and when the 

simulation run time is long. 

In the sense, the use of multiscale approach has been getting much attention in both 

forward simulation and dynamic data integration because of its nature of computational 

efficiency. The multiscale history matching approach may start with the largest (coarser) 

scale and successively refines the grid to finer grid. In each stage, the parameters are 

adjusted to corresponding grid scale and are calibrated accordingly. Multiscale approach 

reduces the computational effort and/or improves the quality of the match as compared 

to history matching directly on the fine scale. Besides, the multiscale approach avoids 

solutions getting trapped in local minimum because of fewer parameters and 

decomposition by scale (Aanonsen 2008; Kim et al. 2010; Yoon et al. 2001). 

In previous work (Yin et al. 2010), a hierarchical assisted history matching 

framework was demonstrated, which combines elements of both stochastic and 



 4 

deterministic approaches to history match different levels of reservoir responses. At the 

first step, global parameters were calibrated to match reservoir response in terms of field 

pressures and cumulative liquid production using genetic algorithm. It was followed by 

local parameter calibration that uses a sensitivity-based model calibration for fine scale 

permeability changes to match flood front progression and individual well responses. 

3-D streamlines provide an effective tool for reservoir management because of their 

ability to display reservoir flow and well connections in a physically intuitive manner. 

Streamlines have been extensively used to investigate the interaction between 

heterogeneity and well patterns and also for rate allocation and pattern balancing.  More 

recently, streamlines have been used in conjunction with constrained optimization 

techniques for improving waterflood performance via rate control (Alhuthali et al. 2008). 

Field-scale rate optimization problems, however, involve highly complex reservoir 

models, production and facilities constraints and a large number of unknowns, making 

them inaccessible for routine waterflood management.  

Most history matching and optimization problems in petroleum industry have 

multiple (or many) objectives to be satisfied. These objectives are potentially conflicting 

each other, often including dynamic data of the reservoir such as pressure and 

multiphase production data and 4D time-lapse seismic data, for example, acoustic 

impedance and saturation displacement. Those multiobjective problems are typically 

treated as single objective optimization problems by aggregating all objectives into a 

scalar function (weighted-sum) resulting in incomplete exploration of the solution space. 

The problem is particularly severe if the objectives are conflicting. 

 

1.3 Objectives and Dissertation Outline 

  

We will now outline the stages of this research and the specific objectives associated to 

each phase. 
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1.3.1 Hierarchical multiscale approach to history matching 

 

In the first part of this dissertation, we propose a hierarchical multiscale calibration 

approach using global and local updates in multiscale grids. We closely follow a 

previously proposed approach (Cheng et al. 2008; Yin et al. 2010) of updating global 

and local parameters recursively, however, we incorporate multiscale approach where 

we integrate production data in coarse grids and finer grids sequentially. The proposed 

approach utilizes different levels of parameter space (global and local) and geometric 

space (coarse and fine). The inclusion of multiscale approach is critical to history 

matching large reservoir models in the sense that integration process in coarse grid 

allows for reduction of simulation time significantly, resulting in dramatic improvement 

of computational efficiency. Because there is much uncertainty in the large-scale static 

and dynamic parameters, we at first identify key parameters and calibrate those using an 

evolutionary algorithm. The global parameter calibration, matching and balancing field 

level energy, is followed by streamline assisted multiscale inversion to calibrate local 

parameter to match well by well production history. For local parameter calibration, we 

utilize a grid coarsening function embedded in commercial finite difference simulators to 

shorten simulation time significantly at a small loss of accuracy. Multi-dimensional 

penalized objective function is formed according to levels of coarsening, which 

facilitates minimization and avoids local minima. The proposed approach takes 

advantage of the multiscale framework in both simulation and inversion. 

 

1.3.2 Hierarchical analytical approach to rate optimization 

 

In the second part of this dissertation, we develop a rate optimization method using 

streamline-assisted time of flight and flux distribution maps. Streamline technologies 

have been widely used for reservoir management because of its powerful flow 

visualization capabilities that allow us to analyze rate allocation, pattern balance and 

waterflood performance. The connected flux volumes and its relative distribution can be 
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easily obtained in terms of allocation factors from the streamlines. We follow-up on the 

previous work of Alhuthali et al. (2007; 2010) and propose a rapid and easy to use 

method to optimize production/injection rates. The goal here is to avoid use of complex 

optimization tools; rather we emphasize the visual and the intuitive appeal of the 

streamline method. The basic underlying principle relies on two main ideas: (i) 

equalizing ‘average time of flight’ to all producers (ii) and minimizing the ‘time of flight 

variance’ within the streamline bundle. To accomplish this, we propose an easy to 

implement method for rate optimization utilizing streamline-based flood efficiency map. 

The main advantage of the proposed approach is that it is analytic, easy to implement 

and well-suited for large-scale field applications. Another advantage is its intuitive 

nature; we can visually examine the flow patterns as the calculations progress. 

 

1.3.3 Hierarchical Pareto-based approach to history matching 

 

In the third part of this dissertation, we propose to use a Pareto-based multi-objective 

evolutionary algorithm (MOEA) focusing on finding a set of optimal solutions during 

history matching of reservoir performances. Pareto-based techniques unlike aggregation-

based technique make direct use of the dominance relation for fitness assignment, where 

actually Pareto ranks are used as a measure of success for finding good solutions instead 

of fitness score. For history matching purpose, we develop a Pareto-based multiobjective 

hierarchical history matching with Grid Connectivity-based Transformation (GCT)  

(Bhark, E.W. et al. 2011) technique.  We use GCT basis coefficients as parameters for 

calibration using the gradient-free evolutionary optimization algorithm. The 

effectiveness of proposed approach is presented through applications to history matching 

of reservoir performances where 4D time-lapse seismic data (saturation displacement 

data) and production data have been matched. 
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1.4 Software Prototype 

 

The primary deliverable of this work will be a software prototype called ‘DESTINY’ 

equipped with an improved history matching and optimization algorithms in conjunction 

with streamline tracing algorithms. The proposed methods in this dissertation such as   

multiscale streamline-assisted inversion and hierarchical production/injection rate 

optimization using flood efficiency maps are all implemented in this software. The 

object-oriented programming language (C++) is used and multiple attributes including 

well-based, reservoir objects are saved in a dynamic hierarchical framework. The 

developed graphical user interface (GUI) can be easily used to applications. The 

applications presented in this dissertation have been carried out using DESTINY. The 

more information about DESTINY, its instruction on how to use, and application 

examples are provided in appendix. 
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2CHAPTER II  

HIERARCHICAL MULTISCALE APPROACH TO HISTORY 

MATCHING 

 

In this chapter, we present a hierarchical history matching approach in conjunction with 

multiscale inversion that follows a sequence of calibrations from global to local 

parameters in coarse and fine scales. We utilize grid coarsening to reduce total number 

of active cells and preserve flux distribution at small loss in accuracy but significant 

savings in computation time. First, we identify the heavy hitters in the large scale static 

and dynamic parameters and calibrate them using an evolutionary algorithm. This global 

parameter calibration, matching of regional and field level a reservoir energy, is 

followed by a streamline assisted multiscale inversion to match well by well production 

history by updating local parameters. Starting with coarse grid, we match the production 

data at the wells by gradually refining the reservoir grid. This multiscale data integration 

results in significant improvement in computation efficiency and an effective iterative 

minimization. 

We have applied the proposed history matching strategy to an offshore carbonate 

field in India with about 300 wells and more than 25 years of production history. 

Regional oil and water production were first history matched by global coarse scale 

update. The global update greatly facilitated next step of local parameter calibration 

matching well bottom-hole pressure and water cut production history. Because 

streamline-assisted multiscale approach allows for parameter sensitivities to be 

computed analytically during simulation runs, it further improved a computational 

speed. History matching and model updating can be now accomplished in days rather 

than months. Most importantly, the updated models are found to be geologically 

consistent. 
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2.1 Introduction 

 

Reservoir simulation models are becoming increasingly complex and more detailed with 

several hundred thousand to millions cells. Full field models very often consist of a large 

number of wells and decades of production history. The calibration of large number of 

model parameters is directly related to computational expenses associated with deriving 

sensitivities of model parameters to production response. It often limits the use of 

assisted history matching techniques. Long simulation run time is a key obstacle in 

history matching such large and complex reservoir models. 

There are numerous studies in the literature related to reconciling high resolution 

geological models to production data. These can be classified broadly into three 

categories: gradient-based methods, sensitivity-based methods, and derivative-free 

methods. Gradient-based methods typically converge slowly (Gill et al. 1981; 

McCormick and Tapia 1972) but they have been widely used for automatic history 

matching; The derivative-free methods such as simulated annealing and genetic 

algorithms are simple to implement but limited to relatively small number of parameters 

because of the computational burden (Oliver et al. 2001). Sensitivity-based method uses 

computed sensitivities which are partial derivatives that define the change in production 

response because of small changes in reservoir parameters. Several techniques have been 

used for calculating the sensitivities: perturbation method, adjoint methods, and 

streamline-based sensitivities. The perturbation method is computationally prohibitive 

for large number of parameters. Adjoint methods (Li et al. 2003) use the optimal control 

theory and mathematically complex and typically require access to the source code of 

the forward simulator which may not be available (Rey et al. 2009). Streamline based 

sensitivities can be obtained very efficiently in a single forward simulation run. 

Sensitivity-based methods are generally attractive because of faster convergence 

compared to gradient-based methods (Bissell et al. 1992). The streamline-based 

generalized travel time inversion (GTTI) technique has proven to be an efficient means 

for computing the parameter sensitivities (Cheng et al. 2005; Cheng et al. 2004; Datta-
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Gupta et al. 2001). The GTTI history matching approach has been applied successfully 

to several field cases (Cheng et al. 2004; Hohl et al. 2006; Qassab et al. 2003; Rey et al. 

2009). 

There is an increasing acknowledgement that because reservoir simulation model 

deals with lots of uncertainties, stochastic approaches are necessary to quantify the 

uncertainties using multiple realizations rather than relying on a single solution. It might 

be obvious that if the initial model does not capture large-scale structural and 

stratigraphic features appropriately, the solution can be unrealistic updates to the 

reservoir model. Stochastic search techniques have therefore become more popular in 

the history matching, particularly for identifying large-scale parameter uncertainties 

(Cheng et al. 2008). Global search techniques such as simulated annealing (SA) (Galassi 

et al. 2009; Kirkpatrick et al. 1983; Ouenes et al. 1994), Markov chain Monte Carlo 

(MCMC) (Ma et al. 2008; Sambridge and Mosegaard 2002) and genetic algorithms (GA) 

(Holland 1992) , have been successfully applied to history matching problems 

(Bittencourt and Horne 1997; Floris et al. 2001; Romero and Carter 2001; Schulze-

Riegert et al. 2002; Williams et al. 2004). However, these techniques require typically a 

large number of simulation runs and can become computationally prohibitive if the 

parameter space is very large and the simulation run time is very long.  

The use of multiscale approach is getting increased attention in both forward 

simulation and dynamic data integration for inverse problems. For history matching 

applications, Yoon et al. (2001) proposed a multiscale history matching method that 

starts with the largest scale and gradually progresses to finer grid. Use of optimal 

coarsening was proposed to streamline-assisted dual scale inversion by Kim et al. (2010).  

They reported significant savings in computational costs and avoidance of local 

minimum because of fewer parameters and decomposition by scale. However, although 

the history matching was done at coarse scale, they used the underlying fine-scale grid 

for forward simulation. Aanonsen (2008) showed that multiscale approach reduces the 

computational effort and/or improve the quality of the match as compared to history 

matching directly on the fine scale through synthetic examples. In his approach a 
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commercial history-matching tool which is based on gradient simulator with a 

Levenberge-Marquardt optimizer was used to minimize objective function. Taware et al. 

(2011) showed a practical approach for assisted history matching using grid coarsening 

where they reconstruct flux at fine scale from coarse scale in order to trace streamline 

along fine grid cells, and also compute sensitivities and model updates at the fine scale.  

In a previous work Yin et al. (2010) demonstrated a hierarchical assisted history 

matching framework which combines elements of both stochastic and deterministic 

approaches to history match different levels of reservoir responses. First, global 

parameters were calibrated to match global reservoir response in field pressures and 

cumulative liquid production by use of genetic algorithm. It was followed by local 

parameter calibration which uses a sensitivity-based model calibration for fine scale 

permeability changes to match flood front progression and individual well responses. 

In this dissertation we incorporate a multiscale framework to the previous work (Yin 

et al. 2010) for application to large reservoir models. Because of the orders to magnitude 

improvement in computation efficiency, the uncertainty can be explored in greater detail. 

The organization of this paper is as follows. First, we outline the procedure for the 

proposed hierarchical and multiscale approach with global and local updates. Next, we 

discuss background and mathematical formulation underlying our proposed method. We 

illustrate multiscale streamline-based inversion method with the benchmark Brugge field 

model. Finally, we demonstrate the practical feasibility of our approach using 

application to an offshore carbonate reservoir. 

 

2.2 Approach 

 

In this chapter, we propose a hierarchical multiscale calibration approach using global 

and local updates in coarse and fine grid. We follow a previously proposed approach 

(Yin et al. 2010) of updating global and local parameters recursively, however, we 

incorporate a multiscale framework where we integrate production data in coarse grid 

and successively finer grids sequentially. The proposed approach utilizes different 
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parameter space (global and local) and geometric space (coarse and fine). The inclusion 

of multiscale framework is critical for history matching high resolution reservoir models 

with hundreds of wells through significant reduction in simulation time. Because there 

can be considerable uncertainty in the large-scale static and dynamic parameters, we at 

first identify the key parameters and calibrate those using an evolutionary algorithm. 

This global parameter calibration, matching and balancing field level energy, is followed 

by streamline assisted multiscale inversion to calibrate local parameters to match well by 

well production history. For local parameter calibration, we utilize a grid coarsening 

function embedded in commercial finite difference simulators to shorten simulation time 

significantly at small loss of accuracy. The workflow for the proposed hierarchical 

multiscale inversion is shown in Fig. 2-1. We first discuss briefly the major steps in our 

approach, followed by details on each step including the background and mathematical 

formulation. 

 

 

Fig. 2-1   Overview of workflow for hierarchical multiscale inversion 
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2.2.1 Global parameter calibration in coarse grid 

 

Global parameter calibration process, shown as Step 1 in Fig. 2-1, includes sensitivity 

analysis and updating of large-scale parameters by a genetic algorithm. The global 

parameters are adjusted to match the global reservoir responses in terms of a field energy 

(pressure) and total liquid production. Simulation in coarsened grid is used at this stage 

for computational efficiency and also allow examination of large scale uncertainties in 

the model. 

 Construction of objective function. The objective function is defined as a mismatch 

between observed (or history) data and the simulated response.  The objective 

function is established considering the availability and the resolving power of the 

data. The minimization of this objective function is the goal of history matching.  

 Sensitivity analysis. A small set of key global parameters is first identified via a 

sensitivity analysis and a low-level experimental design using high-low values for 

each of the potential parameters. A proxy of the objective function with respect to 

selected key global parameters is constructed using a detailed experimental design 

and response surface methodology (Pan and Horne 1998; Yeten et al. 2002). This 

proxy model is used to prescreen models before an actual simulation is carried out. 

We use kriging for constructing proxy model. 

 Calibrating global parameters. A genetic algorithm with a proxy check and a 

stretched heat bath fitness function (Sen et al. 1995) is used to generate updated 

ensemble of models conditioned to total liquid production and a field level energy 

(pressure). A set of representative models is selected via a cluster analysis for further 

updates in local parameter calibration stage. 

 

2.2.2 Local parameter calibration in coarse and fine grids: multiscale inversion 

 

Each selected model from the globally calibrated ensemble is further calibrated to 

individual well’s production history using multiscale sensitivity-based method in this 
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stage. A multiscale framework allows decomposing parameter estimation problem by 

scales. As illustration shown in Fig. 2-2, we start from very coarse grid and gradually 

refine the grid to calibrate grid cell properties. The calibration at the coarse-scale grid 

takes advantages of increased computational efficiency. The sequential updating 

approach allows to capture different levels of uncertainties (large and small scales), 

calibrates the model parameters of each stage, and successively improves the quality of 

match. A multiscale streamline-based inversion technique is applied for well-level 

matching via local changes in parameters. 

 

 

Fig. 2-2   Overview of multiscale inversion framework 
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2.3 Background and Mathematical Formulation 

 

Our global matching approach closely follows the method outlined by Cheng et al. 

(2008) and Yin et al. (2010). Design of Experiments (DOE), Genetic Algorithm (GA) 

and Response Surface Methodology (RSM) are used for calibrating reservoir geological 

features at the global and regional scales. The global objective (misfit) function is 

defined as: 

 

  ||lnln||ln),,,()( 21 SBHPMDTN pQpmmmff m
 

……...…(2.1) 

 

 

where multiple objectives are handled by using the logarithm of the absolute misfit in 

Eq.2.1. In multiobjective optimization problem, all objectives are typically aggregated 

into a scalar function (weighted-sum) based on their measurement errors, which are not 

readily available. The determination of the correct weights is one of major difficulties, 

we are not aware of which weights are the most appropriate to retrieve a satisfactorily 

solution (Hajizadeh et al. 2011). The selection of the weights using aggregation-based 

method is typically subjective and potentially biased as a result of the different 

scales/magnitudes of the data types (Yin et al. 2010). The use of production of the 

individual data-type components can mitigate this problem. Moreover, it is still 

allowable to assign a weight to each log objective in order to subjectively emphasize or 

degrade its relative importance. 

 

2.3.1 Grid coarsening 

 

Utilizing grid coarsening module, cells are amalgamated to reduce the total number of 

active cells in the global grid. The properties for coarse cell is obtained from simple 

upscaling from fine to coarse in a single coarse cell amalgamation. The formulation 
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typically used in commercial simulators, for upscaling key properties including pore 

volume and permeability is explained below. 

Pore volume for coarse cell is just summation of pore volume of fine cells as follows: 
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Permeability for coarse cell is computed by following. 
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Coarsened model can preserve most of the heterogeneity of the initial geological 

model depending on levels and types of coarsening (King et al. 2006). Use of coarsening 

is very efficient means to evaluate the sensitivities of global parameters as it can 

significantly reduce simulation runtimes which is vital for deriving parameter 

sensitivities (Mamonov et al. 2007). The tradeoff with regard to accuracy can be more 

than compensated by the reduction in simulation run time.  

 

 Optimal coarsening algorithm. The coarsening geologic model typically loses a 

level of accuracy and introduces biased performance predictions: the calculation of 

coarsened cell properties cannot retain the variance in transit time across the column 

of cells because the different flow velocities in each cell will be replaced by a single 

average cell (King et al. 2006). There are many related publications that address 

optimal coarsening algorithms to minimize the inaccuracy of flow simulation. For 

example, King et al. (2006) proposed a statistical analysis for optimal layer 

coarsening where the arithmetic averaging of the velocity is used because it provides 

an unbiased estimator of the mean. In next section, we will show the effects of 

optimal coarsening on the performance of history matching. In this paper, we are not 
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focusing on the development of coarsening algorithms; instead, we will focus on the 

use of those optimal coarsening algorithms for the proposed hierarchical multiscale 

approach.  

 

2.3.2 Global model calibration using the genetic algorithm with proxy 

 

We have used the Genetic Algorithm (GA), one of the evolutionary algorithms, for 

calibration of global parameters. The genetic algorithm imitates biological principals of 

evolution – survival of the fittest. It has been extensively applied to the history matching 

problem (Bittencourt and Horne 1997; Floris et al. 2001; Romero and Carter 2001; 

Schulze-Riegert et al. 2002; Williams et al. 2004). Usually, solutions are represented as 

binary strings of 0’s and 1’s. The full binary string containing all variables is called a 

genome or chromosome. The evolution starts from a population of randomly generated 

individuals. In each generation, the fitness of every individual in the population is 

evaluated. Multiple individuals are stochastically selected from the current population 

(based on their fitness), and modified (recombined and possibly randomly mutated) to 

form a new population. The new population is then used in the next iteration of 

the algorithm. Commonly, the algorithm terminates when either a maximum number of 

generations has been produced, or a satisfactory fitness level has been reached for the 

population.  

For history matching problems, we minimize an objective function f(mi) while 

maximizing the fitness of genomes, as in Eq.2.4. This is equivalent to maximizing a 

fitness function exp(-f(mi)). In our implementation of the GA, we incorporate a 

stretching of the fitness function to facilitate the selection process. Specifically, the ‘heat 

bath’ algorithm is a fitness scaling method that increases the probability of samples 

around the solution while speeding up the convergence (Sen et al. 1995). The selection 

probability of model mi is given by: 
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In Eq. 2.4 Tn is a ‘temperature’ like parameter, which is gradually reduced at regular 

intervals (n is incremented after a fixed number of generations) by a ratio of α as the 

population evolves, much like the simulated annealing algorithm (Kirkpatrick et al. 

1983). To evaluate the objective function and thus the fitness of a newly generated 

genome, we first check the proxy value for that genome. If it has a value smaller than a 

predefined threshold then a flow simulation will be carried out. Otherwise it is assigned 

a large objective score with zero fitness and will be discarded in the next GA generation. 

Heat-bath accelerates convergence and thus requires fewer simulations to reduce the 

objective function to a same level. This completes the description of each stage of the 

global history matching process. A flowchart with all the steps is shown in Fig. 2-3.  

 

 

Fig. 2-3   Flowchart of GA with proxy 
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2.3.3 Local parameter calibration using streamline assisted multiscale inversion 

 

In this approach we decompose the inverse problem by scale and integrate production 

data by a scale-by-scale inversion. We utilize the grid coarsening module available in 

many commercial reservoir simulators, where different scales of coarsening can be 

easily applied. Starting with coarser grid, we integrate the production data at the wells by 

gradually refining the grid. Simulation using grid coarsening provides with coarsen-scale 

flux information that is then used to trace streamline in coarsened cells or geometry.  In 

Fig. 2-4, we compare tracing in fine grid and coarsened grid geometry. After tracing, we 

obtain from streamline properties coarsen-scale sensitivity that relates change in 

reservoir performance to small perturbations in reservoir parameters. For the sensitivity 

we follow the formulation proposed by Vasco et al. (1999). After sensitivity 

computation, we carry out streamline based generalized travel time inversion (GTTI) to 

match the production response for each well. The details on this GTTI method can be 

found in many publications (Cheng et al. 2006; He et al. 2002). 

 

 

Fig. 2-4   Streamline tracing in fine grid (left) and coarsened grid (right) 

 

In this part we present how to obtain parameter sensitivities at various scales and 

integrate production data to geologic models in a multiscale framework. We demonstrate 

its effectiveness and suitability through application to a mature offshore carbonate 
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reservoir. As we proceed to finer scale, we have a large number of parameters compared 

to the amount of data. The inverse problem becomes underdetermined and ill-posed, and 

the solution can be unstable (Yoon et al. 2001). Following Fig. 2-5 shows our proposed 

multiscale streamline sensitivity-based inversion workflow. We now discuss about each 

step in the workflow. 

 

 

Fig. 2-5   Overview of streamline-assisted multiscale inversion 

 

 Grid coarsening. This step is explained in the previous section.  

 Coarsened tracing. The module of grid coarsening in finite difference simulator 

provides coarse scale fluxes which are used for tracing streamline through coarse 

cells. In the past approach (Taware et al. 2010), the authors reconstructed fine scale 

fluxes from coarse scale fluxes and traced streamline through fine geometry. It 

resulted in fine scale inversion with coarse scale simulation. In contrast, in the 

proposed approach both flow simulation and history matching are conducted at same 
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scale. A critical element in this approach is streamline tracing using coarse fluxes as 

it allows for speed-up in tracing and upscaled sensitivity directly from the 

streamlines. 

 Coarsened sensitivity. Sensitivity defines the relationship between production data 

and small perturbation in reservoir properties. The sensitivity is simply the partial 

derivatives of the production response with respect to reservoir parameters like 

permeability.  

 

 

(a) Previous approach 

 

 

(b) Our proposed approach 

Fig. 2-6   Approaches to coarsened sensitivity for travel time inversion; previous 

approach (a) and our proposed approach (b) 

 

Unlike previous approaches (Kim et al. 2010; Yoon et al. 2001) that involve 
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publications (Vasco et al., 1999, Cheng et al., 2007), the sensitivity from streamline 

relates the travel time of water front to the cell permeability. It is notable that the 

sensitivity can be obtained from a single simulation run, which is very advantageous 

over other methods in terms of efficiency of computation. Fig. 2-6 shows the difference 

of sensitivity formulation between previous approach and our proposed method, where J 

denotes coarsen cell index and j is for fine cell index. Also, n(J) denotes the number of 

fine cells within a coarsen cell and SiJ represents sensitivity of J
th

 coarsen cell for i-th 

production data. 

In the past approaches, the change of production response of ith production data was 

obtained by summing fine cell sensitivities. It is assumed that the magnitude of the 

change of fine cell parameters is the same as the change of coarse cell parameters (

Jj mm   ). In contrast, we compute coarsened sensitivity directly from the coarse-scale 

streamline properties.  

The streamline-assisted sensitivity relates the travel time of water front arrival time to 

cell permeability (Vasco et al., 1999, Cheng et al., 2007). The time of flight is simply the 

travel time of a neutral tracer along streamlines and is obtained by integrating slowness 

(s(x)) which is the reciprocal of the total interstitial velocity. 
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The water saturation equation in two-phase flow can be written in streamline time of 

flight coordinates as follows. 
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We can obtain the travel-time sensitivity of water saturation front to reservoir 

parameters, m, from the above equation. It defines the relationship between water front 

arrival time, ta , and coarse scale cell parameter, mc.  
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The computed sensitivity is placed in the penalized objective function as specified in the 

Eq. 2.8 and Eq. 2.9.      

 

 Update coarsen model. For production data integration, we minimize a penalized 

objective function as given below. 
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………………………………………(2.8) 

 

The minimization of the equation above is equivalent to solving the following 

augmented linear system ( bAx  ) in a least square sense.  We use an iterative 

minimization method via the LSQR algorithm (Paige and Saunders, 1982). 
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For solving Eq. 2.9, we use an iterative minimization method, the LSQR algorithm 

(Paige and Saunders, 1982). The first term in Eq. 2.8 represents the data misfit as 

quantified by the generalized travel time (GTT) misfit, which allows for minimizing the 

difference between production responses and our model predictions. The GTT, t
~

  
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corresponds to the optimal generalized travel time shift required to achieve a maximum 

correlation between observed and simulated production responses (He et al. 2002). Also, 

δmc stands for the change in reservoir coarse model parameter (for example, 

permeability at each coarse grid cell). The symbol G denotes the coarse-scale sensitivity 

of the GTT at each well with respect to the grid permeability. Because the travel time 

sensitivity is derived for every producing well and the sensitivity is a function of 

reservoir parameter, the size of G matrix is M×N, which is dependent on the number of 

wells (M) and reservoir parameter (N).  We note that as a result of coarsening, the size of 

whole matrix is significantly reduced. The second and third term in Eq. 2.8 are about 

norm penalty and roughness penalty respectively. They ensure that our final model is not 

significantly far apart from the initial or starting model and spatial continuity is 

preserved. The relative strength of the prior model is determined with weighting factor 

1 while for roughness weighting 2 is used. The symbol I denotes the identity matrix 

and L represents a spatial difference operator; for example the second spatial derivative 

of parameters measuring the model roughness. 

The impact of the reduction of matrix (A) size from coarsening in improving the 

computational efficiency becomes apparent if we examine the operation count per LSQR 

iteration. LSQR iteration requires the number of operation given by 2nz(A) + 5col(A) + 

3row(A), where nz(A) is the number of nonzero element in A, col(A) is the number of 

columns, and row(A) is the number of rows (BjÖrck et al, 1998).  

 Fine scale inversion. Once we reach satisfactory convergence in coarse scale 

inversion, we sequentially move to finer scale inversion and follow same procedure 

as in the coarse scale inversion. 

 

2.4 Streamline-assisted Multiscale Inversion 

 

In this section we illustrate the proposed multiscale streamline-assisted inversion 

approach using application to the Brugge field. We highlight the benefits of the 

multiscale inversion approach through this illustration. In particular, a special focus is 
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given to the use of optimal coarsening algorithms to maximize the efficiency of the 

proposed workflow. 

As part of an SPE Applied Technology Workshop (ATW) the Brugge field example 

was set up to evaluate various production optimization methods. The model properties 

are designed based on a North sea brent-type field. The model consists of about 60,000 

grid cells with 9 layers. We applied our multiscale inversion approach for matching 10 

years of oil and water production history for this field. The details of Brugge field can be 

found in the paper by Peters et al. (2009) . 

To start with, we performed grid coarsening by uniformly merging 2 blocks in I, J, 

and K directions. As a result, the number of total grid cells and active cells are 

significantly reduced while preserving major features of heterogeneity of the initial fine-

scale model as shown in Fig. 2-7. For instance 44,464 active cells are reduced to 6,343 

active cells (approx. 14% compared to the fine model).  

 

                    

Fig. 2-7   Fine scale permeability model (left) and coarse scale permeability model 

(right) 

 

We simulated the coarsened model and obtained coarse scale dynamic results 

including pressure and fluxes to trace streamline through the coarsened cells.  Fig. 2-8 

compares streamlines traced in coarsened grid and fine grid based on a velocity field of a 

certain time step. The streamlines path and time of flight look very similar with little loss 

of accuracy. We note that the coarse grid streamlines have been generated based on 

coarsened flux information while fine grid streamlines are based on fine-scale simulation 
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results. Also, coarse grid tracing saves time because of smaller number of cells to trace 

compared to the fine cells.  

 

                 

Fig. 2-8   Traced streamline in fine grid (left) and coarse grid (right) 

 

After tracing streamlines, we compute the sensitivities for integration of production 

data. Fig. 2-9 shows, for example, streamline-derived analytic coarse-scale sensitivities 

where the color of grid cell shows the magnitude of the sensitivity.  

  

   

Fig. 2-9   Computed coarsen sensitivity viewed for different layers (k=5, left and k=8, 

right) 

  

Next, we construct the penalized objective function in Eq. 2.8 by including all 

sensitivities, followed by minimization using the iterative minimization solver (LSQR). 

Once we have new model through minimization, we simulate it, check the misfit, and 

evaluate the objective function. We continue the updating process until it satisfies 

convergence criteria, typically, defined in terms of acceptable data misfit.  
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After coarse-scale inversion, we scaled down to original fine grid scale to further 

calibrate the reservoir parameters in fine grid scale. At this stage, not many iterations are 

needed to achieve satisfactory convergence because coarse-scale calibration takes us to 

the vicinity of the solution. Fig. 2-10 shows the final updated permeability field and the 

figures below are showing calibrated regions (permeability changes) during coarse-scale 

inversion and fine-scale inversion (Fig. 2-11). We observe that most of the changes were 

made during coarse-scale inversion where large-scale uncertainties were captured and 

updated accordingly. The fine-scale calibration resulted in fine-tuning after major 

change in coarse-scale inversion. 

 

 

Fig. 2-10   Final updated permeability model 

 

                       

Fig. 2-11   Calibrated regions at coarse scale inversion (left) and at fine scale inversion 

(right) 
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We demonstrated here streamline-assisted multiscale inversion approach with two 

scale updates: coarse and fine scale inversion. We can extend the approach to multiple 

scales as needed. For example, we can start from much coarser grid (for example, 3×3×3 

coarsening), down to a medium level of coarse grid (2×2×2 coarsening), and finally to a 

fine grid. It constitutes three (3) scale updates.  

Next, we used optimal coarsening algorithm rather than uniform coarsening for 

multiscale approach. The optimal layer coarsening algorithm (King et al. 2006) relies on 

sequential coarsening of the fine-scale geological model. It uses static parameters as 

‘heterogeneity measure’ and sequentially performs layer coarsening such that variation 

of the measure within the layers is minimized and variation of the measure between the 

layers is maximized. We note that the layer optimal coarsening is performed in the 

vertical direction only. The difference between optimal layer coarsening and uniform 

coarsening is about vertical layering (k direction) with the optimal coarsening leading to 

non-uniform coarsening in the vertical direction. As a result of the optimal layering for 

Brugge field, we obtained the optimal layering shown in Fig. 2-12, which is compared 

with uniform coarsening. Both have 5 layers but different layering schemes. As shown 

below, the optimal case merges the first through fourth layer as one, fifth and sixth as the 

second layer, rest of the layers are not merged. In comparison, the uniform coarsening 

merged every two layers. 

 

 

Fig. 2-12   Optimal layering (left) and uniform layering (right) 
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To examine the benefits of the multiscale approach, we compare multiscale approach 

and direct fine scale approach in terms of convergence and computation time. The first 

benefit is obviously savings in computation time. The Fig. 2-13 compares the 

computation time between fine scale and multiscale approaches. We notice that not only 

the savings are from forward simulation run and but also additional computational 

savings are from tracing and iterative minimization processes during history matching. 

The differences should be much larger for real field case, which will be discussed in the 

next section. In addition, from Fig. 2-14 we notice that multiscale inversion performed 

better than direct fine scale inversion, less misfit, and better convergence.  

The effects of optimal coarsening algorithm are also apparent. In Fig. 2-13, both 

coarsening models (uniform and optimal) required similar amount of computation time. 

However, optimal coarsening gives better convergence compared to uniform vertical 

coarsening.  

Looking at the objective function behaviors in Fig. 2-14, we make two observations. 

First, multiscale approaches converge very fast in the beginning. As soon as we switch 

to fine-grid inversion, which is at 11
th

 iteration, we see that the objective function 

increases. As we discussed in previous section, that is because of bias included when it is 

uniformly coarsened without in consideration of the variance of geologic properties. 

However, we recover within a couple of iterations and improve further in fine-scale 

inversion. There is not noticeable increase in optimal coarsening model calibration 

because the optimally coarsened cells better preserve original heterogeneity. Second, the 

use of coarsening avoids local minima resulting in better solutions. 
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Fig. 2-13   Comparison of computation time 

 

 

Fig. 2-14   Comparison of objective function behavior 

 

2.5 Field Application 

 

In this section we demonstrate the effectiveness and suitability of the proposed 

hierarchical multiscale approach through application to history matching an offshore 

carbonate field in India.   
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2.5.1 Field description 

 

The Heera field is highly heterogeneous carbonate reservoir located in the western coast 

of India in the vicinity of the giant Mumbai High field. It is the second largest field of 

the western offshore basin off the west coast of the Indian peninsula and started 

commercial production in 1984. The development history of Heera field is shown in Fig. 

2-15. The development includes 3 phases during 1984-2002 and additional development 

during 2002-2003. Many platforms including lots of wells were developed during those 

periods. For example 161 wells in 14 platforms were commissioned in the field during 

the first 3 phases. 

 

                 

Fig. 2-15   The development history of Heera field  (Mitra and Kumar 2008) (left) and 

complex faults in the field (right) 

 

The Heera field has been producing over 20 years and is currently producing with a 

substantial water-cut. The redevelopment plan was drawn in 2006 to improve oil 

recovery factor of main reservoir (i.e. Bassein). A major redevelopment effort is ongoing 

to sustain and improve production from these fields through selective infill drilling, 

optimization of well trajectories and state-of-the-art reservoir management practices.  

Heera simulation model consists of approximately 1 million grid cells with 24 layers. 

It contains many faults in the field of which some are following I direction and some lie 

across J direction as shown in Fig. 2-15. Average permeability for this field is about 73 
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md, relatively low permeable because of carbonate reservoir. Permeability fields and 

initial oil saturations are shown in Fig. 2-16 and Fig. 2-17 respectively. Those are pretty 

much representative of other layers since the layers between are similar to them. We 

observe that high saturation oil zones, layer 5
th

 through 13
th

, are embedded in high 

permeability zones around the field. 

 

  

Fig. 2-16   Permeability field by layer (1
st
 , 5

th
, 11

th
, 13

th
, 21

st
 layer from left to right) 

 

 

 

 

Fig. 2-17   Initial oil saturation field (top) and by layer (5
th

, 13
th

, 24
st
 layer from left to 

right) 
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2.5.2 Multiscale history matching using global and local parameters updates 

 

The objective of this history matching study was matching water-cut and bottom hole 

pressures for about 30 years of production history. Because initial reservoir model is 

large and requires long simulation run time (about 24 hours), grid coarsening module 

was used for calibrating global parameters. The history matching workflow for this field 

is shown in Fig. 2-18. First, we match field wide pressure (energy) and total production 

volumes, using pore volume multipliers. It followed by matching of bottom hole 

pressures. In this second step, we match regional energy and adjust platform wise 

production by calibrating regional permeability multiplier and aquifer strengths. At the 

final step, we update local parameter (permeability) to match well by well water-cut, 

where we used our proposed streamline-assisted multiscale inversion method. 

 

 

 

Fig. 2-18   Strategy and workflow for history matching Heera field 

 

Multiscale models were analyzed to see how well it preserves heterogeneity of 

reservoir by the level of coarsening. More importantly, we examined how much it can 

reduce computational load and at the same time how much we may lose in terms of 

accuracy. We considered the trade-off between accuracy and computational efficiency. 

We have shown in Fig. 2-19, different levels of coarsened permeability fields; 2 by 2 

uniform coarsening (X2) model and 3 by 3 uniform coarsening (X3) model. We see that 

the main features and heterogeneity of reservoir are kept in both coarsened models. The 

comparison of pointed area between multiscale models shows clearly that we lose a bit 

detail of heterogeneity but it still maintains key characteristics of the model. The number 

of grid cells for coarsened models becomes just 13% (for X2 model) and about 4% (for 

X3 model) of fine grid cells.   
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 (a) fine scale                                (b) coarse scale                         (c) coarser scale 

                                                (2 by 2 uniform coarsening)     (3 by 3 uniform coarsening) 

Fig. 2-19   Permeability field by size of coarsening 

 

We lose minor accuracy in terms of simulation results because of coarsening but it is 

compensated by the reduction in simulation runtime. Fig. 2-20 shows field oil and water 

production rates for different levels of coarsening. We note that water production rate 

becomes little different in around 5000 days. However, generally production responses 

including oil rate are quite satisfactory for use in global parameter update. It is more 

important to update large-scale features during initial stage of history matching such as 

global update. In terms of simulation runtime the benefit is significant as shown in Fig. 

2-21 if we use coarsened model. Because we need typically many simulation runs during 

global updates process, the use of coarse model is reasonable choice.     
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(a) Field oil production rate 

 

(b) Field water production rate 

Fig. 2-20   Field oil production rate (a) and water rate (b) for different coarsening levels 
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Fig. 2-21   Simulation runtime comparison for different coarsening levels 

 

2.5.3 Global updates in coarse grid 

 

To start with, we focused on matching field wide total liquid (oil and water) production. 

The initial model responses were very different from the field history in terms of water 

production. There was almost 100 thousand barrels per day difference in field-wide 

water production rate. Because of that, the cumulative water production difference 

amounted to about 150 million barrels. This prompted us to match field total production 

ahead of any other history data. The regional water production rate differences and 

misfit distribution map (refer to details below) are shown in Fig. 2-22. We noticed that 

two regions (HSB, HR) explained the largest differences. The calibration was made 

using genetic algorithm and pore volume multipliers were applied to those areas, after 

sensitivity analysis to find appropriate upper and lower bounds. For these sensitivity 

analysis and updating process, coarsened grid (X3) was used, resulting in large savings 

in computation time. As shown in Fig. 2-22, the misfits for those two regions have been 

significantly reduced after the pore volume calibration. 
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Fig. 2-22   Water production rate difference at time end by region (left) and misfit spatial 

distribution map (right) 

 

We use optimal interpolation technique (krigging) to generate data misfit spatial 

distribution map, which is based on regression against observed data values of 

surrounding data points, weighted according to spatial covariance values. We estimate of 

a variable at an unmeasured location (specifically, water production difference at this 

case shown in Fig. 2-22) from observed values (at well locations) at surrounding 

locations. Then the estimated values are mapped to the cell properties in a certain format 

(for example, ECLIPSE style (ASCII) properties (*.GRDECL)) to be visualized at 

commercial package. This map is helpful to use at analyzing error and identifying easily 

its distribution for large-scale field.  

Next, we switched to updating global parameters to match bottom hole pressures and 

followed the workflow shown in Fig. 2-23. The bottom hole flowing pressure data were 

given not for all the wells but for some of wells. In this step we again used sensitivity 

analysis and genetic algorithm for updating models. We observed that calculated 

reservoir pressure was generally higher than measured (history) pressure throughout the 

field. As shown in Fig. 2-25, we created 5 regions after considering faults lines and its 

connectivity.  
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Fig. 2-23   Workflow for global updates matching bottom hole pressure in coarse grid. 

 

We chose regional permeability multipliers and aquifer volume as parameters to 

match the bottom hole pressure. Sensitivity analysis was performed to find the upper and 

lower bounds as shown in Fig. 2-24. Although we concentrated on regional pressures, 

we have shown field-wide average reservoir pressures. The red line in the figure 

represents average reservoir pressure for the base case. The other lines are for each 

sensitivity case. The left figure shows the sensitivity of regional permeability multiplier 

on average reservoir pressure, the right one shows the sensitivity of aquifer volume. 

 

         

Fig. 2-24   Sensitivity of regional permeability multiplier (left) and aquifer volume 

(right) to reservoir pressure. 

 

Regional permeability multiplier bounds between 0.5 and 1.5. The aquifer volume 

sensitivity ranges from 1.25×10
12 

cubic feet to 1.25×10
8
 cubic feet. Genetic algorithm 

was used for updating these global parameters in this step. One updated model (called 

GA model 1) is displayed in Fig. 2-25 where we see that updated regional permeability 

multipliers and aquifer volume were applied. 
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Fig. 2-25   Example of GA model (generated from genetic algorithm) 

 

As shown in Fig. 2-26, GA updated models’ responses in terms of field reservoir 

pressure are much lower than initial one, which is now consistent with field 

observations.  

 

 

Fig. 2-26   GA models’ simulated response compared with initial response 
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In terms of bottom hole pressures, there was generally about 400 to 800 psi 

differences for most of wells in initial model as shown in Fig. 2-27. We reduced those 

misfit and updated models where we see that all selected models’ responses are close to 

the history.  

 

 

(a) Updated GA models’ bottom hole pressure for a well in North Heera 

 

 

(b) Updated GA models’ bottom hole pressure for a well in Middle Heera 

 

 

(c) Updated GA models’ bottom hole pressure for a well in South Heera 

 

Fig. 2-27   GA models’ simulated response compared with initial and observed 
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2.5.4 Local updates in multiscale framework 

 

As a final step, we did calibration of local parameters (cell permeability) by use of our 

proposed streamline-assisted multiscale inversion approach. The multiscale inversion 

starts from coarse scale and refines the grid gradually, and in each grid scale we trace 

streamline and obtain parameter sensitivity. For this field application, we started with a 

coarse grid (X3 coarsening) and moved to finer grids (X2 and fine). We calibrated grid 

cell permeability to match well by well water cut history. Fig. 2-28 shows field water-

cut, comparing observed, initial, and updated model. We had quite large differences 

(about 20% water cut at time end) but now it is reduced to less than 5% difference 

overall. Not only field water-cut but also individual well water-cut matching have been 

improved. For example, in Fig. 2-29 we show results for some of key wells. The wells 

had initially very different water cut and now updated responses are very close to the 

history. 

 

 

Fig. 2-28   Field water cut by model (initial, updated, history) 
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(a) Well P1                                         (b) Well P2 

 

                

(c) Well P3                                         (d) Well P4 

 

                

(e) Well P5                                         (f) Well P6 

 

Fig. 2-29   Key wells’ water cut comparison between models (initial, updated, history) 

 

We revisit regional water production rate difference to compare initial and step-wise 

updated models’ response. As shown in Fig. 2-30, the difference of water production 

rate by region for global-local updated model (final model, displayed with red line) 

shows significant improvement compared to global updated model response (displayed 

with green line). Recall that the field-wise water production was matched and regional 
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water production rate was balanced quite well from the global update process. After that, 

we focused on well by well matching in terms of water and oil production rate via a local 

update. Overall, regional and well-wise water production rates have been further 

improved while keeping total production rate close to history. 

 

 

Fig. 2-30   Difference of water production rate by region for models (initial, global-

update, global-local update) 

 

The misfit spatial distribution map shown in Fig. 2-31 compares three models (initial, 

global updated model, global-local updated model) in terms of water production misfit. 

Because the misfit distribution map has been interpolated by krigging, we can examine 

its spatial distribution easily. Initial model showed two or three large misfit regions, 

which were large obstacle for history matching and special attention was given to those. 

Updated models show that most of the errors not only for those regions but also for 

whole field were reduced dramatically through global update and the sequential 

multiscale update.  
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Fig. 2-31   Data misfit (Water production rate difference) spatial distribution map 

(initial, global-update, global-local update) 

 

During history matching of this large field model, key attention was given to 

matching of regional and field level pressure (energy) ahead of matching well by well 

performances to avoid unrealistic updates because of direct small-scale heterogeneity 

update. Particularly, large reservoir models typically involve large-scale structural and 

stratigraphic features that should be captured and updated first via global update. From 

analysis of our updated models, specifically looking at water volume movement patterns, 

we found that water movement path has been redirected after history matching as shown 

in Fig. 2-32. The water flux map is generated based on the amount of water in grid cells. 

We see that initial model was supported with water movement from left side of field (i.e. 

North Heera) while in the updated model much water movement or flux is observed in 

the middle region. 
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Fig. 2-32   Comparison of models (initial (left), updated (right)) in terms of water flux 

(shown for one layer) 

 

2.6 Summary and Conclusions 

 

We have presented a hierarchical history matching approach in conjunction with 

multiscale inversion that follows a sequence of calibrations from global to local 

parameters, both in coarsened and fine scales. The approach has been tested with 3D 

benchmark field and an offshore carbonate field that has hundreds of wells with over 25 

years of production history. The key findings from this study are: 

1. We proposed the inclusion of multiscale approach to the hierarchical global and 

local history matching procedures (Yin et al. 2010). Its practical feasibility was 

demonstrated using applications to 3D synthetic model and a large offshore 

carbonate reservoir model.  

2. We found that the use of multiscale approach was successful in history matching 

a large reservoir model because of desirable multiscale features: computational 

efficiency, effective iterative minimization, and avoiding local minima.  

3. The structured hierarchical history matching with global and local updates 

worked extremely well. In the global parameter calibration, reservoir energy is 

matched and its balance between platforms (i.e. regions) is achieved in terms of 

fluid production and reservoir pressures. In the local parameter calibration, 

individual well production responses are matched. Because the global reservoir 
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energy has been calibrated to reasonable level by global updates, the local update 

using streamline technique found solutions very fast. 

4. A stochastic global search approach based on the genetic algorithm combined 

with a proxy model for the objective function provided effective means to match 

the global parameters and produce an ensemble of preliminary solutions for the 

local update. 

  



 47 

3CHAPTER III  

HIERARCHICAL ANALYTICAL APPROACH TO RATE 

OPTIMIZATION USING FLOOD EFFICIENCY MAPS
 *
 

 

In this chapter we provide a simple and easy to use workflow for waterflood rate 

optimization using streamline-based flood efficiency maps that display the flux and time 

of flight distribution amongst producing wells. We demonstrate the use of flood 

efficiency map to optimize the injection/production rates to maximize waterflood sweep 

efficiency by equalizing the average time of flight (TOF) amongst the producing wells in 

regional basis.  Our optimization approach is extremely efficient because it relies on 

simple analytic calculations to compute weighting factors for injection and production 

rates to minimize the TOF variance amongst producing wells. Because the approach 

does not rely on formal and complex optimization tools, it is particularly well-suited for 

large-scale field application. Also, the approach can be used with both streamline and 

finite difference simulators. For finite-difference simulations, the streamlines and time of 

flight are derived from the flux field generated by the simulator. Multiple examples are 

presented to support the robustness and efficiency of the proposed waterflood 

management scheme. These include 2D synthetic examples for validation and a 3D field 

application. 

 

 

 

                                                 

*
 Part of this chapter is reproduced with permission of the copyright owner from 

"Reservoir Management Using Streamline-based Flood Efficiency Maps and 

Application to Rate Optimization" by Han-Young Park and Akhil Datta-Gupta, 2011. 

Paper 144580 presented at SPE Western Regional Meeting, Anchorage, Alaska, USA, 7-

11 May. Further reproduction is prohibited without permission. 
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3.1 Introduction 

 

Streamline technologies have been widely used for reservoir management because of its 

powerful flow visualization capabilities that allow us to analyze rate allocation, pattern 

balance and waterflood performance. The connected flux volumes and its relative 

distribution can be easily obtained in terms of allocation factors from the streamlines. 

The application of streamlines have been extended to quantitatively analyze and 

optimize sweep efficiency using the streamline time of flight (TOF) distribution 

(Alhuthali et al. 2010; Alhuthali et al. 2007). In terms of early application to rate 

optimization, Grinestaff (1999) used streamline flow visualization to infer inefficiencies 

in the waterflood and set injection targets. No formal optimization was used here. Well 

rates were adjusted manually to obtain a more uniform distribution of streamlines 

amongst the producing wells. Grinestaff and Caffrey (2000) used allocation factors as 

their primary criterion for optimizing waterflood sweep. Thiele and Batycky (2003) 

proposed a streamline-based injection efficiency to optimize water injection. The 

injection efficiency was defined as the ratio of offset oil production to water injection as 

computed from the streamline-based flux distribution. More recently, Alhuthali et al 

(2007) presented a rate optimization approach to maximize sweep efficiency through 

equalizing the waterflood front arrival times at the producing wells. They derived well 

rate allocation and optimized flood-front management by delaying the water 

breakthrough at the producing wells. This approach, however, requires calculation of 

sensitivity of arrival time with respect to production/injection rates and use of 

constrained optimization methods such as the sequential quadratic programming 

technique.  

 In this chapter, we follow-up on the previous work of Alhuthali et al. (2007; 2010) 

and propose a rapid and easy to use method to optimize production/injection rates. The 

goal here is to avoid use of complex optimization tools; rather we emphasize the visual 

and the intuitive appeal of the streamline method. The basic underlying principle here is 

similar to that of Alhuthali et al (2007; 2010) and relies on two main ideas: (i) equalizing 
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‘average time of flight’ to all producers (ii) and minimizing the ‘time of flight variance’ 

within the streamline bundle. To accomplish this, we propose an easy to implement 

method for rate optimization utilizing streamline-based flood efficiency map. The flood 

efficiency map shows how the producers/injectors are connected and the relative 

movement of the flood front towards the producing wells. It consists of two areal maps: 

a flux distribution map and a time of flight distribution map. Although, the flux 

distribution maps have been used in the past to visualize flow, the use of TOF 

distribution map is novel. Using a combination of these two maps, we propose a 

procedure to optimize flood efficiency without the use of formal optimization tools. The 

main advantage of the proposed approach is that it is analytic, easy to implement and 

well-suited for large-scale field applications. Another advantage is its intuitive nature; 

we can visually examine the flow patterns as the calculations progress. 

This chapter is organized into three sections that detail the theory and application of 

production and injection rate optimization. In the first section, we briefly outline the 

approaches and illustrate the procedural steps using a synthetic example. Production rate 

optimization approach is discussed first followed by the injection rate optimization 

approach. Next, we expand on the background and mathematical formulation underlying 

the proposed optimization method. Finally, we demonstrate the practical feasibility of 

our approaches using 3D field applications. 

Our proposed method follows a simple and easy to use workflow using streamline-

based flood efficiency map. The flood efficiency map, as shown in Fig. 1, is composed 

of two areal maps: a flux distribution map and a time of flight distribution map. Each of 

these maps can be generated from readily available streamline properties viz. the flow 

rate associated with each streamline and the time of flight along the streamlines. The 

flood efficiency map is a visual and physically intuitive tool for analyzing reservoir flow 

patterns and we extend its application to rate optimization. Specifically, we define two 

separate workflows for rate optimization: one is for production rate optimization and the 

other is for injection rate optimization. Depending upon the needs and the field 

conditions, one might want to utilize either or both to enhance waterflood efficiency. 
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3.2 Production Rate Optimization 

 

The production rate optimization consists of two steps: (i) computing weighting factors 

for the production rates to equalize ‘average TOF’ at producers and (ii) minimizing the 

TOF variance within the streamline bundle reaching individual producers. First, we 

utilize the relationship between streamline flow rates and the TOF to compute rate 

change coefficients. We apply these rate change coefficients for the minimization of the 

‘global’ TOF variance in a field- wide or regional basis by equalizing the ‘average TOF’ 

between producing wells. Second, we calculate weighting factors for ‘local’ update to 

further minimize the TOF variance by focusing on individual well connections and its 

bundle of streamlines.  

Because the flood efficiency map provides all necessary information including flux 

and average TOF, the optimization can be carried out in a step-wise manner using a 

spreadsheet type application.  The ease of implementation and the simplified nature of 

the workflow are the major strengths of our proposed approach. Below, we outline the 

production rate optimization in a stepwise manner. 

 

3.2.1 Procedure of proposed production rate optimization 

 

 Flow simulation and streamline tracing. For flow simulation, we can use either a 

streamline simulator or a finite difference (FD) simulator. If we use a FD simulator, 

we need to perform streamline tracing using the fluid flux information from the FD 

simulator.  

 Streamline-based flood efficiency map construction. We aim to display the key 

information related to flow patterns and reservoir sweep with the flood efficiency 

map as shown in Fig. 3-1. It includes a flux distribution map and an average TOF 

distribution map that enable us to optimize waterflood management. The streamlines 

connecting each injector-producer pair is depicted with a single representative 

streamline, the fastest streamline. The TOF distribution map displays the ‘average 
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TOF’ between the well pairs. The average TOF is calculated by a simple arithmetic 

average of time of flight associated with all the streamlines for each connection. The 

flux distribution map display volumetric flux between connecting wells computed by 

summing the fluxes carried by the streamlines. The flux distribution map is colored 

by the total flux connecting the wells while the color in TOF distribution map 

displays the average TOF. Thus, the flood efficiency map is a compact 

representation of the reservoir flow pattern and the flood front advancement.  

 Global update coefficient calculation. The average TOF and total fluxes between 

injector-producer pairs are readily available from the flood efficiency map. Next, rate 

coefficients for ‘global’ updates are computed analytically based on the average TOF 

and flux distribution. This is discussed in detail in the next section. Because these 

rate coefficients attempts to equalize the average TOF among all connections in a 

field-wide or regional basis, we denote them as global update coefficients.  

 Local update weighting factor calculation. This weighting factor is targeted to 

minimize the difference of TOF between individual well pairs in a root mean squared 

sense. These weighting factors are also derived analytically and incorporated along 

with the global update coefficients to minimize overall TOF variance. The goal of 

this step is to fine-tune the production rates in such a way so as to further reduce the 

variance of TOF in ‘local’ sense.  
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(a) Schematic of flood efficiency map 

 

 

 

(b) Example : TOF distribution map (left), streamlines (middle), and flux distribution map (right) 

 

Fig. 3-1   Streamline-based flood efficiency map: schematic (a) and example (b) 

 

The overall optimization scheme is depicted in Fig. 3-2. The first figure, Fig. 3-2(a) 

shows that the optimization process will move the average TOF between well pairs to 

the global average. Further, the variance of TOF within well pairs will also be 

minimized as shown in Fig. 3-2(b).   
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(a) Equalization of average TOF 

      

(b) Reduction of TOF variance 

 

Fig. 3-2   Optimization scheme: equalization of average TOF (a) and reduction of TOF 

variance (b) 

 

The optimization is performed on a time horizon basis as shown in Fig. 3-3. We start 

with optimizing flow rates for the first time interval and then move to next interval with 

the optimized rates from the previous time step. We continue this process until the 

desired time limit.  

 

 

 

Fig. 3-3   Optimization process at multiple time steps 

 

3.2.2 An illustration of proposed production rate optimization 

 

Before discussing the mathematical background, we will first illustrate the procedure 

using a synthetic example. We use a two-dimensional two-phase heterogeneous reservoir 
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model for waterflooding consisting of 4 producers in the corners and 1 injector in the 

middle.  Fig. 3-4 shows the base case for production rate optimization. A high 

permeability channel connects the producing wells P2 and P4 to the injector I1 as shown 

in Fig. 3-4(a). The streamlines for the base case are shown in Fig. 3-4(b). For the base 

case, the production rate is set at 100 RB/day and injection rate at 400 RB/day. This is 

also reflected in the flux distribution map, Fig. 3-4(c) because of the same color of the 

four ‘representative’ streamlines.  Fig. 3-4(d) shows that the TOF at each producer is 

different because of the underlying heterogeneity with the TOF at P2 and P4 being much 

faster compared to TOF at P1 and P3. The same average TOF distribution is shown in 

Fig. 3-4(e) with a bar chart. In Fig. 3-4(f) we have focused on individual producers and 

shown the time of flight distribution of the streamlines reaching each producer. Thus, for 

optimization we will deal with two kinds of TOF variance: (i) the ‘global’ variance of 

average TOF amongst producers as in Fig. 4(e) and (ii) the ‘local’ variance of TOF at 

individual producers as in Fig. 3-4(f). From this 2D synthetic example, we will 

reallocate the production rates to maximize sweep efficiency through minimization of 

both ‘global’ and ‘local’ time of flight variance. The key constraints imposed on this 

production rate optimization are as follows: 

 

o Injection rate equal to total production rate (voidage balance) 

o Maximum allowable production rate per well = 300 RB/day 

o Maximum water-cut allowance = 90 %  
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(a) Permeability field                (b) Streamline TOF                   (c) Flux distribution map 

 

(d) TOF distribution map             (e) Avg. TOF                        (f) TOF distribution 

Fig. 3-4   Streamline average TOF and flux distribution for base model 

 

Fig. 3-5 shows the results from the optimization. The optimized production rates are 

shown in Fig. 3-5(b) with different colors indicating different production rate at each 

producer. While equalizing the TOF based on global and local update coefficients, we 

end up with increased production rates for P1 and P3 and reduced production rates for 

P2 and P4. The TOF distribution map after optimization is shown in Fig. 3-5(c) which 

shows the same color, indicating nearly equal TOF at all producers. On comparing with 

Fig. 3-4(c) and (d), we can clearly see how the production rates have been redistributed 

to equalize the TOF. It is also reinforced in Fig. 3-5(d). The ‘local’ time of flight 

distribution at individual producers is shown in Fig. 3-5(e).  On comparing with Fig. 

3-4(f), we can see that the TOF variance has been reduced both amongst the producers 

(globally) and within the producers (locally). 
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(a) Streamline TOF                             (b) Flux distribution map                (c) TOF distribution map 

 

                  

                                   (d) Avg. TOF                                                (e) TOF distribution 

 

Fig. 3-5   Streamline average TOF and flux distribution for optimization model 

 

Fig. 3-6 shows increased oil production and reduced water production from the 

optimized model. Recall that we kept the total production rate the same and only 

reallocated to each producer. Fig. 3-7 shows the water saturation distribution for the base 

and optimized cases. Around the circled areas, we can clearly see that the optimized 

model has swept oil much more efficiently compared to the base case. 

 



 57 

 

 

Fig. 3-6   Oil recovery comparison of base and optimized model 

 

 

                            (a)                                       (b)                                     (c) 

 

                          (d)                                       (e)                                        (f) 

Fig. 3-7   Water saturation map for base (a-c) and for optimized (d-f) 
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3.3 Injection Rate Optimization 

 

For injection rate optimization, we will first introduce the coefficient of variation which 

is a normalized measure of dispersion of a distribution. It is a dimensionless quantity 

defined as the ratio of the standard deviation to the mean. Because we are interested in 

the TOF distribution, we will define the coefficient of TOF variation (
vC ) as follows: 

 

  


 vC                       
…………………………………………………..………(3.1) 

 

where,   is the standard deviation of TOF and   is the mean of TOF. 

In accordance with the idea that the variance of TOF affects sweep efficiency, here 

we define the coefficient of TOF variation as a measure of injection efficiency. We 

calculate the coefficient of TOF variation for each injector and reallocate the injection 

rates based on the coefficient of TOF variation. Following is a brief description of the 

steps.  

 

3.3.1 Procedure of proposed injection rate optimization 

 

 Flow simulation and streamline tracing. As in production rate optimization, the first 

step is to trace the streamlines and compute TOF along streamlines. We obtain the 

streamline information either directly from a streamline simulator or by tracing using 

fluxes provided by a FD simulator.  

 Flood efficiency map construction. This step follows same procedure as in 

production rate optimization approach. 

  Injection rate allocation factor calculation. We first calculate the coefficient of 

TOF variation at all injectors. For each injector, the streamlines leaving the injector 

and their associated time of flights to producer or producers are used to compute the 

coefficient of TOF variation. We compute the injection rate reallocation factor (
i ) 
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for injection well i based on the weighting factor (
i ) calculated with the TOF 

coefficient variations as given in Eq. 3.2 and Eq. 3.3. The reallocation scheme is 

based on the principle of equalizing injection efficiency for all injectors. Because we 

want to avoid flow concentration in high permeability regions leading to high 

variance in TOF, the proposed approach attempts to equalize the coefficient of TOF 

variation in a field-wide or regional basis.  

 

ii  1                          
……………………….……………………………(3.2) 
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where, 
i

vC  is the coefficient of TOF variation of well i. 
max

vC and 
min

vC  represents 

maximum and minimum coefficient of TOF variation in the selected region or field. The 

weighting factor is adjusted subject to maximum weighting allowance (
max ). In Eq. 3.2 

we need to choose a sign for the weighing factor. This is discussed later in the 

mathematical formulation section. 

 

3.3.2 An illustration of proposed injection rate optimization 

 

We now illustrate the workflow with a 2D synthetic example. We consider 

waterflooding in a channelized reservoir with 9 producers and 4 injectors as shown in 

Fig. 3-8.   
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     (a) producing wells’ location                                          (b) injecting wells’ location 

Fig. 3-8   Selected 2D heterogeneous model’s permeability field with well locations 

 

To illustrate the optimization process we set the base case with each injector injecting 

water at 200 RB/day and 9 producers producing a total of 800 RB/day. To demonstrate 

the generality of the approach, production rates were unevenly assigned as shown in Fig. 

3-9. We use 6 months optimization time interval for a total of 20 year optimization 

period. We keep production rates the same and allocate only injection rates. Total 

injection rate of 800 RB/day is maintained and maximum individual injection rate is 

capped at 400 RB/day. Fig. 3-9 shows the optimized injection rate for each injection 

well at each time step. Considering that the initial injection rate at each injector was set 

at 200 RB/day, the optimization resulted in injectors I2 and I4 injecting more and the 

other two injectors injecting less. 

 

          

Fig. 3-9   Optimized injection rates for each well and each time step (left) and the 

production rates (right) 

 

How do these optimized injection rates affect field oil production and sweep 

efficiency? As we expected, we could reduce the ‘global’ TOF coefficient of variation in 
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a field-wide basis as shown in Fig. 3-10(a). Also, in Fig. 3-10(b) and (c) we see that the 

optimized i

vC  for all wells are converging while the base i

vC  was much more widely 

distributed, mainly because of one well.  

 

     

(a) Global coefficient of TOF variation 

 

     

  (b) i

vC  : base case                      (c) i

vC  : optimized case   

Fig. 3-10   TOF coefficient of variation for base and optimized case 

 

Fig. 3-11 shows a comparison between the optimized and the base case in terms 

of oil saturation distribution at three different times. Clear differences in oil 

saturation can be found from the middle time step as shown in                   (d)                                                 

(e)                                             (f) 

Fig. 3-11(b) and (e). As we have reduced injection in I1 and I3 and increased 

injection in I2 and I4 in the optimized model, its impact is reflected on this saturation 

distribution. Also, we can see significant improvement in sweep at the final step. We 
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have almost completely swept the reservoir in the optimized model while significant oil 

saturation still remains between I1 and I3 wells for the base case.  

 

                  (a)                                                 (b)                                             (c) 

 

                  (d)                                                 (e)                                             (f) 

Fig. 3-11   Oil saturation map for base (a-c) and for optimized (d-f) 

 

3.4 Background and Mathematical Formulation 

 

In this section we discuss the mathematical formulation behind the production and 

injection rate optimization as illustrated in the previous section. We start with the 

production rate optimization followed by the injection rate optimization. In general, both 

rate optimizations use TOF variance as the fundamental quantity to reallocate rates. 

Also, both rate optimizations focus on reducing TOF variance to maximize the sweep 

efficiency. The specific details vary as discussed below. 

As discussed before, for production rate optimization we introduce two-levels of 

weighting factors viz. global and local update coefficients to equalize average TOF 

180 days 3600 days 7200 days
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amongst producers and minimize TOF variance within a producer. The equation for 

production rate reallocation at well j is given as follows: 

 

    
i

ijijijj qq               
………………………………………….……(3.4)

 

 

In Eq. 3.4 we see that the change in production rate of well j can be obtained by 

summing all connected fluxes ( ijq ) weighted by two update factors (   , ). The 

calculation of these update factors are discussed below. 

 

3.4.1 Global update coefficient for production rate change 

 

The rate optimization approach by Alhuthali et al (2007; 2010) used analytic sensitivity 

of the water front arrival time at the producer with respect to well rates. The sensitivities 

are partial derivatives relating changes in arrival time to small perturbations in 

production rate and injection rates. The sensitivities can be expressed as follows 

(Alhuthali, 2007): 
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In Eq. 3.5 there is partial derivative 
jil q ,  which relates TOF to production rate. Using 

chain rule, it can be written as follows: 
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By assuming that the streamlines do not shift because of small perturbations in the well 

rate, we can compute the partial derivative analytically (Alhuthali, 2007): 
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The expression in Eq. 3.7 indicates that the change in TOF along a streamline connected 

to producer, i, with respect to the change in total flow rate along the streamline can be 

obtained as the ratio of the TOF and the flow rate along the streamline. Using the above 

relation, the production rate change of well, j, can be written as in Eq. 3.8.  

 

 



i

ij

ij

ij

j qq



    

……………………………………………………...…(3.8)
 

 

  
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In the above equation  
ij  is the average TOF for the streamlines connecting wells i and j 

and 
ij  represents the difference between the ‘desired average TOF’ and the current 

average TOF between wells i and j.  The desired average TOF (
d
 ) is computed as the 

average TOF of all the streamlines in a field-wide or regional basis, depending upon the 

scope of optimization. Because there can be multiple connections to a producing well, 

the production rate change of well j is obtained by summing the product of the average 

time of flight ratio (
ijij  ) and flow rate for each connection, i. If we define 

ijij  as 

the rate change coefficient (
ij ), then we have the global update equation as follows:  

 

 
i
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…………………………………………………...…(3.10)
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3.4.2 Local update weighting factor for production rate change 

 

We augment each rate change coefficient (
ij ) with a weighting factor (

ij ) so as to 

further minimize TOF variance within the streamline bundle associated with individual 

producers. Because the global update coefficient contributes to equalizing average TOF 

among all connections, in local update we are focusing on the streamline TOF inside 

each connection. The weighting factor is obtained by minimizing the expected RMS 

difference of rate change coefficients as given in Eq. 3.11. 
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In practice, we will minimize Eq. 3.12 that is equivalent to minimizing Eq. 10 above. 
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Taking derivative with respect to the weighting factor (
ij ) and seeking the minimum, 

we have following expression: 
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The first and second term in Eq. 3.13 can be written as given in Eq. 3.14 and Eq. 3.15 

respectively. 
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This leads to the solution for the weighting factor, Eq. 3.16 given as follows: 
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3.4.3 Coefficient of TOF variation for injection rate change 

 

We defined the coefficient of TOF variation in Eq. 3.1 where the standard deviation of 

TOF for injector i is obtained as follows: 
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In Eq. 3.17, we include all the streamlines leaving the injector and their corresponding 

time of flight to producer or producers. The average of TOF ( ) is calculated by taking 

average of all the streamlines associated with injectors in a field-wide or regional basis 

depending upon the scope of optimization. Now we can define the coefficient of TOF 

variation of injector i ( i

vC ) as follows: 
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vC               
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This coefficient of TOF variation is considered as an injection efficiency factor. The 

optimized injection rate is obtained based on this efficiency factor using Eq. 3.2 and Eq. 

3.3. In Eq. 3.2 we need to choose a sign for the weighing factor. The sign is chosen 
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based on calculated average TOF.  For example, if the average TOF for an injection well 

is greater than average TOF for the optimization region, we assign a positive sign to 

compute a reallocation factor greater than 1. This leads to higher injection and reduced 

time of flight for the injector as desired.  

 

3.5 Production Rate Optimization Application to The Benchmark Brugge Field 

 

In this section we demonstrate the application of our proposed optimization approach 

with 3D field examples.  To start with, we will discuss the application of production rate 

optimization. For this, we use the data from the SPE benchmark Brugge field (Peters, E. 

et al. 2009). Next, we discuss the application of injection rate optimization using the data 

from the Goldsmith field in west Texas. 

The Brugge field model was set up as part of an SPE Applied Technology Workshop 

(ATW) for the purpose of evaluating various production optimization methods. The 

model properties are based on a North sea brent-type field. The reservoir simulation 

model has about 60 thousand grid blocks with 9 layers. The field includes 20 vertical 

producers completed in the top 8 layers and 10 peripheral water injectors completed in 

all layers. The details about Brugge field can be found in the paper by Peters et al. 

(2009). Fig. 3-12 shows the permeability field with injection well locations in the left 

figure and production wells in the right figure. 

 

                      

Fig. 3-12   Brugge field permeability distribution and injection wells (left), producing 

wells (right) 
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The field history data was provided for history matching purposes (Peters et al, 2009). 

The closed loop optimization consisted of two steps: updating the model via production 

data integration using the first 10 years of production history and then, optimizing the 

production rates for the next 20 years.  

In this study, we matched 10 years of production history and then optimized the rates 

for the next 10 years of production. The optimization time interval used is 6 months. We 

compared the optimized case with the base case to examine evidence for improved 

recovery or increased sweep efficiency. The base case involves reactive control whereby 

the well are produced at prespecified rates and is switched to a minimum rate whenever 

the water cut reaches 90%. Major considerations and constraints used in this application 

are as follows:   

 

o Total injection rate equal to total production rate (voidage balance) 

o Maximum allowable production rate per well = 3000 RB/day 

o Maximum allowable injection rate per well = 4000 RB/day 

o Maximum water-cut allowance = 90 % , after that, well is switched to 

minimum production rate of 10 RB/day 

 

Our optimization workflow include two steps: computation of ‘global’ rate 

coefficients followed by local update weighting factors as discussed before. Fig. 3-13 

shows the production rates for the base case and the optimized case at two different 

times. Looking at Fig. 13(b), the production rates at the last time step of the optimization 

period, we see that production rates for wells P-6 through P-11, farthest from the 

injectors, have increased. On the other hand, the rates for wells P-14 through P-17 have 

been continuously reduced. Some of the wells are switched to minimum production rate 

because of water-cut limit. Our optimization approach takes into account changes in well 

schedules by using the streamline-based flood efficiency map at the time interval of 

interest. For every single time interval of optimization, we analyze the flow field using 

the flood efficiency map, identify inefficient producers and suggest new optimized rates.  
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(a) production target rate at 1 year  

 

 

(b) production target rate at 10 year  

Fig. 3-13   Production target rate for base (blue) and optimized (red) 

 

Fig. 3-14 compares the optimized case and base case in terms of TOF distributions 

for each connection at the last time step. The figure clearly shows how TOF variance has 

been reduced because of optimization. The circled area in the figure shows the TOF for 

faster streamlines for each connection. The results show the outcome of the optimization 

in terms of equalizing the average TOF. 
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(a) Base case 

 

(b) Optimized case 

Fig. 3-14   Time of flight for each connection between wells – base (a) and optimized (b)   

 

Fig. 3-15 shows some key regions with the flood efficiency map displaying average 

TOF. Recall that the streamline in the flood efficiency map shows the fastest streamline 

path and is colored by the average TOF between the injector-producer pair. Whereas the 

colors of the connections are very different for the base case, they become very similar 

after the optimization. This again indicates that the optimization successfully equalized 

the average TOF to maximize sweep efficiency. The optimization resulted in almost 8% 

increase in oil production and a similar reduction in water production compared to the 

base case.  
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(a) Average TOF flood efficiency map for base case 

   

 

(b) Average TOF flood efficiency map for optimized case 

 

Fig. 3-15   Flood efficiency map showing average TOF of key wells in Brugge: base 

(top) and optimized (bottom)   

  

Fig. 3-16 shows oil saturation distribution at the end for the base and the optimized 

case. We marked with circle the regions with large saturation change. We see 

significantly reduced oil saturation in the optimized case because of improved sweep 

efficiency.  
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(a) Base 

 

 

 

(b) Optimized 

Fig. 3-16   Oil saturation (left) at time end and the saturation difference (final Soil – 

initial Soil, right)  

 

This example involved rate optimization for a mature waterflood using streamline-

based flood efficiency map. At the time of optimization, most producing wells already 

had breakthrough. Instead of controlling the water front arrival time, we improved flood 

efficiency using simple analytic calculations resulting higher waterflood sweep. The 

power of the method lies in its simplicity, ease of application and ability to visually 

analyze and interrogate the results. 

 

3.6 Injection Rate Optimization Application to The GSAU Field 

 

For field applications, very often it is easier to conduct an injection optimization rather 

than a production optimization because of operational constraints. In this section we 
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demonstrate the proposed injection rate optimization approach to a CO2 pilot project 

area in the Goldsmith San Andrea Unit (GSAU), a dolomite formation located in west 

Texas. The pilot area has over 50 years of production history before the initiation of the 

CO2 pilot project in 1996. Fig. 3-17 shows the pilot project area in the GSAU. In this 

study we included extra wells located outside the pilot area in order to account for 

correct boundary conditions. The study area includes 33 producers and 11 injectors with 

a total of 30,740 grid cells. Fig. 3-18 shows the porosity and permeability distributions 

along with the producers and injectors location. 

 

 

Fig. 3-17   Goldsmith field study area: CO2 pilot area within the box 

 



 74 

 

Fig. 3-18   Generated permeability field with producers (left) and porosity field with 

injectors (right) 

 

For the base case we used the first 21 years of production/injection history. To 

account for different schedule of production/injection such as changing rates and infill 

wells, we subdivided the time period into 11 time steps. We kept the same operating 

conditions except for the injection rates which were changed via optimization. 

 

o Total injection rate are same as history 

o Maximum injection bottom-hole pressure: 4500 psi 

o Maximum production bottom-hole pressure: 1000 psi 

o Water cut limited to 98% 

 

Injection rates were changed based on the injection efficiency factor defined before 

using the coefficient of TOF variation. For each of the 11 injectors in this field, the rates 

were updated at each time step. The difference between the optimized and the base 

injection rates is as shown in Fig. 3-19. The change indicates that the injectors near the 

boundaries such as I6 and I7 showed significantly increased injection while the wells in 

the central region such as I2 and I3 showed decreased injection. 
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Fig. 3-19   Injection rate change for each injector after optimization 

 

The optimization resulted in increased oil recovery and at the same time reduced 

water production as shown in Fig. 3-20. The figure in the right shows the wells with an 

increase or decrease in cumulative oil production of over 100,000 STB. Only one well, 

P29 seem to be adversely impacted whereas all other wells, in particular well P5 show 

significant increase in oil production.  

 



 76 

  

Fig. 3-20   Field oil and water production comparison (left) 

 

 

Fig. 3-21   Change in well oil production by well 

 

In Fig. 3-22 we compare the base model and the optimized model in terms of flux 

connectivity between the wells to gain a more clear understanding of the changes in 
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injection pattern because of optimization. The streamlines are colored by the amount of 

flux displayed on the fastest path between each connection. The circled injectors (I6, I7, 

I11) near the boundaries are injecting at higher rates and showing increased 

connectivities with surrounding producers. For example, the well I7 in the bottom right 

supported 4 wells for the base model and after optimization supports 8 producers with 

higher injection rates. Thus, the areas around the well I7 are much better swept than 

before. Furthermore, we see that the wells in the central region are also well-connected 

and the streamlines show good coverage throughout the reservoir in the optimized model.  

 

 

Fig. 3-22   Flood efficiency map showing flux connectivity between wells: base (left) 

and optimized (right) 

 

Fig. 3-23 compares the optimized and the base case in terms of oil saturation at three 

different times. The improvement in sweep for the optimized case is obvious here. In 

particular, the bottom left and the top areas show significant reduction in oil saturation.  
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(a)                                                 (b)                                           (c) 

 

 

 

(d)                                                 (e)                                           (f) 

Fig. 3-23   Oil saturation map for base (a~c) and for optimized (d~f) 

 

3.7 Summary and Conclusion 

 

In this chapter, we have presented rapid rate optimization approaches for both injection 

and production wells utilizing streamline-based flood efficiency maps. The flood 

efficiency maps are a succinct representation of the flow pattern and flood front 

progression in the reservoir and can be easily constructed from the streamlines. We 

outline a systematic and easy to implement method for injection and production rate 

allocation to maximize sweep efficiency without resorting to formal optimization 

methods. The major findings in the paper can be summarized below: 

 

1. The flood efficiency map is shown to be an effective tool for reservoir 

management because it provides valuable information related to reservoir flow 

patterns and sweep efficiency. Although, the flux distribution maps have been 

used in the past to visualize flow, the use of TOF distribution map is novel. In 
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fact, our proposed optimization method mainly relies on the TOF distribution 

map. 

2. Our proposed streamline-based production rate optimization is simple, intuitive 

and easy to implement. It relies on equalizing the TOF both ‘globally’ (between 

streamline bundles in terms of average TOF) and ‘locally’ (within streamline 

bundles) using analytic formulation. The approach is applicable to both new and 

mature waterflooding as we minimize variance of TOF between injection-

production pairs rather than focusing on the water front breakthrough time.   

3. A new definition of injection efficiency is proposed in terms of the coefficient of 

TOF variation. Using this criterion, we propose a systematic approach to 

injection optimization. Recognizing that in field applications it is more practical 

to optimize injectors rather than producers, the injection optimization scheme has 

been proposed as a simple and standalone procedure.  

4. The effectiveness of our optimization can be examined by comparing the flood 

efficiency maps before and after optimization. In particular, the TOF map is a 

clear indicator of sweep efficiency in terms of the similarity or dissimilarity of 

the average TOF between the well connections. 

5. We have demonstrated the power and utility of our proposed method using a 

variety of synthetic examples and also field applications. 
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4CHAPTER IV 

HIERARCHICAL PARETO-BASED APPROACH TO HISTORY 

MATCHING UNDER CONFLICTING INFORMATION 

 

In this chapter, we propose to use a Pareto-based multi-objective evolutionary algorithm 

(MOEA) focusing on finding a set of optimal solutions called Pareto optima. The 

MOEA makes direct use of a dominance relation for fitness assignments for various 

objectives, instead of classical fitness score derived based on one-dimensional objective 

space. The dominance concept can define levels of optimality using multidimensional 

objective space to sort populations, and classify models into ranks (Pareto fronts). 

Because it uses a population of models in the search process and optimizes such that the 

ranks are minimized, the Pareto optimal solutions can provide a measure of uncertainty 

in predictions. We show how the MOEA identifies optimal solutions by examining the 

trade-offs between conflicting objectives among multiple plausible solutions; 

particularly, we demonstrate that it performs better than the weighted-sum approach. 

For practical applications, we provide a novel workflow with a Grid Connectivity-

based Transformation (GCT) basis coefficients as parameters for calibration using the 

gradient-free evolutionary optimization algorithm. The parameterization basis is 

obtained from spectral decomposition of the grid connectivity Laplacian and avoids ad 

hoc redefinitions of regions while preserving geologic heterogeneity. We demonstrate 

the power and utility of the proposed workflow using multiple examples. These include 

2D synthetic examples for validation and a 3D field application for matching production 

and seismic data with uncertainty and conflicting information. 

 

4.1 Introduction 

 

The purpose of history matching of reservoir performance is to make reservoir models 

forecast more accurately and therefore, estimate the range of recovery or provide the 
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economic assessments of different field development strategies. An ensemble of history-

matched models is typically used to predict future reservoir performance and evaluate 

prediction uncertainty.     

Very often, history matching involves the use of multiple objectives, including 

multiphase production data (water cut and/or GOR), 4D time-lapse seismic data, SFT 

pressure data, etc.. These objectives can be potentially conflicting because they are from 

different sources, measurements, and have different levels of uncertainties. For example, 

the uncertainties in geophysical data are in particular associated with errors in arrival 

time picking, errors in depth conversion, pre-processing and migration errors, and so on. 

Those are related to all activities of seismic data including acquisition, processing, and 

interpretation. Because each data has different potential to observe reservoir 

characteristics, combining all available data into history matching workflow helps 

improve the quality of history matching. For example, well-based surveillance (pressure, 

rates) rarely provides us with much insight on the specific details of the flow paths 

between wells while seismic surveillance does (Walker and Lane 2007). The spatial 

information can be observed through time-lapse seismic data. We can thus expect that 

time-lapse seismic will improve the predictive capability of reservoir models.  

Integration of dynamic data typically requires the minimization of a predefined 

objective function, which consists of a misfit term, typically defined as the difference 

between observed and simulated data, and appropriate penalty terms. In the recent 

decade, research on assisted history matching techniques has received a lot of attention 

in reservoir engineering community and many papers have been published in the 

literature. There have been a variety of approaches to the minimization of the objective 

function. These can be classified broadly into three categories: gradient-based methods, 

sensitivity-based methods, and derivative-free methods. Gradient-based methods 

typically converge slowly (Gill et al. 1981; McCormick and Tapia 1972) but they have 

been widely used for automatic history matching; The derivative-free methods such as 

simulated annealing and genetic algorithms are simple to implement but limited to 

relatively small number of parameters because of the computational burden (Oliver et al. 
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2001). Sensitivity-based method uses computed sensitivities that are simply partial 

derivatives that define the change in production response because of small changes in 

reservoir parameters. Sensitivity-based methods are attractive because of faster 

convergence compared to gradient-based methods (Bissell et al. 1992). Specifically, the 

streamline-based generalized travel time inversion (GTTI) technique has proven to be an 

efficient means for computing the parameter sensitivities (Cheng et al. 2005; Cheng et 

al. 2004; Datta-Gupta et al. 2001) because the sensitivities are obtained in a single 

forward simulation run. The GTTI history matching approach has been successfully 

applied to several field cases (Cheng et al. 2004; Hohl et al. 2006; Qassab et al. 2003; 

Rey et al. 2009). 

Most of approaches mentioned above typically start with a single initial geological 

model, usually ends up with a single deterministic history matched model, and thus, does 

not readily allow for uncertainty analysis. Because reservoir models deals with 

substantial modeling uncertainties and particularly becomes more complex, uncertainty 

is required to be quantified by generating alternative simulation models rather than one 

unique deterministic solution. In this sense stochastic search techniques such as 

simulated annealing (Galassi et al. 2009; Kirkpatrick et al. 1983; Ouenes et al. 1994),and 

genetic algorithms (Holland 1992)  have been known to be more effective, however 

these methods require large number of flow simulations, which can be computationally 

prohibitive, particularly when the parameter space is very large.  

Classical history matching techniques typically treat multiple or many objectives 

optimization problem as single objective optimization problem by aggregating all 

objectives into a scalar function (weighted-sum) resulting in incomplete exploration of 

solution space. If those objectives are conflicting to each other, this approach can be 

problematic. A multiobjective optimization task involving multiple conflicting 

objectives ideally demands finding a multidimensional Pareto optimal front (Deb and 

Saxena 2005). Multiobjective optimization evolutionary algorithm (MOEA) is designed 

to find a representative set of solutions in the Pareto optimal front while most of classical 

methods aim at finding one preferred solution. As a typical method, Rey et al. (2011) 
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performed joint integration of seismic and production data using a deterministic 

approach in which a penalized misfit function that quantifies the production and seismic 

data misfit is minimized. In the misfit function they have given a weighting factor for 

each objective depending on the degree of confidence in the data. The solution ends up 

with one model satisfying the surveillances with a certain level of error unless multiple 

initial models are used. Similarly, Cheng et al. (2007) also showed joint integration of 

multiple production data (water cut and GOR) using a travel time inversion. 

In this chapter, we focus on multiobjective optimization technique for history 

matching of reservoir performances. Schulze-Riegert et al. (2007) showed the 

application of multiobjective optimization technique to history matching of reservoir 

model using one of MOEA algorithm, Strength Pareto Evolutionary Algorithm (SPEA). 

It demonstrates that multiple objectives can behave conflictingly because of incomplete 

parameter space assigned. Han et al. (2010) used non-dominated sorting genetic 

algorithm (NSGA-II) and compared weighted-sum approach and multiobjective 

optimization approach using 2D heterogeneous reservoir history matching model. 

Lately, Hajizadeh et al. (2011) used differential evolution for multiobjective 

optimization using Pareto ranking (DEMOPR). They used PUNQ model for history 

matching and coupled the algorithm with Bayesian uncertainty quantification framework 

to estimate the uncertainty in future recovery. In these applications production data 

information (water cut, GOR, bottom hole pressure) is only used as objectives but they 

formulate multiple objective optimization problem by considering either each well as 

one objective or grouping several wells as an objective. 

In this chapter we present multiobjective optimization approach to history matching 

of reservoir performances where 4D time-lapse seismic data and production data have 

been used to demonstrate multiple objective problems. First, we show that incorporation 

of seismic data improves the quality of history matching. Next, we show how the MOEA 

identifies optimal solutions and how well it performs under conflicting information. We 

also compare MOEA and typical genetic algorithm based weighted sum approach in 

terms of finding optimal solutions. For practical applications, we provide a novel 
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workflow with a Grid Connectivity-based Transformation (GCT) basis coefficients as 

parameters for calibration using MOEA. We demonstrate the power and utility of the 

proposed workflow using multiple examples including 2D synthetic examples for 

validation and a 3D field application for matching production and seismic data with 

uncertainty and conflicting information.  

The organization of this chapter is as follows. First, we discuss the background of 

multiobjective optimization with mathematical formulation and available methods. Next, 

we propose a Pareto-based multiobjective optimization method with GCT for history 

matching of reservoir performances. We illustrate the proposed method with multiple 

synthetic examples and compare it with the conventional weighted sum approach. 

Finally, we demonstrate the practical feasibility of our approach through application to a 

benchmark reservoir, the Brugge field. 

 

4.2 Multiobjective Optimization 

 

In this section we discuss the background of multiobjective optimization, mathematical 

formulation and the terminology. We introduce two multiobjective optimization 

techniques; scalarization method and Pareto-based method. We will compare both 

techniques using a test function set up with conflicting information.  

 

4.2.1 Pareto optimal solutions  

Multiobjective optimization problem can be formulated mathematically as follows: 
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where, f is scalar function, n>1, and S is the set of constraints (parameter space).  

The space that objective vector belongs is called objective function space denoted as 

O as displayed in Fig. 4-1. The performance vector, f(x) maps parameter space (S) into 

objective function space (O) as shown in the figure below describing two objectives 

case. Now, consider decision vectors (a, b S) and minimization problem; then, a is said 

to dominate b (denoted as ba  ) if and only if following condition is met; 

 

         )()(:,...,2,1)()(:,...,2,1 bfafnjbfafni jjii 
 

……………………(4.2) 

 

 

Fig. 4-1   Mapping for multiobjectives from parameter space into objective space 

 

The decision vectors that are non-dominated within the entire search space are defined as 

Pareto optimal and constitute so called Pareto-optimal set or Pareto-optimal front 

(Zitzler and Thiele 1999). The solutions on red dotted line in Fig. 4-1 are representing 

Pareto optimal solutions because an improvement in one objective, f1, requires 

degradation in the other objective, f2. The shape of Pareto front indicates the nature of 

the trade-off between different objectives.  

Two objective sets are called ‘conflicting’ if the induced weak Pareto dominance 

relations differ and non-conflicting otherwise (Brockhoff 2009). If we consider 

conflicting objectives optimization problem, we should observe ‘trade-off’. Intuitively 

speaking, it means that we sacrifice some in the value of one objective to gain some in 
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the other. Trade-off information can be defined as the change of one objective to the 

other’s change as depicted in following Fig. 4-2. In this study we often use the trade-off 

ratio and correlation coefficient to describe magnitude of relations between two 

objectives. For example, conflicting relation between objectives results in negative 

correlation coefficient.  

 

          

Fig. 4-2   Trade-off between objectives 

 

4.2.2 Scalarization (Weighted-sum) approach  

 

The weight-sum aggregation approach appears to be widely used due to its simplicity. 

The approach involves summing up the weighted objective values (Zitzler et al. 2000). 

In this study, we illustrate solving multiobjective problems using aggregation-based 

(single-objective) evolutionary algorithm (hereinafter denoted as GA-SOP). The 

difference between observed and simulated data is typically described as an objective 

function (or one of terms in objective function) in most history matching approaches. 

The weighted-sum of the differences in quadratic form, on which fitness assignment is 

based, are typically computed as given below.   
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where  denotes a weighting factor for each objective and n is the number of objectives. 

The objective values are computed by summing the differences for all the wells and at 

all measured times in case of history matching problems. In this approach, the 

determination of the correct weights is one of major difficulties. We do not know which 

weights are the most appropriate to retrieve a satisfactory solution (Hajizadeh et al. 

2011). We do not in general know how to change the weights to consistently change the 

solution. In general, it is not easy to develop heuristic algorithms that, starting from 

certain weights, are able to define iteratively weight vectors to reach a certain part of the 

Pareto front. Besides, it requires possibly huge computation time. In addition, the 

approach is incapable to cover non-convex Pareto front and thus miss some parts of 

Pareto solutions resulting in incomplete solutions (Das and Dennis 1997). To achieve 

efficient points in a non-convex Pareto curve,  -constraints method was proposed by 

Chankong and Haimes (1983). The method select one objective out of multiple 

objectives to be minimized; the remaining objectives are constrained to be less than or 

equal to given target value. For instance, suppose that we have two objectives where one 

of objectives (f2) is chosen to be minimized. The problem is now described with 

geometric representation shown in Fig. 4-3. The decision maker has to choose 

appropriate many bounds for the constraints ( values) to obtain complete Pareto optima. 

Moreover, this method is not efficient if the number of objectives is large. 
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Fig. 4-3  Example of the -constraints approach showing geometric representation in the 

non-convex Pareto front in case of two objective optimization problem 

 

4.2.3 Pareto-based multiobjective optimization evolutionary algorithm (MOEA)  

 

Pareto-based techniques unlike aggregation-based technique make direct use of the 

dominance relation for fitness assignment, where actual Pareto ranks instead of fitness 

score are used as a measure of success for finding good solutions. Recently Pareto-based 

techniques are receiving a lot of attention in the area of multiobjective optimization. 

Some of techniques that have achieved much attention in the evolutionary algorithm 

(EA) literature include Niched Pareto Genetic Algorithm (Horn and Nafpliotis 1993), 

Non-dominated Sorting Genetic Algorithm (NSGA-II) (Deb et al. 2002), and Strength 

Pareto Evolutionary Algorithm (SPGA) (Zitzler and Thiele 1999). In this paper we use 

particularly NSGA-II algorithm and apply it to multiobjective history matching of 

reservoir performances. A fast non-dominated sorting procedure is implemented in the 

NSGA-II. Sorting the individuals of a given population is performed according to the 

level of non-domination. Typical workflow for NSGA-II is described in the following 

Fig. 4-4.  
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Fig. 4-4  Non-dominated sorting genetic algorithm (NSGA-II) workflow 

 

This workflow is similar to the typical genetic algorithm workflow in that it uses 

typical genetic operations (crossover, mutation) and chromosome evolutions. The key 

difference from classical genetic algorithm approach is in the way the selection operator 

works.  The selection process of classical genetic algorithms is based on the evaluation 

of fitness function for the models. The fitness function (f(m)) is typically referred to the 

objective function in genetic algorithm literature. The selection procedure picks models 

to be paired for reproduction using the genetic processes of crossover and mutation. The 

most common selection method in classical genetic algorithm uses the ratio of each 

model’s fitness to the total fitness of all the models to define its probability of selection 

(Sen et al. 1995) which is shown in Eq. 4.5. Because the fitness function of each model 

in GA-SOP method is computed based on the summation of objective values, the 

selection probability (Ps(m)) of a model is considerably dependent on the way of 

weighing objectives. 
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In contrast, the selection algorithm in the NSGA-II uses ranking and crowding 

distance of the models instead of fitness function resulted from weighted sum objectives. 

We use non-dominated sorting procedure to rank each model. Suppose that we have two 

objectives to optimize. The models are mapped in the objective space after evaluating 

each objective as shown in Fig. 4-5. We sort the population based on Pareto dominance 

concept, employing several fronts of classification for individuals. For solutions of a 

given population, there may be multiple non-dominated fronts. We first find non-

dominated solutions (non-dominated front or Pareto front) that are not dominated by any 

other model, which is defined as Rank 1. The front number used to replace rank, where 

smaller front numbers represent higher rank. We assign each front (rank) a unique 

number and typically represent it by Front
k
, where k (k > 1) is the front number. Each 

model (or individual) is assigned with one front (rank) based on following properties 

(Fang et al. 2008):  (1) A model in Front
k+1

 should be dominated by at least one model 

in Front
k
; (2) A model in Front

k+1
 may or may not dominate solutions in Front

k+2
. For 

example, the model ‘a’ and ‘b’ are not dominated by any other. They are therefore 

defined as Front
1
 or Rank 1. The model ‘c’ is dominated only by one model (‘b’) in 

Rank 1. Thus, it is defined as Rank 2. Similarly, the model ‘d’ is defined as Rank 3 

because it is dominated by models in Rank 2. The crowding distance estimating the 

density of solutions in the objective space is used to preserve the diversity of population, 

the estimation of crowding distance is described in following Fig. 4-5. It is noted that the 

diversity and spread of solutions is obtained well because NSGA-II adopts a suitable 

parameter-less diversity preservation mechanism (Deb et al. 2002).  
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Fig. 4-5  Non-dominated sorting and ranking (left), crowding distance estimation (right) 

 

In the Fig. 4-6 the step-by-step procedure for evolution from generation (t) to next 

generation (t+1) is illustrated. The genetic operators (crossover, mutation) is applied to 

the parent population (Pt) at generation (t) to generate offspring population (Ct). Because 

we typically set same size of children population (N), the combined population (parent 

and children) becomes twice as large as parent population. Then, non-dominated sorting 

is performed to perceive the non-dominated fronts (ranks). The idea behind selection is 

that higher ranked models have higher chances to be selected in the selection process 

than those in lower ranking. The populations for next generation are obtained from the 

highest ranked models to the lower ranked models. For example, the models in R1 is 

smaller than population size (N), we choose all individuals in R1 for the next population. 

The remaining of the next population is chosen sequentially from subsequent ranks. If 

we cannot accept all solutions in a certain rank anymore because of overflow of 

population size, the solutions within the rank are sorted in descending order to choose 

exactly N population members so that those with larger crowding distances are selected 

into next generation. 
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Fig. 4-6  Overview of non-dominated sorting algorithm selection procedure 

 

4.2.4 Comparison of GA-SOP and MOEA approaches with test function 

 

We formulate one test function to compare GA-SOP and MOEA methods under 

conflictions of conflicting objectives. Fig. 4-7 shows a test function problem where two 

objectives have completely different minimum. The minimum of objective one (1) is 

zero at (x1=0, x2=0) while the minimum of objective two (2) is zero at (x1=5, x2=5). To 

improve one objective, it requires sacrificing the other. It is so called conflicting 

objectives. Joining two objectives can turn the two different objective spaces into one 

global objective space. Equal weighting factor (=1, =1) is assigned to each objectives 

for this example in the Fig. 4-7. It is clearly around a point (x1=5, x2=5) that global 

minimum exists if equal weighting factor is used. We also see that the global optimum 

or minimum can be changed with weighting factors. 
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Fig. 4-7   Two objective values in 3D view (left) and sum of objectives in 2D top view 

(right) when equal weighting factor (=1, =1) 

 

Following Fig. 4-8 and the second figure on page 94 show the outcomes from GA-

SOP and MOEA runs respectively. For these experiments we have used 50 populations 

and evolve generations up to 100
th

. We set the searching space as from -2 and 8 for both 

parameters. For GA-SOP, equal weighting factor (1) is assigned to objectives. As the 

results shown in below, the solutions in parameter space show that most of solutions are 

clustered around a point (x1=5, x2=5), which is the global minimum only if equal 

weighting factor is used. The solutions mapped on objective space show that all final 

outcomes satisfy the second objective (f2) much better compared to the first objective 

(f1), resulting in incomplete exploration of solution space.  

 

 

Fig. 4-8   GA-SOP solutions in parameter space (left) and objective space (right) in case 

of equal weighting factor 
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The selection probability (Eq. 4.5) based on weighted sum of objective value (fitness) 

are examined. Fig. 4-9 explains that the most probable selection regions are located 

around a point (x1=5, x2=5) and shows where the models in the region are mapped in the 

objective space. This answers to why we have as a result of GA-SOP run such solutions 

(shown in Fig. 4-9) satisfying one objective (f2).  

 

                              

Fig. 4-9  GA-SOP selection probability in parameter space (left) and in objective space 

(right) 

 

In contrary, the result of MOEA shows in Fig. 4-10 that Pareto-based algorithm 
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objectives. As we notice from the figure below, the solutions in parameter space are not 

only around points (x1=0, x2=0 and x1=5, x2=5) which satisfy the first and second 

objective respectively, but also there are optimal solutions between the points.  

 
 

 

Fig. 4-10   MOEA solutions in parameter space (left) and objective space (right) 
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Fig. 4-11 shows non-dominated sorting and ranking results. To show these, we 

ranked all the solutions in objective space and mapped them back to parameter space. 

There are many fronts (ten or more) formed in this case although just five fronts are 

shown for simplicity. The MOEA uses a population of solutions in the search process 

and optimizes such that the ranks are minimized.  As the result, we can have the Pareto 

optimal solutions that are the best ranked models in this case.  

 

                             

Fig. 4-11  MOEA non-dominated sorting and ranking in parameter space (left) and in 

objective space (right) 

 

Several more cases with GA-SOP were made to see the effects of weighting factor on 

the solutions, where different weighting factors are used to construct the objective 

function. As noticed from figures in the most top two rows in Fig. 4-12, the global 

minimum point vary with weighting values. Because aggregated approach uses summed 

objective values for computation of fitness, the solutions in parameter space as result of 

GA-SOP are mostly located on the point around global minimum points. These 

experiments conclude that GA-SOP approach is incapable of exploring entire optimal 

solution space at one run and one set of weighting factor.   

 

 

 

 

-2 -1 0 1 2 3 4 5 6 7 8
-2

-1

0

1

2

3

4

5

6

7

8

X1

X
2

0 20 40 60 80 100 120 140
0

50

100

150

200

250

300

350

400

450

500

f1

f2



 96 

 

 

                       

Fig. 4-12   GA-SOP solutions by different weighting factor cases; Case1 (=1, =0.1), 

Case 2 (=1, =0.2), Case 3(=1, =1) from left 
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                                         (a)                                                   (b) 

 

                                         (c)                                                   (d) 

Fig. 4-13   GA-SOP convergence behavior by generation; population mean(a), sum of 

objectives(b), objective f1 (c), objective f2 (d) 

 

MOEA result show that it does not degrade an objective to make the other better as 

shown in Fig. 4-14.  Instead, it discovers complete optimal solutions without sacrifice of 

any objective. The objective function does not seem to continue to converge after few 

iterations because of conflict between two objectives. 
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                                         (a)                                                   (b) 

 

                                         (c)                                                   (d) 

Fig. 4-14  MOEA convergence behavior by generation; population mean(a), sum of 

objectives(b), objective f1 (c), objective f2 (d) 
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basically used in this work but Pareto-based multiobjective optimization method 

replaces classical Genetic algorithm (GA) that they used for global update. Fig. 4-15 

shows overview of proposed workflow called Pareto-based multiobjective hierarchical 

history matching approach. The proposed method comprises a two-step approach: global 

and local update. In the global calibration, we use MOEA to calibrate large-scale 

uncertainty or global parameters typically associated with global energy (pressure and 

pore volume) in the field. The approach considers the trade-off between objectives and 

detects plausible solutions that tend to satisfy the multiple objectives. As a result of 

global update, we now have an ensemble of geological models matched to global 

objectives. Next, we proceed for local update with a set of representative models 

selected through cluster analysis. In the local calibration, local parameter sensitivities are 

used to update each selected model using dynamic production responses such as water 

cut and bottom hole pressure. In particular, streamline-derived sensitivities are used to 

determine the spatial distribution and magnitude of the local permeability changes in this 

study. The streamline-based inversion has proven to be an efficient method for 

computing parameter sensitivity, and has been extensively used for field-scale history 

matching (Cheng et al. 2005). The proposed workflow combining stochastic and 

deterministic approach results in a set of diverse history-matched models that can be 

used for performance predictions and uncertainty analysis. 

 

 

                                 

Fig. 4-15   Overview of Pareto-based multiobjective hierarchical history matching 
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The novel components in the proposed hierarchical workflow (Fig. 4-15) are the Pareto-

based multiobjective optimization method and GCT parameterization for global update. 

The optimization method follows the non-dominated sorting evolutionary algorithm 

(NSGA-II) (Deb et al. 2002); however, for its application to history matching problem, 

we use a Grid connectivity-based transformation (GCT) technique (Bhark, E. et al. 

2011). The GCT basis coefficients are used as parameters for calibration during the 

gradient-free updating process. Fig. 4-16 illustrates in detail the Pareto-based 

multiobjective history matching workflow which is the key part of this paper. 

 

4.3.2 Grid connectivity-based transformation (GCT) 

 

Bhark et el. (2011) presented the development of a general transform basis suitable for 

structured and unstructured grid geometry. The basis is derived as the eigenvectors of a 

specific form of the grid Laplacian matrix that captures two-point or immediate-neighbor 

grid cell connectivity. The parameterization is performed by projecting a property 

multiplier field onto an orthonormal basis (ɸ) derived from the grid connectivity 

structure. The linear transform method for parameterization transforms the spatial 

parameters to and from a transform domain which is efficient for parameter estimation 

because of fewer parameters. A discrete spatial field is mapped to the transform domain 

using orthogonal transforms, 

 

       vuuv  T

 …………….……………………………………(4.6) 

 

where u represents a spatial field and has dimension N×1, where N is the discretization 

of the property field. The column vector v is M-length spectrum of transform 

coefficients, or the parameter set in the transform domain, and ɸ is a (N×M) matrix 

containing M-columns that define the discrete basis functions, each of length N. 

For model calibration, a spatial multiplier field has been posed in the multiplicative 

formulation as follows, 
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vuu 0 

 
…………….……………………………………(4.7) 

 

where u0 is the prior property field, also called initial model, ɸv defines the multiplier 

field in the spatial domain and (∙) is the element-wise multiplication (scalar product). 

For history matching application, a gradient-based BFGS quasi-Newton method was 

used where the gradient is computed with respect to parameters (transform coefficients, 

v) in the spectral domain. When the parameters are updated, the heterogeneity at spatial 

domain is altered corresponding to the modal frequency of each basis function applied in 

the transform. The details are found in literatures  (Bhark, E. et al. 2011; Bhark, E.W. et 

al. 2011).  

 

4.3.3 Pareto-based multiobjective history matching workflow with GCT 

 

Our proposed workflow designed for multiobjective history matching utilizes Pareto-

based multiobjective evolutionary algorithm in conjunction with the GCT technique. We 

introduce the GCT in the stochastic calibration framework where the basis transform 

coefficients (v) are used as parameters for updating the geologic model using the 

derivative-free evolutionary algorithm. The parameterization enables to reduce the 

dimension of parameters, in this case the dimension of transform coefficients (v). The 

reduced parameters require the compact representation for basis (ɸ) to contain only a 

few basis (ɸ) functions that are able to capture the most relevant spatial information. 
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Fig. 4-16   Workflow of Pareto-based multiobjective history matching with GCT 
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dominated sorting algorithm to sort the models in terms of ranking and crowding 

distance. We proceed to the selection process where tournament-based method is used. It 

is followed by typical genetic operations such as crossover and mutation. The generated 

new chromosomes record information of GCT basis coefficients in spectral domain. 

They are transformed back to spatial domain for evaluation of the next generation. The 

derivative-free updating iterations are continued until stopping conditions are reached.  

 

4.4 Synthetic Applications to History Matching of Reservoir Performances 

 

4.4.1 Synthetic application (1): Incorporation of seismic data into multiphase 

multiobjective history matching 

 

In this section we first illustrate the proposed workflow through an application to the 

history matching of multiobjectives (production and seismic data). The results show that 

incorporation of seismic data into history matching can reduce the extent of non-

uniqueness of traditional history matching. We use a two-dimensional three-phase 

heterogeneous reservoir model for waterflooding consisting of 8 producers and 1 injector 

in the middle as shown in Fig. 4-17. The GCT basis vectors (first ten) for this synthetic 

example application are shown in Fig. 4-17. 

 

  

 

Fig. 4-17  Reference (left), initial (middle), and generated GCT basis vectors (right) 
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Next, we parameterize the initial parameters with GCT transform coefficients in 

frequency domain by random sampling of the coefficients and transform them back to 

spatial domain. Fig. 4-18 shows some of initial multiplier fields that the ten transform 

coefficients shown in Fig. 4-17 are used to generate. The generated initial populations 

are simulated to receive flow simulation responses. Next, we compute the objective 

functions and rank the models based on non-dominated sorting algorithm. It is followed 

by genetic operations such as selection, crossover, and mutation. Those evolutionary 

processes are conducted in the frequency domain to create new populations. These 

updating process using the Pareto-based derivative-free iterations is continued until we 

reach a specified stopping criteria, defined as the maximum number of iteration, 10 

iterations in this case. 

 

 

Fig. 4-18  Examples of initial multiplier fields 

 

In this synthetic application, we performs two sets of history matching; (1) production 

data only and (2) both production and seismic data. The production data include 

multiphase production responses (water cut and gas-oil ratio). The water saturation 

changes are used as the seismic derived data. In the first case, we used only production 

data to calibrate the model. Fig. 4-19 shows the objective function behavior with respect 

to the number of iteration. The objective functions are averaged value of population in 

each generation (iteration). We could reduce the data misfits for production data 

significantly. However, the updated models (Fig. 4-19) show the updated models do not 

reproduce some of the features in reference model. This is reflected in Fig. 4-20 which 

shows water saturation displacement changes of updated models do not reproduce 

seismic derived data as much as the production data. It can be also seen in objective 
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function shown in Fig. 4-19 that the objective function of seismic data (blue line) shows 

the objective function of seismic data that doesn’t converge well. 

Proper specification of data misfit is important because the computed objective 

affects the searching of the minimum and the offspring selections. For estimating 

seismic data misfit, many publications including (Roggero et al. 2007) uses typically the 

quadratic form of data misfit term similar to the first term in following equation. In this 

study, we have used two elements; one is the direct cell property value difference, which 

represents absolute errors but it does not include information about continuity and 

pattern of the fluid displacement. The other is the GCT transform coefficient differences 

for checking the pattern difference. The objective function we used in this study is 

shown in equation below. 
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where,   k

seismicO  denotes objective of seismic data for k
th

 model.  i

diffS denotes cell property 

value difference for i
th

 cell.  jv  represents GCT basis transform coefficient corresponding 

to j
th

 basis vector. As we discussed in the previous section, this coefficient can be 

obtained by multiplying cell properties to basis function. 
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Fig. 4-19 Production data only used: Objective functions (top), reference model (bottom-

left) and updated models (bottom-right) 

 

 

Fig. 4-20 Production data only used: updated seismic water saturation changes from 

updated models 

 

In addition to production data, we add seismic data (water saturation changes) as the 

third objective, thus a three (3) objective problem is constituted. The results are shown in 

Fig. 4-21 and Fig. 4-22. The updated permeability fields and water saturation changes 

reproduce the reference model quite well. The results are significantly better results 

compared to the case when only production data is used. All the updated models capture 

high and low permeability regions in the reference model. We also notice that it 

improves the objective function of seismic data (shown as blue line). 
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Fig. 4-21 Both production and seismic data used: Objective functions (top), reference 

model (bottom-left) and updated models (bottom-right) 

 

 

Fig. 4-22 Both production and seismic data used: updated seismic water saturation 

changes from updated models 

 

We compare updated models of both cases in terms of spectrum frequency of 

transform coefficients (v). Recall that the transform coefficients can be obtained by 

multiplying grid property model (u) to GCT basis (ɸ).  Fig. 4-23 shows two results: (i) 

transform coefficients for permeability fields and (ii) transform coefficient for seismic 

water saturation changes. This gives idea about how closely the proposed approach 

reproduces models. We see that the transform coefficients for updated models are all 

improved compared to initial model. Particularly, the spectrums of updated model with 
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addition of seismic data are much close to the spectrums of observed model than the 

model without seismic data addition This is consistent with the results we have seen 

above. 

Through this application we have demonstrated that the proposed workflow performs 

well for history matching of multiple objectives. In particular, we showed that the 

incorporation of seismic data reduced the non-uniqueness and resulted in the 

improvement of the quality of history matching. 

 

     

 

Fig. 4-23  Updated spectrum of transform coefficient: Permeability model (top) and 

seismic water saturation change (bottom) 
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4.4.2 Synthetic application (2): Comparison of GA-SOP and MOEA with 

conflicting information 

 

In this application we focus on comparison between classical approach, aggregation-

based (single-objective) method (GA-SOP) and the proposed Pareto-based method 

(MOEA) with conflicting information. We prepare an intentionally biased 4D time-lapse 

seismic data set to create conflict between two objectives (production and seismic data). 

Fig. 4-24 shows reference permeability field, initial permeability field, and true 4D-

seismic data and biased seismic data used for this study. The water saturation difference 

between two measurements is assumed as the 4D seismic data for this illustrative 

example. This model is two-dimensional heterogeneous model, waterflooding reservoir, 

and includes 4 producers and 1 injector.  We compare the aggregation-based and the 

Pareto-based approaches in terms of finding optimal solutions. 

 

                                                                                         

                                           
              (a)Reference permeability                        (b)Initial permeability                          (c)Production data (water-cut) 

 

                                                 
                         (d)Reference Sw changes                           (e)Initial Sw changes                           (f)Biased Sw changes (actually used) 

 

Fig. 4-24 Synthetic model (reference and initial), production data, and seismic data used 

for application (2) 

 

                           Seismic acquisition time 
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First, we used our proposed method for this conflicting multiobjective history 

matching. To start with, we parameterize initial permeability multipliers using GCT 

basis coefficients as illustrated in previous application. From the result of simulations of  

initial populations, we see strongly negative correlation (-0.72) between two objectives 

(water cut and water saturation changes) as shown in Fig. 4-25. We find that the 

confliction between two objectives creates large trade-off because of their inconsistency. 

To improve either 1
st
 objective (water cut) or 2

nd
 objective (saturation changes) it 

requires degrading of the other. Because we use strongly biased saturation data, large 

trade-off is observed. 

 

 

Fig. 4-25 Initial populations in objective domain and correlation between two conflicting 

objectives 

 

From the results of history matching using the proposed method, in Fig. 4-26 we find 

relatively large uncertainties on the result in objective space because of the conflicting 

information. We selected three updated models from final optimal solutions. As shown 

in Fig. 4-26 those models are far each other in objective domain; one has very optimized 

misfit for objective one but poor misfit for objective two. Another is opposite with poor 

result for objective one but good for objective two. The other is in between those. Such 

results showing large trade-off are clearly revealed on water saturation displacement 

map. As displayed in Fig. 4-26 one of updated model better reproduces true seismic data, 

although we input biased water displacement data. It is because production data 

information tends to correct information about it. The updated model three is the one that 
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the model is matched very well to seismic biased data. We see that the model tries to 

displace water toward the direction as the biased water displacement front, although 

initial geologic heterogeneity prevents shifting the direction of continuity.  

 

  

    

Fig. 4-26 MOEA optimal solutions (top) and three selected models (bottom) 

 

Next, we run aggregation-based genetic algorithm (GA-SOP) with the same test 

model. For detailed comparison, we made two sets of test runs with different weighting 

factors assigned to each objective; (1) equal weighting (1:1) and (2) sixty versus one 

weighing (60:1). Two results are compared with MOEA result in one graph in Fig. 4-27 

where we find that MOEA solutions constitutes optimal front while GA-SOP solutions 
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are clustered in one side or the other side of Pareto front depending on assigned 

weighting factors. 

 

Fig. 4-27 Optimal solutions from MOEA, GA-SOP (equal weighting), and GA-SOP 

(weighting 60 vs. 1) 

 

In Fig. 4-28 three selected models for each case are displayed. We see significant 

differences between those results. Three models in the left are obtained when we assign 

equal weighting factor to objectives (water cut and seismic data) while the other three 

models in the right are from different weighting factors. We find that equal weighing 

case resulted in relatively better seismic data matching compared to different weightings. 

In terms of the quality of production data, different weighting case is better than equal 

weighting. Such matching quality has been reflected in the updated models. 

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3
45

50

55

60

65

70

75

80

85

90

95

1st Objective Function

2
n

d
 O

b
je

c
ti
v
e

 F
u

n
c
ti
o

n

 

 

MOEA

GA-SOP(1:1)

GA-SOP(60:1)



 113 

                

(a) In case of equal weighting 

 

(b) In case of different weighting 

Fig. 4-28 GA-SOP selected models; equal weighting (top), weighting 60 vs. 1(bottom) 

 

The results seem to indicate two things. First, GA-SOP approach results in 

incomplete optimal solutions with different weighting factor giving different solutions. 

Second, MOEA is able to identify the conflict and discovers more complete optimal 

solutions at single time run. 

Updated Model 1 Updated Model 2

Updated 1

SW changes

Updated Model 3

Updated 2

SW changes

Updated 3

SW changes

Updated Model 1 Updated Model 2

Updated 1

SW changes

Updated Model 3

Updated 2

SW changes

Updated 3

SW changes



 114 

4.4.3 Synthetic application (3): Use of optimal coarsened model with coarse GCT 

basis 

 

Optimal coarsening technique can be incorporated to the proposed workflow. Several 

publications including (King et al. 2006) have presented the advantages of coarsening, in 

particular, in case of large reservoir models. The GCT basis for coarsened grid geometry 

can be obtained as it is done for the fine grid, although it requires construction of 

coarsened grid internally. Because total number of GCT basis is the same as the number 

of grid cells, coarsening results in smaller number of GCT basis and further reduction of 

parameter space. Use of coarsened grid in the global update process where we update 

large-scale heterogeneity is followed by local update at the fine scale where single cell 

sized heterogeneity is calibrated at the grid-block level. Not only less simulation time 

but also less number of parameters usage are the direct outcome from coarsening. In 

gradient-free method the use of smaller number of parameters and computational 

efficiencies are key to success because it typically require large number of simulation 

runs. In that sense the use of coarsened GCT basis can bring significant improvement in 

the efficiency of the workflow. In the following we show an example application to 

demonstrate the usefulness of coarsening in the proposed workflow. We used the same 

synthetic model (NX=50 and NY=50) as in the previous section and performed uniform 

coarsening (NX=25 and NY=25) so that the number of parameters has been reduced 

from 2500 to 625. The GCT basis transform coefficient and its spectrum are compared in 

Fig. 4-29. Besides a reduction of size of parameter space, we observe that coarsened 

spectrum of transform coefficient shows smaller frequencies in this case, eventually 

effect on reducing search range of each parameter. 
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Fig. 4-29 Spectrum of transform coefficient for fine grid (top) and for coarsened grid 

(bottom) 

 

As in the previous section, we examine the problem of history matching with two 

objectives (production and seismic water saturation changes) for both coarsened and fine 

model as shown in Fig. 4-30. From the results of applications of the proposed method, 

we found that the history matching quality for both are satisfactory, although the details 

of the changes are different.  

 

 

Fig. 4-30 Used models (reference, fine initial, coarsened initial from left to right) and 

change needed 

(a)Reference (b)Fine Initial (d) Change 

Needed (=(a-b))

(c) Coarsened 

Initial
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Fig. 4-31 below compares the results with and without coarsening. The figures in the 

top row (‘a’ through ‘d’) are about update of fine grid cell using fine-grid GCT basis 

while figures in the bottom row (‘e’ through ‘h’) are about update of coarsened cell 

using coarsened-grid GCT. As observed from the updated permeability fields, both 

approaches capture similar features during the global update. 

 

 

Fig. 4-31 Fine update results (a through d) and coarsened update (e through h); G 

denotes global update and L denotes local update 

 

After global update, local update with streamline-assisted sensitivity method is used 

to further improve the matching quality of production data by calibrating local cell 

permeability. Local update reproduced better the heterogeneity of the reference model, 

shown in ‘c’ and ‘g’ above. The changes made after global local updates (‘d’ and ‘h’) are 

compared with change needed (shown in ‘d’ in Fig. 4-30). As we marked key areas with 

red dotted line, the changed region and the magnitude of changes for both updated 

models are similar to the change needed shown in Fig. 4-30 ‘d’. Thus, from this example, 

we demonstrated that coarsened GCT basis does work well in conjunction with the 

proposed workflow. The use of coarsened GCT brings additional benefits; less 
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simulation time required (computational efficiency), smaller number of coefficients 

(reduced parameter space), and smaller searching range for each coefficients (faster 

convergence).  

 

4.5 Application to Brugge Field 

 

In this section we apply the proposed method of history matching to the Brugge field. 

We demonstrate its applicability for incorporation of seismic data, its effectiveness for 

history matching conflicting objectives, and the use of coarsened GCT basis to 3D field 

reservoir model history matching. The Brugge field model was  generated for a 

benchmark project to test the combined use of waterflooding-optimization and history 

matching methods in a closed loop workflow as part of an SPE Applied Technology 

Workshop (ATW). The model properties are designed based on a North sea brent-type 

field. The model consists of about 60,000 grid cells with 9 layers. The 10 years of 

production data and inverted time-lapse seismic data were provided, which are used for 

this study. The detail about Brugge field can be found in the paper by Peters et al. 

(2009) . 

 

4.5.1 Inverted 4D-seismic data 

 

We used 4D seismic data, specifically pressure and saturation changes across the initial 

10 year period of production, as the second and third objective respectively in addition to 

the production data, the water production rate. The seismic data were generated directly 

from the reservoir simulation instead of seismic forward modeling and generating 

synthetic seismic data at Year 0 and Year 10 and inverting those. Also, an upscaled 

model was used to calculate the pressure and saturation, causing an unintentional bias in 

the pressure compared to the fine scale truth model (Peters, L. et al. 2009). The bias 

resulted in a conflict between seismic and production data. Fig. 4-32 below shows 4D 
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seismic saturation and pressure data where the vertically averaged values over four 

reservoir zones are provided. 

 

 

 

Fig. 4-32 4D seismic data; pressure (top) and water saturation changes (bottom) 

 

4.5.2 Trade-off and corrections between objectives 

 

To start with, conflict between objectives is investigated after initial populations have 

been generated. One hundred (100) members are sampled, each comprising of twenty 

(20) GCT basis transformation coefficients. For sampling, Latin hypercube method is 

used. Sampled variables are applied to simulate production and dynamic results. Those 

are then used to compare the correlations between objectives, which give idea about how 

much those are correlated. As discussed in previous section, the correlation does not tell 

exactly about conflicting information but it is a good way to analyze trade-off pattern 

and identify confliction between objectives. Fig. 4-33 shows computed correlations 

between objectives. The figure in the top is obtained using the provided data set (called 

hereinafter ‘base case’). For the ‘base case’, the correlation between production data (1
st
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objective) and 4D water saturation data (2
nd

 objective) is 0.41 and the correlation 

between water and pressure changes (3
rd

 objective) turns out negative 0.09. The 

correlations indicate low or negative relationship between data. The conflict comes from 

embedded unintentional bias in the seismic data. 

In the literature for many objectives optimization the correlation has been used as a 

criterion to decide redundant objectives, which are after called ‘non-essential’ objectives. 

It is defined that if we drop it from many objectives problem, for example ten (10) 

objectives problem can be switched to three (3) objectives problem, it does not affect the 

set of efficient solutions. Although the problem has M objectives, the Pareto optimal 

front can involve a much lower dimensional interactions. If the objectives are all 

conflicting, there is an M-dimensional interaction (Deb and Saxena 2005). When such a 

reduction in the dimensionality is considered, one paper (Agrell 1997) presents the 

probabilistic method based on correlation and the other (Deb and Saxena 2005) uses 

correlation together with eigenvalues. However, in this paper the dimensionality 

reduction is out of main focus although we use the correlation to discuss conflict 

between objectives. 

 

 

Fig. 4-33 Scatter plot showing correlations between objectives; ‘base case’ (left) and 

‘test case’ (right) 
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For comparative study, we set up a ‘conflicting case’ with addition of intentional bias 

on seismic water saturation changes resulting in more contradictory information for 

production and pressure data. We used the water saturation changes of initial model for 

biased data, which is displayed in Fig. 4-34 and compared with actual seismic water 

saturation data. For two formations (Shelde, Maas), actual seismic water saturation 

change data, initial model’s data, and corresponding change needed are displayed in the 

top row. Because we now consider initial saturation change data as our objective data 

instead of real seismic water saturation change data, the saturation data misfit of initial 

model is considered zero-data misfit. 

 

 

Fig. 4-34 Biased 4D seismic data of water saturation and saturation change needed 

 

The correlation between objectives are computed after addition of bias, which shows 

that the correlations related to biased water saturation become much negative; 

correlation between production and saturation (ρ12) is now 0.27 and correlation between 
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pressure and saturation (ρ23) is negative 0.17 while correction between pressure changes 

and production data (ρ13) remains the same. In accordance with terms of analyzed 

correlations, it is noted that the addition of bias on water saturation worsens the 

relationship between data and results in larger conflict. 

 

4.5.3 Pareto-based multiobjective hierarchical history matching 

 

To start with, we performed grid coarsening by uniformly merging 2 blocks in I, J 

directions, and optimal layering in K directions resulted in 5 layers from originally 9 

layers. The number of total grid cells and active cells of the coarsened model are 

significantly reduced while preserving major features of heterogeneity of the initial fine-

scale model as shown in Fig. 4-35. For example, 44,464 active cells are reduced to 6,343 

active cells (approx. 14% compared to the fine model). For global update, while 

calibrating large-scale features and uncertainty, the use of the coarsened model is a 

reasonable choice because the coarse-scale simulation saves significant computation cost 

and we need a lot of simulation runs. 

 

                          

 

Fig. 4-35 Fine scale permeability model (left) and coarse scale permeability model (right) 

 

We created GCT basis based on the coarsened grid geometry which is compared with 

the fine GCT basis in Fig. 4-36. The coarsened basis functions can be more consistent 

with coarse-scale simulation responses than fine-scale basis functions. For this 

application, twenty (20) coarsened transform basis coefficients are used as parameters to 

match production data and seismic data.  
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Fig. 4-36 GCT basis functions for coarsened (X2) grid (left) and fine grid (right) 

 

The results are shown in Fig. 4-37 after applying two approaches to same ‘conflicting 

case’: ‘GA-SOP’ and the proposed ‘MOEA’. We performed ten (10) iterations for both 

approaches. As we observed in the previous section, similar behavior has been observed 

in this case as well; GA-SOP tends to sacrifice one or more objectives to improve total 

fitness function in the case of conflicting problems. We see that 2
nd

 objective function in 

GA-SOP method becomes worse with generation while 1
st
 objective is being better 

satisfied. On the other hand, the proposed MOEA result (in the right column) shows that 

it reduces the sum of objective functions in few iterations and keeps range of optimal 

solutions. In particular, we see that the 2
nd

 objective function searches very large space, 

almost zero to one, and it does not converge to a particular solution. This is exactly 

showing the beauty of this approach; it does not get to a single compromised solution. 

Instead, it discovers all possible optimal solutions. Because of that, the solutions may 

include completely different models: some solutions can be close to real seismic data 

and others are reproducing biased data more closely. We will show these results in the 

next section. 
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Fig. 4-37  Objective functions by generation: GA-SOP (left) and Proposed MOEA (right) 

 

Our proposed approach reveals uncertainties associated with the conflicting 

objectives: the large confliction has been reflected on the results with large uncertainties. 

Large trade-off between objectives is observed particularly in the objective of water 

saturation changes data. In Fig. 4-38 we observe long-spread Pareto front from scatter 

plot of optimal solutions both between 1
st
 objective (production data) & 2

nd
 objective 

(saturation data) and between 2
nd

 & 3
rd

 objectives (pressure data). Improving water 

saturation data requires large degradation of production and pressure data. The bias in 

saturation data ended up with constituting such large distributed Pareto optimal solutions.   

The optimal solutions for the proposed MOEA result are clustered to select 

representative models for local update. Cluster analysis grouped optimal solutions into 

predefined number of regions. In this case we picked 3 updated models, marked with 

centroids shown in Fig. 4-38. The updated model 1 in Cluster 1 matches best to 
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production data; the updated model 2 in Cluster 2 is the one most closely reproducing 

biased saturation data (2
nd

 objective), and the updated model 3 in Cluster 3 is 

reproducing the best pressure changes field (3
rd

 objective). These models are used for 

local update and uncertainty analysis.   

 

 

 

Fig. 4-38 Scatter plot showing optimal solutions for ‘conflicting case’; between 1
st
 and 

2
nd

 objectives (left), between 2
nd

 and 3
rd

 objectives (middle), between 1
st
 and 3

rd
 

objectives (right) 

 

We now review the results from these selected models: water saturation changes 

distribution, pressure changes distribution, and production data. Fig. 4-39 shows water 

saturation changes distributions for observed, initial, and updated models. Updated 

model 1 reproduces actual seismic water saturation data very well even though we have 

not used it as an objective. However, it is possible because the model is well matched to 

production data which is more consistent with the true seismic information. Saturation 

change made in updated model 2 is very similar with change needed based on biased 

saturation information. Lastly, the updated model 3 is not matching either one very well 

but it is in between actual seismic data and biased data. We can see here that these 
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updated models reveal conflict between the data and give clue about the truth by 

discovering multiple plausible solutions. 

 

 

 

Fig. 4-39 Change needed based on real data (left) and based on biased data (right), 

updated models’ change made (middle) 

 

There was field-wide pressure change differences of about 100 to 200 psi between 

observed and initial models as noticed in Fig. 4-40. It is apparent that our proposed 

approach has found many possible optimal solutions associated with pressure changes 

very well. For example, updated model 3 reproduces observed pressure data very closely 

while updated model 2 doesn’t seem match the data well. Updated model 2 is, as we 

noted in Fig. 4-39, relatively well-matched to biased saturation data. Thus, we see 

completely opposite results here at pressure data matching. 
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Fig. 4-40  Observed seismic pressure changes (left), updated models’ seismic pressure 

changes (middle), initial model’s seismic pressure change (right) 

 

We carry out streamline-based generalized travel time inversion (GTTI) to further 

improve the production response for each well. We compute sensitivity of production 

response with respect to local cell property (in this case cell permeability) from the 

streamlines. The updated permeability field is obtained with minimization of penalized 

objective functions ensuring that final updated model is not far from the initial or 

starting model (He et al. 2002). The details on this GTTI method can be found in many 

publications (Cheng et al. 2006; Yin et al. 2010) . 

In Fig. 4-41 we display production data (water production rate) improvement through 

global and local updates. In multiobjective optimization framework (global update) we 

improved objective function of production data under uncertainties. The models have 

been selected from updated ensemble models to further calibrate in local update. The 

local update with streamline-based GTTI method works very well to improve well by 

well performances with calibration of small-scale uncertainties (grid cell properties). 
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Fig. 4-41  Production data (water production rate) improvement through global and local 

update 

 

Fig. 4-42 below compares final updated production responses with observed and 

initial data for all the wells in terms of water production rate. We see dramatic 

improvement in production data match for most of the wells. Relatively larger 

uncertainty ranges are observed from the wells (P9, P10, P17) where large bias of water 

saturation was imposed as displayed in Fig. 4-42. Without post processing for 

uncertainty, the updated responses of models provide us with a range of uncertainties, 

one of benefits from this approach. 
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Fig. 4-42  Initial, observed (history), four (3) updated water production rate responses 

for all producers 

 

Lastly, we predict the range of future production and provide the uncertainty analysis 

for updated geologic models from two approaches: Pareto-based approach (Proposed 

MOEA) and weighted-sum approach (GA-SOP). We used 3 representative updated 

models for each approach to forecast next 10 years production. The results in Fig. 4-43 

show cumulative field water production for updated models after global and local 

updates. The weighted-sum based approach (GA-SOP) result shows very narrow range 

of prediction outcomes which suggests relatively small uncertainty associated with 

predictions. These outcomes are not appreciably different from having a single history 

matched model. In the other hand, proposed approach provides a range in predicted 

outcomes and therefore some insight into the uncertainty associated with the forecast of 

future production.  
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Fig. 4-43 Comparison of updated models in terms of forecast of water production 

between two approaches (MOEA, GA-SOP) 

 

4.6 Summary and Conclusions 

 

In this paper we have presented a Pareto-based multiobjective hierarchical history 

matching workflow. History matching very often involves the use of multiple objectives, 

possibly conflicting with each other, to calibrate reservoir geologic models. We have 

demonstrated the effectiveness of the proposed method through applications to synthetic 

models and the benchmark Brugge field. These applications have focused on 

multiobjective history matching under conflicting information. The major findings in the 

proposed approach are as follows. 

1. The Pareto-based multiobjective evolutionary algorithm (MOEA) seems to 

outperform the aggregation-based genetic algorithm (GA-SOP) which is 
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commonly used in history matching applications. The GA-SOP does not account 

for trade-off between objectives. The MOEA discovers multiple solutions based 

on the Pareto optimal sets, accounting for the influence of each of the objectives. 

2. Combining seismic surveillance data and well-based surveillance data into a 

system of multiobjective optimization improves the quality of history matching. 

The seismic water saturation and pressure distribution provide important insight 

on the shape of flow paths. 

3. The proposed workflow forms a hierarchical framework for history matching: the 

global update is followed by local update. For global update MOEA has replaced 

classical Genetic algorithm to better account for conflicting multiobjectives. The 

global match focuses on the calibration of large-scale reservoir heterogeneity. 

For local update we propose to use streamline-based sensitivity method. 

Specifically, the Generalized travel time inversion (GTTI) algorithm has proved 

to be an efficient means to update heterogeneity at grid-cell scale. 

4. For practical applications of history matching, GCT technique has been 

introduced to the Pareto-based multiobjective optimization method. Use of GCT 

basis coefficients as parameters worked very well for model calibration using 

gradient-free evolutionary optimization algorithm. In particular, the application 

of parameterization with GCT basis function resulted in avoiding the ad hoc 

definition of regional multipliers. For large-scale reservoir and complex reservoir 

models, the use of coarsened GCT basis is proposed for computational efficiency 

as well as faster convergence. 

5. The proposed Pareto-based multiobjective hierarchical history matching 

workflow combines the elements of stochastic and deterministic approaches into 

a workflow. Uncertainty analysis is performed as just one component of the 

workflow without additional post processing work.  
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5CHAPTER V  

CONCLUSIONS AND RECOMMENDATIONS 

 

In this work, we have presented novel history matching and optimization approaches for 

reservoir management in a mature field. These approaches are aimed at efficiency and 

effectiveness for applications to large-scale and complex reservoir models because 

conventional approaches often have difficulties associated with computational 

inefficiency, loss of geologic realisms, and non-uniqueness. 

First, we have presented a hierarchical multiscale approach to history matching 

(Chapter II), which reduces computational time and improves the quality of history 

matching. The application to large-scale offshore carbonate reservoir model has 

demonstrated its suitability and efficiency. 

Next, we have proposed a production/injection rate optimization method (Chapter III) 

which utilizes streamline simulation techniques, particularly, streamline-assisted time of 

flight and flux distribution maps. We derived simple analytic solutions from the 

relationship between flow rate and the time of flight to compute rate change coefficients. 

The proposed method follows a simple and easy to use workflow so that it is efficient for 

applications to field cases, particularly, mature reservoirs with large numbers of wells. 

Lastly, a novel approach to history matching using Pareto-based multiobjective 

optimization algorithm has been presented in Chapter IV. We have noted that most of 

history matching and optimization problems in petroleum industry typically have 

multiple (possibly conflicting) objectives to be satisfied. The proposed approach has 

outperformed conventional approaches (i.e. Genetic algorithm) using weighted-sum 

methods, particularly when the objectives are conflicting. The proposed approach 

provides an efficient workflow where Pareto-based multiobjective evolutionary 

algorithm incorporates the GCT technique.  
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5.1 Conclusions 

 

Some specific conclusions can be made from this work. First, the part of dissertation 

presenting a hierarchical multiscale history matching approach is summarized as 

follows: 

1. We have proposed the inclusion of a multiscale approach to the hierarchical 

global and local history matching procedures (Yin et al. 2010). Its practical 

feasibility was demonstrated using applications to 3D synthetic model and a large 

offshore carbonate reservoir model.  

2. We found that the use of multiscale approach was successful in history matching 

a large reservoir model because of desirable multiscale features: computational 

efficiency, effective iterative minimization, and avoiding local minima.  

3. The structured hierarchical history matching with global and local updates 

worked very well. In the global parameter calibration, reservoir energy is 

matched and its balance between platforms (i.e. regions) is achieved in terms of 

fluid production and reservoir pressures. In the local parameter calibration, 

individual well production responses are matched. Because the global reservoir 

energy has been calibrated to reasonable level by global updates, the local update 

using streamline technique found solutions very fast. 

4. A stochastic global search approach based on the genetic algorithm combined 

with a proxy model for the objective function provided effective means to match 

the global parameters and produce an ensemble of preliminary solutions for the 

local update. 

 

Next, some conclusions are about the proposed novel rate optimization approach 

summarized in the following:  

1. The flood efficiency map is shown to be an effective tool for reservoir 

management because it provides valuable information related to reservoir flow 

patterns and sweep efficiency. Although, the flux distribution maps have been 
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used in the past to visualize flow, the use of TOF distribution map is novel. In 

fact, our proposed optimization method mainly relies on the TOF distribution 

map. 

2. Our proposed streamline-based production rate optimization is simple, intuitive 

and easy to implement. It relies on equalizing the TOF both ‘globally’ (between 

streamline bundles in terms of average TOF) and ‘locally’ (within streamline 

bundles) using analytic formulation. The approach is applicable to both new and 

mature waterflooding as we minimize variance of TOF between injection-

production pairs rather than focusing on the water front breakthrough time.   

3. A new definition of injection efficiency is proposed in terms of the coefficient of 

TOF variation. Using this criterion, we propose a systematic approach to 

injection optimization. Recognizing that in field applications it is more practical 

to optimize injectors rather than producers, the injection optimization scheme has 

been proposed as a simple and standalone procedure.  

4. The effectiveness of our optimization can be examined by comparing the flood 

efficiency maps before and after optimization. In particular, the TOF map is a 

clear indicator of sweep efficiency in terms of the similarity or dissimilarity of 

the average TOF between the well connections. 

 

Finally, some conclusions from the hierarchical Pareto-based multiobjective history 

matching work are as follows: 

1. The Pareto-based multiobjective evolutionary algorithm (MOEA) seems to 

outperform the aggregation-based genetic algorithm (GA-SOP) which is 

commonly used in history matching applications. The GA-SOP does not account 

for trade-off between objectives. The MOEA discovers multiple solutions based 

on the Pareto optimal sets, accounting for the influence of each of the objectives. 

2. Combining seismic surveillance data and well-based surveillance data into a 

system of multiobjective optimization improves the quality of history matching: 

seismic water saturation and pressure distribution provide better insight on the 
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shape of flow paths while production data concentrates on the fractional flow of 

fluids.  

3. The proposed workflow forms a hierarchical framework for history matching: the 

global update is followed by local update. For global update MOEA has replaced 

classical Genetic algorithm to better account for conflicting multiobjectives. The 

global match focuses on the calibration of large-scale reservoir heterogeneity. 

For local update we propose to use streamline-based sensitivity method. 

Specifically, the Generalized travel time inversion (GTTI) algorithm has proved 

to be an efficient means to update heterogeneity at grid-cell scale. 

4. For practical applications of history matching, GCT parameterization technique 

has been introduced to the Pareto-based multiobjective optimization method. Use 

of GCT basis coefficients as parameters worked very well for model calibration 

using gradient-free evolutionary optimization algorithm. In particular, the 

application of parameterization with GCT basis function resulted in avoiding the 

ad hoc definition of regional multipliers. For large-scale reservoir and complex 

reservoir models, the use of coarsened GCT basis is proposed for computational 

efficiency as well as faster convergence. 

5. The proposed Pareto-based multiobjective hierarchical history matching 

workflow combines the elements of stochastic and deterministic approaches into 

a workflow. Uncertainty analysis is performed as just one component of the 

workflow without additional post processing work.  

 

5.2 Recommendations and Future Work 

 

The proposed multiscale streamline-assisted inversion method has proven to be an 

efficient means for history matching large-scale field models. The effectiveness of 

proposed method can be further verified with applicability to flexible-domain consisting 

of various grid-scales in a field. For example, we can think of a simulation model where 

different scales of grid coarsening and refinement are used in a model and it can include 
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irregular grid system with local grid refinements and partially areal and vertical 

coarsening. Because reservoir model becomes more complex and diverges to 

unstructured grid system, one may take opportunity to extend the applicability of 

proposed streamline-based multiscale inversion method to those increasing levels of 

complexity in reservoir models. 

In chapter IV, we have shown applications to history matching of time-lapse seismic 

and production data using Pareto-based evolutionary algorithm with GCT. Through the 

applications, we have demonstrated that incorporation of seismic data can decrease 

uncertainty in the reservoir model and increase the reliability of the production forecasts 

because of seismic data features; information about the change in the reservoir dynamic 

properties and high density spatial information. The seismic data resolution is typically 

different from the resolution of simulation model. Upscaling and downscaling properties 

(static, dynamic) are one of active research areas associated with joint seismic and 

production data inversion. Uniform coarsened GCT basis, implicitly corresponding to 

the grid resolution, has been successfully tested. We can extend its applicability to 

construct the grid-connectivity matrix for the model including the different levels of 

coarsening and/or refinement partially or locally. Because the resolution of the 

heterogeneity description varies with grid cell size, the basis vectors would implicitly 

correspond to the specific grid resolution if GCT was constructed for the grid. This 

capability leads to the merging of multi-scale and multi-resolution approaches. GCT 

basis consistent with data resolution would improve performance of minimization during 

history matching of seismic data. 

Lastly, we have proposed a novel multiobjective hierarchical history matching 

approach that has been successfully applied to history matching of both synthetic and the 

Brugge model. Current Pareto-based evolutionary algorithms being used for 

multiobjective optimization typically work best to the problems having smaller number 

of objectives (about five or so) for the task of finding a well-representative set of optimal 

solutions. These algorithms have difficulties on handling larger number of objectives 

associated with stagnation of search process, increased dimensionality of Pareto-optimal 
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front, and relatively high computational cost. Because most of history matching 

problems involve typically a large number of (ten or more) objectives to be satisfied, one 

may make special efforts for solving those large objective history matching and 

optimization problems. 
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APPENDIX 

USER MANUAL OF MULTI-PURPOSE SOFTWARE FOR 

STREAMLINE TRACING, HISTORY MATCHING, RESERVOIR 

MANAGEMENT & DEVELOPEMNT 

 

A.1 Introduction 

 

In this manual, we will introduce the overview, objectives, and key features of 

DESTINY that has been developed for multi-purposes; streamline tracing, history 

matching, and reservoir management & development. It is followed by procedure of how 

to set the interface file and finally examples of streamline tracing, history matching and 

reservoir management. There are basically two different ways to run DESTINY, which 

include use of applications i)Standalone launcher and ii) Petrel plug-in. In this manual, 

the use of standalone launcher has been discussed. 

 

A.2 Overview of DESTINY 

 

Fig. A. 1 shows DESTINY working environment. As shown here, DESTINY interfaces 

with different simulators and run under window and Linux system. It generates standard 

files enabling visualization at commercial packages such as Petrel.  

 

 

Fig. A. 1 Overview of DESTINY working environment 
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Note that the description in this manual is based on only ECLIPSE100 developed by 

Schlumberger for the simplicity of documentation although DESTINY has been 

interfaced to several commercial and in-house simulators such as VIP, ECLIIPSE300 

(black oil mode) etc. 

 

A.3 Objectives 

 

The main objectives of DESTINY are to trace streamline even in complex corner point 

and faulted (non-neighbor connection) geometry as well as the sensitivity coefficient 

computation of generalized travel time inversion (He et al., 2002; Cheng et al., 2005; 

Oyerinde et al., 2007).  In addition, DESTINY provides reservoir management tool such 

as drainage and swept volume calculation. Besides, it has ability to do rate optimization 

either for injection rate or for production rate based on simple analytic approach (Park 

and Datta-Gupta 2011).  Following summarizes main features in DESTINY: 

 Streamline Tracing and Visualization in corner point geometry and faulted cells 

from finite difference velocity field  

 Streamline-based assisted History Matching for calibration of high resolution 

geologic models to production data 

 Reservoir Management/Optimization for analyzing and optimizing 

drainage/swept volumes, well connectivity using flood efficiency maps 

 Reservoir Development for optimal infill well placement 

 

 

Fig. A. 2 DESTINY main features 
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A.4 Streamline applications using DESTINY 

 

Streamlines provide several benefits for reservoir characterization and management. The 

streamline trajectories and time of flight are useful for visualizing reservoir flow 

dynamics. Using streamlines, we can easily identify the drainage volumes and swept 

volumes associated with producers and injectors, respectively. This provides us with a 

natural way to identify potential infill producer and injector locations during 

waterflooding. Streamlines can also be used to identify and visualize the connectivity 

and communication among wells or between wells and the aquifer. This allows us to 

identify the source of and also allocate fluid volumes associated with individual 

producers and injectors. This information can be utilized for pattern balancing and flood 

optimization.  

A powerful application of streamlines is in waterflood management and optimization. 

The streamline time of flight provides us with a dynamic picture of the flood front 

evolution. By adjusting the injection and production rates at the wells, we can manage 

the movement of the flood front to maximize waterflood sweep efficiency. This gives us 

an efficient approach to optimal waterflood management through rate control. 

A commonly held misconception about the application of streamlines is that the 

technology is limited to incompressible flow and requires injectors and producers. In 

reality, the streamlines are simply a representation of the velocity field and streamlines 

exist whenever there is an underlying velocity field. This allows us to take advantage of 

the streamline technology in conjunction with finite difference simulation. For example, 

we can apply streamlines to compute and visualize the drainage volumes in tight gas 

reservoirs using the flux field generated from the finite difference simulation. The 

drainage volumes of existing wells can then be used to optimize infill locations based on 

undrained parts of the reservoir.  

Streamlines are particularly useful for history matching.  Streamlines can be used to 

identify and target changes during history matching. In particular, streamlines can be 

used to efficiently compute the sensitivity of the production response to reservoir 
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parameters such as porosity and permeability. These sensitivities can then be used to 

facilitate manual history matching or can be used in conjunction with inversion 

algorithms to suggest updates to the geologic models. Reconciling high-resolution 

geologic models to production history is a very time-consuming aspect in reservoir 

modeling. Current practice still involves a tedious and manual history-matching process 

that is highly subjective and often employs ad-hoc property multipliers that can lead to 

loss of geologic realism. Streamline can aid during history matching in terms of (i) 

efficiency in workflow, (ii) obtaining geologic insight (iii) understanding reservoir 

dynamics and, (iv) preserving geologic realism. 

 

A.4.1 Workflow of DESTINY (History matching workflow) 

 

Fig. A. 3 shows the general process of DESTINY. First, it runs the forward simulator 

and reads the output of the simulator. The forward simulator can be either a finite 

difference or a streamline simulator. The current options for simulators include 

ECLIPSE, VIP and FRONTSIM. For finite difference simulators, DESTINY utilizes the 

flux field to compute streamlines and time of flight. This information can then be used to 

visualize swept volumes and drainage volumes of existing wells during waterflooding 

and also for gas reservoirs to locate potential locations for infill producers or injectors. 

The flux associated with streamlines can also be used to optimize injection and 

production rates of the wells to maximize flood performance. DESTINY is particularly 

useful for streamline-assisted history matching. Using DESTINY, we can visualize the 

sensitivities of production data with respect to reservoir properties. These sensitivities 

depict the region of the geologic model impacting the production data.  Guided by these 

sensitivities, we can either manually update the geologic model to match the production 

data or use inverse modeling techniques for suggested updates to the model. 
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Fig. A. 3  Overview of workflow for inversion 

 

Fig. A. 4 shows the overall work flow of streamline tracing and production history 

matching.  

 

 

Fig. A. 4 Inversion workflow in DESTINY 

 

The use of commercial simulators in DESTINY provides a great deal of flexibility in 

terms of grid geometry, well conditions and process simulations. However, because of 

the multiple options offered by commercial simulators and the resulting variations in 

setting up the simulation deck, instead of scanning the input deck made by the users, 
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DESTINY scans output files from simulator to obtain the necessary data to trace 

streamlines and compute time of flight. It enables users to fully utilize flexibility for 

describing the flow simulation model and leads to robust streamline tracing without 

failure because of the fixed simulation output file format. 

 

A.5 Modules in DESTINY 

 

DESTINY contains three (3) different modules (tracing, inversion, reservoir 

management) as shown in Fig. A. 5. 

 

 

Fig. A. 5 Modules available in DESTINY 

 

Tracing module is core module in the sense that the others are assisted by tracing module. 

For example, inversion module and reservoir management module calls tracing module 

to get assistance in terms of streamlines. These separated modules are intended to keep 

powerful of capacity in DESTINY and also be flexible to update each module for 

developers. However, users do not recognize if it is based on separated modules. 

 

A.5.1 Tracing module 

 

Tracing module contains very specialized tracing abilities in addition to typical 

streamlines tracing as shown below in Fig. A. 6. 
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Fig. A. 6 Key features in DESTINY tracing module 

 

First, following gives phase tracing example. It compares phase tracing with total 

velocity tracing.  Water and oil phase tracing can capture mobile water and oil 

movement. 

 

 

Fig. A. 7 Examples of phase streamlines 
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Second, following shows example of cell centers tracing. We trace from every cell 

center to either toward producers or toward injectors. It gives very high resolution of 

reservoir flow analysis. 

 Cell center tracing depicts high resolution flow visualization 

 Streamline time of flight ‘to producer’ and ‘to injector’ focuses on drainage  or 

sweep patterns   

 

 

           Cell centers to producers                                            Cell centers to injectors 

 

Fig. A. 8 Examples of streamlines traced from cell centers 

 

Third, DESTINY can trace streamlines in coarsened geometry. Following shows the 

examples of coarsened streamlines in different scales of coarsening. Top three figures 

show permeability fields at different scale of coarsening. Bottom ones show streamlines 

traced on the coarsened geometry.  
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Fig. A. 9 Examples of streamlines traced in different scales of coarsened grids 

 

  Tracing module run setting. To run the tracing module of DESTINY we provide a 

standalone GUI and executable as it is shown in Fig. A. 10. The launcher is used to 

set the desired work and make it run. The details about setting are explained below.  

 

Fine Coarsening X2 Coarsening X3 
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Fig. A. 10 DESTINY tracing launcher (GUI) 

 

Followings are instructions about this launcher.  

 Forward Simulator: choose ‘Eclipse’ or ‘VIP as simulator 

 Data File Name: Enter data file name which calls simulator to run 

 Fluid Phases: Select reservoir phases. 

 Tracing Phases: Select phases to be included tracing. 

 Tracing Direction: Default is tracing from producers to injectors. We can choose 

opposite direction to trace. In addition, we can trace from cell centers toward 

both directions. 
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 Forward Simulator: Choose ‘Run Simulator’ if simulation output file is not there. 

If there are already output files, choose ‘Use Restart Files’ to save time.  

 Tracing Intervals: If we want tracing only for one single time step, we can choose 

‘Single Time’ and gives Scheduled time in the box beside. 

 Streamline Definition: Define if the number of streamlines per completion is 

defined based on flux (‘Based on Flux’) or should be uniformly (‘Uniform 

Distribution’) distributed. Default is defined based on fluxes, even if the keyword 

is not included in DIP file. 

 Tracing Method: Choose one of ‘Pollock’, ‘Modified Pollock’ and ‘Local 

Boundary Layer’. About these keywords are found in previous section. 

 Flood Efficiency Map: if we want to generate flood efficiency maps, we can 

check this box.  

 Tracing in Coarsen Geometry: if the model is based on coarsen grid, we can 

check this box so that we can trace streamline in coarsen grid. 

 No. of streamlines: we can specify number about how many streamlines in the 

field we want. 
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  Tracing application (1): Tracing from producers to injectors. Following setting 

in the launcher is to trace streamlines from producers to injectors. We applied it to 

Brugge field. 

 

 

 

Time of flight from producers 

 

Oil saturation along streamlines 

Fig. A. 11 Default tracing setting (trace from producers to injectors) and results 

 

 Tracing application (2): Tracing from injectors to producers. Following launcher 

gives example on how to set launcher to trace streamlines from injectors to producers 

for the Brugge field. 
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Time of flight from producers 

 

Water saturation along streamlines 

Fig. A. 12 Tracing setting (trace from injectors to producers) and results 

 

 Tracing application (3): Tracing from cell centers to producers 

 

 

 

Time of flight from producers 

 

Oil saturation along streamlines 

Fig. A. 13 Tracing setting (tracing from cell centers to producers) and results 
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 Tracing application (4): Flood efficiency maps generation 

 

 

TOF distribution map 

 

Flux distribution map 

Fig. A. 14 Flood efficiency maps and results 

 

 Tracing application (5): Tracing in coarsened grids 

 

 

Tracing in coarsened grid (X2) 

 

Tracing in coarsened grid (X3) 

Fig. A. 15 Coarsened tracing and results 
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A.5.2  Inversion module 

 

Inversion module contains many capabilities as shown in Fig. A. 16, which include 

water cut inversion, GOR inversion, and bottom hole pressure inversion. This inversion 

module is designed to incorporate with tracing module. Streamlines are generated by 

tracing module. This inversion module makes use of those streamlines to obtain 

sensitivities of production data to reservoir parameters.  

 

 

Fig. A. 16 Inversion features in DESTINY 

 

 Water cut inversion: It follows the generalized travel-time inversion method (He 

et al. 2002), which reconciles geological model to production data using 

streamline technique. This approach is very robust, computationally efficient, 

and particularly well-suited for large-scale field applications. The sensitivities of 

the generalized travel time with respect to reservoir properties are computed 

analytically using a single forward simulation run. 

 GOR inversion: An approach to history matching three-phase flow using a 

compressible streamline formulation and streamline-derived analytic sensitivities 

is used in this module, which was proposed by (Cheng et al. 2007).  

 BHP inversion: Bottom hole pressure sensitivity is used based on the proposed 

formulation (Vasco et al 1999). Zero frequency of the pressure is integrated. 

Model parameter sensitivities (relating changes in pressure to changes in 

permeability) computed with the equivalent of steady state pressure calculations. 

 

INVERSION

Water Cut BHPGOR
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 Inversion module run setting. We can use a standalone GUI, called ‘Inversion 

launcher’, to run DESTINY inversion module. Following shows the interface of the 

launcher, which is followed by the description of keywords and examples to 

illustrate how to set up the launcher. 

 

 

Fig. A. 17 DESTINY inversion launcher 

 

The most of keywords in this launcher are same as those in tracing launcher, which can 

be found in previous section. Here are explanations about keywords used only for 

inversion. 

 Inversion: Choose one of ‘Water Cut’, ‘GOR’, ‘BHP’ for history matching 
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 No. of Iterations: History matching is highly non-linear problem. It typically 

requires multiple iterations to get satisfactory solutions. Here we need to enter 

how many iterations we want to run. 

 Parameters: The inversion algorithm calibrates reservoir cell property 

(permeability). Calibrated permeability replaces initial one. In the text box, we 

need to put permeability data file name in order for DESTINY to update it with 

new permeability. 

 Sensitivity:  TOFCUTOFF is default. A time of flight (TOF)-based cutoff will be 

applied to WWCT sensitivities on a well-basis. Used to eliminate the sensitivities 

in stagnation region which may cause distort inversion performance. TOF cutoff 

limit is defined as the threshold of the time of flight for the water cut sensitivity 

cut-off. This Maximum Time of Flight cut off value is automatically calculated 

by multiplication of actual production time period with user input multiplier 

value. 

 Data Misfit Tolerance: Enter tolerance for travel time misfit and amplitude misfit. 

Once this setting is done, we can hit ‘Run Simulation’ to run it. After it is finished, we 

can find outputs (tracing and inversion output) from the working folder. 

 SLNXXX Files: When the binary output is selected, DESTINY will generate *.sln 

files for every simulation time step. ECLIPSE users can use the restart files and 

the *.sln files to load the entire simulation workspace to PETREL.  

 Updated permeability files: After running the first inversion iteration this file will 

be modified and to the end of the each iteration. The updated permeability will be 

written out as initial permeability file name (the updated files will have a suffix 

with the iteration number in which the permeability was updated). 

 resinv.obj: This file has the objective function behavior through all iterations. It 

has two columns representing the travel time and amplitude misfit defined at all 

producing wells included in the data integration 
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 resInv.wwctX: It contains the simulated and observed production water cut for all 

wells included in the project. At the header of each well the travel time misfit 

will be written out. This file is generated at the end of the each iteration. 

 dynamic.bin: Binary files contain the production sensitivities. This file is used by 

LSQR to perform the objective function minimization. 

 dynamic.ascii: An ASCII file contains the production sensitivities. This file is 

provided for history matching applications where streamline-based sensitivities 

are used as complementary information. 

 

 Inversion application (1): Water cut inversion applied to synthetic model. 

Following shows how we set up for the water cut history matching. 

 

 

Fig. A. 18 Water cut inversion setting 
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We can find both travel time and water cut misfit at the output file (resinv.obj).  

 

 

Fig. A. 19 Objective function by iteration 

 

To check the updated responses of individual well, we can open ‘resinv.wwct’ file where 

we can find production responses (initial, updated, history) for all wells. We can plot it 

for analyzing the results as shown below.  
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Fig. A. 20 Water cut history match before and after inversion 

 

Updated permeability field is compared with initial model. The changed cells shows that 

model calibrations have been made along flow paths, keeping heterogeneity. 

 

           

 

Fig. A. 21 Initial / Updated / Change of permeability field after inversion 
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 Water cut inversion applied to field models. For water cut history matching, we 

have applied to many field cases and showed good history matching results. Here we 

show one of them. Following shows the history matching results for one offshore 

field. History matched model is compared by manually matched model. No artificial 

change such as box multipliers is used. The updated model is matched to production 

history without loss of geologic realism. 

 

 

 

Fig. A. 22 History matched model compared with initial model and manually updated 

model 

 

 Multiscale water cut inversion: Application to large-scale offshore field model. 

History matching large-scale reservoir model using current assisted history matching 

techniques is challenging because of extensive computation time. The use of 

multiscale approach is effective in history matching a large reservoir model because 

of desirable multiscale features: computational efficiency, effective iterative 

minimization, and avoiding local minima. The developed multiscale streamline-

assisted history matching workflow is shown in Fig. A. 23. To use multiscale 

inversion feature in DESTINY we set the launcher as shown in Fig. A. 24. Make 
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sure that the tracing in coarsen geometry is checked and the simulation data is 

consistent for coarsen simulation. 

 

 

 

Fig. A. 23 Multiscale streamline-assisted inversion workflow 
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Fig. A. 24 Example setting for multiscale inversion 

 

A.5.3  Reservoir management module 

 

Reservoir management module in DESTINY includes following features 

 

Fig. A. 25 Features in reservoir management module in DESTINY 
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 Drainage and swept volume: Cell center tracing is performed for drainage and 

swept volume calculations. Time of flight to either producers or injectors are 

converted to physical time using fractional flow and saturation velocity. The 

converted time is then mapped to grid cells. The mapped property is used to 

define swept and drainage area and to compute the volume. 

 Flood efficiency map: We display the key information related to flow patterns 

and reservoir sweep with the flood efficiency map. It includes a flux distribution 

map and an average TOF distribution map that enable us to optimize waterflood 

management. The streamlines connecting each injector-producer pair is depicted 

with a single representative streamline along the fastest streamline. The TOF 

distribution map displays the ‘average TOF’ between the well pairs. The average 

TOF is calculated by a simple arithmetic average of time of flight associated with 

all the streamlines for each connection. The flux distribution map display 

volumetric flux between connecting wells computed by summing the fluxes 

carried by the streamlines. The flux distribution map is colored by the total flux 

connecting the wells while the color in TOF distribution map displays the 

average TOF. Thus, the flood efficiency map is a compact representation of the 

reservoir flow pattern and the flood front advancement. 

 Production rate optimization: The main idea for production rate optimization is 

that we maximize sweep efficiency in reservoir by equalizing average time of 

flight between wells and reducing time of flight variance. We alter production 

target rate such that average time of flight be equalized and variance of time of 

flight be minimized. The detail refers to a paper (Park and Datta-Gupta 2011). 

 Injection rate optimization: We introduce ‘coefficient of TOF variance’ to use it 

as injection efficiency. Based on the calculated injection efficiency for injectors, 

we reallocate injection rates that give reduced time of flight variance in the field 

and at the same time it gives maximized sweep. Details are found in the paper 

(Park and Datta-Gupta 2011). 



 169 

 Well placement optimization: The approach (Taware et al. 2012) utilizes a 

dynamic measure based on the total streamline time of flight combined with 

static parameters to identify potential regions for infill drilling. Areas having 

high value of the dynamic measure (sweet spots) are both poorly drained and 

poorly swept, making them attractive for drilling infill wells.  

 

 Reservoir management module run setting. We can use a standalone GUI, called 

‘Reservoir management launcher’, to run DESTINY reservoir management module. 

Following shows the interface of the launcher, which is followed by the description 

of keywords and examples to illustrate how to set up the launcher. 

 

 

Fig. A. 26 DESTINY reservoir management launcher 
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The most of keywords in this launcher are same as those in tracing launcher, which 

can be found in previous section. Here are explanations about keywords used only for 

reservoir management. 

 Drainage/Swept volume: Choose and check a box of either ‘Drainage volume’ or 

‘Swept volume’ 

 Volume calculation tsteps: Check either ‘All sch. Tsteps’ or ‘Single time’. If 

‘Single time’ is chosen, choose a timestep for volume calculation at ‘Tstep for 

volume calculation’. 

 No. of Iterations: History matching is highly non-linear problem. It typically 

requires multiple iterations to get satisfactory solutions. Here we need to enter 

how many iterations we want to run. 

 

 Application (1): Drainage volume calculation. Following shows setting in 

launcher for drainage volume and drainage area map. 
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Fig. A. 27 DESTINY reservoir management launcher 

 

The output files include ‘AREA_DRAIN(TOF2PROD)_time.GRDECL’ and 

‘DRAIN(TOF2PROD)_VOL_time.dat’ and ‘Well_Prod_Indx_time.GRDECL’.  If we 

open ‘AREA_DRAIN’ map and it will give drainage area at time. From ‘DRAIN_VOL’ 

file we can get exact amount of volume drained at the time. Lastly, from the 

‘Well_Prod_Indx’ file we can visualize regional classification based on the area 

affecting to producers. Following shows the different drainage area at two different 

times. 
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          [Drainage area @1000days]                                   [Drainage area @2000days] 

Fig. A. 28 Drainage area at different time 

 

We can find exact amount of volume drained from DRAIN_VOL.dat file. 

 

 

Fig. A. 29 Calculated drainage volume 
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Fig. A. 30 Regional classification map 

 

 Application (2):  Swept volume calculation. Following setting shows for swept 

volume calculation. 

 

Fig. A. 31 Example setting for Swept volume calculation 
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The output files include ‘AREA_SWEPT(TOF2INJ)_time.GRDECL’ and 

‘SWEPT(TOF2INJ)_VOL_time.dat’ and ‘Well_Inj_Indx_time.GRDECL’.  If we open 

AREA_SWEPT map and it will give swept area at time. We import it to Petrel to 

visualize as shown in Fig. A. 32. From SWEPT_VOL file we can find estimated amount 

of volume swept at the time. Lastly, from the ‘Well_Inj_Indx’ file we can visualize 

region affecting injectors.  

 

                    

                  [Swept area @1000days]                                   [Swept area @2000days] 

Fig. A. 32 Swept area at different times 

 

We can check the swept volume by simulation time. The figure below shows swept 

volume with time. 

 

 

Fig. A. 33 Swept volume for a injector 
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 Application (3): Production rate optimization. Following setting in launcher gives 

how to set the production rate optimization for synthetic model. We check 

‘Production rate optimization’ and enter the specific values to the required boxes in 

the right. Then click the ‘Run Simulation’ and we will see DESTINY reservoir 

management module running. 

 

 

Fig. A. 34 Example of Production rate optimization setting 

 

Importantly, it is noted that we need an input file, a schedule file where we update 

schedule as optimization proceeds. In specific, it should be ‘sch.dat’ as file name where 

there are included file names. The example of ‘sch.dat’ file is below. 
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Example of ‘sch.dat’: 

INCLUDE 

tstep.dat0/ 

/ 

 

As a result, we can check optimized model results showing maximized sweep efficiency 

and increased oil recovery. 

 

     

Fig. A. 35 Increased sweep efficiency; base (top) and optimized (bottom), Cumulative 

oil and water production (right) 

 

 Application (4): Injection rate optimization. Following setting example shows 

how to set the injection rate optimization for a synthetic model. 

 

180 days 1800 days 3600 days

Increased Oil Prod.8%

Reduced Water Prod.
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Fig. A. 36 Example setting for injection rate optimization 

 

We check ‘Injection rate optimization’ and enter the values required in the right. Then 

click the ‘Run Simulation’ and we will see DESTINY reservoir management module run 

and then we find updated results. This injection optimization needs ‘sch.dat’ file as same 

as it is used in production rate optimization. The figure below shows the example for 

injection rate optimization for the model that has 9 producers and 4 injectors. 

Increased sweep efficiency and improved oil recovery can be found using saturation 

displacement and production data. 
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Fig. A. 37 Increased sweep efficiency (Left): base(top) and optimized(bottom), 

Cumulative oil production (right) 

 

A.6 Simulator data file setting: Necessary keywords to run DESTINY 

 

Followings show how to set simulator (ECLIPSE) keywords needed to run DESTINY. 

Because DESTINY reads the necessary information from the restart file and summary 

files of the forward simulator, it is important to include specific keywords in the forward 

simulation setting. 

 

A.6.1 ECLIPSE Settings for Tracing 

 

SECTION EECLIPSE SETTING REASON 

SOLUTION 

RPTSOL 

'RESTART=2' / 

Print output to the Restart 

files 

REMOVE “UNIFOUT” & “FMTOUT” 
Destiny use separate binary 

file for each time step 

SUMMARY 

 WOPR /         

 WGPR / 

 WWPR /      WOPT /      WWPT / 

Read production rate base 

on tracing phase 

SCHEDULE 
RPTRST 

'BASIC=2' FLOWS PRESSURE ALLPROPS/ 

Control restart file written 

data for computation 
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A.6.2  ECLIPSE Settings for Inversion (History Matching) 

 

SECTION EECLIPSE SETTING REASON 

GRID 

INCLUDE 

'PORO.GRDECL' / 

 

INCLUDE 

'PERMX.GRDECL' / 

Use “INCLUDE” as 

separate porosity and 

permeability files for 

iterative parameter update 

SOLUTION 
RPTSOL 

'RESTART=2' / 

Print output to the Restart 

files 

SUMMARY 

 WOPR / 

 WGPR / 

 WWPR / 

Print out production rate 

base on tracing phase 

 WWCT / 

 WWCTH / 

Print out water cut data and 

history for water cut match 

 WOPT / 

 WWPT / 

 WGPT / 

 WOPRH / 

 WWPRH / 

 WGPRH / 

Print out oil, water and gas 

production rate 

SCHEDULE 

RPTRST 

'BASIC=2' FLOWS PRESSURE ALLPROPS / 

Control restart file written 

data for computation 

WCONHIST 

P1   1*   LRAT    69.87   559.09   1* / 

P2   1*   LRAT   168.62   460.34   1* / 

P3   1*   LRAT   163.53   465.43   1* / 

P4   1*   LRAT   628.97          0     1* / 

/ 

WCONINJH 

I1 WATER 1* 2515.92  / 

/ 

Use “WCONHIST” for 

production target and 

“WCONINJH” for injection 

target instead of 

“WCONPROD” and 

“WCONINJ” for history 

match. DESTINY use 

history target. 
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A.6.3 ECLIPSE Settings for Reservoir Management 

 

SECTION EECLIPSE SETTING REASON 

SOLUTION 

RPTSOL 

'RESTART=2' / 

Print output to the Restart 

files 

REMOVE “UNIFOUT” & “FMTOUT” 
Destiny use separate binary 

file for each time step 

SUMMARY 

 WOPR /  

 WGPR / 

 WWPR / WOPT / WWPT / 

Read production rate base 

on tracing phase 

SCHEDULE 
RPTRST 

'BASIC=2' FLOWS PRESSURE ALLPROPS/ 

Control restart file written 

data for computation 

OTHERS 
Need to prepare ‘sch.dat’ for rate optimization  

Need to prepare’tstep.dat0’ for rate optimization 

Update rate schedule from 

base schedule data 
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