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ABSTRACT 

 

Essays on Incorporating Risk Modeling Techniques in Agriculture. (August 2011) 

Ryan Larsen, B.A., Idaho State University; M.S., University of Idaho 

Co-Chairs of Advisory Committee: Dr. David J. Leatham 
                                                             Dr. Dmitry V. Vedenov 

 

Measuring, modeling, and managing risk has always been an important task for 

researchers.  Many of the traditional assumptions relied on in risk research, such as the 

assumption of normality and single period optimization, have proven too restrictive and 

alternative risk management tools have been developed.  The objective of this 

dissertation is to explore and apply these tools to analyze geographical diversification.  

The first step to analyze geographical diversification is to understand how different 

climate and spatial variables impact yields.  Yield dependencies for wheat, cotton, and 

sorghum are estimated using linear correlation and copulas.  The copulas provide an 

alternative to linear correlation.  The results of the different dependency estimations 

indicate that there is a significant difference between the results. 

The next step is to analyze geographical diversification in a portfolio setting.  

Traditional portfolio optimization has assumed that risk and dependence are symmetric.  

Using a single period model, an asymmetric risk measure, conditional value at risk, and 

asymmetric dependence measure, copulas, are implemented into the portfolio 

optimization model.  The efficient frontiers under both symmetric and asymmetric 

assumptions show that ignoring the asymmetric nature of the data could lead to optimal 
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portfolio allocations that could underestimate the actual risk exposure.  The implication 

of these results provides researchers with motivation to move beyond the standard 

assumptions of linear correlation and normality. 

Building on the single period problem, a multi-period portfolio model is 

formulated using discrete stochastic programming.  One key in formulating a discrete 

stochastic program is the representation of uncertainty.  Scenario generation is a method 

to obtain a discrete set of outcomes for the random variables.  A moment matching 

routine is developed to capture the first four moments of the variables and the 

multivariate relationship is modeled using copulas.  The results show that the moment 

matching routine closely captures the higher moments of the data.  The results also 

indicate that there are possible gains from geographical diversification.  Wealth levels 

increased for all three regions when production is diversified over the different regions.  

The optimal land allocation was dependent upon the base acreage assumption.   
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1. INTRODUCTION 

 

Innovations in both statistics and finance have led to the development of new 

methods to analyze risk management decisions.  Specifically, the advances in measuring 

dependency to model joint distributions and the development of alternative risk 

criterions has allowed both practitioners and researchers to look at old problems in a new 

way (Clemen, and Reilly, 1999).  Recently, these new methods of incorporating 

alternative dependency structures and risk measures made their way in the agricultural 

economics research literature (Ozaki, Goodwin, and Shirota, 2008; Vedenov, 2008; Zhu, 

Ghosh, and Goodwin, 2008).  There are limited applied applications in agricultural 

settings, thus, there is a need for research to further investigate these new methods and 

compare them with the traditional methods. 

Traditional risk management has relied heavily upon the mean-variance portfolio 

model developed in 1952 (Markowitz, 1952).  The implementation of Markowitz’s 

Portfolio Theory marked one of the great beginnings of financial risk management 

(Elton, and Gruber, 1997).  Building on the work done by Markowitz, others such as 

Tobin and Sharpe have enhanced the applications of portfolio theory (Sharpe, 1963; 

Tobin, 1958).  Agricultural economists approach to the portfolio problem mirrored that 

of Markowitz (Heady, 1952; Peterson, Schurle, and Langemeier, 2005; Robison, and 

Brake, 1979). 

 

This dissertation follows the style of American Journal of Agricultural Economics. 
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Portfolio theory relies on a few key assumptions.  The first is that linear 

correlation captures the dependence structure of the data.  The second is that returns are 

normally distributed.  This assumption of multivariate normality implies that the random  

outcomes can be fully described by the marginal distributions and the dependency 

structure is characterized by the correlation coefficient (Ane, and Kharoubi, 2003).  The 

assumption of multivariate normality also implies that variance is the appropriate risk 

measure.  The problem encountered in working with real world data is that often there 

exists both skewness and leptokurtosis in the data.  This has led researchers to develop 

alternative probabilistic models (Krokhmal, 2007).  These new probabilistic models have 

focused on working with univariate data problems.  The implementation of alternative 

multivariate distributions relies heavily on the previously mentioned univariate models.  

This presents two problems.  The first is that the marginal distributions of the 

multivariate vector all belong to the same univariate distribution.  The second problem is 

that the dependence measure is taken from the marginal distributions (Embrechts, 

McNeil, and Strauman, 2002).  Thus, there is a need for a more flexible approach to 

modeling multivariate data.   

One method that has been used in the finance and insurance industries is that of 

the copula function (Accioly, and Chiyoshi, 2004; Clemen, and Reilly, 1999; Patton, 

2002).  The copula function links the n-dimensional distribution function to their one-

dimensional margins.  The function is continuous and characterizes the model’s 

dependence structure.  One of the key advantages of using the copula is that the 

appropriate model used for the specifying the dependence structure between the 
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variables can be selected independent of the choice of the marginal distributions.  In 

other words, without imposing any assumption on the marginal distributions, the 

dependency between the variables can be estimated.  Utilizing this copula function, risk 

management routines such as portfolio optimization can incorporate these alternative 

marginal distributions and dependency structures.  

Another issue of vital importance in risk management is the development of 

coherent risk measures (Acerbi, 2002; Acerbi, 2007; Alexander, and Baptista, 2004; 

Artzner, et al., 1999; Buch, and Dorfleitner, 2008; Csóka, Herings, and Kóczy, 2007).   

Coherent risk measures have been defined as risk measures that satisfy the properties of 

monotonicity, convexity, and translational invariance.  Examples of coherent risk 

measures used in risk research are the LPM (Lower Partial Moments) and CVaR 

(Conditional-Value-at-Risk) approach.   Both measures have been shown to exhibit the 

properties of a coherent risk measure (Alexander, and Baptista, 2003).  The application 

of these risk measures are rare in the agricultural economics literature (Zylstra, Kilmer, 

and Urysasev, 2003).  These authors used the LPM approach to measure the 

effectiveness of a dynamic hedging strategy of feeder cattle.  Thus, there is a need for a 

better understanding of the properties and applications of coherent risk measures in 

agriculture.  

The objectives of this dissertation are to implement recent innovations in 

statistics and finance to help analyze risk management issues in agriculture.  The first 

objective is to better understand geographical diversification by analyzing the spatial 

relationships between yields.   Geographical diversification has been researched on a 
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limited basis (Just, and Pope, 2003).  Geographical diversification consists of spreading 

production areas into regions that reduce yield and price risk. Technological advances in 

both production and communication have allowed producers to cross county and state 

lines to diversify their production portfolio. Little research has been done concerning 

geographic diversification and the problem faced by many firms is that they have 

minimal information to determine the “best” place to geographically diversify 

operational activities and accurately measure the risk involved with this type of 

diversification. Specifically, a tradeoff equation is estimated to help determine the 

relationship between yield dependence, elevation, and climate data.  The yield 

dependence parameter is measured in three ways, Pearson correlation, rank correlation 

using copulas, and tail dependence coefficients.   

The second objective is to apply coherent risk measures to a production 

agricultural problem.  This is addressed by analyzing geographical diversification at the 

enterprise level.  A representative farm is modeled.  Conditional-Value-at-Risk (CVaR) 

is used to measure the risk of geographical diversification.  A portfolio optimization 

algorithm is developed using CVaR as the risk criterion.  The economic implications of 

using CVaR as a portfolio constraint are discussed.  This is done by comparing the 

results and the EV frontier when using the CVaR and the standard mean-variance 

approach.    

The last objective is to develop a discrete multi-period stochastic program to 

optimize a farmer’s portfolio, where the portfolio is the acreage allocations between 

three distinct geographic areas.  The farmer has the ability to allocate wheat production 



 

 

5 

 

acreage over three dry land production regions, Montana, Colorado, and Texas.  The 

portfolio allocation decisions take place at discrete time points.  At these discrete points 

the farmer has to evaluate the previous year’s market conditions and the composition of 

the enterprise diversification.  At the same time, the farmer must evaluate future 

conditions such as expected future yields and prices.  All this information is then used by 

the farmer to reallocate or adjust the land allocation over the different production 

regions.  This may involve increased short term or long term borrowing because of 

increased operating expenses, machinery purchases, and land purchases or the retirement 

of debt in good income years.  This same decision process continues through the time 

periods of the model. 

The results of the discrete multi-period stochastic optimization are presented.  

The optimization algorithm consists of maximizing expected utility of wealth by 

allocating acreage levels in the three different regions.  A dynamic analysis of the 

optimal acreage allocations over time is estimated as well as how these allocations 

change with different levels of risk aversion.   These results and modeling technique 

provide a foundation for expanding the standard single period portfolio optimization 

problem to multi-periods.  This modeling technique also provides a framework to 

analyze other farm financial decisions, farm growth decisions, and even could be applied 

to loan portfolios from a lenders perspective 

The remainder of this dissertation is organized as follows.  The relationship 

between yield dependencies and spatial factors is discussed in Section 2. This analysis is 

based on data collected from wheat, sorghum, and cotton counties.  Historical yield data 
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were collected for each county.  In addition, geographic data such as elevation and 

latitude/longitude were collected for each location.  These variables are used to analyze 

the sensitivity of the relationship between areas based on these geographic parameters.   

Enterprise level geographic diversification is discussed in Section 3.  Three 

possible production locations, one in Texas, one in Colorado, and one in Montana are 

modeled to simulate the effect of geographical diversification on a given enterprise.  

Alternative dependency structures are used in the risk estimation based on copulas.  

Conditional-value-at-risk (CVaR) is used as the risk measure for this analysis.  CVaR is 

calculated using both the multivariate normal approach as well as the copula based 

approach.  The final essay is discussed in Section 4.  This essay applies a discrete 

stochastic programming to the issue of geographic diversification.  It extends the single 

period portfolio model to multiple periods.  Section 5 is the final section and the results 

and implications of this research are discussed.  In addition, future research opportunities 

are discussed.    
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2.   MODELING ALTERNATIVE DEPENDENCE STRUCTURES: AN 

APPLIED CASE TO WHEAT, COTTON, AND SORGHUM 

 

2.1   Introduction 

Agriculture is inherently risky facing production, market, and cost risks (Boehlje, 

and Lins, 1998; Escalante, and Barry, 2001; Hardaker, et al., 1997; Harwood, et al., 

1999; Just, and Pope, 2002; Moschini, and Hennessy, 2001; Turvey, Driver, and Baker, 

1988).  Mishra and Lence (2005 p.131) defined risk “… as the uncertainty faced by a 

firm (be it an individual, agribusiness, or lender) that affects its welfare.”  To help 

manage risk one must understand the degree of dependence among the different 

management options.  (Measuring the degree of dependence is discussed later.)  Mishra 

and Lence (2005) classify risk management strategies into two categories: within-firm 

and risk-sharing strategies.  Within-firm strategies include enterprise diversification, 

reducing leverage, gathering additional information about future scenarios, and increases 

in liquidity.  Risk-sharing strategies consist of insurance, off-farm income, and the use of 

contracts such as futures and options.   

Risk management strategies utilized by producers tend to vary by size and 

composition of the agricultural entity (Mishra, and Lence, 2005; Pope, and Prescott, 

1980).  An industry that was once composed mainly of family farms has now been 

segmented into three sizes: large-industrial companies, commercial-scale family 

operations, and the traditional small family farm (Featherstone, et al., 2005).   Large-

industrialized companies are diversifying risk through vertical integration and multi-
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national operations (Boehlje, and Lins, 1998; Handy, and MacDonald, 1989).  

Commercial-scale family operations utilize risk management tools such as hedging, 

insurance, and crop diversification (Mishra, and El-Osta, 2002).  Small scale family 

farms are diversifying by depending on off-farm income (Harwood, et al., 1999; USDA, 

2000).   

Another risk management strategy that is starting to be employed by multi-

national and commercial-scale farms is diversifying their portfolio geographically.  

Production operations are geographically separated to reduce production risk and/or 

locate operations closer to processing plants to reduce market risk (Davis, et al., 1997).  

A limited number of studies have addressed farm level effects of geographic 

diversification (Davis, et al., 1997; Krueger, et al., 1999; Nartea, and Barry, 1994).  

Additional studies are necessary concerning geographical diversification to more fully 

understand the ramifications of such management strategies.  Two problems faced by 

producers considering geographical diversification are what location(s) “best” diversifies 

their risk and what are the additional costs associated with geographical diversification. 

One of the keys to answering these questions is to understand how yields are 

related (dependent) in different regions.  Historically, the Pearson correlation coefficient 

has been relied upon to measure the dependence between two variables.  This coefficient 

captures the linear dependence if the variables are normally distributed (Accioly, and 

Chiyoshi, 2004), but often, the normality assumption is not valid (Just, and Weninger, 

1999).  To capture the dependence between two variables without having to force the 

assumption of normality, copulas have begun to be used (Clemen and Reilly, 1999).  
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Copulas allow the flexibility of modeling the marginal distributions independently of the 

joint distribution.  The estimated copula then ‘couples’ the individual marginal 

distributions to the respective joint distribution.  As with most flexible measures, copulas 

have additional complexity (costs) associated with estimating them relative to Pearson’s 

correlation coefficient. 

Providing information on how various factors influence changes in yield 

dependencies associated with geographical diversification is the primary objective of 

this study.  To obtain this objective, yield dependence functions based on changes in 

elevation, temperature, and precipitation are estimated.  A secondary objective is to 

analyze the impact of using alternative dependency measures.  As such, yield 

dependency functions are estimated based on different dependency measures: Pearson’s 

correlation and various copula forms.  Using real world data does not allow for the 

determination of the “best” measure, but does allow for comparison of the different 

measures.  This research not only extends the current literature on geographical 

diversification by taking a more detailed examination of factors impacting yield 

dependence, but also extends the copula literature by comparing estimation results using 

linear correlation and copulas.  The impact of using alternative dependence measures has 

only recently begun to be examined. 

2.2   Literature Review 

Managing risk by geographical diversification is not new; it has been used 

frequently in the banking and real estate industries.  Liang and Rhoades (1988) using the 

changes in banking regulations in the late 80’s as motivation, studied the impact of 



 

 

10 

 

geographical diversification in the banking industry.  Because of regulation changes, 

which allowed banks to expand into different regions, banks had begun to expand 

beyond state borders.  Ling and Rhoades (1988) found that geographic diversification 

reduces insolvency risk, but increases in operating risks may occur because of increased 

management and acquisition costs.  In another banking study, the impact of geographic 

diversification was specifically applied to small banks that were acquired by larger 

banks (Rose, and Wolken, 1990).  Mergers appeared to provide no long run advantages 

for the small banks.  In the short run, mergers, however, provided opportunities for entry 

into new markets.  

Ehling and Ramos (2006) examined differences between sector and geographic 

diversification using industries within the Euro zone.  They argued that with the 

implementation of the Euro, gains associated with geographic diversification are 

diminished.  Using a mean-variance efficiency test, Basak et al. (2002) tested whether 

companies are better off by sector or geographical diversification.  Results depend on the 

constraints imposed on the model.  If short-selling constraints are imposed, geographic 

diversification outperforms sector diversification, whereas, the two strategies are 

statistically equivalent if the problem is unconstrained.  Kim and Mathur (2008) 

suggested geographical diversification increases operating costs but also increases return 

on equity and return on assets when compared to industrially diversified firms.  Results 

from previous studies in non-agriculture sectors suggest there are possible gains from 

geographic diversification.   
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Within an agricultural setting, results of studies on geographical diversification 

are inconsistent.  Kreuger et al. (1999) showed that a grape grower could increase profits 

and decrease risk by producing in the U.S. and Chile.  Nartea and Barry (1994) 

concluded that there are no realizable increases in net returns for individual grain 

growers from diversifying geographically in central Illinois.  Costs associated with 

geographical diversification included in their model were transportation costs, 

monitoring costs, and losses because of poor machinery coordination.  Davis et al. 

(1997) found an inverse relationship between Georgia peach orchards yield correlations 

and distance between the two orchards.  Using farm level data, they estimated the 

volatility in yields that could be reduced by operations using spatially diverse orchards.  

Davis et al. (1997) concluded that correlation between yields is reduced by 2.28% for 

every additional mile the orchards are separated. 

Absent from these studies was a detailed discussion concerning the measurement 

of the dependence between yields.  The development of copulas has allowed for a new 

examination of dependence structure between variables.  Copulas are a statistical tool 

used to model multivariate relationships.  Although, copulas were developed in the 

1950’s, they have just recently been incorporated into finance, statistics, economics, and 

agricultural research (Accioly, and Chiyoshi, 2004; Ane, and Kharoubi, 2003; Bai, and 

Sun, 2007; Clemen, and Reilly, 1999; Dowd, 2005; Embrechts, McNeil, and Strauman, 

2002; Genest, and Favre, 2007; Hennessy, and Lapan, 2002; Patton, 2002).  The use of 

copulas in the agricultural literature is limited.  Vedenov (2008) found that the flexibility 

allowed by copulas provided an efficient method for estimated the joint distributions for 
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crop yields.  Power and Vedenov (2008) model a dynamic hedge ratio using a copula-

GARCH.  They conclude the copula-GARCH methodology led to better results than the 

standard GARCH.  Copulas have also been used in designing whole farm insurance 

(Zhu, Ghosh, and Goodwin, 2008).  Zhu, Ghosh, and Goodwin (2008) use copulas to 

model the relationship between corn and soybean prices.  The implementation of copulas 

also allowed the authors to individually model the marginal distributions of the crops 

separately.  They found this approach provides a better fit than using the same marginal 

distribution for each crop.    

2.3   Data 

Data used consists of geographical, climate, and historical county yield data for 

non-irrigated wheat, cotton, and sorghum.  Geographical and climate data consists of 

average temperature, precipitation, and elevation.  The length of the yield data series 

varies slightly for each commodity.  The largest block of continuous yield data available 

at the time of data collection were used.  To be included, a county must have more than 

10,000 harvested acres based on 2006 crop production crop.  Ten-thousand acres is 

arbitrary chosen, but represents an area that indicates in most cases more than one 

producer. 

2.3.1   Yield Data  

  County level wheat yields are for 1976 to 2001 for wheat (both spring and fall).  

More recent yields were not included because of lack of data for many of the counties at 

the time of data collection (USDA-NASS, 2008).  To be included, a county had to meet 

the following criterion;  First, the analysis is limited to the major wheat production 
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regions of the U.S.; therefore, only counties in the following states are included, 

Colorado, Idaho, Kansas, Montana, Nebraska, North Dakota, Oregon, Oklahoma, South 

Dakota, Texas, Utah, or Washington (Figure A.1).  Unfortunately, many Oklahoma 

counties could not be included because of large gaps of missing data.  Three hundred 

and eighty counties met these two criteria (Table A.1).  

 Sorghum county yields are from 1978 to 2001.  States included in the analysis 

are Kansas, Oklahoma, South Dakota, New Mexico, Nebraska, Colorado, and Texas 

(Figure A.1).  Fifty counties are included with the non-irrigated sorghum data set (Table 

A.1).  Cotton yields are for years 1977 to 2001 for upland cotton (Table A.1).  Thirty-

nine counties are included in the analysis from five states: Arkansas, Louisiana, 

Mississippi, Oklahoma, and Texas (Figure A.1). 

2.3.2   Geographical Data 

To provide a consistent location across the counties for geographical and climate 

data, the county seats are used to represent each county.  Elevation for each of the 

county seats are obtained from the website Lat-Long.com.  Thirty year average annual 

temperature and precipitation for weather stations located at or near the county seats are 

used to represent climate conditions (USDA-NRCS, 2008).  Preliminary estimations 

included latitude and longitude variables.  Latitude and longitude variables are highly 

collinear with the other variables and were dropped from the analysis. 

2.4   Modeling Dependence 

Modeling dependence is often overlooked and sometimes misunderstood.  As 

previously noted, the Pearson linear correlation is usually considered to be the 
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dependence measure without considering other measures.  In fact, linear correlation is 

the measure of dependence forming the basis of different finance theories, including the 

Capital Asset Pricing Model,  the Arbitrate Pricing Theory, and Markowitz Portfolio 

Theory (Embrechts, McNeil, and Strauman, 2002).  These theories assume multivariate 

normally distributed returns.  The assumption of normality, however, may not be 

appropriate.  In the case of non-normal distributed variables, other measures of 

dependence may be more appropriate. 

Embrechts, McNeil, and Strauman (2002, p.15) define quantification of the 

relationship between two random variables as summarizing “… the dependence structure 

between two random variables in one number.”  They identified five desirable properties 

of dependence between two random variables, x and y.  Let the dependence between x 

and y be measured by 𝛿, the five properties are: 

1. Symmetry:  𝛿(𝑥,𝑦) = 𝛿(𝑦, 𝑥) 

2. Normalization:  −1 ≤  𝛿(𝑥, 𝑦) ≤ 1 

3. Comonotonic and Countermonotonic   

𝛿(𝑥,𝑦) = 1 ⟺ 𝑥,𝑦 𝑐𝑜𝑚𝑜𝑛𝑜𝑡𝑜𝑛𝑖𝑐              

𝛿(𝑥, 𝑦) = −1 ⟺ 𝑥,𝑦 𝑐𝑜𝑢𝑛𝑡𝑒𝑟𝑚𝑜𝑛𝑜𝑡𝑜𝑛𝑖𝑐 

4. For T: ℝ → ℝ strictly monotonic on the range of  

   𝛿(𝑇(𝑥),𝑦) = � 𝛿
(𝑥,𝑦)  𝑇 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔

−𝛿(𝑥,𝑦) 𝑇 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔                               

5. Independence     

𝛿(𝑥,𝑦) = 0 ⟺ 𝑥,𝑦 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡                             
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Property 1 states that the measure of dependence (𝛿) between two random 

variables is equal regardless of variable ordering.  In other words, the dependence 

between x and y is equal to the dependence between y and x.  Property 2 states the 

measure of dependence should fall within the range -1 to 1.  This enables comparisons to 

be made across different dependence measures.  Property 3 (comonotonic) states that if 

the dependence between x and y is equal to 1, then x and y are considered to move 

perfectly together.  Conversely, property 3 (countermonotonic) states that if the 

dependence between x and y is equal to -1, then x and y will move exactly opposite.  

Property 4 reflects the increasing nature of positive dependence and decreasing nature of 

negative dependence.  Finally, property 5 states if the dependence between the two 

variables is equal to zero, x and y are independent.  In a perfect world, a dependence 

measure would satisfy all five of these properties. 

2.4.1   Pearson’s Correlation Coefficient 

Pearson’s correlation coefficient only satisfies the first two properties(Embrechts, 

McNeil, and Strauman, 2002).  This correlation coefficient is defined as 

𝜌𝑥𝑦 = 𝑐𝑜𝑣(𝑥,𝑦)
�𝑣𝑎𝑟(𝑥)𝑣𝑎𝑟(𝑦)

                                                       (2.1) 

where 𝜌𝑥𝑦 is a measure of linear dependence which takes on values between -1 and  1 

(Wackerly, Mendenhall III, and Scheaffer, 2002). When  𝜌𝑥𝑦 = 0 , x and y are said to be 

independent.  If 𝜌𝑥𝑦 = 1 or  𝜌𝑥𝑦 = −1, then 𝑥  and 𝑦 are perfectly linearly dependent.  

As noted earlier, one potential problem with the Pearson’s measure of dependency is that 

it is only appropriate if the data are considered to be multivariate normal (Embrechts, 
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McNeil, and Strauman, 2002).  Multivariate normal distributions are fully described by a 

mean vector and covariance matrix.  If the data is not multivariate normal, then linear 

correlation may not accurately measure the dependence between variables.   

2.4.2   Rank Correlation 

An alternative to linear correlation is rank correlation.  Rank correlations depend 

solely on the copula of the bivariate distribution and not on the marginal distributions 

(McNeil, Frey, and Embrechts, 2005).  This is unlike linear correlation which depends 

on both.  Rank correlation has been found to satisfy the first four properties (Embrechts, 

McNeil, and Strauman, 2002).  Estimation of rank correlation requires the ordering of 

the sample for each variable.  It does not require actual numerical values.  The two most 

common rank correlation measures are Kendall’s tau and Spearman’s rho.  These two 

rank correlation measures are both symmetric and take on values in the interval [-1, 1].  

In addition, they are both invariant under strictly increasing transformations.  Kendall’s 

tau is the rank correlation measure used in this research. 

Kendall’s tau measures the concordance between two random variables.  

Concordance is best illustrated by an example.  Suppose there are two points, the first 

point denoted by (𝑥,𝑦) and the second point denoted by (𝑥�,𝑦�).  These two points are 

considered to be concordant if  (𝑥 − 𝑥�)(𝑦 − 𝑦�) > 0 and discordant if (𝑥 − 𝑥�)(𝑦 − 𝑦�) <

0.  This relationship is   

𝜌𝜏(𝑥,𝑦) = 𝑃�(𝑥 − 𝑥�)(𝑦 − 𝑦�) > 0� − 𝑃�(𝑥 − 𝑥�)(𝑦 − 𝑦�) < 0�,                  (2.2) 

where P represents the probability of either concordance �(𝑥 − 𝑥�)(𝑦 − 𝑦�) > 0� or 

discordance �(𝑥 − 𝑥�)(𝑦 − 𝑦�) < 0�.  The left hand side of equation (2.2) represents the 
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scalar measurement for Kendall's tau.  In other words, Kendall's tau is equal to the 

probability of concordance minus the probability of discordance.   

2.4.3   Copulas 

The concept of copulas is being used to overcome the shortcomings of linear 

correlation and to efficiently estimate rank correlation.  Copulas model multivariate 

distributions.  An extensive treatment of copulas can be found in (Accioly, and Chiyoshi, 

2004; Ane, and Kharoubi, 2003; Rank, 2000; Schmidt, 2006; Trivedi, and Zimmer, 

2005).  Here, only a basic treatment of copulas is provided to lay the foundation for 

comparing the different measures in the context of geographical diversification. The 

origin of copulas can be traced back to the Sklar theorem (Sklar, 1959).  The Sklar 

theorem shows that any joint distribution function may be decomposed into its n 

marginal distributions and consequently a copula.  The copula is then considered to 

describe the dependence that exists between the variables (Patton, 2002). 

 Copulas conveniently allow for the separation of the marginal distributions from 

the joint distribution.  This separation allows the flexibility of modeling each individual 

marginal distribution.  Then the copula function is used to join the marginal distributions 

to obtain the multivariate distribution.  Copula parameters are estimated through a 

Maximum Likelihood Estimation method of the form of 

𝛿2 = 𝑎𝑟𝑔𝑚𝑎𝑥𝛿�2 ∑ ln 𝑐�𝐺�𝑥(𝑥𝑡),𝐻�𝑦(𝑦𝑡),𝛿2�𝑇
𝑡=1                              (2.3) 

where  𝛿2  is the estimated copula parameter, 𝑎𝑟𝑔𝑚𝑎𝑥 is the mathematical function that 

provides the argument associated with the maximum, ln is the natural logarithm,  and 

𝐺�𝑥(𝑥𝑡),𝐻�𝑦(𝑦𝑡)  are the estimated marginal distributions for x and y.  The copula 
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parameter �𝛿2� provides the information necessary to estimate the copulas and tail 

dependence between the crop yields for the individual counties.   

Of the different copulas that have been developed, four different copulas will be 

compared:  Gaussian; Gumbel; Frank; and Clayton.  The Gaussian copula is symmetric, 

whereas, the Clayton, Gumbel, and Frank copulas are asymmetric with additional 

probability in the tails of the distribution.  The functional form for each of the copulas is 

given in Table A.3.  The table illustrates the important characteristics of each one of the 

copulas used in this analysis.  Copulas also provide an alternative method for estimating 

rank correlation.  Kendall’s tau can be defined by using the estimated copula.  Using 

copulas Kendall’s tau is defined as:  

𝜌𝜏(𝑥,𝑦) = 4 ∫ ∫ 𝐶�𝑢𝑥, 𝑢𝑦�𝑑�𝑢𝑥,𝑢𝑦� − 1.1
0

1
0                                 (2.4) 

The integral above can interpreted as the expected value of the function 𝐶�𝑢𝑥,𝑢𝑦�, 

where 𝑢𝑥 ,𝑢𝑦~𝑢(0,1) are the uniform transformed random variables x and y and C is the 

joint distribution function for 𝑢𝑥  and 𝑢𝑦. 

2.4.4   Tail Dependence 

Tail dependence is another alternative to analyze the relationship between two 

random variables.  The concept of tail dependence is concerned with the magnitude of 

dependence that exists in the upper right quadrant or lower left quadrant tail of a 

bivariate distribution (Charpentier, and Segers, 2007).  This concept is essential when 

studying the measure of dependence between extreme values (Cherubini, Luciano, and 

Vecchiato, 2004).  A formal definition of an upper tail dependence coefficient is  

𝜆𝑈 = lim𝑡→0+{𝐺(𝑥) > 𝑡|𝐻(𝑦) > 𝑡}.                                              (2.5) 
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The estimate of 𝜆𝑈 is the upper tail coefficient. G(x) and H(y) represent the marginal 

distributions for x and y.  The variable t represents the upper threshold limit.  Similarly 

the lower tail coefficient can be defined by 

𝜆𝐿 = lim𝑡→0+{𝐺(𝑥) ≤ 𝑡|𝐻(𝑦) ≤ 𝑡}.                                              (2.6) 

In this case, the variable t represents the lower limit threshold.  These coefficients are 

interpreted as the probability that one margin exceeds a given high (low) threshold under 

the specified condition that the other margin exceeds the high (low) threshold.  Or in 

other words, the coefficients examine how closely the tails of the data move together.   

Copulas have been found to be useful when modeling tail dependence 

(Kallenberg, 2008).  The tail dependencies of different parametric copulas emphasize 

different portions of the probability distribution.  For this reason, the copulas used are 

the ones that capture tail dependence (McNeil, Frey, and Embrechts, 2005).  The 

Gaussian copula is the only copula with zero tail dependence.  The Student-t copula has 

symmetric tail dependence.  Clayton, Rotated Gumbel, and Gumbel copulas have 

asymmetric tail dependencies.  This research is concerned with the lower tails of the data 

and so the Clayton and Rotated Gumbel will be used to estimate the tail dependence 

coefficient.  It has been shown that there is a simple method to calculate the tail 

dependence from the estimated copula for both the Clayton and the Rotated Gumbel 

copulas.  For the Rotated Gumbel copula, the tail dependence is calculated by 

𝜆𝐿 = 2 − 2
1
𝛿� ,                                                                                 (2.7) 

where 𝜆𝐿 represents the lower tail coefficient and 𝛿 represents the estimated copula 

parameter.  The tail dependence for the Clayton copula is calculated by 
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𝜆𝐿 = 2−
1
𝛿� ,                                                                                     (2.8) 

where 𝜆𝐿 represents the lower tail coefficient and 𝛿 represents the estimated copula.  The 

results of both measures are presented. 

2.5   Yield Dependence Model Specification 

 To address the objectives, yield dependence functions of the following general 

form are estimated 

𝑑𝑖𝑗𝑐 = 𝑓�𝐸𝑙𝑒𝑖𝑗𝑐,𝑃𝑟𝑒𝑐𝑖𝑗𝑐,𝑇𝑒𝑚𝑝𝑖𝑗𝑐� + 𝜀𝑖𝑗𝑐                                     (2.9) 

where 𝑑𝑖𝑗𝑐 is the county level yield dependence coefficient between county i and county 

j for crop combination c, 𝜀𝑖𝑗𝑐 is the error term, and the remaining variables are 

differences in absolute value between the two counties i and j in elevation (Ele) in feet, 

annual precipitation (Prec) in inches, and annual temperature (Temp) in Fahrenheit.  

Dependence functions are estimated individually for wheat, cotton, and sorghum.  

 Three specifications of equation (2.9) are estimated, linear, log-linear, and 

quadratic.  A log-linear instead of a log-log form is estimated because some of the 

correlations are negative.  Statistical tests are conducted to determine which functional 

form provides the “best” fit. Summary statistics for the variables used in the regression 

equation are found in Table A.3.    

 Before calculating county yield dependence, the data is detrended to eliminate 

time trend components.  Yield data are detrended using a simple linear trend model 

(Table A.1)  

𝑌𝑛𝑡𝑐 = 𝛼𝑛𝑡𝑐 + 𝛽𝑛𝑡𝑐𝑡 + 𝜀𝑛𝑡𝑐                                                          (2.10) 
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 where 𝑌𝑛𝑡𝑐 is county yield from county n in year t for crop c, α and β are coefficients to 

be estimated, t represents the year with t = 1, 2, …., T, and εntc is the error term.  The 

significance of the coefficient βntc is used to determine whether a trend is present.  

Approximately 50% of the counties show a significant trend in the wheat yield data 

(Table A.1).  Cotton county yields exhibited a trend in only 10% of the counties, 

whereas, 60% of the sorghum counties exhibited a significant trend (Table A.1).  To be 

consistent, all yields are detrended.  Detrended county level yields (the residuals from 

the trend equation) are used to calculate the linear correlation and to estimate the 

copulas. 

2.5.1   Elasticities 

 To illustrate how changes in the independent variables affect yield correlations, 

point elasticities are calculated as follows 

ε𝑥𝑐 = �𝜕𝑑𝑖𝑗𝑐
𝜕𝑥

𝑥
𝑑�𝑖𝑗𝑐

�                                                                          (2.11) 

where ε𝑥𝑐 is the elasticity for independent variable of interested (elevation, temperature, 

or precipitation) x and crop combination c, 𝑑𝑖𝑗𝑐 represents the estimated dependence 

function (equation 2.9), ∂ represents the partial derivative, and 𝑑̂𝑖𝑗𝑐 is the estimated 

correlation function evaluated at the mean of the independent variables.  Elasticities give 

the percentage change in yield correlations for a given change in the independent 

variables.  Because the functions are not constant elasticity functions, elasticities vary 

based on the value of the independent variables.  Following standard procedures, the 

elasticities are calculated at the mean of the independent variables.   Because elasticities 
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are normally defined for when both variables dijc and x are positive, but this is not 

always the case with the dependence measure, the absolute value of the elasticities is 

presented.  The elasticities are not used to provide direction just magnitude of the 

relationships. 

2.6   Linear Correlation Results 

Using the detrended yields and the geographical data for each county, equation 

(2.9) was estimated for each of three commodities. The quadratic functional form 

provided the best fit for each of the three model selection criterion, Akaike Information 

Criterion, Bayesian Information Criterion, and adjusted R2 (Table A.4).  For space 

considerations and ease of discussion, estimation coefficients are discussed only for the 

quadratic functional form (the coefficients of the linear and log-linear regressions can be 

found in Tables A.5 and A.6).   The results of the individual analysis using Pearson 

correlation will be followed by a discussion of both the copula estimated dependence 

and the tail dependence results.   

2.6.1   Wheat 

Using the quadratic specification, all wheat variables are significant (at the 10% 

level or less). As expected, all coefficients of the linear terms are negative (Table A.7).  

The coefficient of the squared term for temperature is positive, whereas, the coefficients 

for the squared terms of elevation and precipitation are negative.  These results provide 

support for the hypothesis that there is generally an inverse relationship between yield 

correlations and geographic variables in the relevant range of the independent variables.  

In other words, correlation between yields is reduced as absolute differences in both 
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spatial and climate variables increases.  The negative squared term combined with the 

negative linear term is indicative of a concave shape (correlations decreasing at a 

decreasing rate), while the positive squared term combined with the negative linear term 

is indicative of a convex shape (correlations decreasing at an increasing rate). 

Absolute value of the elasticities associated with percentage changes in yield 

correlations for each of the geographical variables are calculated at their means to an 

indication of the relative effect of each variable (Table A.8).  The elasticity of 

temperature and precipitation are 1.28 and 1.09.  These elasticities can be interpreted as 

a 1% change in either variable leads to a 1.28% and 1.09% change in the correlation 

between county wheat yields.  The estimated elasticity for elevation is 0.18; a 1% 

change in elevation leads to a 0.18% change in correlation.  These elasticities suggest 

temperature and precipitation have a greater effect on yield correlations than changing 

elevation. 

2.6.2   Cotton 

All variables are significant at the 10% level for except for the squared elevation 

term and the elevation/precipitation interaction term (Table A.7).   The linear terms for 

temperature and precipitation are negative, while the linear term for elevation is positive.  

The squared terms are the opposite, temperature and precipitations are positive while 

elevation is negative.  The positive squared term indicates a convex shape for 

temperature and precipitation, whereas, the negative squared term combined with the 

positive linear term indicates a concave shape for elevation.   
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Estimated elasticities for temperature and precipitation are 0.19 and 1.23 (Table 

A.8).  The estimated elasticity for elevation is 0.76.  Dry land cotton is more sensitive to 

changes in precipitation than changes in temperature or elevation.  The elevation 

elasticity estimate must be used with caution because of the lack of significance of two 

of the elevation terms.  These elasticity estimates are consistent with the idea; 

precipitation plays a larger role in decreasing cotton yield correlations than elevation.   

2.6.3   Sorghum 

Elevation and temperature linear terms are significant at the 10% level, while the 

linear precipitation term is not significant (Table A.7).  The squared term for temperature 

is the only significant squared variable.  The elevation/precipitation interaction and the 

precipitation/temperature interaction terms are insignificant.  These estimates suggest 

that changes in precipitation levels have little effect on sorghum yield correlations but 

changes in temperatures are more relevant. 

Elevation and temperature have estimated elasticities of 0.42 and 1.40 (Table 

A.8).  Precipitation has an elasticity of 0.06.  The precipitation elasticity must be viewed 

with caution, because of the lack of statistical significance of the coefficients.  Lack of 

statistical significance can partially be explained by the concentration of sorghum 

production and by sorghum’s ability to handle lower precipitation levels.  These 

elasticity estimates illustrate that changes in temperature have the greatest impact on 

yield correlations.  For every one degree change in temperature, the yield correlations 

will change by 1.4%.   
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2.6.4   Three Crop Comparisons 

A comparison of all three commodity elasticities illustrates some interesting 

characteristics of the different crops.  Cotton is the most sensitive to elevation changes 

with an estimated elasticity of 0.76.  Wheat is the least sensitive to elevation changes 

with an estimated elasticity of 0.18.  Wheat and sorghum are both sensitive to changes in 

temperature.  Their elasticities associated with temperature are both greater than one 

(1.28 for wheat and 1.40 for sorghum).  Cotton is the most sensitive to changes in 

precipitation with an elasticity of 1.23.  Wheat is also sensitive to changes in 

precipitation with an elasticity of 1.09.  Sorghum was affected little by changes in 

precipitation levels with an elasticity of 0.06.   

2.7   Copula Results 

The estimation of the copulas was done for all three crops.  The copulas 

estimated were:  Gaussian, Frank, Clayton, and Gumbel copulas are estimated for all 

three crops.  The estimated copula parameters are used to calculate the corresponding 

Kendall’s tau.  The Kendall’s tau measure is then used as the dependence measure in the 

model specification.  To maintain consistency with the previous results, the quadratic 

specifications are presented.  Three criteria will be used to compare the estimation 

results using the different dependence measures:  statistical significance, sign, and 

magnitude.   

2.7.1   Wheat 

The statistical significance and signs of the coefficients for wheat yield 

dependence do not change with the different dependence measures (Table A.9).  All 
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geographical and climate independent variables are significant (at the 10% level or less) 

except for the squared elevation term.  As expected, the coefficients of the linear terms 

are negative.  The coefficient of the squared term for temperature is positive, whereas, 

the coefficients for the squared terms of elevation and precipitation are negative.  These 

results provide support for the hypothesis that there is generally an inverse relationship 

between yield correlations and differences in geographic and climate conditions  In other 

words, dependence between yields is reduced as absolute differences in both 

geographical and climate variables increases.  The negative squared term combined 

gives a concave shape (correlations decreasing at a decreasing rate), while the positive 

squared term provides a convex shape (correlations decreasing at an increasing rate). 

 Given that the sign and statistical significance of the independent variables do 

not changed among the alternative dependence measures, the change in magnitude is 

another criterion for comparing the measures.  To compare the magnitude, the absolute 

value of the elasticities, evaluated at the mean of all the variables are used (Table A.10) 

along with estimated dependencies at different levels of the independent variables 

(Figure A.2).  Magnitudes of the elasticities vary among the different measures with 

linear correlation and Gaussian copula elasticities generally being larger than for the 

other copula measures Elevation elasticity varies only slightly across the different 

measures.  The largest difference in elasticities is between linear correlation (0.18) and 

the Gumbel Copula (0.07). 

In Figure A.2, the dependence functions are graphed with two of the three 

independent variables are held constant at their mean with the remaining variable 
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varying from its minimum to maximum within the data.  Because of differences in the 

estimated dependencies, different scaling is used in the different graphs in Figure A.2.  

As such, caution is advised in comparing between the graphs.  With precipitation and 

temperature held constant at their means, the dependence functions as elevation changes 

are similar for all measures.  The linear correlation however decreases slightly faster 

than the other measures.  The reason for this is because the magnitude of the squared 

elevation term is the greatest for linear correlation and consequently it is decreasing 

faster than with the other measures. 

Temperature elasticities have a larger difference in magnitude (Table A.10).  The 

linear correlation (1.28) and Gaussian copula (1.33) elasticities are similar, but they 

differ from the elasticities associated with the Frank (0.77), Clayton (0.69), and Gumbel 

(0.70) copulas.  The different estimated dependence functions as a function of 

temperature are shown in Figure A.2.  All five dependence measures exhibit the same 

shape.  The Gaussian copula and linear correlation are similar in magnitude, whereas, 

the graphs of the remaining copulas are similar in magnitude at the beginning but show 

some divergence from each other as the change in temperature becomes larger. 

Mean precipitation elasticities shows relationship similar to that of the 

temperature elasticities.  The linear correlation and Gaussian have the same elasticity 

(1.09), whereas, the Frank (0.56), Clayton (0.51), and Gumbel (0.50) copulas all have 

estimated elasticities that are roughly half the magnitude of the linear and Gaussian 

elasticity.  The five measures illustrate the same concave shape (dependency decreasing 

at a decreasing rate).  Graphs of the dependence measures with respect to precipitation 
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reflect the similarity of Gaussian and linear correlation functions.  The Gaussian and 

linear correlation functions are decreasing faster than the remaining three copula 

measures.  The remaining functions are also similar to each other over the range of the 

data. 

For all estimated functions, the magnitudes of the elasticities have the following 

order.  Elevation elasticities are the smallest and temperature elasticities are the largest.  

This ordering indicates wheat dependencies are most sensitive to temperature differences 

and least sensitive to elevation changes.  Sensitivity of dependencies to precipitation 

differences falls in between elevation and temperature. 

2.7.2   Sorghum 

Unlike wheat, there are some differences in the sign and statistical significance of 

the geographical and climate variables in the sorghum estimations (Table A.11).  The 

linear precipitation coefficient is negative for linear correlation, Clayton, and Gumbel 

copulas, whereas it is positive for the Gaussian and Frank copulas.  The squared 

precipitation term is negative for all dependence specifications except the Clayton 

copula.  The squared elevation term in insignificant under the linear correlation 

specification, but is significant for all four copula measures.  The elevation/precipitation 

interaction term is insignificant in the linear correlation and Gaussian copula functions, 

but significant for the remaining three copulas.  The signs of the coefficients for the 

remaining variables are the same for all specifications.   

Also differing from the wheat estimations, the linear correlation and Gaussian 

copulas do not provide similar elasticity magnitudes (Table A.10).  The elevation 
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elasticity is the greatest using the Gaussian copula (3.17), whereas, the linear correlation 

(0.61) has the lowest elasticity.  The other three copulas have estimated mean elevation 

elasticities near 1.  For changes in elevation, the linear correlation and Gaussian 

estimated dependence functions different not only from each other but also from the 

other three estimated functions (Figure A.3).  Although the five dependence functions 

have the same basic shape, the linear correlation function decreases at a slower rate than 

the other four dependence functions.  The linear correlation function also begins to 

increase for larger differences in elevation, whereas the other measures show decreasing 

dependence over the entire range of the data. 

Temperature mean elasticities exhibit a relationship similar as to that shown with 

elevation with the Gaussian elasticity being the largest and the linear being the smallest 

(Table A.10).  The elasticities associated with the copulas except for the Gaussian copula 

(3.47) are close to one.  The temperature elasticity for linear correlation is also near one.  

The functions graphed with respect to temperature are similar to the functions with 

respect to elevation in terms the order of the functions (Figure A.3).  The Gaussian 

copula and linear correlation dependence functions have steeper slopes than the other 

three copulas.  The Frank, Clayton, and Gumbel all remain similar over the range of the 

data. 

Precipitation mean elasticities and graphs must be used with caution, but are 

presented here for completeness.  In none of the estimations are the linear and the 

squared precipitation terms statistically significant.  This lack of significance may help 

explain the intuitively unpleasant graphed dependence functions over the range of 



 

 

30 

 

precipitation differences (Figure A.3).  All five copulas exhibit an increasing 

dependency that is increasing at a decreasing rate.  Linear correlation, on the other hand, 

exhibits decreasing dependency at a decreasing rate.  The lack of significance of the 

precipitation variables may be because of the relative drought tolerance of sorghum.   

Unlike wheat, the magnitudes of the mean elasticities do not have a consistent 

ordering.  Precipitation mean elasticities are the smallest for all dependence measures, 

again possibly because of sorghums drought tolerance.  Elevation and temperature mean 

elasticities’ order depends on the measure. 

2.7.3   Cotton 

Similar to sorghum and unlike wheat, there are some differences in the signs and 

statistical significance of the estimated coefficients associated with cotton yield 

dependencies (Table A.12).  The squared temperature and precipitation terms are 

significant in the linear correlation model but statistically insignificant in the copula 

models.  Precipitation/temperature interaction term is significant in the Clayton copula 

model but insignificant for the remaining specifications.  Signs of the coefficients vary 

among the models for the precipitation squared and precipitation/temperature interaction 

variables. 

The linear correlation mean elasticities for elevation, temperature, and 

precipitation are larger than any of the copula based mean elasticities (Table A.10).  

Mean elasticity associated with the Gaussian copula is the second largest for all the 

variables.  For elevation, the copula based elasticities are approximately one-half 

(between 0.4 and 0.6) of the linear correlation mean elasticity.  The estimated 
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dependence functions with respect to elevation are similar in shape (Figure A.4).  All the 

functions are increasing at a decreasing rate but start out negative.  The linear correlation 

function has a slightly steeper slope than the copula measures. 

Mean temperature elasticities are smaller for temperature and the copula 

functions relative to linear correlation than for elevation.  Copula elasticities are 

approximately 0.3 to 0.6 of the linear correlation elasticity.  The dependence functions 

associated with changes in temperature exhibit an opposite relationship as seen with 

changes in elevation (Figure A.4).  All five dependence functions are decreasing at an 

increasing rate.  The linear correlation and Gaussian functions are similar, but the linear 

correlation function decreases more rapidly than the Gaussian function.  The remaining 

three copula functions are all similar to each other.   

Precipitation mean elasticities follow a pattern similar to that seen in the 

elevation mean elasticities for cotton among the different specifications.    The copula 

elasticities for precipitation are approximately 0.4 to 0.6 of the linear correlation 

elasticity.  Changes in precipitation exhibited similar changes in the dependence 

functions (Figure A.4).  The main difference can be seen in the Clayton copula.  All the 

functions are decreasing functions with respect to precipitation, but the Clayton copula 

function has a negative squared precipitation term.  Whereas the other functions all have 

a positive squared precipitation terms.  The results of this shape difference can be seen 

as the precipitation changes become large.  
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Cotton mean elasticities show a distinct ordering between the geographical and 

climate variables among the different dependence measures.  Temperature has the 

highest mean elasticity and precipitation the smallest elasticities. 

2.7.4   Tail Dependence    

The tail dependence coefficient is estimated using the results of the copula 

estimations.  Consistent with the previous estimations, only the results of the quadratic 

estimation are presented.  Because the tail dependence coefficient is constrained on the 

range 0 to 1, a Tobit model will be used to estimate the equation.  In addition, because 

the tail dependence range is different than the dependence measures used above, it is 

difficult to compare directly to the other dependence measures.  The Clayton and 

Gumbel copulas are used to estimate the tail dependence for the three different crops.  

The tail dependence in wheat is consistent in sign and statistical significance to the other 

estimations (Table A.9).  The magnitudes of the elasticities are also very similar to the 

copula dependence measures (Table A.10).  The results of the sorghum tail dependence 

are consistent in both sign and significance with the copula dependence estimations 

except for the squared elevation term (Table A.11).  Using Gumbel tail dependence, the 

coefficient associated with the squared elevation term is insignificant while it was 

significant under the other copula estimations.  The magnitude of the elasticity is similar 

to the other copula based estimations (Table A.10) being around 1 for elevation and 

temperature and 0.15 for precipitation. The cotton tail dependence estimations are also 

consistent with the copula estimations (Table A.12).  The magnitudes of the tail 

dependence measures are once again similar to the other copula dependence measures 
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(Table A.10).  The elevation elasticities are around 0.80, 1.30 for temperature, and 0.55 

for precipitation.   

2.8   Conclusions 

Although the issue of geographical diversification has not been extensively 

studied, it provides an opportunity to examine interesting risk management issues.  This 

study provides a starting point for analyzing the potential impact on yield dependencies 

from geographical diversification.  This study illustrates the expected results that yield 

dependencies vary by geographical and climate changes.  Quantification of the 

relationships between yield correlations and geographical and climate variables allows 

the next step of geographical diversification to be undertaken, namely examining how 

geographical diversification will impact risk and profitability of agricultural enterprises.   

Elasticity estimates suggest on a percentage basis, changes in temperature and 

precipitation have the greatest effect on dependencies. 

This research has the secondary objective of analyzing the impact of using 

alternative dependence measures.  Four parametric copulas, Gaussian, Frank, Clayton, 

and Gumbel, are compared to the more typical measure of dependence, Pearson’s linear 

correlation.   The effect of geographical and climate variables differed between the 

different dependency measures among the three different crops.  Implementing 

alternative dependency measures changed the statistical significance and the signs of the 

coefficients in the sorghum and cotton dependence functions.  Copula based elasticities 

are consistently less than the linear correlation elasticities for wheat and cotton.  For 

sorghum, however, the copula based elasticities are generally larger.   
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These differences have potential implication for applied studies.  Given the 

differences in the effect of geographical and climate variables on yield dependencies, a 

logical question is how do this differences relate to changes in “optimal” risk 

management strategies, if any.  Results from the different dependency functions indicate 

there will be differences.  Only applied farm level modeling on geographical 

diversification will provide a quantitative answer.  Inferences, however, strongly suggest 

one should not take the estimation of yield dependencies lightly.  Applied studies using 

real world data in which the underlying distributions are unknown, may consider using 

several different dependencies.  Another implication why are there differences among 

the crops beyond obvious crop characteristics.  Wheat yield dependencies are more 

robust than the other crops.  One must ask is this a function of the crop itself or the 

production locations.  The wheat data set is more robust in terms of the number and 

variability in locations grown.   This is an area future research should examine. 

Satisfying the objectives of this research establishes a foundation for both 

researchers and producers to better understand the impacts of alternative dependency 

measures and geographical diversification. An extension of this research is to examine 

non-parametric copulas.  May be the most important extension is to examine the 

robustness of the different dependence measures for various underlying distributions in a 

Monte Carlo framework.   
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3. INCORPORATING ASYMMETRIC DEPENDENCE AND RISK MEASURES 

INTO PORTFOLIO OPTIMIZATION: AN APPLICATION TO GEOGRAPHICAL 

DIVERSIFICATION  

 

3.1   Introduction 

Portfolio theory has provided individuals with a means to measure and manage 

risk.  The risk measure used in traditional portfolio problems has been variance 

(Markowitz, 1952).  Diversification provides a method to manage risk based on 

minimizing variance and covariance between assets. Variance is a valid risk measure and 

linear correlation is the appropriate measure of dependence when the returns of the 

assets in the portfolio are normally distributed (Szegö, 2005). The existence of normally 

distributed asset returns in real world situations has been shown to be limited (Just, and 

Weninger, 1999; Sun, et al., 2009).  Alternative risk measures and dependency measures 

have been developed to account for non-normal data (Stoica, 2006). 

When variance is used as the risk measure, all risk is treated the same.  Upside 

risk is penalized the same as downside risk.  This symmetric view of uncertainty is often 

considered to be counter intuitive to real-world situations (Alexander, and Baptista, 

2004).  Upside risk is often considered to be the riskless opportunities for unexpectedly 

high returns.  Individuals are often not concerned with the upside risk but with the 

downside risk where downside risk is measured as the volatility below the individual's 

target return.    
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The use of downside risk measures in portfolio settings has been embraced by the 

corporate finance and banking industry (Acerbi, 2007; Alexander, and Baptista, 2002; 

Artzner, et al., 1999; Buch, and Dorfleitner, 2008).  For example, the Basel Committee 

on Banking Supervision utilizes a downside risk measurement in their evaluation of 

capital standards for banks (BIS, 2004).  They use the downside risk measure estimated 

by value at risk (VaR).  Downside risk measures such as VaR have only been used in a 

number of agricultural applications (Manfredo, and Leuthold, 2001).  The use of VaR as 

a downside risk measure has also been found to be problematic (Artzner, et al., 1999).  

VaR is subject to many of the same limitations as variance.  It is only valid when the 

returns in a portfolio are normally distributed (Artzner, et al., 1999).   

Recent developments in additional downside risk measures have led to a class of 

risk measures referred to as coherent risk measures (Rockafellar, and Uryasev, 2000).  A 

risk measure is considered to be coherent if it satisfies the properties of  translation 

invariance, subadditivity, positive homogeneity, and monotonicity (Acerbi, 2007).  One 

risk measure that has been found to satisfy these properties is conditional value at risk 

(CVaR).  CVaR measures the expected value of losses for a given probability 

conditional on losses less than or equal to VaR for that probability. 

The two most popular methods of computing downside risk measures are the 

variance-covariance method and Monte Carlo simulation (Duffie, and Pan, 1997).  The 

variance-covariance method is subject to the assumption of multivariate normality.  The 

Monte Carlo method provides more flexibility and allows the incorporation of copulas to 

model the multivariate relationships.   
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Copulas provide more flexibility in modeling the dependence between net returns 

generated at different location and thus overall risk faced by a producer.  Copulas allow 

the modeling of the marginal distributions separately from the multivariate distribution.  

This provides the flexibility to fit each marginal distribution to the most appropriate 

distribution.  Once the marginal distributions have been specified, the copula function is 

fit to the multivariate distribution.  Or in other words, the copula couples together the 

marginal distributions to the multivariate distribution.  The copula function can capture 

non-linear dependence and provide a more accurate picture of the relationship between 

assets.    

The development of alternative risk and dependence measures, such as CVaR 

and copulas, has opened the door to reexamine the traditional portfolio problem.    In 

agricultural settings, the applications alternative risk measures is particularly applicable 

because of the changing nature of the agricultural industry.  In particular, traditional 

family farms have been replaced by commercial agricultural enterprises that are focusing 

more on specialized production than crop mix diversification (Mishra, El-Osta, and 

Sandretto, 2004).  This transition from the traditional family farm to an industrialized 

production enterprise has opened new ways for risk diversification in agribusinesses 

(Boehlje, and Lins, 1998; Vedenov, and Barnett, 2004; Zhu, Ghosh, and Goodwin, 

2008).  To help manage the risk, some of these commercial enterprises have begun to 

diversify geographically (Larsen, 2008).  

Previous analysis of geographical diversification research has provided no clear 

answers as to its effectiveness as a risk management tool (Davis, et al., 1997; Krueger, 
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Salin, and Gray, 2002; Nartea, and Barry, 1994). However, part of the confusion may lie 

in weaknesses of the methodology used in the analysis.  Traditional reliance on variance 

minimization or mean-variance optimization criterion may lead to diversification 

strategies that penalize upward deviations from the target revenue.  In addition, the 

dependence between revenue streams generated at different locations is typically 

measured through linear correlation, which may affect the results when the joint 

distribution of returns is non-elliptic (e.g. not a multivariate normal).  The objective of 

this study is to analyze the portfolio allocations when these alternative dependence and 

risk measures are used in a single period portfolio problem.  This is done by analyzing 

the portfolio choice using the CVaR/copula method versus CVaR/multivariate normal 

assumption.  The efficient set of both portfolio models are presented as well as 

comparisons of portfolio allocations for different levels of risk aversion.   

The results from both models provide a means to analyze the effectiveness of 

geographical diversification as a way to manage risk.  More specifically, annual net 

returns from dry land wheat production are collected for three regions – Texas, 

Colorado, and Montana.  A copula-approach is used to calculate the joint distribution of 

the returns at each location and thus the combined return of the enterprise.  This study 

advances previous research in two important ways.  First, it combines copulas (the 

dependency structure model) and CVaR (risk management criterion) to analyze risk 

management problems in agriculture.  Furthermore, geographical diversification 

between states is addressed.   
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3.2   Geographical Diversification as a Risk Management Strategy 

Previous studies of geographical diversification in agriculture have produced 

somewhat contradictory results.  Nartea and Barry (1994) analyzed the costs and returns 

of geographical diversification in Central Illinois to determine whether geographical 

diversification was a legitimate risk management strategy for individual grain growers. 

After comparing the increases in revenues received with increases in transportation and 

monitoring costs and losses due to poor machinery coordination, the authors concluded 

that there was no realizable gain from diversifying geographically in Central Illinois.  

Davis et al.(1997) examined the impact of geographical diversification on peach 

orchards in Georgia.  The authors argued that weather related production risks could be 

reduced due to spatial scattering of production activities.  Furthermore, peach production 

provided a unique example because of the lack of alternative risk reduction instruments 

such as government support programs and financial instruments.  Using a stochastic 

production function, the authors determined the variability of yield that could be reduced 

by geographically scattering peach orchards.  They found that for every mile increase in 

distance between orchards, correlation between yields dropped by 2%.  The authors 

concluded that implementing geographical diversification was a legitimate risk reduction 

strategy and geographical diversification could also enhance the long-term sustainability 

of the peach production. 

3.3   Risk Measures and Copulas 

Resource allocation problems traditionally utilize portfolio methods in order to 

determine how to best diversify resources (Crisostomo, and Featherstone, 1990; 
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Harwood, et al., 1999; Hennings, Sherrick, and Barry, 2005).  The portfolio analysis, in 

turn, relies on the mean-variance optimization framework introduced by Markowitz 

more than 50 years ago (Markowitz, 1952).  Since then numerous studies highlighted 

shortcomings of the mean-variance optimization and suggested alternative decision 

criteria (Alexander, and Baptista, 2004). 

3.3.1   Coherent Risk Measures 

The finance industry has embraced and utilized the value-at-risk (VaR) criterion 

(Jorion, 1996), however the applications of VaR in agricultural economics has been 

limited (Manfredo, and Leuthold, 2001).  VaR is a convenient way to assess the 

magnitude of a variable of interest associated with a given probability of occurring.  For 

instance, if applied to farm revenues, VaR at 5% indicates the level below which the 

revenues would drop less than 5% of the time (i.e. revenues will be greater than that 

95% of the time).  The advantages of VaR are its simplicity and intuitive interpretation. 

Recent research however, has shown that VaR does not possess the properties of a 

coherent risk measure, because it does not satisfy sub-additivity condition (Acerbi, 2007; 

Artzner, et al., 1999).  A particularly troubling implication for portfolio optimization is 

that the VaR of a portfolio of two securities may be greater than the VaR of each 

individual security (Alexander, and Baptista, 2004).  Furthermore, VaR is also shown to 

lead to erroneous results when the data is not normally distributed (Stoica, 2006).  The 

effectiveness of risk management relies on the effectiveness of the risk measures 

involved.  A current trend in risk management is that of using coherent risk measures. 
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Artzner (1999) proposed some properties that risk measures should have.  These have 

become known as the coherent risk measures.  The properties of the risk measure 𝜙  are:   

1. Translation Invariance:  In words, this means that by adding or subtracting a 

deterministic quantity l  to a position leading to a loss L the capital 

requirements are altered by exactly that quantity.  Mathematically:  

lLlL +=+ )()( φφ  

2. Subadditivity:  This is essential to further the argument that risk can be 

reduced by diversification.  For example, consider the losses from two 

different revenue streams, L1 and L2.  The combined risk of the two revenue 

streams �∅(𝐿1 + 𝐿2)� is less than or equal to the sum of the risks associated 

with each individual revenue stream  �∅(𝐿1) + ∅(𝐿2)�.  Mathematically:  

∅(𝐿1 + 𝐿2) ≤ ∅(𝐿1) + ∅(𝐿2) 

3. Positive Homogeneity:  This property is key because combined with property 

2 (subadditivity), the risk measure φ is indeed convex.  Mathematically:  

)()()( LnLLnL φφφ ≤++=   

4. Monotonicity:  This property can be stated as positions that lead to higher 

losses in every state of the world require more risk capital. 

If a risk measure satisfies these four risk properties, it is considered to be coherent.   

An alternative to VaR that has been gaining popularity and has been shown to be 

coherent is the Conditional Value-at-Risk (CVaR).  CVaR measures the expected value 

of losses for a given probability conditional on losses less than or equal to VaR for that 

probability.  The CVaR has been found to be a more consistent measure of risk than VaR 
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and generally resulted in more efficient portfolio choices (Alexander, and Baptista, 

2004; Rockafellar, and Uryasev, 2000).  CVaR, therefore, is used as a measure of risk 

reduction due to geographic diversification for the purposes of this study.  CVaR can be 

defined as the expected loss given that the loss is greater than or equal to the VaR.  The 

CVaR can be formally defined as 

  𝐶𝑉𝑎𝑅𝛼(𝑌) = 𝐸[𝑌|𝑌 ≥ 𝑉𝑎𝑅𝛼(𝑌)].                          (3.1) 

The variable (Y) in equation (3.1) can be considered to be the random expected loss. The 

fixed level α is used to define the α-quantile for VaR.   

3.3.2   Copulas 

Calculation of CVaR requires knowledge of the cumulative distribution function 

of portfolio returns, which in turn depends on the joint distribution of returns of all assets 

included in the portfolio.  Traditional approach to this type of problems relied heavily on 

the multivariate normal distribution (Markowitz, 1952).  However, the assumption of 

normality for agricultural prices and yields has been shown to be inconsistent (Goodwin, 

and Ker, 2002; Just, and Weninger, 1999).  Copulas are an alternative method of 

modeling joint distributions that has been gaining popularity in financial literature 

including portfolio analysis (Alexander, Baptista, and Yan, 2007; Alexander, Coleman, 

and Li, 2006; Bai, and Sun, 2007; Bouyé, et al., 2001; Clemen, and Reilly, 1999; Dias, 

2004; Hennessy, and Lapan, 2002).  The main advantage of copulas is their flexibility in 

specifying the marginal distributions of prices and yields while properly specifying the 

dependency that exists between them.  While copulas have been used in finance for quite 

some time the applications of copulas in the agricultural literature are recent (Vedenov, 



 

 

43 

 

2008; Zhu, Ghosh, and Goodwin, 2008).  This study uses copula methodology to model 

the joint distribution of random variables of interest, which is needed for calculation of 

CVaR criteria. 

The application of copulas to modeling multivariate distributions is described in 

detail in numerous books and research articles (Cherubini, Luciano, and Vecchiato, 

2004; Nelsen, 2006).  For the purpose of this paper, a basic treatment of copulas is 

included to the extent required by the analysis1.  A copula function is formally defined as 

an n-dimensional multivariate cumulative  distribution function defined on the n-

dimensional unit cube n]1,0[  with the properties (i) 0),,( 1 =nuuC   if any 

,,,1,0 niui ==  and (ii) ii uuC =)1,,1,,1,,1(   for any .,,1, niui =   The copulas are 

related to joint distributions through Sklar’s theorem, which (in two-variable case) 

postulates that if H is a joint distribution function with margins F  and G , then there 

exists a copula function C  such that for all Ryx ∈, , ))(),((),( yGxFCyxH =  (e.g. 

(Nelsen, 2006). 

The Sklar theorem allows one to construct joint distribution of several random 

variables based on their marginal distributions and a copula.  By definition there are an 

infinite number of copula functions and thus an infinite number of joint distributions that 

may be generated for given marginals.  Various copula families have been used in risk 

research (e.g. Gaussian, Archimedean, etc. (Hennessy, and Lapan, 2002)).  Three 

                                                 
1 For a complete review of copula theory refer to Joe, H. 1997. Multivariate Models and Dependence 
Concepts. D. R. Cox, ed. London, UK: Chapman & Hall, Nelsen, R. B. 2006. An Introduction to Copulas. 
2nd Edition. Springer Series in Statistics. New York: Springer. 
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copulas from Archimedean family (Clayton, Frank, and Gumbel), Gaussian, and T 

copula are used in this research.   

3.3.2.1   Gaussian Copula 

The Gaussian Copula is an extension of the multivariate normal distribution but 

it can be used to model multivariate data that may exhibit non-normal dependencies and 

fat tails. The Gaussian Copula is formally defined as 

𝐶(𝑢1, … ,𝑢𝑛; Σ) = Φ𝐾(Φ−1(𝑢1), … ,Φ−1(𝑢𝑛);Σ),                            (3.2) 

where )(⋅Φ  is the cumulative distribution function of the standard normal distribution 

and Σ  is the variance-covariance matrix.  In the two-dimensional case, the Gaussian 

copula density can be written as 

𝑐(𝑢, 𝑣) = 1
�1−𝜌2

𝑒𝑥𝑝 �
�Φ−1(𝑢)�

2
+�Φ−1(𝑣)�

2

2
+

2𝜌Φ−1(𝑢)Φ−1(𝑣)−�Φ−1(𝑢)�
2
−�Φ−1(𝑣)�

2

2(1−𝜌2) �,  (3.3)           

where ρ  is the linear correlation between the two variables and Φ(∙) is the cumulative 

density function of the standard normal distribution.  One of the useful features of the 

Gaussian copula is that it is parameterized by a single parameter (correlation coefficient) 

which can be estimated from historical data. 

3.3.2.2   T Copula 

The t copula is derived from the multivariate standardized t-Student distribution.  

It can be defined as 

𝐶(𝑢1,⋯ ,𝑢𝑛;∑, 𝜈) = 𝑇∑,𝜈�𝑡𝜈−1(𝑢�1),⋯ , 𝑡𝜈−1(𝑢�𝑛)�
′
,                           (3.4) 



 

 

45 

 

where 𝑇∑,𝜈 is defined as the standardized multivariate Student’s t distribution function, ∑ 

is the correlation matrix, and 𝜈 are the degrees of freedom.  𝑡𝜈−1(𝑢�) is used to denote the 

inverse of the Student’s t  cdf function.  In the two dimensional case, the T copula 

density can be written as 

𝑐(𝑢, 𝑣) = |∑|−1 2�
Γ�𝜐+𝑛2 �

Γ�𝜐2�
�
Γ�𝜐2�

Γ�𝜐+12 �
�
𝑛 �1+𝜁′∑

−1𝜁
𝜈 �

−𝜈+𝑛2

∏ �1+
𝜁𝑖
2

2 �
−𝜈+12𝑛

𝑖=1

 ,                           (3.5) 

where 𝜁 is the vector of the T-student univariate inverse distribution functions.  Both of 

these copulas are well formulated to take beyond the bivariate case.   

3.3.2.3   Archimedean Copulas 

Archimedean copulas are defined by  

                                 𝐶(𝑢, 𝑣) = 𝜑−1�𝜑(𝑢) + 𝜑(𝑣)�,     (3.6) 

where 𝜑 is the generator of the copula.  One of the most appealing features of 

Archimedean copulas is the relationship between the generator of the copula 𝜑, and 

Kendall’s tau.  This relationship can be defined by 

                                          𝜏 = 1 + 4∫ 𝜑𝛼(𝑡)
𝜑𝛼(𝑡)

1
0 𝑑𝑡,      (3.7) 

where 𝜏 is Kendall’s tau.  This provides a method of comparing rank correlation 

measures using different dependence structures.  Three specific Archimedean copulas 

are used in this research, Clayton, Frank, and Gumbel Copulas.  The Clayton copula is 

an asymmetric copula and exhibits greater dependence in the lower tail.  The Frank 

copula on the other hand is a symmetric copula and weights the tails of the data equally.  
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The Gumbel copula is an asymmetric copula and exhibits greater dependence in the 

upper tail.   

Traditionally, the implementation of copulas involves three steps:  select and 

construct a copula, estimate the parameters associated with the copula, and sample from 

the parameterized copula.  The Gaussian and t-copula are used in this research.  The 

details on their construction were discussed in the previous section.  Copula parameters 

are estimated through a maximum likelihood estimation method of the form of 

𝛿2 = 𝑎𝑟𝑔𝑚𝑎𝑥𝛿�2 ∑ ln 𝑐�𝐺�𝑥(𝑥𝑡),𝐻�𝑦(𝑦𝑡),𝛿2�,𝑇
𝑡=1                              (3.8) 

where 𝛿2 is the estimated copula parameter, argmax is the mathematical functions that 

provides the argument associated with the maximum, ln is the natural logarithm, and 

𝐺�𝑥(𝑥𝑡),𝐻�𝑦(𝑦𝑡) are the estimated marginal distributions for x and y.  To avoid any 

distributional assumptions, a non-parametric distribution is used for the marginal 

distributions.  The final step is to draw random numbers from the estimated copula.  

Using this framework, a large sample of random values can be generated to be used as 

input into the optimization routine.    

3.4   Methodology 

The first step in developing the optimization model to evaluate the risk impacts 

of geographical diversification is to define the returns.  This research is focused on the 

specialized production of dry land wheat in three separate production regions.  In the 

initial step, it is assumed that prices (p) and yields (y) are deterministic.  The 

multiplication of prices and yields results in the gross revenue of wheat production (GR) 

defined below in equation 3.9. 
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   𝐺𝑅 = 𝑤 ∙ 𝑝 ∙ 𝑦.                                                                 (3.9) 

 In the above case, w represents the amount of acreage devoted to production.  In this 

single farm case, that is simply defined as the base acreage allocated to production 

(5,000 acres in this case).  The next step is to incorporate the costs of production into the 

revenue equation to generate the profit. 

          𝜋 = 𝐺𝑅 − 𝑐𝑤.                                                       (3.10) 

Profit (π) is defined as the gross revenue less the cost of production (c) that is a function 

of the number of acres in production (w).  In the case that the producer may operate in 

more than one location, the following modifications are made to the profit equation. 

   𝜋 = ∑ [𝑤𝑛
𝑖=1 𝑖 𝑝𝑖𝑦𝑖 − 𝑐𝑖𝑤𝑖],                                        (3.11) 

where 𝑤𝑖 represents the amount of acres allocated to each geographic location i with n 

possible locations.  In this research, n represent the three possible growing regions.  For 

simplicity sake, it is assumed that the acreage allotment is continuously divisible among 

locations.  This allows the decision maker to allocate any given number of acres to any 

of the three regions given it satisfies the total acreage constraint.  In addition  𝑝𝑖𝑦𝑖  

represent the prices and yields from each location and 𝑐𝑖𝑤𝑖  is the cost equation that is 

associated with each geographic region.   

The specification of equation (3.11) allows the formulation of an optimization 

problem that consists of maximizing profit subject to some constraints.  Standard 

portfolio theory relies on the statistical measure of variance as the risk measure.  This is 

modified by implementing CVaR as the risk measure.  This allows the maximization of 

profit subject to reducing the “downside” risk.  This has the obvious benefit of only 
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penalizing losses and not “upside” risk, which is one of the drawbacks of the mean-

variance optimization approach. 

Formally, the portfolio optimization problem with the CVaR risk constraint can 

take two forms.  The first consists of the CVaR function as the objective function.   In 

this case, the CVaR is being minimized subject to a certain level of returns. 

Alternatively, the CVaR could be incorporated as a risk criterion and the objective 

function would consist of maximizing returns.  This is the formulation that is used in this 

paper and takes the form of:  

𝑀𝑎𝑥 𝜋 = ∑ [𝑤𝑖𝑝𝑖𝑦𝑖 − 𝑐𝑖𝑤𝑖].𝑛
𝑖=1                                   (3.12) 

Subject to  

    𝐶𝑉𝑎𝑅(𝑤𝑖;𝛼) ≤  𝜋0                                                           (3.13) 

 
∑ 𝒘𝒊 ≤ 𝑨𝒏
𝒊=𝟏                                                                          (3.14) 

 

where  𝜋 in equation (3.12) represents the sum of net returns from each geographic 

location i  and 𝑤𝑖 is the acreage allocation to each geographic location.  Equation (3.13) 

represents the CVaR constraint which is a function of the acreage allocation for each 

region (𝑤𝑖) and a confidence level 𝛼.   𝜋0 is the minimum level of returns specified in 

the model.  In the case of geographic diversification, this minimum level of returns could 

be calibrated to account for the additional costs associated with producing in multiple 

regions.  Equation (3.14) represents the land constraint.  The total amount of acreage 

∑ 𝑤𝑖
𝑛
𝑖=1  has to be less than or equal to the land endowment A.  
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3.5   Data 

To analyze the effectiveness of geographical diversification as a risk 

management strategy, three geographically distinct areas were chosen based on 

harvesting windows and distance criteria — Pampa, TX, Akron, CO, and Big Sandy, 

MT.  All three areas grow non-irrigated wheat.  Non-irrigated winter wheat yields are 

used for Texas and Colorado while non-irrigated spring wheat yields are used for 

Montana with yields for both spring and fall plantings used for analysis. County level 

yields and prices from 1976 until 2008 (Figures B.1 and B.2) were collected from the 

National Agricultural Statistical Service (USDA-NASS, 2008).  

The historical yields and prices were used to calculate gross annual returns for 

each location.   Gross returns are adjusted for inflation to year 2005 using the Implicit 

Price Deflator for gross national product (USDC, 2009).  Gross returns were also 

adjusted for direct government payments.  It was assumed that the government base 

acreage was equal to the available production acreage on the farm.  A five-year average 

yield was calculated as the base yield for the farm.  The revenue from the direct 

payments was incorporated into the gross returns.  Wolfley (2008) estimated farm-level 

operating costs for each of the three area.  These costs estimates were used to calculate 

net-annual returns for each farm.  To be consistent with the gross returns, the estimated 

costs were also adjusted to year 2005 dollars.  The operating cost for Texas is $75.82, 

Colorado is $66.67, and Montana is $70.98 an acre.   

The summary statistics for the three regions are found in Table B.1.  The mean 

return for Montana is $127.73, Colorado is $105.35, and Texas is $70.33.  As expected, 
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Montana with the highest return also had the highest standard deviation (59.46).  

Surprisingly, Colorado (34.96) had the lowest standard deviation with Texas (44.37) 

falling in between the two states.  The minimum and maximum returns for Texas and 

Montana reveal that both areas have the potential for high returns but also the potential 

for extremely low returns.  Colorado on the other hand historically has not seen the large 

returns and losses.  Locating production in Colorado from both the Texas and Montana 

perspective could provide some risk reduction based solely on the visual inspection of 

the summary statistics.   

Included in the summary statistics is an analysis of the higher moments of the 

data, specifically the third and fourth moments.  As expected from the summary 

statistics, Colorado had the lowest skewness and kurtosis.  Texas had the highest 

skewness and kurtosis.  Figure B.3 provides a visual method of evaluating the skewness 

and kurtosis of each production region compared to the normal distribution.  The normal 

distribution has zero skewness and a kurtosis value of 3.  All three regions have higher 

skewness and kurtosis than the normal distribution.  Taking this analysis one step 

further, a normality test was done for each region (Table B.2).  The normality tests 

confirm the fact that statistically, Colorado follows a normal distribution, but Texas and 

Montana do not.  These results further motivate the need to go beyond linear correlation 

to measure the dependence between the three regions.  The absence of normality justifies 

the additional effort of using copulas to model the joint distribution of returns from the 

three regions.   
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3.6   Results 

The objective of this research is to evaluate the effectiveness of implementing 

asymmetric dependence structures and risk measures into a portfolio optimization 

problem.  The discussion of results consists of two parts and addresses this objective.  

The first part is a discussion of the copula estimation.  This consists of a discussion of 

which copula provides the best fit and a discussion of the different copula dependence 

measures.  The second part of the results consists of a discussion of the actual portfolio 

optimization results including an analysis of the efficient frontiers using different 

dependence structures.   

3.6.1   Copula Results 

The first step in estimating copulas is to specify the marginal distribution for the 

returns from each region (Figure B.4).  The Akaike information criterion (AIC) was used 

to determine the most appropriate marginal distribution.  The Pearson5 distribution is the 

most appropriate distribution for the Texas returns.  An Extreme Value Max distribution 

provided the best fit for both Montana and Colorado returns.   

The fitted marginal distributions provide the necessary information to estimate 

the copulas.  SIC, AIC, and HQIC criterion were used to select the most appropriate 

copula.  The AIC has been shown to be the best for smaller number of observations.  

Based on the AIC, the Clayton copula provides the best fit, followed closely by the 

Frank and Gaussian copulas (Table B.3).  Consistent across all three criteria is the fact 

the Gumbel copula does not provide a good fit which implies that there is little upper tail 

dependence.  On the other hand, the Clayton copula fit measures indicate that there 
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exists stronger lower tail dependence.  Given these fit statistics, the rest of the analysis 

focuses on the Clayton, Frank, and Gaussian copulas.   

Figure B.5 illustrates the difference when simulating from the Clayton, Frank, 

and Gaussian copulas.  Each Figure represents 1,000 simulations from each copula.  As 

expected, the Clayton and Frank have more dependence in the lower tails while the 

Gaussian has more dispersion throughout the simulated data.  Figures B.6 and B.7 

illustrate the simulated returns using the Clayton copula and multivariate normal 

relationships.  The result of using the Clayton copula to capture the lower tail 

dependence is illustrated in the two Figures.   

As discussed earlier, Kendall’s Tau measure of rank correlation can be calculated 

using the copula estimation results.  This provides a means of comparing ‘apples to 

apples’ when analyzing different dependency measures.  Table B.4 consists of Pearson 

linear correlation and Kendall’s Tau based on copulas and based on standard method.  

The Pearson correlation measure is greater than all the other methods.  Focusing the 

comparison on the Rank Correlation measures, the copula based measures are greater 

than the standard method in all cases (Figure B.6).  This result implies that the copula 

methods are capturing more of the dependence that exists between the individual returns.  

When comparing the results across copulas, the Frank and Gaussian Copula exhibit a 

stronger relationship between Texas returns and Colorado returns than does the Clayton 

Copula.   The other relationships show similar magnitudes of rank correlation measures.   
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3.6.2   Efficient Frontiers 

The efficient frontiers provide a starting point for examining the differences that 

occur if alternative dependence structures are incorporated into the portfolio 

optimization.  The efficient frontiers for both asymmetric and normal dependence 

structures are illustrated in Figure B.7.  The y-axis represents returns per acre and the x-

axis represents the CVaR risk measure.  The efficient frontiers illustrate the difference 

when asymmetric dependence is incorporated.  Recall that the Clayton copula 

emphasizes lower tail dependence while the normal distribution treats the upper and 

lower tails equally.  The normal frontier has higher levels of returns with lower levels of 

risk over all the points on the efficient frontier.  Or in other words, by assuming non tail 

dependence, the multivariate normal approach underestimates the risk associated with a 

given level of return.  This is consistent with the copula estimation results where the 

Clayton copula provides the best fit.   Thus, by using the Clayton copula, more emphasis 

is placed on the downside risk.  This is clearly seen in the efficient frontiers where for 

the same expected returns, the asymmetric frontier had a higher (more risky) CVaR level 

than the normal frontier.   

3.6.3   Portfolio Allocations 

The efficient frontiers provide a generalization of the possible risk efficient 

portfolios.  The next step is to analyze the actual allocations for the three production 

regions.  Figure B.8 illustrates the efficient allocations for the asymmetric and normal 

dependence structures.  The vertical axis represents the percent of acreage allocation and 

the horizontal axis is the expected return. As expected, the level of allocation differs 
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based on the expected return and this is consistent for both dependence structures.    The 

acreage allocation shifts from all Texas to a combination of all three to finally all 

acreage in Montana as the expected return gets larger.  When comparing the two 

different dependence structures, the main allocation difference occurs with Montana 

acreage becoming part of the efficient portfolio allocation sooner for the asymmetric 

dependence case.  This is evidence of the fact that assuming a symmetric dependence 

structure is not capturing the tail risk that exists in Colorado.  The asymmetric case takes 

that tail loss into consideration and for this reason incorporates acreage from Montana 

into the efficient acreage allocation.   

Figure B.9 helps to separate out the allocations for the three regions.  The 

acreage allocations for Texas are similar for both dependence structures.  The Colorado 

allocations illustrate the difference that was also seen in Figure B.8.  Under the normal 

dependence case, the acreage allocation for Colorado increases faster than the 

asymmetric dependence case.  This is also seen in the Montana allocations where under 

the asymmetric case, acreage is shifted to Montana sooner than in the normal case.  This 

illustrates once again the impact of including the lower tail dependence that is captured 

by the Clayton copula.  By ignoring the lower tail dependence, efficient allocations 

would consist of more acreage in Colorado and would not use Montana to reduce the 

risk of the acreage allocation.   

The results illustrate that ignoring asymmetric dependence structures is not a 

trivial matter.  The copula fit statistics illustrate that the data used in this data does 

exhibit tail dependency and should not be ignored.  The Clayton copula specification 
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provides a method to capture the tail dependency that exists in the multivariate structure 

of the data.  The efficient portfolio frontiers illustrate an applied case of not accounting 

for tail dependency.  Using the CVaR as a measure of risk aversion, the acreage 

allocation and risk exposure is different for the asymmetric dependence structure versus 

the normal dependence structure.  Across the entire efficient frontier, the normal 

approach had a lower level of risk for the same level of return when compared to the 

Clayton copula specification.  In other words, by ignoring tail dependency, risk may be 

underestimated for a given level of expected returns.   

3.7   Conclusions 

As agriculture becomes more industrialized, the role of alternative risk measures 

and dependency structures will become more utilized.  In this case, an asymmetric 

dependence structure along with a coherent risk measure (conditional value at risk) was 

applied to geographical diversification.  In this case, geographical diversification relates 

to producing crops in three different regions.  The land portfolio consisted of dry land 

wheat production acres in Texas, Colorado, and Montana.   

Two of the three production regions were found to have non-normal returns 

distributions.  Given this, two different dependency structures were used to model the 

data.  A Clayton copula was used to capture lower tail dependence and was also found to 

provide the best fit based on Akaike information criteria.  The second dependency 

structure was a Gaussian copula which assumes symmetric dependence in the upper and 

lower tails.  These two measures were used to estimate the multivariate relationship 

between the three production regions.  The portfolio optimization routine consisted of 
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maximizing expected returns and minimizing the risk (CVaR).  As expected, the risk 

exposure changes as the acreage is moved from the least risky region, Texas, to the most 

risky, Montana.   

The implications of using an asymmetric dependence structure, or ignoring the 

asymmetric relationship, were also illustrated.  The efficient frontiers under both 

assumptions showed that ignoring the asymmetric nature of the data could lead to 

optimal portfolio allocations that could underestimate the actual risk exposure.  All 

optimal allocations under the symmetric dependence assumption had a lower risk 

exposure level than under the asymmetric dependence assumption.  The implications of 

these results provide researchers with more motivation to move beyond the standard 

assumptions of linear correlation and normality.    

 The results of this report do not take into consideration the costs that could be 

involved with geographical diversification involving separate states.  The significant 

distance between production regions means that issues such as transportation, equipment 

allocation and management of the production areas must be addressed.  Each one of 

these topics could be topics for further research.   
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4.   SCENARIO GENERATION FOR DISCRETE STOCHASTIC MULTI-

STAGE PROGRAMS USING MOMENT MATCHING METHODS AND 

COPULAS TO MEASURE DEPENDENCIES 

 

4.1   Introduction 

The representation of uncertainty is a key element in a stochastic programming 

model (Topaloglou, Vladimirou, and Zenios, 2008a).  This representation of uncertainty 

needs to be coherent and in a form that is suitable for computation.  The formulation of a 

multi-period stochastic programming model exacerbates the problem of representing the 

uncertainty in a form that is computationally tractable because of the curse of 

dimensionality.  The curse of dimensionality requires that multivariate continuous 

distributions or discrete distributions with a large number of outcomes be represented by 

a discrete approximation of the underlying distribution.  Scenario generation is a method 

to obtain a discrete set of outcomes for the random variables.  These set of discrete 

outcomes need to be small enough for computational ease but still represent the 

stochastic nature of the random variables.  The random variables in this scenario 

generation framework are implemented into the optimization model as uncertain 

parameters.  Random variables can include variables such as stock prices, commodity 

prices, yields, interest rates, and credit constraints, depending on the research problem. 

The discretization of both the random variables and the probability space result in a 

framework where the random variables take finitely many values.  This also implies that 

the factors driving the risky outcomes are estimated via the generated scenarios.  These 
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generated scenarios can also be considered to be a sequence of events.  Given this 

framework, the uncertainty in later time stages is captured by finitely possible outcomes 

for the next observation.  This branching process of events is represented using a 

scenario tree.  Each branch of the tree represents possible values of the random 

variables.  An ideal scenario tree would represent the whole universe of possible 

outcomes of the random variables which would include optimistic and pessimistic 

projections. 

Several different methods have been proposed to generate scenarios.  Some of 

the common techniques used are time series econometric techniques such as vector 

autoregressive models and statistical methods including random sampling and 

bootstrapping. (Kaut, and Wallace, 2007).  More recently, neural networks and copulas 

have begun to be used to generate scenarios (Kaut, and Wallace, 2009).  The use of 

copulas to capture the multivariate relationship has been limited to single period 

problems and has not been extended to a multi-period application.  The difficulty with 

time series, random sampling, and bootstrap techniques is that it has been shown that a 

large sample has to be drawn for the scenario generation technique to match the 

continuous distribution (Hoyland, and Wallace, 2001).  In a multi-period setting, the 

curse of dimensionality limits the number of random samples and often hinders the 

effectiveness of these methods.  An alternative to these methods that models the first 

four moments of the data and also the multivariate structure is a moment matching 

method (Hoyland, and Wallace, 2001).  This method uses a non-linear optimization 
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routine to minimize the statistical distance between the statistical moments of the 

generated discrete data and the statistical moments of the underlying distribution. 

Previous uses of moment matching methods to generate scenario trees have 

relied on linear correlation to model the multivariate relationship between random 

variables.  One of the drawbacks of linear correlation is that unless the random variables 

are normally distributed, the correlation that exists is not accurately measured.  To 

overcome this weakness, copulas have been used in financial studies (Clemen, and 

Reilly, 1999; Dowd, 2005; Joe, 1997; Kallenberg, 2008) to capture the correlation that 

exists between random variables.  The benefit of using copulas is that they model the 

marginal distributions of the random variable separately from the multivariate 

distribution.  This allows the flexibility of modeling the marginal distributions in the 

most efficient manner without the same distribution for each random variable.  The 

concept of using copulas to model scenarios has been applied to a single period setting 

but not to a multi-period application (Kaut, and Wallace, 2009).   

 The objective of this research is to extend the moment matching method of 

scenario generation by using copulas to capture the multivariate structure of the data.  As 

mentioned earlier, copulas have been used to generate scenarios in a single period setting 

and through a random sampling method but have not been used in the moment matching 

specification nor in a multi-period setting.  Incorporating copulas allows the flexibility of 

modeling the multivariate relationship beyond the normal assumption and the moment 

matching method allows the inclusion of skewness and kurtosis.  A farm geographical 

diversification problem is used to illustrate the application of the moment matching 
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scenario generation methodology.  The optimization problem consists of a discrete 

stochastic programming (DSP) model that is formulated to optimize a farmer’s portfolio, 

where the portfolio is the acreage allocations between three distinct geographic areas. 

 This section is organized as follows.  First, previous literature concerning 

scenario generation, multi-stage optimization, and copulas are presented.  Second, the 

methodology of the scenario generation and copulas are outlined.  Third, is a discussion 

concerning the DSP model, including a discussion of the objective function and 

constraints.  Fourth is a discussion of the moment matching results, copula fitting results, 

geographical diversification results, and conclusions. 

4.2   Literature Review 

Agriculture is a natural application of sequential decision problems.  The current 

decisions that producers make have implications on future actions.  These decisions are 

made with uncertain knowledge concerning the future, complicating the decision process 

(Kaiser, and Boehlje, 1980).  As stated by Hardaker et al. (1991), “Uncertainty is 

important because it affects the consequences of decisions in ways that decision makers 

are not indifferent about.”  Currently, agricultural producers are facing a myriad of 

future uncertainties.  These include but are not limited to the following:  changing 

governmental policies, highly volatile commodity prices, inflation rates, interest rates, 

and rising production costs.  Exacerbating this problem further is that these uncertainties 

need to be considered for multiple years during the planning process (Featherstone, 

Preckel, and Baker, 1990; Hardaker, Pandey, and Patten, 1991; Torkamani, 2005).  

Large capital purchases that generate returns over multiple periods and multi-year land 
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rental contracts and production contracts require that agricultural producers develop 

investment and production strategies beyond one year.   

Unlike in a traditional finance setting, changing an agricultural portfolio (crop 

mix) does not consist of the simple mechanism of buying and selling certain stocks 

(Robison, and Barry, 1980).  Capital assets in agriculture are often illiquid and are fixed 

in the short-term.  This situation, referred to as asset fixity, complicates the reallocation 

of crops resources (Edwards, 1959; Johnson, and Pasour, 1981).  Precise crop rotations, 

high capital costs, and costly entry and exit conditions into certain crops require that 

producers formulate planning strategies for multiple periods. 

Agricultural economists have tackled the problem of dealing with both the 

uncertainty and multiyear planning periods by using discrete stochastic programming 

(DSP).  Rae published two seminal articles concerning the application of discrete 

stochastic programming in agriculture (Rae, 1971a; Rae, 1971b).  In his first article, he 

examined a three-period fresh vegetable operation.  The states (random outcomes) were 

defined both by predefined weather conditions and crop prices.  He noted that one of the 

inherent weaknesses with DSP was the lack of more states or values for the stochastic 

variables.  The argument against more states was based on the “curse of dimensionality”.  

There is a tradeoff of complexity and solvability when using dynamic programs.  Rae’s 

second paper dwelt with viewing the problem using Bayesian decision theory.  He also 

investigated the use of alternative utility functions within the objective function.  He 

concluded that the ability of discrete stochastic programming to handle alternative utility 
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functions makes itself a useful tool when studying sequential decision problems in 

agriculture. 

 Discrete stochastic programming has been used to model multi-stage wheat 

marketing (Kaiser, and Appland, 1989; Lambert, and McCarl, 1989), fixed versus 

adjustable rate loans (Leatham, and Baker, 1988), capital structure (Featherstone, 

Preckel, and Baker, 1990), assess prospective technologies and organic farming (Flaten, 

and Lien, 2007; Torkamani, 2005), and economic efficiency (Torkamani, and Hardaker, 

1996).  In finance research, discrete stochastic programming is now used to model asset 

allocation and for portfolio optimization routines (Hochreiter, 2010; Infanger, 2006; 

Lien, et al., 2009; Mulvey, and Shetty, 2004; Topaloglou, Vladimirou, and Zenios, 

2008b). 

The topic of scenario generation for multi-stage stochastic programming has 

received very little attention in the agricultural economics literature.  Featherstone et.al 

(1990) discussed different methods of generating scenarios.  The method they used to 

generate the scenarios consisted of partitioning the joint probability distributions into a 

selected number of regions.  The conditional mean and probability for each region of the 

partitioned joint probability distribution was estimated.  This method maintains the mean 

of the distribution but has been shown to underestimate the variance (Miller and Rice, 

1983). Leatham and Baker (1988) used Monte-Carlo simulation to generate random 

stochastic values.  They then ranked the simulated values and defined a high and low 

value.  This method ignores the statistical characteristics of the underlying data 
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(moments) and would be likely to misrepresent the actual stochastic nature of the 

random variables. 

Previous research has noted that there are three key elements to discrete 

stochastic programming: (1) specification of the objective function, (2) definition of the 

constraints, and (3) definition of the random variables (Featherstone, Preckel, and Baker, 

1990).  This research relies on the previous definitions of the objective function and 

constraints provided by Featherstone, Preckel, and Baker, and focuses on the third 

element, definition of random variables.   

Inherent within the third element, defining the random variables, are three issues 

that must be addressed when representing a stochastic process with a finite number of 

generated scenarios.  Some authors have often referred to this representation as a 

deterministic equivalent of the underlying stochastic process.(Cornuejols, and Tutuncu, 

2009).  The first issue is modeling the correlation over time.  An autoregressive 

modeling structure is used to capture the autocorrelation between the variables.  The 

second issue is modeling the univariate and multivariate structure of the random 

variables.  The univariate structure is modeled using the moment matching technique 

which captures the first four moments.  The multivariate structure is modeled using 

copulas.  The third issue is determining the appropriate size of the scenario tree.  The 

number of scenarios needs to be large enough to accurately represent the stochastic 

process but small enough to allow the program to be solvable.  The next section 

discusses each of these three issues in more detail. 
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4.3   Scenario Generation 

 In a multi-stage stochastic program, the decisions can be made at multiple points 

in time, referred to as stages.  In a production agriculture framework, the stages would 

represent the annual cropping decision.  Let n ≥ 2 represent the number of stages. The 

random events that occur at each stage is represented by 𝜔 which is a 

vector(𝑜1,⋯ , 𝑜𝑛−1).  The first stage decisions are made before any component of 𝜔 is 

revealed.  Once the first stage decisions are made𝑜1 is revealed and then the second stage 

decisions are made.  After that, 𝑜2, is revealed and the same pattern continues on.  A 

scenario tree is often used to better illustrate the multi-stage decision framework. 

4.3.1   Scenario Trees 

 A scenario tree is shown in Figure C.1.  A scenario tree is defined by its nodes, 

and branches.  The nodes represent the states of nature at a specific point in time and are 

labeled 1 through 15 in Figure C.1.  Each node also corresponds with a specific stage or 

time stage.  In Figure C.1 these stages are labeled as t with t = 1,…, T.  Within the 

scenario tree there are three different types of nodes.  The root node, node 1, represents 

the initial stage or 'today' and is immediately observable from deterministic data.  There 

is only one root node per scenario tree.  Each node is in one stage and each node i in 

stage k ≥ 2 is adjacent to a unique node a(i) in stage k-1.  The node a(i) is referred to as 

the father of node i.  For example, the father of node 5 is node 2, or a(5) = 2.  Leaf nodes 

are the final nodes in the scenario tree.  These nodes do not have any successors that 

follow them.  The actual scenario consists of the paths from the root node to the leaf 

nodes.  Thus the actual number of generated scenarios is equal to the number of nodes in 
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the last stage (8 in Figure C.1).  In between the root and leaf nodes are the intermediate 

nodes.  In this case, decisions will be made at the root and intermediate nodes.  Each 

branch of the tree represents a possible value of the random variable which implies that 

there is a probability of occurrence for each node.  At each stage, the sum of the 

probabilities for the nodes sums to 1.  An ideal scenario tree would represent the whole 

universe of possible outcomes of the random variables which would include optimistic 

and pessimistic projections. 

4.3.2   Scenario Tree Generation 

 The scenario tree provides a visual representation of the generated stochastic 

data.  The scenario generation approach using sequential optimization requires that the 

statistical properties of the random variables be specified.  The scenario tree is then 

constructed so that these pre-specified statistical properties are satisfied.  These 

properties are maintained by letting the stochastic variables and probabilities are 

decision variables in a non-linear optimization problem.  The objective function in the 

non-linear problem is to minimize the square distance between the specified statistical 

moments and the new generated statistical moment.  This minimization occurs at each 

node in the scenario tree.  This implies that the branches (and the associated random 

values for each branch) emanating from each node represent the statistical moments of 

the underlying distributions of the constructed scenario tree (Hoyland and Wallace, 

2001).  The optimization method applied in this research is referred to as a sequential 

optimization (Gulpinar, Rustem, and Settergren, 2004).  The sequential optimization 

implies that at each stage and node, the distance between the historical statistical 
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properties and scenario generated statistical properties is minimized.  The historical data 

is then updated with the scenario generated data and the historical moments are re 

estimated accounting for the new data.  The optimization method is then repeated for 

each node and stage. 

 Following the notation of Hoyland and Wallace (2001), the set of all specified 

statistical values is denoted by 𝑆 and the value of the specified statistical value 𝑖 is 𝑆𝑉𝑖, 

for all 𝑖 that exist in 𝑆. In this application, the statistical values in the set S consist of the 

first four moment of the historical distributions and the dependence measure between 

each random variable (thus i = 1,...,5).  The random variables and probabilities are 

denoted by x and p.  In this application, x would represent the random land prices and 

dry land wheat returns.  The mathematical expression of the statistical property 𝑖 can be 

defined as a function of the random variable x and probability p, 𝑓𝑖(𝑥,𝑝).  In this 

application 𝑓𝑖(𝑥,𝑝) is used to define the first four central moments and the dependence 

measure between i and j2.  The objective is to construct x and p so that the sum of square 

deviations between the historical statistical properties and the statistical properties of the 

constructed distributions is minimized.  In its most general form, a scenario generation 

model can be specified as:  

min𝑥,𝑝 ∑ 𝑤𝑖(𝑓𝑖(𝑥,𝑝) − 𝑆𝑉𝑖)2𝑖∈𝑆                                             (4.1) 

𝑠. 𝑡.   ∑𝑝𝑖 = 1, 𝑝 ≥ 0,                                                          (4.2) 

where 𝑤𝑖 is the weight of statistical property i and the other variables are the same as 

previously defined.  Equation (4.2) is the probability constraint which forces the 

                                                 
2 The specifics of the dependence measures are discussed in Subsection 4.2.3. 
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probabilities to be greater than zero and sum to one.  A more detailed model is provided 

below. 

 The non-linear problem specified above is often not convex, which implies that 

the solution may be a local optimum and not a global optimum.  In many cases this is not 

satisfactory, but in the case of scenario generation, the local optimum is sufficient 

(Gulpinar, Rustem, and Settergren, 2004).  An objective value close to zero indicates 

that the constructed distribution has a good match to the underlying distribution.  The 

weights (𝑤𝑖) can be used to incorporate relative importance to the statistical 

specifications. 

 The advantage of using an optimization approach is that any central moments 

and co-movements can be part of the statistical specifications of the distribution and 

implemented into the objective function found in equation 1(Hoyland, and Wallace, 

2001).  The first four moments will be considered in this study.  The dependency 

between variables will be modeled using copulas which are discussed in the next section.  

Let 𝐼 = (1,2,...n)  denote the set of random variables. Let 𝑀𝑖𝑘, , for k = 1, 2, 3, 4, be the 

first four central moments of the historical distribution of random variable i.  The 

dependence between random variable 𝑖 and 𝑙 (such that 𝑖, 𝑙 ∈ 𝐼 and 𝑖 < 𝑙)  is denoted by 

𝐷𝑖𝑙. Let 𝐵𝑡 be the number of branches from a node at stage 𝑡 = 0, … ,𝑇 − 1.  The 

scenarios 𝑥𝑖𝑗 for random variable 𝑖 ∈ 𝐼 and probabilities 𝑝𝑗 for 𝑗 = 1, … ,𝐵𝑡 of the 

historical distributions are decision variables in the following non-linear optimization 

problem: 
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 min𝑥,𝑝 ∑ ∑ 𝑤𝑖𝑘(𝑚𝑖𝑘 −𝑀𝑖𝑘)2 + ∑ 𝑤𝑖𝑙(𝑑𝑖𝑙 − 𝐷𝑖𝑙)2𝑖,𝑙∈𝐼,𝑖<𝑙
4
𝑘=1

𝑛
𝑖=1                (4.3) 

            𝑠. 𝑡.    ∑ 𝑝𝑗 = 1,           𝐵𝑡
𝑗=1                                                                              (4.4) 

𝑚𝑖1 = ∑ 𝑥𝑖𝑗𝑝𝑗,      𝑖 ∈ 𝐼,𝐵𝑡
𝑗=1                                                                            (4.5) 

𝑚𝑖𝑘 = ∑ �𝑥𝑖𝑗 − 𝑚𝑖1�
𝑘
𝑝𝑗,      𝑖 ∈ 𝐼,   𝑘 = 2,3,4,𝐵𝑡

𝑗=1                                         (4.6) 

𝑑𝑖𝑙 = 𝐶�(𝐹𝑖(𝑥𝑖),𝐹𝑙(𝑥𝑙)�,               𝑖, 𝑙 ∈ 𝐼 and 𝑖 < 𝑙                                         (4.7) 

𝑝𝑗 ≥ 0,   𝑗 = 1, … ,𝐵𝑡,                                                                                     (4.8) 

where 𝑤𝑖𝑘 and 𝑤𝑖𝑙 are weights which  capture the relative importance of the central 

moments and  dependence of the random variables 𝑖, 𝑙 ∈ 𝐼.  The first half of the objective 

function (4.3) represents the minimization of the square norm's distance between the 

scenario constructed moments (𝑚𝑖𝑘) and the historical moments (𝑀𝑖𝑘).  The second half 

of the objective function represents the minimization of the norm's distance between the 

historical dependence measure (𝐷𝑖𝑙) and the scenario constructed dependence measure 

(𝑑𝑖𝑙).  In this case, the dependence is measured by the Gaussian copula.  Thus the first 

half of the objective function matches the moments and the second half maintains the 

multivariate structure of the random variables.  The first constraint shows that the 

probabilities must sum to one at each branch.  The rest of the constraints are used to 

formulate the first four central moments of the variables and the copula dependence 

measure.  The last constraint is to ensure that probabilities are non-negative.   

 It is important to note that the estimated moments of the distributions are 

conditional on past history and are conditional on the associated path of the scenario 

tree.  This implies that the historical data is updated with the new scenario generated 
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observation after each scenario estimation.  Thus the updated historical moments of each 

distribution are estimated using both the historical observations and the new 

observations generated through the scenarios.  

4.3.3   Copulas 

As noted above, copulas are used to model the dependence that exists between 

the random variables.  The standard method to measure the dependence measure is the 

Pearson's correlation which is often referred to as the linear correlation.  Copulas are 

often the preferred method to capture this dependence because they are able to capture 

more than just the linear dependence because they allow the flexibility of separating the 

marginal distributions from the joint distribution.  An understanding of the origin of the 

word copula helps to explain better their usefulness in modeling joint distributions.  The 

word copula is derived from the word couple, or in other words, copulas couple the 

marginal distribution to the joint distribution.  The benefit of the flexibility that copulas 

allow is that marginal distributions can be modeled separately from the joint distribution.  

For example, under the assumption of multivariate normality, it is assumed that all 

marginal distributions are normally distributed.  If that is true, then there exists no 

problems, but as is often the case, the assumption of normality for the random variables 

may not be appropriate(Just, and Weninger, 1999).  Copulas allow the marginal 

distributions to be modeled individually and the copula function will join the individual 

marginal distributions to the joint distribution.  The evidence of the advantages of using 

copulas to measure dependence can be found in finance and statistics journals, and 

recently in the agricultural economics literature (Bai, and Sun, 2007; Clemen, and 
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Reilly, 1999; Joe, 1997; Patton, 2002; Rank, 2000; Trivedi, and Zimmer, 2005; 

Vedenov, 2008; Xu, 2005; Zhu, Ghosh, and Goodwin, 2008).  An extensive treatment of 

copulas can be found in numerous books and research articles (Patton, 2002). 

The origin of copulas can be traced back to the Sklar theorem (Sklar, 1959).  The 

Sklar theorem allows one to construct joint distribution of several random variables 

based on their marginal distributions and a copula.  By definition there are an infinite 

number of copula functions, therefore an infinite number of joint distributions that may 

be generated for given marginal distributions.  Various copula families have been used 

in risk research (e.g. Gaussian, Archimedean, etc. (Hennessy, and Lapan, 2002)).  The 

Gaussian copula fit the data the best (discussed in results section) and is used as the 

dependence measure3.  

The copula based joint cdf is obtained by transforming the marginal distributions 

to standard uniform distributions.  One can view this joint cdf as the joint distribution 

stripped of all information about the marginal distributions.  The only thing remaining is 

the information about the joint distribution multivariate structure.  Therefore, copulas 

enable the decoupling of the marginal distributions from the multivariate structure.  This 

gives the modeler much more flexibility in modeling multivariate relationships.  In this 

study, the marginal distributions are modeled using an empirical distribution.  This does 

not enforce any assumed distributional form on the marginal distributions. 

                                                 
3 Five different copulas were analyzed, Gaussian, T, Gumbel, Frank, and Clayton.  The Gumbel, Frank, 
and Clayton are all part of the Archimedean copula family (see Nelsen (2006) for detail concerning each 
copula).  An illustration of the shapes of the different copulas is shown in Figure C.6.  One of the 
advantages of using copulas is that more emphasis can be placed on the tails of the data and this is clearly 
evident with the Clayton and Gumbel copulas.  The T-copula has equal tail weights and so no emphasis 
can be placed on the lower tail of the data.  One of the main disadvantages of the Gaussian copula is that it 
places no weight on the tails of the data. 
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Implementing copulas into the scenario generation process consists of two parts.  

The first part consists of estimating the bivariate copula for each pair of data.  The 

parameters for the copula are estimated from the historical data.    

The next step consists of generating the actual scenarios.  The scenario 

generation method described above is used to generate the scenarios implemented into 

the mathematical model.  At each time period, a specified number of nodes are used to 

estimate the branches on the scenario tree and its associated probability. 

4.4   Farm Problem Specification and Data 

Traditional farm diversification problems have focused on crop mix in a given 

production region.  The optimal crop mix consisted of one that maximized returns while 

minimizing the risk in the traditional portfolio optimization framework.  This method of 

viewing diversification via crop mix has been the standard since the 1950’s (Heady, 

1952).  Changes in agriculture markets and the investments in agricultural land from 

large investment firms motivate a need to look beyond the traditional crop mix 

diversification approach.  Geographical diversification is a method being used by some 

producers and land investors to manage risk.  Often, these producers are highly 

specialized and focus production on one specific commodity.  The opportunity to 

diversify risk if production takes place in only one region is limited.  Geographical 

diversification provides an opportunity to diversify away some of the production risk 

associated with a given commodity by taking into consideration weather patterns, 

disease, and pest problems that are not homogenous among the regions.  
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4.4.1   Capital Allocation Model 

This type of asset allocation model can be viewed a multi-stage dynamic decision 

problem.  The decisions take place at discrete time points.  At each decision point the 

farmer has to evaluate the previous stage’s market conditions and the composition of the 

enterprise diversification.  At the same time, the farmer must evaluate future conditions 

such as future yields and prices.  All this information is then used by the farmer to 

reallocate or adjust how the land is allocated in three regions.  This could involve 

increased short term or long term borrowing because of increased operating expenses, 

machinery purchases, and land purchases.  This same decision process continues through 

the decision stages of the model. 

4.4.2   Specification of Objective Function 

At the beginning of each decision stage, the farm manager is faced with many 

important decisions.  Once a farmer makes a decision on land or crop allocation, it is 

often very costly and difficult to rearrange the land allocation.  Some of those decisions 

are the levels of investment in farmland, capital purchases such as machinery to service 

new crops or acreage, and debt financing on farmland and capital.  These decisions are 

not limited to one decision stage but will be made over a finite horizon planning stage.  

The decision process is even more difficult because these allocation decisions are based 

on the realization of uncertain events.  Because of this uncertainty, the farm manager’s 

objective in making these decisions is to maximize expected utility subject to land and 

capital constraints.  Specifically, for this problem, the farm manager is seeking to 

maximize the expected utility of terminal net wealth.  This model specification follows 



 

 

73 

 

the specification developed by Featherstone, Preckel, and Baker (1990) for a stochastic 

dynamic programming model. The objective function is defined as 

max
�𝑥𝑖,𝑗,𝑡�𝑡=0

𝑇 𝐸0[𝑢(𝑊𝑡)],                                                                  (4.9) 

for all T.                                                                   

Equation (4.9) specifies the objective function of this model.  The objective of 

this model is to maximize the expected utility of ending owner equity, where ending 

owner equity is used as the measure of terminal net wealth.  Ending owner equity is 

calculated as the income from production activities, less depreciation, interest expense, 

and family living withdrawals, plus the previous year’s owner equity at the terminal time 

period T.  Maximization of terminal net wealth is used because of the difficulty of 

implementing an additive utility function (Featherstone, Preckel, and Baker, 1990).  An 

additive utility function assumes that there is independence between periods.  In reality, 

the assumption of independence is often not the case, so terminal wealth is used to avoid 

that problem.  A discussion on the appropriateness of functional form for the utility 

function has been provided by both Rae (1971) and Featherstone , Preckel, and Baker 

(1990).  The non-separable negative exponential utility function (Torkamani, 2005) is 

used and defined as 

𝑈(𝑤) = 1 − 𝑒𝑥𝑝[−{(1 − 𝜆)𝑟𝑚𝑖𝑛 + 𝑟𝑚𝑎𝑥}𝑤],                   𝑓𝑜𝑟 0 ≤ 𝜆 ≤ 1,                 (4.10) 

where 𝜆 is the risk preference parameter with 𝑟𝑚𝑖𝑛 and 𝑟𝑚𝑎𝑥 are the upper and lower 

bounds of the coefficient of absolute risk aversion (𝑟𝑎) with w being the ending wealth.  

Torkamani (2005) provides the relationship between the coefficient of risk aversion, 

𝑟𝑚𝑖𝑛, 𝑟𝑚𝑎𝑥, and 𝜆 by specifying the following function: 
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𝑟𝑎 = (1 − 𝜆)𝑟𝑚𝑖𝑛 + 𝑟𝑚𝑎𝑥 ,       𝑓𝑜𝑟 0 ≤  𝜆 ≤ 1. 

The range of 𝑟𝑎 is also taken from the results derived by Torkamani (2005). 

4.4.3   Constraints 

 The constraints in this model consist of three types, land, machinery, and 

financial constraints (See appendix A for a mathematical formulation).  The first land 

constraint limits the amount of land sold or farmed to be equal to or less than the amount 

of land owned.  The second land constraint transfers the land from one stage to another.  

The third land constraint limits the total amount of land both rented and owned in each 

region to a specified amount.  This amount is given an upper bound and lower bound.  

The upper bound of land used in this research is 5,000 acres.  It is assumed that the 

farmer can feasibly operate this amount of acreage. 

The purpose of the machinery constraints are to ensure that there is enough 

machinery capacity to serve the acreage operated by the farmer.  The first machinery 

constraint sets the amount of machinery owned to be greater than the necessary amount 

to farm the owned and rented land.  The second machinery constraint transfers 

machinery from one stage to the next.  Though this constraint sounds very simple, just as 

with the land transfer, it is necessary the owned machinery value and capacity is 

properly transferred to subsequent stages.  The final machinery constraint sets the 

amount of machinery that needs to be purchased based on increases in acreage both from 

increased owned and rented land.   

There are three type of financial constraints used in the model.  Because funds 

available from borrowing are not limitless, a constraint is used to limit the amount of 
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borrowing.  The next constraint is a balance sheet constraint that enforces the standard 

accounting equation of total assets equal total liabilities plus owner’s equity.  The final 

constraint calculates the change in owner’s equity and transfers it to the subsequent 

stages.  The transfer of equity occurs until the final or terminal node which represents 

the end of the planning horizon.  At this point, the ending owner’s equity is the value 

used to measure wealth in the objective function. 

4.4.4   Farming Situation 

Prior to solving the dsp model, the base units needed to be specified for the 

representative farm and financial coefficients used in the model.  The initial owner’s 

equity is $1,100,000, with initial debt of $500,000, and assets of $1,600,000.  The 

transaction cost of selling land is assumed to be the standard 6% and for the machinery a 

15% level is used.  The 15% represents the additional cost that is incurred if machinery 

is sold or bought.  The dsp model was solved using various starting points and scenarios. 

One assumption that maintains fixed across all models is that the risk aversion parameter 

remains the same.  It is assumed that the farmer is risk averse and the RAC (risk 

aversion coefficient) is set at 0.05 (McCarl, and Bessler, 1989).  The model was first 

solved assuming that geographical diversification was not an option.  The production 

was constrained to the base region.  The model was solved three times, varying the base 

region between Texas, Colorado, and Montana.  The model was then solved assuming 

that the farmer could geographically diversify.  Once again, there was a base region and 

the farmer could allocate production to either the base region or the other two regions.  

The model was once again solved three times varying the base region between Texas, 
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Colorado, and Montana.  The base region began with the most acres and could not drop 

below a specified level of 3,000 acres. The results of each are discussed below. 

4.4.5 Land Data 

This research is concerned with growing dry land wheat in three potential 

growing regions.  The three different growing regions represent opportunities to 

diversify certain elements of production risk inherent in agriculture.  Similar to the 

classic stock portfolio case, the goal is to find the optimal allocation of land in the three 

regions.  The data necessary to analyze this problem are the actual net returns (gross 

revenue less cost of production) and the land prices for each region.   

Land is often not included as an investment instrument in the traditional farm 

portfolio analysis, but land is a large part of a farmer’s balance sheet and plays a pivotal 

role in obtaining credit.  As was seen in the 1980’s (Figure C.2) land values dropped 

dramatically causing a crisis to occur in the agricultural lending industry.  More recently, 

the concern has been over the rapid increase of land prices.  In a period of three years, 

2005-2008, land prices in Texas increased by 87%, Colorado by 39%, and Montana by 

88%.  High commodity prices, decreasing supply of farmland due to urbanization, and 

increased interest in farmland investments have driving much of the high demand of 

farmland.  The summary statistics of land prices are found in Table C.1.  Colorado had 

the highest mean value of land, but the value of land has not increased as fast as 

Montana and Texas.  Montana has seen the greatest change in farmland value.  This 

particular county in Montana is particularly known for consistently high wheat yields 

and the high wheat prices have been a large driver of the increase in land value.  The 
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mean increase in farmland value for the three regions over the past thirty years is $16 for 

Texas and Colorado, and $24 for Montana (Table C.2).  Land prices in all three regions 

exhibit skewness of greater than one which implies a departure from normality.  The 

kurtosis for a normal distribution is approximately three.  All three areas are greater than 

three and exhibit the need to account for kurtosis.  A histogram and pdf’s of land prices 

for the three regions illustrates the shape of the data (Figures C.3 and C.4).  All three 

regions exhibit the skewness and kurtosis inherent in the data with more weight being 

placed on the lower tails of the data.  The shape of the land prices illustrates the 

importance of not imposing the distributional assumption of normality.  The skewness 

and kurtosis exhibited in the data would be underestimated in the lower tail and 

overestimated in the upper tail.    

To account for the time series component that exists within land prices, an 

autoregressive model is used and is based on the specification provided by Lohano and 

King (2009):  

𝑃𝑡 = 𝛼0 + 𝛼1 𝑃𝑡−1 +𝛼2 𝑅𝑡−1 +𝜀2𝑡.                                      (4.11) 

After the first pass of estimations, it was found that the lagged values of gross returns 

(Rt-1) were not statistically significant, so the equation was re-estimated using OLS with 

the dependent variable as current land prices and the independent variable was lagged 

land prices and not lagged returns (Table C.3).  Each lagged term for Montana, 

Colorado, and Texas were found to be significant and the models illustrate that current 

land prices are explained by previous period land prices. The errors terms also satisfy the 

condition that they follow a white noise process (Table C.4). 
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4.4.6   Gross Returns Data 

Gross returns are calculated for each region using county level yields and prices 

gathered from National Agricultural Statistics Service and covered the time period of 

1974-2008(USDA-NASS, 2008).  Gross returns were also adjusted for direct 

government payments.  It was assumed that the government base acreage was equal to 

the available production acreage on the farm.  A five-year average yield was calculated 

as the base yield for the farm.  The revenue from the direct payments was incorporated 

into the gross returns.  Montana had the highest gross returns and also the highest 

standard deviation (Table C.1).  Colorado had the lowest standard deviation among the 

three production regions.  One note of caution with analyzing gross returns was the high 

returns that occurred in 2007 and continued in 2008 because of the record prices for 

commodities.  For example, the net returns, from 2005 to 2008, increased by 120% in 

Texas, 107% in Colorado, and 73% in Montana (Figure C.5).  All three regions also 

exhibit a non-normal shape (Figures C.3 and C.4) which is accounted for by including 

the third and fourth moments into the scenario generation routine.   

Unlike land prices, gross returns had no clear time component.  Although there 

were large deviations from 2005 to 2008, the previous time periods did not exhibit a 

large change.  For this reason, the stochastic nature of the data is modeled by using the 

underlying distributions.  The statistical characteristics of the underlying distributions for 

returns from the three areas were estimated and used in the moment matching 

estimation.   
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The final step was to analyze the normality of the data.  This was done using the 

Shapiro-Wilk normality test.  The results of the test are shown in Table C.6.  The null 

hypothesis that the returns and land residuals were normally distributed was rejected for 

Montana land residuals, Texas returns, and Colorado returns.  The results of this test are 

further validated by looking at skewness/kurtosis test (Table C.7).  The test shows that 

the Montana land residuals, Texas returns, and Colorado returns all exhibit statistically 

significant skewness and kurtosis.  Ignoring the higher moments of the data would not 

capture the ‘whole story’, thus ignoring possible risks.   

4.4.7   Correlation Analysis 

The correlations between the different production regions help to establish a 

preliminary hypothesis concerning the optimal allocation (Table C.8).  Following the 

traditional portfolio theory approach, negative correlation is one indicator that implies 

risk reduction through diversification while positive correlation implies less risk 

reduction benefits from diversification.  Net returns from Montana are negatively 

correlated with Texas and Colorado land prices.  They are also negatively correlated 

with Texas returns.  This would suggest that a Montana producer would benefit from 

diversifying production to Texas and vice versa.  In addition, using variance as a risk 

measure, Montana had the highest variance of returns, while Colorado had the lowest.  

This implies that Montana could reduce its risk (variance) by allocating production 

acreage to these other regions.  The same scenario would hold true for Texas as well by 

diversifying land to Colorado.  Colorado land on the other hand is positively correlated 

with everything except Montana returns.  This would imply that Colorado may not find 
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it beneficial to incorporate geographical diversification to increase wealth and decrease 

risk.   The results of the optimization model provide details concerning the optimal 

acreage allocations and are discussed in the next section  

4.5   Empirical Results 

 The results of any math programming model are only as good as the input data.  

The discussion of the results begins with a discussion of the scenario generation results.  

This includes a discussion of the copula fitting and actual generated scenarios.  This is 

followed by a discussion of the capital allocation model results.   

4.5.1   Copula Results 

 Five different copulas were fit to the data to determine which one would best 

model the multivariate relationship.  The five copulas were Gaussian, T, Frank, Gumbel, 

and Clayton copulas.  As discussed earlier, the Clayton and Gumbel copula place more 

emphasis on the lower (Clayton) and upper (Gumbel) tails of the distribution.  Figure 

C.6 provides an illustration of the shapes of the different copulas.  The other three 

assume symmetric dependence between the upper and lower tails.  Using an AIC fit 

criteria, the Gaussian copula provided the best fit for eleven of the sixteen bivariate 

relationships (Table C.9).  Based on these results, the Gaussian copula is used to model 

the bivariate relationships and is used in the moment-matching scenario generation 

routine as the measure of dependence.   

4.5.2   Scenario Generation Results 

 The goal of scenario generation is to generate a discrete set of data that captures 

statistical characteristics of the underlying data.  In this case, in order to avoid any 
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distributional assumptions, the discrete set of data is modeled to match the first four 

moments of the underlying data and also use the Gaussian copula to model the 

dependence.  Five nodes are used as the discrete outcomes for each stage with five total 

stages.  Five nodes were chosen to maintain the computational tractability of the 

problem.  This implies that there are five nodes in stage one, 25 nodes in stage 2, 125 

nodes in stage 3, 625 nodes in stage 4, and 3,125 nodes in stage five.  Thus the model is 

solving over a total of 3,905 nodes.  An illustration of the first two stages can be found 

in Figure C.7.  The generated data for each node and the associated probability of the 

node are shown in the Figure.  Figure C.7 helps to visualize what he moment matching 

routine is accomplishing over the planning stage.  The statistical properties of the 

generated data compared to the underlying data are shown in Table C.10.  As shown in 

the table, the moment matching method closely fit the first four moments and thus 

capturing the statistical nature of the underlying distributions.     

 4.5.3   DSP Results 

 The results for the optimal acreage allocations when production is limited to one 

region are shown in Table C.11.  The assumption is that the farmer begins with 3,000 

acres and has the opportunity to expand acreage up to 10,000 acres all in the same region 

over the defined planning period.  The diversification strategies and optimal wealth 

levels (Figure C.8) of Texas and Colorado are similar.  Both regions increase acreage in 

the beginning stages and hold the acreage roughly constant for the final two stages.  

Texas acreage is slightly greater than the allocated Colorado acreage and both Texas and 

Colorado acreage is greater than Montana acreage.  Montana acreage allocation consists 
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of increasing acreage in the first stage and then slowly decreasing acreage over the 

remaining four stages.  Montana had the highest expected wealth level of the three 

regions.  All three areas also show the standard deviation between the optimal 

allocations increase over the planning stage as well.  This can be explained by the fact 

that the model is trying to optimize over 3,125 terminal nodes and over multiple stages. 

 The optimal allocation results incorporating geographic diversification are shown 

in Table C.12.  When Texas is the base region, acreage is purchased in all three regions 

in the first stage.  The acreage in Montana slowly decreases over the remaining stages 

while the acreage in Colorado and Texas remains fairly constant (see Figure C.9).  There 

is a positive increase in the certainty equivalent of wealth for Texas when diversification 

is implemented (Figure C.8).  When Colorado is considered to be the base region, 

different optimal diversification strategies arise.  The land in Colorado will vary only 

slightly over the planning period with a slight decrease in the beginning but increasing to 

the initial acreage level in the final period (Figure C.10).  The largest amount of land 

will be purchased in Texas with roughly two thousand acres of production over the 

entire planning period.  Land in Montana on the other hand will increase in the 

beginning but be reduced to the initial acreage level in the ending stages (Figure C.10).  

The results when Texas is the base region and when Colorado is the base region provide 

a consistent diversification strategy and both scenarios provide an increase in the 

certainty equivalent of wealth.  Both regions show that there is a beneficial 

diversification strategy that involves Texas and Colorado but Montana does not provide 

the same benefit. 
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 The last scenario to consider is when Montana is the base region.  Surprisingly, 

the optimal diversification strategy consists of the majority of allocation to be in Texas 

(Figure C.11).  Part of this can be explained by the fact that Montana land prices are 

negatively correlated with Texas land prices and Texas returns.  Montana returns and 

Texas returns are positively correlated but at a level which suggests that the returns from 

the two regions are close to being statistically independent.  This is unlike the two 

previous scenarios which maintained the largest amount of acreage in the base regions.  

In the initial stages, additional land will be allocated in all three regions, but then acreage 

will be reduced in Colorado and Montana but not Texas.  Thus a Montana farmer can 

increase certainty equivalent of wealth by transferring acreage from Montana to 

alternative production regions.  This can partially be explained by the high volatility of 

dry land wheat returns in Montana.  Both Colorado and Texas had lower returns, but also 

lower volatility.  Part of this can also be explained by the assumption of a risk averse 

producer.  A risk averse producer would be more concerned with volatility than the 

higher expected returns. 

 These results illustrate an important fact concerning geographic diversification.  

There is no one optimal allocation when dealing with geographic diversification.  The 

optimal allocation is dependent upon the assumptions concerning base acreage and 

feasible locations.  Another consistent theme across all scenarios is that the benefits of 

geographic diversification are positive and that as commercial agriculture expands, 

geographic diversification will become a more relevant diversification strategy. 
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4.6   Conclusions 

 A multi-period discrete stochastic programming model was formulated to 

analyze geographical diversification.  Specifically, it analyzed whether a farmer would 

expand by buying more land locally or expand to other regions.  The production of dry 

land wheat consisted of three different regions: Texas, Colorado, and Montana.  The 

objective function consisted of maximizing terminal net wealth.  The model analyzed the 

decision of how a farmer would allocate land to different production regions.  Land is 

one of the most important resources a farmer has.  Land traditionally composes a large 

share of the farmer’s balance sheet.  It is the base for loan collateral and future wealth.  

Not only is it important to consider the revenue stream from production on the land but 

also returns from land appreciation.  The inclusion of both aspects is critical to 

effectively model geographical diversification decisions.  

Discrete stochastic programming models both land prices and production revenue 

in a dynamic setting.  As a farmer looks to make large investments in land and 

machinery, it is important to consider the results of the investment over multiple periods 

and not just look at the single period consequences.  Discrete stochastic programming 

breaks away from the single period methodology of the traditional portfolio optimization 

and analyzes the optimal investments in a dynamic setting. 

This research introduced a new method to generate the scenarios used in the dsp 

model.  A moment matching routine was developed and the multivariate relationship 

between the random variables was captured using copulas.  The first four moments of 

the underlying distributions were modeled.  A Gaussian copula provided the best fit and 
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was used as the appropriate dependence measure.  The use of copulas provides a better 

method to estimate the dependence between the random variables when they are not 

normally distributed.  Copulas are able to capture the non-linear dependence that may 

exist between two random variables and thus more accurately represent the relationship. 

The results of this research also indicate that there are possible gains from 

geographical diversification.  Wealth levels are increased for all three regions when 

production is diversified over the different regions.  The optimal allocation of land to 

alternative production regions was dependent upon the base acreage assumption.  One 

important factor of geographic diversification that needs to be considered is the 

additional costs incurred.  Future research could take into consideration not only the 

wealth benefits but also the additional management, transportation, and labor costs that 

may occur. 
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5.    SUMMARY AND CONCLUSIONS 

 

 Diversifying yield risk through geographical diversification has not been heavily 

addressed.  Expanding beyond traditional enterprise diversification enhances the 

decision maker’s available risk management tools.  This research has taken a closer look 

at the topic of geographical diversification.  This research will provide a foundation for 

understanding the dependence of wheat, cotton, and sorghum yields on a broad 

geographic scope.  In addition, not relying solely on linear correlation will enhance the 

understanding of yield relations.  The implementation of copulas allowed the estimation 

of alternative dependence measures.  Copulas also provided a method to estimate the tail 

dependence coefficient.  Often times it is the tails of the data that are of concern.  

Copulas allow those regions of the distribution to be analyzed.   

This research also looked at the implementation of coherent risk measures.  

Efficient risk management relies on good risk measures.  The conditional value at risk 

(CVaR) measures overcomes many of the limitation of the traditional value at risk (VaR) 

measure.  Using CVaR as the risk measure, geographical diversification was examined 

using portfolio optimization.  The results indicated that the diversification of the 

portfolio was sensitive to not only the risk measure but also to the dependence measure.  

These results provide a starting point to begin analyzing agricultural problems using 

these new techniques.   

Geographical diversification was also examined in a multi-period framework.  

There are some additional complexities when transitioning from a single period model to 
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a multi-period model.  One of the biggest hurdles is representing the historical data in a 

form that keeps the model manageable.  Scenario trees have become a tool that provides 

a method to accomplish this.  The stochastic path of the data is represented in a discrete 

form in a scenario tree.  A new method to generate the scenarios was formulated.  The 

method consisted of a non-linear optimization that matched the first four moments of the 

distribution and also implemented the use of copulas to model the multivariate 

relationship.  The generated scenarios were then used as inputs to solve a discrete 

stochastic programming model.  The results show that geographical diversification may 

have some benefit to farmers.  The benefit is dependent upon where the initial acreage is 

allocated.   

This research builds on the strong foundation of risk diversification that has been 

laid by agricultural economists.  The goal is to add to the existing structure by 

incorporating these new techniques to old problems.  These results will provide a 

backdrop to future research into the portfolio optimization problems of agricultural 

enterprises. 
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APPENDIX A 

 

Table A.1.   Trend Regression Results 
State Total1 Trend % Total Trend % Total Trend % 

 Wheat Cotton Sorghum 

Colorado  18 17  94    1 1 100 

Idaho  10 10 100       

Montana  32 22  69       

Nebraska  37 29  78    7 3 43 

New Mexico       2 0 0 

North Dakota  45 45 100       

Oregon  11 9  82       

South Dakota  37 25  68    2 2 100 

Utah   4 0   0       

Washington  8 3  38       

Kansas 104 5  5    23 18 78 

Oklahoma  8 1  13 1 0 0 2 1 50 

Texas 66 12  18 20 2 10 13 5 38 

Arkansas    3 2 67    

Louisiana    7 0 0    

Mississippi    8 0 0    

Total 380 178  47 39 4 10 50 30 60 
1) Total is the total number of counties used in the analysis, trend is the number of counties with a 
significant trend, and % is the percent with a significant trend. 
 
Significance at the 0.05 level is used for trend determination. 
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Table A.2.   Variable Descriptive Statistics 
Absolute Value of 
Change in  Mean 

Standard 
Deviation Minimum Maximum 

Wheat - number of observations 72,010 
Elevation (ft) 1330.23 1064.82 0.00 6916 

Precipitation (in) 9.499926 7.666816 0.00 49.73 

Temperature (°f) 7.958991 5.843862 0.00 31.70 

Correlation 0.164671 0.292902 -0.74 0.97 

Cotton - number of observations 741 
Elevation (ft) 1450.34 1165.20 0.00 3710.00 

Precipitation (in) 18.92 14.57 0.02 44.02 

Temperature (°f) 2.68 1.94 0.00 9.89 

Correlation 0.33 0.28 -0.48 0.94 

Sorghum - number of observations 1,225 
Elevation (ft) 1424.34 1078.04 0.00 4380.00 

Precipitation (in) 8.47 5.98 0.02 28.50 

Temperature (°f) 6.57 6.41 0.00 25.80 

Correlation 0.31 0.29 -0.46 0.97 
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Table A.3.    Copula Characteristics 
Normal Copula 

CDF 𝐶(𝑢, 𝑣;𝜌) = 𝜃𝜌(𝜃−1(𝑢),𝜃−1(𝑣)) 

PDF 
𝑐(𝑢, 𝑣) =

1

�1− 𝜌2
𝑒𝑥𝑝�

�Φ−1(𝑢)�
2

+ �Φ−1(𝑣)�
2

2
2𝜌Φ−1(𝑢)Φ−1(𝑣)− �Φ−1(𝑢)�

2
− �Φ−1(𝑣)�

2

2(1− 𝜌2) �    

Parameter Range 𝜌 ∈ (−1,1) 

Kendall’s tau 𝜏𝜌 =
2arcsin (𝜌)

𝜋  

Tail Dependency 𝜆𝐿 = 𝜆𝑈 = 0 

Clayton Copula 

CDF 𝐶(𝑢, 𝑣;𝜃) = �𝑢−𝜃 + 𝑣−𝜃 − 1�
−1𝜃 

PDF 𝑐(𝑢, 𝑣;𝜃) = (1 + 𝜃)(𝑢𝑣)−𝜃−1�𝑢−𝜃 + 𝑣−𝜃 − 1�
−2−1𝜃 

Parameter Range 𝜃 ∈ [−1,∞)\{0} 

Kendall’s tau 𝜏𝜃 =
𝜃

𝜃 + 2 

Tail Dependency 𝜆𝐿 = 2−
1
𝜃, 𝜆𝑈 = 0 

Gumbel Copula 

CDF 
𝐶(𝑢, 𝑣: 𝛿) = 𝑒𝑥𝑝 �−�(− log 𝑢)𝛿 + (− log 𝑣)𝛿�

1
𝛿� 

PDF 
𝑐(𝑢, 𝑣: 𝛿) =

𝐶(𝑢,𝑣; 𝛿)(log 𝑢 ∙ log𝑣)𝛿−1

𝑢𝑣((− log 𝑢)𝛿 + (− log 𝑣)𝛿)2−
1
𝛿
��(− log 𝑢)𝛿 + (− log 𝑣)𝛿�

1
𝛿 + 𝛿 − 1� 

Parameter Range 𝛿 ∈ [1,∞) 

Kendall’s tau 𝜏𝛿 = 1 −
1
𝛿 

Tail Dependency 𝜆𝐿 = 0, 𝜆𝑈 = 2 − 2
1
𝛿�  

Rotated Gumbel Copula 
CDF 𝐶(𝑢, 𝑣: 𝛿) = 𝑢 + 𝑣 − 1 + 𝐶(1 − 𝑢, 1 − 𝑣; 𝛿) 
PDF 𝑐(𝑢, 𝑣: 𝛿) = 𝑐(1 − 𝑢, 1 − 𝑣; 𝛿) 

Parameter Range 𝛿 ∈ [1,∞) 

Kendall’s tau 𝜏𝛿 = 1 −
1
𝛿 

Tail Dependency 𝜆𝐿 = 2 − 2
1
𝛿� , 𝜆𝑈 = 0 
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Table A.4.   Model Comparison with Linear Correlation as 
Dependency Measure 

 

Model 
Degrees of 
Freedom AIC1 BIC2 R2 

Wheat  
Linear 4 10109.10 10145.84 0.22 
Log-Linear 4 9382.86 9419.59 0.22 
Quadratic 9 -44.44 38.22 0.32 

Cotton  
Linear 4 -7.72 10.71 0.25 
Log-Linear 4 -13.13 5.25 0.25 
Quadratic 9 -92.27 -46.20 0.34 

Sorghum  
Linear 4 62.92 83.36 0.29 
Log-Linear 4 81.80 102.20 0.27 
Quadratic 9 -137.08 -91.08 0.40 

1)  Akaike Information Criterion defined as AIC = . 

  Bayesian Information Criterion defined as BIC = . 
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Table A.5.   Linear Regression Results for Non-Irrigated and Linear Correlation 
Variable Coefficient t-value p-value 

Wheat 
Elevation -0.00001 -13.66 0.00 
Temperature -0.01338 -80.87 0.00 
Precipitation -0.01171 -94.30 0.00 
Intercept 0.40077 170.06 0.00 
R2 = 0.22  

Cotton 
Elevation 0.0001 5.46 0.00 
Temperature -0.0048 -7.27 0.00 
Precipitation -0.0123 -12.10 0.00 
Intercept 0.4949 27.98 0.00 
R2 = 0.25  

Sorghum 
Elevation -0.00005 -5.45 0.00 
Temperature -0.01962 -15.49 0.00 
Precipitation -0.00642 -4.35 0.00 
Intercept 0.55635 35.61 0.00 
R2 = 0.29  
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Table A.6.   Log-Linear Regression Results for Non-Irrigated and Linear 
Correlation 
Variable Coefficient t-value p-value 

Wheat 
Elevation -0.02 -27.32 0.00 
Temperature -0.09 -90.55 0.00 
Precipitation -0.07 -73.41 0.00 
Intercept 0.59 98.02 0.00 
R2 = 0.22  

Cotton 
Elevation 0.04 4.65 0.00 
Temperature -0.05 -6.78 0.00 
Precipitation -0.11 -10.05 0.00 
Intercept 0.38 8.62 0.00 
R2 = 0.25  

Sorghum 
Elevation -0.08 -9.11 0.00 
Temperature -0.08 -12.91 0.00 
Precipitation -0.01 -1.57 0.12 
Intercept 0.94 18.68 0.00 
R2 = 0.27  
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Table A.7.   Quadratic Regression Results for Linear Correlation 

  Notes:  Single and double asterisks (*) denote statistical significance at the 0.05 and 0.01 levels.  
Numbers in parentheses are calculated t-statistic values. 
  

Variable Wheat Cotton Sorghum 

Elevation 
-0.00011 

(-39.21)** 
0.0001 

(3.63)** 
-0.00025 
(-5.11)** 

Temperature 
-0.05072 

(-95.16)** 
-0.0363 

(-2.91)** 
-0.06469 

(-14.30)** 

Precipitation 
-0.02371 

(-56.40)** 
-0.0358 

(-10.77)** 
-0.00251 
(-0.69) 

Elevation2 
-1.07E09 
(-1.90) 

-7.96E-08 
(-4.21)** 

4.18E-08 
(1.43) 

Temperature2 
0.00112 

(52.73)** 
-0.0055 
(2.65)** 

0.00152 
(7.15)** 

Precipitation2 
-0.00013 
(-8.42)** 

0.0004 
(2.51)** 

-1E-05 
(-0.05) 

Elev*Temp 
0.000006 
(33.26)** 

0.00003 
(4.70)** 

1.04E-05 
(-8.41)88 

Elev*Precip 
0.000005 
(43.61)** 

5.11E-06 
(2.16)** 

8.50E-07 
(0.46) 

Precip*Temp 
0.000744 
(33.55)** 

-0.0001 
(-0.17) 

-3.41E-12 
(-0.77) 

Intercept 0.646415 
(185.33) 

0.6407 
(23.21) 

0.75552 
(29.08) 

R2 0.32 0.33 0.40 
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Table A.8.   Elasticities (estimated at mean) for Linear Correlation 

Variable Wheat Cotton Sorghum 
Linear Model  

Elevation 0.11 0.31 0.22 
Temperature 0.65 0.11 0.42 
Precipitation 0.68 0.71 0.18 

Log-Linear Model  
Elevation 0.27 0.15 0.35 
Temperature 0.99 0.18 0.37 
Precipitation 0.75 0.43 0.06 

Quadratic Model  
Elevation 0.18 0.76 0.42 
Temperature 1.28 0.19 1.40 
Precipitation 1.09 1.23 0.06 
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Table A.9.   Wheat Quadratic Regression Coefficients 

  Notes:  Single and double asterisks (*) denote statistical significance at the 0.05 and 0.01 levels.  Numbers in parentheses are calculated t-statistic 
values. 
  

Variable 
Linear 

Correlation 
Gaussian 
Copula 

Frank  
Copula 

Clayton 
Copula 

Gumbel 
Copula 

Clayton Tail 
Dependence 

Gumbel Tail 
Dependence 

Elevation 
-0.00011 

(-39.21)** 
-0.0001 

(-36.11)** 
-6.1E-05 

(-36.74)** 
-6.5E-05 

(-42.52)** 
-5.9E-05 

(-34.44)** 
-9.3E-05 

(-40.92)** 
-7.5E-05 

(-38.43)** 

Temperature 
-0.05072 

(-95.16)** 
-0.04998 

(-91.47)** 
-0.03123 
(-96.4)** 

-0.02767 
(-93.88)** 

-0.03227 
(-96.17)** 

-0.04101 
(-95.69)** 

-0.03667 
(-97.68)** 

Precipitation 
-0.02371 

(-56.40)** 
-0.02233 

(-54.92)** 
-0.01506 

(-62.85)** 
-0.01462 

(-63.82)** 
-0.01434 

(-58.36)** 
-0.02191 

(-65.53)** 
-0.01822 

(-62.61)** 

Elevation2 
-1.07E09 
(-1.90) 

-3.57E-10 
(1.26) 

-1.50E-10 
(-0.47) 

4.44E-10 
(1.5) 

-6.42E-10 
(-1.91) 

-2.25E-10 
(-0.51) 

-5.54E-10 
(-1.43) 

Temperature2 
0.00112 

(52.73)** 
0.001128 
(54.33)** 

0.000625 
(51.54)** 

0.000492 
(43.82)** 

0.00066 
(51.09)** 

0.000683 
(41.78)** 

0.000677 
(46.12)** 

Precipitation2 
-0.00013 
(-8.42)** 

-0.00014 
(-5.44)** 

-1.5E-05 
(-1.97)* 

-2.5E-05 
(-3.42)** 

-3.6E-05 
(-4.69)** 

-2.7E-05 
(-2.47)** 

-5.4E-05 
(-5.61)** 

Elev*Temp 
0.000006 
(33.26)** 

5.23E-06 
(30.53)** 

3.12E-06 
(33.48)** 

2.71E-06 
(31.5)** 

3.56E-06 
(36.32)** 

4.13E-06 
(32.80)** 

3.65E-06 
(32.24)** 

Elev*Precip 
0.000005 
(43.61)** 

5.09E-06 
(39.29)** 

2.77E-06 
(45.17)** 

2.91E-06 
(49.23)** 

2.68E-06 
(41.6)** 

4.24E-06 
(49.94)** 

3.62E-06 
(46.71)** 

Precip*Temp 
0.000744 
(33.55)** 

0.0007 
(31.63)** 

0.000571 
(49.6)** 

0.000575 
(52.59)** 

0.000559 
(45.59)** 

0.000896 
(57.35)** 

0.00074 
(51.32)** 

Intercept 0.646415 0.622777 0.44509 0.431719 0.45408 0.608691 0.558589 
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Table A.10.   Estimated Absolute Value of the Elasticities Evaluated at the Mean 

 

Variable 
Linear 

Correlation 
Gaussian 
Copula 

Frank  
Copula 

Clayton 
Copula 

Gumbel 
Copula 

Clayton Tail 
Dependence 

Gumbel Tail 
Dependence 

Wheat  
Elevation 0.18 0.13 0.11 0.15 0.07 0.17 0.10 

Temperature 1.28 1.33 0.77 0.69 0.70 0.82 0.65 
Precipitation 1.09 1.09 0.56 0.51 0.50 0.59 0.47 

Cotton 
Elevation 1.92 1.27 1.05 0.78 0.89 0.81 0.80 

Temperature 3.95 2.34 2.06 1.19 1.47 1.25 1.35 
Precipitation 1.23 0.75 0.67 0.57 0.62 0.56 0.55 

Sorghum 
Elevation 0.61 3.17 1.30 0.99 1.09 1.24 0.98 

Temperature 1.02 3.47 1.10 1.02 1.03 1.12 0.96 
Precipitation 0.09 0.58 0.18 0.10 0.12 0.13 0.15 
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Table A.11.   Sorghum Quadratic Regression Coefficients 

Variable 
Linear 

Correlation 
Gaussian 
Copula 

Frank  
Copula 

Clayton 
Copula 

Gumbel 
Copula 

Clayton Tail 
Dependence 

Gumbel Tail 
Dependence 

Elevation 
-0.00025 
(-5.11)** 

-0.00022 
(-11.16)** 

-0.00022 
(-13.21)** 

-0.00016 
(-10.81)** 

-0.0002 
(-11.96)** 

-0.00025 
(-11.58)** 

-0.00022 
(-11.60)** 

Temperature 
-0.06469 

(-14.30)** 
-0.05383 

(-13.68)** 
-0.04413 

(-14.51)** 
-0.03922 

(-14.19)** 
-0.04405 

(-14.62)** 
-0.05398 

(-13.87)** 
-0.05085 

(-14.67)** 

Precipitation 
-0.00251 
(-0.69) 

0.004698 
(1.22) 

0.000406 
(0.12) 

-0.0025 
(-0.87) 

-0.00175 
(-0.55) 

-0.00264 
(-0.62) 

-0.00062 
(-0.17) 

Elevation2 
4.18E-08 

(1.43) 
1.73E-08 
(2.5)** 

1.18E-08 
(2.41)** 

8.80E-09 
(1.99)* 

9.71E-09 
(2.02)* 

1.32E-08 
(2.06)* 

1.03E-08 
(1.77) 

Temperature2 
0.00152 
(7.15)** 

0.001407 
(8.35)** 

0.001105 
(9.1)** 

0.001026 
(9.18)** 

0.001123 
(9.28)** 

0.001368 
(8.62)** 

0.001305 
(9.06)** 

Precipitation2 
-1E-05 
(-0.05) 

-8.6E-05 
(-0.48) 

-8.6E-05 
(-0.6) 

3.58E-05 
(0.28) 

-2.2E-05 
(-0.16) 

-1.2E-05 
(-0.06) 

-1.9E-05 
(-0.12) 

Elev*Temp 
1.04E-05 
(-8.41)88 

8.28E-06 
(7.09)** 

8.39E-06 
(9.7)** 

6.08E-06 
(7.69)** 

7.54E-06 
(8.85)** 

9.36E-06 
(8.04)** 

8.61E-06 
(8.37)** 

Elev*Precip 
8.50E-07 

(0.46) 
1.35E-06 

(0.8) 
3.16E-06 
(2.62)** 

2.25E-06 
(2.1)* 

2.95E-06 
(2.54)** 

3.86E-06 
(2.42)* 

3.03E-06 
(2.17)* 

Precip*Temp 
-3.41E-12 

(-0.77) 
-0.00028 
(-1.32) 

-0.00016 
(-1.01) 

-3.61E-06 
(-0.03) 

-5.5E-05 
(0.35) 

-8.3E-05 
(-0.38) 

-0.0001 
(-0.56) 

Intercept 0.75552 0.514015 0.539399 0.469676 0.533657 0.657855 0.615689 

Notes:  Single and double asterisks (*) denote statistical significance at the 0.05 and 0.01 levels.  Numbers in parentheses are calculated t-statistic 
values. 
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Table A.12.   Cotton Quadratic Regression Coefficients 

Notes:  Single and double asterisks (*) denote statistical significance at the 0.10 and 0.05 levels.  Numbers in parentheses are calculated t-statistic 
values. 

Variable 
Linear 

Correlation 
Gaussian 
Copula 

Frank  
Copula 

Clayton 
Copula 

Gumbel 
Copula 

Clayton Tail 
Dependence 

Gumbel Tail 
Dependence 

Elevation 0.0001 
(3.63)** 

9.44E-05 
(3.68)** 

0.0001 
(3.70)** 

0.0001 
(1.93)* 

7.98E-05 
(3.03)** 

-0.0003 
(-7.23)** 

9.04E-05 
(2.99)** 

Temperature -0.0363 
(-2.91)** 

-0.0315 
(-3.46)** 

-0.0318 
(-3.47)** 

-0.0206 
(-2.32)* 

-0.0254 
(-2.65)** 

-0.0063 
(-0.44) 

-0.0257 
(-2.35)* 

Precipitation -0.0358 
(-10.77)** 

-0.0213 
(-9.46)** 

-0.0215 
(-9.63)** 

-0.0148 
(7.10)** 

-0.0196 
(-8.70)** 

0.0049 
(1.32) 

-0.0212 
(-8.16)** 

Elevation2 -7.96E-08 
(-4.21)** 

-5.77E-08 
(-4.50)** 

-6.13E-08 
(-4.95)** 

-5.99E-08 
(-4.77)** 

-6.47E-08 
(-4.93)** 

3.00E-08 
(1.54) 

-7.59E-08 
(-4.91)** 

Temperature2 -0.0055 
(2.65)** 

-0.0023 
(-1.58) 

-0.0024 
(-1.69) 

-0.0018 
(-1.28) 

-0.0024 
(-1.55) 

0.0040 
(1.69)* 

-0.0029 
(-1.63) 

Precipitation2 0.0004 
(2.51)** 

0.0001 
(1.29) 

0.0001 
(1.28) 

-5.2E-05 
(-0.54) 

5.81E-05 
(0.57) 

-0.0003 
(-1.82)* 

2.15E-05 
(0.18) 

Elev*Temp 0.00003 
(4.70)** 

1.93E-05 
(3.92)** 

1.97E-05 
(4.11)** 

2.05E-05 
(4.08)** 

0.00002 
(4.31)** 

-9.02E-07 
(-0.12) 

2.51E-05 
(4.22)** 

Elev*Precip 5.11E-06 
(2.16)** 

4.78E-06 
(2.94)** 

5.03E-06 
(3.26)** 

7.30E-06 
(4.59)** 

6.38E-06 
(3.86)** 

6.22E-06 
(2.49)** 

7.81E-06 
(4.02)** 

Precip*Temp -0.0001 
(-0.17) 

4.19E-05 
(0.11) 

0.00004 
(0.11) 

-0.0007 
(-2.00)* 

-0.0005 
(-1.28) 

-0.0006 
(-0.96) 

-0.0006 
(-1.40) 

Intercept 0.6407 0.4346 0.4844 0.4269 0.4862 0.5880 0.5597 
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Figure A.1.  Wheat, sorghum, and cotton counties included in analysis 
 
 
 

a) 380 Wheat Counties b) 50 Sorghum Counties 

c) 39 Cotton Counties 
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Figure A.2.   Estimated wheat dependencies for elevation, precipitation, and temperature holding two variables 
constant while varying the three variables given by the x-axis 
 
 

0.00

0.05

0.10

0.15

0.20

0 1000 2000 3000 4000 5000 6000 7000

Es
tim

at
ed

 D
ep

en
de

nc
y 

Change in Elevation (ft) 

a) Elevation Dependencies 

Linear Correlation

Gaussian Copula

Frank Copula

Clayton Copula

Gumbel Copula 0.00

0.10

0.20

0.30

0.40

0 10 20 30 40

Es
tim

at
ed

 D
ep

en
de

nc
y 

Change in Temperature (F) 

c) Temperature Dependencies 

Linear
Correlation
Gaussian
Copula
Frank
Copula
Clayton
Copula

-0.65

-0.45

-0.25

-0.05

0.15

0.35

0 20 40 60

Es
tim

at
ed

 D
ep

en
de

nc
y 

Change in Precipitation (inches) 

b) Precipitation Dependencies 

Linear Correlation

Gaussian Copula

Frank Copula

Clayton Copula

Gumbel Copula



 

 

 

114 

 

 
 
 
Figure A.3.   Estimated sorghum dependencies for elevation, precipitation, and temperature holding two variables 
constant while varying the three variables given by the x-axis  
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Figure A.4.   Estimated cotton dependencies for elevation, precipitation, and temperature holding two variables 
constant while varying the three variables given by the x-axis 
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APPENDIX B 

 

Table B.1.   Summary Statistics for Net Returns in Dollars per Acre 

 

Montana Colorado Texas 

Mean 127.74 
59.46 
47.54 
291.48 
40.82 
116.57 
327.01 

1.65 
6.64 

 

105.35 70.33 
Standard Deviation 34.96 44.37 
95 % LCI1 50.88 24.91 
95 % UCI1 146.97 116.57 
Min 50.88 24.91 
Median 96.08 59.15 
Max 222.37 268.20 
Skewness 1.36 2.79 
Kurtosis 5.80 13.77 

1.  LCI is the 95 % lower confidence interval and UCI is the 95% upper confidence interval 
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Table B.2.   Normality Test 
 Montana Returns Colorado Returns Texas Returns 
Chi-Square Statistic 11.72 4.45 11.56 

p-Value1 0.02 0.35 0.02 

1.  Null hypothesis is that the data are normally distributed; low p-values indicate rejection of null hypothesis. 
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Table B.3.   Copula Fit Statistics 
Copula SIC1 AIC2 HQIC3 

Clayton 0.69 2.15 1.72 
Frank 2.05 3.52 3.08 

Gaussian -0.44 3.56 2.65 
T 0.25 5.29 4.37 

Gumbel 8.59 10.05 9.62 
1 Schwarz information criterion:  𝑆𝐼𝐶 = 𝑙𝑛[𝑛]𝑘 − 2𝑙𝑛[𝐿𝑚𝑎𝑥] 
2 Akaike information criterion:  𝐴𝐼𝐶 =  � 2𝑛

𝑛−𝑘−1
� 𝑘 − 2𝑙𝑛[𝐿𝑚𝑎𝑥] 

3 Hannan-Quinn information criterion: 𝐻𝑄𝐼𝐶 = 2𝑙𝑛�𝑙𝑛[𝑛]�𝑘 − 2𝑙𝑛[𝐿𝑚𝑎𝑥] 
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Table B.4.   Dependency Measures for Pearson, Spearman’s Rho, and Copulas 
Pearson Correlation 

 Texas Returns Colorado Returns Montana Returns 
Texas Returns 1 0.351981 0.564219 
Colorado Returns  1 0.629165 
Montana Returns   1 

Rank Correlation/Kendall’s Tau 
 Texas Returns Colorado Returns Montana Returns 
Texas Returns 1 0.104762 0.114286 
Colorado Returns  1 0.298413 
Montana Returns   1 

Rank Correlation based on Clayton Copula 
  Texas Returns Colorado Returns Montana Returns 
Texas Returns 1 0.1179 0.1649 
Colorado Returns  1 0.3718 
Montana Returns   1 

Rank Correlation based on Frank Copula 
  Texas Returns Colorado Returns Montana Returns 
Texas Returns 1 0.1812 0.1876 
Colorado Returns  1 0.4256 
Montana Returns   1 

Rank Correlation based on Gaussian Copula 
  Texas Returns Colorado Returns Montana Returns 
Texas Returns 1 0.1755 0.21776 
Colorado Returns  1 0.4489 
Montana Returns   1 
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Table B.5.   Efficient Portfolio Statistics 

Asymmetric Dependence-Clayton Copula 

Standard Deviation of Returns CVaR Expected Return 

38.54 -25.16 66.59 

33.28 -33.74 72.90 

29.09 -40.16 79.21 

26.45 -45.37 85.53 

25.38 -50.05 91.84 

25.53 -54.11 98.16 

27.04 -57.25 104.47 

29.42 -58.71 110.78 

Symmetric Dependence-Pearson Correlation 

Standard Deviation of Returns CVaR Expected Return 

43.57 21.96 68.32 

38.40 5.91 75.04 

34.35 -8.14 81.77 

31.87 -20.08 88.49 

31.33 -28.73 95.22 

32.81 -33.98 101.94 

35.51 -36.22 108.67 
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Figure B.1.   County level yields per acre 
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Figure B.2.   Price per bushel for wheat 
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Figure B.3.   Skewness and kurtosis for three regions 
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Figure B.4.   Illustration of Clayton, Frank, and Gaussian copulas 
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Figure B.5.   Clayton copula simulated data 
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Figure B.6.   Multivariate normal simulated data 
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Figure B.7.   Dependency measure comparison 
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Figure B.8.   Asymmetric and normal efficient frontiers 

0

20

40

60

80

100

120

140

-70 -60 -50 -40 -30 -20 -10 0 10 20 30

Re
tu

rn
(p

er
 a

cr
e)

 

CVaR 

Assymetric Frontier
Normal Frontier



 

 
 

129 

 

 
Figure B.9.   Acreage allocation between three production regions 
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Figure B.4.   Acreage allocation comparison for three production regions 
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APPENDIX C 

 

Table C.1.   Historical Data Summary for Period 1974-20081 

 

Texas Land 
Price  

Colorado Land 
Price  

Montana Land 
Price  

Texas 
Returns  

Colorado 
Returns  

Montana 
Returns  

Mean  394.31 602.62 307.86 70.33 105.35 127.73 

St. Deviation  116.62 144.31 184.27 44.37 34.96 59.46 

Skewness  2.73 1.83 1.86 2.79 1.36 1.65 

Kurtosis  9.22 3.57 3.70 10.77 2.80 3.64 
1. Source of data is USDA National Ag Statistics Service and Texas A&M Real Estate Center.  Land prices and returns are specified in dollars per acre.  

Returns are defined as net returns (gross returns less variable cost).    
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Table C.2.   Statistical Summary Based on Annual Change 1974-20081 

 

Texas Land 
Price  

Colorado Land 
Price  

Montana Land 
Price  

Texas 
Returns  

Colorado 
Returns  

Montana 
Returns  

Mean  16.09 15.69 23.54 5.27 1.68 5.03 

St. Deviation  58.51 63.51 72.14 42.47 39.43 44.21 

Skewness  0.99 -0.61 -0.73 0.78 1.22 0.15 

Kurtosis  2.97 1.22 8.84 0.97 2.75 -0.31 

1. Source of data is USDA National Ag Statistics Service and Texas A&M Real Estate Center.  Land prices and returns are specified in dollars per acre.  Returns 
are defined as net returns (gross returns less variable cost).   
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Table C.3.   Estimation of Farmland Price Equation1 Covering the Years 1998-2008   
State Variable Coefficient 

Estimate 
Standard Error t-statistic 

Texas 
 

Constant -158.834 53.807 -2.952 
Pt-1 1.508** 0.122 12.354 

 𝑅2 = 0.95,𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑅2 = 0.94 

Colorado 
 

Constant -17.820 77.300 -0.231 
Pt-1 1.080** 0.072 14.932 

 𝑅2 = 0.97,𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑅2 = 0.96 

Montana 
 

Constant -12.996 60.572 -0.215 
Pt-1 1.165** 0.126 9.222 

𝑅2 = 0.91,𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑅2 = 0.90 
1.  See equation (8) for land price equation specification. 
** Significant at 5% level. 
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Table C.4.   Portmanteau Test for White Noise 

 
Q-Statistic1 ρ-value2 

Texas Land Price Error Term 2.72 0.44 
Colorado Land Price Error Term 2.86 0.42 
Montana Land Price Error Term 3.03 0.39 

1. 𝑄 = 𝑛(𝑛 + 2)∑ 1
𝑛−𝑗

𝜌�(𝑗)𝑚
𝑗=1   

2. Reject null hypothesis of white noise if ρ-value is less than α. 
3. All error terms are unable to reject null hypothesis 
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Table C.5.   Estimation of Gross Return Equation for Three States Covering the 
Years 1998-2008 
State Variable Coefficient Estimate Standard Error t-statistic 
 Constant 0.0653 0.0861 0.76 
Texas Rt-1 -0.4421** 0.1504 -2.94 
 𝑉𝑎𝑟� [𝜀1𝑡] = 0.2442,𝑅2 = 0.213,𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑅2 = 0.188 

Colorado 
Constant 2.4899 0.7361 3.38 
Rt-1 0.4614** 0.1598 2.89 

𝑉𝑎𝑟� [𝜀1𝑡] = 0.0806,𝑅2 = 0.202,𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑅2 = 0.178 

Montana 
Constant 1.8796 0.7312 2.57 
Rt-1 0.6084** 0.1540 3.95 

𝑉𝑎𝑟� [𝜀1𝑡] = 0.1337,𝑅2 = 0.321,𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑅2 = 0.301 
** Significant at 5% level. 
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Table C.6.   Shapiro-Wilk Normality Test1  

Variable Mean St. Deviation W z p value2 

Colorado Land Residuals 0.00 39.81 0.901 0.756 0.225 

Montana Land Residuals 0.00 41.59 0.744 4.396 0.000* 

Texas Land Residuals 0.00 53.63 0.960 0.813 0.210 

Colorado Returns  0.00 32.98 0.831 3.746 0.000* 

Montana Returns  0.00 42.87 1.140 0.273 0.392 

Texas Returns  0.00 41.08 0.873 3.147 0.001* 

1.  𝑊 =
�∑ 𝑎𝑖𝑥(𝑖)

𝑛
𝑖=1 �

2

∑ (𝑥𝑖−𝑥̅)2𝑛
𝑖=1

 

2. Reject null hypothesis of normally distributed data if p value is less than chosen alpha level.   
*      Reject null hypothesis of normally distributed data based on 0.05 alpha level. 
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Table C.7.   Skewness/Kurtosis Test for Normality1 

Variable Pr(Skewness) Pr(Kurtosis) Chi2 p value 

Colorado Land Residuals 0.26 0.95 1.43 0.49 

Montana Land Residuals 0.00 0.00 28.45 0.00* 

Texas Land Residuals 0.23 0.11 4.13 0.13 

Colorado Returns  0.00 0.00 19.12 0.00* 

Montana Returns  0.19 0.28 3.13 0.21 

Texas Returns  0.00 0.01 15.02 0.00* 
 

1. Based on Chi-square test and reject null hypothesis of normally distributed data if p value is less 
than chosen alpha level.   

*      Reject null hypothesis of normally distributed data based on 0.05 alpha level. 
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Table C.8.   Correlation Matrix for Change in Land Prices and Net Revenues1 for 1974-2008 

 
Texas Land Colorado Land Montana Land Texas Returns Colorado Returns Montana Returns 

Texas Land 1.00 0.92 0.37 0.24 0.05 -0.12 

Colorado Land 0.92 1.00 0.38 0.15 0.01 -0.09 

Montana Land 0.37 0.38 1.00 0.12 0.26 0.23 

Texas Returns 0.24 0.15 0.12 1.00 0.05 -0.24 

Colorado Returns 0.05 0.01 0.26 0.05 1.00 0.32 

Montana Returns -0.12 -0.09 0.23 -0.24 0.32 1.00 
1. Net revenues are defined as the gross revenue less variable cost.   
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Table C.9.   Copula Akaike Information Criteria Fit Statistics1 

Copula 

Texas 
Returns/ 
Montana 
Returns 

Texas 
Returns/Colorado 

Returns 

Texas 
Returns/Texas 

Land Price 

Colorado 
Returns/Montana 

Returns 

Colorado 
Returns/Texas 

Land Price 

Colorado 
Returns/Colorado 

Land Price 

Colorado 
Returns/Montan

a Land Price 

Montana 
Returns/Texas 

Land Price 

Gaussian 2.84 0.98 -1.64 2.12 -2.42 -2.47 -2.49 -2.10 

 T 1.43 -0.62 -3.12 2.32 -5.18 -5.72 -5.66 -4.73 

 Clayton 0.90 -1.84 -4.01 0.99 -5.60 -5.74 -5.68 -4.83 

 Gumbel -0.08 -2.10 -4.72 -0.20 -5.62 -5.75 -5.68 -5.01 

 Frank -0.16 -2.74 -4.94 -1.14 -5.67 -5.68 -5.71 -5.30 

Copula 

Texas 
Returns/ 
Colorado 

Land Price 

Texas 
Returns/Montana 

Land Price 

Texas 
Returns/Texas 

Land Price 

Montana 
Returns/Colorado 

Land Price 

Montana 
Returns/Montana 

Land Price 

Texas Land 
Price/Colorado 

Land Price 

Texas Land 
Price/Montana 

Land Price 

Colorado Land 
Price/Montana 

Land Price 

Gaussian -1.58 -1.91 -1.64 -1.75 -2.36 4.33 2.95 -0.56 

T -4.71 -4.61 -3.12 -4.99 -5.59 1.73 0.67 -3.14 

Clayton -4.28 -4.86 -4.01 -5.16 -5.59 3.06 -1.62 -2.47 

Gumbel -4.46 -4.93 -4.72 -5.00 -5.66 2.63 1.14 -2.88 

Frank -4.92 -5.18 -4.94 -5.01 -5.63 0.81 -0.47 -4.09 
1. The values in the table represent the AIC fit statistics.  A better fit is represented by lower values.     
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Table C.10.   Historical Data Compared to Scenario Generated Data for First Two Stages in Five Stage Model 

  Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 
  Historical  Scenario  Historical  Scenario  Historical  Scenario  Historical  Scenario  Historical  Scenario  Historical  Scenario 

 
Mean 

Texas Land Price Error Term 0.00 0.01 0.00 0.00 0.00 -0.021 0.00 0.01 0.00 0.00 0.00 0.00 

Colorado Land Price Error Term 0.00 0.00 0.00 0.00 0.00 -0.030 0.00 0.01 0.00 0.00 0.00 0.00 

Montana Land Price Error Term 0.00 0.02 0.00 0.00 0.00 0.016 0.00 -0.01 0.00 0.00 0.00 0.00 

Texas Gross Returns 102.24 102.24 97.49 97.49 101.24 101.26 111.61 111.61 98.63 98.63 98.63 98.63 

Colorado Gross Returns 106.26 106.28 103.59 103.59 115.21 115.21 107.37 107.37 103.70 103.70 103.70 103.70 

Montana Gross Returns 159.32 159.32 149.73 149.73 172.55 172.54 164.18 164.18 153.60 153.60 153.60 153.60 

 
Standard Deviation 

Texas Land Price Error Term 37.42 37.42 37.11 37.11 35.31 35.29 37.59 37.59 35.33 35.33 35.71 35.71 

Colorado Land Price Error Term 37.77 37.78 48.67 48.67 39.30 39.30 41.81 41.81 44.62 44.61 36.98 36.98 

Montana Land Price Error Term 61.76 61.76 72.76 72.76 69.14 69.17 69.03 69.03 69.14 69.13 90.09 90.08 

Texas Gross Returns 63.96 63.96 65.87 65.87 61.06 61.07 62.13 62.13 67.81 67.81 62.04 62.04 

Colorado Gross Returns 46.22 46.22 47.06 47.06 52.37 52.37 44.53 44.53 44.21 44.20 44.80 44.80 

Montana Gross Returns 89.87 89.87 95.33 95.33 95.35 95.35 85.91 85.91 87.06 87.05 87.57 87.57 

 
Skewness 

Texas Land Price Error Term -0.793 -0.714 -0.806 -0.808 -0.659 -0.649 -0.180 -0.187 -0.652 -0.640 -0.924 -0.822 

Colorado Land Price Error Term 0.752 0.703 0.390 0.443 0.741 0.752 0.631 0.648 0.477 0.556 0.686 0.659 

Montana Land Price Error Term 2.522 2.236 1.234 1.277 1.225 1.264 1.234 1.264 1.225 1.242 0.428 0.619 

Texas Gross Returns 1.863 1.976 1.962 2.023 1.969 2.102 1.996 2.084 1.283 1.227 2.000 2.136 

Colorado Gross Returns 1.803 1.731 1.939 1.906 1.207 1.114 1.947 1.914 1.755 1.757 1.942 1.879 

Montana Gross Returns 0.704 0.596 0.813 0.694 0.415 0.519 0.799 0.711 0.521 0.514 0.869 0.626 

 
Kurtosis 

Texas Land Price Error Term 1.344 1.274 1.856 1.784 1.853 1.769 0.996 0.954 1.847 1.777 1.532 1.547 

Colorado Land Price Error Term -0.174 -0.121 -0.283 -0.257 0.284 0.306 -0.010 0.011 -0.219 -0.210 0.399 0.461 

Montana Land Price Error Term 6.967 4.999 2.176 2.163 2.145 2.123 2.175 2.128 2.147 2.057 0.423 0.335 

Texas Gross Returns 4.076 4.080 4.454 4.368 4.695 4.584 4.617 4.536 1.146 1.147 4.637 4.643 

Colorado Gross Returns 3.128 3.096 3.692 3.702 0.133 0.160 3.756 3.767 3.223 3.224 3.706 3.685 

Montana Gross Returns -0.553 -0.529 -0.412 -0.392 -1.307 -1.341 -0.182 -0.161 -0.658 -0.667 -0.246 -0.208 
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Table C.11.   Optimal Acreage with Land Only in One Region 

 
Mean Min Max SD 

 
Texas 

Stage 0 3000 3000 3000 0 
Stage 1 4500 4500 4500 0 
Stage 2 4775 4627 5092 170 
Stage 3 5012 4674 5558 194 
Stage 4 4967 4513 5792 168 
Stage 5 4864 4500 6099 297 

 
Colorado 

Stage 0 3000 3000 3000 0 
Stage 1 4500 4500 4500 0 
Stage 2 4284 4193 4500 120 
Stage 3 4582 4429 4950 132 
Stage 4 4617 4479 4986 100 
Stage 5 4634 4500 5337 155 

 
Montana 

Stage 0 3000 3000 3000 0 
Stage 1 4500 4500 4500 0 
Stage 2 4082 3913 4283 129 
Stage 3 3869 2956 4797 572 
Stage 4 3203 2051 4770 708 
Stage 5 2757 2000 6045 960 
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Table C.12.   Optimal Acreage Allocations Given Geographical Diversification 

 
Colorado Texas Montana 

 
Mean Min Max SD Mean Min Max SD Mean Min Max SD 

 
Texas Base Region 

Stage 0 250 250 250 0 3000 3000 3000 0 250 250 250 0 
Stage 1 1332 1332 1332 0 4408 4408 4408 0 1750 1750 1750 0 
Stage 2 628 332 1321 404 4064 3408 4772 568 952 750 1713 413 
Stage 3 951 250 1875 482 3783 2450 4814 488 1015 250 1228 413 
Stage 4 818 250 3104 707 4310 2000 5000 782 371 250 1228 227 
Stage 5 1020 250 3589 996 3896 2000 5000 918 258 250 1145 70 

 
Colorado Base Region 

Stage 0 3000 3000 3000 0 250 250 250 0 250 250 250 0 
Stage 1 3000 3000 3000 0 1750 1750 1750 0 1750 1750 1750 0 
Stage 2 2406 2000 3000 385 1888 750 2565 684 1118 750 1706 499 
Stage 3 2594 2000 3454 446 1877 297 2809 601 989 250 1300 414 
Stage 4 2664 2000 4954 901 2262 250 3306 968 418 250 1300 281 
Stage 5 2978 2000 5000 1066 1905 250 3736 1007 263 250 1379 95 

  Montana Base Region 
Stage 0 250 250 250 0 250 250 250 0 3000 3000 3000 0 
Stage 1 1750 1750 1750 0 1750 1750 1750 0 4500 4500 4500 0 
Stage 2 1152 750 1866 421 2532 750 3250 956 3750 3500 4000 396 
Stage 3 1712 250 2250 586 2923 2000 4040 762 3176 2500 3000 481 
Stage 4 1193 250 3540 446 3053 1250 4748 545 2578 2000 3000 358 
Stage 5 944 250 5000 960 2680 250 5000 851 2012 2000 3344 105 
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Figure C.1.   Scenario tree4 
 
                                                 
4 An important concept to understand with a scenario tree is the concept of the father node.  The node a(i) is referred to as the father of node i.  For 
example, the father of node 2 is node 1, or a(2) = 1. 
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Figure C.2.   Change in land value 1974-20085 
 
  

                                                 
5 The sources of the data are USDA and Texas A&M Real Estate Center.   
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Figure C.3.   Kernel estimated pdf’s 
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Figure C.4.   Histogram for gross returns and land prices6 

 
 

                                                 
6 Data covers the time period 1998-2008 and is based off the historical data. 



 

 
 

147 

 
Figure C.5.   Change in wheat net returns for three growing regions 1974-2008 
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Figure C.6.   Illustration of the shape differences between five copulas7 
 
 

                                                 
7 AIC fit criteria showed that the Gaussian copula provided the best fit. 
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Figure C.7.   The first two stages of the generated five-stage scenario tree8 

                                                 
8 The last two observations for each node are shown as overflows in the bottom row.   
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Figure C.8.   Certainty equivalents under different diversification assumptions 
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Figure C.9.   Acreage allocations with Texas as base region 
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Figure C.10.   Acreage allocations with Colorado as base region 
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Figure C.11.   Acreage allocations with Montana as base region 
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APPENDIX D  

 DISCRETE STOCHASTIC PROGRAMMING FORMULATION 

 

The expected utility of terminal wealth is maximized subject to land, debt, and 

financial constraints.  A description of each constraint both mathematically and verbally 

is provided in this section.  An understanding of the subscripts is important in describing 

the mathematical representations of the constraints.  The subscript r  denotes the region 

where production occurs. Texas, Colorado, and Montana are the three regions denoted 

by r. The subscript t denotes the year in which the decisions are made with T being the 

terminal Stage.  The subscript i denotes the node at stage t which implies that i = 1,…, It 

and It is the number of nodes at time t.  The subscript j denotes the node at stage t-1 

which implies that j = 1,…,It-1 and It-1 is the number of nodes at time t-1.   

Land Constraints 

One of the most logical constraints that exist in farming is the land constraint.  A 

farmer cannot raise crops on land that he does not own or rent.  The first constraint is 

meant to restrict production to previously owned ground or newly rented or purchased 

ground 

∑ (−𝐼𝐿𝑟 − 𝑃𝐿11𝑟 + 𝑆𝐿11𝑟 + 𝑅𝑤11𝑟)𝑟
𝑖=1 ≤ 0                                                       (1a) 

∑ �−𝐿𝑡−1𝑗𝑟 − 𝑃𝐿𝑡𝑖𝑟 + 𝑆𝐿𝑡𝑖𝑟 + 𝑅𝑤𝑡𝑖𝑟�𝑟
𝑖=1 ≤ 0                                                       (1b) 

Equation 1a is the initial land constraint at the root node.  It specifies that the initial land 

(IL) in region r less purchased land (PL) in region r plus land sold (SL) in region r,  land 

planted to wheat (Rw) in region r, is less than or equal to zero.  Equation 1b extends the 
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first stage equation to the subsequent stages (t,i),  by constraining that the land owned at 

the end of the previous Stage (L), less purchased land (PL) plus sold land (SL), plus land 

used for production is less than zero.   

−𝐼𝐿 − 𝑃𝐿11𝑟 + 𝑆𝐿11𝑟 + 𝐿11𝑟 = 0                                                                                 (2a) 

−𝐿𝑡−1𝑗𝑟 − 𝑃𝐿𝑡𝑖𝑟 + 𝑆𝐿𝑡𝑖𝑟 + 𝐿𝑡𝑖𝑟 = 0                                                                              (2b) 

Equations 2a and 2b are used to transfer land from one Stage to the next.  These are 

considered to be the land accounting constraints.   

Machinery Constraints 

One of the key constraints when dealing with land allocation is the issue of 

machinery capacity.  It is assumed that there is a given amount of machinery that can be 

used for a given amount of acreage.  Equation 3a accounts for the initial land (IL), the 

acreage that has machinery (PM), and the acreage that requires machinery (AM).  

Equation 3b is essentially the same but accounts for machinery depreciation (dm) for the 

machinery used in the last Stage.   

−𝐼𝐿 − 𝑃𝑀11 + 𝐴𝑀11 = 0                                                                                              (3a) 

−𝑑𝑚𝐴𝑀𝑡−1𝑗 − 𝑃𝑀𝑡𝑖 + 𝐴𝑀𝑡𝑖 = 0                                                                                 (3b) 

Equations 4a and 4b are machinery accounting constraints.  They are used to transfer 

machinery value (𝑀𝑡𝑖) from one Stage to the next.  Once again depreciation of 

machinery is accounted for in subsequent Stages. 

−𝐼𝑀 −𝑚𝑎𝑃𝑀11 + 𝑀11 = 0                                                                                          (4a) 

−𝑑𝑚𝑀𝑡−1𝑗 − 𝑚𝑎𝑃𝑀𝑡𝑖 + 𝑀𝑡𝑖 = 0                                                                                 (4b) 



 

 

156 

Equations 5a and 5b are used to control the amount of machinery purchased.  They 

ensure that the amount of machinery owned and newly purchased is sufficient to service 

the acreage in production(∑ 𝑊11𝑟
𝑟
𝑖=1 ). 

 

−𝐼𝐿 + ∑ 𝑊11𝑟
𝑟
𝑖=1 − 𝑃𝑀11 ≤ 0                                                                  (5a) 

−𝑑𝑚𝐴𝑀𝑡−1𝑗 + ∑ 𝑊𝑡𝑖𝑟
𝑟
𝑖=1 − 𝑃𝑀𝑡𝑖 ≤ 0                                                        (5b) 

Financial Constraints 

These constraints are used to control the debt available to the farmer.  The debt level is 

both a function of the weighting of credit capacity of the farmer (𝑒𝑡𝑖) and the owners 

equity (OEti).  After the first Stage, this constraint is also a function of credit capacity 

(𝑑𝑡𝑖) and previous year debt (𝐷𝑡−1𝑗) . 

                           −𝑒𝑡𝑖𝑂𝐸11 + 𝐷11 ≤ 0                                                                              (6a) 

                        −𝑑𝑡𝑖𝐷𝑡−1𝑗 − 𝑒𝑡𝑖𝑂𝐸𝑡𝑖 + 𝐷𝑡𝑖 ≤ 0                                                                (6b) 

Equation 7 is used as the accounting constraint for the problem.  It represents the 

fundamental accounting constraint, assets equal liabilities plus owner’s equity. 

𝑝𝑙𝑡𝑖𝐿𝑡𝑖 + 𝑀𝑡𝑖 + ∑ 𝑤𝑤𝑡𝑖𝑟𝑊𝑡𝑖𝑟
𝑟
𝑖=1  −𝑂𝐸𝑡𝑖 − 𝐷𝑡𝑖 = 0                                   (7) 

Equations 8a and 8b are used to calculate the owner’s equity.  Recall that ending 

owner’s equity is being used as the measure of terminal wealth.  8a represents the first 

Stage calculation of owner’s equity where IOE is the initial owners’ equity, tc represents 

the transaction cost of selling land, SL is the land sold in each region r, and OE is the 

actual owner’s equity at time Stage 1.    8b is the constraint used to calculate owner’s 
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equity in the following Stages9. The profit from growing wheat in each region r is 

represented by ∑ 𝑝𝑟𝑤𝑡𝑖𝑟𝑊𝑡−1𝑗𝑟
𝑟
𝑖=1  .  The depreciation of machinery is represented 

by𝑎𝑑𝑚𝑀𝑡−1𝑗, where adm is the after tax depreciation rate and M is the value of 

machinery.  The interest charges from debt are accounted for with 𝑟𝑖𝑛𝑡𝑡𝑖𝐷𝑡−1𝑗, where 

rint is the interest rate and D is the debt level.  The capital gains from changes in land 

values are captured by the term 𝑐𝑔𝑡𝑖𝑟𝐿𝑡−1𝑗𝑟, where cg represents the capital gain on the 

land.   

                                              𝐼𝑂𝐸 − 𝑡𝑐11𝑆𝐿11𝑟 − 𝑂𝐸11 = 0                                               (8a) 

                              ∑ 𝑝𝑟𝑤𝑡𝑖𝑟𝑊𝑡−1𝑗𝑟
𝑟
𝑖=1 − 𝑎𝑑𝑚𝑀𝑡−1𝑗 − 𝑟𝑖𝑛𝑡𝑡𝑖𝐷𝑡−1𝑗 + 𝑂𝐸𝑡−1𝑗 +

                              𝑐𝑔𝑡𝑖𝑟𝐿𝑡−1𝑗𝑟 − 𝑡𝑐𝑡𝑖𝑆𝐿𝑡𝑖 − 𝑂𝐸𝑡𝑖 = 𝑐                                                      (8b) 

 
  

                                                 
9 Family withdrawals are represented by the variable c, which are assumed to be constant over the 
planning Stages.  
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