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ABSTRACT 

 

Analysis and Design of a Multifunctional Spiral Antenna. (August 2012) 

Teng-Kai Chen, B.S., National Cheng Kung University; 

M.S., National Taiwan University 

Chair of Advisory Committee: Dr. Gregory H. Huff 

 

The Archimedean spiral antenna is well-known for its broadband characteristics 

with circular polarization and has been investigated for several decades. Since their 

development in the late 1950’s, establishing an analytical expression for the 

characteristics of spiral antenna has remained somewhat elusive. This has been studied 

qualitatively and evaluated using numerical and experimental techniques with some 

success, but many of these methods are not convenient in the design process since they 

do not impart any physical insight into the effect each design parameter has on the 

overall operation of the spiral antenna. This work examines the operation of spiral 

antennas and obtains a closed-form analytical solution by conformal mapping and 

transmission line model with high precision in a wide frequency band.  

Based on the analysis of spiral antenna, we propose two novel design processes 

for the stripline-fed Archimedean spiral antenna. This includes a stripline feed network 

integrated into one of the spiral arms and a broadband tapered impedance transformer 

that is conformal to the spiral topology for impedance matching the nominally-high 

input impedance of the spiral. A Dyson-style balun located at the center facilitates the 



 iv 

transition between guided stripline and radiating spiral modes. Measured and simulated 

results for a probe-fed design operating from 2 GHz to over 20 GHz are in excellent 

agreements to illustrate the synthesis and performance of a demonstration antenna. The 

research in this work also provides the possibility to achieve conformal integration and 

planar structural multi-functionality for an Unmanned Air Vehicle (UAV) with band 

coverage across HF, UHF, and VHF. The proposed conformal mapping analysis can also 

be applied on periodic coplanar waveguides for integrated circuit applications.  
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CHAPTER I  

INTRODUCTION 

 

1.1 Preface 

The highly demand for broadband wireless communications has been increasing 

because of a number of reasons including higher communication data rate by 

transmitting data on several separate spectrum and integration of several wireless 

services [1], [2]. As a result, a lot of researches and development have been focused on 

the study of modeling, design [3], optimization [4], and measurement methodology of 

broadband antennas [5]. TABLE I shows several examples of various wireless 

communication systems with their operating frequencies and bandwidths, illustrating 

that a very broadband antenna is necessary to integrate these system onto one platform. 

However, the wideband antennas (except spiral antennas) barely provide circular 

polarization [6], [7]. A circular polarization antenna is widely employed in radar, 

navigation, satellite and some mobile communications systems because of its 

insensitivity to orientations and polarization diversity between transmitters and receivers, 

and is generally required for various environments where omnidirectional receiving is 

desired [8]. Although several broadband circular polarized antennas have been proposed 

in recent years [9]-[11], their axial ratio (AR) bandwidth are hardly achieved up to 40%.  

 

____________ 
This dissertation follows the style of the IEEE Transactions on Antennas and 

Propagation. 
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TABLE I OVERVIEW OF RADIO SERVICES. 
 

 

  

The spiral antennas, which easily cover the bandwidth over 20:1 with excellent 

circular polarization [12], have long been a popular choice for broadband radiating 

systems and continue to be relevant in modern communication systems and in other 

high-performance devices based on multifunctional or hybrid concepts. This includes the 

integration of various services and sensors into a single system as a means of adding new 

degrees of functionality, but this can also create challenges for the radiating structure 

(and potentially throughout the entire front-end of the wireless system). The spiral 

configurations can support these applications, but from a mathematical standpoint 

(design equations, etc.) only the equiangular spiral, the Archimedean spiral, and the 

rectangular counterpart of the Archimedean spiral have received wide attention. These 

spirals will be discussed and reviewed in the next section. 
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1.2 Literature Review 

Apparently, the researches on examining the properties of Archimedean spiral 

antennas are more than equiangular spiral antennas. From a design point of view and 

their properties, both spiral antennas can be classified in the class of frequency 

independent antennas. The term “frequency independent antenna” is first coined by V. H. 

Rumsey [13] for a class of antennas whose properties is independent of frequency for all 

frequencies between the low and high frequency limits. Rumsey also stated that if the 

shape of the antenna could be specified entirely by angles, its performance would be 

independent of frequency, whose formula is recognized as an equiangular spiral. 

Therefore, the Archimedean spiral antennas are criticized by Mayes and Dyson that they 

are not belong to frequency independent antennas [14]. 

However, there is evidence that the Archimedean spiral is a better candidate than 

the equiangular spiral. A comparison between the Archimedean spiral and log spiral by 

fabrication and measurement undertaken in [15] concludes that the Archimedean spiral 

is a better choice based on its well-defined dispersion relation. The work in [16] also 

suggests an Archimedean spiral over an equiangular spiral because of constant arm 

width spiral easy to mount termination resistors for better performance. Despite these, 

the equiangular spiral and the Archimedean spiral share some similar properties and the 

research works on equiangular spiral are applicable to the Archimedean spiral as well. 

The following sub-section introduce the past research works on spiral antennas as well 

as the conformal mapping methods on solving coplanar waveguide problems. 



 4 

1.2.1 Equiangular Spiral Antennas 

After Rumsey proposed an idea about frequency independent antenna in 1957 

and suggested a solution to the equiangular spiral antenna [17], Dyson created an infinite 

balun and conducted an experiment on slot-type spiral to demonstrate the idea of 

frequency-independency [18], [19]. This work also showed that the input impedance of 

the antenna is lower by increasing the width of the metal arm. In 1961, Cheo, Rumsey, 

and Welch published an analytical solution to frequency independent antenna, which 

showed the current distribution attenuated significantly as increase of spiral length and 

various radiation modes [20]. Sivan-Sussman demonstrated those various modes of the 

equiangular spiral antenna experimentally in 1963 [21].  

Since the prior research works on equiangular spiral antennas in 1960s, no 

publication on equiangular spiral appeared until 1991 [22], which demonstrated 

experimentally that the spiral microstrip antennas can achieve very wide bandwidth of 2-

18 GHz. The first numerical work on equiangular spiral antennas is proposed in 1996 by 

Wentworth and Rao using the method of moments [23]. The calculated impedance in 

this paper contradicted the self-complementary impedance of 188Ω is not quite accurate 

since the mesh of spiral arm is coarse. In 2005, Lou and Jin presented the time-domain 

finite element method (TDFEM) for an equiangular spiral antenna, which did show an 

impedance of 188.5Ω for a self-complementary spiral [24]. However, the subject of this 

paper is not on the spiral antenna itself but on the numerical verification. McGadden and 

Scott then presented the analysis of equiangular spiral antenna using finite-difference 

time-domain (FDTD) method, which is the first comprehensive numerical parametric 
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study on equiangular spiral antenna [25]. They also proposed a very easy formula for 

evaluating the self-complementary impedance on a half-space dielectric substrate by 

Booker’s relations, which is the well-known Babinet’s principle. Nevertheless, this 

formula does not take the geometric parameters of spiral and substrate height into 

consideration and is a highly approximated one.  

In addition to these analysis works, other active researches are to obtain a 

unidirectional beam and to improve the antenna design and performance. A 

unidirectional beam can be achieved by placing a shallow cavity with absorbing strips 

[26] or placing an electromagnetic band gap (EBG) reflector [27] backed to the spiral. A 

simpler feeding structure by tapered microstrip balun [28] or by parallel-plane 

perpendicular-current feed [29] are also proposed to improve and to realize a completely 

planar spiral antenna compared to the conventional center-fed or vertically-connected 

coaxial line. Although these techniques are presented on equiangular spiral antennas, 

they can be used on Archimedean spiral antennas as well. 

 

1.2.2 Archimedean Spiral Antennas 

The Archimedean spiral antenna is known for its broadband characteristics with 

circular polarization, though it was not claimed as a type of frequency independent 

antenna. The fundamental design of Archimedean spiral was first reported in the 1950s 

by Turner [30]. The first attempt to solve the Archimedean spiral analytically was by 

Curtis in 1960 with approximation as a semicircle spiral [31]. The semicircle spiral 

model showed good agreement with experimental results.  
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In the same year of 1960, Kaiser proposed the well-known band theory of spiral 

antennas [32], which states that for the two-wire spiral transmission lines with negligible 

wire width, the radiation occurs in the regions where currents in the neighboring arms 

are in-phase. Although there is no rigorous mathematical description for the band theory, 

its easier-understood concept can explain several notable properties of spiral antennas. 

As is well accepted, the feeding structure near the spiral center determines the upper 

frequency limit of spiral antennas and the maximal circumference of the spiral 

determines the lower frequency limit. At radiation region where two currents are in-

phase, the radiation behavior of a spiral antenna is similar to one-wavelength loop 

antenna. The first mode radiation (also called normal mode in [12]) arises from a 

balanced excitation (also called odd excitation in [12]) and the second mode radiation 

(split-beam mode in [12]) arises when currents are in-phase in the feed point, which is 

called even excitation in [12]. The higher-order mode may occur if the spiral structure is 

large enough. However, only odd-mode radiation can be excited by a balanced excitation 

since no radiation occurs when the two currents are out-of-phase at even-wavelength 

circumference, unless there is any amplitude or phase error at the input terminal. As 

discussed in [33], the current distribution decay rapidly along the arm of the 

Archimedean spiral and thus the radiation from the higher-order mode is smaller than the 

first mode radiation. 

After those research works in 1960s, no publication on Archimedean spiral 

antennas until 1986. Nakano et al. analyzed an Archimedean spiral antenna with the 

presence of an infinite PEC reflector by using the moment method with thin-wire 
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assumption [34]. Champagne et al. also applied the moment method with thin-wire 

assumption to analyze the impedance loaded multi-arm Archimedean spiral antenna, and 

first time revealed the split-beam mode on four-arm spiral by numerical calculation [35]. 

In 1997, Nakano et al. presented an analysis of the monofilar spiral antenna backed by a 

ground plane, which has a single arm configuration with a simpler feed system than two-

arm Archimedean spiral [36]. It is worth to note that the excitation on this single arm 

Archimedean spiral antenna is called the unbalanced excitation, which is not contrary to 

the balanced excitation for two-arm Archimedean spiral antenna and should be clarified.  

The analyses mentioned in the above paragraph are performed in free space. In 

1998, Nakano et al. proposed a moment method analysis for a two-arm thin-wire 

antenna on a semi-infinite dielectric material [37] and for a single-arm printed wire on 

an infinite conductor-backed substrate [38]. In 2002, they analyzed a two-arm square 

Archimedean spiral antenna printed on two types of substrates, finite-size dielectric 

substrate with infinite and finite conductor-backed plane, respectively [39]. The finite-

difference time-domain (FDTD) analysis in this paper showed the difference on 

radiation pattern, axial ratio (AR), and gain while less difference on input impedance 

between these two configurations. A notable result in [40] by examining a two-arm 

square Archimedean spiral antenna sandwiched by dielectric layers with infinite ground 

plane showed that the oscillation in the input impedance and AR is due to the reflection 

from the air/dielectric interface, which can be lessened by adding anti-reflection layer for 

impedance matching. In 2010, Nakano et al. compared the performance of single-arm 

and two-arm Archimedean spiral antennas in [41]. It should be addressed that the 
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terminology in the work [42] confused a lot of researchers. The unbalanced mode 

excitation mentioned in this paper meant that one arm is fed by a coaxial cable and the 

other arm is a floating circuit.   

The research conducted by Nakano et al. are mainly on investigation of the spiral 

antenna properties in different configurations using the moment method and FDTD. 

Other numerical works to evaluate the characteristics of spiral antenna can be found by 

finite-volume time-domain (FVTD) method [33], integral equation with thin-wire 

assumption [43], FDTD [44], finite element method (FEM) [45], and commercial full-

wave solvers [46]. Over the past decade, the spiral was the subject of active researches  

and several modified designs on spiral configuration were proposed and investigated, 

such as stripline-fed spiral design [47], new combo-antenna design combining 

equiangular spiral, Archimedean spiral, and annular slot ring antenna [48], meander or 

zigzag spiral designs [49], coplanar strip spiral [50], three-arm (coplanar waveguide) 

spiral [51], and etc. [52]-[56]. 

In the above mentioned papers, the design and analysis of the spiral antenna were 

accomplished using the numerical techniques, which can provide accurate results, but 

are not convenient in the design stage and do not give any physical insight into the effect 

of each design parameter on the overall operation of the spiral antenna. On the other 

hand, the input impedance of spiral antenna is fully unpredictable until the optimized 

solutions are achieved through a trial-and-error iterative numerical process. The 

analytical input impedance is important for system design because of the need of 

impedance matching to system impedance, i.e. normally 50 Ohms. Recently, the lossy 
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transmission-line model was proposed to characterize the input impedance of a spiral 

antenna [57]. However, they did not provide the model with the geometric parameters of 

spiral.  

The balanced excitation required by spiral antennas often requires that wideband 

baluns and impedance transformers are utilized when excitation from a coaxial cable is 

desired. The unbalanced transition from the cable and the impedance mismatch between 

it and spiral antenna [58] are just two of the major design problems that can limit the 

desired wideband operation. As a result, numerous feed topologies and baluns have been 

investigated to provide the balanced feed for the spiral antenna (e.g. [51], [58]-[61]). In 

many cases the resulting feed structure is orientated perpendicular to the plane of the 

spiral. Structurally functionalized antennas and those for on-chip integration with other 

circuit components are just a few examples where a planar design is desirable, but a 

design that integrates the spiral, balun, and feed network into a multi-layer structure to 

enable other applications. 

Overall, several issues introduced in this section and some notable results by past 

research works will be discussed more in this dissertation.  

 

1.2.3 Conformal Mapping Method on Coplanar Waveguides 

The coplanar waveguide (CPW) structure has been popular for Monolithic 

Microwave Integrated Circuit (MMIC) [62-65] and printed circuit board (PCB) [66] 

design because of its wide designable versatility. Since its introduction in 1969 [67], it 
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has been utilized in a lot of applications (not only in microwave fields [68]-[71]) and 

consequently has been investigated extensively on its characteristics.  

The electrical properties of various CPW configurations have been well 

characterized by various techniques including conformal mapping [72]-[80], finite 

difference time domain (FDTD) method [81]-[84], spectral domain method [85], [86], 

integral method [87], and relaxation method [88]. Simple analysis such as conformal 

mapping assumes quasi-TEM propagation where the guiding wavelength is much larger 

than the structure dimensions. Other methods that are more rigorous use full-wave 

techniques that allow frequency dependence of phase velocity and characteristic 

impedance. 

At the lower frequency that antennas and RF circuits usually operate, the 

conformal mapping analysis results in accurate calculations of the electrical parameters 

with several features including less computation time, ease of programming, and 

facilitating to get the effects of various physical dimensions on the electrical parameters. 

These analytical expressions by conformal mapping are accurate up to frequencies of 20-

40 GHz compared to full-wave techniques [75], and ideal for computer aided design 

(CAD), especially for sensitivity analysis and variation prediction.  

The mapping function for ideal CPW and coplanar strips (CPS) on semi-infinite 

substrate and infinite lateral ground plate was first presented by Wen [67], where the 

method was later extended for the design of a CPW directional coupler [89]. Davis et al. 

provided finite boundary correction for CPW with finite substrate thickness in 1973 [90]. 

Until 1980, Fouad Hanna provided the same correction for CPS [91] and in the same 
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year, he and Veyres proposed a well-known paper applying partial capacitance (PC) 

techniques to solve CPW with both finite metal dimensions and finite substrate [80]. 

Since then, a lot of research employed conformal mapping method and partial 

capacitance techniques to derive analytical expressions for the impedance and the 

permittivity of CPW with backed conductor plane [73], [92], CPW with upper and lower 

shielding [64], broadside-coupled CPW [93], parallel-coupled CPW [79], [94]-[96], 

parallel CPW [97]-[99], and asymmetrical CPW and CPS [100]-[103].  

The partial capacitance techniques can be easily extended to multilayer cases as 

demonstrated in [65], [75], [78], [104] since it allows the total line capacitance to be 

approximated as the parallel combination of the capacitances of homogeneous substrate, 

which is cataloged as parallel partial capacitance (PPC) approximation. Since its first 

introduction in1980, the first theoretical justification was presented in 2003 [105] and 

showed that the PPC approach is valid when the dielectric constant is decreasing layer 

by layer away from the CPW structure. A modified PC or series partial capacitance (SPC) 

approach was thus suggested by several authors [106]-[108], but SPC approach is still 

valid when the dielectric constant is increasing layer by layer away from the CPW 

structure. A generalization of mixed PPC and SPC approach is not proposed yet. The 

quasi static solutions by conformal mapping can be easily modified to obtain dispersion 

effects [109] and conductor loss [110], [111]. 
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1.3 Dissertation Organization 

The organization of this dissertation has four main parts. The first part contains 

introduction including a review of the relevant works in Chapter I. Chapter II presents 

the modified band theory for an Archimedean spiral antenna with non-negligible metal 

width and derives a novel analytical solution on the characteristic impedance operating 

in the radiation region. The derivation is based on the assumption of periodic coplanar 

waveguide (PCPW) model and conformal mapping methods. Chapter III describes the 

immature but successful design process to design a stripline-fed two-arm Archimedean 

spiral antenna by proposing an inward-fed topology based on a center-fed spiral design 

with an impedance transformer that is conformal to the spiral. This work demonstrates 

the function of a stripline-fed Archimedean spiral antenna and supports the goal of 

developing planar broadband radiating structures. Chapter IV analyzes the radiation 

mechanism and the impedance properties of the stripline-fed Archimedean spiral 

antenna presented in Chapter III. Based on this analysis, a new design process containing 

intuitive physical concepts is proposed in Chapter V to design this multifunctional planar 

antenna. In this chapter, the modified design process employs the simple concept of 

impedance matching and analytical formulas to design the antenna as well as 

examination by full-wave simulation, while the full-wave simulation is totally applied in 

the design process I. This is also followed by measured and simulated results for a 

probe-fed fabricated structure designed to operate from 2 GHz to over 20 GHz on the 

same substrate to demonstrate the design process. The application of this multifunctional 

antenna on circular UAV design is introduced in Chapter VI. The last part of the 
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dissertation presents the analytic solutions of periodic coplanar waveguides for 

integrated circuits applications in Chapter VII. Finally, conclusions and future work are 

given in Chapter VIII. 
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CHAPTER II  

ON THE CHARACTERISTIC IMPEDANCE OF TWO-ARM GAP-FED 

ARCHIMEDEAN SPIRAL ANTENNAS  

 

The Archimedean spiral continues to be a widely studied antenna topology 

thanks to its broadband impedance and radiation characteristics. These have been 

investigated experimentally and computationally since their initial development in the 

late 1950’s [31], [32], and a number of numerical methods have been developed and 

utilized in the decades following their introduction to model these broadband attributes. 

Examples of this include the method of moments based on a thin-wire assumption [37], 

[43], finite-volume time-domain (FVTD) [33], finite-difference time-domain (FDTD) 

[39], [44], finite element method (FEM) [45], [52], and similarly constructed 

commercial full-wave solvers [47], [49], [51], [112]. 

In many of these and other examples, the process of design and analysis relies on 

experimental observations and/or empirical methods to impart greater physical insight 

into this behavior. These methods have been collectively successful for synthesis, but a 

physically descriptive and rigorous analytical analysis of the Archimedean spiral antenna 

has received less attention. This is especially true concerning the input impedance. A 

semi-circular model [31] was first proposed in for this purpose, and the solution for an 

infinite number of equiangular spirals was obtained in [20]. The development of closed-

form analytical solutions for the input impedance, which both impart physical insight 

and remain amendable to the synthesis of two-arm spirals, has been somewhat limited. 
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This may in part be attributed to the many variations the spiral can embody (cavity 

backed, etc.) as well as the ability to rapidly evaluate the structures using full-wave 

solvers, but it nonetheless remains of interest for both synthesis and analysis.  

The radiation behavior is a more studied topic when compared to the impedance 

and it is commonly accepted that the basic operation of the balanced two-arm 

Archimedean spiral can be accurately explained using Band Theory [32]. This theory 

states that for the two-wire spiral transmission line with negligible wire-width, the 

radiation occurs in annular regions where currents in the neighboring arms are in-phase. 

The lossy transmission-line model in [57] applies this concept using the radiation 

resistance of loop antennas as a means to capture the impedance behavior. By extending 

this explanation to include microstrip [113], stripline [47], and other printed antenna 

topologies, where wire width can no longer be considered negligible, the current 

distribution will reside on the edge of the conductor and the power will radiated when 

the two neighboring current distributions are in-phase.  

This deviation from the original constructs of Band Theory leads to the concept 

of common slot-line mode radiation for the spiral antenna. Hence, when radiation occurs 

from the common slot-line mode both the field distribution and its physical structure are 

similar to the propagating TEM coplanar waveguide mode. With multiple turns this 

leads to the analysis of periodic coplanar waveguide (PCPW) structures and the primary 

focus of this analysis, from which a closed-form analytical solution can be obtained 

using conformal mapping. This results in a quasi-static analysis which is rigorously valid 

only at zero frequency, but it can provide an accurate prediction across a wide frequency 
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band [64], [65], where RF and microwave spiral antennas operate. This can also provide 

physical insight into the radiation mechanism of the two-arm Archimedean spiral 

antenna and provide an efficient analytical solution for both synthesis and analysis. 

This chapter proposed a conformal mapping approach to derive quasi-static 

closed-form solutions for the characteristic impedances of PCPW; this is used to 

characterize the input impedance of the balanced, gap-fed two-arm Archimedean spiral 

antennas operating in their radiation region (where Band Theory predicts radiation will 

occur). For completeness, the radiating mechanism of spiral antenna is reviewed first 

along with the basic design parameters of the spiral geometry. This is followed by the 

development of a model for the PCPW (assuming conductors of negligible thickness). 

The mapping between physical and finite image domains is discussed next as a more 

straightforward approach towards deriving the input impedance of the spiral. A 

comparison is then made with full-wave electromagnetic solutions to validate the 

accuracy of this approach over a wide range of design parameters. A brief summary on 

the conformal mapping process and the resulting characterization of the spiral concludes 

the discussion. 

 

2.1 Archimedean Spiral Antenna 

The absence of a comprehensive design process for the synthesis of Archimedean 

spirals with desired input impedance can present many challenges when finding the 

optimum winding, arm width, or arm spacing. The analysis in [12] (albeit some time ago) 

states that the conductor width and conductor spacing are the least critical parameters, 
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and suggests that their ratio should be unity. Many subsequent designs continue to 

follow this suggestion for a self-complementary topology, and the resulting input 

impedance Zin = 60π Ω (~ 188 Ω) for the infinitely-wound self-complementary spiral 

antenna of this topology in free-space is described best through Babinet’s principle 

[114]-[118]. This can, of course, be applied to find impedances for a wide range of 

complementary structures (including spirals) using the widely recognized relation in (1), 

where Zmetal and Zslot are input impedances of the metal and slot radiating structures, 

respectively, and η is the intrinsic impedance of the media where the structure is 

immersed.  

 
2

metal slot 4
Z Z


  (1) 

This result is fundamentally important but it cannot provide a priori information 

on the input impedance of non-self- complementary spiral antenna since Zmetal and Zslot 

are typically unknown. The value of η for the spiral antenna when it resides on dielectric 

media with a finite-thickness is also an unknown parameter in the design process, 

although this can be solved by numerical methods. The remainder of this section 

represents a precursor towards directly solving for these parameters (explicitly Zmetal for 

the gap-fed two-arm structure) by examining the similarity of the spiral’s cross section 

with propagating modes on a TEM transmission line. 
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2.1.1 Antenna Parameters 

Fig. 1 shows a two-arm planar gap-fed Archimedean spiral antenna. The antenna 

is excited in the center of the spiral with a tapered Dyson-style balun [18]. This tapered 

topology reduces the capacitive loading at the central input end of the spiral antenna. 

The boundaries of the two metal arms are defined by four spiral curves, and the well-

known expressions for these are shown in (2), where r is the radius of the spiral curve,  θ 

is the winding angle in radians, a = RC / 2π is the radius change rate of the spiral, RC is 

the radius change for one turn of a spiral arm, and rin is the inner radius of the spiral. The 

same values of a and rin are applied on these four curves, and the outer taper of the arm 

into a point is given by a circular curve defined using an offset angle θoff with the outer 

radius in (3), where N is the number of turns of the spiral antenna. 

 inr a r   (2) 

 2out inr Na r   (3) 

Using c1 and c2 to describe the two edge curves of one arm of the spiral requires 

c1 = aθ + rin and c2 = a (θ + θoff ) + rin. The width of the metal strip can then be defined 

as (4), the resulting slot width can be obtained by noting that S = aπ – W, and the 

metallization ratio can then be defined as (5). 

 1 2 offW c c a    (4) 

 offW

W S





 


 (5) 

For convenience, the second metal strip can simply be generated by rotating the 

first metal strip 180º about the axis of the spiral. The feed region expanded in the bottom 
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of Fig. 1 has a gap length g with gap width Wg. The ratio of gap width to gap length has 

to be designed to occupy a very limited footprint in an effort to reduce the gap 

capacitance at input and to have a negligible effect on the antenna’s impedance or 

pattern. This is generally limited by the desired frequency response of the design. This 

results in the structure shown in Fig. 1. In a general context, these parameters are well 

defined in other works related to the spiral, but they have been included here for 

continuity of nomenclature in later sections and to provide a quick reference on their 

physical meaning. 

 

 

Fig. 1 Layout of the two-arm gap-fed Archimedean spiral antenna in free space with non-negligible 
metal width and tapered-down arm terminations. 

 

2.1.2 Band Theory and Periodic Coplanar Waveguide (PCPW) 

There is no rigorous mathematical description of the Band Theory for 

Archimedean spiral antennas. However, it is a powerful concept that provides an 

intuitive, versatile, and easily digested description of the radiating mechanism. 

According to this theory [32], the radiation from a two-wire spiral transmission line with 
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negligible wire-width occurs when the two currents in the neighboring arms are in-phase. 

The active region where this radiation occurs is similar to a loop antenna whose 

circumference on the spiral plane corresponds to one wavelength at the operating 

frequency f in (6), where rrad is the radius of the radiation region, λg is the guided 

wavelength propagating along the spiral arm, vp is the guided phase velocity, c is the 

speed of light, and εreff is the effective dielectric constant that the propagating wave 

experiences (if a dielectric substrate is present). 

 2 p

rad g

reff

v c
r

f f
 


    (6) 

A related but topologically different situation arises when the strip width of a 

metallic spiral arm is non-negligible (e.g., no longer a thin wire). It is well-known that 

the current distribution resides on the edges of the metal strips in this case and a slotline 

mode propagates between the arms, so a path difference between the outer curve and 

inner curve of one spiral arm will be created. Following the principles of Band Theory, it 

can be deduced that power will also be radiated when the two neighboring current 

distributions on the same metal strip are in-phase. Fig. 2 shows the cross-section of a 

nominal spiral (top) and field distribution on these arms when the two neighboring 

currents on one spiral arm are in-phase (bottom).  

This is similar to a pair of in-phase slot-line modes, and the similarly-named 

common slot-line mode radiation. Using the symmetry of the electric field distribution, a 

set of perfect electric conductor (PEC) walls and perfect magnetic conductor (PMC) 

walls can be placed at the middle plane of the slot and the metal strip, respectively. The 
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notional electric field distribution shown in Fig. 2 is explicitly valid only for an infinite 

number of arms with equal current and field distributions. A similar distribution can be 

assumed for a finite number of arms over the frequencies where common mode radiation 

occurs. This field distribution leads to the periodic coplanar waveguide (PCPW) mode, 

for which a closed-form analytical solution is examined in the following section using 

conformal mapping. 

 

 

Fig. 2 Cross-sectional view of a two-arm Archimedean spiral antenna along yz-plane (top) and the 
electric field distribution (bottom) when radiation occurs, which is similar to the coplanar waveguide 
mode but with periodicity along the spiral cross section (named periodic coplanar waveguide (PCPW) 
mode). 
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2.2 Conformal Mapping 

Conformal mapping is introduced in this section to obtain the characteristics of a 

PCPW transmission line. For  quasi-TEM propagation, the characteristic impedance Zc 

in (7) and effective dielectric constant εreff in (8) can be completely determined from the 

effective per unit length (P.U.L.) capacitances [119], where L and C are the P.U.L. 

inductance and capacitance, respectively, and C0 is the capacitance with no dielectric 

material present. From (7) and (8), C and C0 are the only unknown parameters required 

to obtain the quasi-static characteristics. 

 reff

c

L
Z

C cC


   (7) 

 
0

reff

C

C
   (8) 

 

2.2.1 Schwartz-Christoffel Transformations 

The Schwartz-Christoffel transformation provides a suitable conformal mapping 

for the calculation of these unknown capacitances. It maps the upper-half of the complex 

t-plane onto the interior of a polygon in the w-plane and the real axis onto the boundary 

of the polygon. The resulting expression in (9) for a half-plane [120] assumes a constant 

B, the mapping function w = f (t), and the interior angle at vertex ρ of the polygon as παρ. 

For a closed convex polygon, the restriction on αρ is given by (10). For more than four 

vertices (n > 4), this transformation can only be evaluated by numerical integration. 

  
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2.2.2 Elliptic Integrals 

Fig. 3 shows the general transformation when mapping the upper half-plane onto 

the interior of the rectangle with αk = 1/2 and n = 4 or n = 3 to form a parallel-plate 

capacitor. The integrals in this transformation involve rational functions which can be 

reduced to the square root of third- and fourth-degree polynomials and their products. 

These can be expressed by a linear combination of elliptic integrals of the first, second, 

and third kinds. For n = 4, the conformal transformation shown in Fig. 3(a) uses the 

mapping function in (11), where the constant A describes a translation and constant B 

describes the rotation and magnification (neither are required here). For a generic value 

of t, the integral is said to be incompletely expressed by the elliptic integral of the first 

kind as (12), where φ and k are called amplitude and modulus of elliptic integrals, 

respectively. 
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It is notable that when φ = π/2, the integration in (12) is from 0 to 1 and F(π/2,k) 

is expressed as K(k); this expression is called a complete elliptic integral of first kind. 

The integral in (11) can be found in a table of integrals (e.g., [121]), and the boundary of 
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the rectangle in the w-plane is given by (13) and (14) with the geometric parameters 

given by (15)-(17). 
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Fig. 3 Schwartz-Christoffel transformation of (a) n = 4 and (b) n = 3 for the general case. 
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For n = 3, the conformal transformation can also be mapped onto the rectangle in 

w-plane using (18). This transformation leads to (19) and (20) with geometric parameters 

(21)-(23), where k’ is the complementary modulus of elliptic integral. It is noteworthy 

here to indicate that the parameters g3 and g4 are not in Fig. 3 since they represent the 

magnification of mapping. These will be cancelled in the calculation of capacitance. 
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2.2.3 Elliptic Functions 

Fig. 4 shows the reverse mapping from a rectangle onto the upper-half plane 

using the mapping function in (24), where sn(z,k) is the Jacobian elliptic function with a 

modulus k determined by (25)-(26) (from [122]), K = K(k), and K’ = K(k’). 
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Fig. 4 Reverse mapping from a rectangle in z-plane onto the upper-half t-plane. 
 

2.3 Analysis 

2.3.1 PCPW in Free Space 

The symmetric field distribution of the PCPW facilitates the placement of the 

PEC and PMC boundaries shown in Fig. 2. This can be represented by the equivalent 

circuit in Fig. 5(a). The total capacitance C0 for one periodic section of PCPW can then 

be evaluated using this model. The z-plane for this topology shown in Fig. 5(b) has the 

coordinates zb = W/2 + S/2, zc = W/2 and zd = 0, and (27) maps these points onto the t-

plane.  

 2cos z
t

W S

 
   

 
 (27) 
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Fig. 5 Calculation of total capacitance C0 for PCPW in free space; (a) equivalent circuit and (b) 
conformal mapping steps from z-plane onto t-plane and then onto w-plane. 

 

The parallel-plate structure in the w-plane can be obtained using the 

transformation in (18), and from this the P.U.L. capacitance Ca can be obtained by (28) 

and (29), where χ is the metallization ratio defined in (5) and ε0 is the permittivity in free 

space. 
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From the equivalent circuit in Fig. 5(a), the total P.U.L. capacitance C0 and the 

characteristic impedance Z0 of the propagating wave when the two slot line modes are 

in-phase are obtained using  (30) and (31), respectively. 

 0 2 aC C  (30) 

 0
0

1
Z

C c
  (31) 

 

2.3.2 PCPW in Substrate 

Conformal mapping techniques can also be used to evaluate the PCPW 

embedded in dielectric material. Fig. 6(a) shows the cross sectional view of spiral 

antenna embedded in substrate with thickness of 2h and dielectric constant of εr. Fig. 6(b) 

shows the field distribution of the common slot-line mode where radiation occurs. The 

total P.U.L. capacitance C of substrate-embedded PCPW can be evaluated by the partial 

capacitance approximation [104] and modeling the air-dielectric interface as a PMC. The 

accuracy of this approximation [105] is limited to εr being greater than that of 

background medium.  

Fig. 6(c) illustrates the conformal mapping steps for the calculation of C1; the 

coordinates of the original PCPW structure on the complex z-plane are za = zb + jh, zb = 

(W + S)/2, zc = W/2, zd = 0, and ze = jh.  The rectangle on the z-plane is first mapped onto 

the t-plane with the mapping function in (32), where k is evaluated by (25) using (33) 

and K = K(k). 

 2 2sn ,z
t K k

W S

 
  
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 (32) 
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Fig. 6  (a) Cross sectional view of a two-arm Archimedean spiral antenna embedded in substrate, (b) 
electric field distribution in a section of PCPW when radiation occurs and partial capacitance 
approximation, and (c) conformal mapping steps for evaluation of C1, from z-plane onto t-plane onto w-
plane. 

 

The resulting t-plane mapping points in (34) are mapped to the w-plane using (35) 
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The P.U.L. capacitance C1 can then be obtained using (36) and the modulus in 

(37).  
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The effective dielectric constant εreff in (38) and the characteristic impedance Z0 

in (39) for the common slot line modes in PCPW can then be derived using (7) and (8). 
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2.4 Results and Discussions 

Analytically obtained results from the conformal mapping of the common slot-

line mode in PCPW are compared in this section to results from full-wave simulations 

[123]. The basic PCPW topology in free-space is examined first. Results for the 
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substrate-embedded PCPW follow this using a range of commercially available substrate 

heights and dielectric constants. The technique is then applied to analyze the input 

impedance of the gap-fed two-arm Archimedean spiral antenna in both free-space and 

when embedded into a range of substrates with different heights and dielectric constants. 

 

2.4.1 PCPW in Free-Space 

Fig. 7 shows the characteristic impedance of PCPW operating in the common 

slot-line mode in free space as a function of the metallization ratio χ. A very wide range 

of W and S are accounted for in this plot (0.05 ≤ χ ≤ 0.95), and the results shown are 

analyzed at 10 GHz in full-wave simulations. The results obtained by conformal 

mapping remains in very good agreement with simulations when no higher order slot-

line modes exist.  

 

2.4.2 Substrate-Embedded PCPW 

Fig. 8 and Fig. 9 show the characteristic impedance of PCPW embedded in 

substrate of εr = 2.2 and εr = 10.2, respectively, with h = 0.254 mm, 0.508 mm, 1.27 mm, 

and 2.54 mm. The periodic cell used to analyze the PCPW has been fixed as W + S = 5 

mm in the analysis of these examples to make the range of metallization ratio χ 

meaningful and the analysis was again for 10 GHz. These results are intuitive since this 

field distribution now has dependence on both χ and substrate height h. Specifically, 

larger values of (W+S)/h correspond to larger conductor spacing S compared to h with 

fixed metallization ratio χ and an increased field distribution outside the substrate; this 
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reduces the total P.U.L. capacitance and increases the characteristic impedance of the 

PCPW.  

 

 

Fig. 7 Real-valued characteristic impedance as a function of metallization ratio obtained using 
conformal mapping and numerical simulation as PCPW operating in the common slot-line mode in free 
space. 

 

The results for the higher dielectric constant of εr = 10.2 are generally in better 

agreement than for the lower dielectric constant of εr = 2.2. This can be explained by the 

higher field concentration in the higher dielectric constant, and a more accurate partial 

capacitance approximation to model the air-dielectric interface as PMC. 
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Fig. 8 Analytical and simulated real-valued characteristic impedance of the substrate-embedded PCPW 
in the common slot-line mode with dielectric constant of εr = 2.2, where CM is abbreviated conformal 
mapping. 

 

 

Fig. 9 Analytical and simulated real-valued characteristic impedance of the substrate- embedded PCPW 
in the common slot-line mode with dielectric constant of εr = 10.2. 
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While both have excellent agreement for higher substrate heights, discrepancies 

are observed for thin substrates with smaller metallization ratio. When this is the case, 

the field distribution is less concentrated in the substrate as shown in Fig. 10(b) 

compared to Fig. 10 (a) and the partial capacitance approximation losses accuracy due to 

the modeling of the dielectric-air interface as a PMC. 

 

 

Fig. 10 The main field distribution of PCPW in (a) thicker substrate with higher metallization ratio and (b) 
thinner substrate with lower metallization ratio. 

 

 

Fig. 11 Visualization of the simulated Archimedean spiral antenna of metallization ratio from 0.0833 (left) 
and 0.9166 (right). 
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2.4.3 Two-Arm Gap-Fed Archimedean Spiral Antenna in Free-Space 

The PCPW model is now applied to evaluate the input impedance of the gap-fed 

two-arm Archimedean spiral antenna in Fig. 1 (in free-space). Fig. 11 shows the spiral 

design to be simulated from the metallization ratio χ = 0.0833 to χ = 0.9166 with RC = 

10 mm, N = 5, an inner radius given by (40), g = 0.1rin, Wg = 0.01W (to reduce gap 

capacitance), and the outer radius obtained by (3). Notice that the conformal mapping 

analysis is only valid when operating at a frequency within its balanced-mode radiation. 

 
2sin

2

in

S
r

S

a


 
 
 

 (40) 

Fig. 12 shows the simulated real part of input impedance as a function of 

frequency. Frequency-independent behavior of the input impedance can be observed in  

Fig. 12 from 2 GHz to 8 GHz for χ = 0.5. This verifies the well-known property of 

self- complementary structures [114]. For χ ≠ 0.5 (non-self- complementary), the input 

impedance in the radiation region is no longer a frequency-independent value. This is 

explained by the difference between frequency-independent antennas and Archimedean 

spiral antennas [14]. 

As expected, only the self-complementary structure exhibits frequency 

independent behavior. A less-pronounced dependence can also be observed in Fig. 12 at 

higher metallization ratios due to the more concentrated field distribution in the narrower 

slot. This makes the P.U.L. capacitance of transmission line less dependent on frequency. 
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Fig. 12 Real-valued input impedance of two-arm Archimedean spiral antenna in free space. 
 

The low frequency operating point of the spiral antenna has to be determined in 

order to compare the input impedance of spiral antenna with the quasi-static PCPW 

model. According to the band theory, the lowest radiating frequency fL in (41) is 

determined by the outer radius rout and εreff. 

 
2L

out reff

c
f

r 
  (41) 

In practice, the lower frequency limit can be two to three times this theoretical 

limit [50] given by (41). Using this observation, the outer radius rout ~ rin + RC  N of 

the aforementioned spiral example corresponds to approximately 3fL = 3 GHz (in free 

space). Fig. 13 shows that the input impedance at 3 GHz for the spiral antenna. Excellent 

agreement is achieved between simulated results of the gap-fed spiral and those obtained 

by conformal mapping and the PCPW model. Above the lower frequency limit, the input 
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impedance is frequency-dependent. Fig. 13 also shows the comparison between the input 

impedance at 8 GHz of spiral antenna in free space and those obtained by conformal 

mapping. This indicates that the PCPW model can predict the input impedance of the 

two-arm gap-fed Archimedean spiral antenna over a very wide frequency band, 

especially for a larger metallization (χ > 0.5). 

It is important to note that the real-valued input impedance found using the 

analytical PCPW model based on conformal mapping and the full-wave simulation of 

the physical spiral both accurately predict the self-complimentary value of η0/2 at χ = 0.5 

(shown in Fig. 13(b)). It is also noteworthy that this analysis yields a different result 

from related work [124] on the analytical approximation of input impedance for non-

self-complementary spiral antennas based on quasi-TEM coplanar strip theory. The most 

likely difference between the results from this work and those from resides in the 

interpretation of the band theory for wire spirals and the operation of spirals with non-

negligible arm widths. 

Fig. 14 shows the impact of convergence on the accuracy of the numerical 

simulations used to validate the PCPW model. The several values of the “delta S” 

parameter, which captures the difference in |S11| in results between successive 

simulations after adaptive meshing refinement, were examined along with different 

meshing and simulation parameters in an attempt to provide the most accurate results. 

The values of 0.01, 0.001, and 0.0001 are shown in Fig. 14. Values above 0.0001 cannot 

achieve self-complementary impedance (η0/2) at χ = 0.5, illustrating that for a highly 

curvilinear spiral a significant computational effort is required to obtain the results 
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derived from conformal mapping. Adjusting other simulation parameters yielded similar 

results. 

 

 

Fig. 13 (a) Analytical and simulated input impedance of the two-arm Archimedean spiral antenna in free 
space at 3 GHz and 8 GHz, and (b) the zoomed region of red dash square in (a), where the black dash lines 
show that the self-complementary impedance of 188.5Ω at metallization of 0.5 for both spiral antenna and 
PCPW. 
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Fig. 14 Simulated input impedance by HFSS with different convergence setting of “delta S” = 0.0001, 
0.001, and 0.01. 

 

2.4.4 Substrate-Embedded Two-Arm Gap-Fed Archimedean Spiral Antenna 

Fig. 15 shows the conformal mapping analysis of the PCPW model and 

simulations of a substrate-embedded gap-fed two-arm Archimedean spiral antenna. The 

antenna shown in Fig. 11 is now embedded in a substrate of εr = 2.2 with heights h = 

0.254 mm, 0.508 mm, 1.27 mm, and 2.54 mm. The input impedance from simulations 

has been recorded at 3 GHz since it shows less frequency-dependence for the spiral 

antenna embedded in this substrate. 

Note that the HFSS simulation in this case is performed with the convergence 

setting of delta S = 0.001 instead of 0.0001 due to heavily computational effort, resulting 

in somewhat inaccuracy. The discrepancies are observed for thin substrates. The 

behavior of the input impedance curves of spiral antenna shown in Fig. 15 (dash line 

with triangular markers) are similar to those characteristic impedances of PCPW 
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obtained by HFSS (dash line with triangular markers shown in Fig. 8). As mentioned 

before, the partial capacitance approximation cannot model the air-dielectric interface 

very well for these cases. 

 

 

Fig. 15 Real-valued input impedance of a two-arm Archimedean spiral antenna embedded in a substrate 
of εr = 2.2 and varied height h simulated by HFSS (dash line with triangular markers) at 3 GHz, compared 
with the characteristic impedances of PCPW model obtained by conformal mapping (solid line). 

 

Fig. 16 shows the simulated real-valued component of the input impedance for 

the same antenna once it has been embedded within a substrate of εr = 10.2 and h = 1.27 

mm. The HFSS simulation in this case is performed with the convergence setting of 

delta S = 0.01. As expected, it demonstrates a rapidly resonating input impedance, 

especially for the higher metallization ratio. This follows observations by Nakano et al. 

[40] that the oscillation is due to the reflection from the air-dielectric interface. 

According to [40], this can be reduced by adding another layer to achieve impedance 
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matching for radiated wave, but at the expense of reduced bandwidth. In lieu of this, the 

comparison cannot be made at a single frequency point. Therefore, this input impedance 

is averaged from the lower limit at 2 GHz up to 8 GHz to provide a comparison with the 

quasi-static conformal mapping results. 

 

 

Fig. 16 Real-valued input impedance of a two-arm Archimedean spiral antenna embedded in substrate of 
εr = 10.2 and height h = 1.27 mm with different metallization ratio. 

 

Fig. 17 shows that the conformal mapping results of PCPW model are very close 

to the average input impedance of Archimedean spiral antenna embedded in a high 

dielectric constant substrate of εr = 10.2. Notice that the discrepancies are observed but 

the behavior of impedance curves is still quite fitting, though the average values also 

take the frequency- dependent behavior into account.  
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Fig. 17 Average input impedance from 2 GHz to 8 GHz of a two-arm Archimedean spiral antenna 
embedded in substrate of εr = 10.2 and varied height h simulated by HFSS (dash line with triangular 
markers) compared with the characteristic impedances of PCPW model obtained by conformal mapping 
(solid line). 
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CHAPTER III  

DESIGN PROCESS I:  

STRIPLINE-FED ARCHIMEDEAN SPIRAL ANTENNA  

 

  Center-fed spiral antennas have been studied extensively (e.g., [18], [32], and 

[125]) to support the needs of complex communication and sensing system as both 

arrays and stand-alone radiators. The balanced excitation of the center-fed spiral from a 

coaxial cable often requires wideband baluns or impedance transformers. These are just 

two of the major design challenges that can impact the desired operation, and numerous 

techniques have been investigated for this purpose (e.g. [51], [58]-[61]). Many of the 

resulting feed structures are electromagnetically functional but perpendicular to the 

plane of the spiral. These may not be desirable for structurally functionalized antennas 

and for the on-chip integration of the antenna with other components.  

The proposed inward-fed two-arm Archimedean spiral antenna retains the 

desired planar form factor of the gap-fed spiral using a multi-layer topology. This is 

accomplished by structurally integrating the balun and feed network into one arm of the 

antenna using a stripline arrangement. This concept is based on [61], but the proposed 

design now operates over a considerably larger bandwidth, resides on electrically thinner 

substrate, and has a tapered impedance transformer which is now conformal to the outer-

most winding of the spiral. 

An inward-fed two-arm Archimedean spiral antenna is proposed which integrates 

a stripline feed network into one of the spiral arms. A broadband stripline tapered 
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impedance transformer conformal to the spiral’s winding provides a novel matching 

network between the input impedance of the spiral and the characteristic impedance of 

the strip-line. The Dyson-style balun at the spiral’s center converts the guided stripline 

mode to the radiating spiral mode. The transformation from a gap-fed design to a 

stripline-fed design is provided to illustrate the design process. Measured and simulated 

results for a probe-fed design operating from 2 GHz to over 20 GHz are provided to 

illustrate the synthesis and performance of a demonstration antenna. 

 

3.1 Synthesis of the Antenna Topology 

Three designs of a two-arm Archimedean spiral antenna are presented to 

illustrate the transformation from a gap-fed design into a stripline-fed design. A 

stripline-fed design without an impedance transformer is provided as an intermediate 

step to better illustrate the synthesis process. The antenna is designed to have nominally 

high input resistance by initially choosing a slot-to-metal ratio less than unity; this value 

is desired to be greater than the measurement system’s impedance Z0. 

 

3.1.1 Gap-Fed Spiral Antenna 

Fig. 18 shows the two-arm, two-turn, gap-fed Archimedean spiral antenna with 

arm width w and inter-arm separation s. The spiral is embedded in a dielectric slab of εr 

and thickness hsub to represent the height of a stripline stack using two identical 

substrates of height 0.5 hsub. The antenna resides at z = 0.5 hsub to account for dielectric 

loading in the stripline configuration. The triangular geometry in the upper-right of Fig. 
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1 has a base rc that tapers linearly into the gap width g. The base-side connects to the 

spiral through a quarter-circle section of radius rc. The inner and outer radii rin and rout 

are used to determine the lower-bound on operating frequency.  

 

 

Fig. 18 Geometry of the two-arm gap-fed spiral antenna (left) at z = 0.5 hsub, inset of gap feed region with 
circular and triangular transitions (upper-right), and cross-section of the substrate-embedded antenna 
(lower-right). 

 

Fig. 19 summarizes the simulated [123] results for a design with rc = w = 5.0 mm, 

g = 0.2 mm, and s = 1.0 mm using an RT Duroid®  5880 substrate with εr = 2.2 and hsub 

= 1.016 mm (two 0.508 mm thick substrates). Quasi-frequency independent behavior 

(similar to an ideal spiral) is observed from 2 GHz to over 20 GHz. The non-zero 

reactance across this bandwidth is attributed in part to the circular and triangular sections 

at the center and embedding the gap-fed structure in a dielectric slab. 
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Fig. 19 Simulated input impedance Zin and VSWR of the gap-fed spiral in Fig. 18. 
 

The average input resistance across the stable impedance bandwidth is 83.24 Ω. 

This value is used to determine the closely-matched stripline characteristic impedance Z1 

= 90 Ω and results in a VSWR < 1.5 across the aforementioned bandwidth. This is not a 

surprising result given the freedom to choose the reference impedance but the stripline-

based antenna is designed around Z1 and its choice is very relevant to the synthesis of the 

antenna. The radiation patterns were examined and remained typical for spirals with 

similar architectures. 

 

3.1.2 Stripline-Fed Spiral Antenna I (No Taper) 

Fig. 20 illustrates the cross-section of the stripline-fed spiral antenna. This is 

synthesized by transforming one arm of the gap-fed spiral into a finite-ground stripline 

feed structure. The top and bottom grounds are formed by moving Arm 1 from its 

substrate-embedded position to z = 0 mm (the bottom of the stack) and creating a copy at 
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z = hsub (the top of the stack). These act as top and bottom grounds in the finite-ground 

stripline feed structure (guiding mode) and collectively act as Arm 1 of the spiral antenna 

(radiating mode).  

 

 

Fig. 20 Stripline-fed spiral antenna: (top) nominal cross-section of the stripline-fed topology, (bottom-left) 
stripline grounds formed by Arm 1 at z = 0 and hsub; (bottom-center) stripline signal line (Arm 2) at z = 0.5 
hsub with no taper and wn = w1  and (bottom-right) stripline signal line (Arm 2) at z = 0.5 hsub with 
curvilinear taper between w0 and w1. 

 

A signal line of width w1 = 0.34 mm at z = 0.5 hsub completes the transformation 

of Arm 1 to a stripline feed network. It is both centered and conformal to the spiral 

winding of the top and bottom grounds, and extends through the feed gap until it 

connects with Arm 2. Fig. 20 shows the new Arm 2. The width w1 corresponds to the 

characteristic impedance Z1 and the width wn refers to the outer-edge of Arm 1, which is 
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unchanged in this configuration. The triangular sections at the center of Arms 1 and 2 

perform the mode-converter between the guided (stripline) and radiating (spiral) modes 

similar to the operation in [18]. Fig. 21 shows the overlay of all three metal layers 

stripline antenna with Arm 1 hatched semi-transparent (in grey) to show the section of 

Arm 2 that resides between the two Arm 1 layers. 

 

 

Fig. 21 Stripline-fed spiral antenna without a tapered impedance transformer (left) and with a single-turn 
tapered stripline impedance transformer (right). 

 

Fig. 22 shows the simulated results for the stripline-fed spiral antenna with no 

taper in the signal line. It is excited at the outer edge of Arm 1. The VSWR uses 

reference impedance Z1 and remains below 1.5 across the band of interest. Minor 

scalloping of the radiation pattern occurs (not shown) as a result of the transformation to 

a stripline spiral, but the structure behaves very similar to the gap-fed design. This 

suggests that the stripline and spiral modes are sufficiently isolated. 
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3.1.3 Stripline-Fed Spiral Antenna II (Taper) 

Fig. 23 summarizes the simulated results for the tapered Arm 2 topology in Fig. 

20 and Fig. 21. The tapered stripline impedance transformer matches Z1 to Z0 = 50 Ω (of 

the measurement system). The taper transitions inward from wn = w0 = 0.76 mm at the 

perimeter of Arm 1 along one full winding of the spiral into w1. It should be noted that 

the width w0 of the tapered line shown in Fig. 20 and Fig. 21 has been arbitrarily 

increased to better illustrate the profile of the taper. This value is limited in practice to 

provide efficient operation of the stripline mode. 

 

 

Fig. 22 Simulated input impedance Zin and VSWR of the stripline-fed spiral antenna using the signal 
layer in Fig. 20 without an impedance transformer. 

 

The stripline taper length is determined according to band theory [32], such that 

the single outer winding can provide approximately one wavelength of transition. The 

circumference using the outer radius rout ~ rin + 4s + 3w (with rin ~ rc+ 0.5g) corresponds 

to a free-space wavelength at 1.98 GHz, which results in a length that facilitates low-



 50 

reflections [126] across the bandwidth of the spiral (above 2 GHz and above). Minor 

scalloping of the radiation pattern (not shown) also occurs in this configuration, but the 

VSWR (Fig. 23) remains below 1.5 and has behavior similar to the initial stripline-fed 

topology.   

 

 

Fig. 23 Simulated input impedance Zin and VSWR of the stripline-fed spiral antenna using the signal 
layer in Fig. 20 with an impedance transformer. 

 

3.1.4 Summary of Gap-Fed and Stripline-Fed Spiral Antennas 

The impedances in Fig. 19, Fig. 22, and Fig. 23 for the gap-fed, stripline-fed, and 

stripline-fed with taper, respectively, all demonstrate similar behavior across the 

frequency independent range. The VSWRs have been overlaid in Fig. 24. This verifies to 

a degree that the antenna’s impedance is not significantly changed with the 

transformation from a gap-fed spiral into a stripline-fed spiral (both with and without 

impedance tapers). 
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Fig. 24 Comparison of simulated VSWR of the gap-fed and stripline spirals. 
 

3.2 Fabricated Antenna and Experiments 

The stripline-fed spiral with the tapered design of Arm 2 was selected for 

fabrication. The model in Fig. 25 shows a stepped stripline-to-microstrip transition (from 

w0 to wms = 1.58 mm) and SMA probe-launch that were added to enable accurate and 

repeatable measurements. It includes a finite-ground stripline of width w0 and length LA 

= 22.5 mm and two metal vias of radius 0.615 mm at the step. These connect the upper 

portion of Arm 1 to the linearly tapered section of the microstrip ground plane at z = 0 

mm (with d = 7.5 mm and LB = 8 mm) to the larger ground of length LC = 7 mm. This 

transition was not optimized. 

Fig. 26 shows the fabricated antenna and transition in Fig. 25 using seven #10-32 

Nylon bolts and nuts mechanically fasten the two substrate layers. Initial discrepancies 

between measured and simulated results were observed (VSWR > 2). This was attributed 

to a thin air gap near the center (where bolts were undesirable) so a thin interfacial layer 

(< 0.1 mm) of Polydimethylsiloxane (PDMS) [127] (εr = 2.8 and tan δ = 0.015) was 

applied and compressed during curing to fix this mismatch.  
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Fig. 25 The microstrip feed of the antenna with built-in impedance transformer. 
 

 

Fig. 26 Fabricated stripline-fed antenna (with taper) and microstrip transition. 
 

Fig. 27 shows the VSWR of the measured and simulated designs (with and 

without the probe feed). These results are in good agreement and suggest that the 

impedance is not significantly impacted by the transformation into a stripline structure. 

Fig. 28 shows the measured and simulated radiation patterns of the fabricated antenna in 

Fig. 26 at 2.5 GHz, 5 GHz, 10 GHz and 20 GHz for the xz and yz elevation cut-planes.  
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The mean μ and standard deviation σ of the broadside axial ratio (AR) in dB from 

2 GHz to 20 GHz are (μ, σ) = (2.88, 1.35) and (5.12, 2.21) for the gap-fed and stripline-

fed spiral, respectively. The AR improves to (μ, σ) = (2.17, 0.73) and (4.84, 2.19) from 5 

GHz to 20 GHz for both the gap-fed and stripline spiral, respectively. Measurements of 

the AR across the band were not available. The radiation pattern at 10 GHz and 20 GHz 

illustrate the impact of the asymmetry created by the microstrip transition and the 

excitation of unbalanced spiral modes that deteriorate the performance of the balanced 

spiral mode. Misalignment of the two substrates during fabrication also contributes to 

this error, but the overall agreement between simulated and measured data is acceptable. 

The major deviations between these results are most pronounced in the radiation patterns 

at frequencies above 10 GHz and the AR across the band. 

 

 

Fig. 27 VSWR of the measured and simulated stripline-fed spiral antenna with impedance taper after 
substrate-bonding with PDMS. 
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Fig. 28 Measured and simulated elevation (xz and yz) radiation patterns at (a) 2.5 GHz, (b) 5 GHz, (c) 
10GHz, and (d) 20GHz for the stripline-fed spiral antenna with impedance taper. 
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CHAPTER IV  

ANALYSIS OF 

A STRIPLINE ARCHIMEDEAN SPIRAL ANTENNA  

 

There have been many investigations of the radiation characteristics of spiral 

antennas. Over the years, a lot of researches have been focused on examining the 

properties of Archimedean spiral antennas in various configurations, such as multi-arm 

spiral [35], [128], three-arm spiral [51], single-arm spiral [36], [38], [41] , two-arm 

eccentric spiral [129], spirals above a plane reflector in free space [34], [130], spiral on 

semi-infinite electric materials [37], spirals backed by a cavity [33], [131], spirals on a 

dielectric substrate backed by a conducting plane reflector [39], and spirals backed by an 

electromagnetic band-gap (EBG) reflector [132]. In the above mentioned works, the 

antenna designs were proposed and their radiation properties were studied. However, 

there are no rules on how to design these spiral antennas accurately and therefore one 

has to resort on numerical method to predict antenna properties and then capable to 

optimize antenna performance before fabrications. 

The development of analytical solutions to have a comprehensive understanding 

on spiral antennas [20], [31] has been limited mostly because of their complex curving 

structures. Therefore, a number of numerical methods and CAD tools have been 

developed to model very complex shapes of spiral antennas with supporting materials. 

However, typical frequency-domain techniques such as the finite element method (FEM) 

[45], [131] and the method of moments (MoM) [37], [43], and time-domain techniques 
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such as finite difference time domain (FDTD) [39], [44] are still very time consuming 

for broad-band applications to be employed as an iterative and optimizing design tool. 

Since both of spiral antenna and its feeding element affect the impedance matching, it is 

also difficult to have both of them designed and analyzed simultaneously. To reduce 

development costs and design round-times on numerical or experimental means, the 

design rules and design process is necessary.  

This chapter is based upon the design of stripline-fed Archimedean spiral antenna 

(or simply stripline Archimedean spiral antenna) presented in previous chapter. The 

stripline Archimedean spiral antenna has one arm configuration in stripline structure and 

a simpler feed system than the conventional center-fed or gap-fed spiral antenna as 

discussed. The stripline Archimedean spiral antenna does not require a balun circuit 

while it uses the layout similar to Dyson balun design [18] to convert the propagating 

stripline mode into radiating spiral mode. This spiral design without a balun circuit and 

with an integrated impedance- matching is beneficial, in particular, for fabrication of 

planar antenna connected with systems and an antenna array composed of spiral. The 

design process in previous chapter presented a concept that the stripline Archimedean 

spiral antenna has similar input impedance as its original form of planar gap-fed 

Archimedean spiral antenna with chosen geometry parameters and dielectric substrate, 

but how to design those geometry parameters of a stripline Archimedean spiral antenna 

on different substrate is absent. Following this analysis, the main purpose of this 

dissertation is to develop an easier design method for stripline-fed Archimedean spiral 

antenna at the design stage. 
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 4.1 Summary of Stripline-Fed Archimedean Spiral Antenna 

Fig. 29(a) shows the three-layer design and coordinate of a stripline 

Archimedean spiral antenna with separated height h between each layer. The expressions 

describing the Archimedean curves forming the spiral arms are 

 inr a r   (42) 

where r is the radius of the spiral curve,  θ is the winding angle in radian, a is the spiral 

growth rate, and rin is the inner radius of the spiral. The two arms are truncated at outer 

radius 

 2out inr Na r   (43) 

where N is the number of turns of the spiral antenna. The antenna is supported by Rogers 

RT/duroid 5880 substrate (εr = 2.2) with thickness of 2h = 1.016 mm (40 mil) as shown 

in Fig. 29(b). Notice that the input point has been moved to the outer radius by feeding 

with stripline transmission line.  

The key component of this design is the Dyson balun structure in the central 

region of spiral, where is the dash square part in Fig. 29(b) zoomed in Fig. 30. The 

Dyson balun is formed by rapidly tapering the finite stripline grounds of dimension Wg 

and extruding the inner conductor of stripline width Wic through the gap connecting the 

spiral arm. It consists of a triangular geometry with a base-dimension rc and gap width g 

that tapers into the feed gap width gfeed and a quarter-circle section of radius rc that 

connects the triangular gap-section to the spiral arms. The basic spiral dimension is 
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defined by the arm width W and the arm spacing S. The spiral growth rate is then 

determined by a = 2(W+S)/2π.   

The antenna configuration parameters in [47] is summarized here: rc = W = Wg = 

5.0 mm, S = 1.0 mm, Wic = 0.34 mm, gfeed = 0.2 mm, and g = 1.2 mm. These remain the 

same in the following analysis. The simulation in previous work is performed in an ideal 

case with negligible metal thickness. 

 

4.2 Analysis 1- Impedance Properties 

The commercial numerical software HFSS based on finite element method (FEM) 

[123] is adopted to analyze a stripline Archimedean spiral antenna. The performance of 

stripline Archimedean spiral antenna is affected by the arm width, growth rate, dielectric 

loading, and feeding structure. Due to the very complex antenna geometry of spiral with 

so many parameters, the use of full wave solver to optimize antenna design becomes 

burdensome. Therefore, a design process not taking all of the parameters into 

consideration at the same time is necessary to reduce design time and to achieve the 

desired specifications. In this section, the stripline Archimedean spiral antenna is 

disintegrated to examine its operation and then synthesized back to small spiral step by 

step. 
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Fig. 29 Layouts of a stripline-fed Archimedean spiral antenna, (a) separated three layer designs and (b) 
implementation with substrate stack-up of height 2h. 
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Fig. 30 Geometry of the central region of a stripline Archimedean spiral antenna. 
 

For any antenna design, the impedance matching is a key factor to radiate power 

effectively. To better understand the impedance properties, the stripline implementation 

of Dyson balun design shown in Fig. 30 is unwrapped into straight transmission line first 

while remain the dimension of triangular gap-section in the spiral center. The thick black 

dash line shown in Fig. 31 represents the unwrapped spiral arm, which is then split into 

both sides with the middle perpendicular plane modeled as a perfect magnetic conductor 

(PMC) wall. The three-port network is obtained with port1of stripline structure as well 

as port2 and port3 of elevated slot line structure, of which cross sectional view and 

denotation of parameters are also shown in Fig. 31. The parameters are the same as those 

denoted in Fig. 30, except the metal thickness t also included considering its effect on 

characteristic impedance in the next section. Note that the inner conductors of stripline 

between the upper ground and bottom ground at port2 and port3 are removed since the 
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field distribution of stripline mode is assumed to be confined between two ground plates 

and has no effect on elevated slot line modes. 

 

 

Fig. 31 A three-port network remaining the dimension of triangular gap-section of Dyson balun design, 
where port1 shows a stripline structure and port2 shows an elevated slot line structure. 

 

In order to examine the operation of Dyson balun of our original design, the 

triangular section is kept the same as that of stripline Archimedean spiral antenna but the 

arm spacing S of three-port network is designed to have the dimension of gap width g, 

i.e. S = g = 1.2 mm. The simulated characteristic impedance of each port is shown in Fig. 

32 indicating that the stripline structure has a characteristic impedance of 83 Ω and the 

elevated slot line structure has a characteristic impedance of 157 Ω. If port2 and port3 
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are re-combined into a straight transmission line as the thick black dash line shown in 

Fig. 31, the characteristic impedance will be paralleled and the port of parallel elevated 

slot line structure is going to have a characteristic impedance of 78.5 Ω (black line in Fig. 

32), which is quite close to that of the stripline mode. In other words, the reason why the 

power of stripline mode can be transmitted through the Dyson balun is because of the 

impedance-matching between two transmission lines of stripline and parallel elevated 

slot line.  

Fig. 33 shows the simulated S-parameters to verify the power transmission due to 

impedance matching. The S11 shows low reflection at port1 of stripline mode and the S21 

shows the power transmission from port1 to port2 about 3dB implying that the power is 

split equally from stripline mode into two elevated slot line modes. Specifically, the 

operation of Dyson balun is basically a power splitter and a mode converter, converting 

the stripline mode into two elevated slot line modes equally. 
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Fig. 32 Real part of characteristic impedance of stripline mode (red), elevated slot line mode (blue), and 
parallel elevated slot line mode (black) of the three port network. 

 

 

Fig. 33 Simulated S11 (green), S22 (blue), and S21 (red) of the three-port network, where 3dB line means 
the power is split equally from port1 to port2 and port3, and 6dB line means the reflection from port2 due 
to the impedance mismatch between port2 and parallel impedance of port1 and port3. 
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4.3 Analysis 2- Common Mode Radiation 

The unwrapped spiral arms shown in Fig. 34 are designed in order to verify the 

power transmission through the entire Dyson balun design. The triangular gap-section 

and quarter-circle section of Dyson balun is remained the same as those of stripline 

Archimedean spiral antenna (shown in Fig. 30).  The unwrapped spiral arms consist of a 

parallel elevated slot line port and a stripline port with the same geometry parameters 

described in Section 4.1, while the arm spacing S is still given as S = g = 1.2 mm and 

the metal thickness is t = 0.  

Fig. 35 shows the simulated S-parameters of unwrapped spiral arms. The S11 still 

shows no reflection at stripline port due to the impedance-matching between parallel 

elevated slot line port and stripline port. However, the S21 shows the power cannot be 

transmitted from port1 to port2 at 15.5 GHz. The power loss at 15.5 GHz can be 

explained by the electric field distribution shown in Fig. 36, where the two elevated slot 

line modes are in-phase at 15.5 GHz while they are not in-phase at other frequency 

points. This phase difference is due to the path difference between the outer elevated slot 

and inner elevated slot around the Dyson balun. When the two elevated slot line modes 

go in-phase, then the radiation so-called common mode radiation occurs inducing the 

power loss into free space. From the cross section view of port2, a clear radiation field is 

observed (not shown) supporting the common mode radiation. 
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Fig. 34 The unwrapped spiral arms with port1 of stirpline mode and port2 of parallel elevated slot line 
mode; the two dashed square parts show the cross sectional view of parallel elevated slot line structure 
with its dimensional parameters and the remaining Dyson balun design as in the central region of stripline 
Archimedean spiral antenna, respectively. 

 

 

Fig. 35 Simulated S11 (green) and S21 (red) of the unwrapped spiral arms, where the lowest S21 is found at 
15.5 GHz. 
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Fig. 36 Magnitude of electric field distribution at (a) 10 GHz, (b) 15.5 GHz, and (c) 20 GHz. 
 

4.4 Analysis 3- Spiral Radiating Mode 

To investigate the common mode radiation on stripline Archimedean spiral 

antenna, the unwrapped spiral arms in Fig. 34 is further designed to wind the two 

straight transmission lines in a small spiral turns of N = 0.5. The structure is shown in 

Fig. 37. It is easy to observe that there exists path difference between the inner and outer 
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elevated slot lines, which causes phase difference between these two propagating modes 

although they are excited simultaneously at the gap-section of Dyson balun. 

 

 

Fig. 37 The straight transmission lines of parallel elevated slotline mode and stripline mode are wound in 
a small spiral shape. 

 

 

Fig. 38 Simulated S11 (green) and S21 (red) of structure shown in Fig. 9, where the power loss arises at 
frequency of 5 GHz and 14.5 GHz. 
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Fig. 39 Simulated magnitude of electric field distribution at (a) 5 GHz and (b) 14.5 GHz. 
 

The simulated S-parameters are shown in Fig. 38, where the S21 shows the power 

cannot be transmitted from stripline port to parallel elevated slot line port at frequency of 

5 GHz and 14.5 GHz, respectively, because the two slot line modes are in-phase at these 

two frequency points (as shown in Fig. 39) and thus power is radiated. Furthermore, one 

can image that when the spiral turn N is increased, the two elevated slot line modes 

having path difference may go in-phase somewhere on spiral arm then producing the 

common mode radiation. Therefore, it is easy to conclude that the so-called spiral 

radiating mode is actually the radiation from in-phase elevated slot line mode (stripline 

Archimedean spiral antenna) or can be extended to a common slot line mode for general 

gap-fed planar two-arm Archimedean spiral antenna. 
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Here should be noted that the presented antenna in [47] had an arm spacing of S 

= 1 mm, which is different to that used in this analysis, i.e. S = 1.2 mm. The effect of 

smaller arm spacing produces the higher per-unit-length capacitance of transmission line 

and decrease the characteristic impedance of parallel slot line mode. As mentioned in 

Fig. 32, it can be imaged that the characteristic impedance of parallel port with S = 1 mm 

will be lower and cause the impedance more mismatching. This is because of the work 

in [47] started from a chosen geometry parameters and proved the functionality of 

stripline Archimedean spiral antenna but did not optimize.  

 



 70 

CHAPTER V  

DESIGN PROCESS II OF 

A STRIPLINE ARCHIMEDEAN SPIRAL ANTENNA  

 

This chapter is based on the analysis on impedance properties and radiation 

mechanism of a stripline Archimedean spiral antenna presented in previous chapter. The 

stripline implementation of Dyson balun acts as a mode converter and power splitter. 

Power can be transmitted to spiral radiating modes because of impedance-matching 

between two different transmission line structures, i.e. parallel elevated slot line and 

stripline. The radiation of spiral antenna occurs when the two elevated slot line modes 

are in-phase; therefore, the spiral radiating mode can be decomposed and explained by a 

common elevated slot line mode (for stripline Archimedean spiral antenna) or a common 

slot line mode (for gap-fed planar Archimedean spiral antenna). Based on this 

understanding, a design process is proposed simply by the concept of impedance 

matching with a design example. A compact (45 mm × 40 mm × 1.016 mm) 

bidirectional stripline Archimedean spiral antenna operating from 2 GHz to over 20 GHz 

is presented using this design process with a full-wave numerical simulation tool to 

optimize the geometry of spiral center. The measurement of the final design shows a 

good agreement with the simulated results. 
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5.1 Design Procedure 1 – Stripline Design 

As was pointed out previously, the power able to transmit from the stripline 

guiding mode to spiral radiating mode is consequent to impedance matching between 

stripline and parallel elevated slot line, employing stripline based Dyson balun as a mode 

converter and a power splitter. The radiation of stripline Archimedean spiral antenna 

occurs when the two elevated slot line modes are propagating in-phase. Following the 

above analysis, an easier design method for stripline-fed Archimedean spiral antenna is 

developed in this section. The antenna design can be achieved simply by impedance 

matching of stripline mode and parallel elevated slot line mode. For simplicity, the 

design procedure will be described by using an example on a chosen substrate of Rogers 

RT/duroid 5880 of thickness h = 0.508 mm (20 mil) and a desired characteristic 

impedance of 75 Ω. This, however, does not limit our method to the chosen dielectric 

and substrate thickness; it can be extended to design any characteristic impedance of 

spiral antenna on various substrate stack-up. 

For convenience in parametric design, the stripline structure is designed first. The 

metal thickness of t = 0.035 mm is also taken into consideration since it is going to 

decrease the characteristic impedance. A design equation with non-negligible metal 

thickness  and infinite ground plates can be found in [133]. With the desired impedance 

Z0 = 75 Ω and the chosen substrate stack-up, the conductor width of stripline is 

determined as Wic = 0.36 mm. 

 



 72 

 

Fig. 40 Simulated characteristic impedances of stripline with finite ground plates effect. 
 

However, the stripline with infinite ground plates cannot be applied in stripline 

Archimedean spiral antenna design and there is no design equation including the finite 

ground effect on stripline. The numerical solver is used to determine the finite width Wg 

of ground plates. The simulated frequency response of characteristic impedance is 

shown in Fig. 40. As expected, the frequency-dependent impedance is observed because 

of the field distribution of stripline no longer confined within the substrate due to the 

finite ground; hence the field residing outside the substrate reduces the per-unit-length 

capacitance and then increases the characteristic impedance of stripline. In order to 

confine the field distribution of stripline mode inside the two ground plates without any 

effect on the spiral radiating mode as well as to keep the antenna design smaller, the 

finite ground width is determined at its saturated value Wg = 4 mm.  
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5.2 Design Procedure 2 – Parallel Elevated Slot Line Design 

In the second step, the parallel elevated slot line structure is designed to possess 

the same characteristic impedance as stripline to transmit all the power from stripline 

mode into two elevated slot line modes. The upper-left of Fig. 41 shows the top view of 

stripline Archimedean spiral antenna design with spiral turns N = 4, where the cross 

section view of spiral arm is cut along the dash-dot line and displayed in the upper-right 

of Fig. 41. From the cross section view, it looks like a periodic structure and a section of 

periodic region is extracted in the lower-right of Fig. 41. When the spiral antenna is 

operating in its radiation region, the two elevated slot line modes are in-phase; hence 

assumed the symmetric field distribution of these two propagating modes, the perfect 

magnetic conductor (PMC) walls can be placed at the middle plane of stripline ground 

plate. Notice that the inner conductor of stripline is removed due to the stripline mode 

designed to well-confined in the ground plates with little coupling to the elevated slot 

line modes. 

In this design example, the width of spiral arm W is chosen to be equal to Wg for 

simplicity and thus the only parameter left is the arm spacing S. Since there is no design 

equation for this transmission line structure, the numerical software is applied to obtain 

its characteristic impedance. Fig. 42 shows the simulated characteristic impedance of 

parallel elevated slot line structure modeling with PMC on the boundary. The frequency- 

dependent behaviors are observed at higher arm spacing. Eventually, the arm spacing is 

determined as S = 0.96 mm.  
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Fig. 41 Configuration of parallel elevated slot line: (upper-left) top view of stripline Archimedean spiral 
antenna design with N = 4, (upper-right) cross section view of spiral arms, which is similar to a periodic 
structure, and (lower-right) the periodic region of parallel elevated slot line structure. 

 

 

Fig. 42 Simulated characteristic impedance of parallel elevated slot line. 
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Fig. 43 Electric field distribution in a section of parallel elevated slot line structure when common mode 
radiation occurs and its partial capacitance approximation. 

 

The characteristic impedance of parallel elevated slot line mode can also be 

approximated and evaluated by conformal mapping analysis. For a quasi-TEM 

propagation, the characteristic impedance Z0 can be completely determined by effective 

per unit length (P.U.L.) capacitances [134] as 

 0
reff

Z
cC


  (44) 

where c is the speed of light, C is the P.U.L. capacitances that propagating mode sees, 

εreff = C/C0 is effective dielectric constant, and C0 is the P.U.L. capacitance contributed 

by the field distribution in free space. Fig. 43 shows the conjectured electric field 

distribution of common elevated slot line mode. Due to the symmetry of field 

distribution, a set of PMC can be placed at the middle plane of the metal strip and 
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facilitate the analysis. The P.U.L. capacitances of this propagating mode can be 

approximated by partial capacitance technique as C = C0 + C1, where C1 is the 

capacitance contributed by dielectric substrate with modeling the air-dielectric interface 

as a PMC. 

 

 

Fig. 44 (a) A single cell of the periodic structure with no dielectric material present and (b) approximated 
PCPW structure to evaluate C0. 

 

 

Fig. 45 (a) A single cell of the periodic structure with dielectric material, (b) approximated PCPW 
structure to evaluate C1, and (c) equivalent mapping cell. 

 

Fig. 44(a) shows a single cell of the periodic structure taken for conformal-

mapping analysis. This elevated slot line structure can be approximated by a slot line 

structure (Fig. 44(b)) with a diagonal distance d as slot width and a modified metal width 

Wm given by 
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 2 2d S h   (45) 
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The capacitance Ca is essentially equal to quarter the capacitance of a periodic coplanar 

waveguide (PCPW) structure reported in [134]. It turns out that 
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where K(k0) is the complete elliptic integral of first kind and k0’ =  (1 - k0
2)1/2 is the 

complementary modulus of elliptic integral. The total P.U.L. capacitance C0 is given by 

 0 4 aC C  (49) 

Fig. 45(a) shows one section of periodic structure with the dielectric material and 

the conjectured electric field contributing to the P.U.L. capacitance C1. It can be 

approximated by a slot line structure shown in Fig. 45(b). Notice that the field 

distribution above (below) the diagonal distance d in Fig. 45(a) is approximated by the 

field distribution in the upper (lower) half plane of Fig. 45(b), respectively. Assumed the 

field distribution in Fig. 45(b) is symmetric, a perfect electric conductor (PEC) wall can 

be placed in the middle of diagonal distance d as shown in Fig. 45(c). According to the 

equivalent series and parallel circuits, the P.U.L. capacitance Cd of Fig. 45(b) is equal to 

that of Fig. 45(c). Following the derivation in [134], we have 
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where sn(x,k) is the Jacobian elliptic function with variable x and modulus k determined 

by (52)-(53). 
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The total P.U.L. capacitance C1 is then given by 

 1 4 dC C  (54) 

The effective dielectric constant εreff = C/C0 and the characteristic impedance Z0 

in (44) for the common slot line modes in parallel elevated slot line structure can then be 

derived using (55).  

 0 1C C C   (55) 

Fig. 46 shows the characteristic impedance of parallel elevated slot line 

approximated by PCPW model and obtained by conformal mapping has a very good 

agreement with numerical simulation. 

It is noteworthy here that the arm spacing S = 0.2 mm can be chosen to have the 

impedance match with the system impedance of 50 Ω with no additional impedance 

matching circuit design. However, this arm spacing is too narrow to be fabricated by 

milling machine or chemical etching in our lab. In addition, for our chosen substrate 
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stack-up, the inner conductor width of stripline will be changed to Wic = 0.76 mm to 

have Z0 = 50 Ω and thus the wider ground plate is needed for stripline to confined the 

field distribution as well as the larger antenna design due to the wider spiral arm width. 

This demonstrates the iterative design procedure is needed to design stripline 

Archimedean spiral antenna. While compared to traditional design method considering 

all the parameters of spiral at the same time, this design procedure has great advantages 

in the design phase. Furthermore, to achieve a 50 Ω spiral antenna without needs of 

matching circuit, a substrate of higher dielectric constant can be used and will be 

demonstrated in Section 5.5. 

 

 

Fig. 46 Characteristic impedance of approximated PCPW structure calculated by conformal mapping (red) 
compared with the real-valued characteristic impedances of parallel elevated slot line structure obtained by 
HFSS (blue). Both structures are embedded in a substrate of εr = 2.2 and h = 0.508mm with metal width W 
= 4mm. 
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5.3 Design Procedure 3 – Dyson Balun Design 

After design the spiral parameters, the stripline based Dyson balun is 

implemented to connect these two transmission lines together. In order to examine its 

functionality, the two transmission line designs are wound into spiral configuration. 

Referred to Fig. 30, the radius rc of quarter circle region is chosen to be equal to W and 

thus the last two parameters to be designed are the gap width g and the feed gap width 

gfeed. Since there is no design formula for Dyson balun, the parametric studies are 

performed on a stripline Archimedean spiral antenna with a small spiral turns N = 2, as 

shown in the sub-figure of Fig. 47. The simulated VSWR is shown in Fig. 47. In order to 

determine which set of parameters is the best design, the average VSWR from 2.5GHz 

to 20 GHz is calculated. It is found that the lowest average VSWR is about 1.24 with the 

design of g = 1.2 mm and gfeed = 0.2 mm. 

It is noted that the spiral curve is not consistent with the quarter circular curve, as 

shown in Fig. 30, inducing somewhat impedance mismatch in the spiral center. Thus, the 

design concept for Dyson balun is to keep the arm spacing at this region not vary far 

away to S. 

In the final, the parameters for the final prototype stripline Archimedean spiral 

antenna design are summarized in the following: rc = W = Wg = 4.0 mm, S = 0.96 mm, 

Wic = 0.36 mm, gfeed = 0.2 mm, and g = 1.2 mm. 
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Fig. 47 VSWR of entire stripline Archimedean spiral antenna with a small spiral turns to find out the 
optimized Dyson balun design. 

 

5.4 Fabrication and Measurements 

5.4.1 Integrated Impedance Transformer Design  

To verify the proposed stripline-fed Archimedean spiral antenna through 

experiment, a tapered stripline of length about one full winding of spiral arm is 

employed to transform the antenna impedance (75 Ω) to a standard impedance (50 Ω). 

Fig. 48 shows the integrated configuration of the prototype antenna designed and a 

stripline impedance transformer. The tapered stripline is centered and conformal to the 

spiral winding of the ground layer and tapers from Wic = 0.36 mm to Wz = 0.76 mm. 
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Fig. 48 Stripline Archimedean spiral antenna with a single-turn tapered stripline impedance transformer. 
 

Fig. 49 shows the simulated VSWR and axial ratio (AR) of the stripline 

Archimedean spiral antenna integrated with impedance transformer. The VSWR is 

below 1.5 over the frequency bands from 2.5 GHz to over 20 GHz, which proves that the 

impedance transformer inside the antenna structure does not affect the antenna 

performance.  

The axial ratio shown in Fig. 49 is calculated at the zenith (z-axis) of antenna 

design. A good circular polarization antenna should have AR below 3dB, while an AR 

less than 10 dB and greater than 3dB is defined as elliptical polarization [29]. The 

simulated AR shows that the stripline Archimedean spiral antenna has AR below 5 dB 

over the frequency range 6 to 20 GHz with several frequency bands having AR below 

3dB, the overall operation of which is close to circular polarization. The axial ratio can 

be easily improved by increasing the number of spiral turns N at the expense of wider 

bandwidth and larger antenna dimensions. 
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Fig. 49 Simulated VSWR and axial ratio (AR) for stripline Archimedean spiral antenna with a single-turn 
tapered stripline impedance transformer. 

 

5.4.2 Transition Design  

Several extra dimensions were added to enable accurate and repeatable 

impedance and radiation pattern measurements. Fig. 50 shows a stripline-to-microstrip 

and then to-coax (not shown here) transition design, which was not optimized but 

provided a low reflection over the antenna bandwidth. The finite-ground stripline arm of 

the antenna was extended a straight length of Wd / 2 – Lms = 25 mm, where Wd is the 

width of square substrate and Lms is the length of the microstrip region created to solder 

the edge-fed SMA probe available for measurement. The dimension of 50 Ω microstrip 

is Wms = 1.5 mm with larger ground width of Wmsg = 20 mm to support the field 

distribution of microstrip mode. Two metallic vias of radius 0.615 mm at the step join 

the stripline grounds in a tapered section of stripline ground plane of which dimensions 

tapers from Wg to Wge = 8 mm over a length Lext = 5 mm. 
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Fig. 50 Transition design to enable measurement. 
 

Fig. 51 shows the simulated VSWR and AR of the stripline Archimedean spiral 

antenna with transition design. The VSWR is still below 1.5 over wide frequency bands 

because of the impedance matching design between stripline and microstrip. However, 

the AR degrades a lot due to the unwanted radiation from this transition region. The 

degradation of AR due to this mode transition cannot be mitigated by increasing the 

spiral turns and can only be compensated by the optimization of transition design. 

Nevertheless, if the antenna is connected to system directly by stripline the degradation 

of AR can be mitigated.  
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Fig. 51 Simulated VSWR and axial ratio (AR) for stripline Archimedean spiral antenna with a single-turn 
tapered stripline impedance transformer. 

 

5.4.3 Measurements Results 

Fig. 52 shows the fabricated antenna by using two Rogers RT/duroid 5880 

substrates of thickness 0.508 mm (20 mil) to implement stripline structure and its 

simulation model with the SMA connector. Seven #10-32 Nylon fasteners are used for 

mechanical alignment and compression with a thin layer of PDMS of εr 

= 0.05 to bond the two 20-mil substrates together, as shown in subfigure (b) of Fig. 53.  

The measured VSWR is shown in Fig. 53, the discrepancy is observed due to the 

non-ideal fabrication compared to simulation model but it still remains below 2 over 

very wide frequency range from 2 GHz to 20 GHz. Basically, the simulated and 

measured VSWR are in good agreement.  
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Fig. 52 Photo of fabricated antenna and the simulation model with probe effect. 
 

 

Fig. 53 Measured and simulated VSWR. Sub-figure: (a) ideal embedded stripline conducted in 
simulation, and (b) elimination of air-gap effect by PDMS, where ga is the air gap thickness between two 
substrates. 
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Fig. 54 shows the measured and simulated radiation patterns of the fabricated 

antenna at 3 GHz, 5 GHz, 10 GHz, and 15 GHz each in the xz and yz elevation cut-

planes. The little discrepancies between measurement and simulation are caused by the 

non-ideal fabrication. In addition to that, they can also be explained by the supporting 

material presented around the antenna during the measurement process and spurious 

radiations caused by the feed cable. 

After the measured radiation pattern is obtained, the calculation of AR can be 

performed on the time-phase difference between the two orthogonal components of field 

[118]. For a circular polarization antenna, the radiation field can be decomposed into two 

components: a right-handed circular polarization amplitude component ER and a left-

handed circular polarization amplitude component EL, which can be obtained from the 

radiation field components in spherical coordinate system (r, θ, φ) by  

  
1
2RE E jE    (56) 

  
1
2LE E jE    (57) 

where both Eθ and Eφ are complex values including phase information. The axial ratio is 

then given by [135] 

 1
1

AR








 (58) 

where ρ = ER / EL. 

Fig. 55 shows the simulated and measured AR. Note that the measured AR is 

obtained from 2.6 GHz to 18 GHz since the probe horn antennas used at the anechoic 
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chamber of the Texas A&M University only cover these frequency bands. The fabricated 

antenna cannot reveal a good circular polarization antenna due to several reasons as 

discussed before. Furthermore, the discrepancies can also be explained by the 

measurement method we adopted; for testing nearly circularly polarized antennas the 

rotating-source method is better than calculation from the orthogonal components of 

electric field since it obtains the axial ratio directly. 
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Fig. 54 Measured and simulated elevation (xz and yz) radiation patterns at (a) 3 GHz, (b) 5 GHz, (c) 10 
GHz, and (d) 15 GHz. 
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Fig. 55 Measured and simulated AR. 
 

5.5 Further Designs and Discussions 

The design flow chart for stripline Archimedean spiral antenna was proposed in 

Fig. 56. There are some considerations have to be noted. For a chosen substrate, there is 

limitation on desired impedance. If the desired impedance is too high, the inner 

conductor width Wic of stripline will be too narrow to be fabricated. If the desired 

impedance is too small, the arm spacing S of slot line will also be too small to be 

fabricated. Therefore, the characteristic impedance of stripline Archimedean spiral 

antenna cannot be chosen too high or too small depending on the supporting substrate 

used. However, as our design examples show, the impedance transformer can be easily 

integrated into the antenna structure of stripline Archimedean spiral antenna to achieve 

impedance matching to standard system impedance of 50 Ω no matter what substrate 

used. 
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To further validate the proposed design procedure, two additional stripline 

Archimedean spiral antenna designs on Rogers RT/duroid 6010 substrate (εr = 10.2) 

with different thickness are presented in Fig. 57, where the structural parameters are also 

summarized. In Fig. 57(a), the design is performed with a desired impedance of 40 Ω on 

a substrate of thickness h = 0.635 mm and Fig. 57(b) shows the design with desired 

impedance of 50 Ω on a substrate of thickness h = 0.635 mm. Both designs do not 

integrate with impedance transformer and have similar behaviors on VSWR below 2 

over very wide frequency range from about 2.5 GHz to over 20 GHz.  

More designs are conducted through extensive simulations on various substrate 

stack-up with higher dielectric constant and thicker substrate height but not shown in this 

paper. With higher dielectric constant and thinner substrate, the dimension of stripline 

design can be reduced and thus the antenna size; contrarily, with a thicker substrate, the 

dimension of stripline design have to be enlarged to confine the stripline mode and thus 

the antenna size is increased. Adding spiral turns can also improve the bandwidth, 

VSWR and AR (not shown here) at expense of larger antenna size. 



 92 

 

Fig. 56 Design flow chart for the stripline-fed Archimedean spiral antennas. 
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Fig. 57 Further design examples of stripline Archimedean spiral antennas on (a) Rogers RT/duroid 6010 
substrate of thickness h = 0.635 mm (25 mil) and (b) Rogers RT/duroid 6010 substrate of thickness h = 
0.254 mm (10 mil). 
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CHAPTER VI  

APPLICATIONS: DEVELOPMENT OF A DISC-SHAPED UAV 

 

Unpiloted aerial vehicles (UAVs) and other remotely-operated or autonomous 

systems have played increasingly important roles in military and homeland security 

applications. They have also provided very useful platforms to monitor environmental 

conditions and survey the impact of natural disasters. Wireless connectivity remains one 

of the key features that enhance their operational functionality, but it also provides a 

challenging situation when throughput from multiple video, communication, and other 

high data-rate sensors require a substantial bandwidth. The variety of form factors and 

sizes of UAVs can inadvertently play a role in limiting this functionality since they have 

traditionally been based on fixed-wing or rotary-wing aircraft. Morphing-wing, flapping, 

and flying-wing configurations are adding to the diversity of UAV structures, but in 

many of these smaller platforms (such as those which can be hand-launched) the 

requirements for aerodynamic functionality can place limitation on the real estate 

available for antenna integration and restrict the performance of the wireless systems. 

This chapter will provide an overview of work on the development of an 

aerodynamically-functional broadband antenna-based UAV design in which an inward-

fed stripline spiral antenna performs entirely or as part of the chassis in a disc-shaped 

flying-wing UAV.  

A conformal mapping analysis which has been developed in Chapter II to 

accurately predict the input impedance of the spiral when it is operating in the lowest 
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order balanced spiral mode is applied here to design the spiral antenna. The concept of 

two in-phase traveling guiding modes inspired the design of snail-type stripline-based 

topology. Next, the design of the flying wing structure is provided, which includes a 

brief overview on its construction and aerodynamic performance. The antenna 

performance, aerodynamic operation, and potential for collaborative beam-forming in 

volumetric swarms are discussed. 

 

6.1 Snail-Type Stripline Spiral Antenna 

The conformal mapping analysis derived in Chapter II can be used in the design 

process to synthesize an antenna with a desired value of characteristic impedance. This 

has been done for a desired characteristic impedance of 90 Ω by generating a family of 

design curves using a substrate with εr = 2.2 and h = 0.508 mm. The resulting antenna is 

designed with W = 4 mm and S = 1 mm (for 92 Ω); this value is set to be greater than the 

impedance Z0 of the measurement system and is used to determine the closely-matched 

stripline feed structure. Fig. 58 illustrates the cross-section of the stripline spiral antenna. 

This is synthesized by transforming one arm of the gap-fed spiral into a finite-ground 

stripline feed structure. The top and bottom grounds are formed by moving Arm 1 from 

its substrate-embedded position z = 0 to z = -h (the bottom of the stack) and creating a 

copy at z = h (the top of the stack); these act as top and bottom grounds in the finite-

ground stripline feed structure. A signal line of width W1 = 0.34 mm at z = 0 completes 

the transformation of Arm 1 to a stripline feed network. It is centered and conformal to 

the spiral winding of the top and bottom grounds, and extends through the feed gap until 
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it connects with Arm 2, as illustrated in Fig. 58 (right). The width W1 corresponds to the 

impedance Z1 = 90 Ω and the triangular sections at the center of Arms 1 and 2 perform 

the mode-converter between the guided (stripline) and radiating (spiral) modes. 

 

 

Fig. 58 Stripline spiral antenna: (middle) nominal cross-section of the stripline-fed topology, (left) 
stripline grounds formed by Arm 1 at z = -h and h, and (right) stripline signal line (Arm 2) at z = 0. 

 

Previous analysis for spiral antenna has shown that radiation occurs when the 

two slot-line modes are in-phase. However, when two slot-line modes propagate to the 

end of spiral arm, one slot-line mode stops and another slot-line mode keep propagating. 

The purpose of “snail-type” antenna shown in Fig. 59 (middle) is to extend this radiating 

mode of the spiral without significantly increasing the spiral dimensions. The snail-type 

antenna has similar size as spiral antenna with better VSWR, bandwidth, and axial ratio 

(not shown here). Fig. 59 (right) shows the design of stripline impedance transformer 

inside the spiral antenna structure matches Z1 to Z0 = 50 Ω 

The taper transitions inward from W0 = 0.76 mm at the perimeter of Arm 1 along one 

full winding of the spiral into W1. 
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Fig. 59 Overlay of stripline spiral antenna (left), stripline snail-type antenna without a tapered impedance 
transformer (middle), and stripline snail-type antenna with a one-turn tapered impedance transformer 
(right). 

 

The desired bandwidth for the UAV application extends from the lower end of 

the UHF band (2 MHz) into the mid-range of the VHF bands (20 GHz). Achieving this 

lower bound can be accomplished by extending number of turns to increase the outer 

radius of the spiral, but the authors’ fabrication capabilities for this are currently limited 

to a 10”x10” square of substrate which can be chemically etched. Thus, a bolt-in 

modular design is considered here and a stripline snail-type spiral with N = 10 has been 

designed extending to lower frequency of 400 MHz. Fig. 60 shows the fabricated 

antenna with a stripline-to-microstrip and then to-coax transition design, which was not 

optimized but provided a low reflection over the antenna bandwidth. Fig. 61 shows the 

measured VSWR remaining below 2 over very wide frequency range from 400 MHz to 

over 20 GHz. Fig. 62 shows the comparison of measured and simulated results below 2 

GHz. The discrepancy and oscillation are observed due to the non-ideal fabrication 

compared to simulation model but it still shows a good agreement. Fig. 63 shows a 

sample of the simulated and measured radiation patterns in S-band. 
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Fig. 60 Fabricated stripline snail-type antenna and microstrip transition. 
 

 

Fig. 61 Measured VSWR from 0.1 GHz to 20 GHz. 
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Fig. 62 Measured VSWR compared with simulated VSWR up to 2 GHz. 
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Fig. 63 Sample of measured and simulated radiation patterns in S-Band for the snail-type stripline spiral 
antenna. 
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6.2 Disc-Shaped Flying Wing Design 

The construction of the disc-shaped aerodynamic platform represents the next 

step in the prototype UAV development. The dimensions for this structure are 

intentionally set to be larger than the modular bolt-in design of the snail-type spiral so 

additional components can be placed on the platform without detuning or interfering 

with the operation of the spiral. Modifications to structurally functionalized antenna 

designs are used in subsequent designs to prevent this detuning and increase the size and 

bandwidth. For this design, however, the structural body consists of a Coroplast disk (εr 

~ 1.25) which has a 12 in radius (cut from a 24 in x 24 in sheet of stock material). An 

irregular convex pentagon Coroplast tail fin (approx. 6 in. long and 5 in. tall) is fastened 

to the body on its narrow edge using a 0.375 in. thick basswood mount on the back of 

the disc along its centerline; this structure helps to control undesired rolling during flight. 

Two 6 in. cuts are then made parallel and 1 in. from the centerline on both sides of the 

tail fin then continued outward and perpendicular to the centerline to the edge of the disc 

on both sides. These body modifications form the two elevons for yaw, pitch, and roll 

control while maintaining the overall disc shape. Nylon hinges and mounting hardware 

are used to attach these ailerons to the main body. Fig. 64 shows a notional diagram of 

chassis, control surfaces, and several other elements of the design. This includes the the 

motor mount (also created from 0.375 in. thick basswood) and carbon fiber composite 

push-rods, which are used to avoid placing metallic structures above the antenna when 

connecting to the control horns on the elevons. 
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Fig. 64 Chassis and control surfaces of the UAV 
 

Fig. 65 shows the final design with the mounted snail-type stripline spiral 

antenna; it connects directly to the six-channel ISM band radio (2.4 GHz) through an 

SMA-to-UNCC connector to wirelessly control the UAV. A 40 A brushless DC motor 

connects attaches directly to the front edge of the disc via the basswood motor mount 

and powers a 10x6 true-pitch tapering-tip maple propeller. All other components 

(electronic speed controller, servos, 900 MHz video system, etc.) attach directly to the 

body and are powered by a 2100 mAh lithium-polymer (LiPo) battery. The motor was 

selected to produce an adequate amount of thrust for the weight of the final UAV design. 

There is very little lift generated at a 0˚ (horizontal) angle of attack due to the flattened 

body shape so most of the lift is achieved by powering the UAV to a higher angle of 

attack where smaller pressures are produced on the top side. However, the UAV is 
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capable of hovering in place because most of the lift is provided by the thrust of the 

propeller. 

 

 

Fig. 65 Completed flying disc with modularly integrated antenna. 
 

Most of the weight in this configuration arises from the motor and the LiPo 

battery, so the front of the battery is located about two inches from the leading edge and 

centered behind the motor mount. This yields a center of gravity 6 inches behind the 

motor mount, or a 25% chord length from leading edge. These dimensions are assigned 

based on a trade study performed for similar RC planes and the battery is mounted on 

the bottom face to increase roll stabilization. All UAV components are mounted above 

the body with the exception of the battery and motor. The servos are placed about 6 
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inches from the front of the UAV and at equal distances of 5 inches from the centerline. 

The receiver and electronic speed control are mounted between the motor mount and 

spiral antenna slightly left of center in order to counter the clockwise torque induced by 

the propeller and motor. Fig. 66 and Fig. 67 show the measured VSWR and radiation 

patterns of the spiral after mounting all of the aforementioned components onto the disc. 

Based on these results it can be concluded that the operation of the antenna is maintained. 

Simulations of this completed structure were not available due to the numerical 

complexity introduced by the additional components placed on the structure. 

 

 

Fig. 66 Measured VSWR of the snail-type spiral antenna after mounting onto the UAV. 
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Fig. 67 Sample of measured radiation patterns in S-Band for the snail-type stripline spiral antenna after 
mounting onto the UAV. 
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CHAPTER VII  

ANALYTIC ANALYSIS OF MULTILAYERED  

PERIODIC COPLANAR WAVEGUIDES  

 

Coplanar waveguides (CPW) have been widely used in the design of monolithic 

microwave integrated circuits (MMIC) [64], [65] and printed circuit board (PCB) [66]. 

CPW offers several advantages over microstrip transmission line [63] including lower 

dispersion and easily access to ground. The ideal configuration for CPW consists of a 

conductor strip of width W on top of an infinitely thick dielectric substrate with two 

semi-infinite ground conductors on both sides of a spacing S, as shown in Fig. 68(a). The 

first analytic formula for this configuration is given by Wen [67] using conformal 

mapping to estimate quasi-TEM wave properties. In actual implementation, the CPW 

structures are neither of infinite substrate [90] nor infinite lateral extent [80], as shown in 

Fig. 68(b), where the ground strip width and the substrate height are denoted as Wg and h, 

respectively. For the sake of maximizing the circuit density, the ground plane width 

should be as small as possible, but truncating lateral ground planes and placing CPW 

close to each other also increase line-to-line coupling [64] and change the characteristic 

impedance of CPW. The coupling effects of coupled CPW and parallel CPW shown in 

Fig. 68(c) are discussed in [89] and [64], respectively. Nowadays, since most systems 

use signaling interfaces in which large numbers of transmission lines including CPW are 

routed in parallel through packages, connectors, and interconnect inside integrated chips, 
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the coupling can play an important role in determining the performance of the system 

and the investigation on parallel CPW is not enough.  

 

 

Fig. 68 Configuration of coplanar waveguides, (a) CPW with infinite lateral ground plate, (b) CPW with 
finite lateral ground plate, (c) parallel CPW, and (d) periodic CPW. 

 

Many systems currently use signaling interfaces in which large numbers of 

transmission lines (including CPW) are routed in parallel through packages, connectors, 

and interconnect inside integrated chips. In order to maximize the circuit density, the 

ground conductor width should be as small as possible, but  truncating lateral ground 

planes and placing CPW close to each other also increase line-to-line coupling [64]. This 

can play an important role in determining the performance of the system. 

This paper analyzes a circumstance in which several CPW transmission lines are 

parallel due to highly demand on miniaturization of circuit design. The analysis of 

characteristic impedance, propagation delay, and coupling effect of a target line in a 
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multiple transmission line environment (as an equivalent single transmission line) is a 

common treatment during the initial design of a full system, and followed here. For 

simplification and to investigate the properties of several parallel CPWs, the 

configuration called periodic coplanar waveguide (PCPW) with identical dimension in 

each periodic cell as shown in Fig. 69 is a suitable model to analyze. The configuration 

of PCPW consists of a conductor strip of width W on top of dielectric substrate of εr and 

thickness h with two lateral ground conductors of width Wg on both sides of a spacing S. 

This work is different from the periodic CPW structures in [136]-[139], which could be 

described as periodic loaded CPWs since the properties of CPW are modified by 

periodically loaded circuit elements. 

Two contrasting propagating modes will be examined in PCPW structure. The 

first mode corresponds to the common mode where all the signal strips are switching in-

phase, as illustrated in Fig. 69 (a). The other mode is called the differential mode (Fig. 

69 (b)) where adjacent signals are switching out-of-phase. In this paper, the conformal 

mapping method is applied to develop quasi-static design formulas for quickly 

evaluating the even- and odd-mode characteristic impedance and effective dielectric 

constant of a CPW transmission line in PCPW structures. These formulas are useful for 

computer-aided design (CAD) tools. The results calculated by the proposed expressions 

are in excellent agreement with those obtained by full-wave simulation and experimental 

data. 
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Fig. 69 Cross-sectional view of a PCPW in (a) even (common) mode and (b) odd (differential) mode. 
 

7.1 Conformal Mapping Analysis of PCPW 

Fig. 70(a) shows the periodic section of the PCPW used for the analysis, where 

the boundary plane between two adjacent sections can be modeled as perfect magnetic 

walls (PMC) for even mode propagation or as perfect electric walls (PEC) for odd mode 

propagation. The length of periodic section is denoted as Lp = 2S + W + Wg. For the sake 

of clarity, a single-layered substrate PCPW (as shown in Fig. 70(a)) is sufficient to 

explain conformal mapping steps, while the theory presented below is applicable to the 

general case of multilayered structures with or without conductor-backed plates. The 

assumption for quasi-TEM wave propagation requires the dimensions of PCPW Lp << 

λg/2 (λg is guided wavelength), which is usually valid for the application of packaging or 

microwave circuit design. To simplify analysis without losing generality, the metal strips 

have zero thickness with perfect conductivity and the dielectric layers are lossless.  

In the quasi-TEM approximation, the characteristic impedance Z0 and effective 

dielectric constant εreff can be completely determined from the effective per-unit-length  

capacitance C when the dielectric material is present and the per-unit-length capacitance 
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C0 with no dielectric material [119]. The partial capacitance technique [78], [80], [104], 

which models the air/dielectric and dielectric/dielectric interfaces as PMC, is used to 

evaluate the effective per-unit-length capacitance C of PCPW in (59), where C1 

represents the per-unit-length capacitance when the partial charges reside only inside the 

dielectric layer. In the case of a multilayered substrate, the limitation of partial 

capacitance approach is discussed in [105]. 

 0 1C C C   (59) 

 
7.1.1 Common Mode (Even Mode) 

For the common mode propagation, the plane of boundary of periodic section is 

PMC. Fig. 70(b) shows the conformal mapping steps for evaluation of Ce0. The 

transformation (60) maps the z-plane of PCPW onto the upper half t-plane and then 

transformation (61) maps the upper half t-plane onto a rectangle in the w-plane, where tc 

= t(zc), td = t(zd) , and zc = S + W/2 and zd = W/2 are the coordinates of z-plane. 
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The per-unit-length capacitance of air-filled PCPW is given by (62), where K(ke0) 

is the complete elliptic integral of first kind with the modulus ke0 and the complementary 

modulus ke0’ expressed in (63) and (64), respectively. 
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Fig. 70(c) shows the conformal mapping steps for evaluation of Ce1. The 

transformation (65) maps the z-plane of PCPW onto the upper half t-plane, where sn(u,r1) 

is the Jacobian elliptic function with a variable u and a modulus r1 determined by (66) 

and (67),  and K1 = K(r1) can be evaluated by (68). 

 2
1 1

2sn ,
p

z
t K r

L

 
   

 

 (65) 

 1
1

2exp
p

h
q

L


 
   

 

 (66) 

 
42

1
1 1 2 1

1 1

14
1

n

n
n

q
r q

q






 
  

 
  (67) 

 1
1 2

1 1

2
2 1

s

s
s

q
K

q








 


  (68) 

Then the transformation (69) maps the upper half t-plane onto a rectangle in the 

w-plane. 
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The per-unit-length capacitance Ce1 is given by (70), where the modulus ke1 and 

the complementary modulus ke1’ is given by (71) and (72), respectively. 
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The total per-unit-length capacitance is the sum of all partial capacitances and 

can be expressed as (73), where the effective dielectric constant is given in (74).  

  

 
0even

0
0

4
'

e

e reff

e

K k
C

K k
   (73) 

  
 

 

 

 
1 0even

1
1 0

'11 1
2 '

e e

reff r

e e

K k K k

K k K k
     (74) 

The common-mode characteristic impedance is 
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7.1.2 Differential Mode (Odd Mode) 

For the differential mode propagation, the plane of boundary of periodic section 

is PEC. As shown in Fig. 70(b), the transformation from z-plane to t-plane is the same as 

(60), while the transformation (76) maps the upper half t-plane onto a rectangle in the w-

plane. 
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Fig. 70 Conformal mapping for evaluation of per-unit-length capacitance, (a) periodic section of PCPW, 
(b) transformation steps for C0, and (c) transformation steps for C1. 

 

The per-unit-length capacitance of air-filled PCPW is given by (77) with the 

modulus ko0 and the complementary modulus ko0’ expressed in (78) and (79), 

respectively. 
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For the calculation of Co1 as shown in Fig. 70(c), the transformation in (65)-(68) 

maps z-plane to t-plane and then the transformation (80) maps the upper half t-plane 

onto a rectangle in the w-plane. 
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The per-unit-length capacitance Co1 is given by (81)-(83). 
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The total per-unit-length capacitance for differential mode propagation is 

expressed as (84), where the effective dielectric constant εreff is given in (85). 
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The differential-mode characteristic impedance is 
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The coupling coefficient can be evaluated by the expression 
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7.1.3 Multilayer Extension 

Fig. 71 shows a PCPW structure embedded in a set of infinite number of 

dielectric layers. The parallel partial capacitance approximation can be easily extended 

to multilayer cases as demonstrated in [104]. The limitation of partial capacitance 

technique is discussed in [105], which states that the parallel partial capacitance (PPC) 

approach is valid only when the dielectric constant is decreasing layer by layer away 

from the PCPW structure. When the dielectric constant is increasing away from the 

PCPW structure, the series partial capacitance (SPC) approach can be used to evaluate 

the quasi-TEM properties. Despite this limitation, the analysis in this section is still 

applicable to most applications. 

For the common mode, the total per-unit-length capacitance and the 

characteristic impedance are shown in (73) and (75), respectively, with the effective 

dielectric constant redefined in (88)-(93). 
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Fig. 71 PCPW in multilayered dielectric structure. 
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For the differential mode, the total per-unit-length capacitance and the 

characteristic impedance are shown in (84) and (86), respectively, with the effective 

dielectric constant redefined in (94)-(96). 
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When the dielectric constant is increasing layer by layer away from the PCPW 

structure, the series partial capacitance (SPC) approach can be used to evaluate the 

quasi-TEM properties of PCPW. 

 

7.2 Validation and Discussions  

This section will present the calculated results by conformal mapping analysis to 

verify the derived expressions as well as to investigate the properties of PCPW. 

Although, to the author’s best knowledge, there is no discussion on periodic coplanar 

waveguides and odd mode propagation in parallel CPW structure, comprehensive 

comparisons with the results of full-wave analysis and available experimental data in 

literatures will be presented in this section and demonstrate that the derived formulas are 
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accurate for most of the application range of physical dimensions and available dielectric 

materials. 

It is worth to note that all functions used in the analysis (e.g. elliptic integrals of 

first kind) are available in most mathematical software packages. The infinite series 

expansion functions of (67) and (68) converge quickly with n = 200 and s = 1000, 

respectively, with the computation time less than 1s in modern personal computer. When 

the modulus k is close to 1 or 0, the calculation of Jacobian elliptic function sn(u,k) can 

be simplified. For 2h1/Lp < 0.1 (k → 1), the function is given by 

  sn , tanhu k u  (97) 

For 2h1/Lp > 100 (k → 0), the approximation is given by 

  sn , sinu k u  (98) 

Otherwise, the Jacobian elliptic function can be evaluated by 
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7.2.1 Analysis of PCPW with Infinite Periodicity  

Fig. 72 shows the characteristic impedance of single layered PCPW operating in 

even mode. The parameters used in this computation are εrb1 = 13, hb1 = 1.5mm, and W + 

2S = 3mm. As expected, the agreement are excellent between the calculated results with 

Wg = 10(W + 2S) and those from [140] using full wave analysis with assumption of 

infinite lateral ground. It is intuitive to see that the curves are dependent on the lateral 

ground width Wg. In this case, the PCPW with Wg > 2(W + 2S) can be considered as an 

isolated CPW with infinite lateral grounds, where (W + 2S) can be denoted as the 
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dimension of isolated CPW. As each CPW is placed closer than the dimension of 

isolated CPW in periodic structure, e.g. Wg < (W + 2S), the coupling between 

transmission lines results in impedance change. 
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Fig. 72 Characteristic impedance of single layered PCPW with εrb1 = 13, hb1 = 1.5mm, and W + 2S = 
3mm.  

 

The experimental data for single layered CPW can be found in [67] with very 

thick substrate and in [90] with finite substrate thickness. Fig. 73 shows the comparison 

of calculated characteristic impedance obtained in this work with these experimental 

results. The parameters used in this calculation are listed in TABLE II with an 

assumption of large lateral ground of Wg = 10(W + 2S). It is seen that our conformal 

mapping results agree with corresponding measured results within 2.6%. The little 

discrepancy observed in the Case A of thin substrate is due to modeling air/dielectric 
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interface as PMC. This can be explained by less field concentration in the substrate and 

partial field distribution in air resulting in a less accurate model of PMC on interface. 

 

TABLE II PARAMETERS OF PCPW FOR CALCULATION IN FIG. 73. 
 

Case A B C D E 
εrb1 10 10 10 16 130 
W+2S [mm] 2 2 2 2 2 
hb1 [mm] S 3S ∞ ∞ ∞ 
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Fig. 73 Measured and calculated characteristic impedance of single layered PCPW with infinite 
periodicity. 

 

Fig. 74 shows the characteristic impedance of PCPW on two- layered substrate, 

compared with the results taken from [141] using numerical spectrum domain method 

and from [65] using analytical conformal mapping method. The calculations are carried 

out with the parameters listed in TABLE III and large lateral ground width of Wg = 10(W 
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+ 2S). It shows that the analytic formulas derived in this paper can also be used in 

multilayered isolated CPW structures. 

 

TABLE III PARAMETERS OF PCPW FOR CALCULATION IN FIG. 74. 
 

Case  εrb1 εrb2 hb1 [μm] hb2 [μm] S [μm] 
A 12.9 3.78 200 ∞ 20 
B 20 10 200 ∞ 100 
C 12.9 10 200 ∞ 200 
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Fig. 74 Characteristic impedance of two-layered PCPW with infinite periodicity. 
 

7.2.2 Analysis of PCPW with Equal Strip Width  

In this section, the PCPWs with fixed periodicity of W + S = 2.5 mm and equal 

strip width of Wg = W are analyzed. The field distribution now has dependence on both 

substrate height h and the metallization ratio χ defined by (100). Specifically, for a fixed 

metallization ratio χ, smaller values of (W+S)/h correspond to smaller conductor spacing 

S compared to h and an increased field distribution within the substrate; this increases 
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the total per-unit-length capacitance and decreases the characteristic impedance of the 

propagating modes. 

 W

W S
 


 (100) 

The characteristic impedance in even- and odd-modes are calculated and 

compared with the simulated data from COMSOL Multiphysics [142], a proven 

commercial solver based on finite element method. The corresponding PCPW CAD 

model consists of nine unit cells of CPW. A range of commercially available substrate of 

various heights and dielectric constants, i.e. Roger Duroid 5880 and 6010 [143], is used 

to validate the proposed analytical formulas. The simulated characteristic impedance are 

obtained by (101), where per-unit-length capacitance C and C0 are extracted from the 

center cell with/without dielectric material present, respectively, and c is the speed of 

light. 
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TABLE IV PARAMETERS OF PCPW FOR CALCULATION IN FIG. 75. 
 

Case  εrt1 εrb1 ht1 [mil] hb1 [mil] W+S [mm] 
A 2.2 10.2 20 125 2.5 
B 2.2 10.2 62 25 2.5 
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Fig. 75 Even- and odd-mode characteristic impedance of PCPW embedded in dielectric materials versus 
metallization ratio obtained by conformal mapping (CM) and finite element method (FEM).  

 

Fig. 75 shows the even- and odd-mode impedance of PCPW embedded in two 

dielectric materials of different heights. The calculations are carried out with the 

parameters listed in TABLE IV. Fig. 76 shows the even- and odd-mode impedance of 

PCPW on top of two-layered substrate with the parameters listed in TABLE V. Overall, 

the conformal mapping results agree with the numerical simulations within an error of 

3.5%, which is also acceptable for a numerical error. In the Case C of Fig. 76, the 

discrepancy is observed in the thin substrate due to the approximation of modeling 

dielectric/air interface as a PMC, while for higher metallization ratio, the higher field 

concentration inside the dielectric materials resulting in a more accurate PMC model on 

interface. In general, the discrepancy in odd-mode is larger than that in even-mode 

because of PEC boundary between two unit cells rendering more field distribution out of 

substrate. 
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As seen in these analyses, both even- and odd-mode impedance and the 

difference between them increase as the metallization ratio decreases. Fig. 77 shows the 

coupling coefficients decreases as metallization ratio χ increases. 

 

TABLE V PARAMETERS OF PCPW FOR CALCULATION IN FIG. 76. 
 

Case  εrb1 εrb2 hb1 [mil] hb2 [mil] W+S [mm] 
C 10.2 2.2 15 31 2.5 
D 10.2 2.2 62 62 2.5 

 

 

Fig. 76 Even- and odd-mode characteristic impedance of PCPW residing on two-layer substrate of finite 
thickness obtained by conformal mapping (CM) and finite element method (FEM).  
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Fig. 77 Coupling coefficients as a function of metallization ratio.  
 

 

7.2.3 Analysis of PCPW with Unequal Strip Width  

In this section, a more general case is considered, in which all the dimensional 

parameters are normalized by the dimension of isolated CPW since the calculated 

impedances are not dependent on the size of W + 2S. This can be seen in the expression 

of modulus keo, ke1, ko0, and ko1 in (63), (71), (78), and (82), respectively. Note that the 

value of W/(W+2S) can also be described as the metallization ratio of an isolated CPW. 

Fig. 78 and Fig. 79 show the even- and odd-mode characteristic impedance of 

PCPW on top of GaAs (εrb1 = 12.9). For a given Wg, the increase in W increases the per-

unit-length capacitance and therefore reduces both the even- and odd-mode 

characteristic impedance. For a given W, the increase in Wg increases the unit cell 

marginally. This increases the coupling surface of the conductor in the case of even 

mode and thus increases the per-unit-length capacitance resulting in the reduction of line 
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impedance, while in the case of odd mode, the line impedance is slightly increased 

because the distance of coupling to the PEC boundary of a unit cell are also increased, 

incurring reduced per-unit-length capacitance. For a large Wg, e.g. Wg/(W+2S)=3, the 

even-mode impedances coincide with the odd-mode ones and can be considered as the 

characteristic impedance of an isolated CPW with infinite lateral ground. 

For a given W and Wg, the reduction of hb1 decreases the effective dielectric 

constants of the structure hence increases both the even- and odd-mode characteristic 

impedance of PCPW. It is worth to notice that both even- and odd-mode characteristic 

impedance reach saturation values for a thick substrate, where the field distribution can 

be considered as well-confined inside the substrate and not experienced the dielectric 

boundary. The saturated substrate thickness hb1 for characteristic impedance is 

dependent on each parameter, but as a rule of thumb, the PCPW can be assumed on top 

of infinite layer when the normalized substrate height of hb1/(2S + W) is larger than 1. 

 

 



 127 

 

Fig. 78 Even-mode characteristic impedance of PCPW on top of GaAs versus hb1/(2S + W). 
 

 

Fig. 79 Odd-mode characteristic impedance of PCPW on top of GaAs versus hb1/(2S + W). 
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7.3 Design Curves  

A closed-form analytical solution has been given for obtaining the quasi-TEM 

properties of periodic coplanar waveguide (PCPW) structure, which is a simplified case 

for discussion of paralleling several CPW transmission lines. The presence of the other 

CPWs at both sides of one CPW induces the coupling and alters the transmission line 

properties. The two contrasting cases of even- and odd-mode are discussed in this paper. 

The analysis has led to accurate formulas for effective dielectric constants, per-unit-

length capacitance, and characteristic impedances of one periodic cell in PCPW for these 

two modes. The calculated results generated by the proposed formulas are in excellent 

agreement with those results obtained by full-wave analysis and experimental data. 

The derived formulas provide intuitive physical insight and are useful for 

miniaturized circuit application where the distance of acceptable coupling without 

altering transmission line impedance. The substrate thickness that can be considered as 

infinite substrate for characteristic impedance as well as per-unit-length capacitance is 

determined. This model can also be extended for analysis of guarding ground effects in 

circuit interconnects. Using this model, it would be possible for designers to find 

optimum line impedance for system performance and to reduce crosstalk in coupled 

CPW transmission lines. An example of design contour plot is also given in Fig. 80. 
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Fig. 80 Design curves for the even-mode characteristic impedance as a function of Wg and hb1 for a 
PCPW with metallization ratio of 0.5 on top of GaAs. 
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CHAPTER VIII  

CONCLUSIONS  

 

This work has covered many different aspects on the spiral antenna. It begins by 

modifying the original band theory of spiral antennas, developing a periodic coplanar 

waveguide (PCPW) model, and then deriving the analytical formulas using conformal 

mapping for evaluating the characteristic impedance of spiral antenna operating in 

radiation region. The derivation provides the preliminary work in support of the 

aperchassis (a radiating structure with structural functionality and volumes/surfaces for 

internalized subsystems). The stripline Archimedean spiral antenna design provides an 

internalized feed network and leaves surfaces and volumes to integrate subsystems to 

enable multifunctionality and thereby aid in the mitigation of size and/or weight 

constraints. Measured and simulated results in the first and second design example 

demonstrated the basic design and operation of the structure. Future and ongoing work 

will examine the structure in more detail. In addition to this, the effects of structural 

deformations are also under investigation. 

 

8.1 Summary  

In Chapter II, a simple method and analytical closed-form expressions for the 

characteristic impedance of a periodic coplanar waveguide (PCPW) and an Archimedean 

spiral antenna have been obtained using conformal mapping techniques. These 

expressions are quasi-static providing an accurate prediction for the impedance at lowest 
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operating frequency with no substrate and the band-average impedance with present 

embedded substrate. The comparison between the calculated results and simulated 

results using numerical software verifies the accuracy of the expressions. This 

verification suggested that this analytical expression could evaluate the input impedance 

of a spiral antenna a lot faster. This is the first time the quasi-static analysis performed 

on spiral antenna to predict its input impedance operating in its radiation region and 

gives physical insight when the spiral arm width is non-negligible and non-self-

complementary. This method can be easily extended to multi-layers structures. 

In Chapter III, the design and fabrication of a stripline-fed two-arm Archimedean 

spiral antenna has been proposed using a simple concept, remaining the original 

impedance properties. The design transforms one arm of the planar gap-fed spiral into a 

stripline feed network, and improvements over prior work [61] on this topology include 

a tapered impedance transformer which remains conformal to a single turn of the spiral 

and an improved impedance bandwidth. Measured and simulated results showed good 

agreement for a fabricated version of the antenna, from which it can be concluded that 

the transformation from of the gap-fed spiral into the stripline-fed spiral does not 

significantly degrade the impedance performance of the spiral. Fig. 81 summarizes the 

design flow chart for design process I.  
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Fig. 81 The design flow chart for design process I. 
 

In Chapter IV and V, the radiation mechanism and impedance properties of how 

stripline Archimedean spiral antenna radiates has been thoroughly examined. A design 

method of stripline Archimedean spiral antenna has been proposed for broadband 

operation with circular polarization based on a complete analysis. The antenna design 

can be achieved easily by impedance matching of stripline mode and parallel elevated 

slot line mode. The characteristic impedance of parallel elevated slot line structure is 
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analytically derived by approximated PCPW model and conformal mapping methods. 

Measured and simulated results of design example were in good agreement for a 

fabricated version of the antenna. A design flow chart is drawn to summarize the design 

procedure after carrying out a design study. Two additional antennas have also been 

successfully designed for validating the proposed design procedure on arbitrary substrate 

stack-up. 

In Chapter VI, one of the applications of stripline Archimedean spiral antenna is 

presented. The analytical solution derived by conformal mapping analysis is applied to 

accurately predict the input impedance of the spiral antenna when it is operating in the 

lowest order balanced spiral mode. According to the design process I developed in 

Chapter III, this analytical formula can help a stripline Archimedean spiral antenna 

design without the time-consuming numerical analysis. Based on the concept of two in-

phase traveling guiding modes incurring the radiation, the transformation of the spiral 

design into a snail-type stripline-based topology is proposed with better performance 

than the traditional spiral antenna. Next, the design of the flying wing structure is 

provided, which includes a brief overview on its construction and aerodynamic 

performance. The antenna performance, aerodynamic operation, and potential for 

collaborative beam-forming in volumetric swarms are discussed. 

In Chapter VII, a closed-form analytical solution has been derived for obtaining 

the quasi-TEM properties of periodic CPW (PCPW) transmission lines. It has been 

shown that the presence of the other CPWs at both sides of one CPW induces the 

coupling between two CPWs and modifies the transmission line properties, especially 
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for miniaturized circuit application where the distance of minimum coupling needed to 

be determined. Analytical results generated by the proposed formulas are in excellent 

agreement with those results obtained by full-wave analysis and experimental data. 

These formulas are accurate and easy to program in computers. 

 

8.2 Contributions 

 The first physical insight into the operation and radiation mechanism of an 

Archimedean spiral antenna with non-negligible metal strip width is 

proposed.  

 The first comprehensive analysis based on physical speculation of periodic 

coplanar waveguide (PCPW) model and conformal mapping method 

predicts the characteristic impedance of spiral antenna when operating in its 

radiation region accurately. This close-form analytical formula is a lot more 

accurate than the results calculated from commercial numerical software 

package, HFSS. 

 It is the first time that the input impedance of an Archimedean spiral 

antenna can be known based on its geometric parameters prior to time-

consuming numerical calculation. 

 A novel compact multifunctional antenna, a stripline-fed Archimedean 

spiral antenna, is designed, fabricated, and demonstrated, which has very 

broadband VSWR, axial ratio (AR), and broadside radiation pattern from 2 

GHz to over 20 GHz. 
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 A stripline Archimedean spiral antenna is a totally planar spiral antenna 

design without the need of complex wideband balun circuits and matching 

circuit compared to the traditional vertically-fed spiral design, which is a lot 

beneficial to array placement and fabrication. 

 The first simple design process is proposed for novel spiral antenna without 

the aid of numerical software, based on a very simple concept of impedance 

matching. 

 The stripline structure can easily provide isolation on antenna properties and 

integrate circuit elements inside the antenna. 

 The first stripline Archimedean snail-type  antenna is designed for the better 

performance to the stripline Archimedean spiral antenna. 

 The first analytical solution for periodic coplanar waveguides is derived. 

The minimum ground width without effect on the properties of adjacent 

coplanar waveguides can be decided by this work. 

 

8.3 Future Work 

Measured and simulated results in the first and second design example 

demonstrated the basic design and operation of the stripline Archimedean spiral antennas. 

Future and ongoing work will examine the structure in more detail with developing the 

transmission line model for the Archimedean spiral antenna. In addition to this, the 

effects of structural deformations and the integration of microwave circuits are also 

under investigation. Moreover, the application of conformal mapping analysis can be 
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extended to discuss the effect of guarding traces on microstrip and microstrip coupled 

capacitors. 

 

8.3.1 Transmission Line Model for Archimedean Spiral Antenna 

 The transmission line mode is first proposed in 2007 to account for the 

impedance properties of spiral antenna [57]. From the band theory, the active region of 

spiral antenna is like a circular loop antenna. Thus, the spiral antenna can be modeled as 

a cascade set of loop antenna with their radiation resistance to account for the radiation 

in the transmission line model, as shown in Fig. 82. For each circular loop antenna, we 

have the radiation resistance as 
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The P.U.L. resistance in transmission line model is obtained by  
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If we unwrap the spiral as shown in Fig. 83, each section of transmission line can be 

represented a circular loop antenna at different frequency, where the characteristic 

impedance and the propagation constant are 
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The input impedance of each section of transmission line is  
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After cascading, Fig. 84 shows the comparison of input impedance calculated by 

transmission line mode and HFSS. However, Lee et. al did not explain where the 

inductance and capacitance comes from. Now, the conformal mapping derivation can be 

applied to complete this transmission line model. 

 

 

Fig. 82 Decompose the spiral antenna into small current loop antenna. 
 

 

Fig. 83 Cascade each current loop antenna as a transmission line model. 
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Fig. 84 Comparison of transmission line model and numerical results. 
 

8.3.2 Integrated Filter Design 

To demonstrate that the circuit elements can be put inside the antenna structure 

without impacts on antenna performance, an edge-coupled microwave bandpass filter as 

shown in Fig. 85 is designed in stripline stack-up for this purpose. Fig. 86 shows the 

frequency response is at 9.75 GHz. In order to put the filter inside the spiral structure, 

the filter design is modified to occupy less footprint. Fig. 87 shows the modified filter 

has the same frequency response as the original one. 

Fig. 88 shows the filter is conformal integrated into the antenna structure and Fig. 

89 shows the simulated VSWR of the antenna structure in Fig. 88. 
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Fig. 85 Edge-coupled stripline bandpass filter design. 
 

 

Fig. 86 Frequency response of the filter design. 
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Fig. 87 The filter design in order to be conformal integrated into the stripline-fed Archimedean spiral 
antenna. 
 

      

Fig. 88 The spiral conformal filter integrated into the antenna structure. 
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Fig. 89 The simulated VSWR of the stripline spiral antenna integrated with spiral filter. 
 

8.3.3 Conformal Mapping Applications 

The conformal mapping analysis can also be applied on several problems. The 

first one is microstrip coupled capacitance. The second one is to discuss the effects of 

guarding traces on parallel microstrips for package and PCB design. We can provide the 

minimum width and spacing of guarding traces analytically for package and PCB design 

instead of empirical design rules. The third one is to evaluate the capacitance of 

interdigital capacitor.  
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