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ABSTRACT 

 

Modeling Biogeochemistry and Flow within Heterogeneous Formations in Variably-

Saturated Media. (August 2012) 

Bhavna Arora, B.Tech., Indian Institute of Technology Kharagpur, India;  

M.Tech., Indian Institute of Technology Kharagpur, India                                                 

Co-Chairs of Advisory Committee: Dr. Binayak P. Mohanty 
            Dr. Jennifer T. McGuire 

 

This dissertation focuses on understanding the complex interactions between 

hydrological and geochemical processes, and specifically how these interactions are 

affected by subsurface heterogeneity across scales. Heterogeneity in the form of 

macropores and fractures provide preferential flowpaths and affect contaminant 

transport. Biogeochemical processes are also strongly affected by such heterogeneities. 

Any lithological layering or interface (e.g. plume fringe, wetland-aquifer boundary, etc.) 

increases biogeochemical activity around that interface. Hydrologic conditions, rainfall 

events, drainage patterns, and pH variations are also dominant controls on redox 

processes and thereby affect contaminant distribution and migration. An inherent 

limitation of modeling fate and transport of contaminants in the subsurface is that the 

interactions among biogeochemical processes are complex and non-linear. Therefore, 

this research investigates the effect of hydrological variations and physical heterogeneity 

on coupled biogeochemical processes across column and landfill scales. 



 iv 

Structural heterogeneity in the form of macropore distributions (no macropore, 

single macropore, and multiple macropores) in experimental soil columns is investigated 

to accurately model preferential flow and tracer transport. This research is crucial to 

agricultural systems where soil and crop management practices modify soil structure and 

alter macropore densities. The comparison between deterministic and stochastic 

approaches for simulating preferential flow improved the characterization of interface 

parameters of the dual permeability model, and outlined the need for efficient sampling 

algorithms or additional datasets to yield unique (equifinal) soil hydraulic parameters. 

To evaluate the effect of heterogeneity on redox processes, repacked soil 

columns with homogeneous and heterogeneous (layered) profiles from soil cores 

collected at the Norman Landfill site, Oklahoma, USA were employed. Results indicate 

that heterogeneity in the form of textural layering is paramount in controlling redox 

processes in the layered column.  

To evaluate the effect of hydrologic conditions on redox processes, temporal data 

at the Norman landfill site was used. Results indicate that seasonal hydrologic variations 

exert dominant control over redox-sensitive concentrations.  

An integrated MCMC algorithm was devised to upscale linked biogeochemical 

processes from the column to the field scale. Results indicate that heterogeneity and 

hydrologic processes are paramount in controlling effective redox concentrations at the 

Norman landfill site. 
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CHAPTER I 

GENERAL INTRODUCTION 

 

1.1 Problem statement 

Contamination of subsurface systems is a significant environmental concern. 

Contaminant distribution and migration is affected considerably by changes in the 

reduction-oxidation (redox) potential of the vadose zone. Other biogeochemical 

processes in the vadose zone (e.g. precipitation-dissolution, sorption-desorption, 

microbial biodegradation, biotransformation) can also change the reactivity and transport 

of contaminants before they reach groundwater. These processes have complex non-

linear linkages that are difficult to determine and are strongly affected by structural 

heterogeneities. The presence of certain heterogeneities such as macropores and 

fractures can itself increase groundwater vulnerability to potential contamination from 

harmful chemicals. Hence, to improve the predictions of the fate and transport of 

contaminants in water, an understanding of the coupled hydrological, geochemical, and 

microbiological processes occurring in the subsurface under homogeneous and 

heterogeneous conditions is desired.  
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1.2 Motivation 

Understanding relationships between hydrological (e.g. initial and boundary conditions, 

hydraulic conductivity ratio, soil layering), geochemical (e.g. mineralogy, redox 

potential, organic matter content) and microbiological factors (e.g. changes in microbial 

community type and structure) that alter biogeochemical processes is an inherent 

requirement of modeling contaminant fate and transport in subsurface environments. The 

uncertainty associated with these predictions is further magnified due to variable flow 

dynamics and transient redox states as a result of structural heterogeneity. While it is 

known that the biogeochemical processes are influenced by subsurface heterogeneity, 

the exact nature of these linkages and transition across scales is generally unknown. 

1.3 Research objectives  

The main aim of this research was to bring together physical, geochemical, 

mathematical, and modeling perspectives to improve the understanding of coupled 

processes and enable better prediction of fate and transport of chemicals in subsurface 

systems. The role of subsurface heterogeneity on transport processes using different 

modeling techniques at appropriate spatial scales was also explored. 

The primary objectives of this research were:  

 To examine the effect of heterogeneity in the form of macropore distributions, layers 

and lenses on contaminant flow and transport at the column scale. 

 To examine the effect of hydrologic variations such as hydrologic boundary 

conditions, seasonal variability, rainfall intensity on redox processes at both column 

and landfill scales. 



 

 

3 

 To develop suitable mathematical schemes which describe linkages and transitions 

between biogeochemical processes from column to the landfill scale.  

In Chapters I – III, structural heterogeneity in the form of macropore 

distributions and layering is evaluated at the column scale. In Chapter I, the effect of 

different macropore densities (no macropore, single macropore, and multiple 

macropores) and the degree of model complexity on preferential flow and tracer 

transport through experimental soil columns is evaluated. Chapter II builds upon this 

work and quantifies uncertainty in parameters and outputs obtained from experiments of 

single and multiple macropore soil columns.  

In Chapter III, the effect of heterogeneity on redox processes is investigated by 

comparing a layered soil column with two texturally homogeneous soil columns. These 

repacked soil columns are obtained from soil cores collected at the Norman Landfill 

research site, Norman, Oklahoma, USA. The Norman landfill site is a closed municipal 

landfill with prevalent organic contamination. Chapter III also contains the analysis of 

hydrologic perturbations on dominant biogeochemical processes within these soil 

columns. 

In Chapter IV, the effects of different hydrologic interactions and seasonal water 

table variability on conservative and redox-sensitive concentrations at three well 

locations at the Norman landfill site are investigated. Wavelet analysis techniques are 

used to extract the dominant processes affecting geochemical concentrations at the 

temporal scale.  
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In Chapter V, a new upscaling methodology is developed that derives upscaling 

coefficients for hydrologic and redox parameters from the column to the field scale. This 

upscaling algorithm tests for redox variations across heterogeneous systems (layers, 

lenses) and interaction of hydrologic flow processes across spatial scales. 
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CHAPTER II 

INVERSE ESTIMATION OF PARAMETERS FOR MULTIDOMAIN FLOW 

MODELS IN SOIL COLUMNS WITH DIFFERENT MACROPORE 

DENSITIES* 

 

2.1 Synopsis 

Macropores and fractures provide preferential flow paths and faster pathways for 

contaminants to reach groundwater. Heterogeneity related to the density, connectivity, 

and geometry of pores changes preferential flow and transport characteristics of 

structured soils. Soil and crop management practices (e.g. tillage operations, multiple 

cropping, etc.) have been found to modify soil structure and alter macropore densities. 

An ability to accurately determine soil hydraulic parameters and their variation with 

changes in macropore density is crucial for assessing groundwater vulnerability to 

potential contamination from agricultural chemicals. This study investigates the 

consequences of using consistent matrix and macropore parameters in simulating 

preferential flow and bromide transport in soil columns with different macropore 

densities (no macropore, single macropore and multiple macropores). As used herein, 

the term ‘macropore density’ is intended to refer to the number of macropores per unit 

area. A comparison between continuum-scale models including single porosity (SPM),  

____________ 
*Reprinted with permission from “Inverse estimation of parameters for multidomain 
flow models in soil columns with different macropore densities” by Arora, B., B. P. 
Mohanty, and J. T. McGuire (2011), Water Resour. Res., 47, W04512, doi: 
1029/2010WR009451, Copyright 2011 American Geophysical Union. 
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mobile immobile (MIM), and dual permeability model (DPM) with first and second-

order between-domain water transfer functions that employed these matrix and 

macropore parameters is also conducted.  

Results indicate that consistent matrix and macropore parameters are successful 

in describing preferential flow but not tracer transport in both types of multiple 

macropore columns. We believe that lateral exchange between matrix and macropore 

domains needs better accounting to efficiently simulate preferential transport in case of 

dense, closely-spaced macropores. Model comparison showed that increasing model 

complexity from SPM, MIM, to DPM improved the description of preferential flow and 

bromide transport in the multiple macropore columns but not in the single macropore 

column. This suggests that the use of a more complex model is recommended with an 

increase in macropore density to generate forecasts with higher accuracy. 

2.2 Introduction 

Containment of contaminants in the vadose zone is a viable option to prevent 

groundwater pollution from landfill and waste sites (Halton Waste Management site, 

Canada; Yucca Mountain, Nevada; etc.). The feasibility of this option is generally 

hampered by the presence of macropores and fractures in the soil that can cause 

preferential transport of contaminants to groundwater [National Research Council, 1994; 

Kladivko et al., 2001; Böhlke, 2002; Jamieson et al., 2002]. Preferential flow modeling 

using classical area-averaged Richards’ equation is not enough to account for bypass 

flow through the macropores [Beven and Germann, 1982; van Genuchten et al., 1990]. 

Additionally, early breakthrough and tailing due to preferential solute transport discredit 
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the use of classical convection dispersion equation (CDE) [Biggar and Nielsen, 1962; 

Liu et al., 1991; Jury and Flühler, 1992]. For a model to sufficiently reproduce 

characteristic features of preferential flow and transport, all sources of non-equilibrium 

should be effectively addressed [Brusseau and Rao, 1990]. For physical non-equilibrium 

processes, a common approach has been the use of continuum-scale models like dual 

porosity, dual permeability, multiple porosity/permeability, etc. [Gee et al., 1991; Feyen 

et al., 1998; Hendrickx and Flury, 2001; Šimůnek et al., 2003].  

The Single Porosity Model (SPM), the simplest conceptualization of the porous 

media, depends on a single-domain representation of the soil pore system. An 

equilibrium approach using SPM describes variably-saturated water flow and solute 

transport through Richards’ and convection dispersion equations, respectively. It has 

been used extensively in experimental studies to simulate transient conditions of porous 

media [e.g., Šimůnek et al., 1999; Jansson et al., 2005; Köhne et al., 2006b]. 

Alternatively, two-domain conceptualization considers two interacting regions, one 

associated with the less permeable intra-aggregate pore region, or the rock matrix, and 

the other associated with the more permeable inter-aggregate, macropore or fracture 

system. In this regard, mobile immobile models (MIMs) consider water to be stagnant in 

the immobile domain [van Genuchten and Wierenga, 1976]. A widespread use of MIM 

has been reported by Köhne et al. [2009] especially for simulating preferential flow at 

column and plot scales [cf. Larsson et al., 1999; Miller et al., 1999; Abbasi et al., 2003; 

Šimůnek et al., 2003]. Dual permeability models (DPMs) assume both matrix and 

fracture continua to conduct fluids and solute [Gerke and van Genuchten, 1993a; Jarvis, 



 

 

8 

1994]. Analogous to dual porosity models, a number of approaches are available for 

DPMs which differ in the description of flow and solute transport in the preferential flow 

domain [Germann, 1985; Ahuja and Hebson, 1992; Chen and Wagenet, 1992] and of 

between-domain mass transfer [Novák et al., 2000; Köhne et al., 2004]. DPM has been 

applied at column, plot, and field scales [Villholth and Jensen, 1998; Köhne and 

Mohanty, 2005; Dousset et al., 2007; Köhne et al., 2009].  

A complete explicit representation of structural geometry and macroporosity in 

terms of well-defined physical parameters is usually not feasible with these continuum-

scale models [Vogel et al., 2000; Gerke, 2006]. In addition, farming practices and 

climatic patterns modify soil structure and change macropore density. Mechanized 

agricultural practices, rooting characteristics, biological activity, multiple cropping, etc. 

tend to disrupt the physical structure and cause changes to macroporosity at different 

times during a season [Franzluebbers et al., 1995; Schäffer et al., 2008]. Differences in 

macropore density are of particular concern for agricultural soils as leaching of 

chemicals through macropores can contribute to pollution from agricultural lands. Many 

investigators have shown that variation in pore size and connectivity, as a result of soil 

and crop management practices, affects the rate, flow, and retention of water [Jarvis, 

2007]. Changes to model parameters reflecting an increase in the number or density of 

pores and its impact on preferential flow movement has not been addressed to date. The 

use of continuum-scale models to predict soil hydraulic properties and water movement 

requires adjustments to effective parameters to develop better agreement between 

observations and predictions. Previous studies have shown that soil hydraulic parameters 
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need to be altered at both spatial and temporal scales to accurately reproduce preferential 

flow occurring through the macropores [Logsdon and Jaynes, 1996; Dasgupta et al., 

2006]. The focus of the present study is to test whether transport through macropores is a 

function of its density, and if consistency in soil hydraulic parameters can be maintained 

while accounting for changes in macropore density. 

A problem of increasing model complexity (from SPM, MIM to DPM) is the task 

of understanding how these models compare under different scenarios. Continuum-scale 

models have resulted in different best-model-performances in the past based on 

field/experimental settings being explored. For example, Köhne et al. [2006a] found a 

triple-porosity model (DPM in conjunction with MIM) to yield better results for tracer 

transport (Br-) while dual permeability model performed better for adsorptive solutes 

(isoproturon and terbuthylazine) in a macroporous (aggregated) column. Nonetheless, 

both models behaved in a similar manner for an aggregated soil column with time-

variant sorption. Evaluation and intercomparison of models can provide meaningful 

insights on the suitability of these models under different conditions (e.g. initial and 

boundary conditions, prominence vs. lack of preferential flow, etc.). This study evaluates 

the performance of SPM, MIM, and DPM using designed soil column experiments with 

artificial macropores under conditions of different macropore densities and distributions 

(e.g., single (central) macropore, low density (3 macropores), and high density (19 

macropores) columns). Model comparison, especially in multiple macropore columns, 

offers a closer representation of the agricultural field. The specific objectives of this 

study are: i) to find the degree of model complexity (SPM, MIM, or DPM) that can 
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adequately describe preferential flow in the single (central) as well as in low and high 

density multiple macropore columns, and ii) to evaluate if domain-specific parameters 

obtained from inverse modeling of homogeneous and single (central) macropore 

columns can consistently represent those individual domains in both low and high 

density multiple macropore columns during transient flow and transport conditions. In 

summary, the evaluation of continuum-scale models and consideration of changes in 

macropore density are beneficial for quantifying contaminant transport particularly 

through agricultural soils. 

2.3 Continuum scale models for flow and transport in macroporous soil 

Figure 2.1 depicts the characteristic features of continuum models (SPM, MIM 

and DPM) for a hypothetical infiltration scenario of a central macropore column. In this 

study, matrix domain is chosen as the sole porous medium for flow in conceptualizing 

the single porosity model. A unimodal pore size distribution is sufficient in describing 

the closed form expressions for the hydraulic conductivity functions for the equilibrium 

SPM. The MIM approach represents the flow field through the macropore (mobile) 

domain and allows for water and solute transfer between the mobile and immobile 

regions. As opposed to SPM, mobile immobile model describes soil hydraulic functions 

using the macropore (mobile) domain parameters, and utilizes information on matrix 

(immobile) domain for quantifying the inter-domain mass transfer. The DPM approach 

uses two different hydraulic functions, one for each domain, for describing flow through 

the column. The DPM approach uses two different hydraulic functions, one for each 

domain, for describing flow through the column. Exchange between the matrix and 
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macropore domains is established through a first- or second- order coupling term. A 

summarized description of the continuum scale flow and transport models is given 

below. 

 

 
Figure 2.1: Schematic representation of the single-porosity model (SPM), mobile 

immobile model (MIM), and dual permeability model (DPM) along with their 

corresponding water retention characteristic curves. Symbols: z, depth coordinate; 

f, fracture/macropore or mobile domain; m, matrix or immobile domain; K, 

hydraulic conductivity; h, pressure head. 
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2.3.1 Single porosity model, SPM 

In the one-dimensional single porosity model, Richards’ equation (2.1) is used 

for describing variably-saturated flow and CDE (2.2) for modeling solute transport: 
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where t is time [T], z is the vertical coordinate positive upwards [L], θ is the water 

content [L3L-3], h is the pressure head [L], K is the unsaturated hydraulic conductivity 

[LT-1], S is a sink term, c and s are solute concentrations in the liquid [ML-3] and solid 

phases [MM-1], respectively, ρ is the soil bulk density [ML-3], q is the volumetric flux 

density [LT-1], μ is a first-order rate constant [T-1], γ is a zero-order rate constant [ML-3T-

1], and D is the dispersion coefficient [L2T-1]. This formulation allows single porosity 

model to describe flow and transport that is uniform and at local equilibrium [Šimůnek et 

al., 2003; Köhne et al., 2009]. 

2.3.2  Mobile immobile model, MIM 

Richards’ equation is used to simulate mobile water, and a source/sink term is 

used to account for water exchange with the soil matrix (immobile region) [Šimůnek et 

al., 2001; Köhne et al., 2006a]:  
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where Γw
MIM is the water transfer rate from mobile to immobile region [T-1], w is a first-

order rate coefficient [T-1], and Se
m and Se

im are effective fluid saturations in the mobile 

and immobile regions, respectively. Convective-dispersive solute transport is assumed 

for the mobile region and analogous to water flow, first-order solute exchange process is 

employed between the two regions [Šimůnek et al., 2003]:  
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where Γs
MIM is the solute transfer rate between the two regions [ML-3T-1], ws is the 

constant first-order diffusive solute mass transfer coefficient [T-1], and c* is equal to cm 

for Γw
MIM >0 and cim for Γw

MIM
 <0. 

2.3.3 Dual permeability model, DPM 

In the dual permeability model, water flow in both macropore (subscript f) and 

matrix (subscript m) domains is described by two coupled Richards’ equations [Gerke 

and van Genuchten, 1993a]: 
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where wf is the dimensionless volume factor defined as the ratio of the macropore 

domain volume (Vf) relative to the total soil volume (Vt): 
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Γw is the rate of water exchange between the two domains [T-1] described with first-order 

mass transfer for DPM1 as: 
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in which αw is a first-order mass transfer coefficient for water [L-1T-1] given by: 
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where β is a dimensionless geometry-dependent shape factor, a is the characteristic 

length of the aggregate (L) (i.e., radius of the cylindrical aggregate for the single 

macropore column, and half-width diffusion length between the macropores and the soil 

matrix for the multiple macropore columns), Ka is the hydraulic conductivity of the 

fracture/matrix interface region [LT-1], and γw is a dimensionless scaling factor. Since 

fracture coatings were absent for artificial macropores in this study, Ka was evaluated as 

follows: 

 )()(5.0 mmffa hKhKK         (2.13) 

DPM with a second order term (DPM2) for inter-domain mass transfer of water 

was also considered [Köhne et al., 2004]: 
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where hi is the initial pressure head assumed to be equal for matrix and macropore [L]. 

For DPM2, Ka is evaluated as: 
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where p is a weighting factor for which an average value of 17 was found to be suitable 

for a range of hydraulic properties and initial conditions [Köhne et al., 2004]. For both 

DPM1 and DPM2, geometrical parameters can be derived according to Gerke and van 

Genuchten [1996] as: 

  216ln19.0
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with 
b

ba 
         (2.17) 

where b is the radius of the cylindrical macropore [L]. 

 Transport of non-reactive solutes in DPM is described by two coupled 

convection-dispersion equations: 
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where Γs
DPM is the solute mass transfer term [T-1] given by: 
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in which α is a first-order solute transfer coefficient of the form 
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in which Da is an effective diffusion coefficient [L2T-1] that is obtained analogous to Ka 

(equation 2.13). 

2.4 Experimental setup 

2.4.1 Multiple macropore columns 

Soil column setup used in this study has been described in detail elsewhere 

[Castiglione et al., 2003]. Only salient features of the setup are mentioned here. Two soil 

columns 75 cm long and 24 cm wide were constructed with 3 and 19 vertical macropores 

in one-half of the column cross-section and soil matrix in the other half (Figure 2.2). Soil 

used in the experimental setups was sandy loam (Typic Haploxeralf) with a 6% clay 

fraction (mostly Kaolinite). Soil packing was done using a piston compactor to attain a 

dry bulk density of 1.56 g/cm3. Hollow stainless steel tubes of 1 mm diameter were used 

to create the macropores in one-half of the column cross-section. Designed pores with 

cylindrical diameter of 1 mm were characterized as macropores [Jarvis, 2007]. 

Polyacrylamide, a water soluble polymer, was used along the macropore walls to help 

stabilize the artificially-created pores. At the bottom of the column, 15-cm high vertical 

dividers were installed to form six pie-shaped chambers (Figure 2.2). These were useful 

in maintaining separate outflow measurements from the two-halves with and without 

macropores, and also for regulating bottom boundary conditions of pressure head.  
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Figure 2.2: Schematic of the soil column with placement of TDRs and tensiometers 

in particular chambers. 
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Water and bromide concentrations were monitored using twelve TDR probes 

installed at 5, 15, 25, 35, 45 and 55 cm depths from the top of the column in both halves 

of the column cross-section (Figure 2.2). Mini-tensiometers were used to register matric 

potential in the matrix domain. Tensiometers were placed 5 cm apart in the soil matrix, 

with the first tensiometer close to the top of the column (Figure 2.2). Horizontal 

heterogeneity in pressure potential was captured by two sets of (six) tensiometers placed 

around the circumference of the soil column at the depths of 50 and 75 cms. These were 

useful in comparing pressure head profiles of the chambers with and without 

macropores. Analogous to these circumferential tensiometers, outflow rates and flux-

averaged Br- concentrations were measured separately for the six effluent chambers. A 

fraction collector was used intermittently to collect outflow from the bottom at small 

time intervals (5 min). 

Boundary conditions (pressure heads) at the top of the soil column were 

maintained using a tension infiltrometer with a matching diameter disc (24 cm). Bottom 

boundary conditions were suction pressure heads varying between 0 and 30kPa.  

2.4.2 Homogeneous and central macropore columns  

Two laboratory soil columns were filled with the same sandy loam soil to create 

a homogeneous column and another column with a central macropore (Figure 2.3). The 

central macropore column was provided with a single macropore of 1 mm diameter.  A 

hollow stainless steel tube of equivalent diameter (1 mm) was used for this purpose. Soil 

packing, installation of TDRs and tensiometers, and boundary condition monitoring 

were very similar to the multiple macropore columns.  
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Figure 2.3: Experimental designs: (i) homogeneous soil, (ii) central macropore, and 

(iii) multiple macropore columns. 

 

2.4.3 Flow and transport experiments 

Infiltration and drainage experiments were performed on all four experimental 

columns, the homogeneous soil, central macropore, and low (3) and high (19) density 

multiple macropore columns. For all infiltration experiments, variability in pressure head  

profiles was approximately between -210 cm at the top to -42 cm at the bottom of the 

column at the start of the experiment (Table 2.1). Observations at all 13 tensiometer 

locations in the soil were used to describe initial conditions at depth layers of 0-5, 5-10, 

10-15, 15-20, 20-25, 25-30, 30-35, 35-40, 40-45, 45-50, 50-55, 55-60 and 60-75 cms in 

the soil column. Drainage experiments were conducted by initially saturating the 

columns from the bottom. Upper and lower boundary conditions for infiltration and 

drainage experiments were set according to the transient flow conditions of the 

experiments (Table 2.1). Tracer transport studies using potassium bromide solution were 

conducted only on the high density macropore column with 19 macropores, while initial 

bromide concentration in the column was considered to be zero. 
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Table 2.1: Initial and boundary conditions as specified at the soil surface (z=L) and bottom of the soil profile (z=0) for 

different experiments of the soil columns*. 

Columns Experiment Initial Condition** Upper BC Lower BC 

Homogeneous 
soil column 

Infiltration 
h(L, 0) = -119 cm 

h(d, 0) = h0(d) 
h(0, 0) = -42 cm 

h(L, t) = 0 q(0, t) = 0, if h(0, t) < 0 h(0, t) = 0, 
else#. 

Infiltration 
h(L, 0) = -155 cm 

h(d, 0) = h0(d) 
h(0, 0) = -139 cm 

h(L, t) = 6.5cm q(0, t) = 0, if h(0, t) < 0 h(0, t) = 0, 
else#. 

Drainage 
h(L, 0) = 0.9 cm 
h(d, 0) = h0(d) 

h(0, 0) = 68.6 cm 
q(L, t) = 0 q(0, t) = 0, if h(0, t) < 0 h(0, t) = 0, 

else#. 

Central 
Macropore 

column 
Infiltration 

h(L, 0) = -186 cm 
h(d, 0) = h0(d) 

h(0, 0) = -133 cm 

h(L,0) < h(L, tr) < h(L, T)## 
h(L, tr) = -186 cm,..,2 cm 

h(0,0) < h(0, tr) < h(0, T) 
h(0, tr) = -133 cm,…,-49 cm 

Low density 
macropore 

column 
Infiltration 

h(L, 0) = -209 cm 
h(d, 0) = h0(d) 

h(0, 0) = -168 cm 

h(L,0) < h(L, tr) < h(L, T)## 
h(L, tr) = -209 cm,..,7 cm 

h(0,0) < h(0, tr) < h(0, T) 
h(0, tr) = -168 cm,…,-1 cm 

High density 
macropore 

column 

Infiltration 
h(L, 0) = -114 cm 

h(d, 0) = h0(d) 
h(0, 0) = -45 cm 

h(L,0) < h(L, tr) < h(L, T)## 
h(L, tr) = -114 cm,..,-17 cm 

h(0,0) < h(0, tr) < h(0, T) 
h(0, tr) = -45 cm,…,23.5 cm 

Drainage 
h(L, 0) = -9 cm 
h(d, 0) = h0(d) 
h(0, 0) = 51 cm 

h(L,0) < h(L, tr) < h(L, T)## 
h(L, tr) = -9 cm,..,-195 cm 

h(0,0) < h(0, tr) < h(0, T) 
h(0, tr) = 51 cm,…,-185 cm 

* Symbols: h, pressure head; q, flux; z, vertical coordinate positive upwards; L, column length; t, time; T, duration of the experiment. 
** Equilibrium profile with h values linearly interpolated for depths between 0 and d, where d represents the tensiometer location. 
# These conditions represent a seepage face boundary condition [Šimůnek et al., 1998].  
## Variable boundary condition with h values linearly interpolated for time between 0 and tr, where tr represents the time of tensiometer reading. 
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2.5 Modeling framework 

2.5.1 Simulation models 

Hydrus-1D [Šimůnek et al., 2001, 2003] was used for all simulations. Single 

porosity model (SPM), mobile-immobile model (MIM) and dual-permeability model 

with first (DPM1) and second (DPM2) order water transfer functions were used to 

simulate flow and tracer transport experiments of the central and multiple macropore 

columns. Among these, infiltration and drainage experiments were described by fitting 

the numerical solution of Richards’ equation. The hydraulic conductivity function K(h), 

which is required to solve the Richards equation, is described using a set of closed-form 

equations [Mualem, 1976; van Genuchten, 1980]: 
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where d represents the matrix (m) or fracture (f) domains, θ(h) is the measured 

volumetric water content [L3L-3] at the suction h [L] that is taken positive for increasing 

suctions. The parameters θr and θs are the residual and saturated water contents [L3L-3], 

respectively, Ks is the saturated hydraulic conductivity [LT-1], α [L-1], n [-], m [-], and l 

[-] are empirical parameters determining the shape of the hydraulic conductivity 
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functions. In particular, α [L-1] is related to the inverse of the air entry suction, n [-] is a 

measure of the pore-size distribution, and l [-] reflects pore discontinuity and tortuosity 

of the flow path. 

Tracer transport was described using CDE in the dominant pore regions as 

realized in Hydrus-1D for the specific conceptual model. For tracer transport 

simulations, bromide concentrations at all depths were normalized with respect to 

initially applied concentrations.  

2.5.2 Model parameterization 

To reduce the number of fitting parameters, some parameter values were fixed. 

Matrix and macropore tortuosity parameters were fixed at 0.5 [Mualem, 1976; van 

Genuchten, 1980; Köhne et al., 2002]. Some of the matrix-macropore interface 

parameters (wf, β, and a) for the central and multiple macropore columns were based on 

their geometry (e.g. for the high density macropore column, a = 1.89 cm, b = 0.05 cm, Ϛ 

= 38.8, β = 0.67, wf = 3.3 x 10-4 based on equations 2.10, 2.16 and 2.17). The γw value 

was fixed at 0.001 on the basis of soil mantle radii and estimated saturated hydraulic 

conductivity for the macropore domain [Castiglione et al., 2003]. Bromide diffusion 

coefficient was calculated as 1.797 cm2/d [Atkins, 1990]. The rest of the model 

parameters were inversely estimated. 

Observations of matrix pressure head at 3 tensiometer locations, and water 

content in both matrix and macropore domains at 2 TDR depths were the minimum data 

used for inverse analysis of water flow experiments. Bromide transport experiment of 

the 19 (high density) macropore column utilized additional information on Br- 
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concentrations at a minimum of 3 depths for inverse modeling. A spatial discretization 

of 0.5 cm was adopted for all flow and transport modeling. An initial time-step of 10-5 h, 

and minimum and maximum time steps of 10-6 and 0.24 h were employed for both one- 

and two- domain model simulations. 

The inverse parameter estimation was performed by Levenberg-Marquardt 

minimization of the objective function φ [Šimůnek et al., 1999]: 
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where m is the total number of measurements, n is the number of observations in a 

particular measurement set, Oj(x, ti) is the observation at time i for the jth measurement 

set at location x, Ej(x, ti, b) are the corresponding estimated space-time variables for the 

vector b of optimized van Genuchten (1980) parameters, and vj and wi,j are weighting 

factors associated with a particular measurement set or point, respectively. In this study, 

wi,j are set equal to one assuming similar error variances within a particular measurement 

set. Only data that are measured at larger time intervals and are under-represented with 

respect to more frequent measurements require larger weights wi,j. vj is calculated for 

each simulation as [Clausnitzer and Hopmans, 1995]: 
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which assumes that vj is inversely related to the variance σj
2 within the jth measurement 

set and to the number of measurements nj within the set. 
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2.5.3 Modeling strategy 

Comparison of continuum-scale models and evaluation of inversely modeled 

parameters was done in the following manner. Inverse simulations were first performed 

with the homogeneous soil column to extract matrix-specific parameters. Then, keeping 

the matrix parameters fixed, macropore parameters were derived through inverse 

analysis of the experimental data of the central macropore column. To evaluate the 

suitability of these domain-specific parameters, forward simulations were performed 

with variably-saturated flow and transport experiments of the low and high density 

multiple macropore columns. Dual permeability framework was used for inverse 

estimation of effective parameters from central macropore column and evaluation of 

multiple macropore columns. 

For comparison among continuum-scale models (SPM, MIM, DPM1, DPM2), 

inversely-estimated soil hydraulic parameters were employed. Separate adjustments of 

parameters for each model were not done to prevent bias in comparison as fine-tuning of 

parameters would have enhanced agreement between predictions and observations.  

2.5.4 Goodness-of-fit criteria 

Apart from graphical analysis, two statistical parameters were used for direct 

comparison between models and for evaluating best fit of parameters in inverse analysis. 

Modified coefficient of efficiency (E) and the mean absolute error (MAE) were used to 

obtain relative and absolute error estimates, respectively: 
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where N is the total number of time-steps, and E is a normalized measure varying 

between minus infinity to 1.0. An E value = 1.0 indicates perfect agreement between 

model and data, an E value = 0 indicates that the model is statistically as good as the 

observation mean in predicting the data, and an E value <0.0 indicates an altogether 

questionable choice of model. E is a more conservative and reliable statistical measure 

and is less sensitive to extreme values as compared to commonly used goodness-of-fit 

measures such as the coefficient of determination (R2) [Legates and McCabe, 1999]. In 

addition, an absolute error measure like the MAE carries the same units as the 

observations and is able to better assess the magnitude of deviation. A lower MAE and 

E>0.5 typically signify better agreement between modeled and observed values. 

2.6 Results and discussion 

2.6.1 Inverse estimation of matrix and macropore parameters 

Experimental observations and predictions of inverse modeling on flow 

experiments of the homogeneous soil column are documented briefly (Figure 2.4). 

Figure 2.4 illustrates simulated and observed pressure head and water content profiles of 

the soil column for the respective duration of the experiments.  
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Figure 2.4: Simulated and observed pressure head and water content profiles for 

one drainage and two different infiltration experiments of the homogeneous soil 

column. 
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Table 2.2: Effective soil hydraulic parameters and corresponding (±) 95% confidence 
limits for low and high density macropore columns obtained from inverse modeling of 
homogeneous and single macropore soil columns. 

Column type 
3 

macropore 

Low 

density 

19 

macropore 

High 

density 

95% confidence 

limits 
Soil Units 

Matrix 
parameters 

(Obtained from 
homogeneous 
soil column) 

θrm - 0.2 0.2 ± 0.029 
θsm - 0.38 0.38 ± 0.005 
αm cm-1 0.004 0.004 ± 0.003 
nm - 1.8 1.8 ± 0.326 

Ksm cm.h-1 0.13 0.13 ± 1.998 
lm - 0.5 0.5 - 

Macropore 
parameters 

(Obtained from 
single 

macropore 
column) 

θrm - 0.078 0.078 ± 0.066 
θsm - 0.39 0.39 ± 0.001 
αm cm-1 0.01 0.01 ± 0.001 
nm - 2 2 ± 0.354 

Ksm cm.h-1 8.265 8.265 ± 0.001 
lm - 0.5 0.5 - 

Interface 
parameters 

(Obtained from 
geometry) 

wf - 5.2 x 10-5 3.3 x 10-4 - 
β - 0.54 0.67 - 
γw - 0.001 0.001 - 
a cm 4.85 1.89 - 

Interface 
parameters 

(Obtained from 
single 

macropore 
column) 

Ka cm.h-1 4.174 
(0.26*) 

4.174 
(0.26*) ± 0.052 

* Separately optimized value using higher weights for outflow measurements of the single macropore 
column. 
 

Table 2.3: Goodness-of-fit criteria for inverse estimation of parameters from 

homogeneous soil and single macropore columns. 

Soil column type Experiment 

Modified 

coefficient of 

efficiency, E 

Mean absolute 

error, MAE* 

Homogeneous soil 
column 

Infiltration 
(0 cm head) 0.765 9.050 (0.011) 

Infiltration 
(-6.5 cm 

head) 
0.625 39.48 (0.227) 

Drainage 0.761 12.205 (0.022) 
Single 

macropore column 
Infiltration 0.588 14.649 (0.038) 

* MAE is reported with respect to pressure head, cm.h-1 (water content, cm3.cm-3.h-1) measurements. 
 



 

 

28 

One drainage and two infiltration experiments under transient flow conditions 

were used to infer soil hydraulic parameters of the matrix domain i.e. θrm, θsm, αm, nm, 

and Ksm (Table 2.2). The estimated soil hydraulic parameters for the matrix domain were 

able to reproduce sufficient details of the illustrated results. For example, the two humps 

in the pressure head curve (0-3.5 h and 3.5-12 h) of the drainage experiment caused by 

pressure-controlled bottom boundary condition were sufficiently captured by the 

inversely-estimated parameters. Moreover, the timing of rise (or fall) of soil matric 

potential was adequately captured by Hydrus-1D simulations for all three experiments. 

Simulated water content profiles showed considerable agreement with the measured 

values considering the fact that TDR measurements had a large variance and received 

lower weight in the objective function. 

Separate adjustments of parameters for simulating the wetting and drying cycles 

(i.e., hysteresis) in the infiltration and drainage experiments were not done in order to 

obtain a single set of effective matrix parameters. Moreover, parameter estimation from 

the three experiments qualified the judging criteria of E>0.5 and low mean absolute error 

(MAE) for both pressure head and water content measurements (Table 2.3).  

These estimated matrix parameters were then fixed to determine saturated 

hydraulic conductivity of the matrix-macropore interface (Ka) and macropore domain 

parameters (θrf, θsf, αf, nf, and Ksf) from inverse simulations of the central macropore 

column experiments (Table 2.2).  
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Figure 2.5: Simulated and observed pressure head, water content and outflow 

profiles for a transient infiltration experiment of the central macropore column. 

Symbols: M, matrix domain; F, fracture or macropore domain; M+F, combined 

matrix and macropore domains. 
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Figure 2.5 shows good conformity between simulated and measured pressure 

head, average water content, and matrix outflow profiles for a transient infiltration 

experiment of the central macropore column. It is worthwhile to mention that 

experimental observations correspond to pressure head values in the soil matrix domain, 

average water content values of matrix and macropore domains, and domain-specific 

outflow measurements. The conformity with macropore outflow is low as simulations 

suggest an immediate outflow while observations suggest the onset of outflow at 1.9 

hours, which is reasonable considering the height of the soil column (75 cm) and the fact 

that the soil was initially quite dry (Table 2.1). The dual permeability model simulates 

flow from the macropore domain not only as a function of the flow capacity of the 

macropore but also as its exchange with the matrix domain. This interaction between the 

matrix and macropore domains is complex and influenced by soil moisture retention 

characteristics of the unsaturated soil matrix, initial moisture conditions in both domains, 

geometry of macropores, and the conducting surface area of the interface region [Weiler, 

2005]. The effect of this exchange is also visible as the predicted decrease in macropore 

flow at 8 hrs when predictions for matrix outflow begin (Figure 2.5). The rapid exchange 

predicted between the matrix and macropore domains and lack of outflow measurements 

in the objective function result in this non-conformity with macropore outflow. The 

inverse modeling exercise was repeated again with Ka as the only fitting parameter and 

inclusion of outflow measurements in the objective function. A decrease in Ka from 4.17 

to 0.26 cm.h-1 produced satisfactory results for all three observations (E=0.588, 

MAE=14.649 cm.h-1 for pressure head, 0.0379 cm3.cm-3.h-1 for water content, and 0.465 
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cm.h-1 for outflow measurements). Note that water content in the macropore domain is 

predicted to be lower than in the matrix domain. This was observed for all soil depths 

and for other transient flow experiments as well. The reasons for this will be discussed in 

the next section. 

The small differences observed between matrix and macropore domain results 

(pressure head and water content profiles) indicate that only mild physical non-

equilibrium existed for the single macropore column. The derived macropore-domain 

and interface parameters were able to satisfactorily describe all flow experiments of the 

single (central) macropore column as per the goodness-of-fit criteria (Table 2.3).  

2.6.2 Evaluation of inversely estimated soil hydraulic parameters 

Multiple macropore columns with 3 and 19 macropores were used to evaluate the 

accuracy of the derived domain-specific (matrix and macropore) and interface (Ka) 

parameters. As per Table 2.2, interface parameters based on macropore geometry (wf, β, 

and a) were the only three variables different for the two multiple macropore (high 

density and low density) columns. The rest of the parameters were based on consistent 

values for matrix (θrm, θsm, αm, nm, and Ksm), macropore (θrf, θsf, αf, nf, and Ksf) and 

interface (Ka = 0.26 cm.h-1) regions obtained from inverse modeling of the homogeneous 

and single macropore columns, as described above. Forward modeling using modified 

Hydrus-1D was done for a transient infiltration experiment of the low density macropore 

column. Matrix outflow and average water content measurements of the matrix and 

macropore domains for the simulated experiment agree well with the corresponding 

observations (Figure 2.6). Again, conformity with macropore outflow observations was 
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found to be low and could be improved by separately fitting Ka (3.91 ± 1.001) and 

including outflow measurements in the objective function. Instead of separate 

adjustments to this parameter, the simultaneously fitted value of 4.17 cm.h-1 from the 

single macropore column was adopted to maintain consistency in our inverse estimation 

procedure (Table 2.3).  

 

 

Figure 2.6: Simulated and observed water content at 15 and 55 cm depths and 

cumulative outflow of the low density macropore column. Symbols: M, matrix 

domain; F, fracture or macropore domain; M+F, combined matrix and macropore 

domains. 
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Figure 2.7: Simulated and observed pressure head and water content values for 

infiltration and drainage of the high density macropore column. Symbols: M, 

matrix domain; F, fracture or macropore domain; M+F, combined matrix and 

macropore domains. 
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Figure 2.8: Simulated and observed bromide concentration values for a solute 

transport experiment of the high density macropore column. Symbols: M, matrix 

domain; F, fracture or macropore domain; M+F, combined matrix and macropore 

domains. 

 

For the high density macropore column, infiltration, drainage and bromide tracer 

experiments were conducted to test the performance of the estimated set of domain-

specific (matrix and macropore) and interface (Ka= 4.17 cm.h-1) parameters (Figures 2.7 

and 2.8). The agreement between pressure head profiles decreased with depth for both 

infiltration and drainage experiments. It is possible that in the multiple macropore 

column the lateral water transfer rate needs to be adjusted to better explain the mismatch 

between higher predictions and lower observations of pressure head in the lower depths 

of the soil column. Incorrect quantification of lateral water transfer is also the reason for 

lower water content predictions in the macropore domain as compared to the soil matrix. 

Observations of lower water transfers (e.g. due to clogging of pores, soil aggregate 

coatings, etc.) between the fracture and matrix domains have been reported in various 
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experimental settings [Gerke and Köhne, 2004; Kodešová et al., 2008]. This could be a 

result of clogging of pores as observed in certain experiments of the single macropore 

column [Castiglione et al., 2003] or simply for maintaining the continuity of pressure 

potential across the large number of laterally distributed macropores of the multiple 

macropore columns. Nevertheless, the domain-specific parameters were able to 

effectively capture the trend in pressure head profiles at all depths during forward 

simulations of the two transient flow experiments (Figure 2.7). Unlike pressure head 

profiles, the rise in bromide concentrations was not suitably captured even at shallow 

depths (Figure 2.8). The matching criteria attributed good performance to inversely-

estimated parameters for flow in both the low and high density multiple macropore 

columns but not to bromide transport (E=-16.777) in the high density macropore column 

(Table 2.4). Separate adjustments to Ka produced unsatisfactory match to tracer 

concentration data. It is noteworthy, however, that bromide transport experiment was 

well explained with changes in only the saturated hydraulic conductivity of the matrix 

domain (Ksm) (i.e., from 0.13 to 0.40 cm/h). The increment in Ks is well explained by 

Freeze [1975] who reports that saturated hydraulic conductivity is likely a function of 

the boundary conditions and soil structure and macropore geometry in case of 

statistically heterogeneous soils. In our study, structural heterogeneity arises from the 

use of domain-specific parameters of the homogeneous and single macropore columns 

on multiple macropore columns with different densities and distributions of macropore. 

It should be stated up front that we do not consider the changes in Ksm as calibration of 

the model based on observed data, but rather as an evaluation of desired variability in 
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parameters in order to account for increase in macropore density. Since saturated 

hydraulic conductivity produces the most sensitivity to preferential flow results and has 

an important bearing on contaminant transport [Zhang et al., 2006], it is feasible that 

only this parameter required evaluation through inverse modeling. 

 

Table 2.4: Goodness-of-fit criteria for estimated parameters of the multiple 

macropore columns. 

Soil column type Experiment 

Modified 

coefficient of 

efficiency, E 

Mean 

absolute 

error, MAE* 

Low density 
macropore column Infiltration 0.686 24.327 

(12.029) 

High density 
macropore column 

Infiltration 0.899 7.236 
(0.039) 

Drainage 0.806 7.019 
(0.044) 

Bromide transport 
(before inverse 

solution) 
-16.777 8.968# 

Bromide transport 
(after inverse solution) 0. 662 0.164# 

* MAE is reported with respect to pressure head, cm.h-1 (water content, cm3.cm-3.h-1) measurements. 
# MAE corresponds to bromide concentration, mmoles.h-1. 
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Table 2.5: Correlation between inversely-estimated soil hydraulic parameters*. 

Soil 

column 
Experiment Soil hydraulic parameters 

   θr θs α n Ks Ka 

Homogene
ous soil 
column 

 

Infiltration† 
(0 cm head) 

θrm 1      
θsm 0.0 1     
αm 0.0 0.0 1    
nm 0.0 0.0 0.0 1   

Ksm 0.0 0.0 0.0 0.0 1  

Infiltration 
(6.5 cm 
head) 

θrm 1      
θsm -0.060 1     
αm 0.324 -0.031 1    
nm -0.568 -0.022 0.948 1   

Ksm -0.722 0.057 0.668 0.716 1  

Drainage 

θrm 1      
θsm -0.383 1     
αm 0.382 -0.995 1    
nm -0.016 -0.101 0.101 1   

Ksm -0.489 0.386 -0.384 0.002 1  

Single 
macropore 
column# 

Infiltration 

θrf 1      
θsf -0.275 1     
αf 0.498 -0.293 1    
nf 0.406 -0.362 0.925 1   

Ksf -0.235 0.267 -0.272 -0.571 1  
Ka 0.345 -0.042 -0.255 -0.028 -0.295 1 

* Underline indicates high correlation with |r|>0.75. 
† The correlations for this experiment were of the order of 10-15. 
# The soil hydraulic parameters for this column represent the macropore domain. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

38 

2.6.3 Parameter identification and uniqueness 

Problems of non-uniqueness, identifiability, and ill-posedness are often 

encountered when dealing with simultaneous estimation of soil hydraulic parameters 

using inverse modeling. To test the uniqueness of the inverse method, i) examination of 

parameter correlations was conducted, ii) confidence intervals were evaluated for each 

parameter, and iii) parameter estimation was done using combinations of different 

starting values for all soil hydraulic parameters.  

For the homogeneous soil column, one transient infiltration experiment revealed 

high correlation (|r|>0.75) between αm and nm, and the other no correlation, while the 

drainage experiment revealed high correlation between αm and θsm parameters (Table 

2.5). Since αm was the common parameter and had low confidence interval (Table 2.2), 

all three simulations were repeated with this parameter initialized at ±30% of its 

originally optimized value. Several combinations of αm (±30%) with θsm and nm fixed at 

originally optimized values and at different starting values were carried out. The final 

optimized parameters were either the same or within the confidence intervals of their 

original values (Table 2.2). As an example, with lower αm (-30%) values, the final 

optimized parameters (the original values are given in parentheses) are given as: θrm = 

0.2 (0.2), θsm = 0.4 (0.38), αm = 0.003 (0.004), nm = 1.8 (1.8), and Ksm = 0.10 (0.13). 

Table 2.5 further suggests a high correlation between αf and nf parameters using inverse 

modeling of the single macropore column indicating that their simultaneous estimation 

did not yield unique results. Independent estimation of these parameters would yield 

lower uncertainty and better results. We fixed αf at 0.33 based on capillary bundle theory 
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for a single macropore of 1 mm which did not produce satisfactory match of the data (E 

= -1.007, MAE = 104.968 cm.h-1 for pressure head and 0.348 cm3.cm-3.h-1 for water 

content measurements). Mild non-equilibrium conditions observed in the single 

macropore column could have resulted in the existence of highly-correlated macropore 

domain parameters (αf and nf) [Zurmuhl and Durner, 1998]. Since all experiments 

produced mild non-equilibrium differences for this column, αf and nf were treated as 

fitting parameters of the van Genuchten-Mualem model and varied at ±30% of their 

original values. Again, the final optimized parameter values were within ±10% of their 

original values. 

Table 2.2 suggests small confidence intervals for all soil hydraulic parameters of 

the matrix domain except Ksm. One reason for high uncertainty in saturated hydraulic 

conductivity parameter (Ksm) stems from establishing a best-compromise parameter set 

to satisfy observations of different types of experiments. The effects of hysteresis were 

ignored to arrive at this best set of optimized soil hydraulic parameters since both 

infiltration and drainage experiments were used for inverse estimation. In this regard, 

confidence intervals for the macropore (θrf, θsf, αf, nf, and Ksf) and interface region (Ka) 

parameters were generally small, which were derived from a single infiltration 

experiment. Note that nf has moderate uncertainty due to its correlation with αf. 

As suggested earlier, all inverse modeling simulations were repeated with 

different initial parameter values, and resulted in final values within ±10% of the 

original optimized values. As an example, with higher nm (+30%) values, the final 

optimized parameters (the original values are given in parentheses) are given as: θrm = 



 

 

40 

0.212 (0.2), θsm = 0.365 (0.38), αm = 0.0044 (0.004), nm = 1.88 (1.8), and Ksm = 0.136 

(0.13), while lower θsf gave the following results: θrf  = 0.053 (0.08), θsf  = 0.36 (0.39), 

αf = 0.009 (0.01), nf = 1.8 (2), Ksf = 8 (8.27) , and Ka = 0.27 (0.26). 

Overall, the inverse modeling approach produces acceptable representation of the 

data, and is suitable for estimation of most of the soil hydraulic parameters. We do 

believe that independent estimation of soil hydraulic parameters and adding data of the 

same or different types of measurement can improve inverse estimation. Note that we 

defined the objective function using two different sets of measurements: pressure head 

response and water content profiles (also bromide concentration, wherever appropriate) 

at different depths of the experimental soil columns. We found that addition of outflow 

measurements improved inverse estimation in both homogeneous soil and single 

macropore columns. Our analysis indicates that inverse optimization runs with 

simultaneous optimization of parameters consistently converged to similar parameter 

values, indicating uniqueness of the inverse problem. However, uncertainty in soil 

hydraulic parameters needs to be further evaluated to better account for preferential flow 

processes and lateral exchange between the two domains. This is the subject of a parallel 

study which compares conventional and adaptive Metropolis-Hastings algorithm in 

simulating correlated soil hydraulic parameters of the matrix and macropore domains 

and evaluates the output uncertainty associated with them.  
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Table 2.6: Soil hydraulic parameters of the single and multiple macropore columns used for different conceptual 

models (SPM, MIM and DPM). 

Soil 

Columns 

Soil 

hydraulic 

parameters 

Matrix or immobile region* Macropore or mobile region* Inter-domain transfer 

Model θr θs α n Ks θr θs α n Ks wf β γw a Ka 

Single 
Macropore 

column 

SPM 0.2 0.38 0.004 1.8 0.13           

MIM 0.2 0.38    0.08 0.39 0.01 2 8.27 1.7x10-5     

DPM 0.2 0.38 0.004 1.8 0.13 0.08 0.39 0.01 2 8.27 1.7x10-5 0.45 0.001 11.95 0.26 

Low 
density 

macropore 
column 

SPM 0.2 0.38 0.004 1.8 0.13           

MIM 0.2 0.38    0.08 0.39 0.01 2 8.27 5.2x10-5     

DPM 0.2 0.38 0.004 1.8 0.13 0.08 0.39 0.01 2 8.27 5.2x10-5 0.54 0.001 4.85 4.17 

High 
density 

macropore 
column 

SPM 0.2 0.38 0.004 1.8 0.13*           

MIM 0.2 0.38    0.08 0.39 0.01 2 8.27 3.3x10-4     

DPM 0.2 0.38 0.004 1.8 0.13* 0.08 0.39 0.01 2 8.27 3.3x10-4 0.67 0.001 1.89 4.17 

* Tortuosity parameter l for both matrix and macropore domains is considered to be 0.5. 
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2.6.4 Comparison of models 

The inversely-estimated parameters derived using dual permeability formulation 

were subsequently used for comparison between single porosity (SPM), mobile-

immobile (MIM) and dual-permeability models (DPM) for simulating preferential flow 

and transport through the single and multiple macropore columns (Table 2.6). Note that 

single and higher density macropore columns differ only in the parameterization of the 

interface region including the fitted Ka. DPM1 and DPM2 were evaluated with similar 

parameters because they differ in their treatment of water transfer functions only 

(equations 2.12 and 2.15). Accuracy of model predictions could have been enhanced 

with separate parameter adjustments for each model but the aim of this analysis is to 

evaluate best model performances under conditions of different macropore distributions. 

Therefore, consistency in parameter values was maintained across different conceptual 

models.  

2.6.5 Single macropore column 

Results for experiments other than those used for inverse analysis are shown 

below. Figure 2.9 illustrates simulations of continuum scale models (SPM, MIM and 

DPM1) and observations of pressure head and water content profiles at 25 cm depth of 

the single macropore column for a transient infiltration experiment. Mobile immobile 

model (MIM) is found to overestimate both pressure head and water content profiles at 

the given depth as it incorporates flow through the higher-flowing domain i.e. macropore 

(mobile) region. Single porosity model (SPM) and matrix domain of the dual 

permeability model (DPMM) give comparable results because SPM works with matrix 
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domain as the sole flow medium in this study. Dual permeability predictions for the 

matrix (DPMM) and macropore (DPMF) domains showed minute variations in their 

results given the mild non-equilibrium conditions observed in the central macropore 

column. 

 

 

Figure 2.9: Observed and simulated results for infiltration experiment of the 

central macropore column: (a) pressure head and (b) water content at 25 cm depth. 

Symbols: M, matrix domain; F, fracture or macropore domain; M+F, combined 

matrix and macropore domains. 
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Table 2.7: Goodness-of-fit criteria for comparison of models. 

Soil 

column 

 
SPM MIM DPM 

Experiment 
E MAE

* 
E MAE

* 
E MAE

* 

Single 
macropore 

Infiltration 0.517 9.104 
(0.036) 0.102 16.628 

(0.335) 0.598 9.387 
(0.028) 

Drainage 0.852 5.450 
(0.017) 0.939 1.927 

(0.320) 0.852 5.465 
(0.017) 

Low 
density 

macropore 
Infiltration 0.637 

24.741 
(14.666

) 
-0.071 50.861 

(0.399) 0.686 
24.327 
(12.029

) 

High 
density 

macropore 

Infiltration 0.804 7.337 
(0.031) 0.739 6.107 

(0.373) 0.899 7.236 
(0.039) 

Drainage 0.802 7.103 
(0.070) 0.730 5.939 

(0.306) 0.806 7.019 
(0.044) 

Bromide 
transport# -1.294 1.279 -2.881 1.963 0. 662 0.164 

* MAE is reported with respect to pressure head, cm.h-1 (water content, cm3.cm-3.h-1) measurements. 
# The MAE corresponds to bromide concentration, mmoles.h-1. 

 

Both SPM and DPM satisfied the goodness-of-fit criteria in simulating 

preferential flow experiments of the single macropore column (Table 2.7).  The choice 

of MIM to simulate the infiltration experiment is questionable with our criteria of E<0.5. 

It seems that MIM overestimates flow from soil matrix (immobile) to the macropore 

(mobile) as it quantifies exchange between the two regions based on relative saturation 

differences (equation 2.5). According to the capillary bundle theory, flow from matrix to 

a macropore of size 1 mm is justified when water-entry pressure is close to -1.48 cm, 

which implies that the surrounding soil matrix should be close to saturation. Our initial 

conditions indicate that the soil matrix is quite dry (Table 2.1) when MIM predicts this 

exchange and this is an inherent limitation of the exchange term used in this model. 
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Figure 2.10: Observed and simulated results for drainage experiment of the central 

macropore column: a) water content at 55 cm depth, and b) outflow at 75 cm. 

Symbols: M, matrix domain; F, fracture or macropore domain; M+F, combined 

matrix and macropore domains. 
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On the other hand, MIM statistically outperforms SPM and DPM in simulating 

the drainage experiment which is reasonable as drainage occurs through the largest pore 

first. However, graphical interpretation suggests that average outflow measurements for 

the drainage experiment were described appropriately by DPM only (Figure 2.10). MIM 

overestimated and SPM underestimated outflow from the bottom of the soil column. 

DPM also gave a better match to observations of average water content profiles of the 

two domains for both experiments (Figures 2.9 and 2.10). 

2.6.6 Multiple macropore columns  

Figure 2.11 depicts pressure head results for a transient infiltration experiment of 

the high density multiple macropore column. The pressure head profiles at 10, 20 and 30 

cms showcase equivalent results for all models. However, the trend of the pressure head 

profile is best captured by the dual permeability model (DPM) at all depths (see Figure 

2.11 inset). Similarly, observations of average water content at all depths and outflow for 

a transient drainage experiment are well-described by DPM whereas mobile immobile 

model (MIM) over-predicts and single porosity model (SPM) under-predicts both types 

of observations (Figure 2.12). It is apparent that SPM and MIM act according to their 

parameterization of the low (matrix) and high (macropore) flowing domains, 

respectively while the dual permeability formulation is able to capture the trend of the 

pressure head, water content and outflow profiles appropriately. 
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Figure 2.11: Simulated and observed pressure head profiles at 10, 20 and 30 cms 

for an infiltration experiment of the high density multiple macropore column. 

Symbols: M, matrix domain; F, fracture or macropore domain. 
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Figure 2.12: Simulated and observed water content at 5 cm and outflow for a 

drainage experiment of the high density multiple macropore column. Symbols: M, 

matrix domain; F, fracture or macropore domain; M+F, combined matrix and 

macropore domains. 
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Bromide transport experiment also validates the appropriateness of DPM in 

simulating preferential transport in the multiple macropore columns. Figure 2.13 shows 

concentration profiles at 25 and 35 cm simulated using different models with the 

adjusted Ksm parameter (0.4 cm/h) instead of the effective value (0.13 cm/h). Since the 

adjusted Ksm value is kept constant for all conceptual models, it does not affect our 

comparison of model performances. In Figure 2.13, SPM produced results close to 

DPMM, yet the rising limb of the solute concentration graph was captured by DPM only 

(see Figure 2.13 inset). This is important from contaminant transport perspective as 

knowledge about initial breakthrough is crucial in assessing groundwater vulnerability to 

potential contamination. SPM and MIM failed to satisfy the goodness-of-fit criteria for 

this experiment with E<0.0(Table 2.7). 

Similar to results of the high density (19) macropore column, DPM gave better 

results for the experiments of the low density (3) macropore column and surpassed SPM 

and MIM in model performance criteria (Table 2.7). Unlike results for the single 

macropore column, DPM consistently performed better for all types of experiments of 

the multiple macropore columns (Table 2.7). Statistically, the model performance was 

unacceptable for MIM for the transient infiltration experiment of the low density 

macropore column. 
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Figure 2.13: Simulated and observed bromide concentration profiles at 25 and 35 

cms for a tracer transport experiment of the multiple macropore column with 19 

macropores. Symbols: M, matrix domain; F, fracture or macropore domain. 

Symbols: M, matrix domain; F, fracture or macropore domain; M+F, combined 

matrix and macropore domains. 
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Figure 2.14: Simulated and observed pressure head profiles at 35 cm depth for a) 

infiltration and b) drainage experiments of the central macropore column. 

Symbols: M, matrix domain; F, fracture or macropore domain. 

 
 
 
 
 
 
 



52 
 

 
 

2.6.7 DPM1 versus DPM2  

Comparison of DPM1 and DPM2 showed only slight variation in simulating 

infiltration and drainage experiments of the single and multiple macropore columns 

(Figures 2.14 and 2.15). According to the performance criteria, DPM1 is found to 

perform slightly better than DPM2 in experiments of the multiple macropore columns. It 

is possible that the choice of a single domain representation for 19 (3) macropores 

causes the models to neglect lateral transfers between individual macropores and focus 

more on the vertical flow through them. This error in analysis (єa) is more for DPM2 due 

to the second-order characteristic of the water transfer function: 

simacta           (2.29) 

where Γact and Γsim are the actual and simulated transfer rates [T-1], respectively. The 

corresponding errors for DPM1 and DPM2 can be obtained from equations 2.12, 2.13 

and 2.15 as: 
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Considering the entirely similar effective parameter set for DPM1 and DPM2, and the 

use of lumped observations of the macropore domain, the order of the error is reduced 

to: 

   11 Ohh mf

DPM
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The difference in performance of DPM2 is trivial when lumped datasets are used as the 

disparity between DPM1 and DPM2 was small to begin with (Figure 2.15). However, 

this substantiates the significance of using domain-specific measurements to reduce 

errors while using numerically efficient models and to improve predictions of 

preferential flow and transport. 

 

 

Figure 2.15: Cumulative water transfer for a) infiltration and b) drainage 

experiments of the high density multiple macropore column. 
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2.6.8 Best model performance  

Proper evaluation of continuum-scale models in predicting contaminant transport 

under different macropore densities is important for quantifying agricultural pollution 

via preferential flow paths. The use of consistent matrix and macropore values instead of 

fitted parameters across the different conceptual models heightens the problem of 

choosing a superior model.  For the case of single (central) macropore column, the 

choice of a better model between DPM and SPM for simulating infiltration and between 

DPM and MIM for simulating drainage remains open primarily because of the mild non-

equilibrium conditions observed in this column. Judging from statistical criteria, DPM 

has a consistently better fit in both the low and high density multiple macropore columns 

than in case of the single macropore column (Table 2.7). This is especially true for the 

bromide transport experiment where SPM and MIM failed to satisfy the goodness-of-fit 

criteria. The predictive performance of DPM is reflected in its superiority in simulating 

average water content profiles at different depths, outflow from the bottom, and in 

reproducing temporal patterns of pressure head and bromide breakthrough from the high 

density multiple macropore column. This suggests that the density of the macropore is 

important in determining the complexity of the model employed. As we move from the 

central macropore column with a single macropore (1 mm diameter) to the multiple 

macropore columns with 3 (low density) and 19 (high density) macropores of similar 

size, a continuum-scale model with higher complexity is essential in accurately 

predicting preferential water and bromide transport. 
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2.7 Limitations of the study 

Despite the comprehensive dataset and advanced conceptual models used in this 

study, it is limited in the sense that this study does not evaluate the effect of using 

objective functions with different formulations and weightings on parameterizing the 

conceptual models or in quantifying preferential flow from the experimental data. 

Several studies have shown that the choice of objective functions can alter parameter 

estimates, parameter uncertainty bounds, and predictive capabilities of the model [Vrugt 

et al., 2003; Schoups and Vrugt, 2010]. Our results containing objective functions with 

and without outflow measurements also suggest that different combinations of objective 

functions could lead to improvement in hydrologic predictions. We believe that 

evaluating uncertainty and assessing its effect on parameters and predictions will 

improve the scope of the current study. These concerns are addressed in the next chapter. 

2.8 Conclusions 

This study evaluates whether transport behavior of the macropores is a function 

of its density, and examines the variability required (if any) in soil hydraulic parameters 

to account for changes in macropore density. This has serious implications for 

agricultural soils where crop and management activities such as mechanized farming, 

irrigation scheduling, crop rooting characteristics, earthworm activity, etc. change 

macropore density at various times during a season and affect leaching of agrochemicals 

via preferential flow paths. For this study, domain-specific soil hydraulic parameters 

were inversely estimated from designed soil columns of representative flow domains 

(homogeneous and central macropore) and were used for predicting preferential flow 



56 
 

 
 

under different macropore distributions (single, low and high density macropore 

columns) and transient flow conditions. Results indicate that inversely estimated 

parameters are successful in describing preferential flow but not tracer transport in both 

types (low and high density) of multiple macropore columns. Preferential bromide 

transport for the high density macropore column could be predicted with adjustments in 

saturated hydraulic conductivity of the matrix domain (Ksm) only. Saturated hydraulic 

conductivity is likely a function of the boundary conditions and soil geometry in case of 

statistically heterogeneous soils [Freeze, 1975]. In this study, structural heterogeneity 

stems from the use of consistent domain-specific parameters of the homogeneous and 

central macropore columns on low and high density multiple macropore columns. The 

variation in one soil hydraulic parameter (Ksm) is expected on account of increase in 

macropore density from single macropore column to multiple macropore columns. Other 

studies have indicated lower saturated hydraulic conductivities and mismatch with 

predictions due to the presence of a large number of closely-spaced macropores [Ahuja 

et al., 1995; Kramers et al., 2005]. We believe that this refinement in inversely estimated 

Ksm is required to account for lateral exchange between matrix and macropore domains 

as a result of high density of macropores and to accurately quantify preferential transport 

in such soils. Also, proper description of this lateral exchange process using soil 

hydraulic parameters was found to be crucial in correctly representing outflow from the 

macropore domain for all macropore columns. Future studies are needed to evaluate the 

specific contribution and sensitivity of the different soil hydraulic parameters to this 

interaction. 
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A performance evaluation of continuum-scale models including single porosity 

(SPM), mobile immobile (MIM), and dual permeability model (DPM) with first and 

second-order between-domain water transfer functions that employed these inversely 

estimated matrix and macropore parameters is also conducted. Judging from statistical 

criteria, dual permeability model was able to successfully reproduce the preferential flow 

characteristics of the single and multiple macropore columns in a deterministic 

framework. Further evaluation suggests that it was able to predict the initial rise (or fall) 

of pressure head and bromide concentration for the different experiments of the columns 

which bears significance in early predictions of contaminant transport and prevention of 

potential contamination. Intercomparison of models indicates that increasing model 

complexity from SPM, MIM, to DPM improves the description of preferential flow 

phenomenon in the multiple macropore columns but not in the central macropore 

column. This suggests that the use of a more complex model is recommended with 

increase in macropore density to accurately capture all the dynamics of the system 

including depth profiles, temporal trends and breakthrough curves.  

 Including lumped observations of pressure head, water content, cumulative 

outflow and effluent concentration for the matrix and macropore domains into the 

objective function of DPM2 enhanced errors in model parameters due to the second-

order characteristic of the water transfer function. This suggests that domain-specific 

measurements should be used and macropore density should be accounted for to reduce 

errors when using numerically efficient models. 
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CHAPTER III 

UNCERTAINTY IN DUAL PERMEABILITY MODEL PARAMETERS FOR 

STRUCTURED SOILS* 

 

3.1 Synopsis 

The difficulty in unique identification of parameters for the additional macropore 

and matrix-macropore interface regions, and knowledge about requisite experimental 

data for DPM has not been resolved to date. Therefore, this study quantifies uncertainty 

in dual permeability model parameters of experimental soil columns with different 

macropore distributions (single macropore, and low- and high-density multiple 

macropores). Uncertainty evaluation is conducted using adaptive Markov Chain Monte 

Carlo (AMCMC) and conventional Metropolis-Hastings (MH) algorithms while 

assuming 10 out of 17 parameters to be uncertain or random. Results indicate that 

AMCMC resolves parameter correlations and exhibits fast convergence for all DPM 

parameters while MH displays large posterior correlations for various parameters. This 

study demonstrates that the choice of parameter sampling algorithms is paramount in 

obtaining unique DPM parameters when information on covariance structure is lacking, 

or else additional information on parameter correlations must be supplied to resolve the 

problem of equifinality of DPM parameters.  

____________ 
*Reprinted with permission from “Uncertainty in dual permeability model parameters 
for structured soils” by Arora, B., B. P. Mohanty, and J. T. McGuire (2012), Water 

Resour. Res., 48, W01524, doi: 1029/2011WR010500, Copyright 2012 American 
Geophysical Union. 
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This study also highlights the placement and significance of matrix-macropore 

interface in flow experiments of soil columns with different macropore densities. 

Histograms for certain soil hydraulic parameters display tri-modal characteristics 

implying that macropores are drained first followed by the interface region and then by 

pores of the matrix domain in drainage experiments. Results indicate that hydraulic 

properties and behavior of the matrix-macropore interface is not only a function of 

saturated hydraulic conductivity of the macropore-matrix interface (Ka) and macropore 

tortuosity (lf) but also of other parameters of the matrix and macropore domains 

3.2 Introduction 

Reliable predictions of flow and transport in the vadose zone are important to 

address the issue of potential contamination of groundwater and deterioration of water 

quality. Various studies have reported faster transport of fertilizers, pesticides, industrial 

chemicals, and pathogens to groundwater through fractures and preferential flow paths 

[National Research Council, 1994; Mohanty et al., 1997, 1998; Kladivko et al., 2001; 

Böhlke, 2002; Jamieson et al., 2002]. Preferential flow phenomenon can be described 

using a variety of single, dual or multiple porosity/permeability models [Gwo et al., 

1995; Šimůnek and van Genuchten, 2008]. The classical dual permeability approach 

assumes the soil to be containing two interacting domains, one associated with the fast 

flowing fracture or macropore domain and the other with the less permeable soil matrix 

domain [van Genuchten and Wierenga, 1976; Gerke and van Genuchten, 1993a, 1993b]. 

Dual permeability model formulations differ in their description of flow through the 

macropore domain and in their characterization of exchange between the two regions 
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[Jarvis, 1994; Šimůnek et al., 2003; Köhne et al., 2004]. Both types of dual permeability 

models (DPM) are widely applied at column, plot and field scales [Larsbo et al., 2005; 

Köhne and Mohanty, 2005; Köhne et al., 2009]. The main disadvantage of DPM is the 

requirement of a large number of input parameters. Parameters associated with 

additional pore regions and matrix-macropore interface cannot be directly estimated by 

independent measurements or by expert judgment [e.g., Gwo et al., 1995; Schwartz et 

al., 2000; Roulier and Jarvis, 2003]. Since direct estimation is not feasible, an inverse 

procedure is applied wherein observed data are used to obtain an optimal set of model 

parameters [Zachman et al., 1981; Kool and Parker, 1988]. Inverse parameter estimation 

is challenging with respect to obtaining a unique parameter set, non-identifiability of the 

solution set, and ill-posedness of the inverse problem [Carrera and Neumann, 1986]. 

This problem is significant for the case of structured soils where interdependence and 

multicolinearity between dual permeability model parameters increase the risk of 

reaching local minima in the parameter set [Ginn and Cushman, 1990]. Identification of 

parameters is also hindered by poor measurement quality, non-optimal experimental 

design, and parsimonious datasets such as omitting the near-saturated stage of an 

outflow experiment [Durner et al., 1999; Dubus et al., 2002]. 

One response to counter the problem of parameter identification is to adopt a 

Bayesian viewpoint which evaluates the distribution of parameters instead of a single 

“best” estimate [Vrugt et al., 2008]. The Bayesian approach quantifies uncertainty bands 

around parameter mean values and incorporates the associated uncertainty to generate 

better forecasts, especially for complex non-linear systems [Wu et al., 2010; Jana and 
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Mohanty, 2011]. Consider a radioactive waste disposal facility, for instance, where 

combining single “best” estimates for the uncertain inputs will not necessarily produce 

the “most probable” output estimate. Most importantly, Bayesian probabilistic modeling 

can prove useful in identifying additional parameters of the dual permeability model, 

analyzing the relationship among parameters of significant domains, and quantifying 

uncertainty in flow and transport predictions using the dual permeability framework.  

Use of Bayesian techniques in the field of preferential flow and transport is 

generally limited to conventional Markov Chain Monte Carlo algorithms such as 

Metropolis-Hastings and Gibbs sampling [Gelman et al., 1995; Cowles and Carlin, 

1996; Marshall et al., 2004; Reis and Stedinger, 2005]. The computational efficiency of 

sampling the parameter space can be improved by employing an adaptive Markov Chain 

Monte Carlo (AMCMC) scheme that can cater to model parameters having a high degree 

of correlation and interdependence as is the case with the dual permeability framework 

[Haario et al., 2001; Atchadé and Rosenthal, 2005]. The AMCMC scheme is compared 

to a conventional Metropolis-Hastings (MH) algorithm that uses a random walk in the 

parameter space while describing uncertainty based on preexisting (or prior) knowledge 

and experimental observations [Metropolis et al., 1953; Hastings, 1970]. The algorithms 

differ in their updating mechanisms, the conventional MH algorithm uses a single-site 

(one parameter at a time) updating while the AMCMC approach uses the history of the 

process to ‘tune’ the proposal distribution and update the parameter covariance structure 

[Marshall et al., 2004; Peters et al., 2009]. The algorithms will be compared for their 

predictive performance in quantifying parameter and output uncertainty.   
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In summary, dual permeability models are paramount in predicting reliable 

estimates of preferential flow and contaminant transport in structured soil systems but 

their application is hindered by difficulties in estimating the large number of input 

parameters [Simunek et al., 2001; Jarvis et al., 2007]. The focus of this study is to 

estimate uncertainty in dual permeability model parameters and to investigate the 

stability of preferential flow estimates from experimental soil columns, especially when 

a large number of dual permeability parameters are considered unknown or random. The 

research is motivated by a realization that correlation and interdependence among 

parameters of the dual permeability framework cannot be described explicitly for any 

study for one of the following reasons: it may be unknown, known but extremely 

complex, or it may even be non-existent, and difficult to investigate through controlled 

experiments alone. This leads by default to a replacement of the uncertain parameters 

and unknown covariance structure with probabilistic assumptions which are compatible 

with Bayesian statistics. Therefore, primary objectives of this study are: i) to quantify 

uncertainty in dual permeability model parameters obtained from experiments of single 

and multiple (low- and high-density) macropore soil columns, and ii) to compare the 

conventional Metropolis-Hastings and adaptive Markov Chain Monte Carlo algorithms 

in terms of convergence rate and for quantifying uncertainty in simulating preferential 

flow from the experimental soil columns. 
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3.3 Theoretical considerations  

3.3.1 Dual permeability model formulation  

The dual-permeability model of Gerke and van Genuchten [1993a, 1993b] is 

used in this study. Conceptually, the model assumes the porous medium to be divided 

into two pore regions, with relatively fast water flow in one region (often called the 

inter-aggregate, macropore, or fracture domain) when close to full saturation, and slow 

in the other region (often referred to as the intra-aggregate, micropore, or matrix domain) 

[Šimůnek and van Genuchten, 2008]. Flow in both macropore (subscript f) and matrix 

(subscript m) domains is described using two Richards’ equations primarily with 

different sets of water retention and hydraulic conductivity functions:      
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where z is the vertical coordinate positive upwards [L], t is time [T], h is the pressure 

head [L], θ is the water content [L3L-3], K is the unsaturated hydraulic conductivity [LT-

1], wf is the ratio of the volumes of the macropore domain and the total soil system 

[dimensionless], and Γw is the rate of water exchange between the two domains [T-1]. A 

detailed description of the wf and Γw formulation is given in the previous chapter (§ 

2.3.3). Hence, it is not repeated here. 

The soil water retention and hydraulic conductivity functions can be described 

using the equations [Mualem, 1976; van Genuchten, 1980]:  
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where subscript d represents the matrix (m) or fracture (f) domains, θr and θs are the 

residual and saturated water contents [L3L-3], respectively, Ks is the saturated hydraulic 

conductivity [LT-1], α [L-1], n [-], m [-], and l [-] are empirical parameters determining 

the shape of the hydraulic conductivity functions. 

3.3.2 Description of Bayesian methods  

Bayesian methods provide a statistical framework for obtaining an improved 

estimate of parameter distributions by mathematically combining specific prior 

knowledge with what is known about those parameters through observations. To 

facilitate the description of the Bayesian analysis, we represent the soil hydrologic 

system in a Bayes’ framework:      
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where D is the observed data, p(Θ|D) is the conditional posterior probability of the soil 

hydraulic parameters given the data, f(D|Θ) is the likelihood function summarizing the 

model for the data given the parameters, π(D) is a normalizing constant, π(Θ) is the prior 

joint probability for the soil hydraulic parameters, and Θ is the vector of van Genuchten 

soil hydraulic parameters given by: 
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where subscripts m and f represent the matrix and macropore domain parameters, 

respectively, and (wf, β, γw, a, Ka) constitute the interface region (int) parameters. The 

prior joint probability can be further broken down as the joint probability for the matrix, 

macropore and interface components of the dual permeability model: 
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where npar is the number of parameters of a particular region that are considered 

random, φ is the set containing the random soil hydraulic parameters for that particular 

region. Once the conditional posterior probability is known, the marginal posterior 

distribution p(.|D) that retains the dependence on one parameter exclusively (e.g. 

residual soil water content for the matrix domain, θrm) is given by: 
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where θ2, θ3,…., θtot  represent the soil hydraulic parameters contained in the set Θ apart 

from θ1 (= θrm). The main complication is the intractability of the multi-dimensional 

integration of the target density including the computation of the normalizing constant 

π(D). A possible solution is to use any MCMC algorithm that ignores π(D) and generates 

a sequence of parameter sets, {Θ(0), Θ(1),.., Θ(t)} that converge to the stationary 

proposal distribution p(Θ|D) for large number of iterations t [Gelman et al., 1995]. 

Diagnostic measures of central tendency and dispersion can then be calculated from the 

mean and variance of the large sample generated using MCMC simulations. The MCMC 

algorithms used in this study are described below. 
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3.3.3 Metropolis-Hastings algorithm  

One of the widely used MCMC techniques is the Metropolis-Hastings algorithm 

proposed by Hastings [1970]. It samples the posterior distribution of the parameters as 

described below:  

1. Choose a starting point randomly within the feasible parameter space, Θ(i) = Θ(0) 

with a covariance matrix ∑0. 

2. Draw a candidate vector Θ(i+1) from the previous vector Θ(i) using a proposal 

distribution q(Θ(i+1)| Θ(i)) ~ N(Θ(i),∑0), where Θ(i) is the current state of the chain, 

and the proposal density is a normal distribution (for this study). 

3. Compute the odds ratio: r = q(Θ(i +1))/q(Θ(i)).  

4. If r≥1, accept the new candidate vector Θ(i +1) as it leads to a higher value of the 

proposal distribution. 

5. If r<1, draw a number at random from a uniform distribution U[0,1]. If the random 

number is less than r, accept ‘Θ(i +1)’ else remain at the current position ‘Θ(i)’. 

6. Repeat steps 2-5 for the given number of iterations (t). 

A single parameter updating is usually done in this algorithm which may be 

problematic with high-dimensional Θ. If two or more parameters are highly-correlated, a 

larger number of simulations are required and block or simultaneous updating is 

necessitated for correlated parameters [Marshall et al., 2004]. 

3.3.4 Adaptive Metropolis algorithm   

We employ the AMCMC scheme of Harrio et al. [2001] which corresponds to 

our need for resolving a large number of dual permeability parameters and 
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understanding correlation among these parameters. Harrio et al. [2001] chose a 

multivariate normal distribution as the proposal density which is centered on the current 

state and obtains empirical covariance from a fixed number of previous states. A fixed 

value of the covariance matrix ∑ is employed for a finite number of initial iterations (t0) 

after which it is updated as a function of all the previous iterations:  
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where ∑0 is the initial covariance based on prior knowledge, d is the dimension of Θ, є is 

a small parameter chosen to ensure ∑i does not become singular, Id is the d-dimensional 

identity matrix, and sd is a scaling parameter that depends only on d. A basic choice for 

the scaling parameter can be sd = (2.4)2/d for Gaussian targets and Gaussian proposals 

[Gelman et al., 1995]. The covariance at iteration (i+1) can be obtained without much 

computational cost using the recursive formula: 
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The important steps of the AMCMC algorithm can be described as follows:  

1. Choose a starting point randomly within the feasible parameter space, Θ(i) = Θ(0) 

with a covariance matrix ∑i = ∑0. 

2. Draw a candidate vector Θ(i+1) from the previous vector Θ(i) using a proposal 

distribution q(Θ(i+1)|Θ(i)) ~ N(Θ(i),∑i), where Θ(i) and ∑i define the current state of 

the chain, and the proposal density is a normal distribution (for this study). ∑i 

depends on the iteration number i according to equation 3.10. 

3. Compute the odds ratio: r = q(Θ(i+1))/q(Θ(i)) 
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4. If r≥1, accept the new candidate vector Θ(i+1) as it leads to a higher value of the 

proposal distribution. 

5. If r<1, draw a number at random from a uniform distribution U[0,1]. If the random 

number is less than r, accept ‘Θ(i+1)’ else remain at the current position ‘Θ(i)’.  

6. Repeat steps 2-5 for the given number of iterations (t). 

The distinguishing feature of adaptive MCMC algorithms, compared to the MH 

algorithm, is that it updates all elements of Θ simultaneously due to the description of 

the covariance structure. This also helps in adapting the simulation at an early stage and 

reducing computation time. Both adaptive MCMC and AMCMC terms are used 

interchangeably throughout the paper. 

3.4 Case study  

3.4.1 Soil column data  

This work uses soil column experiments with well-defined boundary conditions 

to fully understand the prospects and limitations of employing adaptive MCMC versus 

the conventional MH algorithm to quantify uncertainty in 10 of 17 dual permeability 

model parameters. Three large acrylic cylinders (75 cm long and 24 cm wide) were 

packed with sandy loam soil to a dry bulk density of 1.56 g/cm3. The central macropore 

column was provided with a single macropore of 1 mm diameter all along the vertical 

axis of the column, open to both the soil surface and to the bottom outflow plate. In the 

low- and high-density multiple macropore columns, 3 and 19 artificial holes (1 mm 

diameter each) were created with a stainless steel rod in one half of the column cross-
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section, respectively (Figure 3.1). Basic outflow curves from the three columns are also 

displayed in Figure 3.1. 

 

  

Figure 3.1: Experimental design and outflow from infiltration experiments of the i) 

single macropore, ii) low density, and iii) high density multiple macropore columns. 

Symbol M represents soil matrix and F represents fracture or macropore domain. 
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Tensiometers and TDR probes were installed at various depths in both macropore 

and non-macropore halves of the soil columns to monitor pressure head profiles and 

water/tracer concentrations, respectively (Figure 3.2). In particular, tensiometers were 

employed at an increment of every 5 cm and TDRs at an increment of 10 cm to obtain a 

complete representation of the soil profile. At the bottom of the column, outflow rates 

and flux-averaged bromide (Br-) concentrations were measured separately in 6 effluent 

chambers; 3 for each soil region with and without macropores. The top boundary 

condition was maintained using a tension infiltrometer and the bottom boundary was 

open to the atmosphere with provision for pressure control. A fraction collector was used 

intermittently to obtain the outflow from the columns. A detailed description of the soil 

columns and collection of data are provided in the previous chapter (§ 2.4). 

3.4.2 Model parameters, initial and boundary conditions  

We present results for infiltration and drainage experiments performed on the 

single, low- and high-density multiple macropore columns. Simulations of the 

experimental soil columns are implemented using the HYDRUS-1D software package 

[Šimůnek et al., 2001, 2003].  

 



71 
 

 
 

 

Figure 3.2: Schematic of the soil column with instrumentation. 
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Initial conditions for the simulations are described in terms of vertical pressure 

head distribution using tensiometric data at different depths of the soil column (5 cm 

intervals from the top). Upper and lower boundary conditions are derived from observed 

tensiometric data at the top (close to 0 cm) and bottom (close to 75 cm) of the soil 

profile, respectively. A spatial discretization (Δz = 0.5 cm) uniformly distributed over 

the length of the column is used for all experiments. The initial time step is Δt = 10-5 h, 

and minimum and maximum time steps are Δtmin = 10-6 h and Δtmax = 10-1 h, 

respectively. Space and time discretization are kept identical for all soil columns. 

Simulation periods for the different experiments vary according to the respective 

duration of each experiment. 

In the dual permeability framework, any water flow simulation requires the 

following 17 parameters: van Genuchten-Mualem parameters (θr, θs, α, n, Ks, and l) for 

both matrix and macropore domains, and interface parameters (wf, β, γw, a, and Ka). The 

parameters of the matrix-macropore interface except Ka are either based on their 

geometry (wf, β, and a) or obtained by empirical estimation (γw) for the single and 

multiple macropore columns as shown in the previous chapter [Castiglione et al., 2003]. 

As these parameters are kept as constants, one may argue that αw is a function of Ka only 

(equations 2.11 and 2.12), which is regarded as a calibration parameter in HYDRUS. 

This suggests that there are only 13 independent parameters based on degrees of 

freedom. These constant interface parameters along with lm, θrm and θrf are not included 

in the uncertainty analysis because they are not considered to be sensitive (see § 3.6.1). 

However, correlations with respect to θrm and θrf are taken into account.  
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3.4.3 Markov chain Monte Carlo sampling   

The MCMC algorithms are applied to the experimental soil columns to 

investigate the effect of parameter correlations and uncertain model parameters on model 

outputs. The first step is to establish prior density and parameter uncertainty limits for 

each of the random parameters. As discussed in § 3.4.2, the 10 dual permeability 

parameters that will be analyzed using MCMC algorithms are φm = {θsm, αm, nm, and 

Ksm}; φf = {θsf, αf, nf, Ksf, and lf}; φint = {Ka}. A log- transformation is used for the 

saturated hydraulic conductivity parameter (Ks) of matrix, macropore, and interface 

regions as suggested by de Rooij et al. [2004]. A uniform distribution is assigned to 

parameters whose literature references are unavailable except for their ranges. Therefore, 

the prior for lf is U[0,1]. A normal distribution is assigned as a prior to the rest of the soil 

hydraulic parameters for both matrix and macropore domains e.g. θsm ~ N(μθsm, σθsm). 

Non-normal priors can be used as well but they will increase the computational 

complexity considering the number of parameters involved in this problem. The means 

of the prior densities for the matrix and macropore domains are set at the optimized 

values obtained using inverse modeling of the various flow experiments as they reflect 

the least-square estimate from HYDRUS. Table 3.1 summarizes inverse modeling 

technique used in this study and further details are given in the previous chapter. The 

variances for the normal densities are obtained from Vrugt et al. [2003] using the van 

Genuchten model for the loam and coarse sand textures reflecting parameters of the 

matrix and macropore domains, respectively. The uncertainty limits for these parameters 

are based on ranges obtained from the UNSODA database [Nemes et al., 1999, 2001] 
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again using the loam and sand textures. To avoid MCMC algorithms from progressively 

sampling outside realistic parameter ranges, the variances and applicable uncertainty 

limits are further refined by prior experiences with the model. Table 3.2 enlists the 

optimized parameter values used as means for the prior density and the uncertainty 

bounds approximately reflect the values at ± 3σ (standard deviation) for parameters with 

normal priors. 

 

Table 3.1: Experimental observations used for parameter estimation and likelihood 

calculations. 

Group of 

observations 
Method 

Resolution for data 

collection 

Minimum 

resolution for 

likelihood 

calculation 

Pressure head, cm 13 Tensiometers 

5-cm depth intervals 
starting from top till 

bottom of the soil 
column 

3 depths 

Soil water content, 
cm3 cm-3 12 TDR probes 

10-cm depth 
intervals starting 

from 5 cm till 55 cm 
on both matrix and 

macropore halves of 
the columns 

2 depths in both 
matrix and 

macropore halves 

Outflow, cm 

Six pie-shaped 
chambers; 

intermittent use of 
fraction collector 

75 cm depth 
1 depth in both 

matrix and 
macropore halves 
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Table 3.2: Initial uncertainty range and optimal parameter values obtained from 

HYDRUS for MCMC simulations. 

Dual permeability 

parameters 

Initial uncertainty 

range 

Parameter value for best HYDRUS simulation 

Single 
Macropore 

column 

Low density 
Macropore 

column 

High density 
Macropore 

column 

Matrix or 
immobile region 

θrm (-) Fixed 0.2 0.2 0.2 

θsm (-) 0.35-0.41 0.38 0.38 0.38 

αm (cm-1) 0-0.14 0.004 0.004 0.004 

nm (-) 1.38-2.22 1.8 1.8 1.8 

Ksm (cm.h-1) 0.003-5.53 0.13 0.13 0.13 

lm (-) Fixed 0.5 0.5 0.5 

Macropore or 
mobile region 

θrf (-) Fixed 0.08 0.08 0.08 

θsf (-) 0.36-0.42 0.39 0.39 0.39 

αf (cm-1) 0-0.14 0.01 0.01 0.01 

nf (-) 1.1-2.9 2 2 2 

Ksf (cm.h-1) 1.85-37 8.27 8.27 8.27 

lf (-) 0-1 0.5 0.5 0.5 

Interface region 

wf (-) Fixed 1.7 x 10-5 5.2 x 10-5 3.3 x 10-4 

β (-) Fixed 0.45 0.54 0.67 

γw (-) Fixed 0.001 0.001 0.001 

a (cm) Fixed 11.95 4.85 1.89 

Ka (cm.h-1) 0.07-4.15* 
0.25-13.87** 

0.26 
 

4.17 
 4.17 

* value is best suited for the single macropore column. 
** value is best suited for the multiple macropore columns. 
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The second step is to consider an appropriate likelihood function and create a 

proposal distribution that is close to the posterior target distribution. Sampling from 

proposal distributions should be consistent with expected model responses to changes in 

parameter values [Larsbo et al., 2005]. Therefore, the proposal distribution is taken to be 

a multivariate normal distribution for each region/domain, and a Gaussian jump function 

is used to move around the parameter space. HYDRUS-1D is run for each ‘new’ vector 

in the dual-permeability framework and the likelihood is based on the weighted least 

squares estimate between observed (D) and predicted values (E) [Šimůnek et al., 2001, 

2003]:  
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where N is the number of observations, wi are weights associated with a particular 

observation, r(Θ) are model residuals calculated using the observation data D(x, t) at 

time t and location x (cf. Table 3.1) and the corresponding model predictions E(x, t, Θ) 

for the vector Θ of dual permeability model parameters. We assumed wi’s to be equal to 

one for this study to represent similar error variances for all observations. A problem 

with equation 3.12 is that the standard deviation of model residuals (σr), which is not 

known apriori, is also included in the likelihood function. Typically, σr can be integrated 

out of the equation using a Jeffreys prior, and the likelihood therefore becomes 

[Scharnagl et al., 2011]: 
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The Bayesian technique can thus produce full probability distributions for each 

parameter that is obtained after integrating all possible combinations of the dual 

permeability parameters using equation 3.9. This multi-dimensional integration is 

performed using the MH and AMCMC algorithms which differ primarily in their 

dealings with the covariance matrix. 

3.5 Implementation of the MCMC algorithms   

3.5.1 Convergence criteria  

A variety of graphical techniques such as trace plots, running mean plots, 

posterior means, variances and standard errors are used to assess convergence of MCMC 

chains. Apart from these, convergence diagnostics of MCMC are also based on the 

Geweke test statistic [Geweke, 1992]. The Geweke test splits the MCMC chain into two 

“windows”: the first window containing the beginning 20% of the chain, and the second 

usually containing the last 50% of the chain. If the samples are drawn from the 

stationary distribution of the chain, the mean of the two windows are equal. A Z-test of 

the hypothesis of equality of these two means is carried out and the chi-squared marginal 

significance is reported. A value of less than 0.01 for the chi-squared estimate indicates 

that the mean of the series is still drifting. 

3.5.2 Number of simulations   

Raftery and Lewis's [1992] method is intended to detect convergence to the 

stationary distribution as well as to provide the total number of iterations required to 

estimate quantiles of any MCMC output with desired accuracy. The estimation of 

quantiles is very useful as they provide robust estimates of the mean and variability of 
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the parameter. If the number of iterations is insufficient, the diagnostic process can be 

repeated to verify the minimum number of samples (Nmin) that should be run. One can 

determine the increment required in the number of simulations due to dependence (I) in 

the sequence: 

minN

TB
I


                      (3.15)  

where B is the number of initial iterations to be discarded and commonly referred to as 

the burn-in length, and T is the total number of simulations. Values of I larger than 5 

indicate strong autocorrelation which may be due to a poor choice of starting value, high 

posterior correlations or stickiness of the MCMC algorithm. 

3.6 Results   

3.6.1 Sensitivity analysis  

The objective of sensitivity analysis is to evaluate appropriate range of 

parameters and identify critical values that may lead to sub-optimal or local solutions. In 

this study, sensitivity analysis is carried out by individually varying each parameter by 

±30% and keeping the rest of the parameters constant at their inversely estimated values. 

Table 3.3 lists the top three parameters that produced the most sensitivity to modeled 

preferential flow results when compared with the optimal HYDRUS simulation. This 

ranking suggests that variations in matrix parameters cause larger sensitivity than 

macropore parameters for preferential flow through experimental soil columns. 

Tortuosity of the matrix domain (lm), and residual water content (θr) for the matrix and 

macropore domains are not considered sensitive parameters as they result in small 
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changes to the optimal HYDRUS simulation. Therefore, these parameters are 

disregarded for uncertainty evaluation using MCMC simulations essentially to curtail the 

dimensionality of the problem.      

 

Table 3.3: Sensitive parameters for different types of experiments of the single and 

multiple macropore columns. 

Soil column  Type of experiment Sensitive parameters 

Single Macropore 
Column 

Infiltration 
(0 cm head) θsm αm nm 

Drainage θsm αm nm 

Low-density 
Multiple Macropore 

Column 

Infiltration 
(6 cm head) θsm nm - 

Drainage nf θsm - 

High-density 
Multiple Macropore 

Column 

Infiltration 
(0 cm head) θsm αm  

Infiltration 
(4 cm head) θsm nf nm 

Drainage θsm nm - 
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3.6.2 Comparison of adaptive and conventional MH algorithms   

MCMC iterations are run for developing an initial covariance structure among 

the soil hydraulic parameters for the experimental soil columns. Although more than 

50% acceptance ratio is observed for all experiments, the initial 4000 MCMC samples 

do not show convergence for certain parameters. Specifically, pore size distribution 

index for the matrix domain (nm), saturated water content for the matrix (θsm) and 

fracture (θsf) domains do not converge for any of the soil columns. Among these, θsm 

and nm are found to be sensitive parameters for most of the experiments (Table 3.3). 

However, another common sensitive parameter αm seems to converge efficiently. We 

argue that it is not the information in the measurements that is lacking but in extracting 

information about the interactions of the parameters which restricts us from obtaining a 

unique parameter set. By simultaneously using a number of correlated parameters, 

identification of unique dual permeability parameters is at stake. This result is confirmed 

by posterior cross-correlation plots which show high correlation between parameters 

such as θsm-nm, θsm-αm, and θsf-nf for different experiments of the soil columns. 

Correlation among soil hydraulic parameters is not uncommon, however, prior 

information about correlation between the soil properties is non-existent for most soils 

[Vrugt et al., 2003; Pollacco et al., 2008]. Therefore, the initial covariance structure (∑0) 

of the parameters for both MCMC techniques is obtained from the initial 4000 MCMC 

simulations for all types of flow experiments as follows: 
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where E is the mathematical expectation, a is the number of accepted samples from the 

initial 4000 MCMC simulations after 10% burn-in and thinning, and Θm
a (Θf

a) is the set 

of random matrix (macropore) parameters as well as θrm (θrf) as suggested in § 3.4.2. 

The covariance with respect to interface parameters is limited to the variance of Ka as the 

rest of the parameters are constant (§ 3.4.2). Our goal here is to compare the traditional 

Metropolis-Hastings (MH) and the adaptive (AMCMC) techniques in estimating soil 

hydraulic parameters and in producing meaningful outputs that mimic the properties of 

our preferential flow system. 

After initializing the covariance structure, the MH and AMCMC techniques were 

used to determine uncertainty in the random parameter set {φm, φf, φi} for an infiltration 

experiment of the single macropore column. Although both algorithms share the 

HYDRUS-optimized starting values and parameter priors, Raftery and Lewis’s 

diagnostic indicates 3295 additional iterations for the MH algorithm as opposed to 235 

additional iterations for AMCMC to estimate 0.975 quantile of the parameters to the 

specified accuracy (=0.02). Figure 3.3 presents contrasting posterior parameter 

distributions for the two algorithms. Since the truth about parameter distributions is 

unknown, there is no way to ascertain which algorithm predicts the correct posterior.  
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Figure 3.3: Posterior distributions of Ksf and lf using i) MH and ii) AMCMC 

algorithms for an infiltration experiment of the single macropore column. 
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However, the prediction of a unimodal distribution for Ksf by the Metropolis-

Hastings algorithm implies that the chain takes a long time to move away from a local 

mode because of the single update mechanism of the MH algorithm. On the other hand, 

the identification of a multimodal distribution for Ksf and lf in the vicinity of local 

maxima is suggestive of desirable convergence and mixing characteristics of the  

adaptive MCMC algorithm. The mean acceptance rate of the AMCMC technique (34%) 

as compared to the traditional Metropolis-Hastings (MH) algorithm (43%) is also 

suggestive of the comparatively slow convergence of the MH algorithm.   

The Markov chain Monte Carlo procedure is also carried out for infiltration 

experiments with constant pressure head boundary conditions for the low- and high-

density multiple macropore columns. Parameter trace plots for 5000 and 3000 

simulations for these experimental soil columns are shown in Figures 3.4 and 3.5, 

respectively.  
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Figure 3.4: Parameter trace plots using i) MH and ii) AMCMC algorithms for an 

infiltration experiment (6 cm head) of the low density multiple macropore column. 
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Figure 3.5: Parameter trace plots using i) MH and ii) AMCMC algorithms for an 

infiltration experiment (4 cm head) of the high density multiple macropore column. 
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Figure 3.4 indicates that the sequence of draws converged quickly, within 5000 

iterations, using the AMCMC technique. The performance of both algorithms is similar 

except for parameters like θsm, nm, θsf, Ksf, and Ka. Many more iterations are required to 

obtain convergence and/or better mixing with the MH approach. Since smoothness of the 

running mean plots is an indicator of good mixing of the MCMC chain, Figure 3.6 

compares the running mean plots of nm and nf parameters of the low density macropore 

column for the two algorithms. This plot suggests slow mixing of the MH chain as 

compared to the AMCMC chain for both the parameters. Geweke’s diagnostic is also 

used to assess chain convergence and rejects convergence of θsf and Ka at 90% level of 

significance using the MH algorithm (column 5 of Table 3.4). On the other hand, 

Geweke’s statistic indicates satisfactory convergence (chi-squared probability > 0.01) 

for all dual permeability parameters using the AMCMC algorithm (column 6 of Table 

3.4). The higher acceptance rate of 33% for the MH algorithm again confirms the slow 

mixing and convergence characteristics of this algorithm as compared to the lower mean 

acceptance (26%) of the AMCMC technique. 
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Figure 3.6: Moving average plots for nm (-) and nf (-) for an infiltration experiment 

of the low density multiple macropore column. 

 

Table 3.4: Geweke convergence diagnostics following 10% burn-in for dual 

permeability parameters of single and multiple macropore columns. 

Dual permeability parameters 

Chi-squared probability* 

Single Macropore 
column 

Low density 
Macropore column 

High density 
Macropore column 

MH AMCMC MH AMCMC MH AMCMC 

Matrix or 
immobile 

region 

θsm (-) 0.003 0.728 0.963 0.330 0.807 0.992 

αm (cm-1) 0.610 0.164 0.355 0.205 0.060 0.127 

nm (-) 0.960 0.180 0.057 0.934 0.001 0.147 

Ksm (cm.h-1) 0.632 0.209 0.190 0.809 0.157 0.163 
Macropore or 
mobile region 

θsf (-) 0.898 0.246 0.001 0.161 0.001 0.182 

αf (cm-1) 0.363 0.507 0.155 0.155 0.023 0.870 

nf (-) 0.234 0.260 0.147 0.579 0.758 0.698 

Ksf  (cm.h-1) 0.001 0.448 0.056 0.294 0.268 0.134 

lf (-) 0.413 0.944 0.798 0.691 0.105 0.680 
Interface 
region Ka (cm.h-1) 0.008 0.336 0.001 0.439 0.342 0.777 

* Underline indicates chi-squared probability <0.01 
 

  



88 
 

 
 

Consistent with findings from the single macropore and low density multiple 

macropore columns, the AMCMC algorithm provides better mixing and convergence 

with 36% acceptance rate for the dual permeability parameters of the high density 

macropore column (Figure 3.5). This time series plot shows poor mixing (θsm) and 

trends in data (αm, nm, θsf, and αf) at 45% acceptance rate for the conventional MH 

algorithm. The results of the Geweke test confirm the lack of convergence for some of 

these dual permeability parameters (nm and θsf) using the MH algorithm (last two 

columns of Table 3.4).  

Raftery and Lewis convergence diagnostic also indicates high autocorrelation, 

which is indicated by I>5 in Table 3.5, for all parameters except Ksm and lf for the MH 

algorithm and in θsm and nm for the AMCMC algorithm for the high density macropore 

column. Since the statistic is calculated before thinning of the chains, autocorrelation 

observed in θsm and nm using the adaptive (AMCMC) technique, and nf, Ksf, and Ka 

using the traditional Metropolis-Hastings (MH) algorithm is expected as the chain is not 

independent and identically distributed (i.i.d.) as yet.  
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Table 3.5: Evaluation of the Raftery-Lewis statistic for dual permeability 

parameters of the high density multiple macropore column. 

Parameters 
MH AMCMC 

I B I B 

θsm (-) 34.54 138 10.17 41 

αm (cm-1) 17.83 99 1.81 4 

nm (-) 10.36 42 11.62 49 

Ksm (cm.h-1) 0.96 2 0.96 2 

θsf (-) 67.71 195 3.82 20 

αf (cm-1) 8.29 46 2.63 5 

nf (-) 18.78 78 3.32 12 

Ksf  (cm.h-1) 6.03 21 2.42 5 

lf (-) 0.71 3 0.71 3 

Ka (cm.h-1) 38.69 103 5.89 21 
 

The burn-in length (B) and additional number of samples obtained from the 

Raftery-Lewis statistic are not unreasonable even for the MH algorithm, however, this 

problem may worsen with addition of parameters, changes to correlation structure, and 

increment in desired accuracy.  

The non-convergent parameters across the different experiments using the 

conventional Metropolis-Hastings algorithm do not have a direct relationship with the 

listed sensitive parameters for the different soil columns (Table 3.3). We argue that the 

MH algorithm was analyzing the tradeoffs in the fitting of these highly correlated 

parameters due to its one-parameter-at-a-time updating approach. This argument is 

further strengthened by investigations into posterior cross-correlations among the 

simulated matrix and macropore domain parameters.  

Figures 3.7 and 3.8 present a scatter plot of parameters generated by the MH and 

AMCMC algorithms after convergence has been achieved for infiltration experiments of 
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the low- and high-density multiple macropore columns, respectively. Specifically 

parameter correlations (|r|>0.5) are evident for θsm with αm and nm for the low density 

macropore column, and θsf with αf for the high density macropore column using the MH 

algorithm. For the high density macropore column, the scatter plots developed using the 

AMCMC algorithm are patchy only at the ends with respect to the saturated hydraulic 

conductivity parameter of the macropore domain (Ksf) while the MH algorithm produces 

scatter plots that are patchy within the parameter space for almost all macropore 

parameters. This suggests that the MH algorithm has been unable to cover the entire 

parameter space and explore the full posterior distribution of the parameters in the given 

number of iterations due to evident correlations between the parameters. On the other 

hand, the simultaneous updating of the parameters within the AMCMC algorithm 

enables it to provide better posterior estimates in lesser iterations. We conclude that 

carefully formulated AMCMC yields sufficient information to estimate parameter 

uncertainty with faster convergence rate when a large number of parameters (as in dual 

permeability model) are considered random and prior information with respect to their 

interdependence and correlation is lacking. 
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Figure 3.7: Scatter plots of 5000 combinations of different matrix parameters for 

the low density macropore column using i) MH and ii) AMCMC algorithms. 
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Figure 3.8: Scatter plots of 3000 combinations of different macropore parameters 

for the high density macropore column using i) MH and ii) AMCMC algorithms. 
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3.6.3 Output uncertainty   

To verify whether improved predictions of preferential flow can be made by 

either algorithm, we compare AMCMC and MH simulation results for a constant head (0 

cm) infiltration experiment of the high density multiple macropore column. Figure 3.9 

illustrates pressure head profiles at 10 cm depth and soil water retention curves for the 

matrix domain for the two algorithms. The MH algorithm displays a wider range of 

uncertainty in predicting the entire pressure head profile as compared to the AMCMC 

algorithm. This is also true for other water content profiles at different depths and for 

experiments of the different soil columns. This can be explained with the reasoning that 

the AMCMC algorithm has a narrow range of the highest posterior density region in the 

physically plausible space for each of the dual permeability parameters. The AMCMC 

algorithm is able to resolve parameter correlations and consequently, has a lower 

uncertainty associated with the dual permeability parameters. On the other hand, the MH 

algorithm relies on the inverse procedure, which minimizes the squared residuals 

between model predictions and measurements, and fails to provide a single, relatively 

unique set of hydraulic parameters from experimental observations. This is also reflected 

in the 99% prediction uncertainty bounds where the most optimal hydraulic properties, 

obtained from the inverse procedure and indicated with the dotted line, are at the center 

of the bounds for the pressure head curve. On the contrary, the observations, indicated 

with squares, are at the center of the prediction bounds for the AMCMC algorithm 

especially during perturbations of the pressure head potential between 12 and 18 hrs.  
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Figure 3.9: Uncertainty in hydrologic output profiles of the high density multiple 

macropore column for an infiltration experiment using i) MH and ii) AMCMC 

algorithms. The dashed lines define the HYDRUS simulation for the most likely 

parameter set, the grey shaded area denotes the 99% prediction uncertainty range, 

and the squares correspond to experimental observations at 10 cm depth. 
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There is also considerable uncertainty associated with the MH algorithm where 

the soil moisture potential is at saturation. This is in agreement with θsm being highly 

correlated with other parameters (Figure 3.7) and the high sensitivity of preferential flow 

output associated with θsm for all experiments (Table 3.3). It is important to note that 

AMCMC is not deemed better due to the smaller uncertainty range in output predictions 

as true uncertainty bounds are unknown for the experimental soil columns. However, we 

believe that significant uncertainly associated with the fitted soil water retention 

functions is due to unresolved parameter correlations using the MH algorithm. It is 

therefore recommended that additional water content measurements at lower pressure 

potential be included to condense parameter correlations and reduce uncertainty 

associated with such parameter sampling algorithms. For the dual permeability modeling 

framework, the comparison between MH and AMCMC algorithms clearly demonstrates 

that correlation between dual permeability parameters exists, and the output uncertainty 

range suggests that this correlation must be accounted for by the parameter sampling 

algorithms (either by including additional information on the correlation structure or 

through an efficient sampling scheme). 
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Figure 3.10: Posterior probability distributions of the parameters using observed 

data for drainage experiment of the single macropore column. 

 

 

Figure 3.11: Posterior probability distributions of the parameters using observed 

data for drainage experiment of the high density multiple macropore column. 
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3.6.4 Uncertainty in soil hydraulic parameters 

The estimation of marginal posterior distribution is obtained assuming 

homoscedatic, uncorrelated error terms using the adaptive MCMC technique. 

Histograms of the dual permeability parameters generated after convergence to the 

stationary posterior distribution for drainage experiments of the single and high density 

multiple macropore columns are shown in Figures 3.10 and 3.11, respectively. The 

posterior distributions show evidence of bi- and multi- modal nature for certain soil 

hydraulic parameters. An explanation for the occurrence of multiple modes in the 

posterior is the inherent structure of the prior distribution. Multivariate normal priors can 

result in multimodal or student-t type of posterior distributions [Escobar and West, 

1995]. 

For the soil column data, the different modes suggest that the experimental data 

are coming from two (or three) sets of population, which represent the different retention 

and hydraulic conductivity functions. de Rooij et al. [2004] obtained different modes 

with the same parametric distribution for soil hydraulic parameters of the plough layer 

and the subsoil thereby reflecting different soil depths and different retention functions. 

This result can be transferred here to suggest that these modes are related to the different 

domains of the dual-permeability system. The relative dominance of the matrix, 

macropore, and interface regions is easy to discern in the histograms. Specifically, in the 

drainage experiments of the single and high density multiple macropore columns, the 

macropores are drained first followed by the matrix-macropore interface and then by 

pores of the matrix domain. Therefore, the existence of three modes in Ksm, Ka, θsf, and lf 
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for the single macropore column, and in Ka, θsm, θsf, nf, and lf for the high density 

multiple macropore column suggest the participation of these parameters in controlling 

flow processes through the matrix, macropore and interface regions. Note that the 

parameters showing bimodality such as αm, αf, and nf for the single macropore column, 

and Ksm and αf for the high density multiple macropore column belong to matrix and 

macropore domains only. This suggests that apart from the conductivity parameter of the 

matrix-macropore interface (Ka) and the tortuosity of the macropores (lf), soil hydraulic 

parameters of matrix and macropore domains also play an important role in regulating 

the flow through the interface region. 

 

Table 3.6: Summary of posterior distributions for the soil hydraulic parameters 

using the AMCMC algorithm. 

Dual permeability parameters 
Single Macropore 

column 
Low density 

Macropore column 
High density 

Macropore column 
Mean Variance Mean Variance Mean Variance 

Matrix or 
immobile 

region 

θsm (-) 0.457 0.024 0.304 0.054 0.413 0.024 

αm (cm-1) 0.070 0.027 0.107 0.020 0.060 0.026 

nm (-) 1.725 0.323 1.904 0.320 1.663 0.342 

Ksm (cm.h-1) 0.434 0.091 2.097 1.002 2.603 1.020 
Macropore or 
mobile region 

θsf (-) 0.256 0.046 0.226 0.020 0.433 0.029 

αf (cm-1) 0.058 0.026 0.021 0.015 0.061 0.034 

nf (-) 2.220 0.237 2.302 0.223 2.258 0.285 

Ksf  (cm.h-1) 2.518 1.092 3.871 1.518 3.530 1.326 

lf (-) 0.494 0.028 0.530 0.029 0.510 0.028 
Interface 
region Ka (cm.h-1) 0.524 0.034 2.508 1.029 2.311 1.001 

 

Table 3.6 summarizes the posterior mean and variance of the various dual 

permeability parameters for drainage experiments of the single and multiple macropore 



99 
 

 
 

columns using the AMCMC algorithm. Since MH algorithm produces incorrect posterior 

means and large variances for certain highly-correlated variables, these results are not 

presented here. It is important to note that same initial parameters were employed for all 

soil columns and the only difference between them was in the number of macropores 

and therefore, in geometry-based interface parameters (Table 3.2). The results presented 

in Table 3.6 illustrate that we end up with different parameter means for the different 

experimental columns. Most importantly, the posterior means of Ks parameter for the 

matrix, macropore and interface regions show similarity between the low- and high-

density macropore columns, and are consistently lower for the single macropore column. 

Also, saturated hydraulic conductivity for the macropore domain (Ksf) is found to have 

the highest posterior variance for all soil columns. This suggests that saturated hydraulic 

conductivity parameter is influenced by macropore density. Mild non-equilibrium 

conditions observed in single macropore column are reflected through low posterior 

mean of Ks parameters for all three regions. Results from the previous chapter also 

indicate the need to adjust saturated hydraulic conductivity parameter (Ksm) to account 

for an increase in macropore density and to correctly predict flow through the structured 

soil system. 

3.6.5 Comparison with deterministic approach  

For the sake of comparison with the stochastic/Bayesian approach, a 

deterministic framework is applied using a similar weighted least squares approach as 

described in equation 3.12: 

    2
1 ,1

 rwv
jn

i ji

m

j j 
                   (3.18)  
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where wij’s are equal to one (as in the stochastic approach), m is the number of different 

sets of measurements, nj is the number of observations in a particular measurement set 

such that the total number of observations N (in equation 3.12) is a summation of nj (for 

j=1,2,…,m). An additional set of weights (vj) associated with each measurement set is 

used in the deterministic approach. The weighting elements vj are inversely related to 

measurement variances (σj
2) and number of data (nj) [Clausnitzer and Hopmans, 1995]: 

2

1

jj

j
n

v


                      (3.19)  

An advantage of the Bayesian approach is that it integrates out the error related to 

measurement variances (equation 3.14). As mentioned in § 3.6.4, the deterministic 

approach resulted in similar parameters for all soil columns except the interface 

parameters (Table 3.2) and suggested changes to Ksm for incorporating the effect of 

macropore density (as also indicated in the previous chapter). On the other hand, the 

Bayesian framework resulted in consistently lower posterior means for Ks parameters for 

all regions of the single macropore column as compared to the multiple macropore 

columns. Thus, AMCMC suggests that the impact of macropore density be incorporated 

by calibrating saturated hydraulic conductivity parameters for all three regions. Another 

difference between the two approaches is highlighted through hydrologic outputs from 

the soil columns. The Bayesian framework provides a comprehensive evaluation of 

multiple realizations of preferential flow output from the columns using uncertain 

parameters while the deterministic approach provides a single realization of the output 

(Figure 3.9). This single realization does not even lie at the center of the 99% uncertainty 
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bounds obtained through AMCMC because the deterministic approach also analyzes 

parameter tradeoffs due to correlation among DPM parameters. We must mention that 

the Bayesian technique does not consider error related to the model structure. The use of 

a probabilistic framework in this study was solely to emphasize the correlation structure 

of DPM parameters and its effect on posterior parameter values, uncertainty limits, and 

hydrological output. 

3.7 Summary and conclusions 

The applicability of dual permeability models for structured soils is hindered by 

the large number of input parameters, some of which cannot be measured directly 

[Šimůnek et al., 2003]. This study depicts the usefulness of Bayesian methods in 

evaluating parameter uncertainty and its effect on model predictions in a preferential 

flow system that considers 10 out of 17 (or 13 based on degrees of freedom) DPM 

parameters to be random. Bayesian modeling framework is applied using an adaptive 

MCMC scheme and the conventional Metropolis-Hastings algorithm on experimental 

soil columns with different macropore distributions (single macropore, low- and high-

density multiple macropores). The distinguishing feature of the AMCMC algorithm is its 

simultaneous parameter update due to the description of the parameter covariance matrix 

as opposed to the single site update of the MH algorithm. Results indicate that AMCMC 

accelerates convergence of the multi-dimensional dual permeability model for all 

experimental soil columns and identifies marginal posterior distributions even in the 

vicinity of local maxima due to its online updating mechanism. On the other hand, the 

MH algorithm reveals high posterior correlations obtained with respect to θsm with nm 
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and αm, and θsf with αf for different experiments of the soil columns. In terms of 

predicting preferential flow, this study shows that the MH algorithm produces larger 

uncertainties than AMCMC in pressure head and water content profiles at different 

depths of the soil columns. The larger variability near the saturation end of the water 

retention curve using the MH algorithm is related to high correlations with θsf and high 

sensitivity of preferential flow estimates to the saturated water content parameter (θsm). 

It seems that the MH algorithm requires additional experimental datasets or 

supplemental information on parameter covariance structure to resolve these correlations 

efficiently while AMCMC has faster convergence in estimating unique parameters using 

just the information contained in experimental observations. For the dual permeability 

framework, the comparison between the two algorithms highlights the existence of a 

correlation structure among DPM parameters and indicates that the selection of 

parameter sampling algorithms, whether deterministic or stochastic, is paramount in 

obtaining unique DPM parameters. When correlation structure of dual permeability 

parameters is unknown or complex, the parameter sampling schemes should either have 

efficient update mechanisms (e.g. AMCMC) or be supplied with supplemental 

information (e.g. MH) to improve identification of DPM parameters. Other studies have 

also reported that prior knowledge about correlation structure significantly improves 

equifinality of parameter estimates [Flores et al., 2010; Scharnagl et al., 2011]. 

In terms of parameter uncertainty, both order and value of parameters are well-

estimated and within credible limits according to the UNSODA database using the 

AMCMC algorithm [Nemes et al., 1999, 2001]. The effect of macropore density is 
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evident in saturated hydraulic conductivity parameter for matrix (Ksm), macropore (Ksf) 

and interface regions (Ka) as their posterior means are consistently lower for the single 

macropore column as compared to the multiple macropore columns. A high posterior 

variance found in Ksf also reflects higher uncertainty in the consistency of this parameter 

across soil columns with changing macropore density. Our previous chapter also 

emphasizes the need to account for changes in macropore density through some 

parameters of the dual permeability model. Histograms of certain parameters are found 

to display bi- or tri- modal characteristics. We believe that this is not a peculiarity of the 

posterior distribution but reflects the sequence of flow processes of the matrix, 

macropore, and/or the interface region. This is similar to observations in natural systems, 

where macropores are predominantly active at and near saturation, the micropores get 

active at a relatively lower pressure, and the interface at a variety of pressure heads in 

between the extremes. Results indicate that the degree of local non-equilibrium in the 

matrix-macropore interface is controlled not only by the transfer term parameter (Ka) 

and macropore tortuosity (lf) but also by other parameters governing the shape of water 

retention curves for the matrix and macropore domains. This result is important from the 

perspective of understanding the physical meaning and effect of dual permeability 

parameters, and incorporating uncertainty in certain parameters to better account for 

lateral flow processes through the matrix-macropore interface region. 

We must note that theoretical concepts derived from this one-dimensional 

column study are applicable to multi-dimensional settings of structured soils. This is 

because preferential flow causes majority of the flow (disregarding macropore tortuosity 
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and dead ends) to be carried through macropores and fractures, making the flow 

essentially one-dimensional [Flury et al., 1994; Mohanty et al., 1998]. Therefore, 

specific results like existence of correlation among DPM parameters, the need for 

requisite changes to Ks to account for increase in macropore density, and the dominance 

of interface region in any flow process are all transferrable to the field scale. A recent 

study by Kodeŝová et al. [2010] also demonstrates correlations with respect to Ksf with 

Ka, and Ksf with shape parameters of the macropore domain for an experimental field 

setting. In addition, three-dimensional field settings can only enhance the problem of 

correlated parameters by introducing spatial correlation in the added dimension 

[Mallants et al., 1997; Coppola et al., 2009]. 
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CHAPTER IV 

REDOX GEOCHEMISTRY WITHIN HOMOGENEOUS AND LAYERED SOIL 

COLUMNS UNDER VARYING HYDROLOGICAL CONDITIONS  

 

4.1 Synopsis 

A fundamental issue in predicting the fate and transport of contaminants in 

subsurface systems is the complex interaction between transport and redox processes. 

These predictions are further complicated by variable flow dynamics, transient redox 

states, and structural heterogeneity of the unsaturated zone. Thus, the objective of this 

study is to identify the dominant biogeochemical processes and evaluate the effect of 

varying hydrologic conditions on these processes in soil columns with known structural 

heterogeneity. In particular, underlying redox processes and hydrological variations 

within repacked homogeneous sand and loam columns are compared with a layered 

sand-over-loam configuration. A principal component analysis (PCA) is performed to 

infer the dominant redox processes, and HP1 modeling is used to conduct numerical 

perturbations corresponding to rainfall intensity, water chemistry (pH), and hydrologic 

boundary conditions to analyze the variations within these dominant processes.  

PCA results indicate that the dominant process controlling biogeochemical 

variations is advective transport in the homogeneous sand column, advective transport 

and oxidation of iron sulfide in the homogeneous loam, and sulfate dynamics at the 

textural interface in the layered column. HP1 findings suggest that redox gradients in the 

homogeneous columns are controlled by the type of hydrologic boundary condition 
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(infiltration, drainage, etc.) whereas textural layering is paramount in controlling redox 

gradients in the layered sand-over-loam column. This textural interface enhances 

biogeochemical activity in the layered column as compared to the homogeneous 

columns and highlights the need to incorporate structural heterogeneity in contaminant 

fate and transport models. A conceptual model is described for such structurally 

heterogeneous variably-saturated media that can account for distinct water chemistries 

across similar heterogeneous formations (layered interfaces, clay lenses, etc.). 

4.2 Introduction 

Contamination of subsurface water resources is a significant environmental 

concern. Much of this contamination occurs in the unsaturated zone in the form of 

leaking underground storage tanks, municipal solids and hazardous waste landfills, 

waste management sites, unlined pits, ponds, and lagoons, household septic systems, etc. 

[LaGrega et al., 1994; National Research Council, 1994]. Several physical and 

biogeochemical processes (dilution, precipitation, adsorption, redox transformation, 

diffusion, etc.) have the ability to control and attenuate contamination [Bagchi, 1987; 

Christensen et al., 1994]. However, there is a general lack of knowledge about the 

understanding of coupled hydrological, microbial, and geochemical processes or key 

biogeochemical parameters that can trigger, sustain or discontinue biodegradation in 

subsurface systems.  

Biodegradation of contaminants in the unsaturated zone is governed by the 

presence of electron acceptors, nutrients, and growth and decay of microorganisms. 

Theoretically, in closed groundwater systems, redox conditions can indicate which 



107 
 

 
 

biogeochemical transformations can occur, and the progression of redox zones is based 

on thermodynamic energy yields as: aerobic respiration, nitrate reduction, manganese 

reduction, iron reduction, sulfate reduction, and methanogenesis [Champ et al., 1979; 

Chapelle, 2001; Megonigal et al., 2004]. However, studies have found that formation of 

redox zones could be simultaneous and non-sequential in dynamic systems [McGuire et 

al., 2000, 2002]. In unsaturated zones, hydrologic and geochemical conditions are time-

variant and can affect the redox reactions occurring in situ. For example, Scholl et al. 

[2006] studied the impact of seasonal rainfall events on redox processes at an alluvial 

aquifer contaminated with leachate from an unlined municipal landfill. They concluded 

that sulfur (and possibly nitrogen) redox processes were directly related to recharge 

timing, and that seasonal rainfall events were significant drivers of biodegradation 

processes. Similarly, Han et al. [2001] observed that the wetting-drying moisture regime 

in arid soils resulted in redistribution and fractionation of heavy metals such as Ni, Zn 

and Cu. Thus, the variability of soil moisture regime and rainfall recharge events of the 

unsaturated zone are all dominant controls on soil redox potential and can govern the 

transport and release of metals and contaminants in subsurface systems [Abrams and 

Loague, 2000].  

Elemental speciation and mobility of metals is also affected by pH variation in 

soils.  Mayer et al. [2001] treated chromium contaminated waters by increasing the pH 

of groundwater using a zero-valent iron barrier at the Elizabeth City site. Similarly, 

Jansen et al. [2002] investigated the effect of small pH changes (3.5-4.5) on soluble 

complexation of Fe2+, Fe3+ and Al3+ with dissolved organic matter. They concluded that 
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pH and redox potential have serious implications for promoting or reducing the mobility 

of these metals in soils. Previous studies have indicated that the influence of pH and 

even small variations in redox conditions can have drastic effects on sorptive properties 

and transport of metals and contaminants [Masscheleyn et al., 1991; Cao et al., 2001]. It 

is therefore important to develop an understanding of the complex interactions between 

hydrological variability (rainfall events, pH, etc.) and redox conditions in unsaturated 

zones.  

Apart from the variably-saturated conditions, fate and transport of contaminants 

in the unsaturated zone is further complicated by subsurface heterogeneity. 

Heterogeneity in the form of interfaces has been studied under various experimental and 

field scenarios. Interfaces can be defined as transition zones between distinct water 

masses (e.g., recharge water-contaminant plume), lithological variations (e.g., sand-clay 

lens), or sediment-water boundaries (e.g., contaminant plume fringe). The most 

important aspect of an interface is that mixing between waters is a driver of 

biodegradation processes [Baez-Cazull et al., 2007; Kneeshaw et al., 2007]. As a result, 

most biogeochemical processes are strongly affected by layering and interfaces. For 

example, McGuire et al. [2005] studied the impact of a moderate-sized rainfall event on 

redox processes at a shallow, sandy aquifer contaminated with petroleum hydrocarbons 

and chlorinated solvents. They concluded that recharge effects on progression of redox 

zones existed primarily at the interface between infiltrating water and the aquifer, and 

not at the average aquifer scale. Van Breukelen and Griffioen [2004] also analyzed redox 

reactions at the top fringe of a landfill leachate plume in Banisveld, Netherlands. They 
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suggested that the plume fringe is an important zone for degradation of dissolved organic 

carbon but secondary redox reactions like methane oxidation can reduce the potential of 

natural attenuation in these zones. Similarly, wetland-aquifer interfaces have been 

identified as important zones of biogeochemical cycling and secondary redox reactions 

[Baez-Cazull et al., 2007, 2008]. Although previous studies have analyzed the 

importance of interfaces and heterogeneous mediums, little information is available on 

redox processes across textural boundaries under variably-saturated conditions.  

Several characteristics of the unsaturated zone add complexity to modeling and 

understanding biogeochemical processes. First, subsurface heterogeneity can manifest 

itself in the form of variable solid-phase constituents, lithology, microbial population, 

and/or physical features such as macropores, soil type, textural layering. Second, 

unsaturated zone processes are complicated by soil moisture conditions, pH variations, 

and seasonality of flow. Therefore, the purpose of this study is to isolate and understand 

the contribution of various hydrological conditions that can trigger, sustain, or 

discontinue the biogeochemical processes in experimental soil columns with 

homogeneous and layered configurations. Thus, this study combines the effect of 

subsurface heterogeneity (textural interface) with hydrologic variability to understand 

the complex interaction between transport and redox processes in the unsaturated zone. 

The objectives of this study are: i) to understand the dominant processes controlling 

biogeochemical variations in homogeneous sand, homogeneous loam, and layered sand-

over-loam soil columns, and ii) to evaluate and compare the effect of hydrologic 
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perturbations in terms of variable boundary conditions, pH, and rainfall intensity on 

redox conditions in homogeneous and layered columns. 

4.3 Experimental procedures 

4.3.1 Site description   

The Norman Landfill is a municipal solid waste landfill that operated from 1922 

to 1985 in the city of Norman, Oklahoma (Figure 4.1). The site sits on permeable 

Canadian River alluvium which is about 10 to 15 meters thick and overlies a low-

permeability shale and mudstone confining unit known as the Hennessey Group. The 

aquifer material is predominantly sand and silty sand with intermittent mud layers and 

clay lenses [Scholl and Christenson, 1998]. Aquifer mineralogy is comprised of quartz, 

illite-smectite, feldspars, and minor calcite and dolomite for the sand layers, and higher 

clay content for the mud layers [Breit et al., 2005]. Authigenic constituents in the aquifer 

include iron monosulfide, pyrite, barite, and ferric oxides, with ephemeral surface 

accumulations of mirabilite and gypsum [Tuttle, 2009]. Figure 4.1 also depicts an 

adjacent abandoned river channel known as the slough which was intermittently exposed 

to landfill leachate [Becker, 2002].  
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Figure 4.1: Location of the Norman Landfill site. Modified from Scholl and 

Christenson [1998]. 
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The Norman Landfill has been designated as a U.S. Geological Survey research 

site and active investigations on the biogeochemistry of the leachate plume have been 

conducted since 1995. Research indicates that the groundwater between the landfill and 

the Canadian River is contaminated, with toxicity diminishing as distance from the 

landfill increases [Bruner et al., 1998; Cozzarelli et al., 2000; Harris et al., 2006]. The 

biogeochemistry of the site indicates sulfate reduction, iron reduction, and 

methanogenesis to be important processes for degradation of organic matter [Cozzarelli 

et al., 2000; Eganhouse et al., 2001; Grossman et al., 2002]. Recharge from 

precipitation and interaction of groundwater with the unsaturated zone control the 

availability and reoxidation of electron acceptors [Scholl et al., 2006; Baez-Cazull et al., 

2008]. Soil cores were collected from unsaturated zone of the slough and the alluvium, 

and repacked to form laboratory soil columns (Figure 4.1). 

4.3.2 Soil column setup 

Three soil columns were constructed to understand the underlying redox 

processes and to evaluate the effect of layering: a homogenized fine-grained sand, 

homogenized organic-rich loam, and a sand-over-loam layered column (Figure 4.2). The 

soil cores collected from the Norman landfill site were air-dried, ground, and repacked 

using a piston compactor to attain a dry bulk density of 1.4 Mg/m3 for sand and 1.0 

Mg/m3 for loam soil columns. The cylindrical soil columns were 40 cm in length and 15 

cm in diameter. The layered column had 18 cm of sand over 22 cm of loam.  
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Figure 4.2: Schematic of a) the homogenous sand, homogeneous loam, and layered 

sand-over-loam columns with description of the modeling domains (dashed red 

lines) (Modified from Hansen et al., 2011), b) the experimental layout of the 

homogenous sand column, c) the experimental layout of the layered column, and d) 

the collocated probe. 
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Rainwater was introduced using a rainfall simulator through a matching diameter 

disc (15 cm) installed with gauge needles [Köhne and Mohanty, 2005]. Boundary 

conditions were maintained using a tension infiltrometer at the top of the soil column. 

Tensiometer and time-domain reflectometry (TDR) probes were installed at various 

depths throughout the columns to monitor pressure head and water content profiles, 

respectively (Figure 4.2).   

For geochemical analyses, lysimeters with amber vials were installed at various 

depths in the columns (Table 4.1) and used to collect low volume porewater (less than 7 

ml). This porewater was used to analyze pH, alkalinity, and concentrations for major 

anions (Cl-, Br-, SO4
2-, and NO3

-) and cations (Ca2+, K+, Na+, and NH4
+). Reduced 

species of iron and sulfur, and redox potential (Eh) were quantified voltammetrically 

using a hanging drop mercury electrode. A fraction collector was used intermittently to 

analyze concentration profiles from the bottom of the soil columns. Microbiological 

analysis and soil imaging were done on soil cores extracted from the columns after the 

experiments were completed. These basically enumerated the type and most probable 

number (MPN) for iron and sulfate reducing bacteria [Hansen et al., 2012a]. Further 

information on the experimental setup and analyses can be obtained elsewhere [Hansen 

et al., 2011]. 
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Table 4.1: Location of collocated probes (tensiometers, TDRs, and lysimeters) from 

the top of the soil columns. 

Columns Depth of collocated probes in cm 

Homogeneous Sand 6, 16, 17, 27 

Homogeneous Loam 6#, 16#, 17, 27, 32 

Layered Column 6#, 11, 17, 19, 28, 36 

# Collocated probe not working at the given depth. 
 

4.4 Modeling framework 

4.4.1 Statistical analysis  

Exploratory data analysis is performed on all geochemical measurements as well 

as TDR and tensiometer data to establish normality conditions (or lack thereof). 

Probability density functions based on the Kolmogorov-Smirnov test reject the null 

hypothesis and indicate non-normal distributions for almost all variables. As a result, 

only conservative, non-parametric statistics are used for analyzing correlations among 

physical (e.g. flow rate, hydraulic conductivity) and chemical factors (e.g. aqueous 

concentrations, pH, Eh). Standardization of the data is done using z-scores and a 

Spearman’s Rho correlation is performed on the dataset. Correlations with rho values 

greater than 0.5 and p-values less than 0.0001 are considered significant as large datasets 

typically result in lower p-values [Baez-Cazull et al., 2008; Hansen et al., 2012b]. 

Principal component analysis (PCA) is employed to identify trends and interpret 

processes that could explain the most variability within the dataset. A varimax 

orthogonal rotation is used in this study and factors are assigned to dominant processes 
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that highlight the differences between homogeneous and layered soil columns. The 

selection of factors is based on eigenvectors whose eigenvalues are greater than one 

according to the Kaiser criterion [Kaiser, 1960].  

4.4.2 Simulation model 

This study uses HP1 for modeling observed infiltration and drainage events as 

well as for simulated perturbation experiments to derive an understanding of the 

underlying redox processes within the soil columns. HP1 integrates the flow and solute 

transport code of HYDRUS-1D with geochemical simulations of PHREEQC [Parkhurst 

and Appelo, 1999; Jacques and Šimůnek, 2005; Šimůnek et al., 2008]. The combined 

HP1 model permits simultaneous simulations of variably-saturated water flow, 

multicomponent solute transport, and coupled reactive transport under a broad range of 

transient flow conditions and heterogeneous soil profiles. HP1 uses an operator-splitting 

approach where flow and solute transport are first implemented using the Richards’ 

(equation 4.1) and convection-dispersion equations (CDE) (equation 4.6), respectively, 

and then equilibrium and kinetic biogeochemical reactions are solved: 

 
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where z is the vertical coordinate positive upwards [L], t is time [T], θ is the volumetric 

water content [L3L-3], h is the soil water pressure head [L], K is the unsaturated hydraulic 

conductivity [LT-1], and S is a sink term [L3L-3 T-1]. To describe the relation between 

θ(h) and K(h), which is required to solve the Richards’ equation, a set of closed-form 

equations is used [van Genuchten, 1980]: 
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where θr and θs are the residual and saturated water contents [L3L-3], respectively, Ks is 

the saturated hydraulic conductivity [LT-1], α is a shape parameter related to the inverse 

of air-entry suction [L-1], n is a measure of the pore-size distribution [-], l is a pore 

connectivity parameter [-], and Se is the effective saturation. 

Solute transport in HP1 is achieved by writing the geochemical reactions in terms 

of aqueous master species and their stoichiometric components [Morel and Hering, 

1993]: 
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where Nm is the number of aqueous master species, i=1,…., Ns, Ns are the number of 

aqueous secondary species, vji are the stoichiometric coefficients in the reaction, and Aj
m 

and Ai are the chemical formula for the master and secondary species, respectively. CDE 

for each aqueous component is then described as [Mayer, 1999; Jacques et al., 2008]: 
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where j=1,…., Nm, D is the dispersion coefficient in the liquid phase [L2T-1], q is the 

volumetric flux density [LT-1], S is the sink term (from equation 4.1), Cr,j is the total 

concentration of the sink term [ML-3], Ro,j is the source/sink term that represents aqueous 
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kinetic reactions and/or heterogeneous equilibrium and kinetic reactions, and Cj is the 

total liquid concentration defined as: 

i

N

j ijjj cvcC
a

 


1 ,                     (4.7)  

The non-iterative sequential approach of the HP1 simulator is described in detail 

by Jacques et al. [2006]. 

4.4.3 Numerical implementation  

Observed experiments and simulated perturbations are used to infer the dominant 

processes causing biogeochemical variations in all experimental columns. The soil 

columns are represented by a one-dimensional mesh with 100 elements. An initial time-

step of 0.5 min, and minimum and maximum time steps of 0.05 and 5 min are used for 

all experiments. Boundary conditions for the soil columns are based on the transient 

conditions observed at the uppermost and lowermost collocated probes within the 

columns. As the uppermost probe malfunctioned, the top of the soil profile is truncated 

to the depth of the next working probe (Table 4.1). Similarly, to assign a bottom 

boundary condition, 13, 8 and 4 cm of the homogeneous sand, homogeneous loam, and 

layered columns are respectively truncated based on the location of the lowest probe. 

The numerical domain and modeling depth for all soil columns are shown in Figure 4.2. 
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Table 4.2: Boundary conditions (BC) as specified at the soil surface (z=L) and bottom of the soil profile (z=0) for 

different experiments of the soil columns*. 

Columns Experiment Upper BC Lower BC 

Homogeneous 
sand 

Infiltration  
















e

er

r

Lz

tt

ttt

tt

th

,67.2
,

0,37.1


 
 

















e
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r

z
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ttt

tt

th

,86.2
,

0,18.0

0 
 

Numerical 
Perturbation## hz=L(t) = 10 cm, 0<t<te qz=0(t) = 0, if hz=0(t) < 0 hz=0(t) = 0, else# 

Drainage  
















e
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r
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,

0,75.2

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
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Homogeneous 
loam 

Infiltration  
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








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
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

 
 

















e

er

r

z

tt

ttt

tt

th

,31.26
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Numerical 
Perturbation## hz=L(t) = -5 cm, 0<t<te qz=0(t) = 0, if hz=0(t) < 0 hz=0(t) = 0, else# 

Layered sand-
over-loam 

column 

Infiltration  









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
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Drainage  
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All columns Constant flux qz=L(t) = -1 cm/min, 0<t<te qz=0(t) = 0, if hz=0(t) < 0 hz=0(t) = 0, else# 
*Symbols: h, pressure head; q, flux; z, vertical coordinate positive upwards; L, column length; t, time; with BCs specified as h values linearly 
interpolated for time, where tr represents the time of tensiometer reading, and te represents the duration of the experiment. 
# These conditions represent a seepage face boundary condition [Šimůnek et al., 1998].  
## Initial conditions correspond to the infiltration (drainage) experiment for perturbation to the homogeneous sand (loam) column. 
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Upper and lower hydraulic boundary conditions for observed infiltration and 

drainage experiments are set according to the transient flow conditions of the 

experiments (Table 4.2). Observations at different tensiometer locations in the soil are 

used to describe initial hydraulic conditions at various depths in the soil columns. These 

can be obtained from Table 4.2 for time t=0. For example, initial pressure head condition 

for a drainage experiment of the homogeneous loam column is given by: 

 
















0,49.22
0,

,75.26
0

z

zd

dzL

th r

r

z                    (4.8)  

where L represents the truncated length of the soil column [L], and dr represents the 

depth at which a working tensiometer is installed [L]. 

Solute analysis includes thirteen chemical species - Ba2+, total carbon, Ca2+, Cl-, 

Fe2+, Fe3+, K+, Mg2+, Na+, NH4
+, NO3

-, total P, and SO4
2-. Ambient air temperature 220C 

(±2) as observed during the experiment is used for geochemical modeling. Initial 

chemical concentrations in the columns are based on geochemical analyses conducted on 

the soil cores (Table 4.3). Appropriate amounts of barium and carbon are also included 

in this solution. Exchanges among minerals like greigite (Fe3S4), pyrite (FeS2), 

mackinawite (FeS), and Fe2+ and S2- ions are included in the model. The top chemical 

boundary condition is associated with the rainwater composition (Table 4.4) while the 

bottom boundary is free drainage. 
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Table 4.3: Initial geochemical composition of the soil columns. 

Columns Constituent type Concentration (mg/l) 

Homogeneous sand 

pH 8.5 

Ca 1688 

K 19 

Mg 56 

Na 154 

P 4 

S 40 

Fe 2.83 

NO3
- - N 4 

Homogeneous loam 

pH 7.9 

Ca 24833 

K 86 

Mg 802 

Na 374 

P 5 

S 694 

Fe 88.3 

NO3
- - N 2 

 

Table 4.4: Rainwater composition from standards prepared by the National Bureau 

of Standards (SRM 2694). 

Constituent type Concentration (mg/l) 

pH 4.3 

Ca 0.014 

Cl  0.24 

K 0.052 

Mg 0.024 

Na 0.205 

SO42- 2.69 

F 0.054 

NO3
-  0.501 
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4.4.4 Model parameters 

The main focus of this study is to analyze dominant biogeochemical processes 

and the effect of hydrological conditions on redox processes within homogeneous and 

layered soil profiles. Therefore, only results corresponding to forward simulations of 

water flow and transport of major cations and anions for the experimental soil columns 

will be described in detail. The soil water retention parameters for forward modeling are 

either obtained from laboratory measurements or inversely estimated using HYDRUS-

1D. Saturated hydraulic conductivity parameters are obtained from soil cores, and matrix 

tortuosity parameters are fixed at 0.5 for both homogeneous sand and loam columns 

[Mualem, 1976]. In organic degradation studies, water retention characteristics of the 

soils have been reported to change [Kalbitz et al., 2003; Dexter et al., 2008]. Therefore, 

inverse estimation of some of the parameters (θr, θs, α, and n) is conducted using 

transient infiltration and drainage experiments of the soil columns. Table 4.5 enlists the 

soil water retention parameters for both homogeneous sand and loam configurations.  

Inverse analysis reveals a higher n value for the homogeneous loam column as compared 

to the sand column. Various studies have shown that higher organic content leads to an 

increase in porosity, which is reflected here by the soil retention parameter n [Haynes 

and Naidu, 1998; Zhang et al., 2007]. As mentioned earlier, the organic-rich loam was 

collected from the leachate contaminated wetland. 
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Table 4.5: Water retention characteristics of the homogeneous sand and loam 

configurations [Hansen et al., 2011]. 

Column θr (-) θs (-) α (cm
-1

) n (-) Ks (cm.min
-1

) l (-) 

Homogeneous sand 0.027 0.321 3.18 1.60 0.636 0.50 

Homogeneous loam 0.015 0.385 2.02 1.86 0.141 0.50 

 

4.5 Results and discussion 

4.5.1 Principal component analysis 

Spearman’s rho correlation is unable to provide information about dominant 

biogeochemical processes within the columns as no significant correlations are found 

between any variables. As a result, factor analysis was conducted to identify dominant 

factors that can explain the variability within the experimental datasets of homogeneous 

sand, homogeneous loam and layered soil columns. PCA was performed on hydrological 

(depth, pressure head, water content values) and geochemical parameters (Cl-, Br-, SO4
2-, 

NO3
-, acetate, pH, alkalinity, K+, Ca2+, Na+, Mg2+, NH4

+ and Eh). Table 4.6 indicates the 

constituents of each factor and their contribution is indicated in brackets. Only 

constituents with significant contributions (i.e. factor loadings > ±0.75) are reported. See 

appendix for other consitutents. 

For the homogeneous sand column, the maximum variability (95.45%) of an 

infiltration experiment is explained by a single factor which is bromide. Since bromide is 

considered to be a conservative tracer, the process assigned to this factor is advective 

transport.  
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Table 4.6: Varimax orthogonal factor rotation obtained from principal component 

analysis of infiltration experiments of the soil columns. 

Column Factor Percent 
Constituent 

(loadings) 

Homogeneous sand Factor 1 95.45 Br 
-(0.98) 

Homogeneous loam 

Factor 1 59.62 SO4
2- (0.95) 

Factor 2 34.76 Br- (0.88) 

Factor 3 3.86 Alkalinity (0.82) 

Layered column 
Factor 1 74.62 Alkalinity (-0.70), 

SO4
2-

 (-0.50) 

Factor 2 24.42 SO4
2- (0.90), 

Alkalinity (-0.80) 
 

The most dominating factor of the homogeneous loam column has a positive 

loading of sulfate, which is interpreted to be FeS oxidation and/or sulfate mineral 

dissolution. Our interpretations are consistent with those reported by Baez-Cazull et al. 

[2008] in their analysis of the Norman Landfill dataset of 3 years. They suggested that 

positive loading of sulfate corresponds to sulfide oxidation and observations at the 

landfill site indicate that a decrease in water table re-oxidizes iron sulfide minerals 

thereby providing a fresh supply of sulfate. The second factor of the homogeneous loam 

column includes bromide and indicates advective transport. The third factor has a 

positive loading of alkalinity and also suggests advection processes. This is consistent 

with associations reported by Baez-Cazull et al. [2008] in evaluating dominant 

biogeochemical processes at the Norman landfill site. In our homogeneous loam column, 

it seems that the infiltrating water is oxidizing FeS minerals. This suggests that this 

column is affected by coupled geochemical reactions (iron-sulfide oxidation) and 

hydrological transport.  
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The infiltration experiment of the layered column is associated with two factors 

that are both affected by sulfate and alkalinity but to different extents. A negative 

loading of alkalinity in both factors is associated with decrease in water flow with depth 

and could be attributed to ponding at the sand-loam interface of the layered column. This 

is consistent with our previous interpretation that alkalinity is related to advection 

processes. Sulfate also has a negative loading in factor 1 of the layered column and 

could be connected to sulfate reduction. Previous research has indicated that the first 

factor is a good indicator of bacterial degradation processes [Dauwe et al., 1999; 

Sheridan et al., 2002]. Our study confirms this information as sulfate reduction is an 

important biogeochemical process for both our layered column and the Norman landfill 

site [Cozzarelli et al., 2000; Grossman et al., 2002; Hansen et al., 2012a]. A positive 

loading of sulfate in factor 2 indicates secondary redox processes such as FeS oxidation 

and/or sulfate mineral dissolution. It seems that this column is strongly affected by 

impedance of water flow at the interface, indicated by negative loading of alkalinity in 

both factors, and redox cycling of sulfur, indicated by changing signs of sulfur loading. 

This dominance of interface over other biogeochemical processes reflects the importance 

of including subsurface heterogeneity in contaminant fate and transport studies in the 

vadose zone. 

 



126 
 

 
 

 

Figure 4.3: Simulated and observed time series of a) pressure head, b) pe, c) NO3
-
, 

d) SO4
2-

, e) Fe
2+

, and f) Fe
3+

 concentrations for a transient drainage experiment of 

the homogeneous sand column. Solid lines indicate model predictions, solid squares 

indicate observations, and color scheme corresponds to time. Note that 

observations are not available for all times. 
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4.5.2  Effect of hydrologic conditions 

Experimental observations are analyzed and compared with HP1 modeling 

simulations to understand the dominant redox processes occurring within the 

homogeneous and layered soil columns, and numerical perturbations are used to 

illustrate the effect of hydrologic variability on these dominant redox processes. pe, 

which is a measure of electron activity, and Eh, which is the redox potential, are used 

throughout this study to describe redox states within these columns. 

4.5.3 Homogeneous sand column 

Predictions of forward modeling and observations of flow experiments of the 

homogeneous sand column are documented briefly (Figures 4.3 and 4.4). Figure 4.3 

depicts the dominant processes in the homogeneous sand column while Figure 4.4 

evaluates the effect of hydrologic perturbations on these dominant processes. Figure 4.3 

demonstrates variations in simulated and observed pressure head, pe, and concentration 

profiles of NO3
-, SO4

2-, Fe2+, and Fe3+ for the vertical depth of the homogeneous sand 

column during a transient drainage experiment. HP1 simulations suggest that NO3
- 

reduction (Figure 4.3c) is occurring below 5-7 cm in the column where predicted nitrate 

concentrations first reach a peak value, then decrease, and the remaining concentrations 

get transported through the column. 
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Figure 4.4: Simulated time series of a) pressure head, b) NO3
-
, c) Fe

2+
, and d) Fe

3+
 

concentrations for perturbed drainage experiment of the homogeneous sand 

column. Solid lines indicate model predictions, and color scheme corresponds to 

time. 

 

Forward modeling further indicates iron reduction to be occurring in the top 0-5 

cm of the homogeneous sand column where Fe2+ concentrations increase with time 

(Figure 4.3e) and Fe3+ concentrations decrease (Figure 4.3f). Figure 4.3d shows that 

sulfate concentrations increase at the top boundary and then remain fixed at 22 mmol/l 

for the entire duration of the transient drainage experiment. Therefore, HP1 modeling 

indicates thermodynamic controls where nitrate and iron reduction are occurring in the 

column while sulfate is just being transported through the column. These predictions are 

confirmed by simulated pe (Figure 4.3b) which is close to -2 in the zone of iron 

reduction (0-5 cm) and increases to 8 in the zone of nitrate reduction (5-7 cm). It seems 
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that the depth and predictions of nitrate and iron reduction, presence of Fe2+, and absence 

of sulfate reduction are all being controlled by pe. This is confirmed by numerically 

perturbing the system and introducing a constant head of 10 cm at the top of the soil 

profile (Table 4.2). Figure 4.4 illustrates that the pe variations (under perturbed top 

boundary condition)  are focused around the top 2 cm of the soil column such that iron 

reduction and presence of Fe2+ are concentrated in this particular zone instead of 0-5 cm 

(as in Figure 4.3), and nitrate reduction is observed below 2 cm instead of 5-7 cm in 

Figure 4.3. These results demonstrate that predicted pe is the controlling factor in 

establishing aqueous speciations and geochemical concentrations at different depths 

within the sand column, while predicted pe is regulated by hydrologic boundary 

conditions for this column.  

Observations from the transient drainage experiment in Figure 4.3 suggest that 

nitrate is still present in the system while sulfate has been consumed. Observed pe 

(Figure 4.3b) is also close to -2 and suggests that sulfate reduction is occurring at least 

below 10 cm in this column. This mismatch between observed and predicted 

concentrations can be a result of redox disequilibrium caused by active sulfate reducing 

bacteria (SRB). Observations of SRB have been made in MPN and microbiological 

analysis for this column [Hansen et al., 2012a] and at the Norman landfill site [Beeman 

and Suflita, 1987; Tanner, 1989; Ulrich et al., 2003]. Figure 4.5 illustrates a better 

agreement between HP1 predictions and observations of sulfate concentration and redox 

potential when reaction kinetics for sulfate reduction are considered. A Michaelis-

Menten type relationship is used and the corresponding reaction rate parameters are 
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comparable within an order of magnitude with parameters suggested by Ulrich et al. 

[2003] in their analysis of aquifer sediments for sulfate reduction rates at the Norman 

landfill site. 

 

 

Figure 4.5: Simulated and observed sulfate concentration and pe a) comparing 

model predictions before and after considering reaction kinetics, and b) considering 

reaction kinetics only for the homogeneous sand column. Solid lines indicate model 

predictions without reaction kinetics, dashed lines indicate model predictions 

considering reaction kinetics, solid squares indicate observations, and color scheme 

corresponds to time. Note that observations are not available for all times. 
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Figure 4.6: Simulated and observed pressure head profiles for a) infiltration and b) 

drainage experiments of the homogeneous sand column. Solid lines indicate model 

predictions, solid squares indicate observations, and color scheme corresponds to 

depth. Note that observations are not available for all depths. 

 

Figure 4.6 shows pressure head measurements at 6, 16 and 27 cm for transient 

infiltration and drainage experiments. The estimated soil hydraulic parameters for the 

homogeneous sand column are able to reproduce sufficient details of the pressure head 

profiles. Separate adjustments of parameters for the infiltration and drainage experiments 

are not done to maintain consistency in parameters. In summary, HP1 modeling 

indicates that hydrologic perturbations especially boundary conditions affect redox 

processes (such as initiation of nitrate reduction) in the homogeneous sand column while 

experimental observations indicate redox disequilibrium with respect to sulfate reduction 

within the column. 
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Figure 4.7: Simulated and observed time series of a) pressure head, b) NO3
-
 

concentrations, c) Fe
2+

 concentrations, d) Fe
3+

 concentrations, e) SO4
2-

 

concentrations, and f) pe for a transient infiltration experiment of the homogeneous 

loam column. Solid lines indicate model predictions, solid squares indicate 

observations, and color scheme corresponds to time. Note that observations are not 

available for all times. 
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4.5.4 Homogeneous loam column 

An observed infiltration experiment under transient flow conditions is used to 

infer the aqueous speciation (Figure 4.7), and a perturbed drainage experiment is used to 

evaluate the effect of hydrologic variations on the redox geochemistry of the 

homogeneous loam column (Figure 4.8). Model predictions in Figure 4.7 indicate that 

the boundary/hydrologic conditions hold much importance as the initial two times with 

unsaturated conditions (pressure head values < -50 cm in Figure 4.7a) have different 

concentration patterns (e.g., Figure 4.7b, c, e) than later times when pressure head is 

close to saturation. Forward modeling further indicates iron oxidation to be occurring in 

the top 0-3 cm of the homogeneous loam column where Fe2+ concentrations decrease 

(Figure 4.7c) and Fe3+ concentrations increase (Figure 4.7d). This is the reason that Fe3+ 

presence is limited to the top few cms of the homogeneous loam column (Figure 4.7d). 

Figure 4.7c illustrates that Fe2+ that has not been oxidized is transported through the 

profile as is nitrate (Figure 4.7b) which is present in the infiltrating rainwater (Table 

4.4). HP1 results suggest that iron is being oxidized from nitrate. This interpretation is 

confirmed by perturbing the hydrologic conditions and introducing a constant head at the 

top of the soil column for a transient drainage experiment (Table 4.2).  
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Figure 4.8: Simulated time series of a) pressure head, b) NO3
-
, c) Fe

2+
, and d) Fe

3+
 

concentrations (mmol/l) for perturbed drainage experiment of the homogeneous 

loam column. Solid lines indicate model predictions, and color scheme corresponds 

to time. 
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Figure 4.9: Observed gradients of a) NO3
-
 concentrations, b) SO4

2-
 concentrations, 

and c) pe for a transient infiltration experiment of the homogeneous loam column. 

Dashed lines indicate gradients, solid squares indicate observations, and color 

scheme corresponds to time. 
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Figure 4.8a depicts the perturbations induced using initial pressure head 

conditions (solid black line). With ponding conditions, simulations (blue line) at 5 min 

depict an increase in nitrate (Figure 4.8b) and ferrous iron (Figure 4.8c) concentrations. 

The decrease in NO3
- (Figure 4.8b) and Fe2+ (Figure 4.8c) concentrations at all other 

times is related to ferrous iron being oxidized from nitrate and causing an increase in 

Fe3+ concentrations (Figure 4.8d) in the top 1-2 cm of the soil column. 

In the loam column, Figure 4.7 indicates that our predictions are closer to 

observations for both sulfate (Figure 4.7e) and nitrate concentrations (Figure 4.7b) in 

terms of orders of magnitude as compared to the homogeneous sand column. However, 

observation trends corresponding to these suggest a significant decrease in transport 

processes especially in the bottom 5 cm of the modeled column (see Figure 4.9). This is 

consistent with our experimental observations that suggest a decrease in hydraulic 

conductivity with depth due to the presence of FeS precipitates [Hansen et al., 2011]. 

Therefore, the mismatch between trends of sulfate and other data indicates the 

importance of including feedback mechanism from geochemical processes (FeS 

precipitates) to hydraulic transport (reduced advection) to improve model predictions. 

HP1 modeling results indicate iron oxidation from nitrate reduction to be a dominant 

redox process and again emphasize the significance of hydrologic boundary conditions 

for the homogeneous loam column. 
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Figure 4.10: Simulated and observed depth profiles of a) pressure head, b) K
+
, c) 

NO3
-
, d) SO4

2-
, and e) pe for a transient infiltration experiment of the layered 

column (textural layering at 7 cm). Solid lines indicate model predictions, solid 

squares indicate observations, and color scheme corresponds to time. Note that 

observations are not available for all times. 
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4.5.5 Layered sand-over-loam column 

Figure 4.10 illustrates simulation of a transient infiltration experiment of the 

layered sand over loam column. The layering at 7 cm for the simulated 25 cm of the 

column is visible within all graphs as the point of shift in pressure head (Figure 4.10a) 

and concentration profiles (e.g. Figures 4.10b-d). Observations and predictions of nitrate 

(Figure 4.10c) suggest excessive accumulation at the interface, and slow transport in the 

bottom loam layer due to the lower saturated hydraulic conductivity (0.141 cm/min) as 

compared to the top sand layer (0.636 cm/min). HP1 predictions indicate that sulfate 

(Figure 4.10d) is present at different concentrations above and below the 7 cm textural 

interface. Figure 4.11a demonstrates that as time proceeds, more sulfate is accumulated 

above the layering, and is slowly being reduced between 7-10 cm. Below the reducing 

zone, HP1 predictions indicate that sulfate is being transported through the loam layer. 

Modeled Fe2+ profile (Figure 4.11b) suggests that iron reduction is occurring and Fe2+ is 

being transported in the same zones, encompassing slightly larger zones than those 

predicted for sulfate (Figure 4.11a), as Eh conditions for iron reduction are slightly lower 

than for sulfate reduction. The absence of Fe2+ concentrations (Figure 4.11b) in non-

reducing zones indicate the formation of iron sulfide precipitates within the layered 

column which corroborates well with our observations of this column [Hansen et al., 

2012a].  
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Figure 4.11: Time progression of simulated vertical profiles of a) SO4
2-

, and b) Fe
2+

 

concentrations for a transient infiltration experiment of the layered column. Solid 

lines indicate model predictions, and color scheme corresponds to time.  

 

 



140 
 

 
 

 

Figure 4.12: Simulated and observed depth profiles of a) pressure head, b) pe, c) 

SO4
2-

, and d) Fe
2+

 concentrations for a transient drainage experiment of the layered 

column. Solid lines indicate model predictions, solid squares indicate observations, 

and color scheme corresponds to time. Note that observations are not available for 

all times. 
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Predictions for a transient drainage experiment of the layered column confirm the 

presence of iron and sulfate reduction as significant biogeochemical processes for this 

column (Figure 4.12). The regions of iron reduction during drainage (Figure 4.12d) are 

quite similar to the transient infiltration experiment (Figure 4.11b) as peaks in ferrous 

iron concentrations for both experiments are observed above (~5 cm), at (7 cm), and 

below (~9 cm) the interface. HP1 predictions indicate that sulfate (Figure 4.12c) is being 

reduced near the interface and below 13 cm. Predicted pe (Figure 4.12b) confirms 

reducing conditions both above 6 cm and below 15 cm. It is interesting to note that 

predicted pe has a point of inflection at the interface while it is continuously decreasing 

below the interface. Therefore, it seems that the zone of redox perturbation is located 

around the interface at 7 cm. 

Observations of pe (Figure 4.10e) agree with model analysis and indicate 

reducing conditions in the loam layer of the layered column. Observed K+ (Figure 4.10b) 

in the lower layer supports increased potassium uptake due to high microbial activity. 

The mismatch between HP1 predictions and observations of sulfate, potassium and pe 

can again be improved by including reaction kinetics for sulfate reduction processes 

(Figure 4.13). But, notice that pe observations (Figure 4.10e) are close to -20 and 

therefore, require four orders of magnitude higher reduction rates than used for the 

homogeneous sand column to account for the increased sulfate reduction dynamics 

observed in this column. Both experimental observations and HP1 predictions for the 

layered sand over loam column emphasize the importance of including heterogeneity to 
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account for ‘enhanced’ biogeochemical activity (including sulfate reduction) in 

contaminant fate and transport models. 

 

 

Figure 4.13: Simulated and observed sulfate concentration a) comparing model 

predictions before and after considering reaction kinetics, and b) considering 

reaction kinetics only for the layered column. Solid lines indicate model predictions 

without reaction kinetics, dashed lines indicate model predictions considering 

reaction kinetics, solid squares indicate observations, and color scheme corresponds 

to time. Note that observations are not available for all times. 
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Figure 4.14: Time progression of observed and simulated pe (without reaction 

kinetics) for a) infiltration experiment of the homogeneous sand and b) drainage 

experiment of the homogeneous loam column. Solid lines indicate model 

predictions, solid squares indicate observations, and color scheme corresponds to 

time. Note that observations are not available for all times. 

 

 

 

 



144 
 

 
 

4.5.6 Dominant redox controls for homogeneous and layered columns 

It is interesting to note that redox gradients are dependent on hydrologic 

conditions (infiltration, drainage, etc.) for both homogeneous sand and loam columns 

(Figures 4.3, 4.7, and 4.14). Comparing simulated pe for the homogeneous sand column, 

it seems that the infiltration experiment (Figure 4.3b) has a difference in pe only at the 

top 0-3 cm of the column as compared to the drainage experiment (Figure 4.14a). 

Similarly, the infiltration experiment for the homogeneous loam column (Figure 4.7f) 

showcases a difference from the drainage experiment (Figure 4.14b) only in the top 0-3 

cm zone of perturbation (infiltration). However, it is the interface and textural 

heterogeneity of the layered column that exerts control over redox gradients and 

consequently geochemical reactions in the layered configuration. Figures 4.10e and 

4.12b portray that the differences between the redox gradients for the infiltration and 

drainage experiments of the layered column are not limited to perturbation in the top few 

cms (as in homogeneous columns) but showcase completely different profiles. In fact, 

the zones of sulfate reduction (especially below the interface) are completely different 

for the two (infiltration and drainage) experiments.  

Observations of pe used in these figures correspond to short time hydrologic 

experiments and therefore do not vary within all experiments. For example, pe 

observations for infiltration (Figure 4.3b) and drainage events (Figure 4.14a) of the 

homogeneous sand column match completely. The same is true for the layered column 

(Figures 4.10e and 4.12b). However, variations in redox potential with different 

experimental controls (rainfall, drainage, dry spell) have been explored by Hansen et al. 
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[2011] and support our interpretation. We conclude that redox processes in 

homogeneous systems are strongly affected by flow conditions while a layered 

configuration is strongly affected by layering and structural heterogeneity. 

4.5.7 Effect of increased flux and pH 

The effect of increased flux is verified by applying a constant water flux of 1 

cm/min at the top boundary for the duration of the experiment for all soil columns (Table 

4.2). The increased water flux is found to increase the transport of various cations and 

anions in the homogenous sand column, cause higher oxidation of iron in the 

homogeneous loam column, and increase the production of FeS precipitates in the 

layered column. The analysis of hydrologic perturbations in boundary conditions in the 

previous section essentially conveys the same results as that of increased flux in the 

system. However, changes in pH fail to produce any difference in the results of the 

experiments as compared to variation in hydrologic conditions. The infiltrating water pH 

used for initial analysis is 4.3, which is the same as observed in Norman, Oklahoma 

according to the National Bureau of Standards (SRM 2694). When the pH of rainwater is 

increased to 8 or decreased to 4, no major differences in redox gradients or cation and 

anion concentrations within the experimental columns are detected. High pH conditions 

typically promote the precipitation of a number of secondary minerals that usually 

consume alkalinity, and act to buffer further increases in pH [Mayer et al., 2001]. Iron 

sulfide minerals (present in our columns) also provide a strong driving force for 

precipitation of carbonate and hydroxide mineral phases [Stoessell, 1992]. It seems that 
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our experimental columns are buffered with respect to pH, and therefore do not show 

significant variations in chemical concentrations with changes to pH.  

 

 

Figure 4.15: Conceptual model for spatially heterogonous formations in variably-

saturated media. 

 

4.6 Development of a conceptual model 

A conceptual model is presented here that can account for heterogeneous 

formations in variably-saturated media (Figure 4.15). This model is derived from distinct 

water chemistries observed in the layered soil column when different types of 

experiments (infiltration, drainage, perturbation, etc.) are conducted on this column. As 

Figure 4.15 suggests four distinct geochemical zones (colored boxes) can be identified in 

both infiltration and drainage events. These zones or distinct water chemistries can be 

associated with background concentration at the top, followed by a reaction zone which 

is associated with the interface and combines the geochemical zones above and below 



147 
 

 
 

the heterogeneity, and a transport zone that carries either the background concentrations 

or the reaction products through the column. The background concentration zone is 

essentially free of the effects of the interface or the heterogeneous formation (showcased 

by similar colored boxes for both infiltration and drainage events). The reaction zone is 

the area of activity where distinct geochemistry can be encountered both above and 

below the layering or the interface. The lowest zone is the transport zone which is also 

free of the interface effects but can carry reaction products or background concentrations 

depending upon the type of hydrologic conditions. This conceptual model doesn’t 

specify the lengths of the different zones. The extent of the three characteristic zones is 

dependent on the thickness and magnitude of heterogeneity/layering encountered, 

progression of geochemical reactions, and type of perturbation of hydrologic conditions 

within the porous media. This conceptual model can be applied to other subsurface 

heterogeneities such as clay lenses, macropores, etc. and used to describe the formation 

of distinct water chemistries across textural interfaces and other similar heterogeneities. 

4.7 Conclusions 

A conceptual model is presented here that can account for heterogeneous 

formations in variably-saturated media (Figure 4.15). Few studies have evaluated the 

effect of subsurface heterogeneity on transport and redox processes in the vadose zone. 

The vadose zone is subject to large transient variations both in terms of atmospheric 

inputs and subsurface heterogeneity, which can significantly alter the fate and transport 

of contaminants. Therefore, this study aims at identifying the dominant redox processes 

and evaluating the individual contribution of hydrological perturbations (such as pH, 
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flux, and boundary conditions) on these processes in homogeneous versus layered 

systems. The use of soil columns with geochemical (contaminated vs. uncontaminated) 

and textural differences (sand vs. loam) provide insight on the interplay of dominant 

processes in different repacked configurations. The soil cores for the columns were 

obtained from the Norman Landfill site in Norman, Oklahoma which is contaminated 

with landfill leachate. Factor analysis indicates that the dominant process controlling 

biogeochemical variations is different for the different soil columns. Advective transport 

explains the maximum variability in the homogeneous sand column, coupled 

hydrological and geochemical processes control the variability within the homogeneous 

loam column, while the sand-loam interface of the layered column is the dominant 

feature controlling biogeochemical variability within the layered column. 

HP1 simulations indicate thermodynamic control in the homogeneous sand 

column with concentrations of various chemicals changing with (predicted) pe. 

According to HP1 analysis, pe is driven by hydrologic fluxes. Both the observed 

(infiltration and drainage) and numerical perturbation experiments of this column 

suggest that the depth of peak chemical concentrations and sharp redox variations are 

strongly guided by hydrologic boundary conditions. However, observations indicate 

redox disequilibrium in this column as sulfate reduction is occurring in the absence of 

nitrate reduction. A better agreement between model predictions and observations is 

obtained when this redox disequilibrium is accounted for and reaction kinetics are 

included in the HP1 model.  
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In the homogeneous loam column, HP1 predictions suggest that nitrate reduction 

is coupled with iron oxidation. HP1 modeling again demonstrates that dominant 

processes (nitrate reduction and iron oxidation) and redox gradients are strongly affected 

by hydrologic gradients. Visual snapshots and observation gradients of the homogeneous 

loam column highlight the presence of iron sulfide precipitates and reduced hydraulic 

conductivity as a result of precipitate formation in this column [Hansen et al., 2011]. 

For the layered column, experimental observations and model predictions 

indicate that iron and sulfate reduction are the dominant biogeochemical processes, and 

major differences between them can be improved by including reaction kinetics (at rates 

higher than those employed for homogeneous systems). Unlike the homogeneous 

columns, hydrologic properties in the layered column are found to be affected only by 

the textural interface. The different hydrologic perturbations conducted using HP1 have 

minimal to no effect as to the positioning of chemical gradients in this particular column. 

The textural interface displays the transition with respect to geochemical concentrations 

and both HP1 predictions and experimental observations agree that this interface is a 

hotspot of biogeochemical activity. Therefore, we conclude that in homogeneous soil 

systems, hydrologic conditions are important drivers of redox processes while 

heterogeneous formations are affected more by layering and interfaces.  

A conceptual model, which is developed through a comparison of the 

homogeneous and layered column experiments, represents the geochemical variability in 

and around a heterogeneous formation in variably-saturated media. This conceptual 

model divides the system into three characteristic zones around the subsurface 
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heterogeneity: a ‘background’ concentration zone that is in contact with the system and 

at a quasi steady state composition, a ‘reaction’ zone that is the center of activity around 

the heterogeneous formation, and a ‘transport’ zone that carries the reaction products or 

background concentrations.  

4.8 Implications for future reactive transport modeling 

The analysis and comparison of HP1 modeling results and experimental 

observations for the different experimental soil columns provide several implications for 

improving future reactive transport modeling. First, an inclusion of feedback 

mechanisms between hydraulic properties, geochemical processes, and microbiological 

analysis is crucial to better characterize the fate and transport of chemicals. The 

homogenous loam column portrays the effect of redox processes (FeS precipitate 

formation) on hydraulic conductivity within the column and consequent mismatch 

obtained with model predictions. Similarly, redox disequilibrium resulting from the 

presence of sulfate reducing bacteria in the homogeneous sand and layered sand-over-

loam columns demonstrate the importance of including microbially-mediated reaction 

rates in obtaining better predictions of sulfate and pe. This feedback is shown to improve 

agreement between predictions and observations of sulfate concentrations in both the 

columns. Future models must consider the possibility of updating hydraulic properties or 

geochemical concentrations based on positive feedback mechanism between the coupled 

biogeochemical processes. Second, the characterization of any heterogeneous soil profile 

according to the conceptual model would greatly improve this feedback mechanism. 

Inclusion of a conceptual model that separates the reaction zone for the heterogeneous 
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soil profile would ensure that only the feedbacks centered on the zone of activity are 

analyzed and thereby reduce the numerical cumbersomeness of the models. 
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CHAPTER V 

TEMPORAL DYNAMICS OF BIOGEOCHEMICAL PROCESSES AT THE 

NORMAN LANDFILL SITE  

 

5.1 Synopsis 

Little is known, however, about the physical controls that govern the temporal 

variability of redox-sensitive biogeochemistry. These biogeochemical variations are 

typically non-stationary, and distributed across various time scales. Therefore, the 

purpose of this study is to investigate biogeochemical datasets from a municipal landfill 

site to identify the dominant modes of variation and determine the physical controls that 

become significant at different time scales. Three wells with different proximities to the 

leachate plume provide locations with varied geochemical characteristics and 

hydrological interactions at the Norman Landfill site. A continuous wavelet transform is 

used to obtain a complete time-frequency representation of the Norman Landfill 

geochemical dataset and a wavelet decomposition technique is used to infer the 

dominant physical controls on geochemical parameters at four dyadic time scales (2, 4, 

8, and 16 months).  

Wavelet analysis indicates that variations in reactive and conservative 

concentrations are strongly coupled to hydrologic variability (water table elevation and 

precipitation) at 8 month scales, and to individual eco-hydrogeologic framework (such 

as seasonality of vegetation, surface-groundwater dynamics) at 16 month scales. Apart 

from hydrologic variations, temporal variability in sulfate concentrations can be 
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associated with different sources (FeS cycling, recharge events) and sinks (uptake by 

vegetation) depending on the well location and proximity to the leachate plume. Results 

suggest that nitrate concentrations show multi-scale behavior across temporal scales for 

different well locations, and dominant variability in dissolved organic carbon for a 

closed municipal landfill can be larger than 2 years due to its decomposition and 

changing content. 

5.2 Introduction 

The leaching of reactive contaminants from landfill and waste management sites 

is controlled by multiple geochemical, hydrological, and microbiological factors, and 

occurs across various time scales [Christensen et al., 2001; Cozzarelli et al., 2001; 

Jardine, 2008; Bjerg et al., 2011]. Knowledge about the temporal variability of reactive 

contaminants in groundwater is important to assess contaminant plume migration, 

evaluate associated health risks, and undertake timely action. However, temporal 

patterns and non-linear interactions in biogeochemical processes controlling this 

variability are poorly understood in groundwater systems. 

The majority of organic and inorganic contaminants in the subsurface are 

affected by the hydrological and geochemical properties of the porous media [Mercer, 

1983]. Hydrologic variations including water table elevation and precipitation play a 

pivotal role in the migration and distribution of contaminants in groundwater. For 

example, Fendorf et al. [2010] suggested that the patterns of recharge and discharge of 

groundwater, especially groundwater pumping and time since recharge, were important 

factors influencing arsenic concentrations in South and Southeast Asia. The impact of 
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seasonal rainfall events on redox processes at a shallow, sandy aquifer contaminated 

with petroleum hydrocarbons and chlorinated solvents was addressed by McGuire et al. 

[2000]. They concluded that changes in concentrations of redox-sensitive chemicals 

appeared to be related to rainfall events at monthly and larger (3 yr) time scales. The 

previous chapter also emphasizes the importance of hydrologic boundary conditions 

(such as infiltration, drainage events) on redox conditions in soil columns with 

homogeneous and layered profiles. Several other studies have documented the influence 

of hydrologic controls (changes in direction and seasonality of flow, recharge timing, 

etc.) on geochemical concentrations at both column and landfill scales [Mitchell and 

Branfireun, 2005; Cozzarelli et al., 2011; Hansen et al., 2012b]. Topographic and 

landscape controls such as shifts in vegetation structure and density can also contribute 

to spatio-temporal dynamics of water content availability and infiltration characteristics 

of the porous media [Asseng et al., 2001; Raz-Yaseef et al., 2010; Jana and Mohanty, 

2012].  

Apart from hydrologic variations, geochemical processes are also known to 

affect redox dynamics in groundwater systems. The progression of redox reactions and 

subsequent transformation of contaminants is based on thermodynamic energy yields as: 

aerobic respiration, nitrate reduction, manganese reduction, iron reduction, sulfate 

reduction, and methanogenesis [Chapelle, 2001; Megonigal et al., 2004]. However, 

heterogeneities in contaminant load (e.g., changes in organic carbon content, metals), 

aquifer composition (e.g., presence of iron and/or manganese oxides), geologic 

framework, etc. can result in a departure from the characteristic spatial sequence of 
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redox zones [Champ et al., 1979; Christensen et al., 2000; Van Breukelen et al., 2003; 

Harris et al., 2006]. Redox dynamics can be spatially variable and intensified at the 

plume fringe, where they are governed by the differences between the composition of 

the landfill and the mineralogy of the aquifer as well as by seasonal biogeochemical 

cycling [Sinke et al., 1998; McGuire et al., 2002; Scholl et al., 2006]. Apart from being 

spatially heterogeneous, the distribution of redox species can be temporally variable as 

many of the redox reactions are microbially-mediated. Differences in microbial 

populations, community structures and their biotic interactions (e.g., biomass 

accumulation, competition) can add to the temporal heterogeneity of the distribution of 

contaminants [Roling et al., 2001; Jolley et al., 2003; Haack et al., 2004]. 

Therefore, the release of contaminants is a function of the complex interactions 

between physical factors (e.g., porosity, permeability, dilution), chemical mechanisms 

(e.g., adsorption, redox, precipitation), geological controls (e.g., lithologic variations, 

depositional patterns, presence of fractured rock), ecological interactions (e.g., type of 

vegetation, rooting depth) and microbial activities (e.g., biodegradation, 

biotransformation) [Christensen et al., 2000; Bjerg et al., 2003, 2011; Wanty and 

Berger, 2006; Pacific et al., 2011]. For example, the progression of redox zones is 

affected by the supply rate of terminal electron acceptors, which is governed by 

permeability and hydrologic recharge events, and by the presence of oxidized minerals, 

which is controlled by the geologic framework of the aquifer [Lovley and Chapelle, 

1995; Kamolpornwijit et al., 2003; Mukherjee et al., 2008]. Consequently, microbial 

activity is influenced by hydrological and geological processes that control the transport 
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of terminal electron acceptors and the distribution of redox and other reactant species 

[Hunter et al., 1998; Haack and Bekins, 2000; Geesey and Mitchell, 2008]. In return, 

microbial processes utilize these reactants and modify the chemical composition of the 

groundwater. Biotic degradation of organic carbon can change pH and groundwater 

alkalinity, thus affecting geochemical mechanisms (such as precipitation, sorption), 

while biomass accumulation can impede flow, thus affecting hydrological variables 

(such as permeability, aquifer porosity) [Mills et al., 1989; Taylor and Jaffe, 1990; 

Kusel, 2003]. Therefore, the distribution of redox-sensitive compounds is governed by 

an aggregation of linked hydrological and biogeochemical processes. 

Since these biogeochemical interactions are non-linear and complex, changes to 

measured water chemistry parameters (such as pH, SO4
2-) can indicate the influence of 

multiple processes simultaneously. Moreover, the time frame of analysis is an important 

factor when considering changes in chemical composition, redox state, microbial 

community structure, vegetation growth, or other external forcing [Bloschl and 

Sivapalan, 1995; Langmuir, 1997; Smith, 2007]. Therefore, wavelet analysis is used to 

extract the natural frequencies and identify the governing processes that exert control 

over redox patterns at different time scales. Wavelet analysis is a technique that analyzes 

the data with a window that can be stretched and translated with a flexible resolution in 

both time and frequency domains [Foufoula-Georgiou and Kumar, 1994]. The time-

frequency localization property of wavelets is meaningful as it examines the 

biogeochemical dataset with a detail matched to its scale, thus providing the opportunity 
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to identify transient, seasonal and long-term patterns of the dataset [Lau and Weng, 

1995; Torrence and Compo, 1998]. 

In summary, determining the governing processes in a landfill environment is 

challenging due to the complex linkages between hydrologic, geochemical, and 

microbiological processes, and the knowledge about how these processes evolve 

temporally. Variations in water chemistry parameters are difficult to interpret as soil 

hydraulic properties, chemical reactions, microbial composition, and external forcing 

(such as rainfall events, aquifer withdrawal) change with time. Therefore, the objectives 

of this study are to: i) extract the natural variability of the biogeochemical dataset from a 

closed municipal landfill site, and ii) identify the dominant processes that control this 

temporal variability.  

5.3 Field procedures 

5.3.1 Site description 

The Norman Landfill is a closed municipal landfill that operated for 63 years in 

the city of Norman, Oklahoma (Figure 5.1). By the mid 1990s, the leachate plume from 

the site extended approximately 250m downgradient towards the Canadian River [Scholl 

and Christenson, 1998]. Near the landfill, the groundwater is shallow and ranges to 

about two meters from the land surface [Scholl et al., 2006; Cozzarelli et al., 2011].  
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Figure 5.1: Map depicting the location of the Norman Landfill site and the multi-

level sampling wells (IC 36, IC 54, and IC South) overlain on the potentiometric 

surface. 
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Previous hydrologic investigations on the site reveal its dynamic nature with 

diurnal water-table fluctuations in response to transpiration, observed seasonal variations 

as large as 1.4 m from winter to summer, and rapid variations in response to rainfall 

events [Scholl et al., 2005]. The seasonality of the water table is primarily attributed to 

rainfall and evapotranspiration. Oklahoma has a continental climate, and the character of 

rainfall varies with the seasons. On an average, the climatological maximum for rainfall 

occurs in May and a secondary maximum occurs in September [Comrie and Glenn, 

1998]. In their study, Scholl et al. [2005] indicated that rainfall events can elevate the 

water table within 0.6-2 days, and the residence time of the groundwater is on the order 

of days depending on the season and other recharge events. The riparian zone near the 

landfill is responsible for water level decline during the growing season (mid-April to 

October) [Scholl et al., 2005]. 

Analyses of groundwater samples have indicated that the leachate also interacts 

with a former Canadian River channel, referred to as the slough [Becker, 2002] (Figure 

5.1). The slough is an ephemeral wetland that is an expression of the local water 

dynamics. Seasonal variations in the slough water depth can be as much as 1m deep in 

the spring to dry in summer, and occur in response to groundwater and precipitation 

[Christenson et al., 1999; Lorah et al., 2009]. The slough and the leachate contaminated 

groundwater are hydrologically connected such that the groundwater discharges into the 

slough along the northeast bank while the slough recharges the groundwater along the 

southwest bank [Scholl et al., 2005; Lorah et al., 2009]. 
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The biogeochemistry of the site indicates sulfate reduction, iron reduction, and 

methanogenesis to be important processes for degradation of organic matter [Cozzarelli 

et al., 2000; Eganhouse et al., 2001; Grossman et al., 2002]. Báez-Cazull et al. [2008] 

reported that seasonal rainfall patterns were dominant controls on redox zonations, 

especially for iron and sulfate reduction, while analyzing 3-year of data from the slough. 

They also concluded that exact temporal controls on the fate of iron could not be 

determined because of multiple biogeochemical controls. Cozzarelli et al. [2011] 

confirmed that chemical concentrations in the plume boundaries are affected by 

hydrologic processes at various time scales. Their analysis of the plume-scale data 

revealed that the upper boundary of the leachate plume is an active redox location while 

the center of the plume is depleted in sulfate and has low oxidation capacity. The spatial 

variability of biogeochemical processes is also evident in the existing conceptual 

framework of the Norman Landfill site (Figure 5.2). Therefore, the Norman Landfill 

provides an opportunity to study the temporal variability of biogeochemical processes in 

the leachate plume and identify the physical controls governing contaminant 

distributions at different locations within the site. 
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Figure 5.2: Conceptual map showing the location of the multi-level wells with 

respect to the biogeochemical zones (Modified from Cozzarelli et al., 2011). 
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5.3.2 Field measurements 

Three multilevel wells located on a transect parallel to the groundwater flow 

were used to analyze the biogeochemical variability at the Norman Landfill site (Figure 

5.1). These wells have screens set at different elevations to capture the dynamics of the 

local water table [Scholl et al., 2006]. The landfill well (IC 36) is located 35m from the 

edge of the landfill mound, the slough well (IC 54) is located 7m south of the slough, 

and the control well (IC South) is 85m downgradient from the slough [Breit et al., 2005]. 

The wells are named as such because the chemical characteristics of the IC 36 well 

suggest its interactions with the leachate plume, the IC 54 well with the slough and the 

leachate plume, and the IC South with background groundwater concentrations or 

recharged slough water [Breit et al., 2005]. The control well (IC South) is located in an 

area that was prone to flooding during the 1980s and has sparse vegetation due to the 

activity of the river channel [Schlottmann, 2001]. In contrast, the vegetation is quite 

dense near the landfill and slough wells with mature trees and understory [Tuttle et al., 

2009]. The differences in chemical characteristics and hydrologic interactions between 

the three well locations are evident in Figure 5.2 which represents the distinct 

biogeochemical zones for the wells using the conceptual framework of the Norman 

Landfill site. 

Hydrological and geochemical indicators including hydraulic head, specific 

conductance, δ2H, chloride, sulfate, nitrate, and non-volatile dissolved organic carbon 

(NVDOC) were measured at all well locations. Data was collected at a minimum of 

three depth levels for each well [Scholl et al., 2006]. Specific conductance was measured 
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using a portable meter, anions were analyzed using ion chromatograph, NVDOC 

concentrations were determined following the method of Qian and Mopper [1996], and 

isotopic analyses were done by equilibration with gaseous hydrogen for δ2H. A more 

detailed description of the chemical methods can be obtained from Scholl et al. [2006]. 

This time-series data was collected on a monthly to semi-monthly time scale [Cozzarelli 

et al., 2011]. 

5.4 Wavelet analysis 

Since groundwater systems are complicated by linked biogeochemical processes, 

wavelets offer a powerful technique to analyze the observed redox patterns and identify 

the dominant processes that control water chemistry variations in the temporal domain. 

Wavelets have the ability to provide high inter-scale decorrelation especially when the 

contributing biogeochemical processes are inter-linked and have multi-scalar 

characteristics [Diou et al., 1999]. Therefore, a wavelet transform is performed on the 

Norman Landfill dataset to obtain a comprehensive view of the frequency variations 

over time, and a multilevel decomposition (MLD) analysis is conducted to obtain the 

physical controls governing biogeochemical patterns at different time scales. These 

techniques are described in the following sections. 

5.4.1 Time-frequency analysis 

Since their inception, wavelet transforms have been used to characterize multi-

scale, non-stationary processes across spatial and temporal scales [Shao et al., 2003; Das 

and Mohanty, 2008; Beecham and Chowdhury, 2010]. The continuous wavelet transform 

(CWT) is useful to obtain a complete representation of the localized, intermediate, and 
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long-term patterns observed across different time scales [Kumar and Foufoula-

Georgiou, 1997]. The continuous wavelet transform is obtained by decomposing the data 

D(t) with the wavelet function ψ(t): 

 




 dttDtbaW baD )(),( *
,                    (5.1)  

where W are wavelet coefficients, t is time, * denotes the complex conjugate of the 

wavelet function, and the wavelet function is described by: 

  






 


a

bt

a
tba 

1
, ,        a>0, -∞<b<∞                 (5.2)  

where a is the scale parameter that controls the dilation or contraction, and b is the shift 

parameter that determines the location of the wavelet. This wavelet function is not 

arbitrary and must satisfy the basic properties of i) zero mean (   0




dtt ), ii) unit 

energy (   12 




dtt ), and iii) conservation of energy during transformation 

[Daubechies, 1992; Farge, 1992]. 

In this study, Morlet wavelet is used to extract the dominant frequencies within 

the biogeochemical dataset as it has a shape similar to the time-series data of the Norman 

Landfill site. Morlet wavelet is obtained by localizing a complex sine wave with a 

Gaussian envelope. This wavelet has both complex and real parts and therefore, enables 

the identification and fine tuning of significant frequencies [Lau and Weng, 1995; 

Hariprasath and Mohan, 2009]. 
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5.4.2 Wavelet spectrum and cross-spectrum analysis 

The modulus of the wavelet coefficients is used to develop a continuous-time 

power spectrum pD(a,b) defined as: 

2* ),(),(),(),( baWbaWbaWbap DDDD                   (5.3)  

This wavelet power spectrum is advantageous as it provides the variance of the time-

series in both frequency and time domains [Guan et al., 2011]. This power spectrum can 

be averaged over time to obtain the variance distribution across different time scales 

[Torrence and Compo, 1998]. This is known as the global wavelet power spectrum. 

Wavelet software provided by C. Torrence and G. Compo 

(http://atoc.colorado.edu/research/wavelets/) is used in this study for obtaining the 

wavelet power spectrum and global variance distribution. 

For the Norman Landfill dataset, it is desirable to know how two non-stationary 

geochemical variables vary in time. The physical relationship between two time-series in 

the time frequency domain can be obtained using wavelet cross-spectrum and wavelet 

coherence analyses. A wavelet cross-spectrum provides the opportunity to quantify the 

correlation between the wavelet power spectra of two variables (D1, D2) [Grinsted et 

al., 2004]: 

),(),(),( *
212,1 baWbaWbap DDDD                    (5.4)  

The wavelet coherence provides the association between these variables by normalizing 

the cross-spectrum with the individual spectrum of both the variables [Cazelles et al., 

2008]: 
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where <> denotes a smoothing operator in time and scale. 

5.4.3 Multilevel decomposition 

The wavelet decomposition technique, as the name implies, decomposes the 

original data into a number of frequency bands at discrete levels or time scales. At the 

first step, the time-series data is split into two to reveal the high-pass bandwidth or the 

detailed components, and the low-pass bandwidth or the approximate components 

[Misiti et al., 2008; Kia et al., 2009; Quiroz et al., 2011]. Each low-pass bandwidth is 

further decomposed to obtain the next level of hierarchy. The decomposition levels are 

based on the total number of data points and the sampling frequency [Mallat, 1999]. 

 The hierarchical details and approximations are obtained by iteratively applying 

a high-pass filter and an associated low-pass filter, which must satisfy certain conditions 

including orthonormality [Labat et al., 2000; Percival and Walden, 2000]. In the wavelet 

analysis, a wavelet function ψ(t) constitutes the high-pass filter, and its scaling function 

φ(t) forms the low-pass filter. The choice of the wavelet function is such that it is 

orthogonal to both translates and dilates, while the scaling function is only orthogonal to 

the translates [Kumar and Foufoula-Georgiou, 1997]. The detail (Dm) and approximation 

(Am) components at any decomposition level m are thus given by: 

)(),()( , tkmWtD km

k

m  

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                   (5.6)  
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where k is a discrete location index, and S are the scaling coefficients analogous to the 

wavelet coefficients. In multilevel decomposition (MLD), a discretized version of 

equation 5.1 is used where the wavelet function is scaled by powers of two such that 

a=2m and shifted by integers such that b = k2m [Martinez and Gilabert, 2009]. 

In this study, the wavelet decomposition is carried out using the Daubechies 5 

(Db5) wavelet and scaling functions, which satisfy the orthogonality requirement. Figure 

5.3 illustrates the shape of the Db5 wavelet and scaling functions and the four levels of 

decomposition obtained from them. The hierarchical decompositions follow dyadic 

sampling (powers of two).  

 

 

Figure 5.3: Scheme of the multi-level decomposition (MLD) using Db5 wavelet and 

scaling functions. ↓2 represents the decomposition by a power of two. 
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5.5 Results and discussion 

Wavelet analysis is used in this study to obtain the dominant variations in the 

biogeochemical dataset and identify the different processes that control these variations 

at dominant time scales.  This section demonstrates the use of continuous and discrete 

wavelet techniques described in the previous section to investigate the time-series 

behavior of geochemical variables at the control, landfill, and slough wells.  

5.5.1 Temporal variations and governing processes at the control well 

Figure 5.4 depicts the temporal characteristics of chloride, sulfate, and bromide 

at the control (IC South) well from May 1998 to May 2000. The temporal characteristics 

for the geochemical variables are described as a function of depth. As described in the 

previous section, Morlet wavelet is employed to study the temporal variations in the 

dataset. The edge effects of time frequency analysis, represented by the cone of 

influence (indicated by cross-hatched regions in the continuous wavelet spectrum), are 

excluded from this analysis [Guan et al., 2011].  
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Figure 5.4: Time frequency analysis at the control well for i) chloride, ii) sulfate, 

and iii) bromide data displaying time record, continuous wavelet spectrum, and 

global variance distribution. In the time series graphs, the thickness of the cylinder 

signifies the concentration value, and the colors represent the well screens 7-17 with 

water elevation level between 329.73 and 328.38. In the wavelet power spectrum, 

the cross-hatched regions signify the cone of influence, and the color bar signifies 

the strength of power in the global wavelet spectrum. 
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Figure 5.5: Multilevel decomposition of bromide at the control well with 

approximations and detail coefficients at dyadic scales of 2 (a1), 4 (a2), 8(a3) and 16 

(a4) from May 1998 to May 2000. 

 

 

 

 

 



171 
 

 
 

Based on the Morlet wavelet, all three time-series depict a single dominant scale 

close to 12 month period in their wavelet power spectra (Figure 5.4b). This dominant 

frequency is also evident in the global variance distribution (Figure 5.4c) for all three 

geochemical variables despite the large differences in their temporal dataset (Figure 

5.4a). There is however a discontinuity in the dominant frequency at different times for 

the three variables, with chloride displaying this discontinuity between August-

September 1999, bromide between April-November 1999, and sulfate beyond April 

1999. The reasons for this temporal disparity will be explored using MLD analysis. 

Another interesting feature in the wavelet power spectra is the small-scale behavior that 

shows consistent patterns (wavelet coefficients with significant power) at 4 month period 

for chloride data, and somewhat repetitive behavior for bromide data. Since chloride and 

bromide act mainly as conservative indicators of water flow, these small scale patterns 

could be representative of seasonal hydrologic events. 

To further analyze and temporally isolate the processes affecting these dominant 

frequencies, a multilevel decomposition is performed on the bromide data (Figure 5.5). 

Db5 wavelet is applied to the original signal and the results at four levels of 

decomposition are shown. As mentioned in the previous section, this filtering removes 

the noise (detailed components) from the data and keeps only the approximations at each 

scale. The approximations reveal the smoothed trend in the bromide data and are 

therefore compared with water table elevation and rainfall data to further isolate and 

identify the hydrologic processes affecting bromide time-series (Figure 5.6).  
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Figure 5.6: Multilevel decomposition of bromide data at the control well: a) 

bromide “approximation” at 8 months, b) normalized “approximation” signal, c) 

time record of monthly groundwater elevation data and precipitation at the control 

well, and d) normalized water level and precipitation signals. Two consecutive 

dashed/solid lines show trends matching between the normalized bromide signal 

and the precipitation data, and arrows show trends matching between the 

normalized bromide signal and groundwater elevation data. 
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Figure 5.6d illustrates that normalized monthly precipitation events exceeding 

certain limit act as discrete episodes that correspond to the normalized “approximation” 

of bromide (Figure 5.6b). A significant portion of these temporal trends are also 

associated with water table elevation data (indicated by arrows in Figure 5.6b). The 

detailed components in Figure 5.5 reveal frequency specific behavior and the d4 

component reveals a peak around September 1998 that coincides with the rainfall peak 

(Figure 5.6c). As mentioned earlier, rainfall in Oklahoma has a secondary maximum in 

September, and therefore exhibits a prevalent peak in this “detail” component of 

bromide. The detailed components (d1-d3) further confirm the discontinuity in dominant 

frequency as suggested by the continuous wavelet spectrum. The annual periodic 

component in the bromide time-series is therefore replaced by 5-7 month components 

that correspond to hydrologic data. Therefore, rainfall recharge events and seasonal 

variability of groundwater table affect wavelet coefficients at semi-annual scales (~8 

months) and can be associated with the temporal dynamics of bromide concentrations at 

the control well. 

A multilevel decomposition is also performed on sulfate data to identify the 

governing processes controlling its temporal variability at the control well. Previous 

studies have identified several sources of sulfate at the landfill site (such as organosulfur 

compounds, mineral weathering from barite, pyrite, iron oxide minerals, etc.) and 

demonstrated the influence of recharge events on sulfur cycling and its transport to 

deeper depths [Scholl et al., 2006; Tuttle et al., 2009]. However, this study compares the 

approximations at the scale of the dominant frequency (a3) and hydrologic data to reveal 
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the temporal dynamics of processes controlling sulfate concentrations at the control well 

(Figure 5.7). As expected, there are striking similarities between the seasonal 

groundwater variations (indicated by arrows) and rainfall events (indicated by 

consecutive dashed/solid blue lines) with trends in sulfate data (Figure 5.7b, d). Notice 

the low levels of sulfate concentrations observed following a rainfall event even with an 

increasing water table elevation. This decrease in sulfate concentrations is attributed to 

sulfate reduction processes at the control well [Scholl et al., 2006], and is evident after 

the rainfall events of September 1998 and September 1999. 

 

 

Figure 5.7: Multilevel decomposition of sulfate data at the control well: a) sulfate 

“approximation” at 8 months, b) normalized “approximation” signal, c) time 

record of monthly groundwater elevation data and precipitation at the control well, 

and d) normalized water level and precipitation signals. Two consecutive 

dashed/solid lines show trends matching between the normalized sulfate signal and 

the precipitation data, and arrows show trends matching between the normalized 

sulfate signal and groundwater elevation data. 
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Figure 5.8: Cross wavelet analysis of bromide and chloride signals at the control 

well from May 1998 to May 2000: i) time records of normalized bromide and 

chloride data, and ii) modulus and angle of the wavelet cross-spectrum. 
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The cross wavelet transform is used in this study to describe the physical 

relationships between bromide and chloride data in the time frequency space. The 

modulus of the cross wavelet transform indicates that both signals have significant 

correlation around scale 8 except in the interval between April-October 1999, which 

reveals the quasi-periodic nature of this correlation (Figure 5.8b). The phase plot (Figure 

5.8c) of the normalized data also reveals the out-of-phase behavior of the two signals 

that is not consistent throughout the dataset. This again suggests the time-localized 

correlation between bromide and chloride, which could be attributed to different sources 

that augment bromide and chloride concentrations at the landfill site. As both signals are 

conservative indicators of water flow, results pertaining to bromide only will be 

described. Cross wavelet analysis with respect to other variables is provided in the 

appendix. 

In summary, temporal variations in bromide and sulfate data at the control well 

show annual periodicity (~12 month), and are significantly dominated by water table 

variability and precipitation events. The temporal anomalies at the dominant scale of 

variation are related to hydrologic variability for bromide, and sulfate reduction 

processes for sulfate. 
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Figure 5.9: Time frequency analysis at the landfill well for i) bromide, ii) δ2
H, iii) 

sulfate, and iii) specific conductivity data displaying continuous power spectrum 

and global variance distribution. The cross-hatched regions in the wavelet power 

spectrum signify the cone of influence, and the color bar signifies the strength of 

power in the global wavelet spectrum. 
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5.5.2 Temporal variations and governing processes at the landfill well 

Figure 5.9 represents the temporal dynamics of bromide, δ2H, sulfate, and 

specific conductivity at the landfill (IC 36) well from November 1998 to May 2000. An 

annual periodic component is again visible in the wavelet spectra for all time-series data 

(Figure 5.9a), and this component shows dominance in the global variance distribution 

as well (Figure 5.9b). These periodic structures show time localization and disappear 

beyond April 1999 for bromide, beyond July 1999 for sulfate and specific conductivity, 

and show temporal irregularity in δ2H data. These annual components are therefore 

replaced by 4-month components for bromide and specific conductivity, and a 7-month 

component for δ2H. Regarding the small scales (2-4 months), structures with significant 

power are again visible for bromide, δ2H, and sulfate time-series but not for specific 

conductivity. Since these variables have different contributing processes, the temporal 

discrepancies present in the wavelet power spectrum for each signal are different. 
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Figure 5.10: Wavelet coherence analysis at the landfill well from November 1998 to 

May 2000: i) specific conductivity and ii) bromide displaying analyzed signals, and 

modulus and angle of the continuous wavelet spectrum. 
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Wavelet coherence analysis conducted on bromide and specific conductivity is 

illustrated in Figure 5.10. Although the analysis reveals different structures at higher 

time scales, similar contributing processes at the dominant scale of variation (scale 8) are 

observed (Figure 5.10b). The angle plots (Figure 5.10c) also reveal a consistent out-of-

phase behavior at the smaller scales suggesting a high correlation between the two time-

series. Wavelet cross spectrum and coherence analyses also suggest a high correlation 

between bromide and δ2H signals in displaying the periodic annual component. As a 

result, a multilevel decomposition is performed only with respect to bromide and sulfate 

at the landfill well. Cross wavelet analysis with respect to other variables is provided in 

the appendix. 

After removing the noise components, the “approximation” of bromide is again 

compared with hydrologic variations at the landfill well (Figure 5.11). Apart from 

November-February time frames for both 1998-1999 and 1999-2000 years, the 

normalized patterns of bromide show considerable matching with groundwater table and 

rainfall data. Since the region around the landfill well is densely vegetated, a decrease in 

evapotranspiration processes observed during the winter months (represented by ovals in 

Figure 5.11e) seems to be contributing to variations in bromide transport processes 

during these time frames. Therefore, a comprehensive analysis of the hydrologic 

interactions at the landfill well is able to explain the variability in bromide 

concentrations at this location.  
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Figure 5.11: Multilevel decomposition of bromide data at the landfill well: a) 

bromide “approximation” at 8 months, b) normalized “approximation” signal, c) 

time record of monthly groundwater elevation data and precipitation at the landfill 

well, d) normalized water level and precipitation signals, and e) time record of δ18O 

offset representing evapotranspiration processes [modified from Scholl et al., 2005]. 

Two consecutive dashed/solid lines show trends matching between the normalized 

bromide signal and the precipitation data, arrows show trends matching between 

the normalized bromide signal and groundwater elevation data, and ovals 

represent decrease in evapotranspiration levels that can be located in the 

normalized bromide signal. 
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Figure 5.12: Multilevel decomposition of sulfate data at the landfill well: a) sulfate 

“approximation” at 8 months, b) normalized “approximation” signal, c) time 

record of monthly groundwater elevation data and precipitation at the landfill well, 

and d) normalized water level and precipitation signals. Two consecutive 

dashed/solid lines show trends matching between the normalized sulfate signal and 

the precipitation data, and arrows show trends matching between the normalized 

sulfate signal and groundwater elevation data. 
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Figure 5.13: Multilevel decomposition of sulfate at the landfill well with 

approximations and detail coefficients at dyadic scales of 2 (a1), 4 (a2), 8(a3) and 16 

(a4) from November 1998 to May 2000. 
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The “approximation” component of sulfate at the dominant scale of variation is 

also compared with hydrologic fluctuations (Figure 5.12). Again, the November-

February time frames for both 1998-1999 and 1999-2000 years show poor matching. 

The trend analysis also reveals a mismatch with a peak in sulfate concentrations around 

July 1999. Therefore, scale decomposition with all approximations and details of sulfate 

time-series is illustrated in Figure 5.13. The decomposition in the details of sulfate 

concentrations at the landfill well leads to the identification of three components with 

very different behaviors. First, a large peak is located around January 1999, second, 

several smaller peaks are located around December 1998, February, March, and July of 

1999, and April 2000, and third, a discontinuity is observed around November1999-

March 2000 in the d1 component. The d2 component also reveals an amplitude reduction 

in sulfate frequency from November 1998-March 1999 to the rest of the time-series. 

These detailed components suggest that large peaks in sulfate concentrations in the 

beginning time frame (November 1998-March 1999) correspond to a large reoxidation 

event that possibly lead to the dissolution of aquifer solids (barite, iron sulfide minerals) 

because such high sulfate concentrations cannot be attributed to background 

groundwater or rainfall alone, or that the aggregation of various processes (rainfall 

recharge, vegetative decay, mineral dissolution, etc.) simultaneously resulted in such an 

event [Schlottmann, 2001]. Previous studies have documented the importance of barite 

dissolution and its influence on sulfate concentrations at the landfill site [Tuttle et al., 

2009; Cozzarelli et al., 2011]. Also, these larger peaks occur immediately following low 

sulfate concentrations and several factors (water table variations, undersaturation with 



185 
 

 
 

respect to sulfate due to increased sulfate reduction and/or iron sulfide formation, etc.) 

can contribute to an increase in the dissolution rate [Ulrich et al., 2003; Cozzarelli et al., 

2011]. The smaller peaks that are spread across different times indicate an increase in 

sulfate concentrations in response to rainfall events or sulfur cycling as a result of 

reoxidation of iron sulfide minerals with an increase in groundwater table [Ulrich et al., 

2003; Baez-Cazull et al., 2008]. This sulfur cycling also constitutes a sulfate reduction 

step which is visible as the decrease in sulfate concentrations immediately following a 

rainfall event (Figure 5.12b, d). The discontinuity around November 1999-March 2000 

constitutes a significant decrease in sulfate concentrations (greater than those observed 

for November 1998-March 1999) and may stem from strong vegetation dynamics at the 

site. Uptake of sulfate by plant roots is an important process near the landfill well [Tuttle 

et al., 2009] and this frequency may be reduced during the winter months as suggested 

by δ18O offset patterns (Figure 5.11e). 

In summary, an annual periodic component again dominates different 

geochemical concentrations at the landfill well. The temporal patterns of geochemical 

variables are strongly guided by hydrologic variations and affected by vegetation 

dynamics in the winter months. The multilevel decomposition of sulfate reveals sources 

(FeS cycling, rainfall events, increased barite dissolution rate) and sinks (uptake by plant 

roots) of sulfate at different time frames between November 1998 and May 2000. 



186 
 

 
 

 

Figure 5.14: Time frequency analysis at the slough well for i) bromide and ii) 

sulfate data displaying continuous power spectrum and global variance 

distribution. The cross-hatched regions in the wavelet power spectrum signify the 

cone of influence, and the color bar signifies the strength of power in the global 

wavelet spectrum. 
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5.5.3 Temporal variations and governing processes at the slough well 

Figure 5.14 demonstrates the temporal evolution of bromide and sulfate at the 

slough (IC 54) well. The wavelet power spectra (Figure 5.14a) reveal two dominant 

scales of variation with annual and bi-annual periodic components for both signals. 

Notice that the smaller scales contain negligible power for both time-series. The annual 

component (~12 months) is replaced by a 2-month component for sulfate and a 5-month 

component for bromide that reappears in the last phase of the time-series. The bi-annual 

component (~20 months) is replaced by a 1-2 month component for bromide and a 2-

month component for sulfate.  

To further evaluate the processes affecting temporal variability at the slough 

well, a multilevel decomposition is conducted on the bromide time-series. This trend 

analysis (Figure 5.15b, d) at the semi-annual scale (8 months) portrays significant 

matching with rainfall data in the second year of analysis (July 1999-May 2000). In the 

first year of analysis (May 1998 to July 1999), there are discrete patterns of decreasing, 

increasing, and constant water table elevation that match with the normalized 

“approximation” of bromide. The mismatch between the smoothed “approximation” and 

hydrologic data can be explained by groundwater-surface water interactions between the 

wetland and the slough well (Figure 5.15e). Notice the peak in the normalized bromide 

signal around July 1999 (Figure 5.15b) that matches with the increase in wetland water 

levels (represented by a circle in Figure 5.15e).  
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Figure 5.15: Multilevel decomposition of bromide data at the slough well: a) 

bromide “approximation” at 8 months, b) normalized “approximation” signal, c) 

time record of monthly groundwater elevation data and precipitation at the slough 

well, d) normalized water level and precipitation signals, and e) time record of 

wetland water level [modified from Scholl et al., 2005]. Two consecutive 

dashed/solid lines show trends matching between the normalized bromide signal 

and the precipitation data, arrows show trends matching between the normalized 

bromide signal and groundwater elevation data, and circle represents peak in the 

wetland water level that can be located in the normalized bromide signal. 

 



189 
 

 
 

 

Figure 5.16: Multilevel decomposition of bromide data at the slough well with 

approximations and detail coefficients at dyadic scales of 2 (a1), 4 (a2), 8(a3) and 16 

(a4) from May 1998 to May 2000. 
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The detailed components d1-d3 (Figure 5.16) also identify a frequency around 

March-July 1999 that is visible in the last phase of the time-series as well and 

corresponds to an increase in wetland water level during the spring season [Scholl et al., 

2005]. The d4 component reveals another frequency that is localized around October-

November 1999 and October 2000. This bi-annual component is reflective of the end of 

the growing season. The withdrawal of water from the water table by vegetation affects 

hydrologic dynamics at the site and consequently alters transport of conservative 

indicators. 

In summary, the wavelet spectra for bromide and sulfate at the slough well reveal 

two frequencies that are more or less localized in time. The annual periodic component 

in the signal corresponds to slough interactions and showcases a 5-month component 

that spans the months of March to July, while the biannual component is a function of 

vegetation dynamics at the slough well and showcases a 1-2 month component that 

spans the months of October and November. 
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Figure 5.17: Time frequency analysis of nitrate at the i) control and ii) landfill wells 

displaying continuous power spectrum and global variance distribution. The cross-

hatched regions in the wavelet power spectrum signify the cone of influence, and 

the color bar signifies the strength of power in the global wavelet spectrum. 
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5.5.4 Exceptions to the dominant frequency rule 

There are two exceptions to the dominant scales of variation obtained for the 

geochemical variables at the control (scale 8), landfill (scale 8), and slough wells (scales 

8 and 16). First, nitrate data are inherently multi-scalar and this is demonstrated in 

Figure 5.17. The wavelet power spectra of nitrate time-series (Figure 5.17a) reveal high 

power wavelet coefficients across scales 4-16 for the control well, and across scales 2-16 

for the landfill well. The global variance distributions (Figure 5.17b) also suggest power 

to be distributed across multiple scales. This clearly indicates that different processes 

with different frequency ranges are contributing to the total wavelet spectra. Notice that 

the regions of significant power are limited to November 1998-March 1999 for both 

wells. The dominant variability in nitrate concentrations during these winter months 

could be a result of several concomitant processes such as external climate forcing (e.g., 

snow storms), plant decay, and bacterial decomposition of stored nitrogen, which 

produced a similar time frame of November-March for both wells. 

Second, dissolved organic carbon (DOC) concentrations follow the dominant 

scales of variation for both the control and slough wells but not for the landfill well. The 

wavelet power spectrum (Figure 5.18a) and global variance distribution (Figure 5.18b) 

for the landfill (IC 36) well suggest that although the annual periodic component carries 

significant power, the dominant frequency may well lie outside the time scale of 

analysis.  
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Figure 5.18: Time frequency analysis of DOC at the i) control, ii) landfill and iii) 

slough wells displaying time-series data, continuous power spectrum and global 

variance distribution. In the time series graphs, the thickness of the cylinder 

signifies the concentration value, and the colors represent the well screens. In the 

wavelet power spectrum, the cross-hatched regions signify the cone of influence, 

and the color bar signifies the strength of power in the global wavelet spectrum. 
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This is expected as the temporal variability in DOC concentrations are not 

limited to hydrologic events. Changes in the carbon content as a result of organic 

degradation can itself contribute to the temporal variability in the data   [Cozzarelli et al., 

2011]. 

5.6 Conclusions  

Biogeochemical processes and redox reactions are often characterized by high 

temporal variability. Analyses of biogeochemical datasets using correlation, principal 

component analysis, or other statistical techniques are not always able to identify the 

processes driving this temporal variability. Therefore, the focus of this study is to extract 

the complex linkages among biogeochemical processes and identify the temporal scales 

at which they exert dominant control. A continuous wavelet transform (CWT) is 

employed to understand the temporal variations in redox-sensitive chemicals at the 

Norman Landfill site and a multilevel decomposition technique  (MLD) is used to 

identify the coupled processes that govern the fate of landfill contaminants at the 

dominant scale of variation. The Norman Landfill is a closed landfill site with prevalent 

organic contamination, and three wells at the landfill site are used to elucidate the 

complex processes and external factors that govern the chemical composition of water.  

The wavelet analysis (CWT) reveals that the chemical dataset of the Norman 

landfill site has single-scale characteristics for different geochemical variables at the 

landfill (IC 36) and control (IC South) wells despite the large differences in their 

geochemical characteristics and conceptual redox frameworks. The IC 36 well is located 

closest to the landfill mound and contaminated with the leachate plume, while the IC 
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South well is located farthest from the landfill and is devoid of any influence from 

contamination. The single-scale characteristics show that a dominant scale of variation 

lies in an annual (~12 months) periodic component. Wavelet decomposition analysis 

further suggests that this annual component is usually replaced by smaller cycles (5-7 

month components) that are guided by hydrologic fluctuations. Bromide concentrations 

typically show strong associations with rainfall recharge events and seasonality of the 

groundwater. Sulfate concentrations reveal sources and sinks that are related to 

hydrologic (rainfall recharge, water table dynamics) and geologic frameworks (aquifer 

composition). The vegetation around the landfill well also demonstrates its influence on 

the dominant frequency for both conservative and reactive concentrations during the 

winter months. Wavelet cross-spectrum and coherence analyses between bromide and 

other variables (specific conductivity, chloride, etc.) reveal high common power and 

similar contributing processes at scale 8. This local phase-locked behavior is again 

indicative of hydrologic variations to be important drivers of redox geochemistry at both 

landfill and control wells. Temporal discrepancies between different conservative 

indicators like bromide and chloride indicate differences in contributing sources. 

At the slough well, the continuous wavelet transform suggests two dominant 

scales of variation for diverse geochemical variables such as DOC, sulfate, bromide. 

These dominant scales contain annual (~12 months) and bi-annual (~20 months) 

periodic components that are significantly localized in time. The annual periodic 

component is replaced by a 5-month component and associated with a local feature, 

which is the surface-groundwater interaction between the wetland and the IC 54 well. 
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The bi-annual component is replaced by a 1-2 month component and associated with 

vegetation dynamics around the slough well. 

There are two major exceptions to the dominant scale(s) of variation across the 

three well locations. First, nitrate displays a multi-scale behavior with significant power 

between scales 4-16 for the control well, and scales 2-16 for the landfill well. This 

clearly indicates the influence of several concomitant processes (such as plant decay, 

microbiological decomposition, effect of climate) with different frequencies on nitrate 

concentrations. Second, dissolved organic carbon concentrations illustrate that the 

dominant scale of variation is beyond scale 16 for the landfill well. This behavior is not 

unexpected as several studies have documented the persistence of organic carbon at the 

Norman landfill site [Cozzarelli et al., 2000, 2011; Eganhouse et al., 2001].  

Based on our analysis of the biogeochemical dataset of 2 years, we hypothesize 

that the information in conservative and redox signals at large scales can be explained by 

linked biogeochemical processes such as increased xenophobicity of the carbon content 

(Figure 5.19). Figure 5.19 demonstrates the temporal characteristics of redox-sensitive 

chemicals at any landfill site. This time-series data can be further decomposed with 

variability being explained by site-specific interactions at the bi-annual scales, and 

hydrologic fluctuations at the annual scales. 
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Figure 5.19: Conceptual diagram showing the governing controls of redox 

geochemistry at increasing time scales. 
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CHAPTER VI 

AN INTEGRATED MARKOV CHAIN MONTE CARLO ALGORITHM FOR 

UPSCALING HYDROLOGICAL AND GEOCHEMICAL PARAMETERS FROM 

COLUMN TO THE FIELD SCALE 

 

6.1 Synopsis 

Predicting and controlling the concentrations of redox-sensitive elements is a 

primary concern for environmental remediation of contaminated sites. These predictions 

are complicated by dynamic flow processes as hydrologic variability is a governing 

control on conservative and reactive chemical concentrations. In addition, subsurface 

heterogeneity in the form of layers and lenses further complicates the flow dynamics of 

the system. Therefore, this study investigates the role of heterogeneity and hydrologic 

processes on an effective parameter upscaling scheme from the column to the landfill 

scale. A Markov chain Monte Carlo algorithm (MCMC) is used to derive upscaling 

coefficients for hydrologic and geochemical parameters, which are tested for variations 

across heterogeneous systems (layers and lenses) and interaction of flow processes based 

on output uncertainty of dominant biogeochemical concentrations at the Norman landfill 

site. The Norman landfill is a closed municipal landfill with prevalent organic 

contamination.  

The results from the MCMC analysis indicate that geochemical upscaling 

coefficients based on effective concentration ratios incorporating local heterogeneity 

across layered and lensed systems produce better estimates of redox-sensitive 
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biogeochemistry at the field scale. The MCMC scheme also suggests that inclusion of 

hydrological parameters reduces output uncertainty of effective mean geochemical 

concentrations by orders of magnitude at the Norman Landfill site. This is further 

confirmed by posterior density plots of the scaling coefficients that reveal unimodal 

characteristics when only geochemical processes are involved, but produce multi-modal 

distributions when hydrological parameters are included. The multi-modality again 

suggests the effect of heterogeneity and lithologic variability on redox processes at the 

Norman landfill site. 

6.2 Introduction 

Knowledge about effective hydrologic and geochemical properties at field scales 

is pertinent in predicting and managing the fate and transport of reactive contaminants 

from landfill and waste management sites. However, the transition of biogeochemical 

processes across scales is not well understood. Therefore, the challenge is to acquire 

detailed knowledge of key processes at individual scales and identify the dominant 

linkages to predict geochemical dynamics from one scale to the other.  

Reactive transport is strongly influenced by hydrological processes across 

different spatial scales [Kimball et al., 1994; Vogel and Roth, 2003; Jardine, 2008]. 

Hydrologic variations including water table elevation and precipitation play a pivotal 

role in the migration and distribution of contaminants in groundwater. Several studies 

have identified the impact of rainfall events on redox processes at column [Hansen et al., 

2011] and field scales [McGuire et al., 2000; Scholl et al., 2006]. Other studies have 

documented the importance of seasonality and direction of groundwater flow on the 
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variability of geochemical concentrations [Prommer et al., 1998; Mitchell and 

Branfireun, 2005; Cozzarelli et al., 2011]. For example, Fendorf et al. [2010] suggested 

that the patterns of recharge and discharge of groundwater, especially groundwater 

pumping and time since recharge, were important factors influencing arsenic 

concentrations in South and Southeast Asia. 

Apart from hydrologic variations, the uncertainty in predicting redox dynamics is 

also affected by geochemical and microbiological characteristics of groundwater 

systems. Various studies have reported that the progression of redox reactions can be 

spatially variable and intensified at the plume fringe, and temporally variable and 

governed by changes in chemical composition, redox state, microbial community 

structure, or other external forcing [Champ et al., 1979; Roling et al., 2001; Van 

Breukelen and Griiffioen, 2004]. Chapter V identifies the temporal variability of 

different processes that affect the distribution of conservative and reactive 

concentrations at the Norman landfill site. Thus, the variability in redox processes across 

scales can result from interactions of different processes simultaneously [Christensen et 

al., 2001; Bjerg, 2011; Pacific et al., 2011]. 

Despite several decades of research on redox processes and considerable 

knowledge about individual physical (e.g., advection, dilution), geochemical (e.g., 

adsorption, precipitation, complexation) and microbiological processes (e.g., microbial 

biodegradation, biotransformation), the interactions among these processes and their 

influence across scales is not well understood.  Rate laws, hydrological parameters or 

interactions that are applicable at one scale may not necessarily be applicable to other 
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scales [van Grinsven and van Riemsdijk, 1992; White and Brantley, 2003]. For example, 

variations in hydraulic conductivity parameter, which are known to affect contaminant 

transport, have to be evaluated based on the scale of study [Hunt, 2003; Schulze-Makuch 

and Cherkauer, 2004]. Hydrologic processes themselves exhibit scale variability 

[Bloschl and Sivapalan, 1995] and are affected by a number of physical attributes such 

as topography, vegetation, and other characteristics of the porous media [Sharma et al., 

2006; Das et al., 2008; Jana and Mohanty, 2012]. It is therefore viable to isolate and 

understand the contribution of hydrological processes that can influence biogeochemical 

processes across scales. 

In addition, understanding the natural variability of biogeochemical processes is 

difficult from the standpoint of heterogeneity in the subsurface. Structural heterogeneity 

resulting from the presence of macropores and fractures leads to preferential flow 

movement and faster gateways for contaminants to reach groundwater [Mohanty et al., 

1998; Jarvis et al., 2007]. Heterogeneity in the form of textural interfaces and 

lithological variations is known to intensify biogeochemical activity and affect the 

distribution of chemical concentrations. In their study, Hansen et al. [2011] clearly 

demonstrated that heightened redox activity was observed at small scale interfaces of a 

layered soil column as compared to two texturally homogeneous soil columns. Similarly, 

Schilling and Jacobson [2012] indicated that variations in nutrient concentrations were 

closely related to lithologic variations within the Cedar River floodplain in Iowa. They 

demonstrated that water beneath sand-dominated ridges was aerobic, had higher 

concentrations of NO3-N and lower concentrations of dissolved organic carbon (DOC) 
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as compared to the anaerobic groundwater beneath shales that had lower NO3-N and 

higher DOC. Therefore, an ability to accurately model subsurface heterogeneity and 

relate this phenomenon to biogeochemical processes is important to address the issue of 

upscaling from fine (e.g., column) to coarse (e.g., field) scales.  

Upscaling is the process of replacing such heterogeneous systems with effective 

mean properties that capture the key field scale behavior (by matching hydrologic fluxes 

and geochemistry data from the field site) [Rubin, 2003; Zhu and Mohanty, 2002, 2003, 

2004; Vereecken et al., 2007]. Most upscaling schemes for soil hydraulic parameters 

homogenize the effect of heterogeneity in their derivation of effective parameter values 

[e.g., Zhu and Mohanty, 2006; Mohanty and Zhu, 2007; Vereecken et al., 2007]. 

However, real‐world applications of solute scaling schemes require that the effect of 

small-scale heterogeneity on redox activity and geochemical parameters be incorporated 

into these schemes. For example, Onsoy et al. [2005] concluded that the mismatch 

between effective mean concentrations and nitrate observations at the field scale was a 

result of the heterogeneous flux conditions that were not accounted for by the mass 

balance approach used in their study. In the same way, Khaleel et al. [2002] indicated 

that dispersivity values at the field scale were dependent on geologic formations, and 

averaged concentration profiles for flow parallel to bedding were highly skewed and 

affected by geologic layering. Therefore, we present a study that isolates and quantifies 

the influence of hydrologic conditions (such as infiltration, drainage) and heterogeneity 

(such as lenses, layers) on the effective upscaled geochemical concentrations at the field 

scale. 
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In summary, determining the governing rules for upscaling to a landfill 

environment is difficult due to the complex linkages between hydrologic, geochemical, 

and microbiological processes, and the knowledge about how these processes transition 

across scales. The characteristics of the porous media and subsurface heterogeneity in 

the form of lithological variations also add complexity to modeling and upscaling 

biogeochemical processes. Therefore, the objective of this study is to examine the scale 

dependency of geochemical concentrations while incorporating the influence of 

subsurface heterogeneity (lenses and layers) and hydrologic variability (infiltration and 

drainage scenarios) into the scaling algorithm. 

6.3 Approach  

In this study, the uncertainties associated with the scale dependency of 

hydrological and geochemical parameters as a result of subsurface heterogeneity and 

influence of coupled processes is the focus of the development of an upscaling 

algorithm. Figure 6.1 illustrates the framework for developing such an algorithm using 

Bayesian methods. The hypothesis of using the Bayesian methodology is that the 

characterization of redox-sensitive elements at the field scale can be realized by an 

ensemble of effective upscaled soil hydraulic and geochemical parameters that are 

derived from column scale setups with similar heterogeneous systems. 
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Figure 6.1: Schematic of the upscaling algorithm for testing the heterogeneity 

hypothesis (part A) and integrated modeling framework (part B). 
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For verifying the effect of heterogeneity on upscaling coefficients, two different 

mathematical structures, i.e. with and without heterogeneous formulations, are proposed.  

For verifying the effect of hydrologic processes, two different sets of input parameters, 

i.e. with and without the inclusion of soil water retention parameters, are considered. As 

Figure 6.1 illustrates, the upscaling algorithm requires the selection of the mathematical 

structure of the model (with or without considering heterogeneous formulations). Next, 

prior probabilities of model parameters are established based on the choice of the 

parameter set (with or without the soil water retention parameters). Then, likelihood 

probabilities are generated depending on the choice of the mathematical model and the 

parameter set. The upscaling algorithm established is thus able to produce full 

probability distributions for the selected parameters. 

The heterogeneity formulations are based on the conceptual model framework of 

Chapter IV. This conceptual model developed in § 4.6 describes the distribution of 

geochemical concentrations in close proximity to spatial heterogeneities and has been 

validated at the column scale for both infiltration and drainage scenarios. Figure 6.2 

demonstrates the application of this model for describing the distribution of sulfate 

concentrations (associated with the dominant redox processes) as affected by the 

presence of a clay lens.  
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Figure 6.2: Conceptual framework for part A showing the effect of heterogeneity 

on sulfate concentrations at depths d1 and d2. 

 

 

Figure 6.3: Markov chain Monte Carlo based upscaling algorithm for part B 

deriving scaling coefficients for hydrologic and geochemical parameters. 
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An adaptive model that preserves the spatial characteristics of the conceptual 

model is proposed to include the influence of heterogeneity in the scaling scheme. 

Therefore, the effective mean chemical concentrations <U> at the field scale as a 

function of depth d are given by [Evans et al., 2003]: 

 
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where the subscript field and column represent the corresponding scale of 

observation/prediction, U is the chemical concentration at the given depth of 

observation, Ū is the average chemical concentration for a homogeneous layer d1 at the 

field scale, d1 belongs to the set of x homogeneous layers within the soil system at the 

corresponding scale {d1, d2,.., dx}, and τ and γ are scaling coefficients. Both τ and γ are 

restrained such that τ + γ <1 and the correct relation between variables across scales is 

preserved. R is a characteristic overall ratio, which considering the heterogeneous 

formulation is given by: 
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R                       (6.2)  

and is 1 otherwise. The choice of U is site specific, and is dependent on the dominant 

redox processes (e.g., sulfate or iron reduction at the Norman Landfill site). 

6.3.1 Description of Bayesian methods 

The primary aim of this study is to develop an integrated upscaling algorithm, 

using Bayesian methods, for estimating effective mean concentrations across a 

heterogeneous formation. Bayesian methods provide a statistical framework for 
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obtaining an improved estimate of parameter distributions by combining preexisting 

(prior) knowledge with what is known about those parameters through observed data and 

model output. Figure 6.3 illustrates the methodology of the Bayesian framework where 

cases 1 and 2 are used for testing the influence of hydrological parameters, and cases 3 

and 4 are used for verifying the hypothesis regarding the heterogeneity formulations. A 

scaling parameter β is used to account for scale disparity for hydrological parameters and 

as described above, two such parameters (τ and γ) are used for upscaling geochemical 

parameters. A non-informative prior is assigned to these parameters (e.g., β ~ U[0,1]) so 

that no preference is given to any specific parameter domain. Here, the likelihood is a 

function of the time series of observations of redox-sensitive elements at the field scale 

as a function of depth. Therefore, the general relationship applied for upscaling 

geochemical parameters is given by equations 6.1 and 6.2, and for soil hydraulic 

parameters is given by [Das et al., 2008]: 

   seffs
                     (6.3)  

where (θs)eff is the effective value of the saturated water content at the field scale. The 

scaling coefficient β has a value of 1 for homogeneous soil systems, and less than 1 for 

heterogeneous systems such that the effect of variations in soil type and lithology are 

accounted for. Figure 6.3 further illustrates that this Bayesian algorithm is also tested for 

upscaling observations from the point to the column scale. 

The resulting upscaling algorithm is able to provide the conditional posterior 

distribution using the Bayes’ framework: 
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where D is the observed data at the field scale, f(D|Θ) is the likelihood function 

summarizing the model for the data given the parameters, π(D) is a normalizing 

constant, π(Θ) is the prior joint probability for the upscaled parameters, and Θ is the 

parameter set {θr
β, θs

β, αβ, nβ, Ks
β, τ, γ} while including the hydraulic parameters and {τ, 

γ} otherwise. Once the conditional posterior probability is known, the marginal posterior 

distribution p(.|D) for any upscaled parameter (e.g., saturated soil water content for the 

matrix domain, θs
β) is given by integrating over the set of all other geochemical and soil 

hydraulic parameters (θ2, θ3,…., θtot) included in the analysis: 
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The main complication in solving equation 6.5 is the intractability of the multi-

dimensional integration and the computation of π(D). A possible solution is to use any 

MCMC algorithm that generates a sequence of parameter sets, {Θ(0), Θ(1),.., Θ(t)} that 

converge to the stationary target distribution for large number of iterations t [Gelman et 

al., 1995]. 

An adaptive MCMC scheme of Harrio et al. [2001], which caters to our need for 

resolving a large number of hydrological and geochemical parameters, is used in this 

study. Harrio et al. [2001] chose a multivariate normal distribution as the proposal 

density, and resolved correlation among parameters by employing a fixed covariance 

matrix ∑ for a finite number of initial iterations (t0), and then updating ∑ as a function of 

all the previous iterations: 
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where i is the current iteration, ∑0 is the initial covariance matrix based on prior 

information, d is the dimension of Θ, є is a small parameter chosen to ensure ∑i does not 

become singular, Id is the d-dimensional identity matrix, and sd is a scaling parameter 

that depends only on d. A basic choice for the scaling parameter can be sd = (2.4)2/d for 

Gaussian targets and Gaussian proposals [Gelman et al., 1995]. To decrease the 

computational cost, Harrio et al. [2001] also described the method to obtain ∑ at the 

next iteration (i+1) as: 
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The AMCMC algorithm used in this study has been described in the previous 

chapter (§ 3.3.4). 

6.4 Data  

6.4.1 Site description 

The field scale data for verifying the upscaling algorithm is obtained from the 

Norman Landfill site. The Norman Landfill is a closed municipal landfill that operated 

for 63 years in the city of Norman, Oklahoma (Figure 6.4a).  
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Figure 6.4: Map showing a) the location of the Norman Landfill site [Breit et al., 

2005], and b) the spatial heterogeneity encountered across different well locations 

at the site [Scholl et al., 1999]. The ovals in the spatial heterogeneity map represent 

the well locations used in this study. 

 

The site sits on permeable Canadian River alluvium which is about 10 to 15 

meters thick and overlies a low-permeability shale and mudstone confining unit known 

as the Hennessey Group. The aquifer material is predominantly sand and silty sand with 

intermittent mud layers and clay lenses [Scholl and Christenson, 1998].  

Near the landfill, the groundwater is shallow and ranges to about four meters 

from the land surface [Scholl and Christenson, 1998]. The leachate plume from the site 

extends approximately 250m in the direction of groundwater towards the Canadian River 

[Scholl and Christenson, 1998]. Previous hydrologic investigations have indicated that 

the leachate flows directly beneath a former Canadian River channel, referred to as the 

slough (Figure 6.4a) [Becker, 2002]. The slough is an ephemeral wetland that was 

intermittently exposed to the landfill leachate. 
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The Norman Landfill has been designated as a U.S. Geological Survey research 

site and active investigations have been conducted on its biogeochemistry since 1995. 

Several studies have indicated that sulfate reduction, iron reduction, and methanogenesis 

are important biogeochemical processes at the Norman Landfill site [Cozzarelli et al., 

2000; Eganhouse et al., 2001; Grossman et al., 2002]. In their study, Báez-Cazull et al. 

[2008] reported that seasonal rainfall patterns were dominant factors in controlling iron 

and sulfate reduction while analyzing 3 year data from the slough. Cozzarelli et al. 

[2011] confirmed that chemical concentrations in the plume boundaries are affected by 

hydrologic processes at various time scales. Their analysis further revealed the spatial 

variability in chemical concentrations across the leachate plume. They concluded that 

the upper boundary of the leachate plume is an active redox location while the center of 

the plume is depleted in sulfate and has low oxidation capacity. Therefore, the Norman 

Landfill provides an opportunity to develop and verify an upscaling algorithm that 

incorporates hydrologic variability and spatial heterogeneity within the site. 

6.4.2 Field scale measurements 

The performance of the upscaled parameters can be tested using selected wells at 

the Norman Landfill that have vertical heterogeneity similar to the experimental soil 

columns. Two multilevel wells located on a transect parallel to the groundwater flow are 

employed for verifying the integrated MCMC algorithm at this site. Figure 6.4b 

illustrates the geologic map of the Norman Landfill site including the location of IC 36 

and IC 54 wells (represented by ovals) with intermittent mud layers. The landfill well 

(IC 36) is located 35m from the edge of the landfill mound, and the slough well (IC 54) 
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is located 7m south of the slough [Breit et al., 2005]. The wells are named as such 

because of their distinct chemical characteristics and hydrologic interactions. The IC 36 

well closely interacts with the leachate plume, and the IC 54 well is hydrologically 

connected with the slough. 

Both wells have screens set at different elevations to capture the dynamics of the 

local water table [Scholl et al., 2006]. Apart from hydraulic head measurements, 

geochemical data including specific conductance, δ2H, chloride, sulfate, nitrate, and 

non-volatile dissolved organic carbon (NVDOC) were collected at both well locations. 

Specific conductance was measured using a portable meter, anions were analyzed using 

ion chromatograph, NVDOC concentrations were determined following the method of 

Qian and Mopper [1996], and isotopic analyses were done by equilibration with gaseous 

hydrogen for δ2H. Further details of the chemical methods are provided elsewhere 

[Scholl et al., 2006; Cozzarelli et al., 2011].  

6.4.3 Soil column setup 

Two soil columns with similar spatial heterogeneities were used to verify the 

integrated upscaling algorithm: a layered column and a lensed column (Figure 6.5). The 

soil cores for both columns were collected from the Norman Landfill site. Two soil types 

were collected from this site: an alluvial, fine-grained sand from the banks of the 

Canadian River and an organic-rich loam from the slough. The soil cores were air-dried, 

ground, and repacked using a piston compactor to attain a dry bulk density of 1.4 Mg/m3 

for the sand and 1.0 Mg/m3 for the loam soil.  



214 
 

 
 

The schematics of the layered and lensed columns are given in Figure 6.5a. The 

sand-over-loam layered soil column was 40 cm in length and 15 cm in diameter. It had 

18 cm of sand over 22 cm of loam. The lensed column had two horizontally offset lenses 

of loam within a matrix of sand. The lensed soil column was 60 cm in length and 15 cm 

in diameter. 

The experimental setup was such that a rainfall simulator with a matching 

diameter disc (15 cm) was used for introducing rainwater to the columns (Figure 6.5b) 

[Kohne and Mohanty, 2005]. Boundary conditions were maintained using a tension 

infiltrometer at the top of the soil column. The bottom boundary was open to 

atmosphere. A fraction collector was used intermittently to analyze concentration 

profiles from the bottom of the soil columns. 

6.4.4 Column scale measurements 

Hydrologic and geochemical data were monitored using collocated probes 

installed at various depths within the columns (Figure 6.5b, c). In particular, tensiometer 

and time-domain reflectometry (TDR) probes were used to monitor pressure head and 

water content profiles, respectively.  
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Figure 6.5: Schematic of a) the layered and lensed columns with instrumentation, 

b) the experimental setup of the layered sand-over-loam column, and c) the 

experimental setup of the lensed column. 
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Lysimeters with amber vials were used to collect low volume porewater (less 

than 7 ml) for geochemical analyses. This porewater was used to analyze pH and 

alkalinity measurements. The concentrations of major anions (Cl-, Br-, SO4
2-, and NO3

-) 

and cations (Ca2+, K+, Na+, and NH4
+) obtained from this porewater. In addition, reduced 

species of iron and sulfur, and redox potential (Eh) were quantified voltammetrically 

using a hanging drop mercury electrode. Further information on the experimental setup 

and analyses can be obtained elsewhere [Hansen et al., 2011; Hansen et al., 2012b]. 

6.5 Results and discussion  

Bayesian methods are used in this study to upscale dominant redox 

concentrations, i.e. sulfate concentrations, from the column scale to the Norman Landfill 

site. As described in Figure 6.3, the MCMC algorithm is used to upscale the layered 

column data to the IC 36 well, and lensed column data to the IC 54 well. This upscaling 

algorithm is then verified by using point scale data measured in one of the lens to obtain 

column scale data encompassing the heterogeneity around the other lens. For both the 

layered and lensed columns, the upscaling algorithm is used to verify the effect of 

heterogeneity and influence of coupled parameters on sulfate concentrations at the 

Norman Landfill site. 

6.5.1 Upscaling from the layered soil column to the IC 36 well 

The approach described above is applied to upscale dominant redox 

concentrations from the layered heterogeneity at the column scale to a similar vertical 

heterogeneity setup of the landfill well. MCMC iterations are run for verifying each 

hypothesis, i.e. the heterogeneity formulation and the influence of hydrological 
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parameters. It is worthwhile to mention that the observed data (represented by squares) 

for infiltration and drainage scenarios at the field scale correspond to the monthly data 

for May and September, respectively. The choice of the months is based on Chapter V 

where the influence of infiltration and drainage events on conservative indicator and 

reactive concentrations were specifically identified on a temporal scale. Efforts were 

also made to ensure that the rainwater composition used for the infiltration experiments 

at the column scale matched the rainfall chemistry at the landfill site (see previous 

chapter, Table 4.4).  

Figure 6.6 compares the effective sulfate and ferrous iron concentrations 

obtained as a function of depth at the landfill well with and without the heterogeneity 

formulations (equations 6.1 and 6.2) for an infiltration scenario. Figure 6.6 demonstrates 

that the predictions of sulfate are included within the 95% uncertainty bounds when the 

heterogeneity formulation is used in the upscaling algorithm. The predictions of Fe2+ are 

also significantly improved with the heterogeneity formulation even though the 

geochemical scaling coefficients are derived by considering the dominant sulfate 

reduction processes and employing sulfate as U in equation 6.2.  
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Figure 6.6: Uncertainty in estimating effective sulfate and ferrous iron 

concentrations (mg/l) at the landfill well from an infiltration experiment of the 

layered soil column with geochemical parameter ratios a) without and b) with the 

heterogeneity formulation. The solid line represents the average output from the 

MCMC simulations, the bars represent the 95% prediction uncertainty range, and 

the squares correspond to field observations below the heterogeneity. 
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To further evaluate the integrated upscaling approach, the effective sulfate and 

bromide concentrations are compared without (Figure 6.7a) and with the heterogeneity 

formulation (Figure 6.7b), as well as without (Figure 6.7a, b) and with the inclusion of 

hydrological parameters (Figure 6.7c) for a drainage scenario. Table 6.1 summarizes the 

initial soil hydraulic parameter values and their uncertainty ranges employed for the 

MCMC simulations. The initial values for the soil water retention parameters are either 

obtained from laboratory measurements or inversely estimated using HYDRUS-1D as 

mentioned in § 4.4.4. The initial uncertainty range included herein is based on the 

UNSODA database for sand and loam soil types [Nemes et al., 1999, 2001]. A normal 

distribution is assigned as a prior to the soil hydraulic parameters based on previous 

experiences with upscaling using Bayesian methods [Das et al., 2008]. The results from 

the MCMC iterations indicate that a significant improvement is observed in the 

predictions of the reactive component (SO4
2-) using the integrated upscaling approach, 

while orders of magnitude improvement is obtained for the tracer component (Br-) as can 

be seen in the transition from Figure 6.7a to Figure 6.7c. Comparatively, an order of 

magnitude improvement in sulfate concentrations is not obtained because the 

geochemical scaling coefficients are already based on sulfate concentrations.  
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Figure 6.7: Uncertainty in estimating effective sulfate and bromide concentrations 

(mg/l) at the landfill well from a drainage experiment of the layered soil column 

with geochemical parameter ratios a) without and b) with the heterogeneity 

formulation, and c) in combination with hydrological parameters. The solid line 

represents the average output from the MCMC simulations, the bars represent the 

95% prediction uncertainty range, and the squares correspond to field observations 

below the heterogeneity. 
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Table 6.1: Initial parameter values and uncertainty range of soil hydraulic 

parameters used in the MCMC simulations. 

Soil hydraulic parameters Initial values 

Initial 

uncertainty 

range 

Sand 

θr (-) 0.027 Fixed* 

θs (-) 0.321 0.36-0.42 

α (cm-1) 3.18 0-0.14 

n (-) 1.60 1.1-2.9 

Ks (cm.min-1) 0.636 1.85-37 

l (-) 0.50 Fixed** 

Loam 

θr (-) 0.015 Fixed* 

θs (-) 0.385 0.35-0.41 

α (cm-1) 2.02 0-0.14 

n (-) 1.86 1.38-2.22 

Ks (cm.min-1) 0.141 0.003-5.53 

l (-) 0.50 Fixed** 

* to reduce the number of fitting parameters, some parameters were fixed based on optimal HYDRUS 
simulation 
** tortuosity parameter was fixed at 0.5 [Mualem, 1976]. 
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Figures 6.8 and 6.9 show the trace plots and the posterior distributions of the 

geochemical scaling coefficients (τ and γ) using the AMCMC technique for drainage and 

infiltration experiments of the layered soil column, respectively. A key issue in 

successful implementation of the MCMC algorithm is the choice of the burn-in period 

and thinning of the chain. For this study, each MCMC chain was run for 10000 

iterations, and the initial 1000 iterations were regarded as the burn-in length. The 

posterior density plots of τ and γ with and without the heterogeneity formulation in 

Figures 6.8 and 6.9 are realized after discarding the burn-in length and thinning of the 

MCMC chain. 

For both infiltration and drainage events, the trace plots of Figures 6.8 and 6.9 

indicate good mixing of the chain as the AMCMC iterates seem to traverse the entire 

parameter distribution to yield good estimates of the geochemical scaling parameters. It 

can be easily seen that the sequence of draws converges quickly to the true target 

density, within 10000 iterations, using the AMCMC technique with 25-28% acceptance 

ratio.  
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Figure 6.8: Parameter trace plots and posterior density plots of geochemical scaling 

coefficients a) without and b) with the heterogeneity formulation for a drainage 

experiment of the layered soil column. 
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Figure 6.9: Parameter trace plots and posterior density plots of geochemical scaling 

coefficients a) without and b) with the heterogeneity formulation for an infiltration 

experiment of the layered soil column. 
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An interesting thing to note is that the posterior density plots for both τ and γ 

portray skewed distributions without the heterogeneity formulation (Figures 6.8a and 

6.9a), and are strongly correlated to each other as τ =1-γ-e (where e is a small number, 

even less than 0.01, for both infiltration and drainage scenarios). The means of the 

geochemical scaling coefficients are also quite similar for both scenarios. This clearly 

indicates that the geochemical scaling coefficients are unable to reproduce the behavior 

of hydrologic events (infiltration, drainage, etc.) and distribution of chemicals around the 

heterogeneity through this formulation, and therefore exhibit an unnecessary correlation. 

This can be further confirmed when the heterogeneity formulation is considered and the 

geochemical scaling coefficients are normally distributed and not correlated as the 

relationship described above. In fact, the means and the correlation structure between τ 

and γ are different for the infiltration and drainage scenarios as indicated by their 

different ranges and density plots (Figures 6.8b and 6.9b).  

Figure 6.10 demonstrates that the posterior density distribution of the hydrologic 

scaling coefficient (β) is multimodal for both infiltration and drainage events as 

compared to the unimodal nature of the posterior distributions for both geochemical 

scaling coefficients (Figures 6.8 and 6.9). The multimodality can result from the inherent 

structure of the prior, such as the use of a multivariate normal prior applied in this study 

[Escobar and West, 1995]. However, several studies have indicated that these modes in 

the posterior distribution are related to the different domains or layers of a soil system. 

For example, de Rooij et al. [2004] obtained different modes for soil hydraulic 

parameters within the same parametric distribution in their analysis of undisturbed soil 
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cores from an arable field near Andelfingen in northern Switzerland. In their study, the 

different modes were reflective of the different soil depths and retention functions of the 

plough layer and the subsoil. For our study, the posterior distribution of β is again 

suggestive of the effect of layering and heterogeneity, especially the different retention 

and hydraulic conductivity functions of the sand and loam soil types. 

 

 

Figure 6.10: Posterior density plots of the hydrologic scaling coefficient using the 

integrated upscaling framework for i) infiltration and ii) drainage experiments of 

the layered soil column. 
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6.5.2 Verifying the upscaling algorithm 

The upscaling algorithm is verified on two criteria: i) to test its applicability from 

any fine scale measurement (e.g., point) to the coarse scale (e.g., column), and ii) to 

confirm the choice of the adaptive conceptual model that preserves the spatial 

distribution of dominant redox processes. For the first criterion, the upscaling algorithm 

is verified on the lensed column by upscaling point scale observations of sulfate from 

one lens to the other lens, and matching these upscaled values with the column scale 

data. For the second criterion, the adaptive model is again verified on the lensed column 

by upscaling from the point to the column scale. If the geochemical parameters are truly 

independent of the spatial characteristics of the adaptive model, then a single effective 

concentration obtained without the heterogeneity formulation would be representative of 

sulfate concentrations around the lensed heterogeneity. Figure 6.11 represents the 

observed SO4
2- concentrations (represented by squares) around the lower lens of the 

column and predicted SO4
2- concentrations obtained from upscaling of data from the 

upper lens with (represented by solid lines) and without (represented by dashed lines) the 

heterogeneity formulation. As the results indicate, the distribution and both the 

increasing and decreasing trends of sulfate around the lower lens are well captured when 

the effect of heterogeneity is accounted for as opposed to a single effective value 

obtained from the upscaling algorithm without the heterogeneity formulation. The lower 

sum of squares error (SSE) also  supports the use of an adaptive conceptual model that 

preserves the trend of the local depth variations at the point scale as compared to a single 

effective value. The single effective concentrations display a higher SSE only in nitrate 
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concentrations for the infiltration experiment of the lensed column. However, the 

adaptive model appropriately reproduces the spatial distribution of nitrate concentrations 

at the column scale. A satisfactory match of the effective sulfate concentrations to the 

column data confirms the applicability of this upscaling algorithm across any fine to 

coarse scales. 

 

 

Figure 6.11: Observed and predicted effective concentrations (mg/l) for a) 

infiltration and b) drainage experiments of the lensed column. The solid line 

represents the average output at the columns scale using the heterogeneity 

formulation, the dashed line represents the average output at the columns scale 

without using the heterogeneity formulation, and the squares correspond to 

observations. Symbol: SSE, sum of squares error. 
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6.5.3 Upscaling from the lensed soil column to the IC 54 well 

Figures 6.12 and 6.13 show a series of plots for assessing the fit of upscaled 

concentrations to the IC 54 well data. As mentioned earlier, the vertical heterogeneities 

between the slough well and the lensed column are quite similar, and the infiltrating 

water chemistry used for column scale experiments is similar to the observed rainfall at 

the landfill site (see previous chapter, Table 4.4). Figure 6.12 indicates that a reasonable 

fit is achieved for a drainage event when the heterogeneity formulation is applied for 

both nitrate and bromide concentrations, even though the geochemical scaling 

coefficients are again derived using sulfate. The results indicate that the prediction 

accuracy has significantly improved as predicted nitrate concentrations are between 0-

0.05 mg/l using the heterogeneity formulation and between 0-6000 mg/l without the 

heterogeneity formulation while observations lie between 0.2-0.3 mg/l. Figure 6.13 

emphasizes the role of soil hydraulic parameters in improving the predictions of 

geochemical concentrations at the field scale for an infiltration event. Again, the 

improvement obtained in conservative indicator concentrations (i.e., chloride) is much 

larger than that obtained in reactive concentrations (i.e., sulfate) when soil hydraulic 

parameters are included in the integrated upscaling framework. Figure 6.13 demonstrates 

that almost all predictions of chloride are included within the 95% uncertainty bounds 

when soil hydraulic parameters are included in the upscaling algorithm. 
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Figure 6.12: Uncertainty in estimating effective nitrate and bromide concentrations 

(mg/l) at the slough well from a drainage experiment of the lensed soil column with 

geochemical parameter ratios a) without and b) with the heterogeneity formulation. 

The solid line represents the average output from the MCMC simulations, the bars 

represent the 95% prediction uncertainty range, and the squares correspond to 

field observations above the heterogeneity. 
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Figure 6.13: Uncertainty in estimating effective sulfate and chloride concentrations 

(mg/l) at the slough well from an infiltration experiment of the lensed soil column 

with geochemical parameter ratios i) without and ii) with hydrological parameters. 

The solid line represents the average output from the MCMC simulations, the bars 

represent the 95% prediction uncertainty range, and the squares correspond to 

field observations above the heterogeneity. 
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For the scaling coefficients, the convergence of MCMC chains to the true 

posterior density can be assessed using the Geweke z statistic apart from using the trace 

plots [Geweke, 1992]. The Geweke test splits the MCMC chain into two “windows”: the 

first window contains the beginning 20% of the chain, and the second contains the last 

50% of the chain. If the MCMC chain has converged to a stationary distribution, the 

mean of the two windows is equal and the Geweke test statistic or the chi-squared 

marginal significance for the two means yields a value greater than 2. A value of less 

than 2 for the Geweke chi-squared estimate indicates autocorrelation in the chain. For 

the integrated upscaling framework, Table 6.2 confirms the convergence of all scaling 

coefficients using the AMCMC algorithm. 

6.5.4 Effect of parameter correlation on upscaling 

Table 6.3 summarizes the prior and posterior correlation structure of the soil 

hydraulic parameters for a drainage experiment of the lensed column using the AMCMC 

algorithm. The results presented in Table 6.3 illustrate that we end up with different 

correlation coefficients for all parameters. The difference in initial and posterior 

covariance matrices could be a result of the adaptive nature of the MCMC algorithm. 

However, the posterior correlation coefficients are less than 0.6 for all parameters 

suggesting that the interaction among parameters is not restricting us from obtaining a 

unique parameter set for the upscaling coefficients. Infact, by employing the adaptive 

MCMC algorithm that updates the parameter correlation simultaneously, we have 

strengthened the upscaling framework used in this study. 
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Table 6.2: Geweke convergence statistic for MCMC chains using the integrated 

upscaling framework. 
Scaling coefficient Geweke z score 

τ 1.21 
γ 1.97 
β 1.80 

 

Table 6.3: Prior and posterior covariance matrix for a drainage experiment of the 

lensed column. 

Covariance 

matrix 

Soil hydraulic parameters 

 θr θs α n Ks 

Prior* 

θr 1     

θs -0.07 1    

α -0.19 -0.55 1   

n -0.42 0.42 -0.40 1  

Ks 0.0 0.04 -0.03 0.03 1 

Posterior 

θr 1     

θs 0.14 1    

α 0.40 -0.47 1   

n -0.57 0.25 0.44 1  

Ks -0.23 0.27 -0.27 -0.57 1 

* The initial covariance structure is obtained from previous experience (see § 3.4.3) with the model for 
this data [Vrugt et al., 2003]. 
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6.6 Limitations of the study 

Despite the multi-scale verification and advanced stochastic techniques used in 

this study, there are certain limitations to our approach. First, this study does not 

evaluate the effect of thickness, lateral positions, or the interaction among multiple 

heterogeneous structures on the upscaled hydrologic and geochemical coefficients. 

Several studies have shown that upscaled parameters are affected by the geological 

characteristics and arrangement of lithologic units in the subsurface system [Khaleel et 

al., 2002; Onsoy et al., 2005; Deng, 2009]. Although a complete representation of spatial 

heterogeneity will definitely improve the upscaling framework and predictions of 

conservative and reactive concentrations at the field scale, this detailed analysis is 

beyond the scope of the current study.  

Second, the geochemical scaling coefficients used for obtaining the conservative 

and reactive chemical concentrations at the field scale are based on the dominant 

biogeochemical processes. For the case of the Norman Landfill site, we used sulfate 

reduction as a dominant process and incorporated the distribution of sulfate around the 

heterogeneity in the upscaling framework. The scaling coefficients obtained are quite 

similar when nitrate concentrations are used but are different when iron is used instead 

of sulfate (Figure 6.14). This is because iron reduction is also a dominant 

biogeochemical process at the Norman Landfill site [Cozzarelli et al., 2000; Eganhouse 

et al., 2001; Grossman et al., 2002]. If geochemical concentrations for the dominant 

processes are unavailable at one or both scales or knowledge about the dominant 

processes is lacking, then this upscaling framework is limited in its applicability. 
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Therefore, we encourage the users to identify the dominant redox processes and evaluate 

the results for upscaling geochemical concentrations for thess processes before 

transferring results from our study. 

 

 

Figure 6.14: Posterior density plots of the geochemical scaling coefficients using i) 

nitrate and ii) iron concentrations in the integrated upscaling framework for an 

infiltration experiment of the layered soil column. 
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6.7 Conclusions 

Geochemical concentrations of conservative and reactive contaminants in 

groundwater are key parameters for assessing contaminant plume migration, evaluating 

health risks, and planning remedial actions. A significant challenge in predicting these 

concentrations at large scales is the lack of an efficient upscaling methodology that 

serves as a link between knowledge gained at the laboratory scale and application 

needed at the field scale. We present a study that develops scale-appropriate parameters 

to represent the transition of biogeochemical processes that impact contaminant 

migration and prediction from the column to landfill scales. A new integrated upscaling 

framework is developed using Bayesian methods that addresses the effect of structural 

heterogeneity (lenses and layers) and coupled processes (influence of hydrologic 

variability) on dominant redox concentrations at the Norman Landfill site. 

A Bayesian upscaling approach with simulations performed using an adaptive 

Markov chain Monte Carlo (AMCMC) algorithm is presented in this study. The 

Bayesian methods provide an objective framework for the selection of the likelihood 

function, the choice of model parameters, and the development of an integrated 

upscaling framework. The results of the MCMC simulations indicate that the use of a 

heterogeneity formulation in the likelihood function significantly improves the 

prediction of geochemical concentrations at the landfill site. The inclusion of soil 

hydraulic parameters along with the geochemical scaling coefficients increases the 

prediction accuracy, especially for conservative indicators, by orders of magnitude. 

These results using 10000 MCMC simulations for two different soil column setups help 
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in the development of an integrated upscaling algorithm that employs an adaptive 

conceptual model that preserves the effect of structural heterogeneity and influence of 

hydrologic variability on dominant redox processes.  

The scale-dependent geochemical coefficients (τ and γ) derived through the 

upscaling algorithm demonstrate unimodal characteristics in the posterior distribution 

while the hydrologic scaling coefficient (β) is multimodal in nature. This multimodality 

again emphasizes the influence of subsurface heterogeneity and two different soil types 

(sand and loam) on posterior distribution of β. This is similar to conclusions made in 

Chapter III and other studies where the multimodality in soil hydraulic parameters is 

primarily affected by the different soil water retention functions due to different matrix 

or macropore domains, or soil layers [de Rooij et al., 2004].  

For implementing the upscaling algorithm, MCMC convergence diagnostics are 

considered using both graphical and statistical techniques. The influence of parameter 

correlation on scale-dependent upscaling coefficients is also considered. The integrated 

framework is developed by upscaling from the column to the field scale, and verified by 

upscaling from point measurements to the column scale. Therefore, this integrated 

upscaling algorithm can cater to most fine or coarse scale datasets as long as the 

dominant redox processes are known and representative concentrations are available at 

both scales. 
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CHAPTER VII 

GENERAL CONCLUSIONS 

 

The fate and transport of contaminants in the subsurface is affected by the 

reduction-oxidation (redox) potential of a system. Previous studies have indicated that 

redox can be non-linearly coupled with other biogeochemical processes that have the 

ability to change the reactivity and transport of contaminants before they reach the 

saturated zone. The research reported in this dissertation was specifically focused on 

understanding the interaction among coupled biogeochemical processes, extracting the 

influence of heterogeneity and hydrologic variability on these interactions, and 

quantifying how these interactions change across scales.  

Results from Chapters II and III analyzed the effect of macropore heterogeneity 

on experimental soil columns with no macropore, single macropore, and multiple 

macropore distributions.  This study was the first of its kind to describe the behavior of 

preferential flow and tracer transport under heterogeneous macropore distributions. 

Comparison between commonly applied continuum-scale models (single porosity, 

mobile-immobile, dual permeability) recommended the use of a more complex model 

with an increase in macropore density to generate forecasts with greater accuracy. This 

study also demonstrated that domain-specific measurements should be used and 

macropore density should be accounted for to reduce errors when using complex 

continuum scale models.   
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When the dual permeability model (DPM) is applied within a Bayesian 

framework, as demonstrated in Chapter III, the uncertainty in parameters and 

preferential flow outputs from the single and multiple macropore columns can be 

quantified. This is important from the perspective that complex continuum scale models 

require identification of a large number of parameters associated with the additional 

macropore domain and the matrix-macropore interface. The comparison between 

deterministic and stochastic approaches helped in interpreting the physical role of 

interface parameters in a dual permeability model, and outlined the need for efficient 

sampling algorithms or additional datasets to yield unique (equifinal) soil hydraulic 

parameters. In addition, the results also indicated that the effect of macropore density 

should be accounted for by changing certain parameters (e.g., saturated hydraulic 

conducitivity of the fracture domain) of the DPM framework. 

Apart from macropore distributions, this study (Chapter IV) also analyzed the 

effect of structural heterogeneity on redox processes by comparing two texturally 

homogeneous with a heterogeneous (layered) soil column. The results from this study 

indicate that enhanced biogeochemical activity is observed around the textural interface 

of the layered sand-over-loam column as compared to the homogeneous sand and loam 

columns, and highlights the need to incorporate structural heterogeneity in contaminant 

fate and transport models. A conceptual model is proposed that can account for distinct 

water chemistries across such heterogeneous formations (such as layered interfaces, clay 

lenses). This study also demonstrates that the type of hydrologic boundary conditions 
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(infiltration, drainage, etc.) stongly influence redox processes within the experimental 

soil columns.  

Results from the Norman Landfill site (Chapter V) also demonstrated the 

intricate linkages between redox geochemistry and hydrologic variability. This 

relationship was tested in the upscaling framework developed in Chapter VI. 

A new upscaling algorithm which accounts for reactive concentration ratios 

around heterogeneous formations and incorporates hydrologic upscaling in addition to 

geochemical upscaling was developed and successfully tested in Chapter VI.  

Therefore, the different studies presented in this dissertation clearly demonstrate 

that modeling fate and transport of contaminants can be improved by including the effect 

of subsurface heterogeneity and influence of hydrologic variability from column to 

landfill scales.  
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APPENDIX A 

PRINCIPAL COMPONENT ANALYSIS 

 

A complete summary of the principal component analysis used for extracting the 

dominant processes of the homogeneous sand, homogeneous loam and layered columns 

is provided in the following tables. 

 

Table A1: Component Score Coefficient Matrix for the homogeneous sand column. 
Parameter Component 1 

Depth 1.62E-02 
Tensiometer located at the top of the column 4.00E-10 

Tensiometer located at the bottom of the column 1.62E-09 
TDR located at the top of the column -7.65E-07 

TDR located at the bottom of the column 8.95E-09 
Redox potential measurement at the top of the column 4.97E-05 
Redox potential measurement at the top of the column -1.04E-04 

Cl- -9.00E-03 
Br- 9.78E-01 

SO4
2- 9.47E-04 

NO3
- 3.82E-03 

Alkalinity 8.37E-03 
Temperature  2.37E-08 
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Table A2: Component Score Coefficient Matrix for the homogeneous loam column. 
Parameter Component 1 Component 2 Component 3 

Depth -5.84E-03 5.81E-03 -5.50E-04 
Tensiometer located at the top of the column -4.70E-09 9.15E-09 5.53E-09 

Tensiometer located at the bottom of the column 1.62E-06 -2.20E-06 -4.60E-07 
TDR located at the top of the column -1.50E-07 3.58E-07 1.16E-07 

TDR located at the bottom of the column 3.39E-10 -7.00E-10 -1.50E-11 
Redox potential measurement at the top of the column -5.20E-05 9.67E-05 1.86E-05 
Redox potential measurement at the top of the column 1.15E-04 -2.50E-04 -4.20E-05 

Cl- -5.11E-02 1.35E-01 2.04E-02 
Br- -3.43E-01 8.83E-01 1.37E-01 

SO4
2- 1.06E+00 -8.73E-02 2.61E-01 

NO3
- 1.79E-09 -3.12E-08 -2.79E-08 

Alkalinity -1.60E-01 4.17E-02 1.03E+00 
Temperature 2.00E-04 -3.53E-04 -7.94E-05 

K -4.30E-03 1.00E-02 1.75E-03 
Ca -1.43E-03 1.46E-02 -8.83E-03 
Na -1.89E-02 5.23E-02 4.69E-03 
Mg 2.35E-04 -4.08E-04 -4.37E-05 
NH4 8.70E-04 -3.17E-03 -1.21E-03 
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Table A3: Component Score Coefficient Matrix for the layered sand-over-loam 

column. 
Parameter Component 1 Component 2 

Depth -2.88E-04 -5.00E-04 

Tensiometer located at the top of the column 2.10E-09 2.59E-10 

Tensiometer located at the bottom of the column 7.76E-09 7.58E-09 

TDR located at the top of the column -1.34E-09 -2.88E-08 

TDR located at the bottom of the column -7.03E-11 1.12E-11 

Redox potential measurement at the top of the column 2.09E-07 1.31E-07 

Redox potential measurement at the top of the column 1.38E-07 -1.41E-08 

Cl- 2.21E-03 6.22E-03 

Br- -8.05E-04 -6.38E-04 

SO4
2- -5.41E-01 8.90E-01 

NO3
- 7.14E-08 2.67E-08 

Alkalinity -6.98E-01 -7.72E-01 

Temperature 3.94E-08 3.65E-08 

K 2.94E-04 1.14E-04 

Ca -1.38E-04 6.53E-04 

Na 7.27E-04 -1.40E-04 

Mg -2.32E-04 1.03E-04 

NH4 -8.57E-04 -2.23E-03 
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APPENDIX B 

CROSS WAVELET ANALYSIS 

 

The following figures provide detailed results of the cross wavelet analysis that 

establish similar temporal frequencies for different indicator and reactive chemicals. 
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Figure B1: Cross wavelet analysis of bromide and sulfate signals at the control well 

from May 1998 to May 2000: i) time records of normalized bromide and sulfate 

data, and ii) modulus and angle of the wavelet cross-spectrum. 
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Figure B2: Cross wavelet analysis of bromide and sulfate signals at the landfill well 

from November 1998 to May 2000: i) time records of normalized bromide and 

sulfate data, and ii) modulus and angle of the wavelet cross-spectrum. 
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Figure B3: Cross wavelet analysis of bromide and δ2H signals at the landfill well 

from November 1998 to May 2000: i) time records of normalized bromide and δ2H 

data, and ii) modulus and angle of the wavelet cross-spectrum. 
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Figure B4: Cross wavelet analysis of bromide and chloride signals at the slough 

well from May 1998 to May 2000: i) time records of normalized bromide and 

chloride data, and ii) modulus and angle of the wavelet cross-spectrum. 
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Figure B5: Cross wavelet analysis of bromide and δ2H signals at the slough well 

from May 1998 to May 2000: i) time records of normalized bromide and δ2H data, 

and ii) modulus and angle of the wavelet cross-spectrum. 
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