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ABSTRACT 

 

Using Bayesian Network to Develop Drilling Expert Systems.  

(August 2012) 

Abdullah Saleh H. Alyami, B.S., Florida Institute of Technology; M.S., King Fahd 

University of Petroleum and Minerals 

Chair of Advisory Committee: Dr. Jerome J. Schubert 

 

Long years of experience in the field and sometimes in the lab are required to 

develop consultants. Texas A&M University recently has established a new method to 

develop a drilling expert system that can be used as a training tool for young engineers 

or as a consultation system in various drilling engineering concepts such as drilling 

fluids, cementing, completion, well control, and underbalanced drilling practices. 

  This method is done by proposing a set of guidelines for the optimal drilling 

operations in different focus areas, by integrating current best practices through a 

decision-making system based on Artificial Bayesian Intelligence. Optimum practices 

collected from literature review and experts' opinions, are integrated into a Bayesian 

Network BN to simulate likely scenarios of its use that will honor efficient practices 

when dictated by varying certain parameters.   

  The advantage of the Artificial Bayesian Intelligence method is that it can be 

updated easily when dealing with different opinions. To the best of our knowledge, this 

study is the first to show a flexible systematic method to design drilling expert systems.  
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  We used these best practices to build decision trees that allow the user to take an 

elementary data set and end up with a decision that honors the best practices.  
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NOMENCLATURE 

 

BHST           Bottom hole static temperature 

BOP           Blow out preventer 

BWOC         By weight of cement 

Gps               Gallons per sack 

Hp                Horse power 

Ibpg                Bounds per gallon 

PPA  Pound of proppant added per gallon of clean fluid 

RIH            Run in hole 

ROP             Rate of penetration 

TD                 Total depth 

UB                 Underbalanced 

UBD                 Underbalanced drilling 

UBCT                 Underbalanced coiled tube 

UBCTD                Underbalanced coiled tube drilling 

UBLD                 Underbalanced liner drilling 

YP                Yield point 
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CHAPTER I 
 

INTRODUCTION AND 

LITERATURE REVIEW 

 

Expert systems are knowledge processing which enable computers to do certain tasks 

similar to humans or some times better than human experts. The real motive of such type 

of research is the shortage of expertise, Hayes-Roth (1987). 

Expert system can be defined as “An interactive computer-based decision tool 

that simulates the thought process of a human expert to solve complex problems in a 

specific domain.” We need experts system because of limitations in expertise, working 

memory, insufficient maintenance of significant data and biased opinions, (Pandey and 

Osisanya 2001). 

The design of drilling expert systems depends mainly on previous experience and 

knowledge to successfully complete with a degree of confidence. Effective 

communication is also an important factor for successful operations. Good coordination 

is required between the engineer, the service company and the rig foreman. Knowledge 

transfer in drilling operations is therefore fundamental for the optimal design of the job, 

Shadravan et al. (2010). Literature review, drilling programs and experts’ opinions were 

used to build up the expert systems in this research in drilling fluids, underbalanced 

drilling, cementing, well completion and well control, after Al-Yami et al. (2012b).  

____________ 
This dissertation follows the style of SPE Drilling & Completion. 
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  (McCaskill & Bradford 1997) mentioned the factors that we need to consider 

when designing drill-in fluids. For example, formation permeability determines filtration 

characteristics. Temperature or water sensitive formation determines the type of polymer 

and type of drill-in fluids needed. The authors also suggested that there are goals in 

designing drill-in fluids that we need to consider such as rheological properties to 

provide good carrying capacity and minimum filtration control loss.  

Samuel et al. (2003) explained polymers function in providing filtration and 

viscosity to drill-in fluids are affected at high temperature because of the degradation of 

polymers or reduced molecular interactions. An expert system was developed to control 

solids in drilling fluids using flow charts, (Pandey and Osisanya 2004). 

An underbalanced drilling expert system based on fuzzy logic was developed to 

perform screening decisions. These decisions include whether to use underbalanced 

drilling or not. A list of underbalanced drilling was also included such as liquid drilling, 

dry air drilling, and mist drilling, (Garrouch and Haitham 2003). However, no detailed 

expert system for underbalanced drilling was developed to aid engineers and scientists in 

selecting optimum detailed practices.  

Typically, designing cement slurries depend on setting rules of thumbs and years 

of experience. A service company has developed a detailed cementing expert system 

utilizing service company chemicals such as fluid loss additives, retarders and 

accelerators. Expert’s opinions were used to build this expert system, Kulakofsky et al. 

(1993). However updating this expert system or using it by another service companies 

will require reprogramming the whole software.  
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 Different types of cements are used in drilling and completion operations to: 

• Isolate zones by preventing fluids immigration between formations 

• Support and bond casings 

• Protect casing from corrosive environments 

• Seal and hold back formation pressures 

• Protect casing from drilling operations such as shock loads 

• Seal loss circulation zones 

 Cement costs can be minimized by eliminating expensive and unnecessary 

additives required in certain operations. From common practice it is known that 

cementing slurries should be tested in advance, since each particular well has distinctive 

characteristics. Therefore, it is not possible to define a general guideline for all situations 

for the concentration of additives required for the cementing job (Sauer and Landrun, 

1985). 

  Effective communication is also an important factor for successful cementing 

jobs. Good coordination is required between the drilling engineer, the service company 

and the rig foreman. Applying quality control is critical for avoiding cement-related 

failures in the field. Knowledge transfer in cementing operations is therefore 

fundamental for the optimal design of the cementing job, Smith (1984).  

Multilateral completion expert system based on Fuzzy logic was developed. The 

expert system included a screening process for planning multilateral well candidates, 

lateral completion and junction level. Flow charts were linked to a computer program, 

Garrouch et al. (2004).  
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 The purpose of development of well control procedure is to prevent catastrophes 

that could result from blowouts. The development of up to date source of proper well 

control practices is a challenging task. Using current methods of flow charts in decision 

making does not allow enough room for different or changing well control practices to 

be included, Al-Yami et al. (2012c).   

  There are different methods that companies have approached to make guidelines 

for their engineers to save on operations cost and time. However, these methods cannot 

be used by other companies or experts with different opinions or with different field 

conditions Al-Yami et al. (2012a).   

Texas A&M University recently has established a new method to develop a 

drilling expert system that can be used as a training tool for young engineers or as a 

consultation system in various drilling engineering concepts such as drilling fluids, 

cementing, completion, well control, and underbalanced drilling practices. 

  This method is done by proposing a set of guidelines for the optimal drilling 

operations in different focus areas, by integrating current best practices through a 

decision-making system based on Artificial Bayesian Intelligence. Optimum practices 

collected from literature review and experts' opinions, are integrated into a Bayesian 

Network BN to simulate likely scenarios of its use that will honor efficient practices 

when dictated by varying certain parameters.  

The term Bayesian derives from Thomas Bayes (1702-1761), who was a British 

mathematician Bayes introduced Bayes' theorem, which was used in this research.  

Differences between Frequents statistics and Bayesian statistics are: 
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• Frequents statistics: The uncertainty here is investigated by finding out how 

estimates change in repeated sampling from the same population.  

• Bayesian statistics: Uncertainty is investigated by finding out how much prior 

opinion about parameter values change in light of the observed data. 

To a Bayesian, only observed data sets are relevant in making inferences. In 

contrast, in the frequents way, data that might be observed but are not are considered in 

determining uncertainty, Gelman et al. (2003). 

  The advantage of the artificial Bayesian intelligence method is that it can be 

updated easily when dealing with different opinions. To the best of our knowledge, this 

study is the first to show a flexible systematic method to design drilling expert systems.  

  Best practices were gathered to build decision trees that allow the user to take an 

elementary data set and end up with a decision that honors the best practices.  

  The Bayesian paradigm can be defined as: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

)(
)()(

)(
evidencep

hypothesisphypothesisevidencep
evidencehypothesisp  

 Representing the probability of a hypothesis conditioned upon the availability of 

evidence to confirm it. This means that it is required to combine the degree to 

plausibility of the evidence given the hypothesis or  likelihood p(evidence|hypothesis), 

and the degree of certainty of the hypothesis or p (hypothesis) called prior. The 

intersection between these two probabilities is then normalized by p (evidence) so the 

conditional probabilities of all hypotheses can sum up to 1.  
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  This work introduces the use of Bayesian Networks as a way to provide 

reasoning under uncertainty, using nodes representing variables either discrete or 

continuous. Arcs are used to show the influences among the variables (nodes). Thus, 

Bayesian Networks can be used to predict the effect of interventions, immediate 

changes, and to update inferences according to new evidences.  

 Bayesian Networks are known as directed acyclic graphs because generating 

cycles are not allowed.  The terminology for describing a Bayesian Network follows a 

hierarchical parenting scheme. A node is named a parent of another node named child if 

we have an arc from the former to the later. The arcs will represent direct dependencies. 

Evidence can be introduced to the Bayesian Network at any node, which is also known 

as probability propagation or belief updating. It is important to define the conditional 

probability distributions to each node (Korb and Nicholson, 2004). 

Bayesian Network was used to evaluate several parameters to enhance well 

quality in deepwater environment such as caliper desirability, trajectory, skin factor and 

average drilling speed. Sorted well data from a global drilling database and drilling 

experience were gathered to develop a set of well quality metrics to evaluate the 

performance of drilling and completion in a certain field. A software tool was developed 

that can perform the following: 

• Evaluate well quality expected by using information related to caliper, skin 

factor, trajectory, ROP, and lost rig time, 

• Estimate risk and cost related to designing complex trajectory wells, 

• Recognize attributes that affect quality of the well. 
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 The software included probabilistic networks and was used to gather expert 

knowledge and data to forecast well quality. The software used networks that can update 

prior knowledge in the light of new data which cannot be done by conventional risk 

assessments. In addition, these networks can be used in case of incomplete data, Kravis 

et al. (2002).   

 Once the Bayesian Network is defined and the states of nodes have been 

determined, probability tables with each node (parent or child) must be specified. Next 

joint distribution is calculated.  

Bayesian Networks models have been constructed for Greater Bangkok North to 

detect probable water production. Bayesian probability theory allowed to model 

uncertainty by using common-sense knowledge and observational evidence. A Bayesian 

Network has the following: 

• A set of variables (uncertainties), 

• Graphical design connecting these variables, and 

• Conditional distributions to define the relationship between the variable 

values. 

An example of a Bayesian Network is shown in Fig.1. 
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Fig.1: An example of a bayesian network 

 
 

 
To design a Bayesian Network the following guidelines should be observed: 

• All variables that are important in the modeling should be included, 

• Causal knowledge should be used to link between the variables to lead to 

“causes” to “effects, 

• Prior knowledge should be used to specify the conditional distributions 

(elicitation).  

Decision variables were assigned and defined by the decision maker opinions. 

The objective of this work was to choose an optimize decision that was quantified by a 
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utility node. Utility nodes represent the variables that contain information and show the 

decision maker goals and objectives, Ronald et al. (2011).  

Generalized statistical methods or numerical simulation were used to evaluate the 

performance for infill wells. The generalized statistical methods are quick but lack in 

accuracy. The numerical simulation is accurate but requires complex steps and 

computations. The objective of this paper was to select the optimum infill locations 

using an integrated data mining charts by looking into past production performance and 

trying to predict future performance of current wells, Al-Kinani et al. (2009).  

A Bayesian Network is a probabilistic model that shows a set of variables and 

their probabilistic interdependencies. These interdependencies or evidence can be 

entered by an expert as used in expert or trouble shooting system or can be a learning 

algorithm that can quantify the interdependencies from a training data set. Experts can 

reproduce their reasoning in Bayesian Network under different aspects of their decisions 

such as economic, logistic and reservoir considerations. A score between 0 and 100 can 

describe the outcome. A value of 100 means the best producer well and 0 means the 

worse, Al-Kinani et al. (2009). 

The Bayesian Network uses both causal and probabilistic semantics which makes 

it suitable for gathering prior knowledge and data. Bayesian Network has one technical 

limitation which is filling long tables with hand. Bayesian model was used in Heidrun 

field in the Norwegian Sea. The objective was to utilize all information provided by the 

experts and combine it with spatial distance between the well to build up the Bayesian 

Network, (Rasheva and Bratvold 2011). 
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One of the main challenges with the Bayesian Network approach is the assigning 

of evidences. The following are some proposed methods that were used in this paper: 

• Obtaining Geologist opinions about the reservoirs and spatial distances 

between wells, 

• Using knowledge of local geology to obtain strongest correlations between 

wells, 

• Building Bayesian Network. 

Bayesian Network is practical and flexible approach to evaluate prospect 

dependencies to find optimal method that exploits the information provided by early 

drilling wells, (Rasheva and Bratvold 2011).  

Expert opinions and real-time data were used to construct Bayesian Network for 

optimal placement of horizontal wells. The well placement decision making process 

requires opinions from different backgrounds. Bayesian Network was used to design, 

evaluate and support real time drilling processes. The graphical design shows joint 

probability distribution in decisions, uncertainties, and values. A decision node is shown 

as rectangle and a chance node as oval. The value node is shown as hexagons as shown 

in Fig.2, (Rasheva and Bratvold 2011). 
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Fig.2: A graphical design of bayesian network 

 
 
 

The arrow types and measuring depend on the node information as shown in the 

Table 1, (Rasheva and Bratvold 2011). 

 
 

 
Table 1: Arrows types and meaning 

Arrow 
Information Parent Node Child Node Arrow Meaning 

Information Decision Decision The outcome of the parent node is 
known before the decision is 

made Information Chance Decision 

Influence Decision Chance The probability distribution of the 
child node depends on its parent's 

outcome Relevance Chance Chance 

Function Decision or 
chance Deterministic 

The child's value is a function of 
the parent node Function 

Chance, 
deterministic, 

or decision 
Value 
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Bayesian Network was used to aid in setting casing depth in North Sea. 

Probabilities can be extracted from data or simulation outputs or be elicited (from 

subject experts). Elicited probabilities should have reflective accuracy. The derived 

distribution should represent expert’s knowledge. For the probability distributions of the 

nodes, first the unconditional marginal probability distribution of root nodes (without 

parents) is assigned by the experts. After that, the conditional probability distribution for 

each node is assigned. These assigned values can be continuous or discrete, Fig.3, 

(Rajaieyamchee and Bratvold 2009). 

 
 
 

 

Fig.3: Assigning conditional probabilities distribution for each node 
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Decision trees are graphical structures that show the order of variables in 

decision problems. Influence diagrams are developed to automate decision trees. The 

decision tree can grow exponentially with more variables in the decision. This can make 

the decision tree too big to track. In addition, conditional probabilistic independences 

cannot be conveyed in decision trees (Fig.4), (Rajaieyamchee and Bratvold 2009). 

 
 
 

 

Fig.4: An example of a decision tree 

 
 

 
Bayesian Network was used to aid drilling engineers to decide whether to 

circulate, increase mud weight, set a casing, plug back, etc. while drilling near high 

pressure formation and when gas influx is observed, (Giese and Bratvold 2010).  

Decision trees are used widely in the petroleum industry. The decision trees will 

provide graphical illustration of uncertainties and decisions. For simple decision 

problems, decision trees can be intuitive. However, for complex decisions, decision trees 

grow exponentially with the increase in number of variables involved which make their 
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use impractical. Bayesian Network can be used when dealing with complex decision 

problems easily compared to decision trees, (Giese and Bratvold 2010).  

Wright (1921, 1934) and Good (1961a, b) used graphical structure for illustrating 

joint probability distributions. (Howard and Matheson 1981) explained this illustration in 

more details. (Kim and Pearl 1983), (Lauritzen and Spiegelthaler 1988) and Pearl (1988) 

have introduced computer science and statistics into the graphical representation of joint 

probability distributions.  

A simple problem example is shown in Fig.5. The following observation can 

explain the model, (Giese and Bratvold 2010): 

• There is pore pressure that depends on depth and well geology, 

• Measurement of depth is shown in the model, 

• Equivalent circulating density (ECD) downhole is also shown and can be 

estimated using flow and mud weight, 

• Gas will flow into the wellbore if the pore pressure is greater than ECD. 

 
 
 

 
 

Fig.5: A simple problem example 
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Expert system based on Bayesian Network was used for selection of proper EOR 

techniques. The expert system was applied to 10 Iranian southwest reservoirs. CO2 

flooding showed to be the most practical method for EOR in these 10 wells, Zerafat et 

al. (2011).  

A Bayesian Network can behave similarly to human begins when dealing with 

uncertainties to predict the likelihood of future operations from given prior trials. 

Subjectivity is a limitation of Bayesian method when handling prior belief, Zerafat et al. 

(2011).  

Bayesian Network was performed to assess the risk from nuclear waste disposal, 

Lee et al. (2005). Bayesian Network was also used to model flow to select the model 

with greatest uncertainty at the boundaries, Abbaspour et al. (2000). Hydrodynamic 

behavior characterization was also done by Bayesian Network, Ferraresi et al. (1996). 

Most probable areas of salinity sources distribution in the Gaza aquifer were done using 

Bayesian Network, Ghabayen et al. (2006).  

Existing systems cannot deal with certain geotechnical risks for example 

excessive deformation or rock falls. The reason behind that is the need to capture expert 

knowledge. To achieve this, Bayesian Network was used to model these uncertainties. 

Using fault tree analysis for encoding uncertain expert knowledge can result in 

significant complications, (Sousa and Einstein 2007). 

Bayesian Network was used for pipeline leak detection. Prior probabilities were 

integrated to detect leaks, Carpenter et al. (2003). Bayesian network was used to design 

models to support geosteering decisions. Using Bayesian Network can lead to reduction 
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of required number of operators on rig sites. Previous systems were built using fuzzy 

logic and neural networks, Lloyed et al. (1990), Dashevski et al. (1999), and Stoner 

(2003). The limitations of these approaches are: 

• The knowledge database and inference algorithms are inseparable. Thus 

adding new rules or changes require programming again. This makes 

updating the expert system difficult and challenging. 

• The previous approaches are limited in their ability to make decisions under 

uncertainty. 

Bayesian Network was used to analyze and support geosteering decisions. 

Drillers’ opinions were considered under conditions of uncertainty. Drillers were also 

able to update the model with the arrival of new data, (Rajaieyamchee and Bratvold 

2010).  

Decisions must be made without elimination of uncertainty. The use of Bayesian 

Network supported the real time decision making. The reason behind this is the ability to 

update the probabilistic information embedded in the network with new data arrival, 

Fjellheim et al. (2011).  

  The objective of this research is to propose models to serve as training tools or a 

guide to aid drilling engineers and scientists in field operations in five areas: 

1. Cementing Operations 

2. Completion Operations 

3. Drilling Fluids Operations 

4. Underbalanced Drilling Operations 
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5. Well Control Operations 

In order to prove the concept and the benefits of using this approach, one simple 

BDN model simulating the decision-making process of the selection of swelling packer 

is introduced in Chapter II. 
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CHAPTER II 

MODEL FOR THE PROOF OF THE CONCEPT* 

 

In order to prove the concept and the benefits of using this approach, one simple BDN 

model simulating the decision-making process of the selection of swelling packer is 

introduced in Fig.6. This model contains one decision node (swelling packer), three 

uncertainty nodes (treating fluid, type of drilling fluid, and Consequences), and one 

value node (Completion Expert System).  

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.6: BDN model for the proof of the concept 

 
 
____________ 
*Reprinted with permission from “Expert System for the Optimal Design and Execution 
of Successful Completion Practices Using Artificial Bayesian Intelligence,” by Al-Yami, 
A.S., Schubert, J., and Beck, G., 2011, SPE 143826, Copyright © 2012, Society of 
Petroleum Engineers. 
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  In this model, our selections for swelling packers are affected by our selection of 

treating fluid and drilling fluids. Once the structure of the BDN is defined, it is required 

to define the probability states associated with each node. These are given in Table 2 

through Table 6. The model is designed in a way that the engineer will select his 

uncertainty nodes (treating fluid and/or type of drilling fluid) to select the recommended 

type of swelling packer (oil swelling or water swelling packer, Table 2). Table 3 shows 

the probability states of treating fluids based on swelling packers. Lactic acid has a 

probability of 0.9 for success when using water swelling packers but only 0.1 chance of 

success when using lactic acid. Table 4 shows the probability states of type of drilling 

fluids based on swelling packers and treating fluids. Table 5 defines the extent of the 

probability states of the consequences, which are defined as recommended and not 

recommended. The input utility value associated with the consequences is given in 

Table 6. The expected utility outcomes considering all possible cases of evidence set a 

minimum value of zero, which is the “not recommended” case, and a maximum value of 

one, which assumed to be the “recommended” case.  

 
 

 
Table 2: Swelling packers 

Water swelling packer 
Oil swelling packer 
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Table 3: Probability states of treating fluids based on swelling packers 

Swelling packer Water swelling packer Oil swelling packer 
Lactic acid 0.9 0.5 
HCl acid 0.1 0.5 

 
 
 

 
Table 4: Probability states of type of drilling fluids based on swelling packers and 

treating fluids 
 

Swelling packer Water swelling Oil swelling 
Treating Fluid Lactic acid HCl acid Lactic acid HCl acid 
Formate 
drilling fluid 0.8 0.2 0.8 0.2 
CaCO3 drilling 
fluid 0.2 0.8 0.2 0.8 

 
 
 

 
Table 5: Probability states of the consequences 

Swelling 
packers Water swelling packer Oil swelling packer 

Type of drilling 
fluid 

Formate drilling 
fluid 

CaCO3 
drilling fluid 

Formate 
drilling fluid 

CaCO3 
drilling 

fluid 

Treating fluid Lactic acid HCl 
acid 

lactic 
acid 

HCl 
acid

lactic 
acid 

HCl 
acid 

lactic 
acid 

HCl 
acid

Recommended 0 0 1 0 1 0 0 1 
Not 
recommended 1 1 0 1 0 1 1 0 

 
  
 

Table 6: Input utility values associated with the consequences 

Consequences Recommended Not recommended 
Value 1 0 
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  The main goal after the required inputs are entered into the model is to simulate 

the uncertainty propagation from the existing sources of evidence, which means moving 

the information forward starting from the swelling packers node. First the total 

probability is calculated for the type of drilling fluid. The above model shows that our 

selection of drilling fluid will affect the treating fluid and our swelling packers.  

  The below equation is used: 

 
                                                                                                                        
 

 The results are shown in Table 7. Tables 3&4 are used for this calculation for 

example:   

 
 
 

Table 7: Total probability for type of drilling fluid 

Swelling packer Water swelling 
packer 

Oil swelling 
packer 

Formate drilling 
fluid 0.74 0.5 

CaCO3 drilling 
fluid 0.26 0.5 

 
 
 
Then Bayesian equation can be used as shown below: 
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Which is the same thing as:  

  

The results are shown in Table 8. Tables 3, 4 and 7 are used for this calculation. 

The calculation shows the probabilities of selecting treating fluids (lactic acid or HCl 

acid) when the engineer wants to use a certain drilling fluid (formate or CaCO3) for a 

particular swelling packer (oil or water swelling).   The detailed calculations for water 

swelling packer are shown below:  

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 
 

 
 For oil swelling packer, the calculations are:   
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Table 8: Using bayesian equation for the proposed model 

Swelling 
packer Water swelling Oil swelling 

Treating Fluid Updated values Updated values 
Lactic acid 0.9729 0.6923 0.8 0.2 
HCl acid 0.027 0.3076 0.2 0.8 
Type of 

drilling fluid Updated values Updated values 

Formate 
drilling fluid 

Selected by 
user  Selected by user  

CaCO3 
drilling fluid  Selected by user  Selected 

by user 
 
 
 
  Now, once the Bayesian calculations are completed, there are two approaches for 

the engineers to use this model. The first approach is to specify the type of drilling fluid 

he wants to use to drill the well and this will determine the correct decision in this model 

which is the suitable swelling packer. For example if CaCO3 is required to drill the well, 

then the probabilities of using the packers (consequences) in Table 8 and probability 

states of the consequences in Table 5 are used. The results are shown in Table 9.  Below 

is an example calculation when CaCO3 drilling fluid is selected: 

Water swelling packers   
  
 
 
 
 
 

Oil swelling packers   
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Table 9: Consequences when selecting CaCO3 drilling fluid (from table 7) and table 4 

Swelling Packers Water swelling packers Oil swelling packers 
Recommended 0.6923 0.8 

Not recommended 0.3076 0.2 
 
 
 

The utility in Table 10 is finally calculated using below equation from Table 9 

and Table 6:  

For water swelling packer it is: 
 
 
 

For oil swelling packer it is:  
 
 
 

 
 

Table 10: Expected utility values (first approach) 

Swelling packer Water swelling Oil swelling 
Expected utility 0.6923 0.8 

 
 
 

The other option for the engineer to use this model is to specify all the 

uncertainties (drilling fluid and treating fluid) to determine the optimum selection of 

6923.003076.016923.0 =×+×=×= ∑
i

believeinputresultceconsequenutilityExpected

8.002.018.0 =×+×=×= ∑
i

believeinputresultceconsequenutilityExpected

2.0)8.0012.0(
Re

8.0)0.18.002.0(
Re

=×+×

=×+×
commendedNot

commended
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swelling packers. Table 5 can be used directly. For example selecting formate drilling 

fluid and lactic acid indicate that oil swelling packer is recommended, Table 11. 

 
Table 11: Consequences when selecting formate drilling fluid and lactic acid (from table 

5) 
 

Swelling Packers Water swelling 
packers Oil swelling packers 

Recommended 0 1 
Not recommended 1 0 

 
 
 

The utility is calculated as mentioned above, Table 12.  

Table 12: Expected utility values (2nd approach) 

Swelling packer water swelling oil swelling 
Expected utility 0 1 

 
 
 
  For this study, Graphical Network Interface was used for calculations of the 

uncertainty propagation to build up the expert system. Fig.7 shows the results for the 

first approach example (selecting CaCO3 drilling fluid) which agrees with the calculation 

above. Fig.8 shows the results for the second approach example (selecting formate 

drilling fluid and lactic acid treating fluid) which also agrees with the calculation above.  
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Fig.7: Model for the proof of concept (first approach) 

 
 
 

 

 
Fig.8: Model for the proof of concept (second approach) 
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  Using Bayesian Intelligence allows the design of drilling and completion expert 

systems that can be used in different fields and/or by different experts with different 

opinions. The system can be updated easily with the new opinions by changing the 

probability states shown above (Tables 3-5) and the model will update the calculation to 

show the recommended type of swelling packer.  
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CHAPTER III 

WELL COMPLETION EXPERT SYSTEM* 

   

The objective of this chapter is to propose a set of guidelines for the optimal completion 

design, by integrating current best practices through a decision-making system based on 

Artificial Bayesian Intelligence. Best completion practices collected from data, models, 

and experts' opinions, are integrated into a Bayesian Network BN to simulate likely 

scenarios of its use, that will honor efficient designs when dictated by varying well 

objectives, well types, temperatures, pressures, rock and fluid properties.   

The described decision-making model follows a causal and uncertainty-based 

approach capable of simulating realistic conditions on the use of completion operations. 

For instance, the use of water swelling packer dictates the use of organic acids instead of 

HCl acids. However, rock type and well geometry affect our selection of treatment 

fluids. Another example is selection of sand control method based on rock properties.  

The chapter also outlines best operational practices in fracturing, sand control, 

perforation, treatment and completion fluids, multilateral junction level selection and 

lateral completion. Completion experts' opinions were considered in building the model 

in this paper.  

 
 
____________ 
*Reprinted with permission from “Expert System for the Optimal Design and Execution 
of Successful Completion Practices Using Artificial Bayesian Intelligence,” by Al-Yami, 
A.S., Schubert, J., and Beck, G., 2011, SPE 143826, Copyright © 2012, Society of 
Petroleum Engineers. 
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  Fig.9 shows the completion expert model. Literature review and completion 

experts’ opinions were used as evidence to build the model using the proposed Bayesian 

Network. Variable nodes allow the user to input desired well conditions that allows for 

generating the corresponding best completion practices. Eighteen uncertainty nodes are 

defined for this model to determine best practices in six decision nodes. The model is 

divided into six parts or decisions. Each decision has uncertainties and consequences 

nodes. The consequences node combines the uncertainty nodes where completion expert 

opinions were used to assign and define the conditional probability distribution. The 

model then calculates the optimum practices decision. Below are descriptions of each 

decision in the model. 

3.1 Junction classification decision 

The uncertainty node is named considerations in designing multilateral junctions. Table 

13 shows its probability states. There are six levels in TAML classification as detailed 

below: 

• Level 1: open unsupported junction. 

• Level 2: Motherbore cased and cemented and lateral open. 

• Level 3: Motherbore cased and cemented and lateral cased but not cemented. 

• Level 4: Motherbore and lateral cased and cemented. 

• Level 5: Pressure integrity is provided at the junction using straddle packers. 

• Level 6: Pressure integrity is provided using integral mechanical seal that can 

include reformable junction or non-reformable and full diameter splitter.  
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Fig.9: Completion expert model 
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Table 13: Probability states of considerations in designing multilateral junctions’ node 

Consolidated strong formation and zonal control is not critical 0.15 
Formation stability is required but not at the junction 0.15 
Formation stability is required and mechanical isolation and limited 
stability at the junction 0.15 

Re entry is possible 0.15 
Formation stability is required and hydraulic isolation and stability at 
the junction 0.15 

best completion for weak incompetent susceptible to wellbore collapse 0.05 
single component completion hydraulic isolation is maximum and does 
not 
depend on cementing and continuous liner ID accessing both bores 
increase well control capability 

0.05 
 

kickoff point is not possible at strong formation 0.15 
 
 
 
  The decision node has six options, Table 14. Fig. 10 shows part of the 

consequences. For consolidated strong formation where zonal control is not required, 

level 1 is the optimum design. When formation stability is required but not at the 

junction then level 2 is the optimum practice. As mentioned above, different experts can 

update these numbers easily in case they do not agree with them.  

 
 
 

Table 14: Junction classification decision node 

Level 1
Level 2
Level 3
Level 4
Level 5
Level 6
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Fig.10: Part of consequences for junction classification selection 

 
 
 

3.2 Treatment fluid 

For the treatment fluid decision, there are two uncertainties (factors). The first one is the 

well type (short or long lateral), Table 15. The second uncertainty node is the type of 

drilling fluid used, Table 16. The treatment fluid decision is shown in Table 17. Fig. 11 

shows part of the consequences input. In case of long horizontal lateral and when using 

CaCO3 drilling fluid, the optimum practice is either to use lactic acid or formic acid.  

 
 
 

Table 15: Probability states of well type node 

short horizontal 
section 0.5 

Long horizontal 
section 0.5 

 
 
 

Table 16: Probability states of type of drilling fluid node 

Water based mud with CaCO3 0.2 
Water based mud with Barite 0.2 
Emulsion oil based mud 0.2 
All oil based mud 0.2 
Potassium formate mud 0.1 
Drilling fluid based with Mn3O4 0.1 
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Table 17: Treatment fluids decision node 

Inhibitors Amines 
Alcohol methanol 
Acid less than 15 wt percentage HCl acid 
Acid more than 15 wt percentage HCl acid 
HF acid less than 65 wt percentage 
Acetic acid 
Surfactants 
Citric 
Formic 
Lactic 
Potassium formate 
Enzymes 
Circulation of new volume of drilling fluid 

 
 
 

 

Fig.11: Part of consequences for completion (treatment) fluid selection 

 
 
 

3.3 Lateral completion  

The lateral completion decision has four uncertainties (cost, zonal isolation, reliability 

and productivity). Each one of them has three levels (high, medium and low). There is 

also an additional uncertainty which is potential of sand production. In the model we can 

see that our selection of junction classification decision affect the potential of sand 

production uncertainty. As known, level 1 and 2 do not have sand production potential. 

The lateral completion is shown in Table 18. Fig. 12 shows that for a formation that has 
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sand production problem, and for good reliability, good productivity, good cost and good 

zonal isolation, the optimum practice is to use openhole expandable screen.  

 
 
 

Table 18: Lateral completion decision node 

Standalone screen 
Open hole gravel pack 
Cased hole gravel pack 
Frac pack 
Openhole expandable 
screens 

 
 
 

 

Fig.12: Part of consequences for completion selection 

 
 
 

3.4 Perforating 

The perforating part of the model outlines the decision into more steps compared to the 

other parts. The user will need to determine if underbalanced perforation is useful or not 

(Table 19) which will affect the decision of formulating non damaging fluids or 

temperature consideration, Table 20. Tables 21 and 22 give probability states that lead 

to detailed analysis that goes to the consequences node. Part of the consequences input, 



35 
 

 

Fig. 13, shows that if we can formulate non-damaging fluid then the optimum practice is 

to design for overbalanced perforation using wire line conveyed casing guns.  The 

perforating decision node details are shown in Table 23.  

 
 
 

Table 19: Probability states of if UB perforation useful or not 

Completion Standalone 
screen 

Openhole gravel 
pack 

Cased 
hole 

gravel 
pack 

Frack 
pack 

Openhole 
expandable 

screen 

Not 
required 1 1 0 1 1 

Yes 0 0 0.5 0 0 
Not 0 0 0.5 0 0 

 
 
 

Table 20: Probability states of fluid damage and temperature effect 

Is Underbalanced perforation useful Yes No 
can we formulate non damaging fluid 0.2 0.8 
Need to consider temperature 0.8 0.2 

 
 
 

Table 21: Probability states of consideration factors 

Fluid damage and 
temperature effect 

can we formulate non damaging 
fluid 

Need to consider 
temperature 

Higher than 450 °F 0.1 0.4 
Lower than 450 °F 0.1 0.4 
We can formulate non 
damaging fluid 0.4 0.1 

We cannot formulate 
non damaging fluid 0.4 0.1 
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Table 22: Probability states of detailed analysis 

Consideration factors Higher than 
450 F 

Lower 
than 

450 F 

We can 
formulate 

Non-
damaging 

fluid 

we cannot 
formulate 

non-damaging 
fluid 

multiple runs with 
through tubing guns 
cannot achieve 
adequate well rates 

0.25 0.1 0.1 0.1 

multiple runs with 
through tubing guns 
can achieve adequate 
well rates 

0.25 0.1 0.1 0.1 

through tubing guns 
can be used 0.1 0.25 0.1 0.1 

through tubing guns 
cannot be used 0.1 0.25 0.1 0.1 

can the damage be 
removed by acidizing 
in carbonate formation 

0.1 0.1 0.1 0.25 

can the damage be 
removed by 
fractured stimulation 

0.1 0.1 0.1 0.25 

we can formulate non 
damaging fluid 0.1 0.1 0.4 0.1 

 
 
 
 

Table 23: Perforating decision node 

Multiple runs with through tubing guns 
through tubing guns 
Design for tubing conveyed perforation 
Consider if underbalanced perforating with casing guns  
is acceptable and evaluate fluid damage risks during completion running  
if well will kill itself if perforated without tubing 
Consider perforating overbalanced in acid with casing or through tubing guns 
Review special perforation requirements for fracturing such as diversion and 
proppant placement 
Design for overbalanced perforating using wire line conveyed casing guns 
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Fig.13: Part of consequences for perforation selection 

 
 
 

3.5 Openhole gravel packing 

The openhole gravel packing section shows two types of gravel packing methods 

(alternate path and circulating pack). The circulating pack is more suitable where there is 

no fluid loss while alternate path is applied when there is a potential for lost circulation 

as shown in the probability states in Tables 24 and 25. Table 26 shows the probability 

states for designing details such as slurry density and applied pressure. Table 27 shows 

the openhole gravel packing decision details for the treatment. Part of the consequences 

is shown in Fig. 14 where it shows that it is possible to exceed the fracturing pressure 

when following the alternate path. 

 
 
 

Table 24: Probability states of potential fluid loss formation 

Completion Standalone 
screen 

Openhole 
gravel pack 

Cased hole 
gravel pack 

Frack 
pack 

Openhole 
expandable 

screen 
Not required 1 0 1 1 1 

Fluid loss 0 0.5 0 0 0 
No fluid loss 0 0.5 0 0 0 
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Table 25: Probability states of type of openhole gravel packing 

Potential fluid loss 
formation 

Fluid 
loss No fluid loss 

Alternate path 1 0 
Circulating pack 0 1 

 
 
 

Table 26: Probability states designing details 

gravel pack fluids 0.1 
slurry density 0.1 
Fluid volume and 
time 0.1 
Fluid loss 0.2 
Pressure 0.1 
Hole condition 0.1 
Filter cake removal 0.1 
Screen size 0.1 
Cost 0.1 
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Table 27: Openhole gravel packing decision node 

gravel pack fluid of water or oil with viscosifier 
gravel pack fluid of water used with friction 
reducer 
high slurry density of 8 ppa 
low slurry density of up to 2 ppa 
low fluid volume and reduced pumping time 
large fluid volume 
No need for complete returns 
Complete returns is required 
can exceed fracture pressure 
cannot exceed fracture pressure 
critical washout is not a problem 
critical washout is a problem 
filter cake need to be removed 
filter cake does not have to be removed 
small base pipe but larger overall diameter for 
shunts 
large base pipe screen 
less time but more expensive chemicals 
More rig time for pumping is required 

 
 

 
 

 
 

Fig.14: Part of consequences for openhole gravel pack selection 
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3.6 Packer selection 

The packer model part indicates that selection of packers depends on completion fluids 

(Table 28), oil and gas details (Table 29), wellbore fluids (Table 30), and treatment 

fluids (Table 17).  For example water swelling packers are damaged by CaCl2 brines and 

HCl acids. Table 31 shows the available packers for the user to select. Fig. 15 shows 

part of the consequences for the optimum conditions for the PVDF Coflon packer 

applications.  

 
 
 

Table 28: Probability states of completion fluids node 

CaCl2/CaBr 0.25
ZnBr 0.25
K2CO3 0.25
Brine 
seawater 0.25

 
 
 

Table 29: Probability states of oil and gas node 

Aliphatic hydrocarbons 0.1
Aromatic hydrocarbons 0.1
Crude oil less than 250 °F 0.2
Crude oil more than 250 
°F 0.2
Sour crude 0.2
Gas sour natural gas 0.2
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Table 30: Probability states of wellbore fluids node 

water 0.2 
steam 0.2 
methane 0.2 
CO2 0.2 
H2S 0.2 

 
 
 
 

Table 31: Packer selection decision node 

CR Neoprene 
AE AU Urethane 

NBR Nitrile 
ECO Hydrin 
PVDF Coflon 

HNBR Therban 
FKM Viton 
ETFE Tefzel 
FCM Aflas 

PEEK Victrex 
FFKM Kalrez 
PTFE Teflon 

Oil swelling packer 
water swelling packer 

 
 
 
 

 

Fig.15: Part of consequences for packer selection 
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3.7 Final consequences 

All different parts of the big model consequences are gathered into one node named final 

consequences. The final consequences is used to select optimum practices from the 

whole model ( all decision nodes i.e. lateral junction, treating fluids, lateral completion, 

perforation, gravel packing, and packer selection). Fig. 16 shows part of the final 

consequences. A value of 1 is assigned to the recommended practices from each decision 

node in the model.  

 
 
 

 

Fig.16: Part of consequences for the final consequences node 

 
 
 

3.8 Completion expert system utility node 

In the model, there is only one utility node to calculate the expected values from the final 

consequences node, Table 32.  

 
 
 

Table 32: Expected utility values for the final consequences node 

Final 
Consequences Recommended Not 

recommended 
Value 1 0 
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CHAPTER IV 

DRILLING FLUIDS MODEL* 

 

Drilling fluids are important factor in drilling and completion operations. Designing 

drilling fluids depend on formation lithology, temperature and pressure. The objective of 

this chapter is to set a module that should aid drilling engineers when designing drilling 

fluids. A module was created based on several inputs. To create this module, we 

interviewed experts to gather the information required to determine best practices as a 

function of different probabilities. Drilling fluids formulations were gathered from Saudi 

Arabia fields to build up this model.  

   Fig.17 shows the drilling fluids model. Literature review and drilling fluids 

experts’ opinions were used as evidence to build a model using the proposed Bayesian 

Network.  

  Variable nodes allow the user to input desired well conditions that allows for 

generating the corresponding best drilling fluids practices. Three uncertainty nodes are 

defined for this model to determine best practices in one decision node (recommended 

drilling fluids).  

 

 

____________ 

*Reprinted with permission from “Drilling Fluids Consultation System: Development 
and Field Applications,” by Al-Yami, A.S. and Schubert, J., 2012a, SPE 152098, 
Copyright © 2012, Society of Petroleum Engineers. 
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The model has one decision which has uncertainties and one consequence node. The 

consequence node combines the uncertainty nodes where drilling fluids’ expert opinions 

were used to assign and define the conditional probability distribution. The model then 

calculates the recommended drilling fluids decision. 

 
 
 

 
 

Fig.17: Overall model of drilling fluids expert system 

 
 
 
  The first uncertainty node is the temperature range, Fig.18. Temperature is 

divided into 4 ranges since different polymers used in drilling fluids are affected by 

temperature.  
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Fig.18: Temperature options 

  
 
 
  The second node is the potential hole problems uncertainty, Fig. 19. These 

problems are considered to be general problems that need to be considered when 

designing drilling fluids. The consequences node depends on the temperature range and 

potential hole problems probabilities selected.  
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Fig.19: A list of potential hole problems 

 
 
 

  The last uncertainty node in the model is the Saudi Arabia formation, Fig.20. The 

objective of this node was to use this model in Saudi Arabia fields.  
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Fig.20: Formations’ names in Saudi Arabia 
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CHAPTER V 

WELL CONTROL MODEL* 

 

The objective of this chapter is to propose a set of guidelines for optimal well control 

operations, by integrating current best practices through a decision-making system based 

on Artificial Bayesian Intelligence.  

  The proposed decision-making model follows a causal and an uncertainty-based 

approach capable of simulating realistic conditions on the use of well control operations. 

For instance, as the user varies the operation, rig and crew capabilities, kick details (such 

as slim hole, deviated or horizontal well), the system will show the optimum practices 

for circulation method.   

  The advantage of the Artificial Bayesian Intelligence method is that it can be 

updated easily when dealing with different opinions. The outcome of this paper is user-

friendly software, where you can easily find the specific subject of interest, and by the 

click of a button, get the related information you are seeking. The model is divided into 

three parts or decisions. Each decision has uncertainties and consequences nodes. The 

consequences node combines the uncertainty nodes where well control expert opinions 

were used to assign and define the conditional probability distribution. The model then 

calculates the optimum practices decision.  

____________ 

*Reprinted with permission from “Development of Optimum Well Control Practices 
Using Artificial Bayesian Intelligence,” by Al-Yami, A.S. and Schubert, J., 2012c, OTC 
22882, Copyright © 2012, Society of Petroleum Engineers. 
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  Fig.21 shows the model which is divided into three parts of uncertainty and 

decision nodes. The first provides the proposed circulation method decision based on the 

kick details provided. The second part provides the user the optimum recommended 

practice based on the possible scenarios and operations in well control. The third part 

provides the user with a quick check list for trouble shooting in case of problems while 

controlling the well.  

 
 
 

 
 

Fig.21: Well control expert model 

 
 
 
  Kick indicators’ uncertainties are shown in Fig.22. The kick can be verified by 

checking the flow when pumps are off, Fig. 23.  
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Fig.22: Kick indicators 

 
 
 

 

 

Fig.23: Verification 
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  The kick details’ uncertainty (Fig.24) affects the user selection of proposed 

circulation methods shown in Fig.25.  

 
 
 

 

Fig.24: Possible kick details 

 
 
 

 

Fig.25: Proposed circulation method 
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  Experts’ opinions were used to build up the node known as consequences for 

optimum method of circulation method, Fig.26 by assigning 1 to the optimum 

circulation method. This node can be updated easily when different opinions are 

presented. 

 
 
 

 

Fig.26: Part of consequences for optimum method of circulation method 

 
 
 
  The second part is related to proper well control practices under different 

scenarios such as driller method, killing deep wells, etc as shown in Fig.27. A long list 

of possible operations (probabilities) was assigned to the possible operation node as 

shown partially in Fig.28.  
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Fig.27: Possible scenarios in well control 

 
 
 

 

Fig.28: Part of possible operations 
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  The recommended practice probabilities for proper well control are shown in 

Fig.29. Experts’ opinions were used to assign probability values in the consequence of 

proper well control practices. Part of the assigned values is shown in Fig.30. Again these 

probabilities can be updated easily by different experts or at different field conditions.  

 
 
   

 

Fig.29: A list of recommended practices 

 
 
 

 

Fig.30: Part of consequences of proper well control practices 
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  The third part is designed to assist the user to find the optimum solution for a list 

of potential problems that can be faced during well control operations. A check list of 

trouble shooting is shown in Fig.31. The model also recommends a list of actions and 

observes their results by using the action and results node. This node is affected by the 

user selection from the check list for trouble shooting node. Part of actions and results 

are shown in Fig.32.  

 
 
 

 

Fig.31: Check list for possible trouble shooting 

 
 
 
 
 
 



56 
 

 

 
 

Fig.32: A list of possible actions and results 

 
 
 

  Based on the user selection of action taken and result node the problem can be 

identified. A list of problem probabilities is shown in Fig.33. Finally, once the problem 

is identified, an optimum solution from the solution decision can be recommended. Part 

of the solution is shown in Fig.34. Experts’ opinions are used to assign probability 

values to the consequences of trouble shooting node. Part of these values is shown in 

Fig.35. 
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Fig.33: A list of possible problems 

 
 
 

 

Fig.34: Part of possible solutions 
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Fig.35: Part of consequences of trouble shooting 

 
 
 

  The user can select which part he needs individually or can use all parts together 

at the same time by selecting probability values from desired uncertainty nodes. The 

final sequence will select the optimum practice from each consequence (optimum 

method of circulation method consequence, trouble shooting guide consequence and 

consequence of proper well control practice); part of the final consequence is shown in 

Fig.36. 

 
 
 

 

Fig.36: Final consequences 
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CHAPTER VI 

CEMENTING MODEL* 

 

Cementing is an important factor in drilling and completion operations. Good cementing 

practices are required for a proper advancing in drilling and production operations. 

Successful cementing practices start with the design of effective cement slurries.  

  The objective of this chapter is to propose a set of guidelines for the optimal 

design of cement slurries, by integrating current best practices through a decision-

making system based on Artificial Bayesian Intelligence. Best cementing practices 

collected from Saudi Arabia fields are integrated into a Bayesian Network BN to 

simulate likely scenarios of its use, which will honor efficient designs when dictated by 

varying well objectives, well types, temperatures, pressures, and drilling fluids.  

  The proposed decision-making model follows a causal and an uncertainty-based 

approach capable of simulating realistic conditions on the use of cement slurries during 

drilling and completion operations. For instance, well sections and drilling operations 

dictate the use of the proper cement design, which may include the use of specific 

additives according to the particular modeling scenarios.  

 

 

____________ 

*Reprinted with permission from “Drilling Expert System for the Optimal Design and 
Execution of Successful Cementing Practices,” by Al-Yami, A.S., Schubert, J., Medina, 
C., and Ok-Youn, Y., 2010b, IADC/SPE 135183, Copyright © 2010, Society of 
Petroleum Engineers 
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These include operations on surface casing, top jobs, intermediate casings, cementing in 

weak formations, squeeze treatment, kickoff and isolation plugs, horizontal, and vertical 

completions, among others.  

  Fig.37. shows the cementing expert model. Six uncertainty nodes are defined for 

this model (well type, objectives, bottom hole static temperature, pumping time, drilling 

fluids, and consequences). This considers three decision criteria. The three decisions are 

a) recommended cementing formulations, b) recommended spacers formulations and c) 

recommended operational practices.   

  The uncertainty node corresponding to the well type enables the drilling engineer 

to set his/her evidence (i.e. to select his well type) as oil well, or gas well. The bottom 

hole static temperature uncertainty node enables the selection of the temperature range. 

Temperature ranges were selected for oil and gas wells up to 400 °F.  Bottom hole static 

temperature affects required pumping time. The user can either select a temperature or a 

suitable pumping time for the proposed well section. Pumping time ranges up to 8 hours 

in this model.  

  The Objective uncertainty node enables the user to select the objective of the 

operation. Different options are made available for the user. These include kickoff and 

isolation plugs; squeeze cementing, single stage cementing, conductor, surface, 

intermediate and production casings. In addition, the objective uncertainty node has 

cementing long liners, expandable casings, and cementing CO2 injection wells. The 

Drilling Fluid Type uncertainty node shows possible options such as water based, water 



61 
 

 

based with high Cl- content, and oil based mud. The drilling fluid type mainly affects the 

spacer selection.  

  The recommended cement formulations decision node contains all possible 

cementing slurries that correspond to the different well type, objective nodes and bottom 

hole temperature.  The recommended spacer decision node shows all possible spacer 

formulations (water, water based fluid, special spacer fluid with mutual solvent and 

water wetting additives). The recommended operational practices decision node shows 

required actions for each casing type such as multistage operation, optimum pump rate, 

surface shallow leaks and other best practices related to cementing such as top jobs and 

cementing plugs recommendations.  

  The consequences node combines the four uncertainty nodes (well type, required 

pumping time, objective and drilling fluid) and the three decision nodes (recommended 

cement formulations, recommended spacers and recommended operational practices). 

Cementing experts’ opinions were used to assign and define the node conditional 

probability distribution.  

  The model is designed in a way to give the user options to design well cementing 

and best practices effectively. The user will select options that match his application 

from well type, bottom hole temperature or required pumping time, objective and 

drilling fluid. Then the model (cementing expert utility) will suggest optimum cement 

formulations, spacer formulations and operational practices that fit the given well 

conditions.  



62 
 

 

 
 

Fig.37: Cementing expert model based on bayesian network 
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CHAPTER VII 

UNDERBALANCED DRILLING MODELS* 

 

The objective of this chapter is to propose a set of guidelines for the optimal 

underbalanced drilling operations, by integrating current best practices through a 

decision-making system based on Artificial Bayesian Intelligence.  

   The outcome of this chapter is user-friendly software, where you can easily find 

the specific subject of interest, and by the click of a button, get the related information 

you are seeking. Literature review and experts’ opinions were used as evidence to build 

these models using the proposed Bayesian Network. Variable nodes allow the user to 

input desired conditions that allows for generating the corresponding best practices.  

 Underbalanced drilling expert system here is combined into nine models as follow: 

• General approach to underbalanced drilling 

• Flow underbalanced drilling 

• Gaseated underbalanced drilling 

• Foam underbalanced drilling 

• Air and gas underbalanced drilling 

 

 

____________ 

*Reprinted with permission from “Guidelines for Optimum Underbalanced Drilling 
Practices Using Artificial Bayesian Intelligence,” by Al-Yami, A.S. and Schubert, J., 
2012d, OTC 22883, Copyright © 2012, Society of Petroleum Engineers. 
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• Mud cap drilling 

• Underbalanced Liner Drilling Model 

• Underbalanced Coil tube Model 

• Snubbing and Stripping Model 

  Uncertainty nodes are defined for each model to determine best practices 

decision nodes. The model is divided into several parts or decisions. Each decision has 

uncertainties and consequences nodes. The consequences node combines the uncertainty 

nodes where underbalanced drilling expert opinions were used to assign and define the 

conditional probability distribution. The model then calculates the optimum practices 

decision. Below are descriptions of the models. 

7.1 General approach to underbalanced drilling model 

Fig.38 shows the model which is divided into four parts of uncertainty and decision 

nodes. The first part describes the formation to be drilled underbalanced and the 

considerations required, Figs. 39 & 40.  
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Fig.38: General approach to underbalanced drilling 

 
 
 

 

Fig.39: Formations indicators list that need to be considered 
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Fig.40: A list of considerations for the different formations indicators available 

   
 
 
   The second part shows the planning phases’ uncertainty (Fig.41) and its 

corresponding recommendations, Fig.42. 
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Fig.41: Planning phases 
 
 
 

 

Fig.42: Planning phases recommendations 
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  The third part shows the equipments requirement uncertainty node or options 

(Fig.43) and its corresponding decision (equipment recommendations). 

 
 
 

 

Fig.43: A list of equipments required 
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  The fourth part shows the operations planning probability and its corresponding 

decisions, Fig.44. 

 
 
 

 

Fig.44: A list of operating planning 

   
 
 
7.2 Flow underbalanced drilling model 

Fig.45 shows the overall model of flow UBD. The model is divided into three parts 

(tripping, connection and flow drilling uncertainty and decision nodes).   
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Fig.45: Overall model of flow UBD 
 
 
 

  Tripping probabilities (Fig.46) and permeability level probabilities (Fig.47) 

affect the tripping options, Fig.48. 
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Fig.46: Tripping options in flow UBD 

 
 
 

 

Fig.47: Permeability level options in flow UBD 
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Fig.48: A list of tripping recommendations 

 
 
 
  The second part is the connection probabilities (Fig. 49) and connection options, 

Fig. 50. The third part is related to flow drilling operations, Fig. 51. 
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Fig.49: Connection options 

 
 
 

 
 

Fig.50: Connection recommendations 
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Fig.51: Flow drilling options 

 
 
 
  If the tripping probability is selected as RIH (Fig.52) and high permeability level 

(Fig.53) then the optimum tripping operation is to use mud cap, Fig. 54.  

 
 
 

 
 

Fig.52: The user selects RIH option 



75 
 

 

 

Fig.53: The user selects high permeability option 

 
 
 

 

 
Fig.54: Tripping recommendation for low permeability formation during RIH operation 
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  Selection of on connection probability (Fig.55) leads to optimum connection 

option shown in Fig.56.  

 

 

Fig.55: The user selects on connection option 

 
 
 

 
 

Fig.56: Connection recommendation 
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  Selection of flow drilling with formation gas or fluid returns (Fig. 57) leads to 

the optimum practice shown in Fig.58.  

 
 
 

 

Fig.57: The user selects flow drilling takes place in formation with gas or fluid returns 

 
 
 

 

Fig.58: The recommended flow drilling with formation gas or fluid returns 
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7.3 Gaseated underbalanced drilling model 

Fig.59 shows the overall model of gaseated UBD. The model is divided into four parts 

(selection method benefits and challenges, requirements for general limits of gas and 

fluid volume, operational concerns and challenges recommendations, and well kicks 

recommendations.  

 
 
 

 

 
Fig.59: Overall model for gaseated UBD 

 
 
 

  Selection method probabilities are shown in Fig.60 and general limits of gas and 

fluid volume probabilities are shown in Fig.61.  
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Fig.60: A list of gaseated methods 

 
 
 

 

Fig.61: Possible general limits of gas and fluid volume 
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  Operational concerns and challenges are shown in Fig. 62 and kick types 

probabilities are shown in Fig. 63.  

 
 

Fig.62: Possible operational concerns and challenges 

 
 
 

 

Fig.63: Possible kick types 
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7.4 Foam underbalanced drilling model 

Fig.64 shows the overall model of foam UBD. The model is divided into two parts 

(challenges and technical limits with foam system and basic designs of foam systems).   

 
 
 

 
 

Fig.64: Overall foam model 

 
 
 
  Challenges and technical limits probabilities are shown in Fig. 65 and basic 

design of foam system probabilities are shown in Fig. 66. 
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Fig.65: Possible challenges and technical limits of foam UBD 

 
 
 

 
 

Fig.66: A list of basic designing steps in foam UBD 
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7.5 Air and gas underbalanced drilling model 

Fig.67 shows the overall model of air and gas UBD. The model is divided into four 

parts. The first part is rotary and hammers drilling probabilities and recommendations. 

The second part is limits and challenges to gas drilling probabilities and 

recommendations. The third part is rig requirements and recommendations. The fourth 

part is gas drilling operations probabilities and recommendations.  

 
 
 

 
 

Fig.67: Overall air and gas UBD 
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  Rotary and hammer drilling probabilities are shown in Fig. 68 and limits or 

challenges probabilities are shown in Fig. 69. 

 
 
 

 

 
Fig.68: Rotary and hammer drilling options 
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Fig.69: A list of limits and challenges for air and gas UBD 

 
 
 
  Gas drilling operation probabilities are shown in Fig. 70 and special rig 

equipment for gas drilling probabilities are shown in Fig. 71. 
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Fig.70: A list of possible gas drilling operations 
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Fig.71: A list of possible rig equipment for gas drilling 

 
 
 
7.6 Mud cap model 

Fig.72 shows the overall model of mud cap model. The model is divided into three parts. 

The first part is background to mud cap drilling probabilities and recommendations. The 

second part is drilling problems probabilities and recommendations. The third part is 

floating mud cap drilling in depleted formation probabilities and recommendations.  
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Fig.72: Mud cap overall model 

 
 
 
  Background mud cap drilling probabilities are shown in Fig. 73 and drilling 

problems probabilities are shown in Fig. 74. 

 
 
 

 

Fig.73: A list of background mud cap drilling 
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Fig.74: A list of mud cap drilling problems 

 
 
 
  Floating mud cap drilling in depleted formation probabilities are shown in Fig. 

75.  

 
 
 

 

Fig.75: Floating mud cap drilling options 
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7.7 Underbalanced liner drilling model 

Fig.76 shows the overall model of UBLD model. The model is divided into three parts. 

The first part is basic planning probabilities and recommendations. The second part is 

drilling problems that can be solved and recommendations. The third part is limits and 

challenges probabilities and recommendations.  

 
 
 

  

Fig.76: Overall model for UBLD 

 
 
 
  Problems that can be solved by UBLD (Fig. 77) and limits and challenges 

probabilities are shown in Fig. 78. Basic planning probabilities are shown in Fig. 79 
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Fig.77: A list of problems that can be solved by UBLD 

 
 

 

 

Fig.78: Limits and challenges with UBLD 
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Fig.79: Basic planning for UBLD options 

 
 
 
7.8 Underbalanced coil tube model 

Fig.80 shows the overall model of UBCT model. The model is divided into two parts. 

The first part is pre-planning probabilities and requirements. The second part is drilling 

challenges probabilities and solutions.  

 
 

 

Fig.80: Overall model for UBCT 
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  Pre-planning probabilities are shown in Fig. 81 and drilling challenges 

probabilities are shown in Fig. 82.  

 
 
 

 

Fig.81: A list of pre-planning possibilities 
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Fig.82: A list drilling challenges with UBCTD 
 
 
 
7.9 Snubbing and stripping model 

Fig.83 shows the overall model of snubbing and stripping model. The model is divided 

into four parts. The first part is basic snubbing probabilities and recommendations. The 

second part is snubbing units’ probabilities and recommendations. The third part is 

general stripping procedure and recommendations. The fourth part is snubbing 

operations probabilities and its recommendations. 
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Fig.83: Overall model for snubbing and stripping 
 
 

 
  Basic snubbing probabilities (Fig. 84) and snubbing units’ probabilities are 

shown in Fig. 85. 
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Fig.84: A list of basic snubbing options 

 
 
 

 

Fig.85: A list of snubbing unit 
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   General stripping procedure (Fig. 86) and snubbing operations probabilities are 

shown in Fig. 87. 

 

Fig.86: A list of possible stripping procedure 

 
 
 

 

Fig.87: A list of possible snubbing operations 
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CHAPTER VIII 

RESULTS AND DISCUSSION* 

 

In this chapter, examples for different scenarios are shown and explained from the 

models developed here. This chapter is divided into five sections (completion, drilling 

fluids, well control, cementing, and underbalanced drilling). 

 

 

____________ 

*Reprinted with permission from “Expert System for the Optimal Design and Execution 
of Successful Completion Practices Using Artificial Bayesian Intelligence,” by Al-Yami, 
A.S., Schubert, J., and Beck, G., 2011, SPE 143826, Copyright © 2012, Society of 
Petroleum Engineers. 

*Reprinted with permission from “Drilling Fluids Consultation System: Development 
and Field Applications,” by Al-Yami, A.S. and Schubert, J., 2012a, SPE 152098, 
Copyright © 2012, Society of Petroleum Engineers. 

*Reprinted with permission from “Development of Optimum Well Control Practices 
Using Artificial Bayesian Intelligence,” by Al-Yami, A.S. and Schubert, J., 2012c, OTC 
22882, Copyright © 2012, Society of Petroleum Engineers. 
 
*Reprinted with permission from “Drilling Expert System for the Optimal Design and 
Execution of Successful Cementing Practices,” by Al-Yami, A.S., Schubert, J., Medina, 
C., and Ok-Youn, Y., 2010b, IADC/SPE 135183, Copyright © 2010, Society of 
Petroleum Engineers 

*Reprinted with permission from “Guidelines for Optimum Underbalanced Drilling 
Practices Using Artificial Bayesian Intelligence,” by Al-Yami, A.S. and Schubert, J., 
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8.1 Well Completion model  

This section shows the use of this model in one scenario where the user selects his 

conditions, Figs. 88-93. To view the results once the model is executed can be done by 

obtaining the optimum results from each section separately, Figs. 94-100. Figs. 98 and 

99 shows that no need to do perforation or openhole gravel packing since our optimum 

lateral completion is openhole expandable screens. If we change the four uncertainties 

(cost, zonal isolation, reliability and productivity) to (moderate, poor, moderate, and 

good) then our optimum lateral completion will be openhole gravel packing, Fig.101. 

Since the lateral completion is openhole gravel packing, the user can get more details by 

selecting his desired conditions, Fig.102-103. The optimum slurry density for openhole 

gravel packs is shown in Fig. 104.  



100 
 

 

 
 

Fig.88: Selection of considerations of designing a multilateral junction 
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Fig.89: Selection of considerations of type of drilling fluid 
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Fig.90: Selection of well type 
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Fig.91: Selection of completion fluids 
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Fig.92: Selection of oil and gas characteristics  
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Fig.93: Selection of wellbore fluids 

 
 
 

 
 

Fig.94: Optimum selection of junction classification 
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Fig.95: Optimum selection of completion (treatment) fluid 

 
 
 

 

Fig.96: Optimum selection of completion selection 

 
 
 

 

Fig.97: Optimum selection of perforation selection 
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 Fig.98: Optimum selection of openhole gravel packs details 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.99: Optimum selection of packers 

 
 
 

 

Fig.100: Optimum selection of completion (openhole gravel pack) selection for different 
conditions 
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Fig.101: Selection of fluid loss formation 
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Fig.102: Selection of required slurry density from designing details 

 
 
 

 

Fig.103: part of consequences of openhole gravel packs showing optimum slurry density 

 
 
 
 The above example showed how using the model in selecting the optimum 

practices for junction classification, treatment fluid, lateral completion, perforation, 
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openhole gravel packing, and packer selection. The states of probabilities in the above 

tables were obtained by literature review and experts opinions. In case new practices or 

different experts’ opinions are presented then all we need to do is simply change the 

states of probabilities. In case that the above model is missing other factors then we can 

also update the model and its corresponding states of probabilities. The flexibility of 

Bayesian Network in terms of updating the structure model and its beliefs makes this 

method the first systematic approach to build experts systems.  

  The main borehole and the lateral are cased and cemented in level 4 completion. 

In level 3, the mechanical integrity by casing is only observed at the junction. Level 4 

requires cementing at the junction resulting in enhanced mechanical integrity and 

hydraulic isolation, Hill et al. (2008).  

 Acidic completion brines utilizing HCl are not effective in removing filter cake 

in long contact horizontal reservoirs. Lactic, acetic esters showed promising results in 

removal filter cake from water based drilling fluids, Al-Yami et al. (2009). 

  Openhole expandable screen lateral completion is selected because the user 

wants good productivity, cost and zonal isolation. Skin factors close to zero have been 

observed in the field when using expandable screens. The cost is higher than standalone 

screen but cheaper than openhole gravel packs, cased hole gravel packs and frac packs. 

Good zonal isolation has been observed in the field, Jonathan (2009). 

  Once we change the four uncertainties (cost, zonal isolation, reliability and 

productivity) to (moderate, poor, moderate, and good) the optimum lateral completion 

will be openhole gravel packing. 
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  Basically there are two ways to perform openhole gravel packs. The first one is 

alternate path which is suitable when we have lost circulation formation. The other way 

is circulating pack which requires full returns. The user selected lost circulation 

formation and wants to know the required slurry density. Higher concentration around 8 

ppa (pound of proppant added per gallon of clean fluid) is required for alternate path 

open hole gravel packs, Jonathan (2009). 

  One of the packers selected was oil swelling packers. Studies done by Al-Yami 

et al. (2008) showed that they are resistant against different salinity fluids and acids. 

Water swelling packers are not selected because they can be damaged by CaCl2 fluids 

and strong acids, Al-Yami et al. (2010a) 

8.2 Drilling fluids model 

The user can select the potential hole problem that might be faced by assigning a 

probability of one to any of the available probabilities. For example the user selects 

potential formation damage, Fig.104. A temperature range of 220 to 330 °F was 

selected, Fig. 105. The utility node named drilling fluid expert system shows examples 

of recommended drilling fluids, Figs.106&107.  
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 Fig.104: Selecting formation damage as a potential hole problem (example 1) 

 
 
 

 

Fig.105: Selecting temperature range (example 1) 
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Fig.106: Some possible drilling fluids recommendation for the conditions user selected 
(example 1) 

 
 
 

 

Fig.107: More possible drilling fluids recommendation for the conditions user selected 
(example 1) 

  
 
 
  Selection of 120 to 220 °F range (Fig.108) and loss of circulation and water 

flows (Fig.109) can lead to another example of drilling fluid recommendation, Fig.110.  
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Fig.108: Selecting temperature range (example 2) 

 
 
 

 
 

Fig.109: Selecting loss of circulation and water flows as a potential hole problem 
(example 2) 
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Fig.110: Formulation 7 is an example of a drilling fluid that will work in the selected 
conditions (example 2) 

 
 
 
  Selection of 220 to 330 °F range (Fig.111) and tight hole and flow with abnormal 

pressure (Fig.112) can lead to another example of drilling fluid recommendation, 

Figs.113 & 114.  

 
 
 

 
 

Fig.111: Selecting temperature range (example 3) 
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Fig.112: Selecting loss of circulation and water flows as a potential hole problem 
(example 3) 

 
 
 

  
 
 Fig.113: Formulation 24 is an example of a drilling fluid that will work in the selected 

conditions (example 3) 
 
 
 

 

Fig.114: Formulation 47 is another example of a drilling fluid that will work in the 
selected conditions (example 3) 
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   If the user only knows the temperature range (Fig.115) and formation name 

(Fig.116) he can still use the model since the potential hole problems is affected by the 

formation name. Selecting Arab-D formation leads to five potential hole problems 

probabilities shown in Fig.117. Different drilling fluids formation can be used in this 

case, Fig.118. 

 
 
 

 

Fig.115: Selecting temperature range (example 4) 

 
 
 

 

Fig.116: Selecting Saudi Arabia formation (example 4) 
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Fig.117: Showing resultant potential hole problems in Arab D formation as selected 

before (example 4) 
 
 
 

 

Fig.118: Drilling fluid 23 is the optimum fluid in this case (example 4) 

 
 
 
   A temperature probability of 120 to 220 °F (Fig.119) and Wasia and Shuaiba 

formation (Fig.120) are selected. Wasia and Shuaiba formation is considered to be a 
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tight hole and a lost circulation zone, Fig.121. Different drilling fluids formulations are 

recommended by the drilling fluid model, Figs. 122 & 123.  

 
 
 

 
 

Fig.119: Selecting temperature range (example 5) 

 
 
 

 

Fig.120: Selecting Saudi Arabia formation (example 5) 
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Fig.121: Showing resultant potential hole problems in Wasia and Shuaiba formations as 
selected before (example 5) 

 
 
 

 

Fig.122: Showing some recommended drilling fluids for the above conditions (example 
5) 
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Fig.123: Showing more recommended drilling fluids for the above conditions (example 
5) 

 
 
 
   Selection of a higher temperature range probability of 330 to 400 °F (Fig.124) 

and potential formation damage problem, Fig.125 leads to different drilling fluids 

formulations recommended by the drilling fluid model, Fig.126.  

  

 

Fig.124: Selecting temperature range (example 6) 
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Fig.125: Selecting potential hole problem (example 6) 

 
 
 

 

Fig.126: Showing the recommended drilling fluids for the above conditions (example 6)  

 
 
 
 The above example showed how using the model in selecting the optimum 

practices for drilling fluids selection. The states of probabilities in the above tables were 

obtained by experts’ opinions. In case new practices or different experts’ opinions are 

presented then all we need to do is simply change the states of probabilities. In case that 

the above model is missing other factors then we can also update the model and its 

corresponding states of probabilities. The flexibility of Bayesian Network in terms of 
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updating the structure model and its beliefs makes this method the first systematic 

approach to build experts systems.  

  Selecting the acid soluble clay free NaCl brine drill-in fluid is an optimum 

selection to minimize formation damage problems. The polymers included in the design 

are suitable for the temperature range selected.  

  Using Barite or CaCO3 fine can be used to increase the mud density as hole 

conditions dictate to control water flow potential problem mentioned in example 2. For 

the lost circulation problem, treatment with lost circulation material should help to cure 

the lost circulation zone.  

  Inhibitive KCl drilling fluid looks like a good choice since tight hole is a 

potential problem. Using Barite or CaCO3 can be used to increase the mud density to 

minimize the flow and abnormal pressure problem.  

  Wasia and Shuaiba formations are considered to be a tight hole and a lost 

circulation zone. Spud mud made up of pre-hydrated bentonite in freshwater and 

flocculated with lime should be sufficient to drill this interval.  Curing lost circulation 

should be considered but in case it does not work. Drilling with water should not be 

practiced here which is in agreement with the model recommendation.  

  For temperature higher than 330°F and in a zone with high potential for 

formation damage, potassium formate can be considered as a good drilling fluid.  

Downs (1992) listed some advantages of having the formate brines that make it 

ideal drill-in fluid. Some of these advantages are: 

• Maintenance of rheological properties at high temperatures 
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• Minimal circulating pressure losses 

• Elimination of solids sag at high temperatures 

• Low potential for differential sticking  

• Very thin filter cake 

• Low ECD ( equivalent circulating density) in long and narrow hole sections 

Brinkhorst (1994) mentioned that the potassium formate was used successfully to 

drill Norwegian field and no damaging effects were observed.  

8.3 Well control model 

The user can select the kick indication observed by assigning a probability of one to any 

of the available probabilities. For example the user selects increase in flow and pit gain, 

Fig.127. Once the kick has been verified (Fig.128) the user needs to select his kick 

details. The kick is from a horizontal or deviated well, Fig.129. Then the optimum 

circulation method is the driller method as shown in Fig. 130.  
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Fig.127: Kick indicator example 
 
 
 

 
 
 

Fig.128: Verification of the kick 
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Fig.129: The kick is from a horizontal or deviated well 
 
 
 

 
 

Fig.130: The recommended circulation method of this example is driller method 

 
 
 
  The user wants to use driller method to probability control the well, Fig.131. 
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Fig.131: The user is controlling the well using driller method 

 
 
 
  The user enters his probability conditions from the possible operation node 

(Fig.132) and the recommended practice of increasing pump rate is calculated by the 

model, Fig. 133. 
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Fig.132: The user is entering his pipe, casing and pump operational conditions 

 
 
 

 

Fig.133: The optimum practice of proper well control is shown 
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  The user selects that drill pipe pressure is up and casing pressure is up about the 

same amount as the drill pipe pressure, Fig.134. Possible probabilities due to the 

selection from the check list for trouble shooting node are shown in Fig.135.  

 

 
Fig.134: The user shows his problem by selecting drill pipe and casing pressure 

response 
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Fig.135: Possible probabilities due to the selection from the check list for trouble 
shooting node are shown 

 
 
 
  Selection of one of the five probabilities shown in Fig.135 is shown in Fig.136 to 

identify the problem while controlling the well (the choke manifold has started to plug 
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up), Fig.137. The optimum solution is calculated by the model to switch to alternate 

choke line and clear the manifold, Fig.138. Again, expert opinions are used here in the 

trouble shooting guide consequence which can be updated easily in case of different 

opinions or field cases. 

 
 
 

 

Fig.136: The user then selects an action and its corresponding result in an attempt to 
identify the problem 
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Fig.137: The problem is identified 

 
 
 

 

Fig.138: A recommendation is given to solve this problem 
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  If no pre-recorded data is available probability is selected (Fig.139) and a 

possible operation is selected (Fig.140) then the optimum well control practice is 

calculated as shown in Fig. 141.  

 
 
 

 
 

Fig.139: The user is controlling the well without any prerecorded data 

 
 
 

 

Fig.140: The user is entering his observations 
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Fig.141: The recommended proper well control practice is shown 

 
 
 
  Additional examples of proper well control part are shown below. Figs 142-144 

is related to pumps troubles during a kick. Figs. 145-147 are related to having a kick in 

deep water.  

 
 
 

 

Fig.142: The user is controlling the well and he has pump troubles during a kick 
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Fig.143: The user is entering his observations during the pump trouble 

 
 
 

 

Fig.144: The recommended proper well control practice is shown for the selected 
conditions for the pump trouble during a kick 
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Fig.145: The user is facing a kick in deep water 

 
 
 

 

Fig.146: The user is entering his observations for the deep water kick 
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Fig.147: The recommendation for the kick in deep water 

 
 
 
 The above example showed how using the model in selecting the optimum 

practices for well control. The states of probabilities in the above tables were obtained 

by experts’ opinions. In case new practices or different experts’ opinions are presented 

then all we need to do is simply change the states of probabilities. In case that the above 

model is missing other factors then we can also update the model and its corresponding 

states of probabilities. The flexibility of Bayesian Network in terms of updating the 

structure model and its beliefs makes this method the first systematic approach to build 

experts systems.  

  In Figs.129 and 130 the Driller’s method is well suited for horizontal well 

control, as immediate circulation is important. Using the Driller’s method can help in 

avoiding complicated pressure schedule calculations associated with the Wait and 

Weight method. Driller’s method is simple and is considered to be a good circulation 

method in horizontal well control situations, GRØTTHEIM (2005). 

  In Figs. 132 and 133, increasing pump rate is recommended to avoid another 

bubble from entering the bore hole on bottom. In Figs.143 and 144, stopping the pump 

and closing in the well is the recommended practice because the well cannot be killed if 
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the pump rate is not constant. The increase in pump rate and decrease in pipe pressure 

might indicate a hole in the drill pipe or a bad pump. The instability movement of the 

Kelly hose might indicate that the problem is at the pump. 

  The third part in the above model is designed to assist the user to find the 

optimum solution for a list of potential problems that can be faced during well control 

operations. In general there are rules that can serve as good guides, Rehm et al. (1975): 

• Unstable movement of Kelly hose or surging pump pressure gauge is a sign of 

pump problems. 

• If the pipe pressure only goes up then the bit or nozzle is plugged. 

• If the drill pipe and casing pressure increase suddenly then the choke or manifold 

is plugged. 

• If the drill pipe pressure is decreased then there might be a hole in the pipe. 

• If the drill pipe pressure and casing pressure does not respond to the choke, you 

might have a lost circulation problem.  

8.4 Cementing model 

This section shows the use of this model in one scenario where the user select his 

conditions, Figs.148-151. The conditions are: 

• Well Type: Oil well 

• Bottom Hole Static Temperature: 300-400°F 

• Objective: Production Liner 

• Drilling Fluid Type: Water based mud 
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Fig.148: Selection of well type 

 
 
 

 

Fig.149: Selection of bottom hole static temperature 
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Fig.150: Selection of well objective 
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Fig.151: Selection of drilling fluid 

 
 
 
   The consequences node combines the four uncertainty nodes (well type, required 

pumping time, objective and drilling fluid) and the three decision nodes (recommended 

cement formulations, recommended spacers and recommended operational practices). 

Cementing expert opinion was used to assign and define the node conditional probability 

distribution. The model then calculate based on the given above conditions that the 

optimum practice to cement the liner, Figs.152-153. 
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Fig.152: The cementing expert system recommends formulation 13, operational note 5 

and spacer 2 to be used in this application 
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Fig.153: The model showing more details for this application (Example 1) 
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Another example is shown below: 

• Well Type: Gas well 

• Bottom Hole Static Temperature: 300-400°F 

• Objective: Long Liner 

• Drilling Fluid Type: Oil based mud 

The model then calculates and shows in Fig.154 the optimum practice to cement the 

long liner.  
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Fig.154: The model showing more details for this application (Example 2) 
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 The drilling expert system for cement was based on field and lab experience. It is 

not possible to outline this in this manuscript. For the first example, selection of the 

following cement slurry design: Cement +35%BWOC silica flour+Expansion 

additive+Dispersant+ Fluid loss additive+ Retarder+ 0.01 gps Antifoaming agent is 

suitable. The temperature is high (300-400 °F) which requires the use of retarder to delay 

setting of cement. Lignosulfonate and some carbohydrate derivatives such as xanthan 

gum, cellulose and polyanionic cellulose are common retarders.  Viscosity of cement 

slurry also affect pumping properties, at high temperature the viscosity will be reduced 

which might lead to solids settling. To solve this problem, additives for viscosity control 

are used. Dispersants are used with cement slurry to improve the rheological 

performance especially at higher densities without the use of additional water. 

Expansion additives (for example CaO or MgO) are used to minimize shrinkage during 

cement slurry setting. The expansion additives are effective when bottom hole 

temperature is greater than approximately 300 °F. Fluid loss additives are used to 

minimize hydration of water sensitive shale, to maintain the cement slurry water for the 

hydration process, and to minimize bridging in wellbore. Also the use of silica source is 

required to prevent strength regression.  

  Water based spacer can be used since we are using water based drilling fluid. The 

operational note indicates best field cementing practice for this case as the following:  

1. Liner hanger representative should be on the rig floor at all times while the 

liner is being RIH especially when being rotated (via rotary table with DP in the slips), 
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and should ensure that the rotation torque at 15 RPM or lower does not exceed the 

maximum allowed rotating torque.  

2. Pump enough spacer and cement 

3. Pay attention to difference in temperature in case of long liners. Compressive 

strength of 500 psi is required at the top of the liner 

4. After starting to pump cement downhole, begin to rotate the liner at 3 to 7 

RPM. If observed surface torque is below maximum allowed surface torque, increase 

RPM to 15, otherwise attempt to rotate at any lower RPM if the observed surface torque 

is less than maximum allowable surface torque, up until plug bumps.  

5. Actual volumes will be based on openhole caliper log. 

6. Cement additives maybe revised after final confirmation testing 

7. Cement will be batch mixed 

8. Pump fresh water behind wiper plug and cement in lines ahead of water (1-2 

bbl).  

9. Slow displacement to 2-3 bpm before sharing the liner wiper plug. Do not 

over displace. 

10.  Record the maximum surface rotating torque observed during the cement job 

on the drilling report.  

11. Pull four stands above the liner top and reverse circulation 1.5 DP volumes. 

Pull additional 5 stands and reverse out 1.5 DP volumes. Shut in well and apply 300-400 

psi. WOC for 7 hours. Flow check then POH laying-down excess DP and liner setting 

tool. 
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12. When RIH with bit to drill top of liner cement, if no solid cement can be 

observed within 15-20 feet on TOL then wait for longer time for cement to develop the 

required compressive strength. It should be noted that having soft cement at the top of 

the liner can be due to contaminants which may not indicate cement failure.  

  For the second example (cementing Gas Long Production Liner), the same 

operational field note above can be applied. The spacer will be a water based spacer that 

has mutual solvent to water wet the formation for improved formation cement bonding,

   Since we have a long gas production liner the cement slurries should meet the 

following requirements, Al-Yami et al. (2007):  

1. The thickening time must be sufficient to allow proper slurry placement. 

2. Rapid compressive strength development at the top of the liner and the 

bottom. 

3. The slurry must be easily mixable and must not exhibit free water or settling 

tendencies. 

4. A fluid-loss of ≤ 100 ml/30 min. 

  In addition to conventional additives such as fluid loss, dispersants, silica source 

latex must be used: 

  For wells that show high gas migration potential we can use latex additive. Latex 

is a copolymer of AMPS, N-Vinylacylamide and acrylamide, Fink (2003). The 

following retarders’ combinations are recommended Al-Yami et al. (2007):  

• Blend of salt and organic acid.  

• Aromatic polymer derivative and blend of salt and organic acid.  
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• Sodium salt of alicyclic acid and aminated aromatic polymer. 

8.5 Underbalanced drilling models 

8.5.1 General approach to underbalanced drilling model 

The user can select the formation to be drilled by assigning a probability of one to any of 

the available probabilities. For example the user selects naturally fractured and vugular 

formation, Fig.155. The consideration decision is shown in Fig.156 since it shows the 

highest probability. Again all of these probabilities were obtained by underbalanced 

drilling expert opinions which can be updated by other opinions easily.  

 

 

Fig.155: The user selects that he has naturally fractured and vugular formation 
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Fig.156: The consideration decision 
 
 
 
8.5.2 Flow underbalanced drilling model 

If the tripping probability is selected as RIH (Fig.157) and high permeability level 

(Fig.158) then the optimum tripping operation is to use mud cap, Fig. 159.  

 

 
 

Fig.157: The user selects RIH option 
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Fig.158: The user selects high permeability option 
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Fig.159: Tripping recommendation for low permeability formation during RIH 
operation 

 
 
 
  Selection of on connection probability (Fig.160) leads to optimum connection 

option shown in Fig.161.  
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Fig.160: The user selects on connection option 

 
 
 

 

Fig.161: Connection recommendation 
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  Selection of flow drilling with formation gas or fluid returns (Fig. 162) leads to 

the optimum practice shown in Fig.163.  

 
 
 

 
 

Fig.162: The user selects flow drilling takes place in formation with gas or fluid returns 
 
 
 

 

Fig.163: The recommended flow drilling with formation gas or fluid returns 
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8.5.3 Gaseated underbalanced drilling model 

Selection of concentric casing string injection method (Fig. 164) leads to benefits and 

challenges shown in Fig.165. 

  
 
 

 

Fig.164: The user selects gaseated UBD method (dual casing string) 
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Fig.165: The recommendation for dual casing string is shown 

 
 
 

  Selection of back pressure gas and fluid limitation probability (Fig. 166) leads to 

the optimum recommendation shown in Fig.167. 
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Fig.166: The user selects general limit of gas and fluid volume (back pressure) 

 
 
 

 

Fig.167: Back pressure recommendation 
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  Selection of flow drilling with formation gas or fluid returns (Fig. 168) leads to 

the optimum practice shown in Fig.169. 

 
 
 

 

Fig.168: The user selects operational concern (pressure surges) 

 
 
 

 

Fig.169: Pressure surges recommendation 
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  Selection of gas flow kick type (Fig. 170) leads to the optimum well kick 

recommendation shown in Fig.171. 

 
 
 

 

Fig.170: Selecting kick type (gas flow) 
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Fig.171: Recommendation for kick type (gas flow) 

 
 
 
8.5.4 Foam underbalanced drilling model 

Selection of hot holes as a challenge (Fig. 172) leads to the optimum recommendation 

shown in Fig.173. 
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Fig.172: The user selects hot holes as a challenge 

 
 
 

 

Fig.173: Hot holes recommendation 

 
 
 
  Selection of making a connection in foam underbalanced drilling (Fig. 174) leads 

to the optimum connection procedure detailed in Fig.175. 
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Fig.174: Selecting basic designing in making a connection in foam UBD 

 
 
 

 

Fig.175: Recommendation for making a connection in foam UBD 

 
 
 
8.5.5 Air and gas underbalanced drilling model 

Selection of horizontal drilling with air hammers (Fig. 176) leads to the optimum 

recommendation detailed in Fig.177. 



163 
 

 

 
 

Fig.176: Selecting horizontal drilling with air hammers 
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Fig.177: Recommendation for horizontal drilling with air hammers 

 
 
 
  Selection of water or wet holes probability as a challenge to gas drilling (Fig. 

178) leads to the optimum recommendation detailed in Fig.179. 

 

Fig.178: Selection of water or wet holes as a challenge  
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 Fig.179: Water or wet holes recommendation 

 
 
 

  Selection of mist pump rig equipment probability (Fig. 180) leads to the 

optimum recommendation detailed in Fig.181. 
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Fig.180: Selection of mist pumps 
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Fig.181: Recommendation for mist pump 

 
 
 
  Selection of well kicks detection and solution probability in gas drilling operation 

node (Fig. 182) leads to the optimum recommendation detailed in Fig.183. 
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Fig.182: Selection of gas drilling operations (well kicks detection and solution) 

 
 
 

 

Fig.183: Well kicks detection and solution recommendation 
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8.5.6 Mud cap model 
 
Selection of trips with pressurized mud caps probability (Fig. 184) leads to the optimum 

recommendation detailed in Fig.185. 

 
 
 

 

Fig.184: Selecting trips with pressurized mud caps 

 
 
 

 

Fig.185: Recommendation for trips with pressurized mud caps 



170 
 

 

  Selection of drilling ahead with mud losses probability in drilling problem node 

(Fig. 186) leads to the optimum recommendation detailed in Fig.187. 

 
 
 

 

Fig.186: Selection of drilling ahead with mud losses 
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Fig.187: Recommendation for drilling ahead with mud losses 

 
 
 

  Selection of water sensitive formation exposed probability (Fig. 188) leads to the 

optimum recommendation detailed in Fig.189. 
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Fig.188: Selection of water sensitive formation exposed while floating mud cap drilling 
depleted reservoirs 

 
 
 

 

Fig.189: Recommendation for water sensitive formation exposed while floating mud cap 
drilling depleted reservoirs 
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8.5.7 Underbalanced liner drilling model 

Selection of the bit probability in basic planning node (Fig. 190) leads to the optimum 

recommendation detailed in Fig.191. 

 
 
 

 

Fig.190: Selection of basic planning of the bit 
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Fig.191: Recommendation for the bit used in UBLD 

 
 
 
  Selection of wellbore ballooning probability (Fig. 192) leads to the optimum 

recommendation detailed in Fig.193. 

 
 
 

 

Fig.192: Selection of the potential problem (hole ballooning) 
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Fig.193: Showing how UBLD can solve the potential problem (hole ballooning) 

 
 
 
  Selection of liner hanger challenge probability (Fig. 194) leads to the optimum 

recommendation detailed in Fig.195. 
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Fig.194: Selecting liner hanger as a challenge for UBLD 
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Fig.195: Recommendation for the liner hanger in UBLD 

 
 
 
  Selection of drilling fluid considerations probability (Fig. 196) leads to the 

optimum recommendation detailed in Fig.197. 
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Fig.196: Selecting drilling fluids as a challenge for UBLD 

 
 
 

 

Fig.197: Recommendation for drilling fluids in UBLD 
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8.5.8 Underbalanced coil tube model 
 
Selection of pressure categories and BOP stack requirement probability (Fig. 198) leads 

to the optimum requirement detailed in Fig.199. 

 

 

Fig.198: Selecting pre-planning option of BOP stack requirement 
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Fig.199: Recommendation of pre-planning option of BOP stack requirement 

 
 
 
 
  Selection of ROP reduction challenge probability (Fig. 200) leads to the 

optimum recommendation detailed in Fig.201. 

 

Fig.200: Selection of ROP reduction challenge in UBCTD 
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Fig.201: Recommendation for ROP reduction challenge in UBCTD 

 
 
 
8.5.9 Snubbing and stripping model 

Selection of stripping with annular preventer probability (Fig. 202) leads to the optimum 

recommendation detailed in Fig.203. 
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Fig.202: Selecting stripping with annular preventer or stripping rubber 

 
 
 

 

 
 

Fig.203: Recommendation for stripping with annular preventer or stripping rubber 



183 
 

 

  Selection of auxiliary equipment probability (Fig. 204) leads to the optimum 

recommendation detailed in Fig.205. 

 
 
 

 

 

Fig.204: Selection of auxiliary equipment from snubbing unit options 
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Fig.205: Recommendation for auxiliary equipment from snubbing unit options 

 
 
 

  Selection of ram to ram general stripping probability (Fig. 206) leads to the 

optimum recommendation detailed in Fig.207. 
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Fig.206: Selection of ram to ram stripping procedure 
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Fig.207: Recommendation for ram to ram stripping procedure 

 
 
 
  Selection of temporary securing of the well probability in the snubbing 

operations node (Fig. 208) leads to the optimum recommendation detailed in Fig.209. 
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Fig.208: Selection of a snubbing operation (temporary securing of the well) 

 
 
 

 

Fig.209: Recommendation for a snubbing operation (temporary securing of the well) 
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CHAPTER IX 

CONCLUSIONS AND SUGGESTION FOR FUTURE WORK 
 

 
The Bayesian approach was found suitable for designing expert system based on the 

factors mentioned above. The model can work as a guide to aid drilling engineers and 

scientists to design and execute optimum drilling fluids. Using this approach to build up 

expert systems is more flexible than using flow charts. Updating flow charts is time 

consuming and might require redesigning them again to be used by different experts or 

in different fields. Using Bayesian Network allows us to update our industry practices by 

updating the probabilities states mentioned in this research. Bayesian Network was used 

to design models for well completion, drilling fluids, well control, cementing and 

underbalanced drilling. 

  Literature review and completion experts’ opinions were used as evidence to 

build a model using the proposed Bayesian Network. Variable nodes allow the user to 

input desired well conditions that allows for generating the corresponding best 

completion practices. Eighteen uncertainty nodes are defined for this model to determine 

best practices in six decision nodes. The model is divided into six parts or decisions. 

Each decision has uncertainties and consequences nodes.  
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  The consequences node combines the uncertainty nodes where completion expert 

opinions were used to assign and define the conditional probability distribution. The 

model then calculates the optimum practices decision.   

  Literature review and drilling fluids experts’ opinions were used as evidence to 

build the drilling fluid model. Variable nodes allow the user to input desired well 

conditions that allows for generating the corresponding best drilling fluids practices. 

Three uncertainty nodes are defined for this model to determine best practices in one 

decision node (recommended drilling fluids). The model has one decision which has 

uncertainties and one consequence node. The consequence node combines the 

uncertainty nodes where drilling fluids’ expert opinions were used to assign and define 

the conditional probability distribution. The model then calculates the recommended 

drilling fluids decision.   

  The well control model is divided into three parts or decisions. Each decision has 

uncertainties and consequences nodes. The consequences node combines the uncertainty 

nodes where well control expert opinions were used to assign and define the conditional 

probability distribution. The model then calculates the optimum practices decision. The 

first part or decision provides the proposed circulation method decision based on the 

kick details provided. The second part provides the user about the optimum 

recommended practice based on the possible scenarios and operations in well control. 

The third part provides the user with a quick check list for trouble shooting in case of 

problems while controlling the well.  
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The cementing model has six uncertainty nodes (well type, objectives, bottom 

hole static temperature, pumping time, drilling fluids, and consequences). This considers 

three decision criteria (recommended cementing formulations, recommended spacers 

formulations and recommended operational practices). The model is designed in a way 

to give the user options to design well cementing and best practices effectively. The user 

will select options that match his application from well type, bottom hole temperature or 

required pumping time, objective and drilling fluid. Then the model (cementing expert 

utility) will suggest optimum cement formulations, spacer formulations and operational 

practices that fit the given well conditions.   

  Underbalanced drilling expert system here is combined into nine models as 

follow: 

o General approach to underbalanced drilling 

o Flow underbalanced drilling 

o Gaseated underbalanced drilling 

o Foam underbalanced drilling 

o Air and gas underbalanced drilling 

o Mud cap drilling 

o Underbalanced Liner Drilling Model 

o Underbalanced Coil tube Model 

o Snubbing and Stripping Model 

  Uncertainty nodes are defined for each model to determine best practices 

decision nodes. The model is divided into several parts or decisions. Each decision has 



191 
 

 

uncertainties and consequences nodes. The consequences node combines the uncertainty 

nodes where underbalanced drilling expert opinions were used to assign and define the 

conditional probability distribution. The model then calculates the optimum practices 

decision. Below are descriptions of the models. 

  The UBD General approach to underbalanced drilling model is divided into four 

parts of uncertainty and decision nodes. The first part describes the formation to be 

drilled underbalanced and the considerations required.  The second part shows the 

planning phases’ uncertainty and its corresponding recommendations. The third part 

shows the equipments requirement uncertainty node or options and its corresponding 

decision (equipment recommendations).  The fourth part shows the operations planning 

probability and its corresponding decisions 

 The flow UBD model is divided into three parts (tripping, connection and flow 

drilling uncertainty and decision nodes). The gaseated UBD model is divided into four 

parts (selection method benefits and challenges, requirements for general limits of gas 

and fluid volume, operational concerns and challenges recommendations, and well kicks 

recommendations). The foam model is divided into two parts (challenges and technical 

limits with foam system and basic designs of foam systems).  The air and gas model is 

divided into four parts. The first part is rotary and hammers drilling probabilities and 

recommendations. The second part is limits and challenges to gas drilling probabilities 

and recommendations. The third part is rig requirements and recommendations. The 

fourth part is gas drilling operations probabilities and recommendations. The mud cap 

model is divided into three parts. The first part is background to mud cap drilling 
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probabilities and recommendations. The second part is drilling problems probabilities 

and recommendations. The third part is floating mud cap drilling in depleted formation 

probabilities and recommendations. The UBLD model is divided into three parts. The 

first part is basic planning probabilities and recommendations. The second part is drilling 

problems that can be solved and recommendations. The third part is limits and 

challenges probabilities and recommendations. The underbalanced coil tube model is 

divided into two parts. The first part is pre-planning probabilities and requirements. The 

second part is drilling challenges probabilities and solutions. The snubbing and stripping 

model is divided into four parts. The first part is basic snubbing probabilities and 

recommendations. The second part is snubbing units’ probabilities and 

recommendations. The third part is general stripping procedure and recommendations. 

The fourth part is snubbing operations probabilities and its recommendations. 

  In case new practices or different experts’ opinions are presented then all we 

need to do is simply change the states of probabilities. In case that the above model is 

missing other factors then we can also update the model and its corresponding states of 

probabilities. The flexibility of Bayesian Network in terms of updating the structure 

model and its beliefs makes this method the first systematic approach to build experts 

systems. This advisory system is intended to be a field guide for the drilling engineer or 

rig supervisor. 
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9.1 Suggestion for future work 

Future work can include designing a similar model using Bayesian Network for more 

drilling operations such as managed pressure drilling practices. In addition, it will be of 

interest to use the developed models in this research in the field for evaluation and 

updating. For example, the drilling fluids model and the cementing model were 

constructed using programs from Saudi Arabia. Programs from the USA can be used to 

expand the practices due to different conditions such as higher temperature or shale gas 

formation.    
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