
ACHIEVING QUALITY OF SERVICE GUARANTEES FOR DELAY SENSITIVE

APPLICATIONS IN WIRELESS NETWORKS

A Dissertation

by

NAVID ABEDINI

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

August 2012

Major Subject: Computer Engineering

ACHIEVING QUALITY OF SERVICE GUARANTEES FOR DELAY SENSITIVE

APPLICATIONS IN WIRELESS NETWORKS

A Dissertation

by

NAVID ABEDINI

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Approved by:

Chair of Committee, Srinivas Shakkottai
Committee Members, Jean-Francois Chamberland-Tremblay

Natarajan Gautam
Panganamala Ramana Kumar
Narasimha Annapareddy

Head of Department, Costas N. Georghiades

August 2012

Major Subject: Computer Engineering

iii

ABSTRACT

Achieving Quality of Service Guarantees for Delay Sensitive Applications in

Wireless Networks. (August 2012)

Navid Abedini, B.S., Sharif University of Technology, Iran

Chair of Advisory Committee: Dr. Srinivas Shakkottai

In the past few years, we have witnessed the continuous growth in popularity of

delay-sensitive applications. Applications like live video streaming, multimedia con-

ferencing, VoIP and online gaming account for a major part of Internet traffic these

days. It is also predicted that this trend will continue in the coming years. This

emphasizes the significance of developing efficient scheduling algorithms in commu-

nication networks with guaranteed low delay performance. In our work, we try to

address the delay issue in some major instances of wireless communication networks.

First, we study a wireless content distribution network (CDN), in which the

requests for the content may have service deadlines. Our wireless CDN consists of a

media vault that hosts all the content in the system and a number of local servers

(base stations), each having a cache for temporarily storing a subset of the content.

There are two major questions associated with this framework: (i) content caching:

which content should be loaded in each cache? and (ii) wireless network scheduling:

how to appropriately schedule the transmissions from wireless servers? Using ideas

from queueing theory, we develop provably optimal algorithms to jointly solve the

caching and scheduling problems.

Next, we focus on wireless relay networks. It is well accepted that network

coding can enhance the performance of these networks by exploiting the broadcast

nature of the wireless medium. This improvement is usually evaluated in terms of

the number of required transmissions for delivering flow packets to their destinations.

iv

In this work, we study the effect of delay on the performance of network coding

by characterizing a trade-off between latency and the performance gain achieved by

employing network coding. More specifically, we associate a holding cost for delaying

packets before delivery and a transmission cost for each broadcast transmission made

by the relay node. Using a Markov decision process (MDP) argument, we prove a

simple threshold-based policy is optimal in the sense of minimum long-run average

cost.

Finally, we analyze delay-sensitive applications in wireless peer-to-peer (P2P)

networks. We consider a hybrid network which consists of (i) an expensive base

station-to-peer (B2P) network with unicast transmissions, and (ii) a free broadcast

P2P network. In such a framework, we study two popular applications: (a) a content

distribution application with service deadlines, and (b) a multimedia live streaming

application. In both problems, we utilize random linear network coding over finite

fields to simplify the coordination of the transmissions. For these applications, we

provide efficient algorithms to schedule the transmissions such that some quality of

service (QoS) requirements are satisfied with the minimum cost of B2P usage. The

algorithms are proven to be throughput optimal for sufficiently large field sizes and

perform reasonably well for finite fields.

v

To

My wife, Sonia

and my beloved family

vi

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to my advisor, Professor Srinivas

Shakkottai. Only his continuous support, brilliant ideas and encouragement could

make this work possible. I had such a joyful experience working with him, since he

was always open for questions and extremely enthusiastic for discussions. Besides

all his guidance and great supervision in the work, his patience and exemplary posi-

tive attitude were indispensable factors in helping me find my interests and love my

research. He has been an ideal advisor, a remarkable collaborator and a great teacher.

I am also very thankful to my thesis committee members: Professor Jean-Francois

Chamberland, Professor Natarajan Gautam, Professor P. R. Kumar and Professor

Narasimha Reddy. Their questions, feedback and novel ideas helped me a lot in

completing this dissertation. It was a great honor to be their student and have them

in my PhD committee.

I am also deeply grateful to Professor Serap Savari, for the opportunity of working

with her in my first year of PhD. I had also the great fortune of collaborating with

Professor Sunil Khatri and Professor Alex Sprintson. My special thanks to all my

wonderful teachers including Professor Robert Cui, Professor Scott Miller, Professor

Krishna Narayanan and Professor Tie Liu, from whom I learned a lot, and I really

enjoyed their courses at Texas A&M University. I would also like to sincerely thank

Carolyn Warzon for all her assistance and effort in the Computer Engineering and

Systems Group.

During my four years of PhD studies at Texas A&M University, I have found

the most admirable friends and colleagues. To name a few of them who had a crucial

impact on my academic life, I would like to acknowledge Meghana Amble, Babak

Faryabi, Yu-Pin Hsu, Mayank Manjrekar, Parimal Parag, Vinod Ramaswamy, So-

vii

lairaja Ramasamy, Sadegh Tabatabaei and Golanz Vahedi. I would also like to spe-

cially thank Swetha Sampath for all the great effort she put into implementing our

analytical media streaming results on an Android framework. I also had the nicest

and most peaceful officemates: Suming Lai, Sangwhan Moon and Sandeep Yadav.

Finally, I would like to express my true love and gratitude to my encouraging

father Ghodrat, my adorable mother Mahdokht, my lovely sisters (in-laws) Leila, Sara

and Mahsa and my awesome brothers (in-laws) Babak, Pezhman and Mahziar. My

achievements (if any) were only because of their great support and motivation. Many

thanks to my fantastic parents-in-law, Reza and Farzaneh, not only for all their

caring and inspiration, but more importantly for giving me the sweetest creature,

Sonia. She has been always around to give excitement and meaning to my life, and I

cannot imagine where I would be without her love and support.

viii

TABLE OF CONTENTS

CHAPTER Page

I INTRODUCTION . 1

II CACHING AND SCHEDULING OF ELASTIC AND IN-

ELASTIC TRAFFIC . 4

A. Main Results . 6

B. Problem Definition . 8

C. Unit Period Cache Refresh 11

1. Feasibility and Capacity Regions 11

2. Max-Weight Algorithm: Throughput Optimality

and Implementation 13

D. Periodic Cache Refresh 16

1. Feasibility and Capacity Regions 18

2. Max-Weight Algorithm: Throughput Optimality

and Implementation 20

E. Inelastic Caching Problem with Content Expiry 30

1. Model and Capacity Region 31

2. Optimal Policy . 32

F. Simulation Results . 34

G. Summary and Future Work 37

III OPTIMAL DELAY-THROUGHPUT TRADE-OFF IN THE

NETWORK CODING-ENABLED RELAY NETWORKS 40

A. Main Results . 43

B. System Overview . 44

1. Scenario from a Relay’s Perspective 45

2. Markov Decision Process Model 46

C. Analysis . 47

1. Should We Maintain Waiting Time Information? . . . 47

2. Average-Optimal Policy: Stationary and Deterministic 49

3. Structure of Optimal Policy: Threshold Based 51

a. Structure of α-Optimal Policy 52

b. Structure of Average-Optimal Policy 57

4. Obtaining the Optimal Deterministic Stationary Policy 58

ix

CHAPTER Page

D. Numerical Studies . 62

E. Further Discussions and Extensions 64

1. Batched Service . 64

2. Markov-Modulated Arrival Process 65

F. Summary and Future Work 66

IV WIRELESS BROADCAST P2P NETWORKS 68

A. Content Distribution with Service Deadline 72

1. System Model . 74

2. P2P Broadcast Network 76

a. Uncoded Initialization 76

b. Coded Initialization 78

3. Hybrid Network . 83

a. Infinite Field Size 84

b. Finite Field Size 87

4. Distributed Implementation of Peer Selection Algorithms 89

5. Simulation Results . 92

B. Live Multimedia Streaming 94

1. System Model . 95

2. Coordination of the P2P Broadcast Network 100

a. Achievability of QoS Metric 100

b. Optimal P2P Scheme 105

c. Distributed Implementation of the P2P Scheme . 109

3. Coordination of the B2P Network 110

4. Symmetric QoS Constraints 113

5. Finite Field Case . 120

6. Further Discussions and Extensions 122

a. The Effect of Boosters 122

b. The Fairness Problem 124

c. Improving Robustness by Employing Erasure

Protection Techniques 125

7. Simulation Results . 134

C. Summary and Future Work 143

1. Extension to Unreliable P2P Network 144

V CONCLUSION . 146

REFERENCES . 147

x

CHAPTER Page

APPENDIX A . 154

APPENDIX B . 164

VITA . 173

xi

LIST OF FIGURES

FIGURE Page

1 Wireless broadcast content distribution. A media vault is used

to place content in caches at wireless base stations (BS), which

can broadcast content. Clients are grouped into clusters, each of

whose requirements are aggregated at frontends (FE). 5

2 Different time scales. 18

3 Evolution of the average queue lengths. (a)-(c): unit-refresh with

(|E| = |I| = 5, N = M = 4, Nn = 3, c̄mn = 0.9, ηn,j = 0.5, λIn,j =

0.9, aEn (e, k)˜B(Nn, 0.9), D = 3 and different cache capacity values

vm), (d): max-weight in a periodic case with (|I| = 4, |E| =

3, N = M = 3, Nn = 3, c̄mn = 0.9, ηn,j = 0.5, λIn,j = 0.6,

aEn (e, k)˜B(Nn, 0.6), D = 2, rm = 1, vm = 2 and different periods R) . 36

4 Inelastic traffic with expiry, the evolution of the average deficit

queue length and cost with respect to different trade-off parameter

values (|I| = 12, N = M = 3, c̄mn = 0.9, ηni = 0.6, λni = 0.9,

D = 3, vm = 3, γm˜N (10, 1)) . 37

5 (a) Wireless Network Coding (b) Reverse carpooling. 41

6 3-Node Relay Network. 42

7 The performance of network coding enabled relay networks in

terms of transmission and holding costs 63

8 Hybrid P2P wireless network. Each device can utilize both base-

station-to-peer (B2P) and peer-to-peer (P2P) communication. 69

9 Two-phase scheme. Both B2P and P2P transmissions take place

in Phase 1, whereas only P2P transmissions occur in Phase 2. 83

10 The performance of Algorithm 5 . 93

11 Sequence of transmissions over B2P and P2P networks and the

playout time of each block . 97

xii

FIGURE Page

12 Minimum cost T ∗B2P (M) vs. number of peers M (N = 20, T = 15,

q =∞) . 119

13 Achievable delivery ratio with finite field sizes (N = 20, T = 15,

M = 4, with symmetric peers) . 121

14 Effect of boosters (N = 20, T = 15, q =∞) 124

15 Benefits of random linear coding at the media server (N = 20,

T = 15, M = 4, with symmetric peers) 134

16 Effect of B2P channel estimation (N = 20, T = 15, M = 4, with

symmetric peers) . 136

17 Non-coding scheme outperforms coding solution for some cases(N =

20, T = 15, M = 4, with symmetric peers) 137

18 Comparison of Algorithm 6 with greedy algorithms (Round Robin,

Min-Deficit-First, and Max-Rank-First) (N = 20, T = 15, M = 4,

with symmetric peers) . 138

19 Variations of the state si[k] (N = 20, T = 15, M = 4, p = 0.9,

q = 32, with symmetric peers) . 140

20 Distribution of smooth playout times Tl (N = 20, T = 15, M = 4,

p = 0.9, q = 32, with symmetric peers) 140

21 Performance of Algorithm 6 in finite fields (N = 20, T = 15,

M = 4, with different QoS) . 141

22 Playout pattern of the algorithm on an asymmetric system(N =

20, T = 15, M = 4, p = 0.9, q =∞, (η1, ..., η4) = (0.9, 0.7, 0.5, 0.3)) . 142

23 In case (iii), state (i, j) can only transit to states in the commu-

nicating classes CSi and CSi−1 . 156

1

CHAPTER I

INTRODUCTION

We are entering an era in which wireless devices are the major sources of Internet

traffic. Many of the applications running on these devices are sensitive to delay.

A recent report on analyzing Internet traffic [1] declares that more than 49% of

Internet traffic during the peak period in North America is generated by real-time

entertainment applications. In another report, conducted by Cisco [2], it is predicted

that the traffic due to online gaming and video calling applications will increase about

300% by end of 2015.

Our main goal in this research is to study the delay issue in wireless communi-

cation networks. We will consider different situations in wireless networks, where low

delay performance is required. For such instances, we show how to take latency into

account and develop efficient scheduling algorithms. More specifically, we study the

following problems:

1. Wireless content distribution networks: caching and scheduling

The rapid growth of wireless content access implies the need for content place-

ment and scheduling at wireless base stations. We study a system under which

clients are divided into clusters based on their channel conditions, and their re-

quests are represented by different queues at logical frontends. Requests might

be elastic (implying no hard delay constraint) or inelastic (requiring that a de-

lay target be met). Correspondingly, we have request queues that indicate the

number of elastic requests, and deficit queues that indicate the deficit in in-

elastic service. Caches are of finite size, and can be refreshed periodically from

The journal model is IEEE/ACM Transactions on Networking.

2

a media vault. We design provably optimal policies that stabilize the request

queues (hence ensuring finite delays) and reduce average deficit to zero (hence

ensuring that the QoS target is met).

2. Wireless relay networks: delay versus network coding performance 1

It has been well established that reverse-carpooling based network coding can

significantly improve the efficiency of multi-hop wireless networks. However, in

a stochastic environment when there are no opportunities to code because of

packets without coding pairs, should these packets wait for a future opportunity

or should they be transmitted without coding? To help answer that question we

formulate a stochastic dynamic program with the objective of minimizing the

long-run average cost per unit time incurred due to transmissions and delays.

In particular, we develop optimal control actions that would balance between

costs of transmission against those of delays. In that process we seek to address

a crucial question: what should be observed as the state of the system? We

analytically show that just the queue lengths is enough if it can be modeled

as a Markov process. Subsequently we show that a stationary policy based on

queue lengths is optimal and describe a procedure to find such a policy.

3. Wireless broadcast P2P networks: timely synchronization of data 2

We consider a group of cooperative wireless peer devices that desire to receive

the same content within some deadline. The block(s) of content is divided into

chunks, which are received via two methods that can be used simultaneously (i)

the B2P (base-station-to-peer) network: each peer has an unreliable, expensive,

1This work was done in collaboration with other students, Yu-Pin Hsu and So-
lairaja Ramasamy

2Parts of this work were done in collaboration with other students, Mayank Man-
jrekar and Swetha Sampath

3

unicast channel to a cellular base station, and (ii) the P2P (peer-to-peer) net-

work: peers can share the content over a free, lossless internal wireless broadcast

network. Chunks are coded using random linear codes to alleviate the dupli-

cate chunk reception issue, and the state of each peer can be associated with

the rank of the matrix of chunk vectors that it possesses.

We study two problems in this framework. First, a content distribution prob-

lem, in which the QoS metric is that peers are all required to receive a single

common block with a certain target probability by a fixed deadline. Second,

a multimedia live streaming problem, where peers are interested in a common

stream of media content which is generated as a long sequence of blocks, each

requiring a fixed deadline for delivery. The QoS metric requires that each peer

individually receives a minimum long-run average fraction of the blocks within

their deadlines.

We seek efficient algorithms that can attain these QoS metrics at the lowest cost

of using B2P network. We transform the problem into the two questions of (i)

deciding which peer should broadcast on the P2P channel at each time, and (ii)

how long B2P transmissions should take place. For each scenario, we provide

policies for coordinating P2P transmissions which are shown to be optimal for

large field sizes, and determine the stopping time for B2P transmissions in an

offline manner. We also provide performance bounds for finite field sizes.

In the following chapters, we will separately study each of these problems in

detail. We review the previous work that has been done in each area, present our

analytical and simulation results, and give some ideas for the future work.

4

CHAPTER II

CACHING AND SCHEDULING OF ELASTIC AND INELASTIC TRAFFIC

The past few years have seen the rise of smart hand-held wireless devices as a means of

content consumption. Content might include streaming applications in which chunks

of the file must be received under hard delay constraints, as well as file downloads

such as software updates that do not have such hard constraints. Since the core of

the Internet is far less bandwidth constrained than access wireless networks, a natural

location to implement a content distribution network (CDN) would be at the wireless

gateway, which could be a cellular base-station through which users obtain network

access. Further, it is natural to try to take advantage of the inherent broadcast nature

of the wireless medium to satisfy multiple clients simultaneously.

An abstraction of such a network is illustrated in Figure 1. There are multiple

cellular base stations (BS), each of which has a cache in which to store content. The

content of the caches can be periodically refreshed through accessing a Media Vault.

We divide clients into different clusters, with the idea that all clients in each cluster

are geographically close such that they have similar channel conditions and are able

to access the same base stations. Note that multiple clusters could be present in

the same cell based on the dissimilarity of their channel conditions to different base

stations. Thus, we have N clusters indexed by n = 1, 2, ..., N . The requests made

by each cluster are aggregated at a logical entity that we call a front end associated

with that cluster. The front end could be running on any of the devices in the cluster

or at a base station, and its purpose is to keep track of the requests associated with

the clients of that cluster. The following constraints affect system operation (i) the

wireless broadcast network between the caches to the clients has finite capacity, (ii)

each cache can only host a finite amount of content, and (iii) refreshing content in

5

the caches from the media vault incurs a cost.

Fig. 1. Wireless broadcast content distribution. A media vault is used to place con-

tent in caches at wireless base stations (BS), which can broadcast content.

Clients are grouped into clusters, each of whose requirements are aggregated

at frontends (FE).

Clients can make two kinds of requests, namely (i) elastic requests that have

no delay constraints, and (ii) inelastic requests that have a hard delay constraint.

Elastic requests are stored in a request queue at each front end, with each type of

request occupying a particular queue. Here. the objective is to stabilize the queue,

so as to have finite delays. For inelastic requests, we adopt the model proposed in [3]

wherein clients request chunks of content that have a strict deadline, and the request

is dropped if the deadline cannot be met. The idea here is to meet a certain target

delivery ratio, which could be something like “90% of all requests must be met to

ensure smooth playout”. Each time an inelastic request is dropped, a deficit queue is

updated by an amount proportional to the delivery ratio. We would like the average

value of the deficit to be zero.

6

In this research, we are interested in solving the joint content placement and

scheduling problem for both elastic and inelastic traffic in wireless broadcast networks.

While the classical caching literature does not deal with this problem, several papers

on switch scheduling are related to this question. Tassiulas et al. proposed the

Max Weight scheduling algorithm for switches and multihop wireless networks in

their seminal work [4]. They proved that this policy is throughput-optimal, and

characterized the capacity region of the single-hop networks as the convex hull of all

feasible schedules. Various extensions of this work that followed since are [5–8]. These

papers explore the delays in the system for single down-link with variable connectivity,

multi-rate links and multi-hop wireless flows. However, [5–8] do not consider content

distribution with its attendant question of content placement, while [9] only considers

elastic traffic. We use some of the analytical techniques of these papers in the context

of content distribution.

A. Main Results

In this research, we develop algorithms for content distribution with elastic and inelas-

tic requests. We use a request queue to implicitly determine the popularity of elastic

content. Similarly, the deficit queue determines the necessary service for inelastic

requests. Content may be refreshed periodically at caches. We study two different

kinds of cost models, each of which is appropriate for a different content distribution

scenario. The first is the case of file distribution (elastic) along with streaming of

stored content (inelastic), where we model cost in terms of the frequency with which

caches are refreshed. The second is the case of streaming of content that is generated

in real-time, where content expires after a certain time, and the cost of placement of

each packet in the cache is considered.

7

• We first characterize the capacity region of the system, and develop feasibility

constraints that any stabilizing algorithm must satisfy. Here, by stability we

mean that elastic request queues have a finite mean, while inelastic deficit values

are zero on average.

• We develop a version of the max-weight scheduling algorithm that we propose

to use for joint content placement and scheduling. We show that it satisfies

the feasibility constraints, and using a Lyapunov argument also show that it

stabilizes the system of the load within the capacity region.

• We then consider the case of periodic refresh under which content may be placed

in the caches at finite intervals of time. We show that a similar algorithm to the

max-weight scheme is optimal here. Further, in contrast to our earlier work [9]

which only considers elastic traffic, joint scheduling and eviction is essential to

stabilize the system.

• We next study another version of our content distribution problem with only

inelastic traffic, in which each content has an expiration time. We assume that

there is a cost for replacing each expired content chunk with a fresh one. For

this model, we first find the feasibility region, and, following a similar technique

to [10], we develop a joint content placement and scheduling algorithm which

minimizes the average expected cost while stabilizing the deficit queues.

• We illustrate our main insights using simulations on a simple wireless topology,

and show that our algorithm is indeed capable of stabilizing the system.

8

B. Problem Definition

Consider the content distribution network depicted in Figure 1. There are a fixed

number of inelastic clients in cluster n who make inelastic requests and are denoted

by en,j for j = 1, 2, ..., Nn. The elastic requests in this cluster are made by other

clients who may temporarily exist in the system. Each of these clients is interested

in at most one elastic chunk during his existence. We aggregate all elastic requests

at the frontend (denoted by en,0 in cluster n). For simplicity, we assume the elastic

chunks must be delivered to the frontends. The results will still hold without this

assumption. The system consists of M caches which are all connected to a media

vault. Each cache m has a finite capacity of vm pieces of content (we assume that

all have the same size), for m = 1, 2, ...,M . The media vault stores F, the set of all

content. F is partitioned into two disjoint sets I and E which are respectively the set

of inelastic content and elastic content: F = I ∪ E.

We assume that service from the base stations is by means of broadcast trans-

missions. Since we associate each base station with a cache, we will use the same

notation for a cache and a base station. Suppose that time is slotted. The channel

lmn,j between cache m and the client en,j is modeled as a stochastic On-OFF process

whose state cmn,j(t) at time t is unknown to the scheduler. We assume the channels

of the clients in the same cluster have similar average characteristics. During each

time slot link lmn,j is ON with probability c̄mn and OFF with probability 1 − c̄mn , for

j = 0, 1, ..., Nn. When a channel is ON, it can be used to transmit at most one chunk

(per slot) which is being broadcast by the corresponding cache. We divide time into

frames consisting of D time slots.

At the beginning of each frame k, each inelastic client makes at most one request.

The idea is that an inelastic request must either be satisfied by the end of the frame

9

or dropped. Let aIn,j(k) = (aIn,j(i, k) : i ∈ I) be the inelastic request vector that client

en,j makes at frame k. We model this request by a Bernoulli process with the mean

value λIn,j, that is

∑
i∈I a

I
n,j(i, k) = 1 with probability λIn,j∑

i∈I a
I
n,j(i, k) = 0 with probability 1− λIn,j

(2.1)

Note that while the Bernoulli process models an inelastic request for each client, the

distribution of the requests over different content types can be chosen arbitrarily (e.g.

following a Zipf’s law that captures the varied popularity of different types).

Also in each cluster, there may be some requests for each chunk of elastic content

e ∈ E at the beginning of a frame. aEn (k) = (aEn (e, k) : e ∈ E) is used to denote the

elastic request vector. aEn (e, k) ≤ aen < ∞ is a bounded random variable with mean

λen and variance σ2
e,n. We further assume that arrivals are independently distributed

over frames.

As mentioned above, an inelastic request made at the beginning of a frame is

valid only till the end of that frame. In other words, if an inelastic request is not

served during a frame, it will be dropped. This implies two important results: (1)

there are at most D time slots delay in serving the inelastic requests, (2) because of

the limited resources in the system, all of the requests cannot be served. While the

former provides a hard limit on the maximum service delay for inelastic traffic, the

latter suggests that for providing enough service to each client, we need to declare

a minimum delivery ratio for inelastic requests. Thus, the delivery ratio is the pro-

portion of the inelastic requests which are served. Therefore, the expected inelastic

service of client en,j is ηn,jλ
I
n,j, in which ηn,j is the minimum acceptable delivery ratio.

This model follows that of [3], and is consistent with the idea that streaming media

can tolerate a fraction of chunk losses, but has hard delay constraints on the received

10

chunks.

On the other hand, an elastic request which does not get served during a frame

will be enqueued and wait for the service during next frames. However, we need to

make sure that the request queue lengths in each cluster remain bounded as time

passes so that the delay does not become unboundedly large. Thus we require that

the expected elastic service for a content e in cluster n is λen.

We will consider three variations of this problem: (1) unit period cache refresh,

(2) periodic cache refresh and (3) inelastic caching with expiry and cost of replace-

ment. In the first case, we can reload caches with completely new content at the

beginning of each frame. However, in practice, reloading a cache requires connecting

to the media vault and fetching chunks, which can incur a cost. Hence, we model

cost in two different ways in the following two cases. In the second variation of the

problem, we define the notion of cache refresh period to model the cache reloading

cost. A cache refresh period consists of R frames. The content of a cache can be

completely refreshed only at the beginning of each refresh period. However, in the

inter-refresh frames we may only partially refresh the cache content (i.e., replace at

most rm out of vm chunks of cache m). Thus, to formulate higher refresh costs we

can consider a larger refresh period (i.e., larger R value) or smaller rm values. In the

third case, we assume that the content of the caches expires and will not be useful at

the end of each frame. This case is similar to that of real-time streaming of ongoing

events. However, placing each chunk in a cache induces a cost. Therefore, in order

to reduce the cost, we may occasionally choose to reload a cache partially and not

utilize the whole available capacity. For this variation, we will only consider inelastic

traffic, which is consistent with the idea of real-time streaming.

In the next section, we will consider the unit period scenario. First, the set of

all allowable requests is found, then we show that a max-weight type algorithm is

11

throughput optimal in the sense that it can satisfy any set of allowable requests. The

periodic cache refresh case and the inelastic caching with expiry will be addressed in

Sections D and E respectively.

C. Unit Period Cache Refresh

In this section we first find the feasibility region, which is the set of all allowable

schedules. Next, we will determine the capacity region, which is the set of all allowable

requests by the clients.

1. Feasibility and Capacity Regions

Let pm(k) = (pm,f (k) : f ∈ F) be the chunk presence vector at cache m and frame k,

that is pm,f (k) = 1 if f is present in cache m at frame k and pm,f (k) = 0 otherwise.

The cache capacity constraint requires each cache m to satisfy

∑
f∈F pm,f (k) ≤ vm for each frame k. (2.2)

For a given frame k, we denote the constituent time slots by {t : t ∈ k}. During

a time slot each link can transmit one chunk when it is ON. Let sf (m, t) ∈ {0, 1}

denote the scheduled service to chunk f ∈ F from cache m and during time slot

t, that is sf (m, t) = 1 if cache m broadcasts chunk f at time t and sf (m, t) = 0

otherwise. Without loss of generality, we assume that each cache broadcasts at most

one chunk during each slot. Clearly this chunk must be present in the cache at that

time. Therefore, the following conditions need to hold for each cache m and t ∈ k:

∑
f sf (m, t) ≤ 1 and sf (m, t) ≤ pm,f (k) (2.3)

12

Since the states of the channels are not known a priori, the scheduler assumes that all

channels are ON to determine the schedule. Also for each inelastic chunk, we have at

most one valid request from each client during each frame. This suggests that each

inelastic chunk i needs to be broadcast at most once in the system during a frame k:

∑
m

∑
t∈k si(m, t) ≤ 1 for each i ∈ I (2.4)

Now, we define the feasibility region FeasReg(V) for the cache capacity vector V =

(vm : 1 ≤ m ≤ M), as the set of all vectors S = (sf (m, t), pm,f (k) : f ∈ F, 1 ≤ m ≤

M, t ∈ k) satisfying (2.2), (2.3) and (2.4) in frame k.

A set of requests is said to be allowable, if there exists a policy to schedule

the network such that (i) each client receives enough expected service and (ii) the

scheduled service lies in the feasibility region FeasReg(V).

Suppose that S is a feasible schedule. The actual service µn,j(f, k) received by

client en,j for chunk f during frame k depends on the realization of the channels cmn,j(t)

for all m and t and can be written as

µn,j(f, k) =
∑
t∈k

∑
m

cmn,j(t)sf (m, t). (2.5)

Since the inelastic requests have strict deadlines, the provided inelastic service µIn,j(k)

depends on whether there is a request arrival for the delivered chunk in that frame.

That is

µIn,j(k) =
∑

i∈I min(µn,j(i, k), aIn,j(i, k))

=
∑

i∈I a
I
n,j(i, k)µn,j(i, k) (2.6)

where the second equality follows from aIn,j(i, k), µn,j(i, k) ∈ {0, 1}.

Since the states of the wireless links and the arrivals are identically and inde-

13

pendently distributed over frames, following the same argument as in [11] we can

formally define the capacity region based on the existence of a randomized stationary

policy which can fulfill the requests:

Definition 1. (capacity region of the unit period scenario) Consider a system with

the cache capacities V = (vm : 1 ≤ m ≤ M) and the average channel capacities C =

(c̄mn : 1 ≤ n ≤ N, 1 ≤ m ≤M). A set of request arrivals Λ = (λen, λ
I
n,j, ηn,j : n, j, e) is

allowable if there exists a policy P∗ which during each frame k with the arrival profile

A(k) = (aIn,j(i, k), aEn (e, k) : n, j, i, e), chooses a feasible schedule S ∈ FeasReg(V)

with probability P(S|A(k)), such that
∑

S∈FeasReg(V) P(S|A(k)) = 1. And

ηn,jλ
I
n,j ≤ µ̄In,j for each client en,j

λen ≤ µ̄en for each e ∈ E and n
(2.7)

where the average services µ̄In,j and µ̄en are defined as

µ̄In,j = EA(k)

[
EC

[
ES

[∑
i,m,t

aIn,j(i, k)cmn,j(t)si(m, t)

]]]

µ̄en = EA(k)
[
EC
[
ES
[∑
m,t

cmn,0(t)se(m, t)

]]]
.

Note that ES [.] is the expectation over all feasible schedules in the FeasReg(V) with

respect to the probability distribution P(S|A(k)) implied by P∗. Also EA [.] and EC [.]

are expectations over respectively arrival processes and channels states. A set of re-

quests is said to be strictly allowable, if (2.7) holds with strict inequalities. The

capacity region is defined as the convex hull of all allowable sets of requests.

2. Max-Weight Algorithm: Throughput Optimality and Implementation

In this section, we show that the max-weight algorithm is throughput optimal. In

other words, the max-weight algorithm can fulfill any set of allowable requests. We

14

consider two types of queues: (i) request queues for the elastic traffic and (ii) deficit

queues for the inelastic traffic.

The elastic requests in cluster n go through a set of request queues whose lengths

at frame k are denoted by qen(k) for each chunk e, and follow the dynamic below:

qen(k + 1) = qen(k) + aEn (e, k)− µen(k). (2.8)

where µen(k) = min(µn,0(e, k), qen(k+)) and qen(k+) = qen(k) + aEn (e, k).

Next we define the deficit queue for each client en,j which captures the accumu-

lated unhappiness of the client about the provided inelastic service. dn,j(k) denotes

the length of the corresponding deficit queue at frame k and follows

dn,j(k + 1) = dn,j(k) +
∑
i∈I

ãIn,j(i, k)− µIn,j(k). (2.9)

where ãIn,j(i, k) = aIn,j(i, k) with probability ηn,j and it is zero otherwise. Note that

the deficit queue is a virtual queue whose length can be negative. A negative length

shows up when the provided inelastic service is greater than the expected service. We

also define dn,j(k
+) = dn,j(k) +

∑
i∈I ã

I
n,j(i, k).

The evolution of these queues can be studied by considering a Markov chain

whose states are vectors of all request and deficit queue lengths. Using the Lyapunov

stability criterion, we show that a max-weight algorithm implies that this Markov

chain is positive recurrent and limK→∞ E [max(dn,j(K), 0)] and limK→∞ E [qen(K)] are

some finite values. As a result, we will have the following conditions which are

sufficient for satisfying the elastic and inelastic requests,

lim
K→∞

E
[

1

K
dn,j(K)

]
= ηn,jλ

I
n,j − µ̄In,j ≤ 0

15

and for each e,

lim
K→∞

E
[

1

K
qen(K)

]
= λen − µ̄en = 0.

We first present the Foster-Lyapunov stability criterion that will enable us to

derive the future stability results.

Theorem 1. (Foster-Lyapunov stability criterion) Let Q be a countable state-space,

and let ~Q [k] be an irreducible, aperiodic, countable-state Markov chain. Suppose there

exists a Lyapunov function L : Q → R+, and Q̂, which is a finite subset of Q. If

δ > 0 and b is a constant such that the drift

∆L [k] = E
[
L [k + 1]− L [k] | ~Q [k]

]
≤ −δ + bIQ̂, (2.10)

then ~Q [k] is positive recurrent.

The following theorem summarizes our result on the throughput optimality of

the max-weight algorithm.

Theorem 2. For any set of strictly allowable requests, the max-weight algorithm

(in Algorithm 1) stabilizes the request and deficit queues and hence is throughput

optimal.

In Theorem 2, we show that by applying the max-weight algorithm, the Markov

chain whose states are the vectors of deficit and request queue lengths is positive

recurrent. Therefore, this Markov chain converges to a unique steady state. The

following corollary provides a bound on the queue lengths at the steady state.

Corollary 1. Sum of the average request and the positive part of the deficit queue

lengths at the steady state satisfies

∑
n,j E [{dn,j}+] +

∑
n,e E [qen] ≤

(
∑
n

Nn + 5D2M2N +
∑

n,e (aen)2)/2ε.
(2.11)

16

where {dn,j}+ = max(dn,j, 0) and for some ε > 0 which is the heavy traffic parameter,

i.e., ε determines how close to the boundary of the capacity region the requests are.

In the next section, we study the periodic cache refresh case as a generalization

of the unit-period scenario. The proof of the above theorem and the corollary is a

special case of the one for the periodic case (Theorem 3 and Corollary 2) and hence

is omitted for the brevity.

In Algorithm 1, sf (m) =
∑

t∈k sf (m, t) is the total scheduled service that cache

m provides for chunk f during frame k. The solution to the maximization (2.13),

(s∗i (m), s∗e∗(m)(m), p∗m,e∗(m) : m, i), will give the optimal placement: for each cache m

and i ∈ I and e ∈ E

p∗m,i = s∗i (m) and p∗m,e = 0 for each e 6= e∗(m) (2.12)

During the corresponding frame, each cache m transmits the loaded inelastic chunks

first. If there are some time slots left, the loaded elastic chunk e∗(m) will be broadcast

for the remaining of the frame.

D. Periodic Cache Refresh

In the periodic cache refresh scenario we model the cost incurred by fetching content

from the media vault using R, the periodicity of cache reloading, and rm ≤ vm, the

number of chunks that can be fetched by cache m in an inter-refresh frame.

Each client en,j is interested in a sequence of chunks during a cache refresh period.

For example, a client who is watching a video makes a request for a sequence of video

frames for the next couple of time units (this corresponds to inelastic traffic, since

there are some QoS constraints associated with a streaming video). On the other

hand, a client who wants to download a software update requires a set of chunks.

17

Algorithm 1 Unit-Period Scenario: Max-Weight Algorithm

At the beginning of each frame k: given the queue lengths dn,j(k), qen(k),

and the arrivals A(k) compute,

dn,j = dn,j(k) +
∑

i∈I ã
I
n,j(i, k)

qen = qen(k) + aEn (e, k)

wIm,i(k) =
∑

n,j {dn,j}+aIn,j(i, k)c̄mn

wEm,e =
∑

n q
e
nc̄
m
n

e∗(m) = RAND{argmaxe′(w
E
m,e′)} (i.e., one of the content chosen uniformly at

random among the elastic content with largest weights)

Solve the following maximization problem:

max
∑

mw
E
m,e∗(m)pm,e∗(m)se∗(m)(m) +

∑
i,mw

I
m,i(k)si(m)

subject to

(i)∀m :
∑

f sf (m) ≤ D

(ii)∀i ∈ I :
∑

m si(m) ≤ 1

(iii)∀m : pm,e∗(m) +
∑

i∈I si(m) ≤ vm

(iv)∀m, f : sf (m) ∈ {0, 1, ..., D}

(v)∀m : pm,e∗(m) ∈ {0, 1}

(2.13)

18

There is no tight delay constraint like the streaming case for this traffic.

Fig. 2. Different time scales.

Let T be a cache refresh period. We denote the frames in T by {l : l ∈ T} or

l = T (0), ..., T (R− 1) (see Figure 2). A = (aIn,j(l), a
E
n (l) : l ∈ T and n, j) refers to the

arrivals of the requests during this period, where the inelastic request aIn,j(l) and the

elastic request aEn (l) vectors are defined as in the unit-period case.

1. Feasibility and Capacity Regions

As before, we first find the set of feasible schedules. In order to simplify the argument,

we change the notation used in the previous case and define FeasRegP(P) (read

feasiblity region subject to presence) to be the set of all feasible schedules, when the

content of the caches is given in P = (pm,f : m, f):

S = (sf (m, t) : f ∈ F, 1 ≤ m ≤M, 1 ≤ t ≤ D)

such that:∑
f sf (m, t) ≤ 1 for each m and t∑

m

∑
t si(m, t) ≤ 1 for each i ∈ I

sf (m, t) ≤ pm,f for each m, t and f

(2.14)

For the presence vector P , in addition to the cache capacity constraint, we need to

formulate the partial refresh scheme at the intermediate frames. Therefore for each

19

cache m and frame l ∈ T : ∑
f pm,f (l) ≤ vm∑

f |pm,f (l)− pm,f (l − 1)| ≤ 2rm for l 6= T (0),
(2.15)

where rm is the maximum number of chunks, cache m can replace in an inter-refresh

frame.

For the presence pattern P , in addition to the cache capacity constraint, we need

to formulate the partial refresh scheme at the intermediate frames. Therefore for each

cache m and frame l ∈ T : ∑
f pm,f (l) ≤ vm∑

f |pm,f (l)− pm,f (l − 1)| ≤ 2rm for l 6= T (0).
(2.16)

where rm is the maximum number of chunks, cache m can replace in an inter-refresh

frame.

Capacity region, the convex hull of allowable requests, is defined in a similar way

to the unit-period case with a key difference. In the previous case, placement and

service scheduling are done for each frame independently of the previous and future

frames. Note that in the periodic case, because of the partial refresh scheme, at each

inter-refresh frame only a subset of all possible placements is feasible. Therefore, what

is loaded in the cache at a time will directly impact the service of the next frames.

Based on this observation, the capacity region of the periodic refresh scenario is

defined as follows.

Definition 2. (capacity region of the periodic cache replacement scenario) For the

given vectors of cache capacities V and average channel capacities C, a set of requests

Λ = (λen, λ
I
n,j[chunks/frame], ηn,j : n, j, e) is said to be allowable if the following holds:

there exists a policy P∗ which, according to the arrivals profile A in each cache period

20

T , provides a service that is greater than the expected service on average:

ηn,jλ
I
n,j ≤ µ̄In,j for each client en,j

λen ≤ µ̄en for each e ∈ E and n
(2.17)

The average inelastic service µ̄In,j =

1
R
EA
[∑

l∈T EP (l)

[
ES(l)

[∑
i,m,t∈l a

I
n,j(i, l)c̄

m
n si(m, t)

]]]
and the average elastic service µ̄en can be written as

µ̄en =
1

R
EA

[∑
l∈T

EP (l)

[
ES(l)

[∑
m,t∈l

c̄mn se(m, t)

]]]
.

In which, ES(l) [.] and EP (l) [.] are expectations over all feasible schedules and place-

ments with respect to the probability distributions implied by P∗.

A set of requests is said to be strictly allowable, if (2.17) holds with strict in-

equalities. In what follows, we will show that the max-weight algorithm can stabilize

the request and deficit queues for any set of strictly allowable requests.

2. Max-Weight Algorithm: Throughput Optimality and Implementation

Similar to the unit-period case, we attain results on the throughput optimality of a

max-weight algorithm (presented in Algorithm 2) for the periodic scenario.

Theorem 3. In the periodic replacement scheme, for any set of strictly allowable

requests, the max-weight algorithm (in Algorithm 2) stabilizes the request and deficit

queues and hence is throughput optimal.

Proof. Recall that the unit-period scenario is a special case of the periodic scheme

(for R = 1), hence the following argument can be used to prove Theorem 2 as well.

We will use the Lyapunov technique, Theorem 1 (for further details see [12]), to

21

prove the throughput optimality. Let the Lyapunov function be

L(k) = 1/2
∑
n,e

qen
2(k+) + 1/2

∑
n,j

(max(dn,j(k
+), 0))2.

The max-weight algorithm results in an expected drift

E [L(k +R)− L(k) | state of the system at time k]

which is negative except in a finite subset of the state space. Therefore, by using the

Lyapunov stability criterion, the max-weight algorithm stabilizes both the request

and the deficit queues.

The expected drift over a period T of R frames can be written as

EA,C [L(k +R)− L(k) | qen(k+) = qen, dn,j(k
+) = dn,j]

= 1
2
E
[∑

n,e q
e
n
2(k +R+)− qen2

]
+ 1

2
E
[∑

n,j({dn,j(k +R+)}+)2 − ({dn,j}+)2
]

= E
[∑

n,e q
e
n

∑
l∈T a

E
n (e, l + 1)

]
− E

[∑
n,e q

e
n

∑
l∈T min(µn,0(e, l), q

e
n(l+))

]
+1

2
E
[∑
n,e

(
∑
l∈T

aEn (e, l + 1)−min(µn,0(e, l), q
e
n(l+)))2

]
+1

2
E

[∑
n,j

({dn,j +
∑
i,l∈T

ãIn,j(i, l + 1)−
∑
l∈T

µIn,j(l)}+)2

]
− 1

2
E
[∑

n,j({dn,j}+)2
]

(a)

≤ R
∑

n,e q
e
nλ

e
n − E

[∑
n,e,l q

e
nµn,0(e, l)

]
+B1

+1
2
E

[∑
n,j

({dn,j}+ +
∑
i,l∈T

ãIn,j(i, l + 1)−
∑
l∈T

µIn,j(l))
2

]
− 1

2
E
[∑

n,j({dn,j}+)2
]

= R
∑

n,e q
e
nλ

e
n − E

[∑
n,e,l q

e
nµn,0(e, l)

]
+B1

+E
[∑

n,j{dn,j}+(
∑

i,l∈T ã
I
n,j(i, l + 1)−

∑
l∈T µ

I
n,j(l))

]
+1

2
E
[∑

n,j(
∑

i,l∈T ã
I
n,j(i, l + 1)−

∑
l∈T µ

I
n,j(l))

2
]

= R
∑

n,e q
e
nλ

e
n − E

[∑
n,e,l q

e
nµn,0(e, l)

]
+R

∑
n,j {dn,j}+ηn,jλIn,j − E

[∑
n,j,l {dn,j}+µIn,j(l)

]
+B,

(2.18)

in which (a) follows since ({X + Y }+)2 ≤ ({X}+ + Y)2, B1 = B11 + B12 and B =

22

B1 +B2, where,

B11 =
1

2
E

[∑
n,e

(
∑
l∈T

aEn (e, l + 1)−min(µn,0(e, l), q
e
n(l+)))2

]

B12 = E

[∑
n,e

qen
∑
l∈T

(µn,0(e, l)−min(µn,0(e, l), q
e
n(l+)))

]

B2 =
1

2
E

[∑
n,j

(
∑
l∈T

∑
i

ãIn,j(i, l + 1)− µIn,j(l))2
]
.

The following lemma shows that B has a finite bounded value,

Lemma 1. B ≤ 0.5R2
∑

nNn +RD2M2N(1 + 1.5R) + 0.5R2
∑

n,e (aen)2.

Proof. For B11, we have

B11 = 1
2
E
[∑
n,e

(
∑
l∈T

aEn (e, l + 1)−min(µn,0(e, l), q
e
n(l+)))2

]
≤ 1

2
E
[∑

n,e (
∑

l∈T a
E
n (e, l + 1))2

]
+ 1

2
E
[∑

n,e (
∑

l∈T min(µn,0(e, l), q
e
n(l+)))2

]
(b)

≤ 1
2

∑
n,eR

2(aen)2 + 1
2
E
[∑

n(
∑

l∈T,e min(µn,0(e, l), q
e
n(l+)))2

]
(c)

≤ 1
2

∑
n,eR

2(aen)2 + 1
2
R2D2M2N

where (b) follows since aEn (e, k) ≤ aen for all frames k and the last inequality (c) holds

because the total elastic service provided for each frontend during a frame is not

greater than the total number of transmissions that can be made (there are M caches

and each one can make at most D transmissions during a frame).

Note that qen(l) ≤ qen(l + 1) + µn,0(e, l) ≤ qen(l + 1) + DM , therefore in order to

23

find an upperbound on B12 we have

B12 = E
[∑

n,e,l q
e
n max(0, µn,0(e, l)− qen(l+))

]
≤ E

[∑
n,e,l q

e
n(l+) max(0, µn,0(e, l)− qen(l+))

]
+E

[∑
n,e,l max(0, µn,0(e, l)− qen(l+))(l − T (0))DM

]
(d)

≤ E
[∑

n,e,l (µn,0(e, l))
2
]

+RDM × E
[∑

n,e,l µn,0(e, l)
]

≤ E
[∑

l,n(
∑

e µn,0(e, l))
2
]

+R2D2M2N

≤ RD2M2N(1 +R)

where (d) follows since l − T (0) ≤ R for any l ∈ T , max(0, µn,0(e, l) − qen(l+)) ≤

µn,0(e, l) and qen(l+) max(0, µn,0(e, l)− qen(l+)) ≤ (µn,0(e, l))
2.

Also we have

−1 ≤
∑
i

ãIn,j(i, l + 1)− µIn,j(l) ≤ 1

which results in

B2 =
1

2
E

[∑
n,j

(
∑
l∈T

∑
i

ãIn,j(i, l + 1)− µIn,j(l))2
]
≤ 1

2

∑
n,j

R2 ≤ R2

2

N∑
n=1

Nn.

Therefore, B = B1 +B2 is upperbounded by the value in the lemma.

Now that we have seen B has a finite value, in order to show the negativeness of

the expected drift (in (2.18)), we need to show

R
∑

n,e q
e
nλ

e
n +R

∑
n,j {dn,j}+ηn,jλIn,j <

EA,C
[∑

n,e,l q
e
nµn,0(e, l) +

∑
n,j,l {dn,j}+µIn,j(l)

] (2.19)

From (2.5) and (2.6), the right hand side of (2.19) can be rephrased as:

EA
[∑

n,e,l∈T q
e
n

∑
m,t∈l c̄

m
n se(m, t)

]
+ EA

[∑
n,j,l∈T{dn,j}+

∑
i,m,t∈l a

I
n,j(i, l)c̄

m
n si(m, t)

]
At the beginning of each refresh period T , given the queue lengths qen(T (0)+) =

24

qen, dnj (T (0)+) = dnj and the arrivals A, the max-weight algorithm solves the following:

max
∑

n,e,l q
e
n

∑
m,t∈l c̄

m
n se(m, t) +

∑
n,j,l{dn,j}+

∑
i,m,t∈l a

I
n,j(i, l)c̄

m
n si(m, t)

such that for each l ∈ T :

S(l) = (Sf (m, t) : f,m, t ∈ l) ∈ FeasRegP(P (l))

P (l) satisfies the conditions in (2.16)

(2.20)

to find an optimal placement P ∗(l) and schedule S∗(l) for each l ∈ T . Note that the

above maximization is done over all feasible placements P (l) and schedules S(l) ∈

FeasRegP(P (l)) for each frame l. Therefore,

∑
n,e,l q

e
n

∑
m,t∈l c̄

m
n s
∗
e(m, t) +

∑
n,j,l{dn,j}+

∑
i,m,t∈l a

I
n,j(i, l)c̄

m
n s
∗
i (m, t) ≥∑

n,e,l q
e
nEP (l)

[
ES(l)

[∑
m,t∈l c̄

m
n se(m, t)

]]
+∑

n,j,l{dn,j}+EP (l)

[
ES(l)

[∑
i,m,t∈l a

I
n,j(i, l)c̄

m
n si(m, t)

]]
.

in which ES(l) [.] and EP (l) [.] are expectation with respect to the probability distribu-

tions implied by the fulfilling policy P∗ (in Definition 2). By taking expectation over

the sequences of the arrivals A on both sides of the previous inequality, we will get:

EA
[∑

n,e,l q
e
n

∑
m,t∈l c̄

m
n s
∗
e(m, t)

]
+ EA

[∑
n,j,l{dn,j}+

∑
i,m,t∈l a

I
n,j(i, l)c̄

m
n s
∗
i (m, t)

]
≥
∑

n,e q
e
nEA

[∑
l∈T EP (l)

[
ES(l)

[∑
m,t∈l c̄

m
n se(m, t)

]]]
+∑

n,j{dn,j}+EA
[∑

l∈T EP (l)

[
ES(l)

[∑
i,m,t∈l a

I
n,j(i, l)c̄

m
n si(m, t)

]]]
> R

∑
n,e q

e
nλ

e
n +R

∑
n,j{dn,j}+ηn,jλIn,j

where the last inequality follows from the assumption of the strict allowablity of the

requests ((2.17) in Definition 2). Therefore, one can find a small enough ε > 0 such

that

EA
[∑

n,e,l q
e
n

∑
m,t∈l c̄

m
n s
∗
e(m, t)

]
+ EA

[∑
n,j,l{dn,j}+

∑
i,m,t∈l a

I
n,j(i, l)c̄

m
n s
∗
i (m, t)

]
≥ R

∑
n,e q

e
nλ

e
n(1 + ε) +R

∑
n,j{dn,j}+ηn,jλIn,j(1 + ε)

25

Considering the above inequality in (2.18) results in

E
[
L(k +R)− L(k)

∣∣∣qen(k+) = qen, dn,j(k
+) = dn,j

]
≤ B −Rε(

∑
n,e q

e
n +

∑
n,j{dn,j}+).

(2.21)

Therefore the max-weight algorithm (in (2.20)) results in a negative Lyapunov

drift (except in a finite subset of the state space) over a refresh period. This concludes

that the max-weight algorithm stabilizes both the deficit and the request queues and

is throughput optimal.

Similar to Corollary 1, we can bound the queue lengths at the steady state for

the periodic case as follows,

Corollary 2. Sum of the average request and the deficit queue lengths at the steady

state is bounded by (for some ε > 0, the heavy traffic parameter)

∑
n,j E [{dn,j}+] +

∑
n,e E [qen] ≤ (R

∑
n

Nn +D2M2N(2 + 3R) +R
∑

n,e (aen)2)/2ε.

Proof. Note that the proof of Corollary 1, which is a special case (R = 1) of this

corollary, follows the same argument. By taking expectation from both sides of (2.21)

with respect to the queue lengths, we get the following,

E[L(k +R)]− E[L(k)] ≤ B −Rε(
∑

n,j E[{dn,j(k+)}+] +
∑

n,e E[qen(k+)]).

Since the Markov chain is shown to be positive recurrent, it converges to the steady

state and as k →∞ we have E[L(k +R)] = E[L(k)]. Hence at the steady state,

∑
n,j E [{dn,j}+] +

∑
n,e E [qen] ≤ B

Rε
(2.22)

In what follows, we will show that the max-weight algorithm which solves (2.20)

26

can be implemented as the policy presented in Algorithm 2 for the periodic case

and Algorithm 1 for the unit-period scenario.

Algorithm 2 Periodic Scenario: Max-Weight Algorithm

At the beginning of a period T : given dn,j(T (0)), qen(T (0)) and A = (An,j :

n, j) compute,

dn,j, q
e
n, wEm,e, e

∗(m) and wIm,i(l) (for each frame l ∈ T) as in Algorithm 1

Solve the following maximization problem:

max
∑

l∈T
∑

mw
E
m,e∗(m)pm,e∗(m)(l)ŝe∗(m)(m, l) +

∑
l∈T
∑

i,mw
I
m,i(l)pm,i(l)ŝi(m, l)

such that for each l ∈ T :

(i)∀m :
∑

f ŝf (m, l) ≤ 1

(ii)∀i ∈ I :
∑

m ŝi(m, l) ≤ 1

(iii)∀m : pm,e∗(m)(l) +
∑

i∈I pm,i(l) ≤ vm

(iv)∀l > T (0) :
∑

i |pm,i(l)− pm,i(l − 1)|+ |pm,e∗(m)(l)− pm,e∗(m)(l − 1)| ≤ 2rm

(v)∀m, f : ŝf (m, l) ∈ {0, 1, ..., D}

(vi)∀m, f : pm,f (l) ∈ {0, 1}

Below, we repeat the maximization in (2.20) with all its constraints,

max
∑

n,e,l q
e
n

∑
m,t∈l c̄

m
n se(m, t) +

∑
n,j,l{dn,j}+

∑
i,m,t∈l a

I
n,j(i, l)c̄

m
n si(m, t)

such that for each l ∈ T :

(i)∀(t ∈ l),m :
∑

f sf (m, t) ≤ 1

(ii)∀i ∈ I :
∑

m

∑
t∈l si(m, t) ≤ 1

(iii)∀(t ∈ l),m, f : sf (m, t) ≤ pm,f (l)

(iv)∀m :
∑

f pm,f (l) ≤ vm

(v)∀l > T (0) :
∑

f |pm,f (l)− pm,f (l − 1)| ≤ 2rm

(vi)∀(t ∈ l),m, f : sf (m, t), pm,f (l) ∈ {0, 1}

27

In a couple of steps, we transfer the above maximization problem into a simpler form.

Observation 1. From (iii) for t ∈ l: sf (m, t) = 1 only if pm,f (l) = 1. Therefore we

can replace sf (m, t) by pm,f (l)sf (m, t) in the objective function. Also since the objec-

tive is a linear function of sf (m, t) and it is a maximization problem, the condition

(iii) will be redundant.

Observation 2. Let ŝf (m, l) =
∑

t∈l sf (m, t). The constraints in the max-weight

problem can be modified to be expressed in terms of ŝf (m, l):

(i) requires that each cache transmits at most one chunk in each slot. This is equivalent

to the following condition which says at most D transmissions can be made by each

cache during a frame:

∑
f ŝf (m, l) ≤ D for each m

(ii) can be accordingly replaced by

∑
m ŝi(m, l) ≤ 1 for each i ∈ I

The previous two observations suggest the following equivalent formulation of

the max-weight problem:

max
∑

e,m,l w
E
m,epm,e(l)ŝe(m, l) +

∑
i,m,l w

I
m,i(l)pm,i(l)ŝi(m, l)

such that for each l ∈ T :

(i)∀m :
∑

f ŝf (m, l) ≤ D

(ii)∀i ∈ I :
∑

m ŝi(m, l) ≤ 1

(iii)∀m :
∑

f pm,f (l) ≤ vm

(iv)∀l > T (0) :
∑

f |pm,f (l)− pm,f (l − 1)| ≤ 2rm

(v)∀m, f : ŝf (m, l) ∈ {0, 1, ..., D}, pm,f (l) ∈ {0, 1}

where wEm,e =
∑

n q
e
nc̄
m
n and wIm,i(l) =

∑
n,j {dn,j}+aIn,j(i, l)c̄mn .

28

Observation 3. Suppose S∗ = (s∗f (m, l) : m, f, l) and P ∗ = (p∗m,f (l) : m, f, l) are

the optimal solutions to the above max-weight problem. If p∗e,m(l) = p∗e′,m(l′) = 1 and

s∗e(m, l), s
∗
e′(m, l

′) > 0 for some m, elastic chunks e and e′ and frames l and l′, then we

require wEm,e = wEm,e′. Because otherwise providing s∗e(m, l) + s∗e′(m, l
′) service for ê =

argmax(wEm,e, w
E
m,e′) would result in a greater objective value and hence (S∗, P ∗) would

not be optimal. Therefore for large enough queue lengths, at each frame l each cache m

suffices to load at most one elastic content e∗(m) = RAND{argmaxe′(w
E
m,e′)}, which

is chosen uniformly at random among the elastic content with the largest weight,

pm,e(l) = ŝe(m, l) = 0, for each e 6= e∗(m).

After applying further simplifications suggested by the above observation, the

max-weight problem changes to

max
∑

m,l∈T w
E
m,e∗(m)pm,e∗(m)(l)ŝe∗(m)(m, l) +

∑
i,m,l∈T w

I
m,i(l)pm,i(l)ŝi(m, l)

such that for each l ∈ T :

(i)∀m :
∑

f ŝf (m, l) ≤ D

(ii)∀i ∈ I :
∑

m ŝi(m, l) ≤ 1

(iii)∀m : pm,e∗(m)(l) +
∑

i∈I pm,i(l) ≤ vm

(iv)∀l > T (0) :
∑

i |pm,i(l)− pm,i(l − 1)|+

|pm,e∗(m)(l)− pm,e∗(m)(l − 1)| ≤ 2rm

(v)∀m, f : ŝf (m, l) ∈ {0, 1, ..., D}, pm,f (l) ∈ {0, 1}

Observation 4. For the unit-period case, it is correct to assume s∗i (m, l) = 1 when

p∗m,i(l) = 1. Because otherwise (s∗i (m, l), p
∗
m,i(l)) = (0, 1) would result in the same

objective value as (s∗i (m, l), p
∗
m,i(l)) = (0, 0), i.e., loading chunk i in cache m is not

beneficial. This suggests to consider ŝi(m) = pm,i(l) in our problem, which simplifies

the max-weight algorithm even more for the unit-period case.

29

Next, we present a more efficient way to implement the max-weight algorithm,

based on the idea of dynamic programming. First we define two new notations for

each l ∈ T :

1.

w(P (l)) = max
∑

mw
E
m,e∗(m)pm,e∗(m)(l)ŝe∗(m)(m, l) +

∑
i,mw

I
m,i(l)pm,i(l)ŝi(m, l)

such that:

∀m :
∑

f ŝf (m, l) ≤ 1

∀i ∈ I :
∑

m ŝi(m, l) ≤ 1

∀m, f : ŝf (m, l) ∈ {0, 1, ..., D}

Note that w(P (l)) can be found in polynomial time, since the corresponding

maximization is an assignment problem [13].

2. W (P (l)): the maximum total weight that can be achieved during frames k ≥ l

given P (l).

Therefore, the objective of the max-weight algorithm is to find

max
P (T (0))

W (P (T (0)))

such that for each m:∑
f pm,f (T (0)) ≤ vm

pm,e(T (0)) = 0 for e 6= e∗(m)

(2.23)

It is straightforward to verify that

W (P (l)) = w(P (l)) + maxP (l+1)W (P (l + 1))

such that for each m:∑
f pm,f (l + 1) ≤ vm∑

f |pm,f (l + 1)− pm,f (l)| ≤ 2rm.

(2.24)

30

The modified max-weight algorithm is presented below. This algorithm returns the

Algorithm 3 DP-based Max-weight Algorithm

step 1: Compute w(P (T (R− 1))) for all feasible P (T (R− 1))

step 2:

for l = T (R− 2) down to T (0) do

Compute W (P (l)) for all feasible P (l)’s as in (2.24).

end for

step 3: Return W ∗(P (T (0))) as in (2.23)

maximum value of the max-weight algorithm (in Algorithm 2). By keeping track

of argmax values in steps 2 and 3, the corresponding optimal placements and service

at each frame are provided as well.

E. Inelastic Caching Problem with Content Expiry

In this section, we consider an inelastic caching problem where the chunks expire

after some time. We assume that the life time of an inelastic chunk is equal to the

length of a frame. Hence, we can cache a chunk only for the duration of a frame

after which the content will not be useful any longer. This model is compatible

with real-time streaming of live events. We consider a new model for cache refresh

cost that is consistent with this scenario, in which loading a cache incurs some cost

proportional to the number of fetched chunks. Our objective is to find a policy which

minimizes the long-time average expected cost of cache replacement while stabilizing

the deficit queues in the system. First, we formally define our model and express the

corresponding capacity region. The optimal max-weight algorithm will be presented

next.

31

1. Model and Capacity Region

In this model, we only consider inelastic traffic. For simplicity, we aggregate all

requests in each cluster n at its corresponding frontend and use ani (k) to denote

the number of requests for chunk i in cluster n, during frame k. ηni and µni (k)

respectively denote the delivery ratio associated with and the service during frame

k to chunk i in cluster n. For the sake of argument, assume a Bernoulli arrival

model, i.e., ani (k) ∈ {0, 1} and E[ani (k)] = λni . Like before, for the channels, an

ON-OFF stochastic model with unknown states is considered. We assume loading

cache m during frame k incurs a unit cost γm(k) per chunk. γm(k) is a random

variable identically and independently distributed over frames, with the average of

E[γm(k)] = γ̄m for all k. The total cost of replacing new chunks in the caches, at

frame k, is denoted by Γ(k), where

Γ(k) =
∑
m,i

γm(k)pm,i(k) (2.25)

and pm,i(k) denotes the presence of a fresh chunk of content i in cache m for the kth

frame.

The feasibility region, set of all feasible schedules, is defined in the same way as

in Section 1. The capacity region can be found by considering the following lemma.

Lemma 2. For the i.i.d arrival processes A(k) and i.i.d loading costs {γm(k) : 1 ≤

m ≤M}, there exists a randomized stationary policy P ∗ such that

• At frame k, based only on the realization of A(k), {γm(k) : 1 ≤ m ≤ M}, it

chooses a feasible schedule S with probability

P∗(S|A(k), {γm(k) : 1 ≤ m ≤M})

(maintaining
∑

S P∗(S|A(k), {γm(k) : 1 ≤ m ≤M}) = 1).

32

• On average P ∗ provides enough service, that is

E∗[µni (k)] = E∗[
∑
m,t∈k

ani (k)cmn (t)si(m, t)] ≥ ηni λ
n
i (2.26)

in which the expectation is with respect to the distributions of the arrivals, load-

ing costs, channels and P∗(S|A(k), {γm(k) : 1 ≤ m ≤M}).

• P ∗ also achieves the minimum average expected cost Γ∗:

E∗[Γ(k)] = Γ∗ (2.27)

The proof follows the same argument as in [10] and is omitted for brevity.

Now the capacity region is the convex hull of all sets of requests for which such

randomized stationary policies exist.

2. Optimal Policy

To keep track of inelastic requests, we use deficit queues as described before. The

deficit queue length dni (k) associated with inelastic chunk i in cluster n follows the

dynamic below:

dni (k + 1) = dni (k) + ãni (k)− µni (k). (2.28)

Our framework to find an optimal policy is to minimize an upperbound on expected

(Lyapunov drift + cost) at each frame. The following lemma gives this upperbound.

Lemma 3. For the Lyapunov function L(k) = 1
2

∑
n,i ({dni (k)}+)2, we have:

E[L(k + 1)− L(k)|dni (k)] + Y E[Γ(k)|dni (k)]

≤ B + Y E[Γ(k)|dni (k)] +
∑

n,i {dni (k)}+ηni λni

−
∑

n,i {dni (k)}+E[µni |dni (k)]

(2.29)

33

where Y > 0 is some control parameter and B = N |I|
2

.

For brevity and since this lemma is a special case of the analysis in Section 2,

the proof is omitted.

At each frame k, given the arrivals and the costs γm(k), we minimize

Y
∑

m,i γm(k)pm,i(k)−
∑

n,i {dni (k)}+µni (k) (2.30)

over the feasibility region to get the max-weight schedule p̂m,i(k) and µ̂ni (k). There-

fore, we will have

B + Y E[
∑

m,i γm(k)p̂m,i(k)|dni (k)]

+
∑

n,i {dni (k)}+ηni λni −
∑
{dni (k)}+E[µ̂ni |dni (k)]

≤ B + Y E∗[Γ(k)] +
∑

n,i {dni (k)}+(ηni λ
n
i − E∗[µni])

(2.31)

where the right hand side is what the randomized stationary policy P ∗ achieves. If

the requests are strictly allowable (please refer to Definition 1), then for all n and i,

∃ε > 0 such that E∗[µni] ≥ ηni λ
n
i + ε. Considering this fact and E∗[Γ(k)] = Γ∗ in (2.31)

and (2.29) gives:

E[L̂(k + 1)− L̂(k)|dni (k)] + Y E[
∑

m,i γm(k)p̂m,i(k)|dni (k)]

≤ B + Y Γ∗ − ε
∑

n,i {dni (k)}+
(2.32)

where L̂(k) is the value of the Lypaunov function at frame k when we use the max-

weight schedule.

Corollary 3. The max-weight schedule, derived from minimizing (2.30), results in

a negative Lyapunov drift (except in a finite subset of the state space) and hence

stabilizes the deficit queues.

Corollary 4. The max-weight schedule, derived from minimizing (2.30), results in

a long-time average expected cost Γ̂ which deviates from the minimum cost Γ∗ by an

34

amount less than B/Y :

Γ̂ = limK→∞
1

K+1

∑K
k=0 E[Γ̂(k)] ≤ Γ∗ + B

Y
(2.33)

Observation 5. Note that by increasing the control parameter Y , we can achieve an

average expected cost which is arbitrarily close to the minimum cost. However, this

will potentially lead to larger expected deficit queue lengths. Hence, there is a trade-off

between the cost and the average deficit queue lengths.

Proof. (Corollary 4) Note that (2.32) holds for any frame k. From both sides of this

inequality, we take expectation with respect to the distribution of the deficit queues

dni (k) to get:

E[L̂(k + 1)− L̂(k)] + Y E[
∑

m,i γm(k)p̂m,i(k)] ≤ B + Y Γ∗ (2.34)

Assume the initial deficit queue lengths are zero, i.e., L̂(0) = 0. Now sum both sides

of (2.34) from k = 0 to k = K and divide by K + 1 to get

E[L̂(K+1)]
K+1

+ Y
K+1

∑K
k=0 E[

∑
m,i γm(k)p̂m,i(k))] ≤ B + Y Γ∗ (2.35)

By letting K tend to infinity and noting that E[L̂(K+1)] is a bounded positive value

for each K, the desired result in (2.33) is derived.

The previous arguments in implementing the max-weight algorithm (Section 2)

can also be applied to this problem and will result in Algorithm 4.

F. Simulation Results

In this section, we evaluate the performance of the proposed max-weight algorithm,

a distributed greedy policy and an iterative version of the max-weight by simulating

a wireless content distribution network using Matlab. We assume that the caches

35

Algorithm 4 Inelastic Traffic with Expiry: Max-Weight

At the beginning of each frame k: given the deficit queue lengths dni (k),

arrivals A(k) and refresh costs γm(k) compute,

wi(m) =
∑

n {dni (k)}+ani (k)c̄mn − Y γm(k)

Solve the following maximization problem:

max
∑

m,iwi(m)si(m)

subject to

(i)∀m :
∑

i si(m) ≤ min(D, vm)

(ii)∀i :
∑

m si(m) ≤ 1

operate in distinct frequency spectra and hence there is no interference issue. We

further assume that the popularity of the inelastic chunks is distributed uniformly.

In Figures 3(a)-3(d), the evolution of the normalized average queue lengths

(1
k
∑

nNn

∑
n,j dn,j(k) and 1

|E|k
∑

nNn

∑
n,e q

e
n(k)) are displayed over the frames k. These

values must converge to zero for a stabilizing algorithm.

For the large networks, the max-weight algorithm can be very hard to implement.

Therefore, the performance of a distributed greedy algorithm is also simulated. In

this algorithm each cache, independent of the others, loads and serves the chunks

based on their weights (as computed in Algorithm 1). The simulation results suggest

that although the greedy algorithm is not throughput optimal, it can provide enough

service if the requests lie sufficiently inside the capacity region (e.g. in Figure 3(c)).

An iterative version of the max-weight, with the possibility of rescheduling at

each time slot instead of each frame, is also simulated. It can be shown that with a

non-zero probability, the iterative max-weight algorithm can achieve strictly smaller

average queue lengths compared to the original algorithm (Figure 3(c)).

36

(a) (b)

(c) (d)

Fig. 3. Evolution of the average queue lengths. (a)-(c): unit-refresh with

(|E| = |I| = 5, N = M = 4, Nn = 3, c̄mn = 0.9, ηn,j = 0.5, λIn,j = 0.9,

aEn (e, k)˜B(Nn, 0.9), D = 3 and different cache capacity values vm), (d):

max-weight in a periodic case with (|I| = 4, |E| = 3, N = M = 3, Nn = 3,

c̄mn = 0.9, ηn,j = 0.5, λIn,j = 0.6, aEn (e, k)˜B(Nn, 0.6), D = 2, rm = 1, vm = 2

and different periods R)

37

(a) (b)

Fig. 4. Inelastic traffic with expiry, the evolution of the average deficit queue length

and cost with respect to different trade-off parameter values (|I| = 12,

N = M = 3, c̄mn = 0.9, ηni = 0.6, λni = 0.9, D = 3, vm = 3, γm˜N (10, 1))

Since the service to a deficit queue is subject to having a new request arrival, in

general the average length of the deficit queues is smaller than the request queues.

Also it is intuitive that by increasing the capacity of the caches, more service can be

provided (Figures 3(a)-3(c)). Also as shown in corollary 2, the average queue lengths

increase by the refresh period R. (Figures 3(d))

The performance of Algorithm 4 that is aimed towards real-time streaming is

evaluated in Figures 4(a) and 4(b). As expected, the average deficit queue length in-

creases by the trade-off parameter Y , while increasing Y lets the average cost decrease

and tend to its minimum value.

G. Summary and Future Work

In this chapter, we studied algorithms for content placement and scheduling in wireless

broadcast networks. We considered a system in which both inelastic and elastic

requests coexist. Our objective was to stabilize the system in terms of finite queue

38

lengths for elastic traffic and zero average deficit value for the inelastic traffic. We

showed how an algorithm that jointly performs scheduling and placement in such a

way that Lyapunov drift is minimized is capable of stabilizing the system, and also

showed that iterative versions of the algorithm can enhance performance still further.

We also incorporated the cost of loading caches in our problem with considering two

different models. First, periodic cache refresh, in which the cost is modeled as the

period of refreshing the caches. Similar results to the basic model, unit-period case,

were derived for this variation. Second, inelastic caching with expiry, in which we

directly assumed a unit cost for replacing each content after expiration. A max-weight

type policy was suggested for this model which can stabilize the deficit queues and

achieve an average cost which is arbitrarily close to the minimum cost.

For future work, one can think of extending these results to a multi-hop caching

network. It may also be worthwhile to consider more general QoS requirements like

heterogeneous deadlines. In Section F, we proposed a simple decentralized greedy

algorithm whose performance was evaluated by simulations. Finding more efficient

algorithms, that can be implemented in a distributed fashion, seems to be another

appealing direction for extending this work.

In the content distribution problem studied in this chapter, we did not consider

any type of coding over the transmitted packets. We might be able to enhance the per-

formance of our CDN by utilizing the broadcast nature of the system more efficiently.

Note that a packet broadcast for a particular user will be heard by its neighboring

nodes. In the current framework, we just ignored the received packets which were not

requested. However, we could potentially exploit these overheard transmissions by

employing coding over contents. Network coding is a popular technique to efficiently

use such overheard transmissions, especially in wireless networks. In the next chapter,

we will study the effect of network coding in a simple wireless relay network. We will

39

specifically look at the performance of network coding from a delay perspective and

propose a simple algorithm to optimally trade off delay and throughput in network

coding-enabled relay networks.

40

CHAPTER III

OPTIMAL DELAY-THROUGHPUT TRADE-OFF IN THE NETWORK

CODING-ENABLED RELAY NETWORKS

In recent years, there has been a growing interest in the applications of network cod-

ing techniques in wireless communication networks. It was shown that the network

coding can result in significant improvements in the performance of multi-hop wireless

networks. For example, consider a wireless network coding scheme depicted in Fig.

5(a). Here, wireless nodes 1 and 2 need to exchange packets x1 and x2 through a relay

node (node 3). A simple store-and-forward approach needs four transmissions. How-

ever, the network coding solution uses a store-code-and-forward approach in which

the two packets x1 and x2 are combined by means of a bitwise XOR operation at the

relay and broadcast to nodes 1 and 2 simultaneously. Nodes 1 and 2 can then decode

this coded packet to obtain the packets they need.

[14] introduces the strategy of reverse carpooling that allows two information

flows traveling in opposite directions to share a path. Fig. 5(b) shows an example

of two connections, from n1 to n4 and from n4 to n1 that share a common path

(n1, n2, n3, n4). The wireless network coding approach results in a significant (up to

50%) reduction in the number of transmissions for two connections that use reverse

carpooling. In particular, once the first connection is established, the second con-

nection (of the same rate) can be established in the opposite direction with little

additional cost.

In this work 1, we focus on design and analysis of scheduling protocols that ex-

ploit the fundamental trade-off between the number of transmissions and delay in

1This work was done in collaboration with other students, Yu-Pin Hsu and So-
lairaja Ramasamy

41

Fig. 5. (a) Wireless Network Coding (b) Reverse carpooling.

the reverse carpooling schemes. In particular, to cater to delay-sensitive applications,

the network must be aware that savings achieved by coding may be offset by de-

lays incurred in waiting for such opportunities. Accordingly, we design delay-aware

controllers that use local information to decide whether or not to wait for a coding op-

portunity, or to go ahead with an uncoded transmission. By sending uncoded packets

we do not take advantage of network coding, hence are not energy-efficient. However,

by waiting for packets to code, we might be able to achieve energy efficiency at the

cost of packets getting delayed further.

Consider a relay node that transmits packets between two of its adjacent nodes

that have flows in opposite directions, as depicted in Fig. 6. The relay maintains

two queues q1 and q2, such that q1 and q2 store packets that need to be delivered

to node 2 and 1, respectively. If both queues are not empty, then it can relay two

packets from these queues by performing an XOR operation. However, what should

the relay do if one of the queues has packets to transmit, while the second queue

is empty? Should the relay wait for a coding opportunity or just transmit a packet

from a non-empty queue without coding? This is the fundamental question we seek

to answer. In essence we would like to trade off efficiently transmitting the packets

42

against high quality of service (i.e. low delays).

1 1f

2

q

q

R

2

1

f 2

1 2

f

f

Fig. 6. 3-Node Relay Network.

Network coding research was initiated by the seminal work [15] and since then

attracted major interest from the research community. Network coding technique for

wireless networks has been considered in [16]. They propose an architecture called

COPE, which contains a special network coding layer between the IP and MAC

layers. In [17] an opportunistic routing protocol is proposed, referred to as MORE,

that randomly mixes packets that belong to the same flow before forwarding them to

the next hop. Moreover, several works, e.g. [18–23], investigate the scheduling or/and

routing problems in the network coding enabled networks. [18] focuses on the network

coding in the tandem networks and formulates a related cross-layer optimization

problem, while [19] devises a joint coding-scheduling-rate controller when the pairwise

intersession network coding is allowed. In an earlier work [20], it is shown how to

design coding-aware routing controllers that would maximize coding opportunities in

multihop networks. [21] and [22] attempt to schedule the network coding between

multiple-session flows. A distributed algorithm is proposed in [23] for the minimum

cost transmission of the multicast session.

However, in contrast to all the above literature, we consider the stochastic arrival

process and see if the packet desires to wait for a coding opportunity. Our objective

is therefore to study the delicate trade-off between the energy exhaustion and the

43

queueing delay when network coding is an option. For that we formulate and solve a

stochastic dynamic program, in particular a Markov decision process, to determine the

optimal control actions in various states. The literature is extremely rich for finite

state-space problems. However, although there have been several excellent books

(e.g. [24–27]) on MDPs, there are relatively few articles that provide a methodology to

find optimal policies for problems that are infinite horizon, average cost optimization

with a countably infinite state space. In fact, [27] specifically says that such problems

are difficult to analyze and obtain optimal policies.

A. Main Results

We first consider the case of a relay node that can serve at most 1 packet for each

time, and assume that the arrivals into both queues are independent and identically

distributed. We can think of the system state as the queue lengths and explore the

effect of including the vector of waiting times associated with each of the packets,

to design a cost-minimizing controller. We first claim that although waiting time

information might be available, we do not actually need to use it. Since our system

is Markovian, the problem is essentially that of a Markov Decision Process. In gen-

eral, we could have a controller that belongs to one of the following sets [24]: ΠHR

(randomized history dependent policies), ΠMR (randomized Markov policies), ΠSR

(randomized stationary policies), and ΠSD (deterministic stationary policies). The

complexity of the algorithms exactly decreases from left to right above. In what

regime does the solution to our problem lie? We find that the optimal policy is a

simple queue-length threshold policy with one threshold for each queue at the relay,

and whose action is simply: if a coding opportunity exists, code and transmit; else

transmit a packet if the threshold for that queue is reached. We then show how to

44

find the optimal thresholds.

Two general models are examined afterwards. In the first model, the service

capacity of the relay is not restricted to 1 packet per time unit. Then if the relay can

serve a batch of packets, the optimal controller is found to be of the threshold type

for one queue when the length of the other queue is fixed. Moreover, the arrivals with

memory is also studied. The optimal policy for Markov-modulated arrival process

is discovered to have multiple thresholds. We then numerically study a number of

policies, based on waiting time and queue length, waiting time only, randomized

thresholds, and the optimal deterministic queue-length threshold policy to indicate

the potential of our approach. Finally, the performance of the deterministic queue

length based policy in the line network topology is illustrated via simulations.

B. System Overview

Consider a multi-hop wireless network operating a time-division multiplexing scheme

to store and forward packets from various sources to destinations. Time is slotted into

small intervals and in each interval relay node gets a chance to transmit a number of

packets of a flow. These packets are transmitted during a “mini-slot” that the node

has been assigned. We assume that this mini-slot is instantaneous for all practical

purposes. Also, in this work we will not consider any scheduling issues and assume

that we have scheduled mini-slots assigned to each node for each flow where nodes

have opportunities to transmit if they choose to. With that said, we will now describe

the scenario from the perspective of a single node, especially a relay that has the

potential for network coding packets from flows in opposing directions.

45

1. Scenario from a Relay’s Perspective

Consider Fig. 6. We call two of the adjacent nodes to the relayR as nodes 1 and 2. Say

there is a flow f1 that goes from node 1 to 2 and another flow f2 from node 2 to 1, both

of which are through the relay under consideration. The packets (type 1 and type 2)

from both flows respectively go through separate queues, q1 and q2, at node R. With

respect to the relay we now define a slot as the time between successive opportunities

for the relay to transmit. The arrival processes to both flows are assumed to be

independent of each other and also independently and identically distributed (i.i.d)

over time, with the random variables Ai for i ∈ {1, 2} respectively. In each slot, n

packets arrive at qi with the probability P(Ai = n) = p
(i)
n for n ∈ N ∪ {0}. At the

end of a slot, the relay gets an opportunity to transmit. First we consider that at the

end of a slot, the relay can transmit a maximum of one packet. When both queues

are non-empty, one packet from q1 and one from q2 can be transmitted together as a

single packet using XOR coding. This scenario, in which transmitting a combination

of packets results in decreasing the required number of transmissions, is referred as a

coding opportunity. Whenever such a coding opportunity exists between the packets

of two flows, the relay encodes the packets and transmits the coded packet back to

the adjacent nodes. However, if there is only one type of packet at the end of a slot,

there are two options: (i) one of those packets gets transmitted without coding or (ii)

we wait for a future slot to receive a packet in the other queue to utilize the coding

opportunity. We assume that transmissions within a type are according to a first-in-

first-out service discipline. It is unclear as to what is the best course of action, do

nothing (thus worsening delay) or transmit without coding (thus being inefficient).

In other words, to wait or not to wait, that is the question.

46

2. Markov Decision Process Model

To develop a strategy for the relay to decide at every transmission opportunity, its

best course of action, we use a Markov decision process (MDP) model. For i = 1, 2

and t = 0, 1, 2, · · · , let Q
(i)
t be the number of packets of type i in the relay at the end

of time slot t just before an opportunity to transmit. Let At be the action chosen

at the end of the tth time slot with At = 0 implying the action is to do nothing and

At = 1 implying the action is to transmit. As we described before, if Q
(1)
t +Q

(2)
t = 0,

then At = 0 because that is the only feasible action. Also, if Q
(1)
t Q

(2)
t > 0, then

At = 1 because the best option is to transmit a coded XOR packet as it reduces both

the number of transmissions as well as latency. However, when exactly one of Q
(1)
t

and Q
(2)
t is non-zero, it is not immediately clear what action we should choose.

We first define costs for latency and transmission. Let CT be the cost for trans-

mitting a packet and CH be the cost for holding a packet for a length of time equal to

one slot. Without loss of generality, we assume that if a packet is transmitted in the

same slot it arrived, its latency is zero. Also, the cost of transmitting a coded packet

is the same as that of a non-coded packet. That said, our objective is to derive an

optimal policy that minimizes the long-run average cost per slot. For that we define

the MDP{(Qt, At), t ≥ 0} where Qt = (Q
(1)
t , Q

(2)
t) is the state of the system and At

the control action chosen at time t. The state space (i.e., all possible values of Qt) is

the set {(i, j) : i ≥ 0, j ≥ 0}.

Let C(Qt, At) be the immediate cost incurred at time t if action At is taken,

when the system is in state Qt. Therefore,

C(Qt, At) = CH([Q
(1)
t − At]+ + [Q

(2)
t − At]+) + CTAt, (3.1)

47

where [x]+ = max(x, 0). The long-run average cost for some policy θ is given by

V (θ) = lim
K→∞

1

K + 1
Eθ

[
K∑
t=0

C(Qt, At)|Q0 = (0, 0)

]
, (3.2)

where Eθ is the expectation operator taken for the system under policy θ. Notice that

our initial state is an empty system, although the average cost would not depend on

it. Define average-optimal policy as the policy that minimizes V (θ). Our goal is to

characterize and obtain the average-optimal policy. For that we first describe the

probability law for our MDP and then in subsequent section develop a methodology

to obtain the average-optimal policy.

For the MDP{(Qt, At), t ≥ 0}, let Pa(Qt, Qt+1) be the transition probability from

state Qt to Qt+1 associated with action a ∈ {0, 1}. Then the probability law can be

derived as P0 ((i, j), (k, l)) = p
(1)
k−ip

(2)
l−j for all k ≥ i and l ≥ j. Also, P1 ((i, j), (k, l)) =

p
(1)

k−[i−1]+p
(2)

l−[j−1]+ for all k ≥ [i− 1]+ and l ≥ [j − 1]+.

C. Analysis

As we described in the previous section, our goal is to obtain the average-optimal

policy. To that end, we first find the space of possible policies and then identify the

average-optimal policy within this space. Our first question is: what is the appropriate

state space: is it just queue length, or should we also consider waiting time?

1. Should We Maintain Waiting Time Information?

Intuition tells us that if a packet has not been waiting long enough then perhaps it

could afford waiting a little more but if a packet has waited too long, it may be better

to just transmit it. That seems logical considering that we try our best to code but

we cannot wait too long because it hurts in terms of holding costs. Also, one could

48

get waiting time information from time-stamps on packets. Let T (i) be the arrival

time of ith packet and D(i)
θ be its delay (i.e. the waiting time before it is transmitted)

while policy θ is applied. Tt,θ is the number of transmission by time t under policy θ.

Then (3.2) can be written as

V (θ) = lim
K→∞

1

K + 1
Eθ

 ∑
i:T (i)≤K

CHD(i)
θ + CTTK,θ

 . (3.3)

Given that, would we be making better decisions by also keeping track of waiting

times of each packet? We answer that question by means of a theorem which requires

the following lemma for a generic MDP{(Xt, Dt), t ≥ 0}, where Xt is the state of the

MDP and Dt is the action at time t.

Lemma 4 (Theorem 5.5.3 [24]). For an MDP {(Xn, Dn), n ≥ 0}, given any history

dependent policy and starting state, there exists a randomized Markov policy with the

same long-run average cost.

Using the above lemma we show next that it is not necessary to maintain waiting

time information.

Theorem 4. For the MDP{(Qt, At), t ≥ 0}, if there exists a randomized history

dependent policy that is average-optimal, then there exists a randomized Markov policy

θ∗ that minimizes V (θ) defined in (3.2). Further, one cannot find a policy which also

uses waiting time information that would yield a better solution than V (θ∗).

Proof. From Lemma 4, if the MDP{(Qt, At), t ≥ 0} has a history dependent policy

that is average-optimal, then we can construct a randomized Markov policy that

yields the same long-run average cost given Q0 = (0, 0). Therefore, if there exists

a randomized history dependent policy that is average-optimal, then there exists a

randomized Markov policy θ∗ that minimizes V (θ) defined in (3.2).

49

Knowing the entire history of states and actions one can always determine the

history of waiting times as well as the current waiting times of all packets. Therefore

the average-optimal policy θ′ that uses waiting time information is equivalent to a

history dependent policy. From Lemma 4, we can always find a randomized Markov

policy that yields the same average-optimal solution as V (θ′).

2. Average-Optimal Policy: Stationary and Deterministic

In the previous section, we showed that there exists an average-optimal policy that

does not include the waiting time in the state of the system. Afterward, we focus on

queue length-based policies and determine the structure of the average-optimal policy.

In the MDP literatures (e.g. [28]), the conditions for the structure and location of

average-optimal policy usually rely on the results of the infinite horizon α-discounted

cost case, where 0 < α < 1. Accordingly, for our MDP{(Qt, At), t ≥ 0}, the total

expected discounted cost incurred by a policy θ is

Vθ,α(i, j) = Eθ

[
∞∑
t=0

αtC(Qt, At)|Q0 = (i, j)

]
. (3.4)

In addition, we define Vα(i, j) = minθ Vθ,α(i, j) as well as vα(i, j) = Vα(i, j)−Vα(0, 0).

Define the α-optimal policy as the policy that minimizes (3.4).

Proposition 5. If E[Ai] <∞ for i ∈ {1, 2}, then Vα(i, j) <∞ for every state (i, j)

and discounted factor 0 < α < 1.

Proof. By θ̃, we denote the stationary policy of always doing nothing for each time

50

slot. Hence, Vα(i, j) ≤ Vθ̃,α(i, j). Furthermore, we note that

Vθ̃,α(i, j) = Eθ̃
[∞∑
t=0

αtC(Qt, At)|Q0 = (i, j)
]

=
∞∑
t=0

αtCH (i+ j + tE[A1 +A2])

=
CH(i+ j)

1− α
+

αCH
(1− α)2

E[A1 +A2] <∞.

Lemma 5 (Proposition 1 and 3 [28]). Proposition 5 (i.e. Vα(i, j) is finite) implies

that Vα(i, j) satisfies the optimality equation as following,

Vα(i, j) = min
a∈{0,1}

[CH([i− a]+ + [j − a]+) + CTa+ α
∑
k,l

Pa
(
(i, j), (k, l)

)
Vα(k, l)] (3.5)

The stationary policy that realizes the minimum of right hand side of (3.5) is α-

optimal policy. Moreover, let Vα,0(i, j) = 0 and for n ≥ 1,

Vα,n(i, j) =

mina∈{0,1}[CH([i− a]+ + [j − a]+) + CTa+ α
∑

k,l Pa
(
(i, j), (k, l)

)
Vα,n−1(k, l)].

(3.6)

Then, Vα,n(i, j)→ Vα(i, j) as n→∞ for every i, j, and α.

We use the second part of Lemma 5 to prove that Vα(i, j) is a non-decreasing

function.

Lemma 6. Vα(i, j) is non-decreasing with respect to i and j respectively.

Proof. Prove by induction on n in (3.6). It is obvious for Vα,0(i, j). Assume that

Vα,n(i, j) is non-decreasing. Note that

CH([i− a]+ + [j − a]+) + CTa+ α
∑

k,l Pa
(
(i, j), (k, l)

)
Vα,n(k, l)

= CH([i− a]+ + [j − a]+) + CTa+ α
∑

r,s p
(1)
r p

(2)
s Vα,n([i− a]+ + r, [j − a]+ + s)

51

is non-decreasing for all a ∈ {0, 1} since CH is non-negative. Therefore, Vα,n+1(i, j)

is non-decreasing because the minimum operator in (3.6) keeps the non-decreasing

property.

The next lemma relates the α-discounted cost and the long-run average cost

cases.

Lemma 7 (Theorem (i) [28]). There exists a stationary and deterministic policy

that is average-optimal for the MDP{(Qt, At), t ≥ 0} if the following conditions are

satisfied: (i) Vα(i, j) is finite for all i, j, and discount factor α; (ii) there exists a

nonnegative N such that vα(i, j) ≥ −N for all i, j, and α; and (iii) there exists a

nonnegative Mi,j such that vα(i, j) ≤ Mi,j for every i, j, and α. Moreover, for each

state (i, j) there is an action a(i, j) such that
∑

k,l Pa(i,j)
(
(i, j), (k, l)

)
Mk,l <∞.

Using this lemma, we will show in Theorem 6 that the our MDP has an average-

optimal policy that is stationary and deterministic. Please refer to Appendix A for

the proof.

Theorem 6. For the MDP{(Qt, At), t ≥ 0}, there exists a stationary and determin-

istic policy θ∗ that minimizes V (θ) if E[A2
i] <∞ and E[Ai] < 1 for i ∈ {1, 2}.

Now that we know the average-optimal policy is stationary and deterministic,

the question is how we find it. In the next section, we investigate this problem and

will show that the average-optimal policy is a threshold-based policy.

3. Structure of Optimal Policy: Threshold Based

The standard methodology to obtain stationary policy for infinite-horizon average

cost minimization problem is to use a linear program (LP) [25]. However, the method

assumes the finite states, so we cannot directly apply to our MDP{(Qt, At), t ≥ 0}, as

52

our MDP has infinite states and the Markov chain under some policy is not irreducible

(for example if we always transmit, it is not possible to reach some of the states). To

circumvent that, we might construct a finite size LP with N states and force it to

be irreducible by creating dummy transitions with probability ε > 0 between some

states. Let us call this LP(N, ε). By letting N → ∞ and ε → 0 we argue that our

MDP would have an average-optimal deterministic policy.

LP(N, ε) provides a method to obtain the stationary and deterministic subop-

timal policy for our MDP{(Qt, At), t ≥ 0}. We are still interested in how to find

the average-optimal policy. If we know that the average-optimal policy satisfies the

structural properties then it is possible to search through the space of stationary de-

terministic policies and obtain the optimal one. We will study the α-optimal policy

first and then discuss how to extend to the average-optimal policy.

a. Structure of α-Optimal Policy

In this subsection, we will investigate the properties of an α-optimal policy. These

results will be useful in the subsequent section in order to find the average-optimal

scheme. Before examining the general i.i.d. arrival model, first we consider a special

case of Bernoulli arrival processes.

i.i.d. Bernoulli Arrival Processes:

The following lemma summarizes our result for this special case, where the arrivals

to the queues are independently distributed as Bernoulli random variables.

Lemma 8. Consider the i.i.d. Bernoulli arrival process. For the MDP{(Qt, At), t ≥

0}, the α-optimal policy is of threshold type. There exist the optimal thresholds L∗α,1

and L∗α,2 so that the optimal deterministic action in state (i, 0) is to wait if i < L∗α,1,

and to transmit without coding if i ≥ L∗α,1; while in state (0, j) is to wait if j < L∗α,2,

53

and to transmit without coding if j ≥ L∗α,2.

Proof. Referring to (3.5), let

Vα(i, 0, a) = CH([i− a]+) + CTa+ α
∑
k,l

Pa
(
(i, 0), (k, l)

)
Vα(k, l)

and define Vα(i, 0) = mina∈{0,1} Vα(i, 0, a). Let L∗α,1 = min{i ∈ N ∪ {0} : Vα(i, 0, 1) ≤

Vα(i, 0, 0)}. Then the optimal stationary and deterministic action (for the total ex-

pected α-discounted cost) is An = 0 for the states (i, 0) with i < L∗α,1, and An = 1 for

the state (L∗α,1, 0). Note that we do not care about the states (i, 0) with i > L∗α,1 since

they are not accessible as (L∗α,1, 0) only transits to (L∗α,1−1, 0), (L∗α,1, 0), (L∗α,1−1, 1),

and (L∗α,1, 1). The similar argument is applicable for the states (0, j). Consequently,

there exists a policy of threshold type that is α-optimal.

For the i.i.d. Bernoulli arrival process, we have shown that the the α-optimal

policy can be threshold based. The next question is the possibility to extend to any

i.i.d. arrival process.

General i.i.d. Arrival Processes:

We shall see that a threshold based α-optimal policy exists for the case of general

i.i.d. arrivals as well. Define

Vα(i, j, a) = CH
(
[i− a]+ + [j − a]+

)
+ CTa+ αE

[
Vα
(
[i− a]+ +A1, [j − a]+ +A2

)]
,

and

Vα,n(i, j, a) = CH
(
[i− a]+ + [j − a]+

)
+CTa+αE

[
Vα,n

(
[i− a]+ +A1, [j − a]+ +A2

)]
.

Then, (3.5) can be expressed as Vα(i, j) = mina∈{0,1} Vα(i, j, a), while (3.6) is written

as Vα,n(i, j) = mina∈{0,1} Vα,n−1(i, j, a). For every discounted factor α, we want to

show that there exists an α-optimal policy that is of threshold type. To be precise,

54

let the α-optimal policy for the first dimension a∗α,i = arg mina∈{0,1} Vα(i, 0, a), we

will show that a∗α,i is non-decreasing as i increases, and so is the case for the second

dimension.

In our analysis, we investigate some important properties of function Vα,n(i, j, a)

like subadditivity, submodularity and subconvexity. These properties are properly

defined as follows.

Definition 3 (Subadditivity [24]). A function f : (N ∪ {0})2 → R is subadditive if

for all i− ≤ i+ and a− ≤ a+,

f(i+, a+)− f(i+, a−) ≤ f(i−, a+)− f(i−, a−). (3.7)

Definition 4 (Submodularity [29]). A function f : (N ∪ {0})2 → R is submodular if

for all i, j ∈ N ∪ {0}

f(i, j) + f(i+ 1, j + 1) ≤ f(i+ 1, j) + f(i, j + 1). (3.8)

Definition 5 (K-Convexity). A function f : (N ∪ {0})2 → R is K-convex (where

K ∈ N) if for every i, j ∈ N ∪ {0}

f(i+K, j)− f(i, j) ≤ f(i+K + 1, j)− f(i+ 1, j) (3.9)

f(i, j +K)− f(i, j) ≤ f(i, j +K + 1)− f(i, j + 1). (3.10)

Definition 6 (K-Subconvexity). A function f : (N ∪ {0})2 → R is K-subconvex

(where K ∈ N) if for all i, j ∈ N ∪ {0}

f(i+K, j +K)− f(i, j) ≤ f(i+K + 1, j +K)− f(i+ 1, j) (3.11)

f(i+K, j +K)− f(i, j) ≤ f(i+K, j +K + 1)− f(i, j + 1). (3.12)

Remark 7. If a function f : (N ∪ {0})2 → R is submodular and K-subconvex, then

55

it is K-convex, and for every r ∈ N with 1 ≤ r < K,

f(i+K, j + r)− f(i, j) ≤ f(i+K + 1, j + r)− f(i+ 1, j) (3.13)

f(i+ r, j +K)− f(i, j) ≤ f(i+ r, j +K + 1)− f(i, j + 1). (3.14)

For simplicity, we will ignore K in Definitions 5 and 6 when K = 1. Suppose it

is true that

Vα(i+ 1, 0, 1)− Vα(i+ 1, 0, 0) ≤ Vα(i, 0, 1)− Vα(i, 0, 0). (3.15)

Now if the α-optimal polity for state (i, 0) is a∗α,i = 1, i.e., Vα(i, 0, 1) ≤ Vα(i, 0, 0),

then the α-optimal policy for state (i + 1, 0) is also a∗α,i+1 = 1. On the other hand,

the α-optimal policy for state (i, 0) is a∗α,i = 0 once the α-optimal polity for state

(i+1, 0) is a∗α,i+1 = 0. Therefore in order to show that α-optimal policy is monotonic,

it suffices to show that (3.15) holds. Equivalently, it is enough to show that Vα(i, 0, a)

and Vα(0, j, a) are subadditive for a ∈ {0, 1}.

Our approach to show the subadditivity property of Vα(i, 0, a) (and Vα(0, j, a))

is by inductively verifying this property for Vα,n(i, j, a). The following useful lemma

provides a set of sufficient conditions for Vα,n(i, j, a) to be subadditive.

Lemma 9. Given 0 < α < 1 and n ∈ N∪{0}. If Vα,n(i, j) = mina∈{0,1} Vα,n−1(i, j, a)

is non-decreasing, submodular, and subconvex, then Vα,n(i, j, a) is subadditive for i and

a when j is fixed, and vice versa. Consequently, min{a : arg mina∈{0,1} Vα,n(i, j, a)} is

non-decreasing w.r.t. i for fixed j, and vice versa.

Proof. Define ∆Vα,n(i, j) = Vα,n(i, j, 1) − Vα,n(i, j, 0). We claim ∆Vα,n(i, j) is non-

increasing, more precisely ∆Vα,n(i, j) is a non-increasing function w.r.t. i while j is

fixed, and vice versa. In what follows, we will prove this claim by focusing on the

56

prior part. Notice that ∆Vα,n(i, j) =

CH([i− 1]+ + (j − 1)+) + CT + αE[Vα,n([i− 1]+ +A1, [j − 1]+ +A2)]

−CH(i+ j)− αE[Vα,n(i+ A1, j + A2)]

To be precise for i ≥ 1, if j = 0 we have

∆Vα,n(i, 0) = CT − CH + αE[Vα,n(i− 1 +A1,A2)− Vα,n(i+A1,A2)], (3.16)

otherwise, for j ≥ 1, we get

∆Vα,n(i, j) =

CT − 2CH + αE[Vα,n(i− 1 +A1, j − 1 +A2)− Vα,n(i+A1, j +A2)].
(3.17)

Fix j ≥ 1 in (3.17), according to the subconvexity of Vα,n(i, j), ∆Vα,n(i, j) does not

increase as i increases for i ≥ 1. While j = 0 is given, that is also true due to the

convexity of Vα,n(i, j). Furthermore, the boundary conditions are considered in the

following. Let j ≥ 1 fixed, then

∆Vα,n(1, j) = CT − 2CH + αE[Vα,n(A1, j − 1 +A2)− Vα,n(1 +A1, j +A2)]

∆Vα,n(0, j) = CT − CH + αE[Vα,n(A1, j − 1 +A2)− Vα,n(A1, j +A2)].
(3.18)

Note that E[Vα,n(1 +A1, j +A2)] ≥ E[Vα,n(A1, j +A2)] according to non-decreasing

property of Vα,n(i, j) and then ∆Vα,n(1, j) ≤ ∆Vα,n(0, j). Finally, for j = 0 we have

∆Vα,n(1, 0) = CT − CH + αE[Vα,n(A1,A2)− Vα,n(1 +A1,A2)]

∆Vα,n(0, 0) = CT .
(3.19)

∆Vα,n(1, 0) ≤ ∆Vα,n(0, 0) results from E[Vα,n(A1,A2) − Vα,n(1 + A1,A2)] ≤ 0 as

Vα,n(i, j) is non-decreasing. Consequently, ∆Vα,n(i, j) is a non-increasing function

w.r.t. i while j is fixed.

In the previous lemma, we found some conditions on Vα,n(i, j) which imply the

57

subadditivity of Vα,n(i, j, a). If we show that these conditions hold for all values of n,

then one can easily conclude that Vα(i, 0, a) (similarly Vα(0, j, a)) is subadditive and

as a result the α-optimal policy is monotonic.

The following lemma declares that if the mentioned conditions hold for Vα,n(i, j),

then they will also hold for Vα,n+1(i, j). Please refer to Appendix A for the proof.

Lemma 10. Given 0 < α < 1 and n ∈ N ∪ {0}. If Vα,n(i, j) is non-decreasing,

submodular, and subconvex, then Vα,n+1(i, j) is non-decreasing, submodular, and sub-

convex.

Using all the previous preliminary lemmas, we can now present our main result

for the structure of α-optimal policies in the following lemma.

Theorem 8. For the MDP{(Qt, At), t ≥ 0} with any i.i.d. arrival processes to both

queues, there exists an α-optimal policy that is of threshold type. Given Q2, the α-

optimal policy is monotone w.r.t. Q1, and vice versa.

Proof. Prove by induction. Note that Vα,0(i, j) = 0 is non-decreasing, submodular,

and subconvex, that leads to min{a : arg mina∈{0,1} Vα,0(i, j, a)} being non-decreasing

based on Lemma 9. These properties propagate as n goes to infinity according to

Lemma 10.

In the next subsection, we extend these results to average-optimal policies.

b. Structure of Average-Optimal Policy

Thus far, we have characterized the α-optimal policy. The following lemma describes

a useful relation between the average-optimal policy and the α-optimal policy.

Lemma 11 (Lemma and Theorem (i) [28]). Consider the MDP{(Qt, At), t ≥ 0}.

Let {αn}, converging to 1, be any sequence of discount factors associated with the

58

α-optimal policy {θαn(i, j)}. There exists a subsequence {βn} and a stationary policy

θ∗(i, j) that is the limit point of {θβn(i, j)}. If the three conditions in Lemma 7 are

satisfied, θ∗(i, j) is the average-optimal policy for (3.2).

Using this lemma, it is straightforward to conclude that a threshold based average-

optimal policy exists. The following theorem formally expresses this result.

Theorem 9. Consider any i.i.d. arrival processes to both queues. The average-

optimal policy for the MDP{(Qt, At), t ≥ 0} is of threshold type. There exist the

optimal thresholds L∗1 and L∗2 so that the optimal deterministic action in states (i, 0)

is to wait if i ≤ L∗1, and to transmit without coding if i > L∗1; while in state (0, j) is

to wait if j ≤ L∗2, and to transmit without coding if j > L∗2.

Proof. Let (̃i, 0) be any state, at which the average-optimal policy is to transmit, i.e.,

θ∗(̃i, 0) = 1 in Lemma 11. Since there is a sequence of discounted factors {βn} such

that θβn(i, j) → θ∗(i, j), then there exists N > 0 so that θβn (̃i, 0) = 1 for all n ≥ N .

Due to the monotone of α-optimal policy in Theorem 8, θβn(i, 0) = 1 for all i ≥ ĩ and

n ≥ N . Therefore, θ∗(i, 0) = 1 for all i ≥ ĩ. To conclude, the average-optimal policy

is of threshold type.

In the next subsection, we briefly comment about how to find the best thresholds

for an average-optimal policy.

4. Obtaining the Optimal Deterministic Stationary Policy

We have shown in the previous subsection that the average-optimal policy is sta-

tionary, deterministic and threshold type, so we only need to consider the subset of

deterministic stationary policies. Given the thresholds of both queues, the MDP is

reduced to a Markov chain. The next step is to find the optimal threshold.

59

First note that the condition E[Ai] < 1 might not be sufficient for the stability

of the queues since the threshold based policy leads to a lower average service rate.

In the following theorem, we claim that the conditions E[A2
i] <∞ and E[Ai] < 1 for

i ∈ {1, 2} are enough for the stability of the queues. For the proof, please refer to

Appendix A.

Theorem 10. For the MDP{(Qt, At), t ≥ 0} with E[A2
i] < ∞ and E[Ai] < 1 for

i ∈ {1, 2}. The reduced Markov chain from applying the stationary and deterministic

threshold based policy to MDP is positive recurrent, i.e. the stationary distribution

exists.

We realize that if E[A2
i] < ∞ and E[Ai] < 1 for i ∈ {1, 2}, then there exists a

stationary threshold type policy that is average-optimal and can be obtained from the

reduced Markov chain. The following theorem gives an example of how to compute

the optimal thresholds for the case of Bernoulli arrivals.

Theorem 11. Consider the Bernoulli arrival process. The optimal thresholds L∗1 and

L∗2 are

(L∗1, L
∗
2) = arg min

L1,L2

CTT (L1, L2) + CHH(L1, L2), (3.20)

where,

T (L1, L2) = p
(1)
1 p

(2)
1 π0,0 + p

(2)
1

∑L1

i=1 πi,0 + p
(1)
1

∑L2

j=1 π0,j + p
(1)
1 p

(2)
0 πL1,0 + p

(1)
0 p

(2)
1 π0,L2

H(L1, L2) =
∑L1

i=1 iπi,0 +
∑L2

j=1 jπ0,j,

60

in which,

π0,0 =
1(

1−αL1+1

1−α

)
+
(

1−1/αL2+1

1−1/α

)
− 1

πi,0 = αiπ0,0

π0,j = π0,0/α
j

α =
p
(1)
1 p

(2)
0

p
(1)
0 p

(2)
1

.

Proof. Let Y
(i)
t be the number of type i packets at the tth slot after transmission. It is

crucial to note that this observation time is different from when the MDP is observed.

Then the bivariate stochastic process {(Y (1)
t , Y

(2)
t), t ≥ 0} is a discrete-time Markov

chain which state space is smaller than the original MDP, i.e. (0, 0), (1, 0), (2, 0), · · · ,

(L1, 0), (0, 1), (0, 2), · · · , (0, L2). Define α as a parameter such that

α =
p
(1)
1 p

(2)
0

p
(1)
0 p

(2)
1

.

Then, the balance equations for 0 < i ≤ L1 and 0 < j ≤ L2 are:

πi,0 = απi−1,0

απ0,j = π0,j−1.
(3.21)

Since π0,0 +
∑

i,j πi,0 + π0,j = 1, we have

π0,0 =
1(

1−αL1+1

1−α

)
+
(

1−1/αL2+1

1−1/α

)
− 1

. (3.22)

The expected number of transmissions per slot is

T (L1, L2) = p
(1)
1 p

(2)
1 π0,0 + p

(2)
1

L1∑
i=1

πi,0 + p
(1)
1

L2∑
j=1

π0,j + p
(1)
1 p

(2)
0 πL1,0 + p

(1)
0 p

(2)
1 π0,L2 .

61

The average number of packets in the system at the beginning of each slot is

H(L1, L2) =

L1∑
i=1

iπi,0 +

L2∑
j=1

jπ0,j. (3.23)

Thus upon minimizing we get the optimal thresholds L∗1 and L∗2.

Whenever CH > 0, it is relatively straightforward to obtain L∗1 and L∗2. Since it

costs CT to transmit a packet and CH for a packet to wait for a slot, it would be better

to transmit a packet than make a packet wait for more than CT/CH slots. Thus L∗1

and L∗2 would always be less than CT/CH . Hence by completely enumerating between

0 and CT/CH for both L1 and L2, we can obtain L∗1 and L∗2. One could perhaps find

faster techniques than complete enumeration, but it certainly serves the purpose.

Subsequently, we study a special case, p
(1)
1 = p

(2)
1 , p, in Theorem 11. Note that

L1 = L2 , L as both arrival processes are the same, and α = 1 and πi,j = 1/(2L+ 1)

for all i, j. Hence, we have

T (L) =
2pL+ 2p− p2

2L+ 1
, (3.24)

H(L) =
L2 + L

2L+ 1
. (3.25)

Define R = CT/CH . Then the optimal threshold is

L∗(p,R) = arg min
L

R(2pL+ 2p− p2) + L+ L2

2L+ 1
. (3.26)

By taking the derivative, we obtain that L∗ = 0 if R < 1/(2p− 2p2) and otherwise,

L∗(p,R) =
−1 +

√
1− 2(1− 2Rp+ 2Rp2)

2
. (3.27)

We can observe that L∗(p,R) is a concave function w.r.t. p. Given R fixed,

L∗(1/2, R) = (
√
R− 1 − 1)/2 is the largest optimal threshold among various values

62

of p. When p < 1/2, the optimal-threshold decreases as there is a relatively lower

probability for packets in one queue to wait for a coding pair in another queue. When

p > 1/2, there will be a coding pair already in the relay node with a higher probability,

and therefore the optimal-threshold also decreases. Moreover, L∗(1/2, R) = O(
√
R),

so the maximum optimal threshold grows with the square root of R, but not linearly.

When p is very small, L∗(p,R) = O(
√
Rp) grows slower than L∗(1/2, R).

D. Numerical Studies

In this section we present several numerical results to demonstrate the analytical

formulation as well as its extensions. We study the performance of a number of

policies:

1. Opportunistic Coding: when a packet arrives, coding is performed if a compat-

ible packet is available, otherwise transmission takes place immediately.

2. Queue-length-based threshold: a Stationary Deterministic policy that our anal-

ysis suggests it should be optimal for i.i.d arrival processes.

3. Randomized-Queuelength-based threshold: a Stationary policy that Random-

izes over deterministic policies. We expect that it would not perform any better

than deterministic queue-length-based policies.

4. Queue-length-plus-Waiting-time-based thresholds: a History Dependent policy

which is likely to give the best possible performance.

5. Waiting-time-based thresholds: an HR policy that we create for the purpose of

comparison to illustrate that history on its own is only of limited value.

We simulate these policies on two different cases: (i) the single relay with

Bernoulli arrivals (Figures 7(a) and 7(b)) and (ii) a line network with 4 nodes, in

63

0 2 4 6 8 10 12 14
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Average delay

A
v

e
ra

g
e

 #
 t

ra
n

s
m

is
s

io
n

s

Waiting−Transmitting Trade−off

(0.2, 0.17)

(0.5, 0.5)

(0.7,0.5)

(0.9, 0.3)

(0.9,0.8)

(a) Single relay network, queue-length
threshold policy, Bernoulli arrival rates

(p1, p2)

0 0.05 0.1 0.15 0.2 0.25 0.3

0.55

0.6

0.65

0.7

0.75

0.8

Holding Cost

M
in

im
u

m
 A

v
e

ra
g

e
 C

o
s

t

(P
1
,P

2
)=(0.5,0.5)

Waiting Time Policy

QL+WT Policy

Queue Length Policy

Optimal Randomized(analytical)

Optimal Deterministic(analytical)

Opportunistic Policy

(b) Single relay network, Bernoulli
arrival rates (0.5, 0.5), the costs are
normalized by the transmission cost

0 0.05 0.1 0.15 0.2
0.55

0.6

0.65

0.7

0.75

Holding Cost

M
in

im
u

m
 A

v
e

ra
g

e
 C

o
s

t

Line Network (P
1
,P

2
)=(0.5,0.5)

QL Policy

Opportunistic Policy

WT Policy

QL+WT Policy

(c) Line network with two intermediate
nodes, two Bernoulli flows with mean

arrival rates (0.5, 0.5)

Fig. 7. The performance of network coding enabled relay networks in terms of trans-

mission and holding costs

64

which the sources are Bernoulli (Figure 7(c)). Note that in this case, since the depar-

tures from one queue determine the arrivals into the other queue, the arrival processes

are significantly different from Bernoulli. Our simulations are done in Java and for

each scenario we report the average results of 105 iterations.

Our numerical studies illustrate that, as expected, a deterministic queue-length

based policy is optimal for different network scenarios. The results are intriguing as

they suggest that achieving a near-perfect tradeoff between waiting and transmis-

sion costs is possible using simple policies; and coupled with optimal network-coding

aware routing policies like the one in [20], have the potential to exploit the positive

externalities that network coding offers.

E. Further Discussions and Extensions

We understand that the average-optimal policy is stationary and threshold based for

the i.i.d. arrival process with the service rate 1 packet per time unit. Two more

general models are discussed here.

1. Batched Service

Assume that the relay R can serve a group of packets with the size of K at end of

the time slot. R decides to transmit, At = 1, or to wait At = 0 at the end of every

time slot. The holding cost per unit time for a packet is CH , while CT is the cost to

transmit a batched packet. Then the immediate cost at time t is

C(K)(Qt, At) = CH([Q
(1)
t − AtK]+ + [Q

(2)
t − AtK]+) + CTAt, (3.28)

65

We also want to find the optimal policy θ∗ that minimizes the long-time average cost

V (K)(θ), called K-MDP{(Qt,At), t ≥ 0} problem,

V (K)(θ) = lim
K→∞

1

K + 1
Eθ

[
K∑
t=0

C(K)(Qt, At)|Q0 = (0, 0)

]
. (3.29)

Notice that the best policy might not just transmit when both queues are non-empty.

When K > 1, R might also want to wait even if Q
(1)
t Q

(2)
t > 0 because the batched

service of size less than K has the same transmission cost CT . The optimality equation

of the expected α-discounted cost is revised as

V (K)
α (i, j) = min

a∈{0,1}

[
CH([i− aK]+ + [j − aK]+) + CTa+

E[V (K)
α ([i− aK]+ +A1, [j − aK]+ +A2)]

]
(3.30)

We can get the following results.

Theorem 12. Given α and K, V
(K)
α (i, j) is non-decreasing, submodular, and K-

subconvex. Moreover, there is an α-optimal policy that is of threshold type. For a

fixed j, the α-optimal policy is monotone w.r.t. i, and vice versa.

Theorem 13. Consider any i.i.d. arrival processes to both queues. For the K-

MDP{(Qt, At), t ≥ 0}, the average-optimal policy is of threshold type. Given j =

j̃ fixed, there exists the optimal threshold L∗
j̃

such that the optimal stationary and

deterministic policy in state (i, j̃) is to wait if i ≤ L∗
j̃
, and to transmit if i > L∗

j̃
.

Similar argument is true for the other queue.

2. Markov-Modulated Arrival Process

So far we only considered i.i.d. arrival processes, here we will study a specific arrival

process with memory, i.e., Markov-modulated arrival process (MMAP). The service

capacity of R is focused on K = 1 packet. Let N (i) = {0, 1, · · · , N (i)} be the state

66

space of MMAP at node i, with the transition probability p
(i)
k,l where k, l ∈ N (i).

The number of packets generated by the node i at time t is denoted by N (i)
t ∈ N (i).

Then the decision of R is made based on the observation of (Q
(1)
t , Q

(2)
t ,N (1)

t ,N (2)
t).

Similarly, the objective is to find the optimal policy that minimizes the long-term

average cost, named MMAP-MDP{(Q(1)
t , Q

(2)
t ,N (1)

t ,N (2)
t) : t ≥ 0} problem. The

optimality equation of the expected α-discounted cost becomes

V MMAP
α (i, j, n1, n2) = min

a∈{0,1}
[CH([i− a]+ + [j − a]+) + CTa+

α
∑
k,l

p
(1)
n1,k

p
(2)
n2,l
V MMAP
α ([i− a]+ + k, [j − a]+ + l, k, l)].

Then we can conclude the following results.

Theorem 14. Given n1 ∈ N (1) and n2 ∈ N (2), V MMAP
α (i, j, n1, n2) is non-decreasing,

submodular, and subconvex w.r.t. i and j. Moreover, there is an α-optimal policy

that is of threshold type. Fixed n1 and n2, the α-optimal policy is monotone w.r.t. i

when j is fixed, and vice versa.

Theorem 15. Consider any MMAP arrival process. The average-optimal policy for

the MMAP-MDP{(Q(1)
t , Q

(2)
t ,N (1)

t ,N (2)
t) : t ≥ 0} is of multiple thresholds type. There

exists a set of optimal thresholds {L∗1,n1,n2
} and {L∗2,n1,n2

}, where n1 ∈ N (1) and

n2 ∈ N (2), so that the optimal stationary decision in states (i, 0, n1, n2) is to wait if

i ≤ L∗1,n1,n2
, and to transmit without coding if i > L∗1,n1,n2

, while in state (0, j, n1, n2)

is to wait if j ≤ L∗2,n1,n2
, and to transmit without coding if j > L∗2,n1,n2

.

F. Summary and Future Work

In this chapter, we investigated the delicate trade-off between waiting and transmit-

ting using network coding. We started with the idea of exploring the whole space

of history dependent policies, but showed step-by-step how we could move to sim-

67

pler regimes, finally culminating in a stationary deterministic queue-length threshold

based policy. The policy is attractive because its simplicity enables us to characterize

the thresholds completely, and we can easily illustrate its performance on multiple

networks. We showed by simulation how the performance of the policy is optimal

in the i.i.d (Bernoulli) arrival scenario, and how it also does well in other situations

such as for line networks.

An immediate extension to this work will be investigating a similar trade-off in

general queuing networks with shared resources. Also one can check how the results

will change for more general and possibly heterogeneous cost functions.

The aim of this chapter was to develop an analytical framework for studying

the performance of network coding when there are constraints on the service delay.

In the next chapter, we will study a practical situation in which a simple random

linear network coding scheme plays a fundamental role. We will consider a peer-

to-peer network that supports delay sensitive applications like content distribution

with delay constraints on the delivery time and multimedia live streaming which

naturally requires strict delay guarantees. We shall see how using network coding can

(i) simplify the construction of efficient algorithms, and (ii) enhance the performance

of the system.

68

CHAPTER IV

WIRELESS BROADCAST P2P NETWORKS

Delay sensitive applications are beginning to dominate Internet applications [30],

accompanied by the rising popularity of smart, handheld devices. Such devices usually

have multiple communication interfaces. For example, smart phones have 3G (or 4G),

WiFi, and Bluetooth interfaces. Cellular data interfaces are currently designed for

unicast communication between a base station to a device, and are expensive, both

in terms of energy and dollar-cost of usage. Other interfaces may be used for ad-hoc

peer-to-peer broadcast transmissions, and are usually less expensive. The hardware

and applications to exploit one or both interfaces for proximate P2P communication

are already making an appearance [31].

The objective of this work 1 is to design algorithms to exploit both base-station

to peer (B2P) and peer-to-peer (P2P) wireless interfaces simultaneously such that a

group of proximate peer devices can all obtain some common information within a

specified deadline and at lowest cost. Essentially, the problem that we are interested

in is the timely synchronization of data on multiple wireless devices with minimal

infrastructure support. Applications can be divided into two categories, namely, (i)

content distribution and (ii) multimedia streaming. Some examples of the content

distribution application might be emergency response situations (here, cellular data

support is limited), as well as ensuring that purchases such as software and media files

are simultaneously available on multiple smart devices (here, cellular data support is

expensive). Furthermore, multimedia streaming applications are becoming increas-

ingly popular. Based on our framework, we can develop new efficient schemes to

1Parts of this work were done in collaboration with other students, Mayank Man-
jrekar and Swetha Sampath.

69

stream a common multimedia channel to a group of cooperative peers. The schemes

that we develop will be able to reduce the traffic load on the cellular network and the

media server, and also increase the quality of experience of the peers while decreasing

their cost.

Our setup is illustrated in Figure 8, where peers use both their cellular and

ad-hoc interfaces simultaneously. All information enters the system from a media

server through the cellular interfaces, and is then re-distributed proximately via P2P

broadcast. Each block of information is divided into clunks for transmission. The

questions that we need to answer are (i) how long should peers utilize their cellular

data interfaces? and (ii) which peer should broadcast what chunk at each time?

In order to meet a strict time deadline, there are two intuitive requirements on the

information state of the system at the time of turning off cellular data, namely, (i)

each peer individually, and (ii) the system as a whole should have received sufficient

B2P transmissions. We seek to arrive at an appropriate information state by using

both expensive unicast B2P transmissions and low-cost P2P broadcasts for some

duration of time, such that the P2P broadcasts acting alone can make up the balance

afterward.

Fig. 8. Hybrid P2P wireless network. Each device can utilize both base-station-to-peer

(B2P) and peer-to-peer (P2P) communication.

70

If chunks are sent in an uncoded fashion, every base station and every peer would

have to coordinate with each other so as to send an optimal sequence of chunks that

would minimize the number of required B2P and P2P transmissions for a given dead-

line. Furthermore, if any chunk is lost, it would require the whole optimal sequence

to be re-calculated. To avoid this complexity, each transmitted chunk is created us-

ing random linear coding [32,33] so that chunk identities can be ignored. Here, each

coded chunk is a linear combination of the original chunks, with the coefficients drawn

randomly from a finite field. Thus, each coded chunk can be thought of as an element

in a vector space with the scalars in a finite field. The information available with each

peer can then be represented by a matrix that contains all the vectors that it has

received thus far, and the block of information can be decoded when this matrix is of

full rank. Each coded chunk received can either increase the rank of the matrix by

one (adds a degree of freedom (DoF)), or might have no impact if it can be recreated

as a linear combination of existing vectors with the peer.

The problem of efficiently exchanging common information over a broadcast P2P

network (without existence of the external B2P network) was recently studied in

[34–36]. The common objective in these papers is to deliver a block of information to

a group of peers, with some initial conditions, in the minimum number of broadcast

transmissions. The problem of scheduling the P2P network (i.e., finding the right peer

to broadcast at each slot) in our content distribution framework has some similarities

with the problem studied in these papers. All of the aforementioned works consider

a reliable model for the broadcast links. For analytical purposes, we also assume

that our wireless broadcast network is lossless. Indeed we have been conducting

experiments on an Android smart phone testbed, and have empirically found that

P2P WiFi broadcast transmissions essentially succeed with probability one due to

the proximity of the devices. We will comment on the challenges of considering lossy

71

P2P transmissions in Section C. Despite the similarities of our model and the ones

mentioned above, we face a new challenge of dealing with a hybrid network (i.e.,

simultaneous B2P and P2P transmissions). Also our QoS metric, minimum cost

timely synchronization, is essentially different from their objective. To solve this

new challenge, we use ideas from queueing theory and develop some results on the

performance of the longest-queue-first algorithm, which will be used in scheduling our

hybrid network. We further generalize the results of the broadcast P2P case in [34]

to a larger class of algorithms.

In the context of P2P multimedia streaming applications, the literature is very

rich and it is well accepted that network coding can indeed simplify the implemen-

tation and yet improve the performance. A few examples of systems built based on

the idea of network coding are Lava [37], CoolStreaming [38], PPLive [39], [40] and

UUSee [41]. While all the above models only consider unicast transmissions among

peers, our P2P framework is one of the few models in this context that allows having

broadcast transmissions over the P2P network. Although in wireless networks it is

very reasonable and also efficient to consider broadcast transmissions, the coordina-

tion of transmissions is much more challenging compared to the systems with only

unicast sessions.

Closest to our multimedia streaming model is [42] that investigates the problem

of managing multiple interfaces for the purpose of cooperatively sharing video content

over a broadcast P2P network. Unlike our delay sensitive model, they try to maximize

a utility function of the average information flow (video) rate achieved by the peers.

Moreover, we will specifically study a live streaming application as opposed to on-

demand streaming. In this model, we need to download and play out the stream

of multimedia in a timely manner in order to meet fixed service deadlines while

guaranteeing some predefined minimum quality requirements.

72

Delay sensitive communication in P2P networks has attracted significant recent

interest. For example, [43,44] develop analytical models on the trade-off between the

steady state probability of missing a chunk and buffer size, under different block selec-

tion policies in a streaming situation. Unlike our model, they consider live streaming

with a single deterministic channel between each pair of peers. There is also work

on characterizing cost vs. quality tradeoffs in choosing one or the other wireless

interface [33,45]. However, neither of these consider P2P communications.

In what follows, we first study the content distribution application in Section A.

The live multimedia streaming system will be discussed in Section B. Section C will

conclude this chapter by summarizing our results and presenting some ideas for future

work.

A. Content Distribution with Service Deadline

In this section, we shall consider the problem of delay sensitive content distribution

over a P2P network. We organized this section as follows.

We begin our study by formally describing the system model in Subsection 1.

Our overall objective is to develop algorithms for content distribution to a set of

cooperative wireless users which require some service deadline.

In Subsection 2, we study the content distribution problem in a pure P2P network

(no B2P) with an arbitrary initialization of chunks. Our objective is to find an

algorithm whereby all peers would possess full rank matrices after the smallest number

of broadcast P2P transmissions. We propose a Non-min-Rank-First (NmRF) scheme

for P2P transmissions, wherein any one peer except the one (or ones) with smallest

matrix rank may broadcast a random linear combination. We evaluate the algorithm

for two cases: (i) uncoded initialization, where peers initially possess uncoded packets

73

and (ii) coded initialization. We show that the proposed scheme is optimal for large

field sizes, and obtain performance bounds for finite field sizes.

The next step consists of integrating both P2P and B2P transmissions, presented

in Subsection 3. Here, our quality of service (QoS) target is to ensure that all peers

obtain the block with a target probability η by a deadline T. We pose this problem as

an offline stopping time problem for the B2P transmissions. Thus, we have two phases

whose durations are determined in an offline manner. In the first phase, both B2P

and P2P networks are used, while in the second phase only P2P broadcasts are used

to complete the dissemination of the content. We show that the appropriate P2P

broadcast schemes during phase 1 and 2 are, respectively, Max-Rank-First (MRF)

and Non-min-Rank-First for any stopping time. We map the question of selecting

the appropriate peer to broadcast in phase 1 to that of choosing the right queue

to serve in a system of multiple queues. A basic insight that forms the core of the

proof is that the longest-queue-first service regime actually maximizes the minimum

queue length (the usual result is that it minimizes the maximum queue length), which

results in roughly equal ranks for all peers. This in turn ensures that all peers can

meet the delay target. We then show how to compute the optimal stopping time T1

that would achieve the QoS targets with the minimum cost in the case of large field

sizes, and compute performance bounds of the algorithm in the finite field case.

In Subsection 4, we show how we can implement the peer selection algorithms,

MRF and NmRF schemes, in a decentralized fashion. We will see that with a small

overhead in the proposed distributed scheme, peers can individually perform the

algorithm without the need for a central scheduler or excessive communications to

coordinate the transmissions.

Finally, we illustrate the main insights using the simulations on a hybrid network

in Subsection 5, and verify the performance of our suggested algorithms.

74

1. System Model

Consider Figure 8 again. There are M peers, denoted by i ∈ {1, . . . ,M}, all interested

in receiving the same block of information. The block is further divided intoN chunks.

Each peer has two communication interfaces—broadcast P2P and unicast B2P. We

assume that each B2P transmission has unit cost, while P2P broadcasts are free.

We assume that the time is slotted and the duration of a time slot is enough for

transmitting at most one chunk over either interface.

A transmitted chunk over a B2P channel may not be successfully delivered due to

the unreliability of the channel. We model each B2P unicast channel as an indepen-

dent Bernoulli random variable with parameter p. Since the peers are all proximate

to each other, they have statistically similar B2P channels. Thus, peers access base

stations with identical probabilities of success at any particular time. We denote the

total number of chunks delivered to peer i via the B2P network by the beginning of

slot t using ei[t]. We assume that each B2P transmission has a unit cost.

The common P2P broadcast channel can only be used by at most one peer,

u[t] ∈ {1, . . . ,M}, in each time slot t. We assume that the peers are near enough to

each other that all of them receive each broadcast successfully. Therefore, the average

data rate over the broadcast P2P channel is 1
p

of the rate over each B2P channel In

practice, the 3G channel is much less reliable than WiFi, and further, the ratio of

data rates achievable using WiFi vs. 3G is of the order of 5 : 1.

xi[t] and ri[t] are used to denote respectively the total number of transmitted

and received chunks by peer i via P2P by the beginning of slot t. Note that according

to the model

∑
i xi[t]−

∑
i xi[t− 1] ≤ 1 for all t > 0 (4.1)

75

and because of the lossless nature of the broadcast P2P network, we have

∑
j 6=i

xj[t] = ri[t].

To avoid the problem of piece selection we use random linear network coding.

Each coded chunk is a random linear combination of the N original chunks in the

block. The linear combinations are carried out with coefficients in Fq, a finite field

of size q. Therefore, we can associate a vector γ = (α1, ..., αN) to each coded chunk,

where αi ∈ Fq is the coefficient of the ith original chunk in the corresponding combi-

nation. We will interchangeably use a coded chunk and its corresponding vector γ,

when there is no ambiguity.

Let Si[t] be the set of vectors possessed by peer i at time t, with cardinality n̂i[t].

Thus,

n̂i[t] = ei[t] + ri[t] = ei[t]− xi[t] +
∑

j xj[t]. (4.2)

Further, we represent the dimension of the subspace spanned by Si[t] using ni[t],

which is accordingly called the rank of peer i at time t.

Since the P2P transmissions are heard by everybody, chunks that have already

been broadcast via P2P may not be used in future transmissions. Therefore, without

loss of generality, we assume that at time t, u[t] transmits a chunk which is a linear

combination of the chunks received from the B2P network. This implies that

xi[t] ≤ ei[t] for all t ≥ 0. (4.3)

Observation 6. Given a sequence of transmissions (γ1, . . . , γt) for P2P dissemina-

tion, any permutation Π(γ1, . . . , γt) is also equally effective, i.e., the order of P2P

transmissions is not relevant.

76

We define QoS metric (η, T) in the form of a requirement that all peers are able

to decode the block by the end of time T with probability at least equal to η. We seek

a scheme that would achieve this target at the lowest cost of using B2P transmissions.

Note that a feasible P2P scheme {(x1[t], ..., xM [t])}Tt=0 must satisfy (4.1) and (4.3).

Also, in order to decode the original N chunks at time T , each peer i must have

ni[T] = N .

2. P2P Broadcast Network

In our P2P broadcast model, only one peer can transmit at a time. In this section,

we attempt to obtain a clear understanding of which peer this should be. Hence, we

study the case of pure P2P broadcasts, assuming that each peer i was initialized with

a set of chunks Si[0] at time t = 0 (i.e., ei[t] = ei[0] := ei for t ≥ 0). If
⋃
i Si[0] spans

the whole space of dimension N, then the P2P broadcasts can be used to ensure that

all peers can eventually recover the block. We would like to find algorithms that do

so with the smallest number of broadcasts. We will study the problem under two

cases, namely, (i) uncoded initialization, and (ii) coded initialization.

a. Uncoded Initialization

In this variation of the problem, we study the basic case in which each peer initially

has a subset of uncoded original chunks. Sprintson et al. [34] study this case, and show

that a Max-rank-first algorithm will achieve the minimum number of transmissions

with probability at least 1− NM
q

.

Max-Rank-First (MRF) algorithm: At any time t, one of the peers with

the maximum rank transmits, i.e., u[t] ∈ {arg maxi ni[t]}. Further, if the ranks of all

peers are equal and smaller than N , an arbitrary peer transmits.

In what follows, we propose a new scheme, Non-min-Rank-First (NmRF), and

77

we show that it performs equally well as the MRF algorithm.

Non-min-Rank-First (NmRF) algorithm: At any time t, one of the peers,

except those with the minimum rank, transmits, i.e., u[t] ∈ {1, . . . ,M}\{arg mini ni[t]}.

Further, if the ranks of all peers are equal and smaller than N , an arbitrary peer

transmits.

Note that the MRF algorithm is a special case of the NmRF algorithm. The

main value of the NmRF scheme is that it provides a larger decision space which

can be utilized in different ways. For example, improving the level of fairness in

the system is possible by letting a larger group of peers attend in the transmissions.

Also since there are more candidates for transmitting at each slot, the system is

less vulnerable to unexpected changes in the set of peers. More interestingly, in the

distributed implementation of this system, we will need less number of coordinating

signals, because finding a non-min-rank peer is much easier than one of the max-rank

peers.

We now present results on the performance of NmRF.

Lemma 12. If the peers are initialized with uncoded chunks, NmRF disseminates all

N degrees of freedom to M peers using the minimum number of transmissions with

probability at least 1− NM
q

.

Proof. At time t, given Si[t] for all i ∈ {1, ...,M}, we denote an optimal set of

transmissions to disseminate all degrees of freedom by T [t] = (γt, . . . , γt+Dim(T [t])−1)

such that

γl ∈ Span(Su[l][0]) ∀l ≥ t and Dim(T [t] ∪ Si[t]) = N ∀i, (4.4)

where Span(S) is the subspace spanned by the vectors in the set S, and Dim(S) is the

78

dimension of this subspace. Note that Dim(T [t]) +Dim(Si[t]) ≥ Dim(T [t]∪Si[t]) =

N , for all i, which implies

Dim(T [t]) ≥ N −min
i
Dim(Si[t]) = N −min

i
ni[t]. (4.5)

Also, it is shown [34] that when all the ranks are equal, i.e., ni[t] = n < N for all i,

then

Dim(T [t]) ≥ N − n+ 1. (4.6)

This suggests that for any non-minimum rank peer j (or any peer j when all the

ranks are equal), there exists at least one γt̂ ∈ T [t] ∩ Span(Sj[t]). Because otherwise

Dim(T [t]) + Dim(Sj[t]) = Dim(T [t] ∪ Sj[t]) = N , which contradicts (4.5) for the

non-minimum rank peer j (or (4.6) when all the ranks are equal). Consequently, peer

j can generate γt̂, and transmit it at time t.

The proof of probability bound 1− NM
q

follows a similar approach as in [34] and

is omitted for brevity.

Corollary 5. For the infinite field size q, the NmRF algorithm is optimal.

Note that the above results also hold for the case where the chunks are initially

coded. In what follows, we will specifically study this latter case and show that

by initially providing randomly coded chunks, better performance guarantees can be

achieved.

b. Coded Initialization

In this subsection we assume that the media server performs the network coding

initially and transmits coded chunks instead of the original chunks. Therefore, peers

are assumed to possess randomly coded chunks at the beginning. We immediately

79

see that combining the initial randomly coded chunks still further for P2P broadcasts

cannot improve the performance on average. Therefore, we assume that at time t,

u[t] transmits any one of its initial chunks that has not yet been transmitted. This

will alleviate the need for encoding procedure at the peer devices.

Suppose that a peer has rank n < N , i.e, it possesses n linearly independent

coded chunks. For a new coded chunk to be useful to this peer, it has to be linearly

independent of the previous n chunks. However, there is always some non-zero proba-

bility that the new random linearly coded chunk is not useful. An upper bound on this

probability is 1
q

, which does not depend on n (see [32]). If we assume that q is large

enough, then every new randomly coded chunk is indeed useful (i.e, ni[t] = n̂i[t]).

This suggests one can simply count the number of arrivals to a peer to compute its

rank, i.e, ni[t] = n̂i[t]. Hence, we can define the state of the system at time t by

giving the number of chunks from external (B2P) sources possessed by each peer,

(e1[t], . . . , eM [t]), and the amount of shared content between them, (x1[t], . . . , xM [t]).

The following theorem provides an expression for the minimum number of re-

quired transmissions to disseminate all degrees of freedom, in case of infinite field

size.

Theorem 16. Let the system state at time t ≥ 0 be ((e1, . . . , eM), (x1[t], . . . , xM [t]))

and
∑

i ei ≥ N . The minimum number of slots required to complete the dissemination

using only P2P broadcasts is

τ ∗ =

⌈
N −

∑
i

xi[t]−min

(∑
i ei −N
M − 1

,min
i

(ei − xi[t])
)⌉

.

Proof. Note that in this proof, we deal with infinite field size q. Let i∗ ∈ {arg maxi ni[t]}

and ni∗ [t] = nmax. In any trajectory of P2P transmissions, peer i∗ needs to receive

N − nmax broadcasts. Since the order of the transmissions is irrelevant, let the first

80

N − nmax transmissions be those needed by i∗. Therefore after τ1 = N − nmax slots,

i∗ will become full-rank, i.e., ni∗ [t + N − nmax] = N . At this time, i∗ can take care

of all remaining P2P transmissions, whose minimum number is τ2 = N −mini ni[t+

N − nmax].

Let yi be the number of times peer i transmits in the first τ1 slots. Then we

require

∑
i 6=i∗ yi = N − nmax and yi ≤ ei − xi[t], (4.7)

and we have, ni[t+N − nmax] = ni[t] +N − nmax − yi.

Consequently, the minimum time, τ ∗ = min(yi)i (τ1 + τ2), to deliver all chunks is

τ ∗ = N −max
(yi)i

(
min
i 6=i∗

(ni[t]− yi)
)

(4.8)

subject to the constraints given in (4.7). From (4.2), τ ∗ can be rewritten as

τ ∗ = N −
∑
i

xi[t]−max
(yi)i

(
min
i 6=i∗

(ei − xi[t]− yi)
)
. (4.9)

Solving the above maximization gives the following solution to the minimum comple-

tion time:

τ ∗ =

⌈
N −

∑
i

xi[t]−min

(∑
i ei −N
M − 1

,min
i

(ei − xi[t])
)⌉

.

Note that although the solution to the maximization in (4.9) will provide an

optimal P2P scheme in an offline manner, from Corollary 5 the NmRF online scheme

achieves the same solution.

Next, we consider the finite field case. The following Theorem provides a lower

bound on the probability that the NmRF algorithm completes dissemination by time

81

τ ∗.

Theorem 17. When the random linear coding coefficients are drawn from a finite

field Fq, the NmRF algorithm completes dissemination of the block to all peers by

time τ ∗ with probability at least 1− M
q−1 .

In the proof, we will use the following useful lemma.

Lemma 13. A matrix of dimension R × N , whose elements are drawn uniformly

at random from a finite field Fq, is full-rank with probability at least 1 − 1
q|N−R|(q−1) ,

where q is the field size.

Proof. Assume R ≤ N. The probability of having R linearly independent rows is

(qN−1)(qN−q)(qN−q2)...(qN−qR−1)
qRN

=
∏N

i=N+1−R(1− q−i) ≥ 1−
∑∞

i=N+1−R
1
qi

= 1− 1
qN−R(q−1) ,

in which the denominator is the number of all matrices of dimension R × N in the

field Fq. Also the rth term in the numerator is the number of all possibilities for the

rth row, such that it is linearly independent of the previous r − 1 rows. For R > N ,

it can be shown similarly that the probability of obtaining N linearly independent

columns is at least 1− 1
qR−N (q−1) .

Proof. (Theorem 17) Recall that ni[t] and n̂i[t] are the rank and the number of chunks,

respectively, available with i. In the NmRF algorithm, u[t] ∈ {1, . . . ,M}\{arg mini ni[t]}.

First, we show that this theorem holds even if u[t] ∈ {1, . . . ,M}\{arg min n̂i[t]}, i.e.,

at each time t, a peer whose total number of received chunks is not minimum can

transmit.

For the infinite field size case, ni[t] = n̂i[t], i.e., both the above schemes are

identical, and, as shown in Theorem 16, both result in n̂i[t+ τ ∗] ≥ N for all i. Hence,

82

we want to compute

P (∀i : ni[t+ τ ∗] = N | ∀i : n̂i[t+ τ ∗] ≥ N) =

1− P (∃i : ni[t+ τ ∗] < N | ∀i : n̂i[t+ τ ∗] ≥ N) ≥

1−
∑

i P (ni[t+ τ ∗] < N | n̂i[t+ τ ∗] ≥ N) ,

(4.10)

where the last inequality follows from the union bound. Note that n̂i[t + τ ∗] ≥ N

means peer i has received at least N randomly generated chunks by time t + τ ∗,

and the probability that the corresponding n̂i[t + τ ∗] × N matrix is not full-rank is

P (ni[t+ τ ∗] < N |n̂i[t+ τ ∗] ≥ N). From Lemma 13,

P (ni[t+ τ ∗] < N | n̂i[t+ τ ∗] ≥ N) ≤ 1/(q − 1). (4.11)

Consequently, P (∀i : ni[t+ τ ∗] = N | ∀i : n̂i[t+ τ ∗] ≥ N) ≥ 1− M
q−1 .

We observe that for a given state at time t, if the NmRF algorithm fails to

finish the dissemination by time t + τ ∗, then the algorithm which chooses u[t] ∈

{1, . . . ,M}\{arg min n̂i[t]} also fails. Therefore, the NmRF algorithm performs bet-

ter than the other scheme, and the same lower bound is still valid.

Observation 7. Note that unlike the bound for the uncoded initialization case, 1 −
NM
q

, the performance guarantee found in Theorem 17 is independent of N , the number

of chunks. Thus, the probability of failure with a finite field size is likely to be much

lower on average when we start with randomly coded chunks.

To summarize, it is highly preferred to implement the encoding procedure at the

media server. The advantage of this setup is two-fold: (i) need for implementing a

much simpler application at the peers, since they do not need to perform the encoding

process and (ii) achieving potentially a much better performance.

83

3. Hybrid Network

In this section, we consider the problem when the B2P network coexists with the

P2P network. We assume that at t = 0 peers have no chunks, and can use both

B2P and P2P transmissions to obtain chunks of the block. Recall the QoS constraint

(η, T), which requires that all peers must receive the whole block with probability

η by deadline T. All peers have identical Bernoulli B2P channels with equal (unit)

cost and success probability p, which they use to receive randomly coded chunks from

base stations. As discussed in Section b, there is no performance loss if these chunks

are transmitted via P2P broadcasts without performing any further coding. The

questions that we must answer are: (i) how long should the B2P channels be used?

and (ii) which peer should transmit using P2P broadcast at each time? We will seek

an offline solution for the first question. Therefore, it suffices to consider only those

schemes in which we use the B2P channels for the first few time slots and stop using

them afterward.

Fig. 9. Two-phase scheme. Both B2P and P2P transmissions take place in Phase 1,

whereas only P2P transmissions occur in Phase 2.

If we assume N �M , since the B2P channels are symmetric, our objective will

be to determine a time T1 such that the B2P channels are all turned off at this time.

We will choose this stopping time in an offline fashion in such a way that the QoS

target can be met with lowest cost. The time-line in our hybrid system is illustrated

in Figure 9. We have two phases, where both B2P and P2P methods are used in

Phase 1, while only P2P is used in Phase 2. Further, due to symmetry of the B2P

84

channels, all B2P channels will be turned off simultaneously at T1, with the total cost

being MT1. We first consider the problem in the case of infinite field size.

a. Infinite Field Size

From Figure 9, we observe that the evolution of information state in Phase 2 is

identical to the pure P2P broadcast system in Subsection 2. Theorem 16 can be

used to specify the initial conditions needed to attain any target completion time

(deterministically) in this situation. Thus, from Theorem 16, we define the class of

states Cτ that can finish within time τ purely using P2P broadcasts by

Cτ =
{

((e1, ..., eM), (x1, ..., xM))
∣∣ ∑

i

ei ≥ N, xi ≤ ei,

τ ≥ N −
∑
i

xi −min

(∑
i
ei−N

M−1 ,min
i

(ei − xi)
)}

Note that the peer selection algorithm during Phase 2 would follow NmRF. Then

the optimal stopping time T1 must be the smallest value (lowest cost) such that

the probability that the system state ((e1[T1], . . . , eM [T1]), (x1[T1], . . . , xM [T1])) is in

CT−T1 at the end of Phase 1 is at least η.

Now, consider the evolution of information state during Phase 1. All B2P chan-

nels are used during this interval. However, P2P broadcast can only happen at time

t if at least one peer has a chunk that has not yet been broadcast via P2P. If there

is no such peer, P2P broadcast must remain idle in that time slot. We call all P2P

transmission policies that transmit whenever it is possible to do so as work conserv-

ing. Denote the event of P2P idleness in time slot s by Is ∈ {0, 1}. Hence, for all

work conserving P2P schemes

Is = 1 only if
∑M

i=1 (ei[s]− xi[s]) = 0. (4.12)

Denote the cumulative P2P idle time within the time interval [0, t − 1] by I[t], i.e.,

85

I[t] =
∑t−1

s=0 Is. The following theorem expresses the conditions for (η, T) to be achiev-

able.

Theorem 18. A target QoS (η, T) is achievable if and only if there exists a stop-

ping time T1 ≤ T, and a feasible P2P schedule, {(x1[t], ..., xM [t])}T1t=1, such that the

following conditions hold with probability at least η:

(C1)
∑

i ei[T1] ≥ N

(C2)
∑

i ei[T1]− (M − 1)I[T1] ≥MN − (M − 1)T

(C3) ei[T1]− xi[T1]− I[T1] ≥ N − T ∀i.

Proof. The whole system needs to receive at least N chunks from the B2P network

in Phase 1 in order to be able to disseminate all N original chunks to all peers.

Therefore, condition (C1) must hold.

For a work conserving scheme, we have T1 =
∑

i xi[T1] + I[T1]. Further, from

Theorem 16 we have

T2 − T1 ≥ N −
∑

i xi[T1]−min
(∑

i ei[T1]−N
M−1 ,mini(ei[T1]− xi[T1])

)
.

Therefore, T2 ≥ N + I[T1]−min
(∑

i ei[T1]−N
M−1 ,mini(ei[T1]− xi[T1])

)
. For a successful

delivery of the block we need T2 ≤ T , which implies the constraints (C2) and (C3).

Hence, in order to meet the QoS (η, T), all three conditions in Theorem 18 must hold

with a probability at least equal to η.

From the previous theorem, the optimal stopping time is the smallest value for

T1, for which we have P((C1), (C2), (C3)) ≥ η. The next theorem declares that MRF

is an optimal scheme for Phase 1.

Theorem 19. For any T , T1 and η, the MRF algorithm maximizes P((C1), (C2), (C3))

over all work conserving schemes.

86

Proof. To prove this theorem, we model our system as a system of M queues and

a single server, in which ei[t] and xi[t] are respectively the accumulated arrival and

service to some queue i, at time t. The arrival rate is p for all queues, and the server

can serve one queue in each slot. Note that (C1) and (C2) are independent of the P2P

scheme, and (C3) implies some minimum length constraint on the shortest queue in

this model. We show that the Longest-Queue-First (LQF) algorithm (equivalent to

MRF in the P2P network), due to its equalizing effect, results in a longer minimum

queue length compared to all other work conserving policies. The optimality of MRF

follows from this result. For details, see Appendix B.

Now, it remains to find the minimum T1 for which P((C1), (C2), (C3)) ≥ η,

when the MRF scheme is used. To this end, we define a Markov chain M whose

state at time t is (I[t], Z[t]) = (I[t], zi[t] : 1 ≤ i ≤ M), where Z[t] is a vector of

zi[t] = ei[t] − xi[t] elements. For this Markov chain, Theorem 18 determines a set

of desirable states, C(N,M, T, t), to be hit at time t = T1. Lemma 14 provides this

set and the transition probabilities ofM, which can be used to find the minimum T1

(Algorithm 5).

Lemma 14. For the Markov chainM, the one step transition probability is as follows,

P(I,Z)((I + 1{∑
i
zi=0}, {zi − 1{i=i∗}}+ +mi : 1 ≤ i ≤M)|(I, zi : 1 ≤ i ≤M))

=

p
∑M

i=1mi(1− p)
M−

M∑
i=1

mi

if ∀i : mi ∈ {0, 1}

0 otherwise

where i∗ = min arg maxi zi and {a}+ = max(a, 0). Also the set of desirable states at

87

time t,

C(N,M, T, t) = {(I, Z)| mini zi − I ≥ N − T,∑
i zi + (t− I) ≥ N + (M − 1) max(0, N − T + I)}.

Proof. Note that for all i, zi[t+ 1] = zi[t]− (xi[t+ 1]− xi[t]) +mi, where mi ∈ {0, 1}

and P(mi = 1) = p. Without loss of generality, we assume that at time t MRF

algorithm chooses i∗ = min arg maxi ni[t] = min arg maxi zi[t] (from (4.2)) to make a

P2P transmission. Therefore for all i 6= i∗, xi[t+1] = xi[t]. From (4.12), if
∑

i zi[t] = 0

then I[t + 1] = I[t] + 1. Otherwise, zi∗ [t] > 0 and xi∗ [t + 1] − xi∗ [t] = 1. Therefore,

the state (I, Z) changes with the transition probability presented in the lemma.

Also it can be seen that
∑

i ei[t] =
∑

i zi[t] + t− I[t], because
∑

i xi[t] + I[t] = t

for all work conserving policies. Hence, it is straightforward to see that the conditions

in Theorem 18 imply the set of desirable states C(N,M, T, t) at time t = T1.

In Algorithm 5, we present an algorithm to achieve the QoS target and summarize

its performance as follows.

Theorem 20. Algorithm 5 achieves (η, T) with the minimum cost, when the field size

is infinite.

b. Finite Field Size

In this subsection, we take into account the effect of the finiteness of the field size.

In Theorem 20 we showed that the suggested scheme provides each peer with at

least N coded chunks by the deadline T, with a probability at least equal to η. Since

the field size was assumed to be unboundedly large, N coded chunks were enough to

decode the original ones. For the finite field case, the received chunks by a peer are not

linearly independent with a non-zero probability. In this case, the corresponding peer

88

Algorithm 5 Optimal B2P and P2P schemes (infinite field)

Given M,N, p, T and η:

1) Find T ∗1 such that:

T ∗1 = min{0 ≤ t ≤ T : P ((I[t], Z[t]) ∈ C(N,M, T, t) | (I[0], Z[0]) = 0) ≥ η}.

2) For 0 ≤ t < T ∗1 : turn all B2P channels on and use the MRF algorithm to

schedule the P2P network.

3) At t = T ∗1 : turn all B2P channels off.

4) For T ∗1 ≤ t ≤ T : use the NmRF algorithm to schedule the P2P network.

fails to decode the original chunks. The following theorem declares the probability of

such an event.

Theorem 21. For the field size q, if the proposed scheme in Algorithm 5 is applied,

P (∃i : ni[T] < N) ≤ 1− η +
M

q − 1
. (4.13)

Proof. We have,

P (∃i : ni[T] < N) = P (∃i : ni[T] < N | ∃i : n̂i[T] < N)P (∃i : n̂i[T] < N) +

P (∃i : ni[T] < N | ∀i : n̂i[T] ≥ N)P (∀i : n̂i[T] ≥ N)

Note that the first probability in the RHS of the above equation is 1. Also it was

shown in Theorem 20

P (∃i : n̂i[T] < N) ≤ 1− η. (4.14)

Therefore, we get

P (∃i : ni[T] < N) ≤ 1− η + P (∃i : ni[T] < N | ∀i : n̂i[T] ≥ N) ≤ 1− η + M
q−1 ,(4.15)

where the last inequality follows from Theorem 17.

89

We can see that the probability of failure has two components. One stems from

the unreliability of the B2P channels, upper bounded by some δ1 (here δ1 = 1−η), and

the other from the finiteness of the field size, upper bounded by δ2 (here δ2 = M
q−1).

In order to meet the QoS constraint, it suffices to have δ1 + δ2 ≤ 1− η. The following

lemma shows that for decreasing δ2, each peer requires to receive more coded chunks,

which means that B2P usage and the associated cost increase.

Lemma 15. The bound δ2 ∈ (0, M
q−1) is achievable, if for all i we have n̂i(T) ≥

N + ∆(δ2), where ∆(δ2) =
⌈
logq(

M
q−1)− logq(δ2)

⌉
is the number of additional coded

chunks each peer needs on average, in order to reduce the probability of winding up

with a non-full rank matrix to δ2.

Proof. The proof follows directly from Lemma 13.

4. Distributed Implementation of Peer Selection Algorithms

In the previous sections, we presented two simple peer selection algorithms—MRF

and NmRF. These algorithms indicate which peer is the appropriate one to broadcast

at each time. Although we saw that MRF and NmRF perform well (indeed they are

optimal for large field sizes), coordination of the P2P broadcasts requires a central

entity which has complete knowledge about the rank of all peers. The overhead of

having a central scheduler in a wireless network can enormously degrade the per-

formance. In this section, we present some ideas to decentralize the peer selection

schemes with a small overhead.

Recall our model, in which we assumed the peers are close to each other and the

P2P broadcasts are always successful. For such a model, it is reasonable to further

assume that the delay of sensing a broadcast transmission is negligible. That is, when

a peer broadcasts over the P2P network, every other peer will be aware of it almost

90

instantaneously, as in the model considered in [46].

Now, we divide each time slot to two parts; a control slot (with length Tc) and

a data slot (with length Td). The purpose of a control slot is to find an appropriate

peer to broadcast a message during the following data slot. We assume that each peer

includes its current rank in the header of the data message that it transmits. Hence,

after a P2P broadcast, all the peers get to know the rank of the transmitter. We

use this rank as a reference in order to find a maximum-rank (or non-minimum-rank)

peer in the MRF (or NmRF) algorithm for the next time slot. The generic form of

our distributed peer selection algorithm is as follows:

Distributed peer selection algorithm: At the beginning of time slot t, each

peer i decides whether to contend for a transmission during the data slot based on

its current rank ni[t] and the rank of the previous transmitter u[t− 1] at the previous

slot nu[t−1][t− 1]. If i decides to contend, it will wait for some random back-off time

during the control slot. The decision rule for MRF and NmRF, and the method

of choosing the back-off times will be described later in this section. If during the

waiting interval, peer i hears a transmission from another peer, it does not contend

to transmit. Otherwise, when peer i finishes waiting for its determined back-off time,

it will broadcast a short control message informing its intension to transmit over the

data slot. If no peer attempts to transmit during the control slot, the peer that

transmitted in the previous time slot, peer u[t− 1], will transmit in slot t as well.

Clearly, due to the assumption of zero sensing delay, no collision will happen in

either the control slot or the data slot. Also, the overhead of the control slot can be

significantly small, because in general a control message is much shorter than a data

message. In what follows, we show how peers choose the back-off time in case of MRF

and NmRF algorithms.

91

First, we note that from (4.2), we have

n̂i[t] = n̂i[t− 1] + (ei[t]− ei[t− 1]) +

(∑
j 6=i

xj[t]−
∑
j 6=i

xj[t− 1]

)
, (4.16)

where (ei[t] − ei[t − 1]), (
∑

j 6=i xj[t] −
∑

j 6=i xj[t − 1]) ∈ {0, 1} determine if peer i

received a transmission during slot t − 1 respectively from the B2P and the P2P

networks. Thus, the rank of any peer can increase in a slot by at most two.

MRF Algorithm

Following MRF algorithm, for each peer i we have ni[t− 1] ≤ nu[t−1][t− 1] and

from (4.16), n̂i[t] ≤ n̂i[t − 1] + 2 and consequently ni[t] ≤ ni[t − 1] + 2 hold. As a

result, ni[t] ≤ nu[t−1][t − 1] + 2 for all i ∈ {1, ...,M}. In other words, any peer that

contends for transmission in slot will have a rank either one or two greater than the

peer that transmitted in the previous slot.

Back-off time in distributed MRF algorithm: At the beginning of time slot t,

peer i chooses to contend for a transmission if ni[t] ≥ nu[t−1][t − 1] + 1. Now, there

are only two possibilities, and if ni[t] = nu[t−1][t − 1] + 2, peer i waits for a random

time uniformly distributed in [0, Tc/2], else if ni[t] = nu[t−1][t − 1] + 1 it chooses a

uniformly random time in [Tc/2, Tc].

Note that the proposed distributed MRF algorithm can also be applied to de-

centralize the NmRF algorithm. However, we will present a slightly different scheme

which is more suited for the NmRF scheme in pure P2P systems (especially, in Phase

2 of Algorithm 5).

NmRF Algorithm

In a pure P2P system (no B2P transmissions), from (4.16), we have n̂i[t] =

n̂i[t− 1] + (
∑

j 6=i xj[t]−
∑

j 6=i xj[t− 1]), and nu[t−1][t] = nu[t−1][t− 1].

Back-off time in distributed NmRF algorithm: At the beginning of time slot t,

92

peer i chooses to contend for a transmission only if ni[t] ≥ nu[t−1][t − 1] + 1. In this

case, it will wait for a random amount of time uniformly distributed in [0, Tc] in the

control slot.

It is straightforward to check that in the proposed distributed schemes, an appro-

priate peer (maximum-rank for MRF and non-minimum-rank for NmRF) succeeds

in transmitting during the data slot.

5. Simulation Results

We now evaluate the performance of Algorithm 5 for a simple hybrid network with

M = 4 users and different values of N .

Figure 10(a) illustrates the tradeoff between the minimum cost, T1, and the

deadline T . By increasing the B2P channel capacity p, lower costs are achievable

for the same T . Also as T increases, peers have more opportunities to disseminate

chunks in Phase 2. Hence, we can achieve the QoS target with lower costs. However,

T1 should be large enough to satisfy conditions (C1)− (C3), which is why it does not

decrease beyond T = 32. The infeasible region indicates those values for T which are

not achievable (Theorem 18).

The effect of finite field sizes is evaluated in Figure 10(b). Clearly, increasing the

field size results in a better performance.

Figure 10(c) displays the minimum cost to achieve the QoS versus ∆, which is

the minimum number of extra chunks each peer i would receive eventually. These

extra chunks can compensate the failure probability due to finiteness of q. However,

a larger ∆ incurs more cost of the B2P usage. Note that as the field size decreases, a

larger ∆ is required. For example for q = 4, we need at least ∆min = 2 extra chunks

in order to meet the QoS.

93

16 18 20 22 24 26 28 30 32

8

10

12

14

16

18

20

22

T

T 1

P=0.8
P=0.7
P=0.9

Infeasible
Region

(a) Minimum cost vs. deadline
trade-off (N = 30, η = 0.9, q =∞)

10 11 12 13 14 15
10 3

10 2

10 1

100

T1

q=
Simulation for q=32
Simulation for q=8
Lower bound for q=32
Lower bound for q=8

(b) Probability of success vs. minimum
cost (N = 20, T = 15, q = 8, 32)

0 1 2 3 4 5 6 7 8 9 10
6

7

8

9

10

11

12

13

14

15

16

17

T 1

q=64
q=4
q=2

(c) The effect of extra delivered chunks
on achievability (N = 20, T = 25,

η = 0.9)

Fig. 10. The performance of Algorithm 5

94

B. Live Multimedia Streaming

In this section, we study a new model for streaming applications and propose simple

optimal algorithms to achieve the required QoS. The structure of this section is as

follows.

In Subsection 1, we adopt a new model, suitable for live streaming applications,

and modify the QoS metric. Unlike the content distribution model, here we have a

continuous stream of multimedia content that can be thought of as a long sequence of

blocks. Each block has a fixed deadline to be delivered from the time it is generated.

As before, we let peers utilize both of their B2P and P2P interfaces simultaneously.

However, we will show how we can separate the decisions on the B2P and the P2P

networks in this new model. According to the new QoS metric, each peer individually

requires a minimum average delivery ratio in order to guarantee smooth playout.

As mentioned above, we can separately study the P2P part of the system. Hence,

we will focus on the P2P network in Subsection 2, and find a set of necessary and suffi-

cient conditions for achievability of a given QoS metric. Then we use ideas from queue-

ing theory and Foster-Lyapunov stability criterion to find an optimal P2P scheme for

sufficiently large field sizes. We shall see that the proposed P2P scheme has a simple

and intuitive form.

In Subsection 3, the problem of coordinating the B2P network will be investi-

gated. Based on the necessary and sufficient conditions found in Subsection 2, we

propose a general framework to find the optimal B2P usage times for any given cost

criterion.

We specifically study a symmetric system, in which all peers have similar QoS

requirements, in Subsection 4. We discover new properties of this system, and it will

be shown how the results found in the previous subsections can be simplified for this

95

special case.

In all the above subsections, we assume the coding is performed in the fields of

sufficiently large size to ignore the degradation effect of receiving useless packets. We

turn our attention to the finite fields in Subsection 5. We will provide some bounds

on the performance of the proposed B2P-P2P algorithm in this case. It will be seen

that this degradation effect decreases inversely proportional to the field size q and is

independent of other parameters like the number of peers or the number of chunks in

a block.

In Subsection 6, we extend our results to a number of interesting situations which

can occur in practice. For example, in order to improve the QoS in the system we

can add some peers (called boosters) whose role is to merely help the other peers.

The effect of having boosters is evaluated in this subsection. Also, an important issue

that arises in multi-user systems is the fairness problem. We will also show how we

can incorporate fairness into our model. Many practical media streaming systems use

some erasure protection coding schemes in order to take care of the failures and hence

improve the quality. We will briefly point out to some examples of these techniques

and suggest a new QoS model suitable for such applications. An optimal P2P scheme

will also be proposed for achieving the new QoS metric.

Some simulation results will be presented in Subsection 7, which will show the

capabilities of our framework and the optimality of the proposed algorithms.

1. System Model

Consider Figure 8 again. There are M peers, denoted by i ∈ {1, . . . ,M}, all interested

in receiving the same stream of data (e.g. a video file). The data source generates

the stream in the form of a sequence of blocks. Each block is further divided into

N chunks. We consider a slotted-time system, where at most one chunk can be

96

transmitted over either of B2P or P2P interfaces during a time slot.

These blocks need to be played out at the peer devices in sequence and within

some specific deadlines. Suppose the playing time of a block consists of T slots, we

call this time scale a frame. We require all peers to synchronously play out the kth

block during the kth frame, for k ≥ 1. However a peer i is able to do so, only if he

has received all N chunks of the kth block by the beginning of frame k. Otherwise, i

will be idle during this frame. Let Ii[k] ∈ {0, 1} denote the idleness of peer i during

the kth frame.

We are interested in live streaming applications as opposed to on-demand or

stored content streaming. That is the kth block is available at the servers to dissem-

inate to peers only within some short fixed time before the kth frame. We assume

that the kth block is available at base stations not before frame k − 2.

Each peer i has a QoS metric ηi ∈ (0, 1], which requires him to successfully play

out at least ηi fraction of blocks. ηi is called the delivery ratio of peer i and is the

minimum acceptable long-run average number of frames peer i is busy playing out,

ηi ≤ 1− lim
K→∞

1

K

K∑
k=1

E[Ii[k]]. (4.17)

Similar to our model in Section A, we assume two communication interfaces

(free, reliable broadcast P2P and costly, unreliable unicast B2P) for each peer. We

model each B2P unicast channel as an independent Bernoulli random variable with

parameter p. By u[t] ∈ {1, . . . ,M}, we denote the peer who broadcasts over P2P

channel in time slot t.

Our objective is to find a scheme that would satisfy the delivery ratio requirement

of all peers at the lowest cost of using B2P transmissions. Figure 11 illustrates our

timing structure. Note that peers receive chunks of block k from the B2P network

during frame k − 2. These chunks may be disseminated over the broadcast P2P

97

network during frame k − 1. Those peers who could successfully receive enough

number of chunks of block k, before the beginning of frame k, will be able to recover

and play out this block during the kth frame.

Playing (k-2) Playing (k-1) Playing (k)

P2P block (k)P2P block (k-1) P2P block (k+1)

B2P (k) B2P (k+1) B2P (k+2)

frame kframe k-1frame k-2

Fig. 11. Sequence of transmissions over B2P and P2P networks and the playout time

of each block

We would like to emphasize the differences between the content distribution

application, studies in the previous section, with the current live streaming problem.

In the former problem, our objective was to disseminate a single common block of

information to a group of peers. We considered a system-wide QoS constraint which

requires the whole group of peers to receive the common block, with some target

probability, within some fixed deadline. In our proposed scheme, we had simultaneous

transmissions of the block over two interfaces.

In the current live streaming application, our goal is to enable multicasting a live

multimedia channel to a group of peers. Hence unlike the previous problem, we deal

with a much longer time horizon which consists of many subsequent frames. Also

the QoS is defined for each peer individually based on the notion of delivery ratio,

which is in essence a long-run average parameter. In the proposed framework, the

transmission of block k is decomposed to two separate phases; B2P transmissions

during frame k− 2 and P2P broadcasts during frame k− 1. We realized if we do not

decompose the P2P and B2P transmissions, then we will need an excessive amount of

feedbacks and computations to efficiently coordinate the P2P transmissions. However,

98

we shall see that the optimal scheme for the proposed timing structure is quite simple

and easily implementable in a distributed fashion without any need for exclusive

feedback from peers.

For now let us focus on a single block (say block k). We denote the total number

of chunks of block k delivered to peer i via the B2P network by the beginning of slot

t using e
(k)
i [t]. Also x

(k)
i [t] and r

(k)
i [t] are used to denote respectively the total number

of transmitted and received chunks of block k by peer i via P2P by the beginning of

slot t. Note that according to the model

∑
i,k x

(k)
i [t]−

∑
i,k x

(k)
i [t− 1] ≤ 1 for all t > 0 (4.18)

that is only one peer can broadcast over the P2P network at each slot, and because

of the lossless nature of the broadcast P2P network, we have
∑

j 6=i x
(k)
j [t] = r

(k)
i [t].

Also our timing structure, displayed in Figure 11, implies the following conditions,

e
(k)
i [t] = 0 for all t ≤ (k − 2)T, k ≥ 2

e
(k)
i [t] = e

(k)
i [(k − 1)T] for all t ≥ (k − 1)T

r
(k)
i [t] = 0 for all t ≤ (k − 1)T

r
(k)
i [t] = r

(k)
i [kT] for all t ≥ kT.

(4.19)

For k = 1, we assume that at time 0 peers are initialized with some buffered

chunks from the B2P network. Like before, we use random linear network coding

over the chunks of each block in order to avoid the problem of piece selection. Each

coded chunk is now a random linear combination (with coefficients in finite field Fq)

of the N original chunks in the corresponding block.

Let S
(k)
i [t] be the set of vectors corresponding to the coded chunks of block k

99

possessed by peer i at time t, with cardinality n̂
(k)
i [t]. Thus,

n̂
(k)
i [t] = e

(k)
i [t] + r

(k)
i [t] = e

(k)
i [t]− x(k)i [t] +

∑
j x

(k)
j [t]. (4.20)

We denote by n
(k)
i [t] (called the kth rank of peer i at time t) the dimension of the

subspace spanned by S
(k)
i [t].

As seen in the previous section, the reliability of P2P transmissions will result in

two important points. First, we can assume without loss of generality that at time t,

u[t] transmits a chunk which is a linear combination of the chunks received from the

B2P network (during the previous frame). This implies that

x
(k)
i [t] ≤ e

(k)
i [t] for all k and t ≥ 0. (4.21)

Second, given a sequence of P2P transmissions, any changes in the order of transmis-

sions will not affect the performance.

Note that a feasible P2P scheme {(x(k)1 [t], ..., x
(k)
M [t])}kTt=(k−1)T must satisfy (4.18)

and (4.21). Also, in order to decode the original N chunks of block k at the beginning

of frame k, peer i must have n
(k)
i [kT] = N . One can immediately verify that Ii[k] =

1{n(k)
i [kT]<N}.

Consider Figure 11 again. For each block k, peers have T time slots (duration

of frame k− 1) to further exchange the chunks, received from the B2P network, over

the broadcast P2P network. Hence, the B2P network should deliver enough coded

chunks to peers during frame k − 2 such that they can meet their QoS constraints

using the T P2P broadcasts in frame k − 1.

In what follows, we assume that the field size q is large enough that we can

ignore the effect of its finiteness on the performance of the linear coding (i.e., n
(k)
i [t] =

min{N, n̂(k)
i [t]}). We are also interested in the case where N > T , because otherwise

there are enough number of time slots in each frame for peers to broadcast all N

100

degrees of freedom and hence the optimal P2P scheme becomes trivial. We will

consider the finite field case in Section 5.

2. Coordination of the P2P Broadcast Network

In this subsection, we seek an algorithm to pick the right peer to broadcast over the

P2P network at each time. Since we decomposed the B2P and P2P transmissions,

we can study a pure P2P broadcast network for each block k. The effect of the B2P

transmissions can be modeled as a set of stochastic arrivals of coded chunks to the

peers at the beginning of each frame. That is for each block k, peer i receives a

number e
(k)
i of randomly coded chunks at the beginning of frame k−1. These chunks

will be used during frame k−1 over the P2P network such that peers can satisfy their

QoS metrics. As seen in Section A, it suffices to transmit initial chunks, received from

B2P network, without any further coding or combining.

Note that the e
(k)
i values are random due to unreliability of B2P channels. Fol-

lowing our result in the previous section, if we fix the number of slots each peer

attempts to receive a chunk from the B2P network in each frame, then e
(k)
i values will

be independent over peers, and for each peer i, it is independently and identically

distributed over blocks k. We denote the arrival process to peer i using ei.

Our objective is to find a P2P scheme which can satisfy the QoS requirements

(η1, ..., ηM) of the peers for a given set of arrival processes (e1, ..., eM). First, we need

to determine whether the QoS metric (η1, ..., ηM) is achievable for the given arrivals

(e1, ..., eM) or not.

a. Achievability of QoS Metric

Definition 7. We say the QoS (η1, ..., ηM) is achievable, if there exists a feasible policy

to coordinate the P2P transmissions such that, on average each peer i successfully

101

receives ηi fraction of the blocks before their deadlines.

In what follows, we will present some necessary and sufficient conditions for QoS

metrics to be achievable.

We denoted the number of arrived B2P chunks of block k to peer i by e
(k)
i

and further assumed that e
(k)
i values, for k ≥ 1, are independently and identically

distributed as a random variable ei.

Peers have T slots in each frame to exchange the received B2P chunks. Hence,

each peer i can potentially recover block k, only if (i) he has received enough B2P

chunks initially (i.e, e
(k)
i ≥ N − T) and (ii) the whole system is full-rank at the

beginning of the frame (i.e,
∑

j e
(k)
j ≥ N). We let the idleness of peer i at frame k be

one (i.e., Ii[k] = 1), when i is not able to recover block k. Therefore for each peer i

we have,

1− Ii[k] ≤ 1{e(k)i ≥N−T,
∑

j e
(k)
j ≥N}

(4.22)

From (4.17) and since (e
(k)
1 , ..., e

(k)
M) is assumed to be identically and independently

distributed over frame k with (e1, ..., eM), we get the following necessary condition

on achievability of ηi

ηi ≤ P

(
ei ≥ N − T,

∑
j

ej ≥ N

)
. (4.23)

Note that even if
∑

j e
(k)
j ≥ N holds, we may not be able to deliver the whole

block k to all peers i who satisfy e
(k)
i ≥ N − T . Let Ns(e

(k)
1 , ..., e

(k)
M) =

∑
i(1 −

Ii[k]) be the number of peers who can successfully receive the whole block k, given

the B2P arrivals (e
(k)
1 , ..., e

(k)
M). The following lemma provides an upperbound on

Ns(e
(k)
1 , ..., e

(k)
M).

102

Lemma 16. Given the B2P arrivals (e
(k)
1 , ..., e

(k)
M), we have

Ns(e
(k)
1 , ..., e

(k)
M) ≤ N∗s (e

(k)
1 , ..., e

(k)
M) =

min

(
|S|(N − T),

[∑
i e

(k)
i − T

]+)
N − T

, (4.24)

where S = {i ∈ {1, ...,M} : N − e(k)i ≤ T,
∑

j e
(k)
j ≥ N} and [a]+ = max{a, 0}.

Proof. We have 1 − Ii[k] = 1{n(k)
i [kT]≥N} ≤ 1{n̂(k)

i [kT]≥N} = 1{e(k)i −x
(k)
i [kT]+

∑
j x

(k)
j [kT]≥N}.

Therefore, we can solve the following maximization problem in order to find an up-

perbound on Ns(e
(k)
1 , ..., e

(k)
M),

max
∑

i 1{e(k)i −x
(k)
i [kT]+

∑
j x

(k)
j [kT]≥N}

subject to

x
(k)
i [kT] ≤ e

(k)
i for all i∑

j x
(k)
j [kT] ≤ T

(4.25)

The first constraint implies
∑

j x
(k)
j [kT] ≤

∑
j e

(k)
j , hence to achieve the maximum

objective we can let
∑

j x
(k)
j [kT] = min(

∑
j e

(k)
j , T).

Lets partition the set of peers {1, ...,M} into sets S and Sc = {1, ...,M}\S. Note

that Sc is the set of peers who, either individually or collectively, have not received

enough number of B2P arrivals and no feasible P2P scheme can help them to recover

the block before its deadline (i.e., Ii[k] = 1 for i ∈ Sc). Hence, Ns(e
(k)
1 , ..., e

(k)
M) ≤ |S|.

Suppose
∑

j e
(k)
j < N , then we have Ns(e

(k)
1 , ..., e

(k)
M) = |S| = 0. Otherwise∑

j e
(k)
j ≥ N and with our assumption of T < N , the optimization in (4.25) can be

modified to

max
∑

i∈S 1{e(k)i −x
(k)
i [kT]≥N−T}

subject to

x
(k)
i [kT] ≤ e

(k)
i for all i∑

j x
(k)
j [kT] = min(

∑
j e

(k)
j , T) = T

(4.26)

103

Note that we can increase x
(k)
i [kT] upto e

(k)
i for i ∈ Sc without affecting the objective

value. However, we need to make sure that the second constraint is satisfied. Con-

sidering this observation will result in the following modification of our maximization

problem

max
∑

i∈S 1{e(k)i −x
(k)
i [kT]≥N−T}

subject to

x
(k)
i [kT] ≤ e

(k)
i for all i ∈ S∑

j∈S x
(k)
j [kT] = [T −

∑
j∈Sc e

(k)
j]+

(4.27)

where the optimal value will be |S|−
⌈[

[T−
∑

j∈Sc e
(k)
j]+−

∑
i∈S e

(k)
i +|S|(N−T)

]+
N−T

⌉
. Note that∑

i∈S e
(k)
i ≥ |S|(N − T) and [[X]+ + Y]+ = [X + Y]+ for any X and any Y ≤ 0.

Therefore,

|S| −
⌈[

[T−
∑

j∈Sc e
(k)
j]+−

∑
i∈S e

(k)
i +|S|(N−T)

]+
N−T

⌉
= |S| −

⌈[
[T−

∑
i e

(k)
i +|S|(N−T)

]+
N−T

⌉
=
⌊
min

(
|S|(N−T),

∑
i e

(k)
i −T

)
N−T

⌋
.

(4.28)

Note that the above optimal value is subject to the condition
∑

j e
(k)
j ≥ N . However,

it is straightforward to check that we can get a general form for the optimal value of

(4.25) by a slight modification as follows,

⌊min

(
|S|(N−T),

[∑
i e

(k)
i −T

]+)
N−T

⌋
.

Consequently, we get

Ns(e
(k)
1 , ..., e

(k)
M) ≤

min

(
|S|(N − T),

[∑
i e

(k)
i − T

]+)
N − T

.

Once again from (4.17) and since (e
(k)
1 , ..., e

(k)
M) is i.i.d over frame k, the following

104

necessary condition on
∑

i ηi will be resulted

∑
i

ηi ≤ E [bN∗s (e1, ..., eM)c] . (4.29)

The following theorem summarizes our result,

Theorem 22. The QoS metric (η1, ..., ηM) is achievable with respect to i.i.d B2P

arrivals (e1, ..., eM) if and only if the following conditions are satisfied

(C1) ηi ≤ P
(
ei ≥ N − T,

∑
j ej ≥ N

)
for all i

(C2)
∑

i ηi ≤ E [bN∗s (e1, ..., eM)c] .
(4.30)

Proof. The necessity part was shown in (4.23) and (4.29). To prove the sufficiency

of these conditions, we will propose an algorithm in the next subsection which can

fulfill any QoS constraints satisfying (C1) and (C2).

Corollary 6. For the symmetric case, when ηi = η and ei are identically distributed

for all peers i, the condition (C1) is dominated by (C2) and the necessary and suffi-

cient condition on the achievability of the QoS metric (η, ..., η) reduces to

(C2′) η ≤ 1
M
E [bN∗s (e1, ..., eM)c] . (4.31)

Proof. From (4.24) and (C2) in (4.30), we have

Mη ≤ E

[⌊
min

(
|S|(N−T),

[∑
i e

(k)
i −T

]+)
N−T

⌋]
≤ E

[
min

(
|S|(N−T),

[∑
i e

(k)
i −T

]+)
N−T

]
(a)

≤ 1
N−T min

(
E [|S|(N − T)] ,E

[[∑
i e

(k)
i − T

]+])
≤ E [|S|] = E

[∑
i 1{ei≥N−T,

∑
j ej≥N}

]
= MP

(
ei ≥ N − T,

∑
j ej ≥ N

)
,

(4.32)

where (a) follows since E[min(X, Y)] ≤ min(E[X],E[Y]). Hence, condition (C2)

implies condition (C1) for the symmetric case.

In the next subsection, we will use some ideas from queueing theory in order to

105

find a simple algorithm which is able to meet any achievable QoS metric.

b. Optimal P2P Scheme

In this subsection, we propose a simple algorithm which can fulfill any QoS metric

satisfying the conditions in (4.30). As a result, (C1) and (C2) are sufficient conditions

on achievability of a QoS metric (Theorem 22). Also the proposed algorithm is

throughput optimal in the sense that it can satisfy any achievable QoS metric.

In order to keep track of peers’ quality of experience, we define a virtual deficit

queue for each peer. The length of this queue di[k], for peer i at frame k, follows the

dynamic below

di[k] = di[k − 1] + ηi − (1− Ii[k]).

Recall that Ii[k] = 1 means peer i is not successful in receiving the block k before

its deadline and hence is idle in frame k. In this case the deficit value of this peer

increases by an amount equal to its delivery ration ηi. Otherwise, Ii[k] = 0 and the

deficit value decreases by 1 − ηi. Therefore, the deficit queue length captures the

accumulated unhappiness of a peer about the QoS experienced so far,

di[k] = kηi +
k∑
l=1

Ii[l]− k.

The evolution of these deficit queues can be studied by a Markov chain D whose

state at each step k is ([d1[k]]+, ..., [dM [k]]+). Our objective is to find a P2P scheme

which leads to this Markov chain being stable (positive recurrent). If D is stable,

then E[di[k]]+ converges to some finite value. Consequently, we will have

lim
K→∞

1

K
E[di[k]] ≤ lim

K→∞

1

K
E[[di[k]]+] = 0.

106

Hence,

ηi ≤ 1− lim
K→∞

1

K

K∑
k=1

E[Ii[k]]

which implies that the QoS requirement of peer i is satisfied. Next, we will provide a

P2P scheme in Algorithm 6 whose performance is summarized in Theorem 23.

Algorithm 6 Optimal P2P scheme (infinite field)

At the beginning of each frame k − 1, given the arrivals (e
(k)
1 , ..., e

(k)
M):

1) Partition the peers into sets S = {i ∈ {1, ...,M} : N − e(k)i ≤ T,
∑

j e
(k)
j ≥ N}

and Sc.

If S = ∅, nobody can get full-rank. Otherwise,

2) Let all the peers in Sc transmit all they have initially received for t = (k − 1)T

to (k − 1)T + T1 − 1, where T1 = min{
∑
i∈Sc

e
(k)
i , T}.

3) While t < kT − 1 and ∃i ∈ S : n
(k)
i [t] < N , do:

Let S ′(t) = {i ∈ S : n
(k)
i [t] ≥ N + t− kT}.

If S ′ 6= ∅, then let one of the peers in S ′ broadcast a chunk.

Otherwise, let î ∈ arg min
i∈S: n(k)

i [t]>t−(k−1)T
di transmit.

t← t+ 1.

Theorem 23. The P2P scheme in Algorithm 6 is throughput optimal, in the sense

that it can satisfy all achievable QoS metrics (η1, ..., ηM).

Proof. In this proof, we will use the Lyapunov criterion [12] to show the stability of

Markov chain D. Let V [k] = 1
2

∑
i([di[k]]+)2 be the Lyapunov function at frame k.

We will show that for any achievable QoS, the proposed P2P algorithm results in an

expected drift

∆V [k] = E [V [k]− V [k − 1] | state of the system at frame k − 1]

107

which is negative except in a finite subset of the state space and hence the Lyapunov

Theorem implies that the Markov chain D is stable.

∆V [k] = E [V [k]− V [k − 1] | [di[k − 1]]+ = di : ∀i]

= 1
2
E [
∑

i ([di[k]]+)2 − ([di[k − 1]]+)2 | [di[k − 1]]+ = di : ∀i]

= 1
2
E
[∑

i

(
[di[k − 1] + ηi − 1 + Ii[k]]+

)2 − (di)
2 | [di[k − 1]]+ = di : ∀i

]
(a)

≤ 1
2
E
[∑

i (di + ηi − 1 + Ii[k])2 − (di)
2
]

= E [
∑

i di (ηi − 1 + Ii[k])] + 1
2
E
[∑

i (ηi − 1 + Ii[k])2
]

(b)

≤ M/2 +
∑

i diηi − E [
∑

i di(1− Ii[k])]

(4.33)

where (a) follows from ([X+Y]+)2 ≤ ([X]++Y)2, and (b) holds since (ηi − 1 + Ii[k])2 ≤

max((ηi)
2 , (1− ηi)2) ≤ 1.

In order to get a negative drift (except in a finite subset), we minimize the above

upperbound. That is at the beginning of each frame k − 1, for given deficit values

([d1[k − 1]]+, ..., [dM [k − 1]]+) = (d1, ..., dM) and any realization of the B2P arrivals

(e
(k)
1 , ..., e

(k)
M), we solve the following optimization problem,

max
∑

i di(1− Ii[k]) =
∑

i di1{e(k)i +
∑

j 6=i x
(k)
j [kT]≥N}

subject to

x
(kT)
i [t] ≤ e

(k)
i for all i∑

i x
(k)
i [kT] ≤ T

(4.34)

where the second constraint comes from x
(k)
i [(k − 1)T] = 0 and

∑
i

x
(k)
i [t]−

∑
i

x
(k)
i [t− 1] ≤ 1 for all (k − 1)T ≤ t ≤ kT.

It is seen that the optimization in (4.34) is very similar to the one in (4.25).

Hence, we can apply the same argument and verify that the following optimization

108

problem is equivalent to (4.34),

max
∑

i dizi

subject to

zi ≤ 1{e(k)i ≥N−T,
∑

j e
(k)
j ≥N}

for all i∑
i zi ≤ N∗s (e

(k)
1 , ..., e

(k)
M)

(4.35)

where N∗s (e
(k)
1 , ..., e

(k)
M) is defined in (4.24).

Considering the solution to the above maximization in (4.33) will result in

∆V [k] ≤ B2 +
∑

i diηi − E [max
∑

i dizi]

≤ B2 +
∑

i diηi −max
∑

i diE [zi]
(4.36)

From (4.35), we notice that E [zi] must satisfy

E[zi] ≤ P
(
e
(k)
i ≥ N − T,

∑
j e

(k)
j ≥ N

)
∑

i E[zi] ≤ E
[⌊
N∗s (e

(k)
1 , ..., e

(k)
M)
⌋] (4.37)

In Subsection a, we have shown that an achievable QoS metric (η1, ..., ηM) needs

to satisfy the above conditions. This suggests that for a strictly achievable QoS metric

(η1, ..., ηM), for which these conditions hold with strict inequalities, there exists some

ε > 0 such that

max
∑
i

diE [zi] ≥
∑
i

diηi(1 + ε) (4.38)

Consequently the drift in (4.36) reduces to

∆V [k] ≤ B2 − ε
∑

i diηi (4.39)

So for large enough deficit values di, the drift is negative. This means the P2P

scheme implied by solving (4.34), at each frame, can satisfy any achievable QoS metric

and hence is optimal. Also it proves the sufficiency of the conditions in Theorem 22

109

on the achievability of a QoS metric.

The following lemma, whose proof can be found in Appendix B, completes the

proof of Theorem 23,

Lemma 17. For each block k, given the B2P arrivals (e
(k)
1 , ..., e

(k)
M), the P2P scheme

in Algorithm 6 solves the optimization problem in (4.34).

c. Distributed Implementation of the P2P Scheme

It is easy to see that the proposed P2P scheme in Algorithm 6 can be efficiently

implemented in a decentralized fashion. Lets assume
∑

j e
(k)
j ≥ N . Because first,

gathering the information about the total initial rank of the system (i.e.,
∑

j e
(k)
j)

requires some extra coordination and transmissions, which may not be practically

appealing. Second, if
∑

j e
(k)
j < N (there is not enough degrees of freedom in the

system), then no matter what we do, the peers cannot recover the original block.

With this assumption, we will show how the three phases of the P2P algorithm

can be implemented in a distributed way:

Phase 1- transmissions by peers in Sc: each peer i can individually determine whether

he should transmit in the first phase by checking the number of his initial chunks. If

e
(k)
i < N − T , then i attempts to broadcast his e

(k)
i initial chunks. Note that coor-

dinating the order of transmissions can be done in a decentralized manner by using

the idea of having short control slots and random back-off times to avoid collisions.

Phase 2- transmissions by peers in S upto some threshold : at each time t peers can

separately evaluate their ranks n
(k)
i [t] to see whether n

(k)
i [t] ≥ N + t− kT . The peers

whose ranks are greater than this threshold can compete, in a distributed way as

described above, to broadcast during time slot t.

110

Phase 3- transmissions based on a Min-Deficit-First discipline: if all the peers hit the

threshold in Phase 2, the remaining transmissions should be performed with respect

to a Min-Deficit-First scheme. For this purpose, each peer must be able to determine

whether he has the minimum deficit or not without exchanging exclusive feedback

messages. In order to solve this issue, we propose peers to include their deficit values

in the header of the messages they broadcast. Note that this will introduce some

overhead which can be neglected if the size of the chunks is reasonably large. In this

framework, the deficit values of the peers who transmitted during the first two phases

are known by everybody. What if some of the peers did not attempt to transmit in

the first two phases? How do the other peers get to know their deficit values? The

key point is that each peer can maintain an approximation of the deficit values of

the other peers, by storing the last reported values in the most recent transmissions

by each of the other peers. Since the deficit values change by at most 1 unit in each

frame, these approximations should be within some finite range of the actual values.

On the other hand, we have seen in the proof of Theorem 23 that a finite difference

in the drift (4.33) will not change the results. Therefore, peers can randomly back off

based on their deficit values compared to the approximations of the other values, and

if someone achieves the free channel, he can safely broadcast over the P2P network.

3. Coordination of the B2P Network

In the previous section, we proposed a simple P2P scheme to disseminate the chunks

received from the B2P network over the broadcast P2P interface. We have shown

that the proposed scheme is able to satisfy any achievable long-term QoS metrics and

hence is throughput optimal in this sense. In this section, we focus on the B2P part

of the system.

Recall our objective was to achieve the QoS metric (η1, ..., ηM) at the minimum

111

cost of B2P usage. All peers have identical Bernoulli B2P channels with equal (unit)

cost and success probability p, which they use to receive randomly coded chunks

from base stations. As discussed in Subsection 2, there is no performance loss if these

chunks are transmitted via P2P broadcasts without performing any further coding.

The question that we investigate in this section is how long should the B2P channels

be used? We will seek an offline solution for this question. In other words, we want

to find 0 ≤ TB2P (i) ≤ T which is the number of times peer i attempts to receive a

chunk from the B2P channel in a frame.

We will choose these B2P usage time intervals in an offline fashion in such a way

that the QoS target can be met with the lowest average cost C(TB2P (1), ..., TB2P (M)) =∑
i TB2P (i). One can consider any general cost criterion C(TB2P (1), ..., TB2P (M)) to

be minimized.

For the B2P model described above, we can verify that the B2P arrivals e
(k)
i to

each peer i are independently and identically distributed over frames k as a Binomial

random variable Bin(p, TB2P (i)) with parameters p and TB2P (i):

P(e
(k)
i = a) = 1{0≤a≤TB2P (i)}

(
TB2P (i)

a

)
pa(1− p)TB2P (i)−a.

In order to achieve a given QoS metric (η1, ..., ηM), TB2P (i) values must be large

enough such that the conditions (C1) and (C2) in Theorem 22 are satisfied. Hence in

general, the optimal values of T ∗B2P (i) can be derived by solving the following problem,

minC(TB2P (1), ..., TB2P (M))

s.t.

0 ≤ TB2P (i) ≤ T for all i

ei = Bin(p, TB2P (i)) for all i

(C1) and (C2) in (4.30) are satisfied.

(4.40)

112

How can one solve for the optimal T ∗B2P (i) values?

Note that the minimization problem in (4.40) does not have a known simple

form that can be solved efficiently. However since the region for feasible TB2P (i)

values is finite (i.e., {0, 1, ..., T}M), we can simply adopt an exhaustive search to

find the optimal T ∗B2P (i) values. However, one can improve the search algorithm by

considering lower bounds suggested by (C1) in (4.30) and adopting more efficient

search mechanisms like a branch-and-bound algorithm. It is noteworthy that this

search process needs to be performed only once for the given set of system parameters.

As a special case, we may assume TB2P (i) = TB2P for all i. That is all the

peers use their B2P channels for the same duration of time. For this case, the op-

timal T ∗B2P value can be found much faster, since the search region reduces to at

most T values. More specifically, if we are interested in the average cost criterion

C(TB2P (1), ..., TB2P (M)) =
∑

i TB2P (i), the problem in (4.40) is simplified to

min
{

0 ≤ t ≤ T :
∑

j ηj ≤ E [N∗s (e1, ..., eM)] ,

maxi ηi ≤ P
(
ei ≥ N − T,

∑
j ej ≥ N

)}
(4.41)

where ei = Bin(p, t) are distributed identically for all i and N∗s is defined as in (4.24).

The following observation declares that we can always find the optimal B2P usage

times (even if the achievability region is unknown) with a small overhead, which is

the cost to learn the system behavior.

Observation 8. We can consider two time scales, (i) a short time scale for the

dynamic of the queues in the system, and (ii) a larger time scale for scheduling the

B2P network. We assume the latter time scale is large enough for the queues in the

system to converge to their steady states (if they are stable). Hence starting from

TB2P (i) = T for all i, we can gradually modify and search for the optimal set of

113

TB2P (i) values over the larger time scale. Since the space of TB2P (i) values is finite,

it is guaranteed that in finite time (with respect to the larger time scale) our search

algorithm will converge. Note that since the QoS and costs are defined as long-run

average parameters, the first few iterations to find the optimal B2P scheme should

not cause a major problem in the performance of the system.

In what follows, we consider the special case of symmetric QoS metric (η, ..., η)

and derive some interesting results.

4. Symmetric QoS Constraints

Throughout this section, we focus on average cost criterion and further assume N �

M and ηi = η for all i (i.e., symmetric QoS metric). This complete symmetry of

the system plus the assumption of N � M suggests that the solution to (4.40)

should be also symmetric, i.e., T ∗B2P (i) = T ∗B2P for all i. This immediately implies

that ei are identically distributed for all peers i. Corollary 6 studies this case and

declares the necessary and sufficient condition for achievability of (η, ..., η) reduces to

the constraint (C2′),

η ≤ 1

M
E [N∗s (e1, ..., eM)] .

Hence, the optimal T ∗B2P (M) value can be found as follows,

min
{

0 ≤ t ≤ T : η ≤ 1
M(N−T)E

[
min

(
|S|(N − T), [

∑
i ei(t)− T]+

)] }
, (4.42)

where S = {i ∈ {1, ...,M} : N − ei(t) ≤ T,
∑

j ej(t) ≥ N} and ei(t) = Bin(p, t).

Note that we used T ∗B2P (M) notation to explicitly emphasize the dependence of

the optimal T ∗B2P value on the number of peers M , similarly ei(t) reminds that the

random variable ei depends on the time parameter t. We can rephrase (4.42) as

114

follows,

T ∗B2P (M) = min
{

0 ≤ t ≤ T :

Mη ≤ E

[
min

(
1(
∑M

1 ej(t)≥N)

M∑
i=1

1(ei(t)≥N−T), [
M∑
j=1

ej(t)− T]+/(N − T)

)]}
,

(4.43)

Observation 9. Note that in Corollary 6, we have shown for the symmetric case that

condition (C2) implies (C1) in (4.30). That is in order to meet the QoS constraints

we also need to have η ≤ P(ei(t) ≥ N − T,
∑M

1 ej(t) ≥ N). Hence T ∗B2P (M) =

min{0 ≤ t ≤ T : η ≤ P(ei(t) ≥ N − T,
∑M

1 ej(t) ≥ N)} provides a lower bound on

T ∗B2P (M).

In the following lemma, we show that T ∗B2P (M) is always a non-increasing function

of M .

Lemma 18. Suppose that t ∈ [0, T] satisfies the following inequality,

Mη ≤ E

[
min

(
1(
∑M

1 ej(t)≥N)

M∑
i=1

1(ei(t)≥N−T), [
M∑
j=1

ej(t)− T]+/(N − T)

)]
, (4.44)

then the same t satisfies the inequality for M + 1 as well,

(M + 1)η ≤ E

min

1
(
M+1∑

1
ej(t)≥N)

M+1∑
i=1

1(ei(t)≥N−T),

[
M+1∑
j=1

ej(t)− T]+

(N − T)

 . (4.45)

Consequently, we have T ∗B2P (M) ≥ T ∗B2P (M+1).

115

Proof. First notice that

min

1(
∑M+1

1 ej(t)≥N)

M+1∑
i=1

1(ei(t)≥N−T),
[
M+1∑
j=1

ej(t)−T]+

(N−T)

(a)
= 1(

∑M+1
1 ej(t)≥N) min

M+1∑
i=1

1(ei(t)≥N−T),

M+1∑
j=1

ej(t)−T

(N−T)

 ,

= 1(
∑M+1

1 ej(t)≥N) min

M∑
i=1

1(ei(t)≥N−T) + 1(eM+1(t)≥N−T),

M∑
j=1

ej(t)−T

(N−T) + eM+1

(N−T)

(b)

≥ 1(
∑M

1 ej(t)≥N) min

M∑
i=1

1(ei(t)≥N−T),

M∑
j=1

ej(t)−T

(N−T)

+1(

∑M+1
1 ej(t)≥N) min

(
1(eM+1(t)≥N−T),

eM+1

(N−T)

)
,

(4.46)

where (a) holds, because if 1
(
M+1∑

1
ej(t)≥N)

= 1, then
M+1∑
j=1

ej(t) ≥ N > T and both sides

will be the same. Otherwise when 1
(
M+1∑

1
ej(t)≥N)

= 0, both sides are identically zero.

The following argument proves the validity of inequality (b), by considering different

cases:

(1) Let 1(
∑M

1 ej(t)≥N) = 1: consequently we have 1(
∑M+1

1 ej(t)≥N) = 1 as well and also

note that min(X + c, Y + d) ≥ min(X, Y) + min(c, d) always holds. Using these two

observations, one can easily verify inequality (b) for this case.

(2) Let 1(
∑M+1

1 ej(t)≥N) = 0: consequently we have 1(
∑M

1 ej(t)≥N) = 0 and both sides of

inequality (b) are identically zero.

(3) Let 1(
∑M+1

1 ej(t)≥N) = 1 but 1(
∑M

1 ej(t)≥N) = 0: for this case inequality (b) reduces

to

min

M∑
i=1

1(ei(t)≥N−T) + 1(eM+1(t)≥N−T),

M∑
j=1

ej(t)−T

(N−T) + eM+1

(N−T)

≥ min

(
1(eM+1(t)≥N−T),

eM+1

(N−T)

)
.

(4.47)

116

Note that if
M∑
j=1

ej(t)− T ≥ 0, the we have

min

M∑
i=1

1(ei(t)≥N−T) + 1(eM+1(t)≥N−T),

M∑
j=1

ej(t)−T

(N−T) + eM+1

(N−T)

≥ min

M∑
i=1

1(ei(t)≥N−T),

M∑
j=1

ej(t)−T

(N−T)

+ min
(

1(eM+1(t)≥N−T),
eM+1

(N−T)

)
≥ min

(
1(eM+1(t)≥N−T),

eM+1

(N−T)

)
.

Otherwise when
M∑
j=1

ej(t) − T < 0, since we have considered 1(
∑M+1

1 ej(t)≥N) = 1 for

this case, we have
M+1∑
1

ej(t)− T ≥ N − T,

and

eM+1 +
M∑
1

ej(t) ≥ N.

Therefore, eM+1 ≥ N −
∑M

1 ej(t) ≥ N − T . We can now verify that the right hand

side of (4.47) is 1, while the left hand side is

min

M∑
i=1

1(ei(t)≥N−T) + 1,

M+1∑
j=1

ej(t)− T

(N − T)

 ≥ 1.

This completes the verification of inequality (b) in (4.46). Now take an expectation

117

from both sides of (4.46) to get,

E

min

1(
∑M+1

1 ej(t)≥N)

M+1∑
i=1

1(ei(t)≥N−T),
[
M+1∑
j=1

ej(t)−T]+

(N−T)

≥ E

1(
∑M

1 ej(t)≥N) min

M∑
i=1

1(ei(t)≥N−T),

M∑
j=1

ej(t)−T

(N−T)

+E

[
1(
∑M+1

1 ej(t)≥N) min
(

1(eM+1(t)≥N−T),
eM+1

(N−T)

)]
(c)

≥ Mη + E
[
1(
∑M+1

1 ej(t)≥N)1(eM+1(t)≥N−T)

]
= Mη + P

(∑M+1
1 ej(t) ≥ N, eM+1(t) ≥ N − T

) (d)

≥ (M + 1)η,

(4.48)

where (c) follows from (4.44) and the fact that 1(eM+1(t)≥N−T) ≤
eM+1(t)

N−T , and (d) holds

by Observation 9.

Therefore, if (4.44) holds, then so does (4.45), and as a result T ∗B2P (M) is non-

increasing by M .

The following lemma completes the characterization of T ∗B2P (M) as a function of

number of peers M .

Lemma 19. Let T ∗B2P (M) be the optimal B2P usage time, defined as in (4.42). The

followings are true,

1. For each value of M ,

T ∗B2P (M) ≥ T ∗B2P (M) = min{0 ≤ t ≤ T : η ≤ P(ei(t) ≥ N − T,
∑M

1 ej(t) ≥ N)}.

2. {T ∗B2P (M)}M is a monotone sequence converging to some value T ∗B2P from above,

where T ∗B2P = min{0 ≤ t ≤ T : η ≤ P(ei(t) ≥ N − T)}.

3. {T ∗B2P (M)}M is also a monotone sequence converging to the same value T ∗B2P

from above.

118

Proof. Note that the lower bound T ∗B2P (M) was found in Observation 9. Also it is

clearly seen that

P(ei(t) ≥ N − T,
M∑
1

ej(t) ≥ N) ≤ P(ei(t) ≥ N − T,
M+1∑
1

ej(t) ≥ N).

Therefore, T ∗B2P (M) is monotone non-increasing and converges to some value T ∗B2P .

However as M goes to infinity,
∑M

1 ej(t) ≥ N holds true with probability 1, and

consequently T ∗B2P = min{0 ≤ t ≤ T : η ≤ P(ei(t) ≥ N − T)}.

The monotonicity of T ∗B2P (M) was proved in Lemma 18, so it remains to show

that T ∗B2P (M) → T ∗B2P .

Note that as M grows large, 1(
∑M

1 ej(t)≥N) = 1 and by the strong law of large

numbers

1

M

M∑
i=1

1(ei(t)≥N−T)
a.s.→ P (ei(t) ≥ N − T)

and

1

M
[
M∑
j=1

ej(t)− T]+/(N − T)
a.s.→ E[ej(t)]/(N − T),

in which a.s. stands for almost surely convergence of random variables. On the other

hand, by the Markov’s inequality for the non-negative random variable ei(t), we have

P (ei(t) ≥ N − T) ≤ E[ej(t)]

(N − T)
.

Hence, as M tends to infinity, T ∗B2P (M) in (4.42) reduces to min{0 ≤ t ≤ T : η ≤

P(ei(t) ≥ N − T)} = T ∗B2P .

The variation of T ∗B2P (M) as M changes is shown in Figures 12(a) and 12(b). The

non-increasing nature of T ∗B2P (M) is clearly seen in these figures. Also we observe that

with an intermediate (not very large) number of peers in the system, we can achieve

the minimum possible cost. This number is at most M = 15 for the configurations

plotted in these figures. Figure 12(a) displays the variation of the minimum cost as

119

B
2P

(a) Variation of η for p = 0.9 (b) Variation of p for η = 0.9

Fig. 12. Minimum cost T ∗B2P (M) vs. number of peers M (N = 20, T = 15, q =∞)

the delivery ratio η changes. As expected, satisfying a larger delivery ratio incurs

more cost. The variation of cost as a function of B2P channel quality (probability of

success p) is demonstrated in Figure 12(b). By increasing success probability p, lower

costs are sufficient to achieve a given QoS (η = 0.9 for this case).

There are two noteworthy points that can be inferred from these graphs. First,

as indicated by the dotted lines, there is a limit, on the minimum number of peers

in the system, for a QoS to be achievable. For example, if p = 0.6 we need at

least M = 4 collaborative peers in the system to achieve η = 0.9. Second, for a

fixed channel quality p, the smaller η is, the smaller number of peers M is required

to achieve minimum possible cost T ∗B2P . On the other hand, if we fix QoS η and

change the channel quality p, we cannot get such a monotone behavior. For example

in Figure 12(b), the minimum number of peers to achieve the minimum cost for

p = 0.5, 0.7 and 0.9 is respectively M = 8, 7 and 9.

120

5. Finite Field Case

So far we only focused on infinite field size case, where we assumed the field size q

is large enough such that all randomly coded chunks are linearly independent with a

probability almost equal to 1. With this assumption, it was sufficient for each peer

to receive N distinct coded chunks in order to recover the original block. We found

some necessary and sufficient conditions on the achievability of a given QoS metric

(η1, ..., ηM) in Subsection 2. An optimal scheme was proposed in Algorithm 6 for

coordinating the P2P broadcast transmissions, and in Subsection 3 we have shown

how to choose the B2P usage times optimally in order to minimize a general cost

criterion.

In this section, we turn our attention into the finite field case, where the field size

q < ∞ and there is a non-zero probability that randomly coded chunks are linearly

dependent. More specifically, we are interested in evaluating the performance of our

proposed B2P and P2P schemes in the finite fields.

Theorem 24. Suppose the coefficients for coding the chunks are drawn uniformly at

random from a field of size q ≥ 2. If we apply the Algorithm 6 for the P2P broadcasts

and choose the B2P usage times according to the optimization problem in (4.40), then

for each peer i we have

lim
K→∞

1

K

K∑
k=1

E[Ii[k]] ≤ 1− ηi +
1

q − 1
. (4.49)

That is on average each peer i can successfully receive and play out the multimedia

stream at least ηi − 1
q−1 fraction of time.

Note that the effect of finiteness of the field size is limited by the value 1
q−1 , for

example for field size q = 32, there is only around %3 reduction in the quality of

service. In the simulation results presented in Figures 13(a) and 13(b), we see the

121

actual reduction in the QoS is even less than this value.

(a) Variation of η for p = 0.9

(b) Variation of p for η = 0.9

Fig. 13. Achievable delivery ratio with finite field sizes (N = 20, T = 15, M = 4, with

symmetric peers)

Proof. Lets define Îi[k] = 1{n̂(k)
i [kT]<N}, where n̂

(k)
i [kT] is the number of coded chunks

of block k peer i has received by the end of its deadline. Note that in our previous

arguments for the infinite field size, we had n
(k)
i [t] = min{N, n̂(k)

i [t]} and Îi[k] = Ii[k].

In the discussion followed by Algorithm 6, and the corresponding result presented

122

in Theorem 23, we have shown that

lim
K→∞

1

K

K∑
k=1

E[Îi[k]] ≤ 1− ηi (4.50)

holds true, when we employ the P2P scheme in Algorithm 6. For Ii[k], we have

E[Ii[k]] = E[Ii[k]|Îi[k] = 1]P(Îi[k] = 1) + E[Ii[k]|Îi[k] = 0]P(Îi[k] = 0)
(a)

≤ E[Îi[k]] + E[Ii[k]|n̂(k)
i [kT] ≥ N]

= E[Îi[k]] + P[n
(k)
i [kT] < N |n̂(k)

i [kT] ≥ N]
(b)

≤ E[Îi[k]] + 1
q−1

(4.51)

where (a) follows since E[Ii[k]|Îi[k] = 1] = 1 and P(Îi[k] = 1) = E[Îi[k]], and (b) holds

by Lemma 13 in Section A.

If we sum both sided of (4.51) from k = 1 to K, divide the result by K and let

K tend to infinity, then the desired bound in (4.49) will be achieved using (4.50).

6. Further Discussions and Extensions

This section addresses other features which can be added into our framework. In

Subsection a, we will discuss how the system performance can be enhanced by adding

some extremely altruistic peers (called boosters). The problem of maintaining the

fairness among the peers will be studied in Subsection b. Finally, we consider using

some erasure protection coding schemes in order to improve the peers’ quality of

experience in Subsection c. We propose a new throughput optimal P2P scheme which

can support applications in which such coding techniques are employed.

a. The Effect of Boosters

In order to improve the performance of our system or even make the system capable

of satisfying an unachievable QoS metric, we can add a number of boosters. The role

123

of boosters in a system is to help delivering more coded chunks to the peers. We

can easily incorporate the effect of boosters into our framework by adding some peers

with zero delivery ratio.

If we assume there are B boosters in the system who all individually use their

B2P channels Tb times per frame, then they can collectively contribute eb(Tb) number

of coded chunks over the P2P network. eb(Tb) = Bin(p,BTb) is a Binomial random

variable with parameters p and BTb. Now in the presence of these B boosters, we

need to satisfy the following conditions in order to guarantee the QoS requirements

of the peers,

(C1B) ηi ≤ P
(
ei ≥ N − T,

∑
j ej + eb ≥ N

)
for all i

(C2B)
∑

i ηi ≤

E

[
min

(
1(
∑M

1 ej+eb≥N)

M∑
i=1

1(ei≥N−T), [
M∑
j=1

ej + eb − T]+/(N − T)

)]
.

(4.52)

A similar optimization problem as (4.40), with constraints (C1B) and (C2B)

and a cost criterion which is also a function of Tb, can be considered to find the

optimal B2P usage times. In order to coordinate the P2P transmissions, we first let

the boosters broadcast all the eb chunks they have received from the B2P network,

and then follow the Algorithm 6.

Figures 14(a) and 14(b) depict the effect of boosters on the minimum B2P cost

and the achieved delivery ratio respectively. We consider a symmetric configuration

in which all the peers and boosters use their B2P channels for the same duration.

In Figures 14(a), the dotted line shows the variation of the minimum B2P usage

time versus the number of peers M , when there is no booster. In the other curves,

we show how the B2P usage time changes if we fix the number of peers (M = 1, 3, 5

for this plot) and add boosters to the system. It is interesting to note that a small

number of boosters are sufficient to help the peers achieve their minimum possible

124

(a) Minimum Cost vs. Number of
Entities (Peers+Boosters) for p = 0.9

η

(b) Maximum Achievable Delivery Ratio
vs. Number of Entities for Fixed

TB2P = 7

Fig. 14. Effect of boosters (N = 20, T = 15, q =∞)

B2P usage time. For example if M = 5, with adding only two boosters we will achieve

the minimum T ∗B2P , while without boosters we need to add 10 more peers in order to

get the same B2P usage time.

We can observe a similar effect in Figure 14(b). That is if we fix the B2P usage

time, by increasing the number of peers (red and blue curves with B = 0), higher

delivery ratios are achievable by the peers. However, if we fix the number of peers and

add boosters to the system the delivery ratio will increase much faster. For example,

if p = 0.7 and M = 4, the maximum quality is achievable by adding only 3 boosters.

b. The Fairness Problem

Fairness is one of the most important factors that should be considered in designing

practical systems. The problem of guaranteeing some level of fairness in the systems

with multiple entities has been extensively studied in literature [47], [48], [49].

In our model, there are a number of peers, with potentially different QoS re-

125

quirements, who need to individually download information from the external servers

(i.e., B2P network) and cooperatively share this information over a broadcast P2P

network. Our objective in this subsection is to investigate the fairness issue among

these peers. Note that downloading content from the B2P network incurs some cost

to the peers. Hence, it may not be fair if we require a peer with a small delivery ratio

requirement to use its B2P interface for the same duration as another peer who has

a much larger QoS requirement. In what follows, we show how we can incorporate

the concept of fairness into out framework.

Fairness with respect to B2P download rate: Consider a group of peers with

different QoS constraints η1, ..., ηM . One way to introduce fairness to our model

is to let peers use their B2P network proportionally to their delivery ratios. Our

model is general enough to easily handle this case, by modifying the definition of the

cost function C(TB2P (1), ..., TB2P (M)) in (4.40). Hence, one can define different cost

criteria in order to meet different desired levels of fairness. For example in order to

maintain proportional fairness among peers, we can let TB2P (i) = αηi for all peers

i. Therefore, C(TB2P (1), ..., TB2P (M)) = α
∑

i ηi and we can solve (4.40) to find the

smallest value of α.

c. Improving Robustness by Employing Erasure Protection Techniques

Consider an application of streaming a multimedia channel. In many conventional

systems, the multimedia content is coded as a single stream and peers need to receive

all the constituent packets of the stream in order to playout the multimedia at their

own devices. This coding method is used in video standards like MPEG-1/2/4 and

H.261/3.

One of the proposed techniques for robust multimedia streaming is Multiple De-

scription Coding (MDC) [50]. It is well understood that using MDC we can improve

126

the streaming quality. The idea in MDC is to code a multimedia channel into a

number of descriptions and in order to achieve the highest quality a peer needs to

receive all the descriptions. However, the quality degrades gradually as the number of

received descriptions reduces. For example consider an MDC scheme which codes a

stream into two descriptions. By receiving one description, one can decode the media

stream at the basic quality and for the best media experience he needs to get another

description as well. It can be seen how MDC is useful in heterogeneous systems with

various bandwidths and quality requirements. The combination of MDC and ran-

dom linear network coding has been also studied [51] and shown to have advantages

in increasing robustness and decreasing the complexity of the construction. In this

model, the media server codes each generation of the stream using MDC into C de-

scriptions. These C descriptions are further coded using random linear coding before

transmissions. At the receivers, the number of linearly independent descriptions will

determine the rate at which the source information can be decoded.

A similar erasure protection technique, based on Priority Encoding Transmis-

sions (PET) [52], has been considered in [53]. The idea in PET is to partition the

multimedia content into layers of different importance. The level of protection of

different layers increases by their importance. A peer who receives more layers, will

achieve a better quality. However, decoding a layer requires receiving the previous

(more important) layers. Now we can use network coding together with PET (as

mentioned in [53]) to get a better performance. In this scenario, rank of the received

matrix of encoding vectors determines the quality of media playout.

In our proposed framework, we did not consider such erasure protection schemes

and assumed that there exists a single stream in the form of a sequence of blocks and

each peer needs to successfully receive all N chunks in a block in order to be able

to play it out. To clarify the value of these schemes, note that each peer requires

127

to receive N linearly independent coded chunks within T slots in order to be able

to recover the corresponding block. Now suppose by the deadline T , a peer i has

received only N − 1 independent chunks. In the current framework, peer i wastes

all he has received in this frame because no useful information can be extracted out

of N − 1 coded chunks. However peer i could potentially playout the corresponding

block with a reasonable quality if the stream was appropriately precoded using one

of the mentioned schemes.

In this subsection, we shall study the application of these schemes in our live

streaming problem. We will slightly modify our model and present a new P2P scheme

for this extended variation.

We assume the media server precodes the blocks of the multimedia stream in

such a way that peers can still decode the original blocks by partially receiving them.

Combining this technique with random linear network coding, we consider the fol-

lowing general QoS metric for our problem.

We assume there are L levels of satisfaction, directly associated with the achiev-

able qualities, with respect to the number of linearly independent chunks a peer

receives. More specifically lets assume 0 = N0 < N1 < N2 < ... < NL = N and

0 ≤ wL ≤ wL−1 ≤ ... ≤ w1 ≤ 1, such that
∑

l wl = 1 and wl is the marginal happiness

of a peer when his rank increase from Nl−1 to Nl. With this notation, the satisfaction

level s
(k)
i of peer i in the kth frame (corresponding to the service of the kth block) is

s
(k)
i =

L∑
l=1

wl1{n(k)
i ≥Nl}

. (4.53)

The new QoS metric is defined as a minimum requirement on the long-run average

satisfaction of each peer i:

limK→∞
1
K

∑K
k=1 s

(k)
i ≥ ηi for all i = 1, ...,M. (4.54)

128

In what follows we assume that the B2P usage times are appropriately chosen

such that the QoS metric (η1, ..., ηM) is achievable for a given set of Nl and wl values.

We shall see how the P2P scheme proposed in Algorithm 6 should change in order to

address the new QoS model.

Using the same methodology as in Subsection 2, we can consider the following

deficit queue dynamics in order to keep track of satisfaction level of each peer i:

di[k] = di[k − 1] + ηi − s(k)i . (4.55)

One can easily verify that stability of the vector ([d1[k]]+, ..., [dM [k]]+), as k grows,

implies satisfying the QoS metric.

Note that the B2P arrivals are assumed to be independently and identically

distributed over frames. Hence, similar to the argument in [11], the achievability of

the new QoS metric can be defined based on the existence of a randomized stationary

P2P policy as follows,

Definition 8. Given the B2P arrival processes (e1, ..., eM), the QoS metric (η1, ..., ηM)

is (strictly) achievable for a given set of Nl and wl values if and only if there exists a

policy P∗, to coordinate the P2P transmissions, with the following properties.

Given the realization of the B2P arrivals e(k) = (e
(k)
1 , ..., e

(k)
M) for each block k, P∗

chooses a feasible vector of P2P transmissions x(k) = (x
(k)
1 , ..., x

(k)
M) (satisfying

∑
i x

(k)
i ≤

T and x
(k)
i ≤ e

(k)
i for all i) with probability P

(
x(k)|e(k)

)
, such that for each peer i,

Ee

[∑
x(k)

s
(k)
i P

(
x(k)|e(k)

)
| e(k)

]
> ηi (4.56)

where Ee[.] is expectation with respect to the B2P arrival processes.

Like before, we will utilize the Lyapunov stability criterion to find a throughput

optimal P2P scheme for this case. Lets consider the same Lyapunov function V [k] =

129

1
2

∑
i([di[k]]+)2 as in Subsection 2. Our approach is to minimize an upperbound on

the expected drift ∆V [k] to guarantee the stability of the deficit queues.

It is straightforward to verify the following bound on the drift,

∆V [k] = E [V [k]− V [k − 1] | [di[k − 1]]+ = di : ∀i]

≤M/2 +
∑

i diηi − E
[∑

i dis
(k)
i

]
.

(4.57)

Minimizing the above upperbound suggests the following framework.

At the beginning of each frame k− 1, for given deficit values ([d1[k− 1]]+, ..., [dM [k−

1]]+) = (d1, ..., dM) and any realization of the B2P arrivals (e
(k)
1 , ..., e

(k)
M), solve the

following problem,

max W (x(k)) =
∑

i dis
(k)
i =

∑
i di(

∑L
l=1wl1{n(k)

i ≥Nl}
)

subject to

n
(k)
i = e

(k)
i +

∑
j 6=i x

(k)
j for all i

0 ≤ x
(k)
i ≤ e

(k)
i for all i∑

i x
(k)
i ≤ T

(4.58)

Let W (x(k)
∗
) be the maximum objective value achieved by solving the above maxi-

mization problem. Note that policy P∗ randomly chooses a feasible x(k) according to

some distribution P
(
x(k)|e(k)

)
, hence one can easily verify that

W (x(k)
∗
) ≥

∑
x(k)

W (x(k))P
(
x(k)|e(k)

)
.

Taking expectation from both sides of the above inequality with respect to the arrival

processes results in

E[
∑

i dis
(k)
i

∗
] = E[W (x(k)

∗
)] ≥ E[

∑
x(k) W (x(k))P

(
x(k)|e(k)

)
]

(a)
>
∑

i diηi ≥
∑

i di(ηi + ε)
(4.59)

for some small enough ε > 0, where (a) follows from the definition of W (x(k)) and

130

(4.56). By considering (4.59) and (4.57), we conclude that using the P2P schedule

x(k)
∗

will result in

∆V [k] ≤ M

2
− ε
∑
i

(di),

which is negative for large enough di queue lengths, and hence can stabilize the queues.

Therefore, the solution to (4.58) will provide an optimal scheme to coordinate P2P

transmissions at each frame. In what follows, we investigate this optimal P2P scheme

further to find a more simple and intuitive form of this algorithm.

Note that if
∑

i e
(k)
i ≤ T , the optimal solution to the above problem is trivially

x
(k)
i = e

(k)
i for all i. Otherwise, the whole system has received enough DoFs to utilize

all the T time slots in the frame, i.e, we can safely let
∑

i x
(k)
i = T , and we have

max
∑

i di
∑L

l=1wlzil

subject to

zil ≤ 1{e(k)i −x
(k)
i ≥Nl−T}

for all i and l

0 ≤ x
(k)
i ≤ e

(k)
i for all i∑

i x
(k)
i = T

(4.60)

We define lmin = min{l : Nl − T ≥ 0} and li = max{l : Nl − T ≤ e
(k)
i } for each peer

i. Note that since NL = N > T , lmin is well defined, also we let N0 = 0 that makes

sure li ≥ 0 is clearly defined. Also it should be clear that

zil ≥ zi(l+1)

zil = 0 for all l > li and i

zil = 1 for all l < lmin and i.

(4.61)

We shall see the problem (4.60) can be solved in two rounds.

Round 1 : Initially we can let x
(k)
i = min{e(k)i − (Nli − T), e

(k)
i } without affecting

the objective function and as a result T̂ = [T −
∑

i(min{e(k)i − (Nli − T), e
(k)
i })]+

131

transmissions will be left for this frame. If T̂ = 0, then no further transmissions

need to be done. Otherwise T̂ > 0 and we find the best choice for the remaining

transmissions in Round 2.

Round 2 : For each peer i (with li ≥ lmin) we need to determine the following decision

variables,

zil ∈ {0, 1} for l = li, li − 1, ..., lmin.

Note that if li < lmin, then in the first round of transmissions we should have chosen

x
(k)
i = e

(k)
i and no further transmissions can be done by this peer. Let M̂ = |{i :

li ≥ lmin}| be the number of peers whose transmissions should be determined in this

round, and without loss of generality we use indices {1, ..., M̂} to denote these peers.

We further assume d1 ≥ d2 ≥ ... ≥ dM̂ .

Suppose that a candidate vector (zil : i = 1, ..., M̂ , l = lmin, ..., li) is given. It

can be verified that for this vector to be feasible, we require

(1)
∑M̂

i=1

(
(1− zilmin

)(Nlmin
− T) +

∑li
l=lmin+1(1− zil)(Nl −Nl−1)

)
≥ T̂

(2) zil ≥ zi(l+1).
(4.62)

Hence we get the following problem (which is equivalent to (4.60), after considering

the transmissions in Round 1),

max
∑M̂

i=1

∑li
l=lmin

vilzil

subject to∑M̂
i=1

∑li
l=lmin

(γlzil) ≤ T̃

zil ∈ {0, 1} for all i and l

zil ≥ zi(l+1) for all i and l

(4.63)

where vil := diwl, γl = 1{l>lmin}(Nl−Nl−1)+1{l=lmin}(Nl−T) and T̃ =
∑

i:li≥lmin
(Nli−

T)− T̂ =
∑

i e
(k)
i − T ≥ 0. We can observe that the above problem is a special form

132

of the Knapsack problem with an additional constraint (zil ≥ zi(l+1)) which essentially

requires some order for choosing the items zil.

Lets define ti :=
∑li

l=lmin
(γlzil) and suppose (t1, ..., tM̂) is provided such that

M̂∑
i=1

ti ≤ T̃

and

ti ≤
li∑

l=lmin

γl.

Note that considering the constraint zil ≥ zi(l+1), we can easily verify that the max-

imum value (
∑li

l=lmin
vilzil) that can be achieved, when ti is given, has the following

form

V (ti, i) :=

l(ti)∑
l=lmin

vil = di

l(ti)∑
l=lmin

wl

where l(ti) = max{l ≥ lmin − 1 :
∑l

j=lmin
γl ≤ ti}. It can be seen that V (ti, i) =

di
d1
V (ti, 1).

Now it should be straightforward to realize that problem (4.63) can be equiva-

lently expressed as follows,

max
∑M̂

i=1
di
d1
V (ti, 1)

subject to

ti ≤
∑li

l=lmin
γl for all i∑M̂

i=1 ti ≤ T̃

(4.64)

The above problem can be easily solved using Dynamic programming in O(M̂T̃) time.

Algorithm 7 summarizes our optimal P2P scheme which can support any achiev-

able QoS metric, introduced in this subsection.

133

Algorithm 7 Optimal Robust P2P scheme (infinite field)

At the beginning of each frame k − 1, given the arrivals (e
(k)
1 , ..., e

(k)
M) and

the deficit values ([d1[k − 1]]+, ..., [dM [k − 1]]+) = (d1, ..., dM):

1) If
∑

i e
(k)
i ≤ T : let each peer i broadcast his initial e

(k)
i coded chunks.

2) If
∑

i e
(k)
i > T : let li = max{l : Nl − T ≤ e

(k)
i } and each peer i transmit up to

min{e(k)i − (Nli − T), e
(k)
i } chunks.

2.1) If
∑

i min{e(k)i − (Nli − T), e
(k)
i } ≥ T : there is no time slot left for further

transmissions.

2.2) If
∑

i min{e(k)i − (Nli−T), e
(k)
i } < T : consider peers {i : li ≥ lmin}, and define

vil := diwl,

γl = 1{l>lmin}(Nl −Nl−1) + 1{l=lmin}(Nl − T),

T̃ =
∑

i e
(k)
i − T ,

l(t) = max{l ≥ lmin − 1 :
∑l

j=lmin
γl ≤ t},

V (t, 1) :=
∑l(t)

l=lmin
v1l.

(4.65)

Solve the following dynamic programming to get optimal t∗i values,

max
∑

i
di
d1
V (ti, 1)

subject to

ti ≤
∑li

l=lmin
γl for all i∑

i ti ≤ T̃ ,

(4.66)

Now let each peer i ∈ {j : lj ≥ lmin} broadcast 1{l(t∗i)=lmin−1}(Nli − T) +

1{l(t∗i)≥lmin}(Nli −Nl(t∗i)
) of his chunks that have not been transmitted yet.

134

7. Simulation Results

In this section, we evaluate the performance of our proposed B2P-P2P scheme for a

number of scenarios.

(1) coding over finite fields versus infinite field : we have already considered this

case in Subsection 5. It is depicted in Figure 13 that the proposed P2P scheme, which

is shown to be optimal for the infinite field size, still performs quite well in the finite

field case. Indeed for a field size of q = 32, the degradation the quality experienced

by the peers is shown to be only %2.

(2) coding versus non-coding solutions : we utilize random linear network coding

in our algorithms to simplify coordinating transmissions. However, it is well under-

stood that in a broadcast system like our P2P network, using network coding can

potentially enhance the performance. In our proposed P2P policy, we assumed that

the media server transmits randomly coded chunks to the peers via B2P network and

peers further disseminate these chunks over the P2P network. We also observed that

peers do not need to perform the encoding process and can only forward the received

chunks from the B2P network, whenever they get a chance to broadcast.

Fig. 15. Benefits of random linear coding at the media server (N = 20, T = 15, M = 4,

with symmetric peers)

135

Figure 15 compares our proposed random linear coding scheme with three other

cases for a target η = 0.9: (i) using random linear coding both in media server

and P2P transmissions: it is seen that by performing another layer of encoding at

the peer devices, the performance does not change. (ii) no coding: in this scheme

the original chunks are transmitted over both B2P and P2P interfaces without any

coding. We employ a Max-Rank-First scheme to coordinate the P2P transmissions

and make sure no chunks is transmitted more than once over the P2P network. Note

that for this non-coding scheme, even without receiving all N constituent chunks of

a block, peers can partially recover the original block. Hence, we measure the QoS

as the average number of chunks received by a peer for each block. For different

configurations evaluated in Figure 15, we see that by utilizing coding over chunks,

a better performance is achievable. (iii) sending uncoded chunks from the media

server and performing random linear coding at P2P transmissions: for this scheme

the number of DoFs that a peer can offer to the system is smaller compared to the

first scenario, because peers start with uncoded chunks and a pair of peers have a

non-negligible chance of having common chunks. Hence, it is seen that, compared

to the first two scenarios, the quality will drop significantly for this scheme as well.

It should be noted that for this case, like the non-coding case, the original chunks

received from the B2P network will be immediately available for playing out. Hence,

the QoS metric is defined based on the average number of chunks available for playout

at the peer devices at the end of each frame.

Note that in Figure 15 and for the last two scenarios (no coding scheme and

the case of coding at peer devices only), we assumed the media server is able to

estimate the B2P channel conditions (On or Off) before performing any transmissions.

This information can help distributing the initial uncoded chunks to the peers more

efficiently. For example, for the last scenario in which we employ coding only at peer

136

Fig. 16. Effect of B2P channel estimation (N = 20, T = 15, M = 4, with symmetric

peers)

devices, we need to make sure that initially all N original chunks are available in the

system in order to have useful P2P transmissions. Hence, knowing channels states

helps the server to make better decisions regarding what chunks to transmit to each

peer. In practice, it may not be possible to achieve such information about the states

of B2P channels. In this case, the server may randomly choose some uncoded chunks

to transmit to the peers. In Figure 16, the performance of the system is compared

when we have complete channel estimation and when such knowledge does not exist.

It is seen that the achieved QoS of the latter case is worse than the former and the

quality drop for the scheme, in which we perform coding at peer devices, is more

significant.

Figure 17 demonstrates the performance of coding and non-coding schemes when

the target QoS metric is η = 0.55. Note that if the quality metric is defined based

on the average number of received chunks which are available for playing out, then

for some configurations it is better to employ a non-coding scheme. For example for

the case shown in this figure, an MRF P2P algorithm with no coding employed can

deliver a larger number of playable chunks to the peers compared to the scheme which

137

Fig. 17. Non-coding scheme outperforms coding solution for some cases(N = 20,

T = 15, M = 4, with symmetric peers)

utilizes random coding.

(3) proposed P2P policy versus other greedy policies : we proposed a P2P scheme

in Algorithm 6 which consists of three phases and showed that such a simple al-

gorithm is throughput optimal. Figures 18(a) and 18(b) compare the performance

of our algorithm with three other algorithms: Round Robin scheme, Min-Deficit-

First discipline and Max-Rank-First algorithm. We can observe that none of the two

greedy algorithms can achieve the required QoS and our P2P scheme proves the best

performance.

Note that in the case of η = 0.55, the Round Robin algorithm performs much

worse. The reason is that peers try to transmit the same number of times during

each frame and most often this does not let any of them receive enough chunks to be

able to recover the original block.

(4) playout smoothness : note that we model our QoS metric in terms the long-

run average number of frames a peer is busy playing out the multimedia content.

Both analytically and by simulations, we proved our proposed algorithm is capable

of supporting such a QoS metric. However in reality, the average playout time alone

cannot completely model the quality a peer experiences. For example assume peer i

138

(a) η = 0.9

(b) η = 0.55

Fig. 18. Comparison of Algorithm 6 with greedy algorithms (Round Robin, Min-D-

eficit-First, and Max-Rank-First) (N = 20, T = 15, M = 4, with symmetric

peers)

139

requires a minimum delivery ratio ηi = 0.5. Although our algorithm makes sure that

peer i will be able to successfully receive at least 0.5 of the stream, we do not know

in what fashion he receives these blocks. As two extreme examples, suppose peer i

receives the stream periodically with (1) a very large period and (2) a short period.

Which one is more suitable? In case (1), peer i periodically looses a big portion of

the stream, while in case (2) the lost blocks are more uniformly distributed over the

stream. In practice case (2) is more preferred because by coding over the blocks,

peer i will be able to recover the dropped blocks to some extent. Hence we prefer to

receive blocks almost periodically with small periods.

We consider four states si[k] ∈ {1, 0,−1,−2} for a peer i at the beginning of

frame k as follows,

si[k] =

1 if n
(k)
i = N

0 if e
(k)
i < N − T

−1 if e
(k)
i ≥ N − T , but n̂

(k)
i < N

−2 if n̂
(k)
i ≥ N , but n

(k)
i < N

(4.67)

Note that only if si[k] = 1, peer i is able to successfully recover block k. Figures 19(a)

and 19(b) display the variation of si[k] for two delivery ratios η = 0.9 and 0.55

respectively.

Consider peer i and let Tl = jl − kl for l ≥ 1, where jl and kl are defined as

follows

j0 = 0

kl = min{k ≥ jl−1 : si[k] = 1} for l ≥ 1

jl = min{j ≥ kl : si[j] = 0} for l ≥ 1.

(4.68)

We call tl the lth smooth playout time, that is the length of the lth longest sequence

of frames during which i continuously receives the blocks. As mentioned above, we

140

(a) η = 0.9 (b) η = 0.55

Fig. 19. Variations of the state si[k] (N = 20, T = 15, M = 4, p = 0.9, q = 32, with

symmetric peers)

(a) η = 0.9 (b) η = 0.55

Fig. 20. Distribution of smooth playout times Tl (N = 20, T = 15, M = 4, p = 0.9,

q = 32, with symmetric peers)

141

would like the sequence (T1, T2, T3, ...) to have a small variance (that is almost periodic

reception) and a small average (to prevent the loss of big portions).

The distribution of the smooth playout time for two different delivery ratios

η = 0.9, and 0.55 is demonstrated in Figures 20(a) and 20(b) respectively. From these

plots and the actual state variation shown in Figures 19(a) and 19(b), we observe our

algorithm performs desirably, since peer i receives blocks almost periodically with a

small variance and no big portion of subsequent blocks is lost.

Fig. 21. Performance of Algorithm 6 in finite fields (N = 20, T = 15, M = 4, with

different QoS)

(5) peers with different delivery ratios : all the above plots and simulations have

been done for a completely symmetric system in which peers have similar QoS re-

quirements. In this part, we simulate a system with M = 4 peers with delivery ratios

(0.9, 0.7, 0.5, 0.3) and show all the previous results hold for the asymmetric case as

well. Figure 21 displays the performance of our proposed algorithm in the finite fields.

It can also be seen in Figures 22(a), 22(b) and 22(c) that the desirable performance

of the algorithm in terms of playout smoothness still holds even when we have peers

with different requirements.

142

(a) State variation of the peer with
η = 0.9

(b) State variation of the peer with
η = 0.5

(c) Distribution of smooth playout times

Fig. 22. Playout pattern of the algorithm on an asymmetric system(N = 20, T = 15,

M = 4, p = 0.9, q =∞, (η1, ..., η4) = (0.9, 0.7, 0.5, 0.3))

143

C. Summary and Future Work

In this chapter, we studied the problems of content distribution and multimedia live

streaming in a wireless hybrid network, which consists of an expensive unicast B2P

network and a free broadcast P2P network. In the content distribution problem, we

defined our QoS metric as a requirement that all the peers successfully receive a single

common block within a deadline with a target probability. In the streaming variation,

we considered a long sequence of common blocks and defined individual QoS metrics

such that each peer individually needs to successfully receive some minimum fraction

of the blocks within their deadlines.

We utilized random linear coding over finite fields in our algorithms to sim-

plify coordinating transmissions. In the content distribution problem, we presented

a two-phase algorithm. In the first phase, peers receive packets from both B2P and

P2P (using MRF, which appears naturally from the QoS constraints), while in the

second phase, only P2P (using NmRF) is used. For the live streaming application,

we adopted a new framework in which the decisions on P2P and B2P networks can

be decomposed and proposed a three-phase P2P scheme which was derived from a

Lyapunov stability argument. We further showed that our framework is capable of

handling a general B2P cost criterion as well. We evaluated the performance of these

algorithms both analytically and by simulation.

In our model, we assumed that P2P network is fully connected and reliable. Two

natural extensions for both problems is to consider lossy P2P transmissions and/or

multihop P2P networks. We will shortly comment about the challenges of these

extensions. For future work, one can also study on-demand streaming applications

in which we do not have fixed playout intervals and can buffer the content well in

advance. We briefly mentioned the possibility of finding the optimal B2P scheme by

144

applying an iterative search and considering two time scales. It is worthwhile thinking

how this algorithm can be made more efficient and whether it can be implemented in a

distributed fashion. Finally, these P2P algorithms, which work based on cooperation

of the peers, show many interesting aspects from a game theoretic point of view. For

example, it is appealing to develop more efficient mechanisms that naturally lead

peers to some equilibria at which the QoS metrics are satisfied.

1. Extension to Unreliable P2P Network

An interesting direction for the future work is extending the results of this paper to

lossy P2P networks. In this subsection, we shall point out some of the challenges of

this extension.

For the case of unreliable wireless channels, one can consider different models.

In general we can divide the models, based on the capability of peers to estimate the

channels, into two categories: (i) peers can determine the state (ON or OFF) of their

channels at each slot, and (ii) peers do not have any information about the realization

of their channels and only know some average statistics (e.g. the probability of being

ON in an i.i.d. channel model).

Note that channel estimation requires feedback messages and as indicated in [54],

the large overhead of gathering this feedback information makes channel estimation

in broadcast networks practically inefficient. However in a very slow fading scenario,

where the state of the channels does not change during the transmission interval

(T slots), it might be possible to initially determine the realization of the channels.

This model will most often reduce to a multihop broadcast network (represented by

a partially connected graph). [36] studies this model to find the minimum number

of transmissions required to disseminate a common block over a pure P2P network.

There, it was shown that finding the optimal set of transmissions is an NP-hard

145

problem in general. With the existence of the B2P network, the problem can only

get harder to solve.

In the other model, we assume peers do not have any knowledge about their

channels’ state at the time of transmission. It should be noticed that mostly ac-

knowledgement messages (ACK) are not available in broadcast networks, hence peers

may not realize whether their transmissions are successful even after broadcasting.

That means in practice, we cannot keep track of the states of the peers (i.e., the

matrices corresponding to the received coded chunks).

The only option left to practically model the system is to assume that there is

no feedback or ACK messages and the only available information is the probabilities

of different channel states (as in [54]). For this case, despite the model considered in

this paper, the peers require to randomly combine all their available chunks at the

time of transmission in order to increase the chance of its usability. Therefore clearly

the number of transmissions done by a peer can be larger than its B2P receptions and

also the order of transmissions is now important. Note that the usefulness probability

of a transmission depends on the history of all the previous transmissions. Hence, it

is not clear how to efficiently solve for the best sequence of transmissions and this

problem remains unanswered.

146

CHAPTER V

CONCLUSION

In this dissertation, we studied different scenarios in wireless communication networks

where delay needs to be taken care of. We considered a wireless content distribution

network in which both inelastic requests (requiring service deadlines) and elastic

requests (delay tolerant) exist. Optimal algorithms were proposed for this framework,

which jointly solve content caching and link scheduling problems.

We also evaluated the effect of delay in relay networks which utilize network

coding. Relay nodes can decrease the number of required transmissions for exchanging

flow packets by employing network coding. However, they may need to delay the

service to the enqueued packets, in order to find coding opportunities. We investigated

this trade-off between delay and the number of transmissions, and proposed a simple

threshold-based algorithm to optimally balance between latency and efficiency.

Finally, we looked at a broadcast cooperative P2P network and showed how

simple (sub)optimal algorithms can be constructed to support delay-sensitive appli-

cations. We specifically focused on a content distribution problem and a multimedia

live streaming application.

We discussed about several possible extensions to the above problems at the end

of each chapter, and occasionally pointed to some challenges and obstacles on these

extensions.

The objective of the work presented in this dissertation was first to understand

how delay can be studied in a couple of popular wireless networks, and then develop

provably optimal algorithms to satisfy the corresponding delay requirements. We

tried to concentrate on some instances of the wireless networks and applications that

are currently very popular and are predicted to have even more appearance in future.

147

REFERENCES

[1] Sandvine, “Global internet phenomena report, spring 2011.” [On-

line]. Available: http://www.wired.com/images blogs/epicenter/2011/05/

SandvineGlobalInternetSpringReport2011.pdf

[2] C. Index, “Forecast and methodology, 2010–2015,” White paper, CISCO, June,

2011.

[3] I. Hou, V. Borkar, and P. Kumar, “A theory of QoS for wireless,” in IEEE

INFOCOM 2009, Rio de Janeiro, Brazil, April 2009.

[4] L. Tassiulas and A. Ephremides, “Stability properties of constrained queueing

systems and scheduling policies for maximum throughput in multihop radio net-

works,” IEEE Trans. on Automatic Control, vol. 37, no. 12, pp. 1936–1948, Dec.

1992.

[5] X. Lin and N. Shroff, “Joint rate control and scheduling in multihop wireless

networks,” in Proc. 43rd IEEE Conference on Decision and Control (CDC 2004),

Paradise Islands, Bahamas, Dec. 2004.

[6] A. Stolyar, “Maximizing queueing network utility subject to stability: Greedy

primal-dual algorithm,” Queueing Syst. Theory Appl., vol. 50, no. 4, pp. 401–457,

2005.

[7] A. Eryilmaz and R. Srikant, “Joint congestion control, routing, and mac for

stability and fairness in wireless networks,” IEEE Journal on Selected Areas in

Communications, vol. 24, no. 8, pp. 1514–1524, Aug. 2006.

148

[8] J. Jaramillo and R. Srikant, “Optimal scheduling for fair resource allocation in

ad hoc networks with elastic and inelastic traffic,” in IEEE INFOCOM 2010,

San Diego, CA, March 2010.

[9] M. M. Amble, P. Parag, S. Shakkottai, and L. Ying, “Content-aware caching and

traffic management in content distribution networks,” in Proc. of IEEE Infocom,

Shanghai, China, 2011.

[10] M. J. Neely, “Optimal backpressure routing for wireless networks with multi-

receiver diversity,” in Proc. Conf. on Information Sciences and Systems (CISS),

March 2006, pp. 18–25.

[11] M. Neely, “Energy optimal control for time varying wireless networks,” IEEE

Trans. Information Theory, vol. 52, no. 2, pp. 2915–2934, July 2006.

[12] F. Foster, “On the stochastic matrices associated with certain queuing pro-

cesses,” The Annals of Mathematical Statistics, vol. 24, no. 3, pp. 355–360, 1953.

[13] H. Kuhn, “The hungarian method for the assignment problem,” Naval Research

Logistics Quarterly, vol. 2, no. 1-2, pp. 83–97, 1955.

[14] M. Effros, T. Ho, and S. Kim, “A tiling approach to network code design for

wireless networks,” Proc of IEEE ITW, pp. 62–66, 2006.

[15] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung, “Network information flow,”

IEEE Transactions on Information Theory, vol. 46, no. 4, pp. 1204–1216, 2000.

[16] S. Katti, H. Rahul, W. Hu, D. Katabi, M. Médard, and J. Crowcroft, “XORs

in the air: practical wireless network coding,” SIGCOMM Comput. Commun.

Rev., vol. 36, no. 4, pp. 243–254, 2006.

149

[17] S. Chachulski, M. Jennings, S. Katti, and D. Katabi, “Trading structure for

randomness in wireless opportunistic routing,” Proc. of ACM SIGCOMM, pp.

169–180, 2007.

[18] Y. Sagduyu and A. Ephremides, “Cross-layer optimization of mac and network

coding in wireless queueing tandem networks,” Information Theory, IEEE Trans-

actions on, vol. 54, no. 2, pp. 554–571, 2008.

[19] A. Khreishah, C. Wang, and N. Shroff, “Cross-layer optimization for wireless

multihop networks with pairwise intersession network coding,” Selected Areas in

Communications, IEEE Journal on, vol. 27, no. 5, pp. 606–621, 2009.

[20] V. Reddy, S. Shakkottai, A. Sprintson, and N. Gautam, “Multipath wireless

network coding: a population game perspective,” in Proc. of INFOCOM, San

Diego, CA, March 2010.

[21] A. Eryilmaz, D. Lun, and B. Swapna, “Control of multi-hop communication net-

works for inter-session network coding,” Information Theory, IEEE Transactions

on, vol. 57, no. 2, pp. 1092–1110, 2011.

[22] T. Ho and H. Viswanathan, “Dynamic algorithms for multicast with intra-session

network coding,” Information Theory, IEEE Transactions on, vol. 55, no. 2, pp.

797–815, 2009.

[23] Y. Xi and E. Yeh, “Distributed algorithms for minimum cost multicast with

network coding,” Networking, IEEE/ACM Transactions on, vol. 18, no. 2, pp.

379–392, 2010.

[24] M. L. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic Pro-

gramming. New York, NY, USA: John Wiley & Sons, Inc., 1994.

150

[25] S. Ross, Introduction to stochastic dynamic programming: Probability and math-

ematical. Orlando, FL, USA: Academic Press, Inc., 1983.

[26] L. I. Sennott, Stochastic Dynamic Programming and the Control of Queueing

Systems. New York, NY, USA: Wiley-Interscience, 1999.

[27] D. P. Bertsekas, Dynamic Programming: Deterministic and Stochastic Models.

Englewood Cliffs, NJ: Prentice-Hall, 1987.

[28] L. I. Sennott, “Average Cost Optimal Stationary Policies in Infinite State Markov

Decision Processes with Unbounded Costs,” Operations Research, vol. 37, pp.

626–633, 1989.

[29] G. Koole, Monotonicity in Markov Reward and Decision Chains: Theory and

Applications. Hanover, MA, USA: Now Publishers Inc, 2007.

[30] C. Labovitz, D. McPherson, and S. Iekel-Johnson, “2009 Internet Observatory

report,” in NANOG-47, October 2009.

[31] X. Wu, S. Tavildar, S. Shakkottai, T. Richardson, J. Li, R. Laroia, and A. Jovi-

cic, “FlashlinQ: A synchronous distributed scheduler for peer-to-peer ad hoc

networks,” in Proc. of Allerton, 2010.

[32] S. Deb, M. Médard, and C. Choute, “Algebraic gossip: A network coding ap-

proach to optimal multiple rumor mongering,” IEEE Trans. on Information The-

ory, vol. 52, no. 6, pp. 2486–2507, 2006.

[33] A. ParandehGheibi, M. Medard, A. Ozdaglar, and S. Shakkottai, “Avoiding

interruptions-a QoE reliability function for streaming media applications,” IEEE

Journal on Selected Areas in Communications, To appear in 2011.

151

[34] A. Sprintson, P. Sadeghi, G. Booker, and S. El Rouayheb, “A randomized algo-

rithm and performance bounds for coded cooperative data exchange,” in Proc.

of IEEE ISIT, 2010, pp. 1888–1892.

[35] N. Milosavljevic, S. Pawar, S. El Rouayheb, M. Gastpar, and K. Ramchandran,

“An optimal divide-and-conquer solution to the linear data exchange problem,”

in Proc. of IEEE ISIT, 2011.

[36] T. Courtade and R. Wesel, “Coded cooperative data exchange in multihop net-

works,” Arxiv preprint arXiv:1203.3445v1, 2012.

[37] M. Wang and B. Li, “Lava: A reality check of network coding in peer-to-peer

live streaming,” in INFOCOM 2007. 26th IEEE International Conference on

Computer Communications. IEEE. IEEE, 2007, pp. 1082–1090.

[38] X. Zhang, J. Liu, B. Li, and Y. Yum, “Coolstreaming/donet: a data-driven

overlay network for peer-to-peer live media streaming,” in INFOCOM 2005. 24th

Annual Joint Conference of the IEEE Computer and Communications Societies.

Proceedings IEEE, vol. 3. Ieee, 2005, pp. 2102–2111.

[39] “PPLive,” http://www.pplive.com/, 2011.

[40] G. Huang, “Pplive: A practical p2p live system with huge amount of users,” in

Proc. of the ACM SIGCOMM Workshop on Peer-to-Peer Streaming and IPTV

Workshop, 2007.

[41] Z. Liu, C. Wu, B. Li, and S. Zhao, “Uusee: Large-scale operational on-demand

streaming with random network coding,” in INFOCOM, 2010 Proceedings IEEE.

Ieee, 2010, pp. 1–9.

152

[42] H. Seferoglu, L. Keller, B. Cici, A. Le, and A. Markopoulou, “Cooperative video

streaming on smartphones,” in Communication, Control, and Computing (Aller-

ton), 2011 49th Annual Allerton Conference on. IEEE, 2011, pp. 220–227.

[43] Y. P. Zhou, D. M. Chiu, and J. C. S. Lui, “A simple model for analyzing P2P

streaming protocols,” in Proc. of IEEE ICNP 2007, Beijing, China, October

2007.

[44] S. Shakkottai, R. Srikant, and L. Ying, “The asymptotic behavior of minimum

buffer size requirements in large P2P streaming networks,” IEEE Journal on

Selected Areas in Communications, vol. 29, no. 5, May 2011.

[45] M. Ra, J. Paek, A. Sharma, R. Govindan, M. Krieger, and M. Neely, “Energy-

delay tradeoffs in smartphone applications,” in Proc. of ACM MobiSys, 2010,

pp. 255–270.

[46] L. Jiang and J. Walrand, “Distributed CSMA algorithm for throughput and

utility maximization in wireless networks,” in Proc. Ann. Allerton Conf. Com-

munication, Control and Computing, 2008.

[47] F. P. Kelly, A. Maulloo, and D. Tan, “Rate control in communication networks:

shadow prices, proportional fairness and stability,” Journal of the Operational

Research Society, vol. 49, pp. 237–252, 1998.

[48] A. Eryilmaz and R. Srikant, “Fair resource allocation in wireless networks us-

ing queue-length-based scheduling and congestion control,” in Proc. of IEEE

INFOCOM, Miami, FL, 2005.

[49] G. Veciana and X. Yang, “Fairness, incentives and performance in peer-to-peer

153

networks,” in Proc. Forty-First Annual Allerton Conference on Control, Com-

munications and Computing, Monticello, IL, USA, October 2003.

[50] V. Goyal, “Multiple description coding: Compression meets the network,” Signal

Processing Magazine, IEEE, vol. 18, no. 5, pp. 74–93, 2001.

[51] A. Ramasubramonian and J. Woods, “Multiple description coding and practical

network coding for video multicast,” Signal Processing Letters, IEEE, vol. 17,

no. 3, pp. 265–268, 2010.

[52] A. Albanese, J. Blomer, J. Edmonds, M. Luby, and M. Sudan, “Priority encoding

transmission,” Information Theory, IEEE Transactions on, vol. 42, no. 6, pp.

1737–1744, 1996.

[53] P. Chou, Y. Wu, and K. Jain, “Practical network coding,” in Annual Allerton

Conference on Communication, Control, and Computing, 2003.

[54] P. K. I-H. Hou, “Broadcasting delay-constrained trafc over unreliable wireless

links with network coding,” in Proc. of MobiHoc 2011, 2011.

154

APPENDIX A

OPTIMAL DELAY-THROUGHPUT TRADE-OFF IN THE NETWORK

CODING-ENABLED RELAY NETWORKS

Proof of Theorem 6

In the proof of this theorem, we use the following result which enhances applying

Lemma 7.

Lemma 20 (Proposition 5 [28]). Assume there exists a stationary policy θ inducing

an irreducible and ergodic Markov chain with the following properties: there exists a

nonnegative function F (i, j) and a finite nonempty subset G with G ⊆ R2 such that

for (i, j) ∈ R2 −G,

∑
k,l

Pθ((i, j), (k, l))F (k, l)− F (i, j) ≤ −C((i, j), θ), (A.1)

and
∑

k,l Pθ((i, j), (k, l))F (k, l) <∞ for (i, j) ∈ G. Then the condition (iii) in Lemma

7 holds.

As described earlier it is sufficient to show that the three conditions in Lemma 7

are met. Proposition 5 results in the condition (i), while the condition (ii) is satisfied

based on Lemma 6 (e.g. set N = 0). Three cases are considered to show that the

condition (iii) holds.

Case (1) p
(i)
0 + p

(i)
1 < 1 for i = 1, 2:

Let F (i, j) = B(i2 + j2) for some positive B in Lemma 20. By θ̃ we denote the

stationary policy of always transmitting, that induces an irreducible and ergodic

155

Markov chain from MDP. Then, for all state (i, j) ∈ R2 − {(0, 0), (0, 1), (1, 0)}, we

can compute that

∑
k,l

Pθ̃ ((i, j), (k, l)) [F (k, l)− F (i, j)]

=
∞∑
r=0

∞∑
s=0

P1

(
(i, j), ([i− 1]+ + r, [j − 1]+ + s)

) [
F ([i− 1]+ + r, [j − 1]+ + s)− F (i, j)

]
=
∞∑
r=0

∞∑
s=0

p(1)r p(2)s B
[
2i(r − 1) + (r − 1)2 + 2j(s− 1) + (s− 2)2

]
=2B

(
i(E[A1]− 1) + j(E[A2]− 1)

)
+B

(
E[(A1 − 1)2] + E[(A2 − 1)2]

)
. (A.2)

Note that E[Ai] < 1, so 2B(E[Ai] − 1) < −CH for sufficiently large B. Moreover,

since E[A2
i] <∞ for i ∈ {1, 2}, (A.1) can be guaranteed. That is

∑
k,l

Pθ̃ ((i, j), (k, l)) [F (k, l)− F (i, j)] ≤ −C((i, j), θ̃),

when i, j are large enough, where C((i, j), θ̃) = CH([i− 1]+ + [j− 1]+) +CT . Accord-

ingly, we define G as a finite set such that for (i, j) ∈ R2−G, the above inequality is

satisfied. We also let G include the states {(0, 0), (0, 1), (1, 0)}.

Finally, for (i, j) ∈ G,

∑
k,l

Pθ̃ ((i, j), (k, l))F (k, l)

=B
∞∑
r=0

∞∑
s=0

p(1)r p(2)s
[
([i− 1]+ + r)2 + ([j − 1]+ + s)2

]
=B
{

(i− 1)2 + 2[i− 1]+E[A1] + E[A2
1] + (j − 1)2 + 2[j − 1]+E[A2] + E[A2

1]
}
<∞,

since all the terms are finite. Therefore, the condition (iii) in Lemma 7 is verified

according to Lemma 20.

Case (2) p
(1)
0 + p

(1)
1 = 1 and p

(2)
0 + p

(2)
1 < 1:

156

q2

q1

CS1

CS2

CSii

CSi-1i-1

2

1

0

(i,j)

Fig. 23. In case (iii), state (i, j) can only transit to states in the communicating classes

CSi and CSi−1

We shall see that under θ̃ in case (1), the Markov chain is not irreducible and we

cannot use Lemma 20, hence we will directly verify the condition (iii) in Lemma 7.

Consider Figure 23 and define sets CS1 = {(a, b) : a = 0, 1 and b ∈ N ∪ {0}}

and CSi = {(a, b) : a = i, b ∈ N ∪ {0}} for i ≥ 2. Then all CSi are communicating

classes under policy θ̃. The states in CS1 can be shown to be positive-recurrent, but

in CSi with i ≥ 2 are transient. For i ≥ 2, let Ci,j be the expected cost for a passage

from state (i, j) (in class CSi) to the next class CSi−1. Note that state (i, j) has

the probability of p
(1)
0 to escape to class CSi−1 and p

(1)
1 to remain in class CSi. By

considering all the possible paths to escape from state (i, j), we can compute Ci,j as

following, where C(i, Q
(2)
t) = CT + CH([i− 1]+ + [Q

(2)
t − 1]+),

Ci,j = E

[
∞∑
k=0

(p
(1)
1)kp

(1)
0

k∑
t=0

C(i, Q
(2)
t)|(Q(1)

0 , Q
(2)
0) = (i, j)

]

= p
(1)
0 E

[
∞∑
t=0

C(i, Q
(2)
t)

∞∑
k=t

(p
(1)
1)k|(Q(1)

0 , Q
(2)
0) = (i, j)

]

= E

[
∞∑
t=0

(p
(1)
1)tC(i, Q

(2)
t)|(Q(1)

0 , Q
(2)
0) = (i, j)

]
(A.3)

157

Hence, Ci,j can be viewed as the total expected p
(1)
1 -discounted cost of the system, i.e.

one can imagine that there is the arrival processA1 with P(A1 = 1) = 1 to q1, the same

process A2 to q2, and the relay always transmits. Therefore, Ci,j <∞ with the similar

proof to Proposition 5. By C(i,j),(k,l) we denote the expected cost of a first passage

from state (i, j) to (k, l). Note that C(1,j),(0,0) <∞ for any j by using the Proposition

4 in [28] (intuitively, the expected traveling time from state (1, j) to (0, 0) is finite due

to the positive recurrence of CS1). Let T0 = min{t ≥ 1 : (Q
(1)
t , Q

(2)
t) = (0, 0)} and for

i ≥ 1, Ti = min{t ≥ 1 : Q
(1)
t = i} with the corresponding state (Q

(1)
Ti
, Q

(2)
Ti

) = (i, j̃i).

Then C(i,j),(0,0) <∞, since

C(i,j),(0,0) = Ci,j +
i−2∑
k=1

Ci−k,j̃i−k
+ C(1,j̃1),(0,0)

. (A.4)

By θ̂, we define a policy of always transmitting until T0 after which the α-optimal

policy is employed. Vα(i, j) can be bounded by the discounted cost incurred by θ̂,

Vα(i, j) ≤

Eθ̂

[
Ti−1−1∑
t=0

αtC(Qt, At)|Q0 = (i, j)

]
+

i−2∑
k=1

Eθ̂

[
Ti−k−1−1∑
t=Ti−k

αtC(Qt, At)|Q0 = (i, j)

]
+

Eθ̂

[
T0−1∑
t=T1

αtC(Qt, At)|Q0 = (i, j)

]
+ Eθ̂

[
∞∑
t=T0

αtC(Qt, At)|Q0 = (i, j)

]
≤ C(i,j),(0,0) + Vα(0, 0)

Let Mi,j = C(i,j),(0,0) in Lemma 7. Then Mi,j <∞ and vα(i, j) = Vα(i, j)−Vα(0, 0) ≤

Mi,j. Moreover,

∑
k,l

P1

(
(i, j), (k, l)

)
Mk,l =

∑
k,l

P1

(
(i, j), (k, l)

)
C(k,l),(0,0) ≤ C(i,j),(0,0) <∞.

Therefore, the condition (iii) of Lemma 7 is met.

Case (3) p
(i)
0 + p

(i)
1 = 1 for i = 1, 2 (i.e. Bernoulli arrivals to both queues):

Note that θ̃ in case(1) cannot define an irreducible Markov chain for this case either.

158

By a similar argument to case (2), we can define Mi,j = C(i,j),(0,0), and show that

C(i,j),(0,0) is finite for this case. It is true since there is a finite expected cost for state

(i, j) to escape to {(i− 1, j − 1), (i− 1, j), (i, j − 1)}.

Proof of Lemma 10

Note that in the proof of Lemma 6, we have shown Vα,n+1(i, j) is non-decreasing, if so

is Vα,n(i, j). Therefore, we only need to show the submodularity and the subconvexity

properties of Vα,n+1(i, j).

In what follows, we first prove the submodularity part. The subconvexity prop-

erty will be shown subsequently.

Submodularity

We intend to show that for all i, j ∈ N ∪ {0},

Vα,n+1(i+ 1, j + 1)− Vα,n+1(i+ 1, j) ≤ Vα,n+1(i, j + 1)− Vα,n+1(i, j).

According to Lemma 9, we are only interested in 6 cases of (a∗i,j, a
∗
i+1,j, a

∗
i,j+1, a

∗
i+1,j+1),

where a∗i,j = min{a : arg mina∈{0,1} Vα,n(i, j, a)}.

Case (i) (a∗i,j, a
∗
i+1,j, a

∗
i,j+1, a

∗
i+1,j+1) = (1, 1, 1, 1): We claim that

E[Vα,n(i+A1, j +A2)− Vα,n(i+A1, [j − 1]+ +A2)]

≤ E[Vα,n([i− 1]+ +A1, j +A2)− Vα,n([i− 1]+ +A1, [j − 1]+ +A2)].
(A.5)

When i, j 6= 0, it is true according to submodularity of Vα,n(i, j). Otherwise, both

sides are 0.

159

Case (ii) (a∗i,j, a
∗
i+1,j, a

∗
i,j+1, a

∗
i+1,j+1) = (0, 0, 0, 0): We claim that

E[Vα,n(i+ 1 +A1, j + 1 +A2)− Vα,n(i+ 1 +A1, j +A2)]

≤ E[Vα,n(i+A1, j + 1 +A2)− Vα,n(i+A1, j +A2)].
(A.6)

This is obvious from the submodularity of Vα,n(i, j).

Case (iii) (a∗i,j, a
∗
i+1,j, a

∗
i,j+1, a

∗
i+1,j+1) = (0, 0, 0, 1): We claim that

CT − CH + αE[Vα,n(i+A1, j +A2)− Vα,n(i+ 1 +A1, j +A2)]

≤ CH + αE[Vα,n(i+A1, j + 1 +A2)− Vα,n(i+A1, j +A2)].
(A.7)

From the submodularity of Vα,n(i, j), we have

Vα,n(i, j)− Vα,n(i+ 1, j) + Vα,n(i, j)− Vα,n(i, j + 1)

≤ Vα,n(i, j)− Vα,n(i+ 1, j) + Vα,n(i+ 1, j)− Vα,n(i+ 1, j + 1)

= Vα,n(i, j)− Vα,n(i+ 1, j + 1).

(A.8)

Since a∗i+1,j+1 = 1, we have ∆Vα,n(i+ 1, j + 1) ≤ 0, i.e.,

CT − 2CH + αE[Vα,n(i+A1, j +A2)− Vα,n(i+ 1 +A1, j + 1 +A2)] ≤ 0. (A.9)

The claim is true because

CT − 2CH + αE[Vα,n(i+A1, j +A2)− Vα,n(i+ 1 +A1, j +A2)

+Vn(i+A1, j +A2)− Vα,n(i+A1, j + 1 +A2)]

≤ ∆Vα,n(i+ 1, j + 1) ≤ 0.

(A.10)

Case (iv) (a∗i,j, a
∗
i+1,j, a

∗
i,j+1, a

∗
i+1,j+1) = (0, 0, 1, 1): We claim that

−CH + αE[Vα,n(i+A1, j +A2)− Vα,n(i+ 1 +A1, j +A2)]

≤ CH([i− 1]+ − i) + αE[Vα,n([i− 1]+ +A1, j +A2)− Vα,n(i+A1, j +A2)].
(A.11)

When i 6= 0, it is satisfied because Vα,n(i, j) is convex. Otherwise, it is true since

Vα,n(i, j) is non-decreasing.

160

Case (v) (a∗i,j, a
∗
i+1,j, a

∗
i,j+1, a

∗
i+1,j+1) = (0, 1, 0, 1): We claim that

CH(j − [j − 1]+) + αE[Vα,n(i+A1, j +A2)− Vα,n(i+A1, [j − 1]+ +A2)]

≤ CH + αE[Vα,n(i+A1, j + 1 +A2)− Vα,n(i+A1, j +A2)].
(A.12)

When j 6= 0, it holds since Vα,n(i, j) is convex. It is true for other cases because of

the non-decreasing property of Vα,n(i, j).

Case (vi) (a∗i,j, a
∗
i+1,j, a

∗
i,j+1, a

∗
i+1,j+1) = (0, 1, 1, 1): We claim that

CH(j − [j − 1]+) + αE[Vα,n(i+A1, j +A2)− Vα,n(i+A1, [j − 1]+ +A2)]

≤ CT + CH([i− 1]+ − i) + αE[Vα,n([i− 1]+ +A1, j +A2)− Vα,n(i+A1, j +A2)].
(A.13)

Based on the submodularity of Vα,n(i, j), we have

Vα,n([i− 1]+, j)− Vα,n(i, j) + Vα,n(i, [j − 1]+)− Vα,n(i, j)

≥ Vα,n([i− 1]+, [j − 1]+)− Vα,n(i, [j − 1]+) + Vα,n(i, [j − 1]+)− Vα,n(i, j)

= Vα,n([i− 1]+, [j − 1]+)− Vα,n(i, j).

(A.14)

It is noted that a∗i,j = 0 and hence ∆Vα,n(i, j) ≥ 0, i.e.,

CT + CH([i− 1]+ + [j − 1]+ − i− j)+

αE[Vα,n([i− 1]+ +A1, [j − 1]+ +A1)− Vα,n(i+A1, j +A1)] ≥ 0.
(A.15)

Therefore, it can be acquired that

CT + CH([i− 1]+ + [j − 1]+ − i− j) + αE[Vα,n([i− 1]+ +A1, j +A2)−

Vα,n(i+A1, j +A2) + Vα,n(i+A1, [j − 1]+ +A2)− Vα,n(i+A1, j +A2)]

≥ ∆Vα,n(i, j) ≥ 0.

(A.16)

Subconvexity

We want to show that for all i and j,

Vα,n+1(i+ 1, j + 1)− Vα,n+1(i, j) ≤ Vα,n+1(i+ 2, j + 1)− Vα,n+1(i+ 1, j).

161

There will be only 5 cases of (a∗i,j, a
∗
i+1,j, a

∗
i+1,j+1, a

∗
i+2,j+1) that need to be considered.

Case (i) (a∗i,j, a
∗
i+1,j, a

∗
i+1,j+1, a

∗
i+2,j+1) = (1, 1, 1, 1): We claim that

CH(i− [i− 1]+) + αE[Vα,n(i+A1, j +A2)− Vα,n([i− 1]+ +A1, [j − 1]+ +A2)]

≤ CH + αE[Vα,n(i+ 1 +A1, j +A2)− Vα,n(i+A1, [j − 1]+ +A2)].
(A.17)

When i, j 6= 0, it is true according to the subconvexity of Vα,n(i, j). The argument

is satisfied for i = 0, j 6= 0 due to Vα,n(i, j) being non-decreasing, and for the case

i 6= 0, j = 0 due to the convexity of Vα,n(i, j). Otherwise, it holds according to the

non-decreasing property.

Case (ii) (a∗i,j, a
∗
i+1,j, a

∗
i+1,j+1, a

∗
i+2,j+1) = (0, 0, 0, 0): We claim that

E[Vα,n(i+ 1 +A1, j + 1 +A2)− Vα,n(i+A1, j +A2)]

≤ E[Vα,n(i+ 2 +A1, j + 1 +A2)− Vα,n(i+ 1 +A1, j +A2)].
(A.18)

This is obvious from the subconvexity of Vα,n(i, j).

Case (iii) (a∗i,j, a
∗
i+1,j, a

∗
i+1,j+1, a

∗
i+2,j+1) = (0, 0, 0, 1): We claim that

2CH + αE[Vα,n(i+ 1 +A1, j + 1 +A2)− Vα,n(i+A1, j +A2)] ≤ CT . (A.19)

Since a∗i+1,j+1 = 0, we have ∆Vα,n(i+ 1, j + 1) ≥ 0, i.e.,

CT − 2CH + αE[Vα,n(i+A1, j +A2)− Vα,n(i+ 1 +A1, j + 1 +A2)] ≥ 0. (A.20)

Hence the claim is verified.

Case (iv) (a∗i,j, a
∗
i+1,j, a

∗
i+1,j+1, a

∗
i+2,j+1) = (0, 0, 1, 1): It is trivial, since both sides are

equal to zero.

Case (v) (a∗i,j, a
∗
i+1,j, a

∗
i+1,j+1, a

∗
i+2,j+1) = (0, 1, 1, 1): We claim that

CT ≤ CH(1 + j − [j − 1]+)

+αE[Vα,n(i+ 1 +A1, j +A2)− Vα,n(i+A1, [j − 1]+ +A2)].
(A.21)

162

Notice that a∗i+1,j = 1, so ∆Vα,n(i+ 1, j) ≤ 0, i.e.,

CT − CH(1 + j − [j − 1]+)+

αE[Vα,n(i+A1, [j − 1]+ +A2)− Vα,n(i+ 1 +A1, j +A2)] ≤ 0.
(A.22)

Therefore, the argument is confirmed.

Proof of Theorem 10

The proof is based on Foster-Lyapunov criterion [12] associated with the Lyapunov

function L(x, y) = x2 + y2. Notice that

Q
(i)
t+1 = [Q

(i)
t − At]+ +Ai = Q

(i)
t − At + U

(i)
t +Ai, (A.23)

where,

U
(i)
t =

 0 if Q
(i)
t − At ≥ 0

1 if Q
(i)
t − At = −1.

(A.24)

163

Then it can be observed that

E
[
L(Q

(1)
t+1, Q

(2)
t+1)− L(Q

(1)
t , Q

(2)
t)|Q(1)

t = x,Q
(2)
t = y

]
= E

[∑2
i=1(Q

(i)
t − At + U

(i)
t +Ai)2|Q(1)

t = x,Q
(2)
t = y

]
− (x2 + y2)

=
2∑
i=1

E
[
(Q

(i)
t − At +Ai)2|Q(1)

t = x,Q
(2)
t = y

]
+

2∑
i=1

E
[
(U

(i)
t)2|Q(1)

t = x,Q
(2)
t = y

]
+

2∑
i=1

E
[
2U

(i)
t (Q

(i)
t − At +Ai)|Q(1)

t = x,Q
(2)
t = y

]
− (x2 + y2)

(a)

≤
2∑
i=1

E
[
(Q

(i)
t − At +Ai)2|Q(1)

t = x,Q
(2)
t = y

]
+ 2 + 2E[A1] + 2E[A2]− (x2 + y2)

= 2xE
[
A1 − At|Q(1)

t = x,Q
(2)
t = y

]
+ 2yE

[
A2 − At|Q(1)

t = x,Q
(2)
t = y

]
+E

[
(A1 − At)2|Q(1)

t = x,Q
(2)
t = y

]
+ E

[
(A2 − At)2|Q(1)

t = x,Q
(2)
t = y

]
+2E[A1] + 2E[A2] + 2
(b)

≤ 2xE
[
A1 − At|Q(1)

t = x,Q
(2)
t = y

]
+ 2yE

[
A2 − At|Q(1)

t = x,Q
(2)
t = y

]
+E[A2

1] + 1 + E[A2
2] + 1 + 2E[A1] + 2E[A2] + 2

= E[A2
1] + E[A2

2] + 2E[A1] + 2E[A2] + 4

+

 2x(E[A1]− 1) + 2y(E[A2]− 1) if (x, y) ∈ Bc

2xE[A1] + 2yE[A2] if (x, y) ∈ B

where B = {(x, y) : (x = 0, y ≤ L2) or (x ≤ L1, y = 0)}. The inequality (a) comes

from (U
(i)
t)2 ≤ 1 and (Q

(i)
t − At)U

(i)
t ≤ 0, while E[At] ≤ 1 results in (b). Since

E[A2
i] < ∞ and E[Ai] < 1 for i ∈ {1, 2}, the result follows from Forster-Lyapunov

theorem.

164

APPENDIX B

WIRELESS BROADCAST P2P NETWORKS

Result on Longest-Queue-First (LQF) Algorithm

Consider a system of M queues with i.i.d Bernoulli arrivals of rate p packets per

time slot, which are commonly served by a single server with a service rate of 1

packet/slot. The length of the ith queue at the beginning of time slot t is denoted by

bi[t], and B[t] = (b1[t], ..., bM [t]) is the state of the system at this time. We also use

A[t] = (a1[t], ..., aM [t]) to denote the arrivals to the queues during time slot t.

It is obvious that the LQF algorithm, which schedules the longest queue at

each time, is work conserving. Denote the event that the server is idle at time s by

Is ∈ {0, 1}. In a work conserving scheme, idleness happens only when all the queues

are empty

Is = 1 only if
∑

i bi[s] = 0. (B.1)

Let I[t] =
∑t−1

s=0 Is be the total number of idle slots in interval [0, t− 1] and I[0] = 0.

The following Theorem declares that LQF, on average, results in longer minimum

queue length, as compared to all other work conserving policies.

Theorem 25. Let µ be any causal work conserving scheduling policy for the queueing

system described above. Then for any values of T > 0, B[0], I[T],
∑
i

t=T−1∑
t=0

ai[t] and

β(I[T]) ≥ 0,

PLQF
(

min
i
bi[T] ≥ β(I[T])

∣∣∣B[0], I[T],
∑
i

t=T−1∑
t=0

ai[t]

)

≥ Pµ
(

min
i
bi[T] ≥ β(I[T])

∣∣∣B[0], I[T],
∑
i

t=T−1∑
t=0

ai[t]

)
.

165

Proof. Throughout this proof, we assume all policies are work conserving and we may

drop the time index [t], when there is no ambiguity. We also use minX, maxX and

sum(X) to denote respectively the minimum, the maximum and the sum of elements

in the vector X. In our queueing system for each t ∈ [0, T], we say a set of values

{B[t], I[t], I[T],
∑T−1

τ=0 sum(A[τ])} is feasible, if there exists a realization of the

Bernoulli arrivals and a service scheme for time τ = 0 to T which result in the above

values. We assume all these values in this proof are feasible.

For any work conserving policy, we have sum(B[t]) =
∑t−1

τ=0 sum(A[τ]) − (t −

I[t]), which implies, given B[t] and I[t], the total number of arrivals up to time t,∑t−1
τ=0 sum(A[τ]), is deterministically known.

For given T, I[T],
∑T−1

τ=0 sum(A[τ]), β = β(I[T]) and any t < T , we define the

success probability of a policy µ at time t, P(µ)(B[t], I[t], t), as

P
(

minB[T] ≥ β
∣∣∣B[t], I[t], I[T],

T−1∑
τ=0

sum(A[τ]), µ is used from t to T
)
.

We will prove that, given any initial state B[0] and I[0] = 0, the LQF algorithm is

optimal in the sense that its success probability is not less than any other policy µ.

We do this using dynamic programming, and use induction to order states on their

probability of failure. Note that because of the symmetry in the system, if B[t] is a

permutation of B̂[t], then P(µ)(B[t], I[t], t) = P(µ)(B̂[t], I[t], t). We denote this case

by B[t] ∼ B̂[t].

Induction Hypothesis:

1. For each t < T and any state B[t] and I[t], we have

P(LQF)(B[t], I[t], t) ≥ P(µ)(B[t], I[t], t) ∀µ. (B.2)

2. Let B1 = (b1, ..., bî, ..., bĵ, ..., bM) and B2 = (b1, ..., (bî+1), ..., (bĵ−1), ..., bM) and

166

0 ≤ bî < bĵ − 1. Then for any t < T and I[t], the following holds

P(LQF)(B1[t], I[t], t) ≤ P(LQF)(B2[t], I[t], t). (B.3)

First we show that the hypothesis is valid for t = T − 1.

Case for t = T − 1 : Let u[T −1] ∈ {1, ...,M} be the served queue at time T −1.

Recall that given B[T−1], I[T−1] and
∑T−1

τ=0 sum(A[τ]), the total number of arrivals

during the last time slot sum(A[T − 1]) is known. Then the probability of success,

P(minB[T] ≥ β|B[T − 1], I[T − 1], I[T], u[T − 1],
∑T−1

τ=0 sum(A[τ])) =
0 if (mink bk ≤ β − 2) or

(
bu[T−1] ≤ β − 1

)
or (maxk bk ≤ β − 1)

P (l) otherwise

(B.4)

where P (l) is the probability that each queue in the set {k : bk = β− 1}∪ {u[T − 1] :

bu[T−1] = β}, of cardinality l, receives one packet at this time. Since the arrival

processes are assumed to be identically distributed, given the total number of arrivals

at this time, sum(A[T − 1]), we have

P (l) = 1{sum(A[T−1])≥l}

(
M−l

sum(A[T−1])−l

)(
M

sum(A[T−1])

) .
It can be verified that P (l) decreases with l, therefore choosing u[T − 1] such

that bu[T−1] > β (if possible) maximizes the probability of success. LQF is hence an

optimal strategy at time T − 1.

Next we prove (B.3) holds for t = T − 1. Note that for LQF, we have bu[T−1] =

maxk bk. Based on the success probability in (B.4), we consider the following cases:

(1) minB2 ≤ β − 2 : From (B.4) and since (minB1 ≤ minB2), we have

P(LQF)(B1, I[T − 1], T − 1) = P(LQF)(B2, I[T − 1], T − 1) = 0.

(2) maxB2 ≤ β− 1 : From (B.4) and since (minB1 ≤ bî ≤ maxB2− 1 ≤ β− 2),

167

we have P(LQF)(B1, I[T − 1], T − 1) = P(LQF)(B2, I[T − 1], T − 1) = 0 for this case as

well.

(3) minB2 ≥ β − 1, maxB2 ≥ β : For this case, we have bî ≥ β − 2. Now

if bî = β − 2, then P(LQF)(B1, I[T − 1], T − 1) = 0. Otherwise, bî ≥ β − 1 and

the parameters l(B1) and l(B2) of the success probability in (B.4), when the LQF is

applied, for B1 and B2 respectively, are

l(B1) = l̂ + 1{bî=β−1} and l(B2) = l̂ + 1{maxB2=β} (B.5)

where l̂ = card({k 6= î, ĵ : bk = β − 1}). Since β ≤ bî + 1 ≤ maxB2, it can be seen

that l(B1) ≥ l(B2). Consequently, (B.3) holds for T − 1.

Inductive step: Suppose the hypothesis holds for t+1, ..., T −1. To show (B.2) at

time t, given B[t] and I[t], note that if bi 6= 0 for at most one i ∈ {1, ...,M}, then all

work conserving policies will take the same action. Now suppose there are at least two

non-empty queues. LQF chooses i∗ = arg maxk bk to serve and suppose another policy

µ chooses g, where 0 < bg < bi∗ . The system states at time t+1 corresponding to these

two policies are respectivelyBLQF [t+1] = (b1+a1, ..., bg+ag, ..., bi∗−1+ai∗ , ..., bM+aM)

and Bµ[t + 1] = (b1 + a1, ..., bg − 1 + ag, ..., bi∗ + ai∗ , ..., bM + aM), for the arrivals

A[t] = (a1, ..., aM). Also I[t+ 1] = I[t] for both policies, since we assumed there exist

non-empty queues at time t.

Note that bg +ag ≤ bi∗ +ai∗ for any Bernoulli arrivals. Now if bg +ag = bi∗ +ai∗ ,

then BLQF [t+ 1] ∼ Bµ[t+ 1]. Otherwise, it can be easily verified that

P(LQF)(BLQF [t+ 1], I[t+ 1], t+ 1|A[t]) ≥ P(LQF)(Bµ[t+ 1], I[t+ 1], t+ 1|A[t])

≥ P(µ)(Bµ[t+ 1], I[t+ 1], t+ 1|A[t])

where the first and the second inequalities follow respectively from (B.3) and (B.2)

168

for t + 1. By taking expectation over all arrivals A[t], we conclude that (B.2) holds

at time t as well.

Now, we show that the inequality in (B.3) holds at time t. Consider states B1[t]

and B2[t] as defined in the induction hypothesis. Using LQF at this time, these states

will lead respectively to B1[t+1] and B2[t+1]. Without loss of generality, we assume

LQF always chooses queue ĵ to serve, if this queue has the maximum length. Let

k∗ = arg maxk 6=ĵ bk and consider the following cases:

(1) bĵ < bk∗ : It can be verified that k∗ 6= î and the LQF algorithm chooses k∗

to serve in both B1[t] and B2[t] states. Hence, we have B1[t + 1] = (b1 + a1, ..., bî +

aî, ..., bk∗−1+ak∗ , ..., bĵ+aĵ, ..., bM+aM) and B2[t+1] = (b1+a1, ..., bî+1+aî, ..., bk∗−

1 + ak∗ , ..., bĵ − 1 + aĵ, ..., bM + aM).

Note that bĵ + aĵ − 1 ≥ bî + aî for any aĵ, aî ∈ {0, 1}. If bĵ + aĵ − 1 = bî + aî,

then B1[t + 1] ∼ B2[t + 1]. Otherwise, from the induction step at time t + 1, (B.3)

holds for B1[t+ 1] and B2[t+ 1] at time t+ 1. By taking expectation over all arrivals

A[t], (B.3) is shown to be true for t as well.

(2) bĵ = bk∗ : It can be seen that k∗ 6= î and LQF chooses ĵ and k∗ to serve at

states B1[t] and B2[t] respectively. So, we have B1[t+ 1] = (b1 +a1, ..., bî+aî, ..., bk∗ +

ak∗ , ..., bĵ − 1 + aĵ, ..., bM + aM) and B2[t + 1] = (b1 + a1, ..., bî + 1 + aî, ..., bk∗ − 1 +

ak∗ , ..., bĵ − 1 + aĵ, ..., bM + aM). As in the previous case, since bk∗ + ak∗ − 1 ≥ bî + aî

for any ak∗ , aî ∈ {0, 1}, (B.3) holds for this case at time t as well.

(3) bĵ > bk∗ : LQF chooses ĵ to serve in both states B1[t] and B2[t]. We have

B1[t + 1] = (b1 + a1, ..., bî + aî, ..., bĵ − 1 + aĵ, ..., bM + aM) and B2[t + 1] = (b1 +

a1, ..., bî + 1 + aî, ..., bĵ − 2 + aĵ, ..., bM + aM).

If bĵ − 2 + aĵ ≥ bî + aî, then the same argument as before will follow. Otherwise,

bĵ − 1 + aĵ = bî + aî and for (aî, aĵ) ∈ {(0, 0), (1, 1)}, both states are similar and

for (aî, aĵ) ∈ {(0, 1), (1, 0)} they are symmetric. Observation 10 will show that the

169

probability of the two latter cases is the same for B1[t] and B2[t]. Hence, by taking

expectation over different realizations of A[t], we will have (B.3) with equality at t in

this case.

Observation 10. Since sum(B1[t]) = sum(B2[t]), given
∑T−1

τ=0 sum(A[τ]), the total

number of arrivals in the remaining time slots is the same for both states. We assumed

that the arrival processes are identically distributed and are independent over time

slots. Therefore, it is seen that

P((aî[t], aĵ[t]) = (a, 1 − a)|Bw[t], I[t], I[T],
∑T−1

τ=0 sum(A[τ])) has the same value for

all a ∈ {0, 1} and w = 1, 2.

Proof of Optimality of MRF Scheme (Theorem 19)

We will prove the optimality of the MRF scheme in Phase 1, based on the results

developed in Appendix B on the performance of the Longest-Queue-First (LQF) al-

gorithm in the context of queueing systems.

Note that P ((C1), (C2), (C3)) = P ((C1), (C2))P ((C3)|(C1), (C2)) and for a

given T1, P ((C1), (C2)) is independent of the P2P scheme in Phase 1. Because, the

values of ei[T1] and I[T1] are independent of any work conserving scheme and only

depend on the realization of the arrival processes. We will show that MRF maximizes

P ((C3)|(C1), (C2)) and hence is optimal.

P ((C3)|(C1), (C2)) = P (mini ei[T1]− xi[T1] ≥ β(I[T1])|(C1), (C2)) =∑
d

P (mini ei[T1]− xi[T1] ≥ β(d)|(C1), (C2), I[T1] = d)× P(I[T1] = d|(C1), (C2))

where β(I[T1]) = N − T + I[T1]. Note that ((C1), (C2), I[T1] = d) is equivalent to

(
∑

i ei[T1] ≥ Ñ , I[T1] = d), where Ñ = N + (M − 1) max(0, N + d− T).

170

Hence, P ((C3)|(C1), (C2)) =

∑
d

∑
N̂≥Ñ

P

(
min
i
ei[T1]− xi[T1] ≥ β(d)|

∑
i

ei[T1] = N̂ , I[T1] = d

)
×

P (I[T1] = d|(C1), (C2))P

(∑
i

ei[T1] = N̂ |(C1), (C2), I[T1] = d

)
.

We can interpret ei[t] and xi[t] respectively as the accumulated arrival and service

to some queue i, at time t, in which the arrival rate is p for all i and the total service

rate is 1. For such a queueing system, Theorem 25 declares that the LQF maximizes

P (mini ei[T1]− xi[T1] ≥ β(I[T1])|
∑

i ei[T1], I[T1]) , for all values of T1, I[T1],
∑

i ei[T1]

and β(I[T1]) and any initial state.

From (4.2), arg max
i
ei[T1]−xi[T1] = arg max

i
n̂i[T1] and since for the infinite field

size ni[t] = n̂i[t], LQF is translated to the MRF algorithm. Accordingly this implies

that MRF maximizes P ((C1), (C2), (C3)).

Proof of Lemma 17

Suppose
∑

i e
(k)
i ≥ N , because otherwise the whole system does not have enough

degrees of freedom to recover the block and hence the objective value in (4.34) is

identically equal to 0, for any P2P scheme. Also recall our assumption N > T . (Note

that if N ≤ T , any work conserving scheme will achieve the optimal value of (4.34).

More precisely, the duration of the frame T is large enough to broadcast at least

N degrees of freedom and any peer will be able to recover the block after these N

broadcasts.)

Since we have assumed
∑

i e
(k)
i ≥ N and N > T , there are enough arrived chunks

such that we can have a new broadcast transmission at each time during frame k− 1.

That is we can indeed assume
∑

i x
(k)
i = T in (4.34). Note that based on the state

of the system, peers may all get full-rank before the deadline and we do not have to

171

make T transmissions. However, for the sake of analyzing the optimization problem

in (4.34), it does not hurt if we consider
∑

i x
(k)
i = T instead of the second condition

in (4.34).

Given the B2P arrivals (e
(k)
1 , ..., e

(k)
M), we partition the set of peers {1, ...,M} into

sets S and Sc = {1, ...,M}\S as defined in Algorithm 6. Note that Sc is the set

of peers who have not received enough number of B2P arrivals and no feasible P2P

scheme can help them to recover the block before its deadline (i.e., 1{e(k)i +
∑

j 6=i x
(k)
j ≥N}

=

0). Therefore since the peers are assumed to be cooperative, it is socially beneficial

to let the peers in Sc broadcast all they have received over the P2P network. Let

T1 = min{
∑

i∈Sc e
(k)
i , T}. So we can devote the first T1 slots of the current frame to

transmissions from the peers in Sc.

Now we can rephrase the optimization in (4.34) in a simpler form as follows,

max
∑

i∈S di1{xki [kT]≤eki +T−N}

subject to

0 ≤ xki [kT] ≤ eki for all i ∈ S∑
i∈S x

k
i [kT] = T − T1

(B.6)

Note that if T1 = T , for each i ∈ S we have N − eki ≤ T = T1 and hence

1{eki +
∑

j 6=i x
k
j [T]≥N−T1} = 1. That is during this frame only the peers in Sc will transmit

and their transmissions are sufficient to deliver the whole block to the peers in S.

Recall that from the assumption we maid here, at each time we can have a new

broadcast transmission,

∑
i

x
(k)
i [t] = t− (k − 1)T for any (k − 1)T ≤ t ≤ kT.

On the other hand from (4.2) and for large field sizes, we have n
(k)
i [t] = n̂

(k)
i [t] =

e
(k)
i − x

(k)
i [t] +

∑
j x

(k)
j [t].

172

To achieve the maximum objective value in (B.6), each peer i ∈ S can transmit

upto e
(k)
i +T−N chunks without hurting the objective value (i.e., x

(k)
i [t] ≤ ei+T−N).

This will imply the following threshold on the rank of peers who can potentially

broadcast at each time t,

n
(k)
i [t] = e

(k)
i − x

(k)
i [t] + t− (k − 1)T ≥ N + t− kT.

If all the peers hit the above threshold before the deadline T , then the remaining

transmissions should be done by the peers subsequently in an increasing order of

their deficit values. That is the peer with the smallest deficit (say î) makes more

transmissions while x
(k)

î
[t] < e

(k)

î
or equivalently n

(k)

î
[t] > t − (k − 1)T. If there is a

need for more transmissions, the peer with the next smallest deficit value transmits

its remaining chunks and so on until all peers get full-rank or we hit the deadline T .

173

VITA

Navid Abedini graduated with a B.S. Degree in Electrical Engineering from Sharif

University of Technology, Iran in 2008. He is currently a Ph.D. candidate in Elec-

trical and Computer Engineering, Texas A&M University, where he is expected to

graduate in December 2012. He is the recipient of the Capocelli prize (the best stu-

dent paper award of IEEE Data Compression Conference 2010). He has also received

IEEE WiOpt 2011 travel grant, and Texas A&M Graduate Student Research and

Presentation grant in 2010. In 2007 he was awarded in the First National Congress of

the Iranian Talented Youth and also in the National Undergraduate entrance exam

(Iran, 2004) was ranked 7 (among 360,000).

His research mainly focuses on scheduling and optimization of the communica-

tion networks, queueing theory, coding and information theory. His recent projects

deal with design and analysis of algorithms to manage Peer-to-Peer and content dis-

tribution networks.

Email : navid.abed@gmail.com

