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ABSTRACT

Quantum Coherence Effects in Novel Quantum Optical Systems. (August 2012)

Eyob Alebachew Sete, B. S., Addis Ababa University;

M. S., Addis Ababa University

Chair of Advisory Committee: Dr. Marlan O. Scully

Optical response of an active medium can substantially be modified when co-

herent superpositions of states are excited, that is, when systems display quantum

coherence and interference. This has led to fascinating applications in atomic and

molecular systems. Examples include coherent population trapping, lasing without

inversion, electromagnetically induced transparency, cooperative spontaneous emis-

sion, and quantum entanglement.

We study quantum coherence effects in several quantum optical systems and find

interesting applications. We show that quantum coherence can lead to transient Ra-

man lasing and lasing without inversion in short wavelength spectral regions–extreme

ultraviolet and x-ray–without the requirement of incoherent pumping. For example,

we demonstrate transient Raman lasing at 58.4 nm in Helium atom and transient

lasing without inversion at 6.1 nm in Helium-like Boron (triply-ionized Boron). We

also investigate dynamical properties of a collective superradiant state prepared by

absorption of a single photon when the size of the sample is larger than the radiation

wavelength. We show that for large number of atoms such a state, to a good ap-

proximation, decays exponentially with a rate proportional to the number of atoms.

We also find that the collective frequency shift resulting from repeated emission and

reabsorption of short-lived virtual photons is proportional to the number of species

in the sample. Furthermore, we examine how a position-dependent excitation phase
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affects the evolution of entanglement between two dipole-coupled qubits. It turns

out that the coherence induced by position-dependent excitation phase slows down

the otherwise fast decay of the two-qubit entanglement. We also show that it is pos-

sible to entangle two spatially separated and uncoupled qubits via interaction with

correlated photons in a cavity quantum electrodynamics setup. Finally, we analyze

how quantum coherence can be used to generate continuous-variable entanglement in

quantum-beat lasers in steady state and propose possible implementation in quantum

lithography.
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CHAPTER I

INTRODUCTION

Quantum coherence is one of the most intriguing applications of quantum mechanics.

When coherent superposition of states of atoms or molecules are excited, that is,

when the system display quantum coherence or interference the optical response of

a medium gets modified substantially. This has led to interesting phenomena and

uncommon results. Examples of applications of quantum coherence include coherent

population trapping [1, 2, 3], lasing without inversion (LWI) [4, 5, 6], cooperative

spontaneous emission (superradiance) [7], and quantum entanglement [8, 9, 10] among

others.

The key idea is that when atoms are prepared in coherent superposition states,

the addition of probability amplitudes corresponding to different pathways leading to

the same end point may give rise to destructive interference. For example, in lasing

without population inversion, different absorption processes interfere destructively,

resulting in reduction or even cancelation of stimulated absorption under certain

conditions. At the same time, the stimulated emission process remain intact, leading

to the possibility of gain even though only a fraction of the population is in the

excited state. This implies that lasing is possible even if most of the population is in

the ground state.

Another interesting application of quantum coherence is the phenomenon of co-

operative spontaneous emission or superradiance. First coined by Dicke [7], superra-

diance involves a large number of two-level atoms prepared in a collective state where

half of the atoms are in the excited state and the other half in the ground state. This

The journal model is Physical Review A.
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state exhibits coherence and the radiation emitted by such a system is anomalous–

the intensity of the emitted radiation is proportional to the square of the number of

atoms. In recent years, other initial states has been considered to explore the physics

of superradiance. For example, single-photon state–a state in which one atom excited

and the rest in the ground state, gives insight into the physics of cooperative emission

and has been the subject of intense investigation [11, 12, 13, 14, 15]. Since the excited

atom out the N atoms is not known, the single photon state is essentially an entan-

gled state. Recent studies [11, 12, 13, 14, 15] show that this state has very interesting

features: When the sample size is less than the radiation wavelength (R ≪ λ) with

R being the radius of the sample and λ the wavelength, the single-photon state pre-

dominantly decays to the ground state with an enhanced rate equal to the number of

atoms times the single atom spontaneous decay rate, γ. Moreover, it has been shown

recently that the radiation emitted by such a system is directional [11]. From the

standpoint of applications, superradiance is useful for producing coherent radiation

without coherent pumping. This, in particular, is important for generating coherent

radiation in x-ray and γ-ray spectral regions, where there are no effective mirrors

which limit the use of ordinary stimulated emission process.

Quantum coherence has also been exploited as a resource for the emerging field

of quantum information science. In this context, quantum coherence has been used to

create discrete as well as continuous-variable entanglement in various quantum optical

systems. For instance, coherence induced by strong laser field can create entanglement

amplifier in correlated-emission laser with tens and thousands of photons [9]. Besides,

coherence was shown to create entanglement between two qubits [16, 17]. From

application viewpoint, quantum entanglement has proven to be the ingredient for

quantum information processing For example, entanglement between photons has

been used in quantum cryptography [18] and quantum teleportation [19].
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In this dissertation, we present effects of quantum coherence and interference in

various quantum optical systems. In Chapter II, we discuss the theory of transient

Raman lasing and transient lasing without inversion in the short wavelength regimes,

extreme ultra violet (XUV) and x-ray using Helium and Helium-like Boron–triply

ionized Boron as a gain media. We demonstrate transient Raman lasing in Helium

atoms at 58.4 nm and transient lasing without inversion in triply-ionized Boron at

6.1nm. In Chapter III, we study single-photon Dicke superradiance and show that

for extended cloud of two-level atoms, where the size of the sample is larger than the

radiation, a single photon collective state prepared by absorption of single photon

approximately decays to the ground state with a rate the number of atoms times the

single atom decay rate, Nγ. In Chapter IV, we show how an position-dependent

excitation phase induces quantum coherence and thereby affects the dynamics of en-

tanglement between two qubits. In Chapter V, we propose an alternative scheme

to entangle two spatially separated qubits via correlated photons in a cavity and

elucidate the physics of light-to-matter entanglement. Chapter VI deals with genera-

tion of entanglement in quantum-beat laser via microwave induced coherence. Using

this entangled light source we propose phase-controlled implementation of quantum

lithography. In Chapter VII, we address a fundamental question, in which we study

the role of dephasing on entanglement created in a quantum-beat laser. Finally, we

present the summary of our main results in Chapter VIII.

A. Fundamentals of light-matter interactions

Interactions of electromagnetic radiation with matter are the pillar for this disser-

tation. It is then imperative to go through the fundamentals of the light-matter

interactions. The analysis presented here are partially done following semiclassical
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approximation, where the field is assumed be strong and treated classically while

the atoms are considered quantum-mechanical objects. Although the semiclassical

approximation gives remarkably good results in some systems, it is inadequate to

provide information about the quantum-statistical properties of radiation. To this

end, we start with a fully quantum mechanical description of interaction of multi-

mode electromagnetic radiation with an atom with arbitrary energy level and then

reduce it to a semiclassical approach by treating the field operators as c-number

variables.

An electron of mass m and charge e interacting with external electromagnetic

field is described by a minimal-coupling Hamiltonian [20]

He =
1

2
[p− eA(r, t)]2 + eU(r, t) + V (r), (1.1)

where p is the canonical momentum operator, A(r, t) and U(r, t) are the vector and

scalar potentials of the electromagnetic field, respectively and V (r) is an electric po-

tential that is normally the atomic binding potential. In most part of this dissertation,

we apply the dipole approximation–the field wavelength is larger than the atomic size,

k · r ≪ 1. We assume that the entire atom is immersed in an electromagnetic wave

described by a vector potential A(r0 + r, t), where r0 is the position of the nucleus.

This vector potential can be written in the dipole approximation as

A(r0 + r), t) = A(t)eik·(r0+r)

= A(t)eik·r0 [1 + ik · r+ ...]

≃ A(t)eik·r0 . (1.2)

In the dipole approximation, the Schrödinger equation for this problem, withA(r, t) ≡
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A(r0, t), is given by{
− h̄2

2m

[
∇− ie

h̄
A(r0, t)

]2
+ eU(r, t) + V (r)

}
ψ(r, t) = ih̄

∂ψ(r, t)

∂t
(1.3)

Now choosing the gauge to be the radiation gauge

U(r, t) = 0, ∇ ·A = 0, (1.4)

and introducing a new wave function of the form

ψ(r, t) = eieA(r0,t)·r/h̄ϕ(r, t) (1.5)

the Schrödinger equation Eq. (1.3) yields

ih̄

[
ie

h̄

∂A

∂t
· rϕ(r, t) + ∂

∂t
ϕ(r, t)

]
eieA·r/h̄ = eieA·r/h̄

[
p2

2m
+ V (r)

]
ϕ(r, t). (1.6)

Note that in radiation gauge the electric field is related to the vector potential as

E = −∂A/∂t. In view of this and after cancelation of the exponential term, we get

ih̄ϕ̇(r, t) = [HA − er · E(r0, t)]ϕ(r, t), (1.7)

where

HA = p2/2m+ V (r)

is the unperturbed Hamiltonian of the electron. We then note that the total Hamil-

tonian, including the free Hamiltonian of the field HF , is given by

H = HF +HA +HI , (1.8)

where

HI = −er · E(r0, t) (1.9)

is the interaction Hamiltonian. The energy of the free field HF is given in terms of
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the creation (a†k) and annihilation (ak) operators by

HF =
∑
k

hνk

(
a†kak +

1

2

)
, (1.10)

in which νk is the frequency of the kth mode.

Further, the free energy of the atom HA and er can be expressed in terms of

the atomic transition operators σij = |i⟩⟨j|. {|i⟩} represents a complete set of atomic

energy states, that is,
∑

i |i⟩⟨i| = 1. Noting that HA|i⟩ = Ei|i⟩ and using the com-

pleteness relation, the free Hamiltonian for the atom can be written as

HA = IHA =
∑
i

|i⟩⟨i|HA =
∑
i

Eiσii. (1.11)

Similarly, the term er can be expressed as

er = I(er)I =
∑
i,j

e|i⟩⟨i|r|j⟩⟨j| =
∑
i,j

℘ijσij, (1.12)

where ℘ij = e⟨i|r|j⟩ is the electric-dipole transition matrix element. The quantized

electric field operator in the dipole approximation is given by

E(r0, t) =
∑
k,λ

ϵ̂
(λ)
k Ek(ak,λe−iνkt+ik·r0 + a†k,λe

iνkt−ik·r0), (1.13)

where ϵ̂
(λ)
k is a polarization vector with λ being its degrees of freedom, Ek =

√
h̄νk/2ε0V

with ε0 and V being the permittivity of free space and quantization volume, respec-

tively. If we assume the position of the atom to be at the origin and linear polarization

for the field, the electric field takes a simple form

E =
∑
k

ϵ̂kEk(ak + a†k). (1.14)

Therefore, on account of Eqs. (1.10)-(1.12) and (1.14), the Hamiltonian of the
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Fig. 1. A scheme of a two-level atom interacting with a single mode laser field of fre-

quency ν and off resonant from the atomic transition frequency ω by ∆ = ω−ν.
ω = ωa−ωb, where h̄ωa and h̄ωb are the energy of levels |a⟩ and |b⟩, respectively.

system turns out to be

H =
∑
k

hνka
†
kak +

∑
i

Eiσii − h̄
∑
k,ij

gijσij(ak + a†k) (1.15)

where gij = ℘ij · ϵ̂kEk/h̄ is the coupling constant between the atom and the field. In

(1.15) we have omitted the zero-point energy and assumed that ℘ij is real.

Up to now we considered interaction of a multimode field with an atom with

arbitrary number of energy levels. Let us now consider the simplest case in which a

two-level atom is interacting with a single mode radiation field as outlined in Fig. 1.

Using the Hamiltonian (1.15), we write Hamiltonian for this system as

H = h̄νa†a+ h̄ωa|a⟩⟨a|+ h̄ωb|b⟩⟨b| − h̄g(σ+ + σ−)(a
† + a). (1.16)

Here, for the sake of simplicity, we have assumed the coupling constant to be real,

gab = gba = g. σ+ = |a⟩⟨b| and σ− = |b⟩⟨a| are the raising and lowering operator for

the atom, respectively. It is worth to mention that the terms σ+a and a†σ describe

energy conserving processes. For instance, σ+a describe promotion of the atom from

the lower to the upper state by absorption of a photon, while a†σ represents a process
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in which the atom decays from the upper to the lower state by emitting a photon.

However, the other terms σ+a
† and aσ− describe energy nonconserving processes. For

example, the term σ+a
† describes a process in which an atom is excited by emitting

a photon, while term aσ− describe decay of an atom by absorbing a photon. These

energy nonconserving processes occur due to emission and reabsorption of short-lived

virtual photons. These processes are particularly important in calculating frequency

(Lamb) shifts and will be discussed in more detail in Chapter III.

Another popular approximation we are going to employ in most parts of the dis-

sertation is the rotating wave approximation, which amounts to dropping the energy

nonconserving terms in the Hamiltonian (1.16). The transition frequency of the atom

is defined by ω = ωa − ωb. For the sake of convenience we choose the energy of the

lower level |b⟩ to be zero. To this end, the Hamiltonian (1.16) in the rotating wave

approximation can be put in the form

H = H0 +HI , (1.17)

where

H0 = h̄νa†a+ h̄ν|a⟩⟨a| (1.18)

HI = h̄∆|a⟩⟨a| − h̄g(σ+a+ a†σ−), (1.19)

where ∆ = ω − ν is the detuning between the transition frequency of the atom and

the field frequency.

In most instances it is more convenient to work in the interaction picture. Thus

the Hamiltonian in the interaction picture is defined by

H = eiH0t/h̄HIe
−iH0t/h̄ (1.20)
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can be written in a simple form

H = h̄∆|a⟩⟨a| − h̄g(σ+a+ a†σ−). (1.21)

It is worth to note that the above interaction Hamiltonian does not take into

account the inevitable interaction of the atom as well as the field with the environment

which is vital to the dynamics of the system. The dynamics of such a system is

described by the time evolution of the density operator, also known as the master

equation. In general, the density operator is defined as

ρ =
∑
ψ

pψ|ψ⟩⟨ψ| (1.22)

whose time derivative together with the Schrödinger equation for state vector |ψ⟩

ih̄
∂|ψ⟩
∂t

= H|ψ⟩ (1.23)

gives

∂ρ

∂t
= − i

h̄
[Hρ− ρH] = − i

h̄
[H, ρ]. (1.24)

The interaction of the field and the atom with the environment can be described by

adding dissipation terms as [20]

∂ρ

∂t
= − i

h̄
[H, ρ] +

(
∂ρ

∂t

)
atom

+

(
∂ρ

∂t

)
field

, (1.25)

where (
∂ρ

∂t

)
atom

= −γ
2
(σ+σ−ρ+ ρσ+σ− − 2σ−ρσ+), (1.26)(

∂ρ

∂t

)
field

= −κ
2
(a†aρ+ ρa†a− 2aρa†) (1.27)

with γ and κ being the spontaneous emission rate of the atom and the radiation decay

rate, respectively. Equation (1.25) is also called Liouville equation and can used to
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derive the density matrix elements. The diagonal elements ρaa and ρbb describe the

populations in levels |a⟩ and |b⟩, respectively, while the off-diagonal elements ρab = ρ∗ba

represent the coherence developed in the system.

B. The concept of quantum coherence

In this section we consider a simple system to illustrate the physics of quantum

coherence effects, which is the basis for this dissertation. As an example, we discuss

the concept of coherent population trapping. Let us consider a three-level atom in

a so-called Λ configuration, in which the two-lover levels (|b⟩, |c⟩) are coupled to

upper level |a⟩. The |a⟩ ↔ |b⟩ and |a⟩ ↔ |c⟩ transitions are dipole allowed while

the transition between the two lower levels is electric dipole forbidden. The dipole

allowed transitions are driven by two monochromatic fields. Other possible three-

level schemes include the V and cascade (ladder) configurations. The interaction

Hamiltonian for the coupling of the atom to two laser fields is given by

H = −h̄Ω1|a⟩⟨c| − h̄Ω2|a⟩⟨b|+H.c., (1.28)

where Ω1 = ℘acE1(ν1)/h̄ and Ω2 = ℘abE2(ν2)/h̄ are the Rabi frequencies correspond-

ing to the monochromatic fields ν1 and ν2, respectively. The state vector of the atom

has the form

|ψ⟩ = ca(t)|a⟩+ cb(t)|b⟩+ cc(t)|c⟩. (1.29)

The Schrödinger equation ih̄ψ̇ = Hψ then gives

ċa = i(Ω1cc + Ω2cb), (1.30)

ċb = iΩ2ca, (1.31)

ċc = iΩ1ca. (1.32)
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Now let us assume that the atom is initially in a coherent superposition of the two

lower states

|0⟩ = Ω̃1|b⟩ − Ω̃2|c⟩ (1.33)

where Ω̃1,2 = Ω1,2/
√
Ω2

1 + Ω2
2. The state |0⟩ is also know as the dark state, for reason

that the Hamiltonian acting on this state gives nothing, that is, H|0⟩ = 0. In terms

of the density matrix elements, the initial state can be written as

ρ(0) = |0⟩⟨0| = Ω̃2
2|b⟩⟨b| − Ω̃1Ω̃2(|b⟩⟨c|+ |c⟩⟨b|) + Ω̃2

1|c⟩⟨c| (1.34)

which yields

ρ
(0)
bb = Ω̃2

2, ρ
(0)
cc = Ω̃2

1, ρ
(0)
aa = 0, ρ

(0)
bc = ρ

(0)
cb = −Ω̃1Ω̃2. (1.35)

As a special case where the two fields have the same Rabi frequency Ω1 = Ω2, the

initial condition becomes ρ
(0)
bb = ρ

(0)
cc = 1/2, ρ

(0)
bc = −1/2. The solutions of Eqs.

(1.36)-(1.38) then turn out to be

ca(t) = 0, (1.36)

cb(t) =
1√
2
, (1.37)

cc(t) =
1√
2
e±iπ. (1.38)

Recall that the probability of absorption by the upper state is given by

Pabsorption ∝ |ca(t)|2 = 0. (1.39)

One can infer from this result that the two pathways that leads to the upper state

|a⟩ interfere destructively to cancel absorption. That means all the populations are

trapped in the lower levels even though there are strong resonant lasers fields that

derive the two transitions. This is the essence of quantum coherence.



12

CHAPTER II

USING COHERENCE TO DEMONSTRATE TRANSIENT RAMAN LASING IN

XUV AND LASING WITHOUT INVERSION IN X-RAY SPECTRAL REGIONS ∗

A. Introduction

Gain swept superradiance (GSS) in an ensemble of two-level atoms was extensively

studied in the 70’s in connection with laser lethargy and coherence brightening in the

X-ray laser [21, 22, 23]. In GSS, the inversion is created by injecting a short excitation

pulse which produces a gain-swept medium. Among other things it was found that

GSS can yield intense pulses without population inversion. This is closely related to

Dicke superradiance [7, 24] in which the maximum emission rate occurs when there

are equal number of atoms in the excited and ground states, i.e., when the population

inversion is zero.

The quest for short wavelength lasers–XUV and x ray–has been sought since

the invention of laser in connection with their potential application in fundamental

science as well as real life applications. Extensive theoretical work has been done on

amplification without inversion since the early work of Kocharovskaya et al. [4], Har-

ris [5], and Scully et al. [6]. In the experimental front, LWI has been demonstrated in

three level atoms, for example in Sodium (Na) and Rubidium (Rb) atoms in mid 90’s

[25, 26]. Those studies involved continuous pumping and were in the optical and in-

frared spectral regimes. LWI is rather more attractive in the short wavelength regimes

∗ Reprinted with permission from ”Using quantum coherence to generate gain in
the XUV and X-ray: Gain swept superradiance and lasing without inversion” by Eyob
A. Sete, A. A. Svidzinsky, Y. V. Rostovtsev, H. Eleuch, P. K. Jha, S. Suckewer, and
M. O. Scully, 2012. IEEE J. Sel. Top. Quantum Electron., 18, 541-553, Copyright
[2012] by Institute of Electrical and Electronics Engineers. For more information go
to http://thesis.tamu.edu/forms/IEEE%20permission%20note.pdf/view.
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where population inversion is difficult to achieve. Many schemes has been proposed

to demonstrate LWI in the short wavelength spectral regimes [27, 28]. However,

most of them operate in the steady state regime and requires continuous incoherent

pumping. In a process where the decoherence is very fast, one always want to avoid

incoherent pumping. To this end, recent proposals focus on the possibility of transient

lasing without the requirement of incoherent pumping. Most recently transient lasing

without inversion has been proposed [29, 30, 31, 32] in three level atomic systems.

In this Chapter, we explore connections between GSS and transient Raman lasing

in helium atom (ladder scheme) with initial Raman inversion and yet the system

operating without inversion in the lasing transition. In addition, we demonstrate a

pure transient LWI in helium-like Boron, B3+ operating at 6.1nm.

B. Steady-state Raman lasing

We first discuss the concept of Raman lasing by considering three-level atom in Λ

configuration shown in Fig. 2. The transitions from |a⟩ to |b⟩ and from |a⟩ to |c⟩ are

dipole allowed while the transition between the two lower levels is dipole forbidden.

The levels |a⟩ and |b⟩ are coupled by a weak field of Rabi frequency Ωl and frequency

νb whose amplification we are interested in. The upper level |c⟩ is coupled to level |b⟩

by a strong coherent field of Rabi frequency Ω and frequency νc.

The Hamiltonian describing the interaction between the classical laser fields and

the atom, in the rotating wave and dipole approximations, is given by

H = h̄∆b|a⟩⟨a| − h̄(∆b −∆c)|c⟩⟨c| − h̄Ω|a⟩⟨c| − h̄Ωl|a⟩⟨b|+H.c.. (2.1)

Here ∆b = ωab − νb and ∆c = ωac − νc with ωac and ωab being atomic transition

frequencies for |a⟩ to |b⟩ and |a⟩ to |c⟩ transitions, respectively. Applying the Liouville
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Fig. 2. A three-level atom in Λ configuration for Raman lasing.

equation and using the Hamiltonian (2.1), the equations of motion for the off-diagonal

density matrix elements turn out to be

d

dt
ρab = −(i∆b + γab)ρab + iΩρ∗bc − iΩl(ρaa − ρbb), (2.2)

d

dt
ρac = −(i∆c + γac)ρac + iΩlρbc − iΩ(ρaa − ρcc), (2.3)

d

dt
ρbc = −[i(∆b −∆c) + γbc]ρbc + iΩ∗

l ρac − iΩρ∗ab, (2.4)

where γab = γac = (γ + Γ)/2, with γ and Γ being spontaneous decay rates for the

upper level to levels |b⟩ and |c⟩, respectively, are the dephasing rates for respective

off-diagonal elements; γbc is the dephasing rate for ρbc due to collisions.

We next seek to study the steady-state Raman lasing. To this end, we solve the

above set of equations at steady state. Thus imposing the condition that ρ̇αβ = 0

(α, β = a, b, c) and assuming that the two detunings are the same, ∆b = ∆c = ∆, we

obtain

ρab =
iΩl

ΓabD∗

[(
Γbc +

|Ωl|2

Γ∗
ac

)
nba −

|Ω|2

Γ∗
ac

nca

]
, (2.5)

ρac =
iΩ

ΓacD

[(
Γbc +

|Ω|2

Γ∗
ab

)
nca −

|Ωl|2

Γ∗
ab

nba

]
, (2.6)
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ρbc = −ΩΩ∗
l

D

[
nca
Γac

+
nba
Γ∗
ab

]
, (2.7)

where

Γab = i∆+ γab, Γac = i∆+ γac, Γbc = γbc,

D = Γbc +
|Ωl|2

Γac
+

|Ω|2

Γ∗
ab

,

nba = ρbb − ρaa, nca = ρcc − ρaa.

Note that since we have considered the lasing transition to be the |a⟩ → |b⟩ transition,

the laser gain is proportional to the off-diagonal matrix element ρab.

1. Maxwell-Schrödinger equation

In the previous section we derived the equation of motion for the density matrix el-

ements by considering a single atom. In many problems in quantum optics, we are

interested in the interaction of electromagnetic field with a large number of atoms.

A typical example is the propagation of a coherent pulse through a medium, where

the atoms are treated quantum mechanically and the laser field is treated classically.

Throughout this Chapter we apply semiclassical theory to describe the lasing process.

In this section, we derive the Maxwell-Schrödinger equation, which governs the prop-

agation of the laser pulse through the active medium and relate it to the microscopic

polarization obtained in the previous section.

The four Maxwell equations in free space read

∇ ·D = 0, (2.8)

∇× E = −∂B
∂t
, (2.9)

∇ ·B = 0, (2.10)

∇×H = J+
∂D

∂t
, (2.11)
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with

D = ε0E+P, H = B/µ0, J = σE. (2.12)

Here P is the macroscopic polarization of the medium. The conductivity σ takes

into account phenomenologically any losses such as the linear response due to the

background absorbing medium, and also those losses due to diffraction and mirror

transmission. Now taking the curl of Eq.(2.9) and taking into account (2.10) and

(2.11), we obtain the wave equation

∇×∇× E+ µ0σ
∂E

∂t
+

1

c2
∂2E

∂t2
= −µ0

∂2P

∂t2
, (2.13)

where c = 1/
√
ε0µ0 is the speed of light in free space. Note that the polarization P

can be regarded as the source term for the radiation field E. To obtain a simplified

version of the wave equation we consider a situation in which the field is propagating

along the z axis and polarized along the x axis, i.e., E = E(z, t)x̂. This assumption

is valid if the field is slowly varying on the scale of optical wavelength. The wave

equation thus takes a simpler form(
∂

∂z
+

1

c

∂

∂t

)(
− ∂

∂z
+

1

c

∂

∂t

)
E = −µ0σ

∂E

∂t
− µ0

∂2P

∂t2
. (2.14)

The field is represented by a running wave

E(z, t) =
1

2
E(z, t)e−i[νt−kz−ϕ(z,t)] + c.c., (2.15)

where the amplitude E(z, t) and phase ϕ(z, t) of the field are slowly varying function

of position and time. Without loss of generality we assume E(z, t) to be real. The

macroscopic polarization for N number of atoms per unite volume can be written as

P (z, t) =
1

2
Np(z, t)e−i[νt−kz−ϕ(z,t)] + c.c., (2.16)
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where p(z, t) = 2℘abρabe
−i[νt−kz−ϕ(z,t)] + c.c. is the microscopic polarization. Now

plugging Eqs. (2.15) and (2.16) into (2.14) together with the slowly varying ap-

proximation where the field and polarization satisfy ∂E/∂t ≪ νE , ∂E/∂z ≪ kE ,

∂ϕ/∂t≪ ν, ∂ϕ/∂t≪ k, and ∂p/∂t≪ νp, ∂p/∂z ≪ kp, we obtain the field amplitude

equation to be

∂E
∂z

+
1

c

∂E
∂t

= κE − kN

2ε
Im(p), (2.17)

where κ = σ/2ε0c is the linear loss coefficient. In our analysis we ignore the linear loss

and write the above equation for Rabi frequency Ωl = ℘abE/h̄ to make connection to

the density matrix equation derived earlier

∂Ωl

∂z
+

1

c

∂Ωl

∂t
= iηρab, (2.18)

where η = 3Nλ2γ/4π with λ being the wavelength of the emitted laser light. We

would like to emphasize that this classical equation will be used to describe the

propagation of the laser pulse through the medium. The field, represented here by

the Rabi frequency Ωl, is directly related to the single photon coherence ρab. In other

words the gain/loss is related to this coherence, which essentially is the response of

the medium to the laser pulse. As we will show shortly the gain indeed is proportional

to Im(ρab).

We next proceed to derive the expression for gain in terms of system parame-

ters. To that end, we write the intensity of the laser as I = I0e
Gz, where G being

gain/absorption coefficient. We can also write the intensity as I = AΩ2
l (z, t), where

A is a constant. Then differentiating both expressions and equating the results we

get

G =
1

Ωl

∂Ωl

∂z
. (2.19)
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Now in a frame moving with the pulse, the wave equation (2.18) takes the form

∂Ωl

∂z
= iηρab, (2.20)

then the expression for the gain/absorption becomes

G = − 1

Ωl

3Nλ2γ

4π
Im (ρab) . (2.21)

To demonstrate Raman lasing we go back to the results of the previous section

and assume that the field detunings are large compared to the dephasing rates, i.e.,

∆ ≫ γab, γac (Γab = Γac = i∆). In this approximation the off-diagonal density matrix

element ρab becomes

ρab = −Ωl

∆

[
(−i∆γbc + |Ωl)|2)nba − |Ω|2nca

i∆γbc − |Ωl|2 + |Ω|2

]
. (2.22)

For simplicity if we choose |Ωl|2 = |Ω|2, we have

Im(ρab) = −Ωl|Ω|2

∆2γbc
(ρcc − ρbb). (2.23)

Therefore, substitution of the above expression into Eq. (2.21) yields

G =
3Nλ2γ

4π

|Ω|2

∆2γbc
(ρcc − ρbb). (2.24)

Expression (2.24) shows that the lasing field is amplified when ρcc > ρbb or Raman

inversion. The corresponding lasing process is called Raman lasing.

C. Transient Raman lasing in Helium

Here we consider three-level helium atom in a cascade configuration as shown in Fig.

3. The cascade transition involves single states: 3 1D → 2 1P → 1 1S, where the lasing

transition is from 2 1P to the ground state 1 1S. We show that if the system starts
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Fig. 3. XUV lasing scheme in helium. Initial population in 2 3S is driven to level 3 1D

via a counter intuitive pair of pulses in which the 587.4 nm pulse is followed by

the 1.08 µm pulse. Once the atom (or ion) is in the 3 1D state it is driven by a

strong pulse at 668 nm to the state 2 1P. This results in Raman lasing action

yielding short pulses at 58.4 nm. Energy levels of Helium 4 and transition rates

are taken from Ref. [33].

with a Raman inversion ρcc(0) = 0.56, ρaa(0) = 0 and ρbb(0) = 0.44, strong lasing

is observed at 58.4 nm without inversion in the lasing transition. This is attributed

the coherence induced by the strong laser drive applied in the auxiliary transition,

3 1D → 2 1P. In the following we present the theoretical description and experimental

implementation of our scheme in detail.

D. Theoretical

In order to clarify the physics and establish the connection with GSS we next briefly

summarize the analysis behind ladder Raman lasing as in Fig. 3. The propagation
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of the lasing field Ωl is described by Maxwell-Schrödinger equation

∂

∂z
Ωl(z, t) +

1

c

∂

∂t
Ωl(z, t) = iηρab(z, t), (2.25)

where Ωl = ℘abEl/h̄ is the Rabi frequency of the laser with ℘ab and El being re-

spectively the dipole matrix element for |a⟩ → |b⟩ transition and the coupling field

strength. The atomic polarization is governed by the off-diagonal element of the den-

sity matrix ρab times N , where N is the density of the atoms, η = 3Nλ2γ/4π with λ

being the wavelength of the radiation on the |a⟩ → |b⟩ transition and γ the radiation

decay rate between these levels.

Turning to the dynamics of the atom we note that the transitions from |c⟩ to |a⟩

and from |a⟩ to |b⟩ are dipole allowed while the transition from |c⟩ to |b⟩ is dipole

forbidden making our system a cascade scheme. The transition |c⟩ → |a⟩ is driven by

a strong coherent field of Rabi frequency Ω while a weak probe field Ωl is applied to

the |a⟩ → |b⟩ transition.

The Hamiltonian describing the interaction between a three-level atom and the

two classical fields in the dipole and rotating wave approximations, and at resonance

is given by

H = −h̄Ω|c⟩⟨a| − h̄Ωl|a⟩⟨b|+H.c. (2.26)

and the master equation for the atomic density matrix has the form

d

dt
ρ = − i

h̄
[H, ρ]− Γ

2

(
σ†
1σ1ρ+ ρσ†

1σ1 − 2σ1ρσ
†
1

)
− γ

2

(
σ†
2σ2ρ+ ρσ†

2σ2 − 2σ2ρσ
†
2

)
(2.27)

in which σ1 = |a⟩⟨c|, σ†
1 = |c⟩⟨a|, σ2 = |b⟩⟨a|, σ†

2 = |a⟩⟨b|, Γ is the spontaneous

emission decay rate for the |c⟩ → |a⟩ transition. Without obtaining explicit steady

state solutions, some general conclusions can be drawn from the equations of motion of
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the density matrix elements on the condition of gain without inversion. For instance,

the steady state solution of ρab yields

Im(ρab) =
2Ωl

γ
(ρbb − ρaa) +

2Ω

γ
Re(ρcb). (2.28)

It follows from Eq. (2.28) that for sufficiently large negative values of Re(ρcb) ampli-

fication (Im(ρab) < 0) can be obtained without population inversion.

The problem with such steady state operation is that it requires continuous

pumping from |b⟩ to |c⟩. One might consider to use the usual incoherent sources

as means of pumping. This however is a problem for the XUV transition. The

most common way in such wavelength regimes is instead pumping via electron-atom

collisions in a plasma. This however wipes out the coherence, ρbc, developed in the

system due to electron impact. To circumvent this problem, we propose lasing in the

transient regime, which does not require continuous incoherent pumping to observe

laser gain. The condition for amplification of the lasing field in the transient regime

is best understood in terms of the population terms only. For example, from the

equation for ρ̇bb, we have

Im(ρab) = (γρaa − ρ̇bb)/2Ωl. (2.29)

Thus the amplification condition Im(ρab) < 0 implies ρ̇bb > γρaa for the lasing field

to show transient gain.

This shows that although no amplification in the steady state, it is possible to

realize lasing gain in the transient regime. This is the basis for the present work,

which combines several unconventional aspects of laser and atomic physics in order

to produce transient lasing without inversion in various regimes. To demonstrate the

feasibility of transient lasing we focus on He and He-like ions as indicated in Fig. 3.



22

103 HΡaa - ΡbbL

Wl
2

Γ2

0.0 0.2 0.4 0.6 0.8 1.0

0

500

1000

Μ

Fig. 4. Plots of the square of the lasing field Ωl (solid curve) and scaled inversion

between |a⟩ to |b⟩ transition (dashed curve) vs retarded time µ = t − z/c for

initial condition ρcc(0) = 0.56, ρaa(0) = 0, ρbb(0) = 0.44. The dashed curve

shows that the inversion is always negative. The unit of time is τ1 = 0.55 ns

which is the |a⟩ → |b⟩ spontaneous transition lifetime. The energy output is

a respectable few nanojoules compared to the input energy ∼ 0.01 picojoules,

other parameters are given in Table I.

In the following we present the numerical solutions to the coupled Maxwell-

Schrödinger equation for various initial conditions. In the numerical simulations, we

have normalized time and distance such that the equations become dimensionless.

We choose the unit of time to be τ1 = 0.55 ns and the unit of length is L = 1 cm.

For our system Γ = τ−1
2 = 6.4 × 107 s−1, γ = τ−1

1 = 1.8 × 109 s−1 and λ = 58.4 nm.

A summary of types of input pulses and parameters used in each figure is given in

Table I.

We send in a very weak lasing field Ωl and let it propagate through the medium

along the z−axis. In Fig. 4, we plot the output lasing field intensity Ω2
l versus retarded

time µ = t − z/c for an initial condition ρ
(0)
aa = 0, ρ

(0)
bb = 0.44, and ρ

(0)
cc = 0.56. This
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Table I. Numerical values of parameters used in Figs. 4, 5 and 6. We have used

c/γL = 16.5 and Γ/γ = 0.035.

Fig. Sample Input lasing Input driving Output

size ( z
L
) field (Ωl

γ
) field (Ω

γ
) energy (J)

4 1015 13 0.01 t2

t2+0.01
9.9e−[(t−0.4)/0.1]2 4.16× 10−9

5 1014 13 0.01 t2

t2+1
5e−[(t−0.4)/0.1]2 1.18× 10−8

6 1014 13 0.01 t2

t2+1
0 1.28× 10−10

figure shows that the weak input pulse is amplified by five order of magnitude when

there is no inversion in the lasing transition and a little bit of inversion in the Raman

transition. This attributed to the coherence induced by the strong laser derive Ω that

couples levels |c⟩ to |a⟩.

Furthermore, to see the effect the strong driving field, we plot in Fig. 5 the lasing

field intensity Ω2
l as a function of µ for a 13 cm long sample by pumping more atoms

in the state |c⟩: ρ(0)aa = 0, ρ
(0)
bb = 0.25, and ρ

(0)
cc = 0.75. The red-dotted curve shows

population inversion as a function of µ in the lasing transition a → b. The system

starts to lase with inversion, however, after a short time it operates without inversion

on the a → b transition. This is due to a combination of build up of the coherence

ρbc between levels |b⟩ and |c⟩ and the macroscopic dipole going as ρab. Note that the

later has much in common with the effect of laser lethargy [21] and the build up of

superradiance.

Now consider an initial condition in which the upper level |c⟩ is empty: ρ
(0)
aa =

0.75, ρ
(0)
bb = 0.25, and ρ

(0)
cc = 0 and no driving field, Ω = 0. Our problem essentially
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Fig. 5. Plot of the square of output lasing field Ωl/γ, where γ is the a→ b decay rate,

vs retarded time µ = t − z/c for z = 13 and initial condition ρcc(0) = 0.75,

ρaa(0) = 0, ρbb(0) = 0.25. The dashed curve represent the population inversion

the in the lasing transition.

reduces to a two-level atom system. As can be seen from Fig. 6, most of the emission

takes place well after ρaa = ρbb, which is the earmark of GSS. This is further discussed

in section H. Note however that the output energy associated with Fig. 6 is now

decreased by two orders of magnitude compared to the results of Fig. 5, where

coherence induced by the drive field Ω plays an important role.

E. Experimental

In order to make clear the experimental viability of the present scheme we next

discuss the two key points of excitation of 2 3S and subsequent transfer to 3 1D in

He, specifically:

1. We first inject an ultrashort high power laser pulse to ionize the He gas. We

then turn off the laser and rapid recombination and de-excitation follow such
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Fig. 6. Plot of the square of output lasing field Ωl/γ vs retarded time µ = t− z/c for

z = 13, no driving field Ω = 0 and initial condition ρcc(0) = 0, ρaa(0) = 0.75,

ρbb(0) = 0.25. The dashed curve represent the population inversion between

|a⟩ and |b⟩.

that the lowest states of He atoms are prepared according to their statistical

weights. Hence for the sake of simplicity, we take the relative population of the

2 3S and 1 1S states to be 3 to 1, as in Fig. 4.

2. The population in the 2 3S state is then transferred to the 3 1D state via the 2 3P

levels by a combination of optical pumping and dark state adiabatic transfer.

Let us first consider the physics of the laser plasma. We envision a laser plasma

created by Keldysh tunneling with a non Boltzmann distribution of neutral excited

atoms. This involves He+ → He electron capture via three-body recombination.

Three-body recombination for H-like ions is approximately proportional to the forth

power of the principal quantum number n4 and to the square of the electron density

as Ne
2. Hence for sufficiently high initial electron density three-body non-radiative
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Fig. 7. Laser intensities required for an ionization rate of 1012sec−1 versus ionization

potential of H-like ions (from Ref. [35]); solid line - Keldysh theory [34]. Cor-

responding quiver energy (εq = e2E2/4meω
2) is shown on the right for laser

wavelength λ = 0.8µm.

recombination will dominate two-body radiative recombination and radiative decay.

However, the collisional ionization from highly excited states is also fast, thus in order

for three-body recombination rates to dominate ionization rates, the recombining

plasma should have a low electron temperature Te, if its electrons have Maxwellian

energy distribution, otherwise average electron energy should be low.

In order to create a fully ionized He+ plasma at low temperature, we consider

the example of a plasma capillary 10-100 µm in diameter and a few cm long. The

tunneling ionization can be used to generate the plasma [34, 35, 36, 37]. In this

way we can strip 1 electron from He atoms without significantly heating the plasma,

especially for ultra-short laser pulses. The laser intensity needs to be in the order

of 1015 W/cm2 for efficient tunneling ionization of He to He+ according to Keldysh

theory [34] (see Fig. 7 [35]). For needle like plasma column such intensities can
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easily be obtained from a Ti/Sapphire laser at wavelength λ = 0.8 µm with ∼ 1 mJ

energy per pulse in pulses of 50 − 100 fs duration with ionization pulse propagating

in plasma channel. Use of such short pulses is crucial to minimize plasma heating.

In the right-hand side of Fig. 7 the vertical axis shows the quiver energy εq, (in

keV), which electrons are gaining in a laser electric field E. If electrons do not collide

then their quiver energy disappears with termination of the laser pulse. Therefore it

is important to use laser pulses shorter than collision times of electrons in order to

minimize plasma heating during the ionization process.

It should also be noted that quiver energy, εq goes as λ
2, hence shorter wavelength

laser beams are advantageous for creating cooler plasma as heating is proportional

to quiver energy εq [34, 35]. Therefore it is often beneficial to use the 2nd or even 3rd

harmonic of Ti/Sapphire laser even at a cost of several times less pulse energy than

fundamental pulse energy. Additional plasma cooling is provided by it rapid radial

expansion, for which the use of a small plasma column diameter is very important,

as well as beneficial from the point of view of required laser pulse energy.

The bottom line is that we can create a cold laser plasma which recombines to

produce an excited neutral gas. In particular the metastable 2 3S (8000 s radiative

life time) state will be formed with a statistical weight of around 3 compared to the

11S state.

F. Robust population transfer and level degeneracy problem

Let us proceed to consider the transfer of population from the three 2 3S spin states to

one particular magnetic sublevel of the 3 1D manifold. At time t = 0 the population

resides in the three spin sublevels χ1,−1, χ1,0 and χ1,1 as per Fig. 8a. We first optically

pump the atoms into one of the 2 3S spin states, say the χ1,−1 state as indicated in
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Fig. 8. (a) Atoms begin uniformly distributed in the three magnetic sublevels of the

2 3S1 state. (b) Optical pumping by broad band left circularly polarized light

to the 2 3P2,1,0 states results in the transfer of all the population of the spin

state ↓↓.

Fig. 8b.

Robust population transfer from the triplet 2 3S to singlet 3 1D is then made

possible by Stimulated Raman Adiabatic Passage (STIRAP) [38]. In this technique

one subjects the state 2 3S at t = 0 to a so-called counter intuitive pulse sequence

with Rabi frequencies Ω2 and Ω1 in which the Ω2 (2 3P → 3 1D) pulse precedes the

Ω1 (2
3S → 2 3P) pulse (see Fig. 4). This pulse sequence ideally results in a complete

transfer of population to the desired state 3 1D without necessarily populating the

2 3P state in the process. The mechanism of STIRAP is best understood in the

dressed state basis in which we introduce bright and dark states. Beginning with the

dark state

|0 ⟩ = Ω2|2 3S⟩ − Ω1|3 1D⟩√
Ω2

1 + Ω2
2

(2.30)

we apply Ω2 before Ω1 so that |0⟩ ∼= |23S⟩ during the early stages of transfer. Then

we adiabatically turn on Ω1 while turning off Ω2, such that |0⟩ ∼= |3 1D⟩ at longer
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times. The condition of adiabaticity implies the following estimate of the required

pulse energy

W ∼ 1000
h̄cS

λ3γτpulse
, (2.31)

where S is the cross section area of the pulse, τpulse is the pulse duration, λ and γ are

the wavelength and the rate of the transition. For the weakest 31D→23P transition

λ = 587 nm and γ = 1.23× 104 s−1. Then for a plasma capillary of radius ∼ 0.1mm

and pulse duration τpulse = 1 ps, Eq. (2.31) yields W ∼ 0.4mJ. Currently compact

pico-second lasers are commercially available with much greater energy, i.e., a few mJ

per pulse just from oscillator-regen amplifier (front-end) is well within the state of

the art.

We next proceed to calculate the population transfer from 2 3S to 3 1D via STI-

RAP technique. First we send in a strong resonant pulsed laser (Ω2) to couple the 2
3P

to 3 1D transition. It is worth to note that 3 1D and 3 3D are essentially degenerate

states (only separated by 0.2 nm) and thus the applied laser inevitably couples the

2 3P to 3 3D which is 1000 times stronger than the 2 3P to 3 1D transition. The Rabi

frequencies of the two transitions are related by Ω̃2 =
√

(λ3deτce)/(λ
3
ceτde)Ω2 ≃ 76Ω2.

If one uses input pulses shorter than the spontaneous decay time of these transitions,

the population will be transferred to the undesired state 3 3D. To overcome this

problem it is necessary to apply pulses which are wider than the spontaneous decay

times. In Fig. 9, we show that by applying ns pulses and for an optimum delay

between the probe and driving pulses it is indeed possible to transfer all the initial

population in 2 3S to 3 1D. However, in plasmas, due to collision of electrons with

atoms, the collisional decay time can be shorter than the duration of laser pulses and

thus STIRAP may not work.
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Fig. 9. Plots of probabilities for finding the system in different levels vs scaled

time t. The inset on the right shows the level scheme used for the

STIRAP process, which involves two Gaussian pulses (inset on the left):

Ω1(t) = exp [−[(t+ 10.5)/15]2] and Ω2(t) = exp [−(t/15)2].

We thus propose to use an additional laser pulse that couples the 3 3D to the

higher energy state 4 3P. This essentially cancels absorption by the 3 3D and en-

hances the transition to 3 1D. The equivalent scheme is sketched in the inset of Fig.

10. For sufficiently strong driving field Ω3, the population in 2 3S can be transferred

completely to the desired state 3 1D (see Fig. 10). The optimum population transfer

is exhibited when the Rabi frequency Ω3 is approximately twice stronger than Ω̃2. Re-

sults shown in Fig. 10 are obtained by numerically solving equations for Ch, Cd, Cc, Ce

and Cf which are probability amplitudes to find the system in the states |h⟩, |d⟩, |c⟩,

|e⟩, and |f⟩, respectively and for initial condition Ch(0) = Cd(0) = Cc(0) = Ce(0) = 0

and Cf (0) = 1. For resonant driving field the evolution equations read

Ċh(t) = iΩ3(t)Cd(t), (2.32a)
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Fig. 10. Plots of probabilities of finding the system in different levels vs scaled time Ω2t.

With the help of a third laser field the population is transferred to the desired

state |c⟩. The inset shows the level scheme used for the STIRAP process

which in this case involves three Gaussian pulses Ω1 = 2 exp [−(t− 0.3)2/2]

and Ω2 = 2 exp [−(t− 0.4)2/2], and Ω3 = 150 exp [−(t− 1)2] .

Ċc(t) = iΩ2(t)Ce(t), (2.32b)

Ċd(t) = iΩ̃2(t)Ce(t) + iΩ3(t)Ch(t), (2.32c)

Ċe(t) = iΩ2(t)Cc(t) + iΩ̃2(t)Cd(t) + iΩ1(t)Cf (t), (2.32d)

Ċf (t) = iΩ1(t)Ce(t), (2.32e)

where Ω̃2 ≃ 76Ω2. Rabi frequencies Ωj (j=1,2,3) given in the figures are dimensionless

so that the unit of time is the inverse of the amplitude of Ω2.

Once the population is transferred to the singlet 3 1D state a strong driving field

is applied on the 3 1D to 2 1P transition. This generates coherence between 3 1D and

2 1P which in turn makes possible transient gain between 2 1P and 1 1S (see Figs. 3

and 5).
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G. LWI in Helium-like Boron: B3+

In this section we demonstrate transient lasing without inversion for optically thin

and thick gas of Helium-like Boron ions. The scheme for B3+ is outlined in Fig. 11.

We note that Λ− scheme LWI is, in some ways, easier to realize than in neutral He

[39]. Specifically, in B3+ we have the simplifying feature of direct coupling between

23P1 and 11S0 (λ = 6.1 nm) at the rate γ = 4.2× 106 s−1 [40]. Furthermore the 23P1

state decays to the 23S1 state (λ = 282 nm) at a rate Γ = 4.5× 107 s−1. Hence, B3+

in an ion trap is natural for Λ LWI because Γ > γ, an important condition for lasing

without inversion in Λ scheme. The trap should be deep enough to allow ultra short

pulse excitation with excess population in the 23S state as in the case of neutral He.

Here, however, there is no need to introduce STIRAP to transfer of population as

was the case in He. The B3+ ions would lase at 6.1 nm.

Fig. 11. Lasing without inversion scheme in B3+ ion.

1. Optically thin sample

We next proceed to derive an approximate analytic solution which demonstrate am-

plification without inversion. For a very weak lasing field the equations for the pop-
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ulations ρcc, ρaa, and the coherence ρac decouple from other equations. We thus

find

d

dt
ρcc = Γρaa + iΩ(ρac − ρca), (2.33)

d

dt
ρaa = −(γ + Γ)ρaa − iΩ(ρac − ρca), (2.34)

d

dt
ρca = −1

2
(γ + Γ)ρca + iΩ∗(ρaa − ρcc). (2.35)

Using an initial condition where ρbb(0) = ρ
(0)
bb and ρcc(0) = ρ

(0)
cc and with all other

elements initially zero, one can readily obtain an approximate solution

ρaa(t) =
ρ
(0)
cc

2

[
1− e−3Γt/4

(
cos 2Ωt+

3Γ

8Ω
sin 2Ωt

)]
e−γt/2, (2.36)

ρcc(t) =
ρ
(0)
cc

2

[
1 + e−3Γt/4

(
cos 2Ωt+

3Γ + 4γ

8Ω
sin 2Ωt

)]
e−γt/2, (2.37)

ρac(t) = i
ρ
(0)
cc

2

[2Γ + γ

4Ω
+ e−3Γt/4

(
sin 2Ωt− 2Γ + γ

4Ω
cos 2Ωt

)]
e−γt/2. (2.38)

The equation for the off-diagonal density matrix element ρab has, in first order

in Ωl, the form

ρ̈ab +
1

2
(Γ + γ)ρ̇ab + Ω2ρab = iΩl[(2γ + Γ)ρaa − 3ΩIm(ρac)]. (2.39)

On account of Eqs. (2.36) and (2.38), Eq. (2.39) takes the form

ρ̈ab +
1

2
(Γ + γ)ρ̇ab + Ω2ρab = i

Ωlρ
(0)
cc

8

{
5γ − 2Γ

+ [(2Γ− 5γ) cos 2Ωt− 12Ω sin 2Ωt]e−3Γt/4
}
e−

γt
2 . (2.40)

The solution of this equation, taking into account the initial conditions, ρab(0) = 0
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ΡccH0L = 0.45, ΡbbH0L = 0.55

Γ = 0.1, G = 1

Numerical result

Analytical result
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Fig. 12. Plots of dimensionless gain/absorption Gab(t) = − η
Ωl
Im[ρab(t)] in the lasing

transition |a⟩ to |b⟩ vs dimensionless time Γt. We have used Γ = 1, γ = 0.1,

ηb = 4.18, Ω = 4 and Ωl = 0.01 with initial condition ρaa(0) = 0, ρbb = 0.55,

and ρcc = 0.45. All the parameters are set to be dimensionless with normal-

izing factors Γ = 4.5× 107s−1 and L = 10−2m.

and ρ̇ab(0) = Ωlρ
(0)
bb , is found to be

Im(ρab) ≈
Ωl

Ω

[2(Γ− γ)

3Ω
ρ(0)cc cosΩt+ (ρ

(0)
bb − ρ(0)cc ) sinΩt

]
e−

1
4
(γ+Γ)t

+
Ωlρ

(0)
cc

2Ω

[γ − 10Γ

12Ω
cos 2Ωt+ sin 2Ωt

]
e−(3Γ+2γ)t/4

+
Ωlρ

(0)
cc

8Ω2
(5γ − 2Γ)e−γt/2. (2.41)

The inversion between levels |a⟩ and |b⟩, W (t) ≡ ρaa(t)− ρbb(t) is given by

W (t) =− (ρ
(0)
bb + ρ(0)cc )−

ρ
(0)
cc

2

[
3e−γt/2 − (cos 2Ωt+

3Γ

8Ω
sin 2Ωt)e−(3Γ+2γ)t/4

]
. (2.42)

In general, the intensity of gain/absorption of a field with the Rabi frequency
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ΡccH0L = 0.45, ΡbbH0L = 0.55

Γ = 0.1, G = 1

Numerical result

Analytical result
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Fig. 13. Plots of inversion W (t) in the lasing transition |a⟩ to |b⟩ vs Γt for the same

parameters as in Fig. 12.

Ωαβ coupling the transition α→ β with spontaneous decay rate γαβ is given by

Gαβ ≡ − 3

4π
Nλ2αβγαβ

Im(ραβ)

Ωαβ

(2.43)

where N is the density of atoms/ions in the medium, λαβ is the wavelength of the

transition, and ραβ the off-diagonal density matrix element. For the |a⟩ to |b⟩ transi-

tion, the expression for gain takes the form

Gab(t) = −ηbIm(ρab(t))/Ωl, (2.44)

in which ηb = 3Nλ2γ/4π. In general Im(ρab) is an oscillatory function which can take

negative, positive or zero values. If Im(ρab) < 0, the system exhibits gain for the

probe laser pulse while for Im (ρab) > 0 the probe laser pulse is attenuated.

In Fig. 12 we plot the analytical as well as numerical result for the gain (2.44) as

a function of normalized time Γt for a density N = 1015 ions/cm3 and an initial con-

dition ρaa(0) = 0, ρbb(0) = 0.55, ρcc(0) = 0.45. This figure shows that the analytical
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ΡccH0L = 0.5, ΡbbH0L = 0.5

ΡccH0L = 0.45, ΡbbH0L = 0.55

ΡccH0L = 0.4, ΡbbH0L = 0.6
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Fig. 14. Plots of dimensionless gain Gab(µ) = − η
Ωl
Im[ρab(µ)] and vs retarded time µ

for Ω = 3, ηb = 41.8(N = 1016ions/cm3), z = 10, Ωl = 10−2 exp[−(t− 3)2/5],

γ = 0.1, Γ = 1 for different initial conditions. All the parameters are set to

be dimensionless with normalizing factors Γ = 4.5× 107s−1 and L = 10−2m.

result is in a complete agreement with with the numerical result. Furthermore, the

figure illustrates that even though there is absorption at initial moment of time, the

amplification dominates at later times which leads to transient gain without popula-

tion inversion as per Fig. 13. Analytical calculation which demonstrate gain without

inversion using delta-function pulses is presented in Appendix A.

2. Optically thick sample

In order to obtain strong laser output it is natural to consider an optically thick

sample. In this case one has to take into account the propagation of the input

pulses through the medium. The dynamics of the system is described by six density

matrix equations coupled to the two Maxwell-Schrödinger equations for the fields.

We numerically solve these equations by assuming the strong driving field does not

change appreciably in time and space.
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Fig. 15. Plots of the square of lasing field vs retarded time for the same parameters

and initial condition as in Fig. 14. The solid red curve represent the input

lasing field at z = 0 scaled up by a factor of 10.

Our numerical results are presented in Figs. 14 and 15. In Fig. 14 we plot

the time evolution of the gain [(2.44)] in the lasing transition vs retarded time µ

for a density N = 1016ions/cm3, sample size L = 10cm, and for different initial

populations. This figure indicates absorption of the lasing field for some time and

then gain for certain interval of time which later goes to zero in the long time limit.

In support of this assertion, in Fig. 15 we plot input and output lasing pulses for the

same initial populations as in Fig. 14 and show that there is indeed transient gain or

amplification of the input laser pulse. Comparing the corresponding plots in Figs. 14

and 15 we observe that when the magnitude of the gain increases the amplification

increases accordingly. In addition, gain depends on several parameters: density of the

medium (Boron ions), the strength of the driving field and size of the sample. One can

optimize the intensity of the output laser by choosing these parameters appropriately.

In Table II we present a list of parameters used in Figs. 14 and 15 and the

corresponding energy of the output laser for a given initial condition. It turns out that
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Table II. Numerical values of parameters used in Fig. 15 and output energy. We have

used c/ΓL = 666.7 and γ/Γ = 0.01

Fig. N(cm−3) Sample Input lasing Input driving Output

size ( z
L
) field (Ωl

Γ
) field (Ω

Γ
) energy (J)

15(Dotted) 1016 10 0.01e−[(t−3)/
√
5]2 3 2.10× 10−10

15(Dashed) 1016 10 0.01e−[(t−3)/
√
5]2 3 4.64× 10−10

15(Solid) 1016 10 0.01e−[(t−3)/
√
5]2 3 1.12× 10−9

for the density of 1016ions/cm3 Boron ions, the output energy ranges approximately

from 0.1 to 1nJ, which is enhanced by a factor of 2 to 3 orders of magnitude compared

to the input lasing field whose energy is 5.11× 10−12J.

Similar Λ LWI scheme can be realized in C4+ for which decay rate of the 23P1 →

11S0 (λ = 4.1 nm) lasing transition is 2.7× 107 s−1, while those for the 23P1 → 23S1

(λ = 227 nm) is 5.7× 107 s−1 [41].

It is worth mentioning that the results presented in this Chapter do not take into

account decoherence effects due to collisions between the emitters and electron-ion

collisions. The issue of line broadening in plasma and possible dephasing decay rates

in our system are addressed in Appendix A.

H. Discussion

In order to better understand the key results of section D we next consider the

old problem of swept gain in short wavelength (two-level atom) laser systems. For

example, the following quote from [22] adopted for the present purposes, summarizes
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the physics:

“In considerations involving short-wavelength lasers, it is clear that in

view of the very short spontaneous lifetimes, one would like to sweep the

excitation in the direction of lasing in order that the atoms be prepared

in an excited state just as the radiation from previously excited atoms

reaches them.. . .We find that the small-signal regime of the amplifier is

highly anomalous, and that superradiance plays an important role in the

non-linear regime.”

A coherent evolution of an ultra short pulse can be described by the coupled

Maxwell-Schrödinger equations. For a pulse whose electric field is given by

E(z, t) = El(z, t)ei(kz−ωt), (2.45)

with El(z, t) being its amplitude, and an atomic polarization having an amplitude P

and population inversion ∆N = ρaa − ρbb, the Maxwell-Schrödinger equations read

∂

∂z
Ωl = αP , (2.46)

∂

∂µ
P = Ωl∆N , (2.47)

∂

∂µ
∆N = −ΩlP . (2.48)

In the above equations, the Rabi frequency Ωl = ℘El/h̄ with ℘ being the atomic

dipole matrix element and µ = t − z/c is the retarded time. The solutions for Eqs.

(2.47) and (2.48) are given by

P = sin

[∫ µ

−∞
Ωl(µ

′)dµ′
]
, (2.49)

∆N = cos

[∫ µ

−∞
Ωl(µ

′)dµ′
]
, (2.50)
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and therefore

∂

∂z
Ωl = α sin

[∫ µ

−∞
Ωl(µ

′)dµ′
]
. (2.51)

In particular, for a thin region of thickness ∆z and a step function input pulse, we

have

Ωl(z +∆z, µ) = Ωl(z, µ) + α∆z sin[Ωl(z)µ]. (2.52)

Thus the output pulse is given by the input step function with an additional emitted

field whose envelope oscillates at a frequency Ωl. It should be noted that this emitted

field is not governed by the population inversion ∆N . We have here a simple example

of laser gain without inversion. The pulse is gaining energy at a maximal rate when

Ωlµ = π/2 at which point the population inversion ∆N = cos(Ωlµ) vanishes.

If we consider the case where Ωl is slowly varying in µ, one can write Eq. (2.51)

as

d

dz
Ωl = α sin [µΩl(µ, z)] (2.53)

which can be written in the form∫ Ωl(µ,z)

Ωl(µ,0)

dΩl

sin(µΩl)
=

∫ z

0

αdz. (2.54)

Performing the integration, we obtain

ln
[
tan

(µΩl(µ, z)

2

)]
− ln

[
tan

(µΩl(µ, 0)

2

)]
= αµz. (2.55)

This yields

Ωl(µ, z) =
2

µ
arctan

[
tan

(
µΩl(µ, 0)/2

)
eαµz

]
. (2.56)

As an example, if we take α = 0.06, z = 5cm and input pulse Ωl(µ, 0) = 0.1 exp[−(t/0.2)2]

the output pulse is amplified approximately by a factor of one order of magnitude as

shown in Fig. 16.
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Fig. 16. Plots of Ωl(µ, z) vs µ for α = 0.06 and z = 5cm and for an initial input pulse

Ωl(µ, 0) = 0.1 exp(−t2/0.4).

To put the present XUV scheme in context we note that there are several methods

for producing extreme ultra-violet and soft x-ray lasing: for example, using a capillary

discharge [42], a free-electron laser [43], optical field ionization of a gas cell [44] or

plasma-based recombination lasers [45]. Coherent XUV and soft x-ray radiation can

also be produced by the generation of harmonics of an optical laser in a gas or plasma

medium. Our goal in the present work is to investigate the extent to which (transient)

LWI might be useful in this problem.

Electron excitation has been the mechanism of choice for the pumping of a wide

variety of XUV lasers. Alternatively, high-intensity ultrashort (with pulse duration

less then 100 fs) optical pulses can be used to pump recombination lasers [35]. In this

method, intense circularly polarized light ionizes atoms via tunneling process. Then

atoms recombine yielding species in excited electron states.

The three-body recombination scheme is attractive due to its potential of achiev-

ing lasing at XUV and soft x-ray wavelengths with relatively moderate pumping re-
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quirements. Several experiments have demonstrated gain and lasing in such scheme

[46, 47, 48]. Recombination mechanism relies on obtaining ions in a relatively cold

plasma which is possible due to short duration of the pump pulse. Then rapid re-

combination and de-excitation processes follow during which transient population

inversion can be created.

In this Chapter we focused on lasing in He and He-like ions which utilizes ad-

vantages of the recombination XUV and soft x-ray lasers and the effects of quantum

coherence. The later, for example, is the key for lasing without inversion wherein

quantum coherence created in the medium by means of strong driving field helps to

partially eliminate resonant absorption on the transition of interest and to achieve

gain without population inversion. Such an effect holds promise for obtaining short

wavelength lasers in the XUV and x-ray spectral domains, where inverted medium is

difficult to prepare due to fast spontaneous decay.
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CHAPTER III

SINGLE-PHOTON DICKE SUPERRADIANCE ∗

A. Introduction

When a gas molecules, confined in volume of dimensions less than the wavelength

of the emitted radiation, are interacting with a common radiation field, the spon-

taneous emission process can not be described by treating each molecule separately.

One should rather consider the gas as a single quantum mechanical system involving

collective states. This leads to spontaneous emission of coherent radiation as a result

of transition between such collective states. For a system of N spin-1/2 particles and

when the system is initially in state in which half of the molecules are in excited and

the other half in the ground state, Dicke [7] showed that the collective system emits

maximum radiation intensity proportional N2. Extension of this phenomenon for a

gas confined in volume whose dimension is larger than the radiation wavelength is

later generalized by Dicke himself [49] and several other authors [50].

From the physical standpoint, cooperative spontaneous emission is an example

of many-body quantum problem of N atoms collectively interacting with electromag-

netic field. Emission from a weakly excited group of atoms is, in some ways, even

more interesting than the case of a highly excited system. In the case of a weakly

excited ensemble (e.g. single-photon state–one atom out of N is excited) it might be

thought that the radiation rate would go as the single atom decay rate γ; however,

the such state radiates at a rate ΓN ∝ Nγ.

∗ Reprinted with permission from ”Correlated spontaneous emission on the
Danube” by Eyob A. Sete, A. A. Svidzinsky, H. Eleuch, Z. Yang, R. D. Nevels,
and M. O. Scully, 2010. J. Mod. Opt., 57, 1311-1330, Copyright [2010] by Taylor and
Francis Ltd.
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Recent calculations [11, 12] focus on the problem in which a single photon is

stored in a gas cloud and then retrieved at a later time. The temporal, directional,

and spectral characteristics of the cooperatively reemitted radiation is then of inter-

est. Synchrotron radiation experiments involving N nuclei excited by weak ray pulse

have features in common with the present problem. In such experiments a thin disk

of nuclei can easily be prepared in a superposition in which all the atoms are predom-

inantly in the ground state together with a small probability of being in the excited

state.

In the optical domain cooperative spontaneous emission is a subject of funda-

mental and applied interest. For instance, quantum beat phenomena provide a good

example of a situation in which a quantized electromagnetic field yields a radically

different result from a classic field plus vacuum fluctuation analysis. An ensemble

of N two-level atoms with one excitation also plays an important role in quantum

memory and quantum networking. Relevant experiments have been carried out by

the groups of Kuzmich [51], Kimble [52], and Vuletic [53].

More recently the dynamical evolution of a large cloud with one atom excited

out of N atoms undergoing cooperative spontaneous emission has been considered

[54]. It is found that the decay of such a state depends on the relation between

an effective Rabi frequency Ω =
√
NΩ0 and the time of photon flight through the

cloud R/c. If R < c/Ω the state exponentially decays with the rate Ω2R/c. In the

opposite limit R ≫ c/Ω, the coupled atom-radiation system oscillates with frequency

Ω between the collective Dicke state (with no photons) and the atomic ground state

(with one photon) while decaying at a rate c/R. We call such a regime a new kind of

”cavity” QED because dynamical oscillations in the evolution of the quantum state

exist without a cavity. It is as if the atomic cloud acts to form a ”cavity” with the atom

cloud volume V replacing the virtual photon (cavity) volume Vph, such that the usual
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vacuum Rabi frequency Ωvac = (℘/h̄)
√
h̄ω/ϵ0Vvac is replaced by Ω0 = (℘/h̄)

√
h̄ω/ϵ0V

in the present problem. Here ℘ is the electric-dipole transition matrix element, h̄ω is

the photon energy and ϵ0 is free space permittivity.

Cooperative effects of N atoms in a cavity were investigated in 1980’s by Cum-

mings [55, 56, 57] and others [58, 59]. Buzek [60] studied the dynamics of an excited

atom in the presence of N − 1 atoms in the free space and predicted radiation sup-

pression. Dynamics of the system in free space and spatial anisotropy of the emitted

radiation have been re-explored in the past few years [11, 12, 14, 15, 54, 61, 62].

When interatomic distances are small compared to the radiation wave length

λ the exchange of virtual photons induces strong dipole-dipole interaction between

atoms [63, 64]. Such effects can have interesting consequences, for example, can

destroy superradiance. Recently, it was shown that virtual photons modify time

evolution of the system [61] and dramatically change evolution of the trapped states

[14]. One way to overcome the undesired effects of nearby atoms is to replace the

small sample by an extended cloud. Unfortunately this tends to destroy superradiance

since it brings in subradiant states |B1⟩, |B2⟩, . . . , |BN−1⟩ (see Fig. 17). In a recent

paper [13], it was shown to a good approximation however that small sample Dicke

superradiance carries over to large sample.

Effects of virtual photons on evolution of N two-level atom states with two initial

conditions, namely symmetric state |B0⟩sym = 1√
N

∑N
j=1 | ↓1↓2 ... ↑j ... ↓N⟩ and

timed Dicke state |B0⟩ = 1√
N

∑N
j=1 e

ik0·rj | ↓1↓2 ... ↑j ... ↓N⟩ in the large sample limit

(R ≫ λ) has been analyzed. For symmetric state the effect of virtual processes

appear to be essentially negligible on the time scale of a few 1/Γ as illustrated in

Fig. 18 (here Γ = 3Nγ/2(k0R)
2). As shown in the same figure, for fast decaying

state |B0⟩, such processes excite other states with 10− 20% probability which can be

observed experimentally. The catch is that the evolution of the timed Dicke state can
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Fig. 17. Dicke energy level representation of N two-level atoms.

be described to a good approximation by real processes.

In this Chapter, we consider N two-level atoms interacting with the continuum

of vacuum modes. We take an initial state such that one atom is excited out of the N

atoms. We investigate how this state evolves in time both in small sample (R ≪ λ)

and large sample (R ≫ λ) limits. Moreover, we calculate the collective Lamb shift

corresponding to the symmetric state.

B. Single-photon Dicke superradiance

Here we consider N identical two-level atoms whose upper and lower levels are rep-

resented by |aj⟩ and |bj⟩ (with j = 1, ..., N) initially prepared in the single-photon

state by absorption of a single photon of wave vector k0. That is the atomic system

is prepared in a collective initial state

|B0⟩ =
1√
N

N∑
j=1

eik0·rj | ↓1↓2 ... ↑j ... ↓N⟩, (3.1)
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Fig. 18. Probability that atoms are excited as a function of time for R = 5λ calculated

taking into account virtual processes (solid lines). Upper solid curve shows

evolution of the symmetric state |B0⟩sym which practically does not decay on

the time scale of a few 1/Γ. Lower lines show evolution of the |B0⟩ state

with (solid line [65]) and without (dash line [14]) taking into account virtual

processes.

where we have introduced a notation |aj⟩ ≡ | ↑j⟩ and |bj⟩ ≡ | ↓j⟩, and rj denotes the

position of the jth atom. It is worth mentioning that the term in the phase factor

k0 · rj = (ω/c)n0 · rj = ωtj describes the timing of the excitation of atoms located

at rj [11]. Hence we call the state |B0⟩ a timed Dicke state and the corresponding

complete set of states shown in Fig. 17 timed Dicke basis.

The Hamiltonian describing interaction between the atoms and the radiation

field in the rotating wave approximation is given by

V̂ (t) =
∑
j,k

h̄gkσ̂j â
†
ke

−ik·rjei(νk−ω)t +H.c., (3.2)
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where gk = (ω℘/h̄)
√
h̄/ϵ0Vphνk is the atom-field coupling constant, ℘ is the atomic

dipole matrix element, ϵ0 is the permittivity of free space, Vph is the quantization

volume, νk = ck is the frequency of the kth mode, âk (â†k) is annihilation (creation)

operator of a photon with wave vector k and σ̂j (σ̂
†
j) is the lowering (raising) operator

of the jth atom.

1. Small sample

Next we calculate the evolution of the |B0⟩ state for N identical atoms confined in

a spherical volume of radius R much less than the radiation wavelength λ. In this

limit, one can write the exponential factor in Eq. (4.1) as exp(ik0 · r) ∼=1 and hence

the initial state takes the form

|B0⟩sym =
1√
N

N∑
j=1

| ↓1↓2 ... ↑j ... ↓N⟩. (3.3)

In terms of Dicke basis the corresponding state vector can be written as

|Ψ(t)⟩ = β0(t)|0⟩|B0⟩sym +
∑
k

γk(t)|C0, 1k⟩. (3.4)

To calculate matrix elements in the rate equation it is convenient to use the angular

momentum approach. As Dicke pointed out, the atomic states can be mapped onto

angular momentum states with r = N/2 and m = (na − nb)/2 with na and nb being

the number of atoms in the excited and ground states, respectively. If we denote the

initial state by |B0⟩sym = |r,m⟩ then other states can be obtained by applying the

raising L̂+ ≡
∑N

j=1 σ̂
†
j and lowering L̂− ≡

∑N
j=1 σ̂j operators on |r,m⟩ (see Fig. 17).

The Schrödinger equation yields

d

dt
β0(t) = −i⟨0|sym⟨B0|V̂ (t)|Ψ(t)⟩ = −i

∑
k

gke
−i(νk−ω)tγk⟨r,m|L̂+|r,m− 1⟩. (3.5)
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Recalling that L̂+|r,m−1⟩ =
[
r(r+1)−m(m−1)

]1/2|r,m⟩, the above equation takes

the form

d

dt
β0(t) = −i

√
N

∑
k

gke
−i(νk−ω)tγk. (3.6)

In a similar way one can verify that

d

dt
γk(t) = −i

√
Ngke

i(νk−ω)tβ0. (3.7)

Plugging formal solution of Eq. (3.7) into (3.6), we find

d

dt
β0(t) = −N

∑
k

g2k

∫ t

0

dt′ ei(νk−ω)(t
′−t)β0(t

′). (3.8)

Applying Markov approximation in which we replace β0(t
′) by β0(t) and noting that∫ t

0
dt′ ei(νk−ω)(t

′−t) ∼= πδ[c(k − k0)], we obtain

d

dt
β0(t) = −πN

c

∑
k

g2kδ(k − k0)β0(t). (3.9)

Using the transformation

∑
k

→ Vph
(2π)3

∫
d3k =

Vph
2π2

∫ ∞

0

k2dk, (3.10)

Equation (3.9) can be written as

d

dt
β0(t) = −Γβ0(t), (3.11)

where Γ = Nγ and γ = ℘2ω3/2πh̄ϵ0c
3 is the single atom decay rate. Therefore, the

initial state |B0⟩sym decays exponentially to the ground state as β0(t) = exp(−Nγt)

with a decay rate N times faster than that of an isolated two-level atom. This result

was obtained by Dicke [7]. Since only one photon is involved in the system, we call

this process single-photon Dicke superradiance.
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2. Large sample

In this section we discuss single-photon Dicke superradiance in the large sample limit,

R ≫ λ. We first consider the three atom example and extend it to N atoms case and

show that, to a good approximation, the time Dicke state decays exponentially to the

ground state with a rate ΓN = Nγ.

a. Three atoms

First let us consider three atoms and calculate the evolution of the state |B0⟩. The

state vector at time t can be written in terms of the Dicke basis set (see Fig. 19) as

|Ψ(t)⟩ = β0(t)|B0, 0⟩+ β1(t)|B1, 0⟩+ β2(t)|B2, 0⟩+
∑
k

γk(t)|C0, 1k⟩.

Now applying Schrödinger equation, we obtain

d

dt
β0(t) = − i√

3

∑
k

gk

3∑
j=1

ei(k−k0)·rje−i(νk−ω)tγk(t), (3.12)

d

dt
γk(t) = −igk

[ β0√
3

3∑
j=1

e−i(k−k0)·rj +
β1√
2

(
e−i(k−k0)·r1 − e−i(k−k0)·r2

)
+
β2√
6

(
− e−i(k−k0)·r1 − e−i(k−k0)·r2 + 2e−i(k−k0)·r3

)]
ei(νk−ω)t. (3.13)

Substituting Eq. (3.13) into Eq. (3.12) and using approximately valid relation∫ t
0
dt′ei(νk−ω)(t

′−t) ∼= πδ[c(k − k0)], we obtain

β̇0 = −γ00β0 − γ01β1 − γ02β2, (3.14)

where

γ00 =
1

3

∑
k

g2kδ[c(k − k0)]
3∑
j=1

ei(k−k0)·rj
[ 3∑
j=1

e−i(k−k0)·rj
]
, (3.15a)
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Fig. 19. Dicke basis representation of three two-level atoms far apart compared to

the wavelength of emitted radiation. In this limit, |B0⟩ state is coupled to

degenerate states |B1⟩ and |B2⟩.

γ01 =
1√
3× 2

∑
k

g2kδ[c(k − k0)]
3∑
j=1

ei(k−k0)·rj
[ (
e−i(k−k0)·r1 − e−i(k−k0)·r2

) ]
, (3.15b)

γ02 =
1√
3× 6

∑
k

g2kδ[c(k − k0)]
3∑
j=1

ei(k−k0)·rj
[(

− e−i(k−k0)·r1 − e−i(k−k0)·r2

+ 2e−i(k−k0)·r3
)]
. (3.15c)

Note that state |B0⟩ is coupled to degenerate states |B1⟩ and |B2⟩ which was first

pointed out by Agarwal [66]. It is also closely related to earlier work of Fano [67]
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and thus we call it Fano-Agarwal coupling. In the small sample limit, however,

exp(±ik · r) ≃ 1 and coefficients Γ0,1 and Γ0,2 vanish, which results in decoupling of

the degenerate levels. Note also that for small sample, γ00 = 3γ and thus Eq. (3.14)

reduces to β̇0 = −3γβ0 which agrees with Eq. (3.11) for N = 3. This shows that

going from small to large sample limits leads to coupling of degenerate states. A

natural question that follows is–can this be the case for large number of atoms? We

address this question in Section b.

b. N atoms: R ≫ λ

We now consider N identical two-level atoms and calculate the evolution of |B0⟩ state

in the large sample limit. We assume that the time of photon flight through the

atomic cloud R/c is smaller than the state decay time. In this regime one can apply

Markov approximation. The state vector given in terms of the Dicke basis has the

form

|Ψ(t)⟩ =
N−1∑
l=0

βl|Bl, 0⟩+
∑
k

γk|C0, 1k⟩. (3.16)

Applying Schrödinger equation and using (B), one finds

β̇l = −i
∑
j,k

gk⟨Bl|σ+
j |C0⟩eik·rje−i(νk−ω)tγk(t), (3.17)

γ̇k = −i
∑
j,l′

gk′⟨C0|σj|Bl′⟩e−ik·rjei(νk−ω)tβl′(t). (3.18)

Integrating Eq. (3.18) and plugging the result into Eq. (3.17) yields

β̇l = −
∑
k

g2k
∑
l′

∑
i,j

⟨Bl|σ†
j |C0⟩⟨C0|σi|Bl′⟩eik·(rj−ri)

∫ t

0

dt′e−i(νk−ω)(t−t
′)βl′(t

′). (3.19)

Here we are interested in the time evolution of the |B0⟩ state. To this end, setting

l = 0 in the above equation and in view of Eq. (B.7) and (B.11), Eq. (3.19) reduces
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to

β̇0 = −
∑
k

g2k

∫ t

0

dt′
(
r00(t, t

′)β0(t
′) +

∑
l

r0l(t, t
′)βl(t

′)
)
, (3.20)

where

r00 =
(
1 +

1

N

∑
i̸=j

ei(k−k0)·(ri−rj)
)
e−ic(k−k0)(t−t

′),

r0l =
1√

Nl(l + 1)

N∑
i=1

ei(k−k0)·ri
[ l∑
j=1

e−i(k−k0)·rj−le−i(k−k0)·rl+1

]
e−ic(k−k0)(t−t

′). (3.22)

For very large N , invoking the ansatz
∑

i e
i(k−k0)·ri ⇒ δ(k−k0) the square bracketed

terms in Eq. (3.22) vanish. Therefore the off-diagonal terms in Eq. (7.19) vanish and

we are left with

β̇0 = −
∑
k

g2k

∫ t

0

dt′
(
1 +

1

N

∑
i̸=j

ei(k−k0)·(rj−ri)
)
e−ic(k−k0)(t−t

′)β0(t
′).

We thus note that for a very large number of atoms, the coupling of the state |B0⟩ to

degenerate states vanishes and the state decays exponentially to the ground state.

3. A delta function ingression

In order to estimate the contribution of |Bl⟩ states to the time evolution of the

symmetric state |B0⟩ for finite number of atoms without doing rigorous calculation,

we invoke the ansatz

∑
i

ei(k−k0)·ri ⇒ (2π)3N

V k2
δ(Ω̂k − Ω̂k0)δ(k − k0) ⇒

8π2R

V k2
δ(Ω̂k − Ω̂k0)

∑
i

ei(k−k0)ri .

(3.23)

Now let us first change the summation over k to integration in Eq. (7.19) and use

the ansatz (3.23) to we obtain

β̇0(t) = −RVph
πV

∫ ∞

0

dkg2k

N∑
i=1

ei(k−k0)ri
∫ t

0

dt′e−ic(k−k0)(t−t
′)
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×
[ 1

N

∑
j

e−i(k−k0)rjβ0(t
′)+

1√
Nl(l + 1)

( l∑
j=1

e−i(k−k0)rj−le−i(k−k0)rl+1

)
βl(t

′)
]
. (3.24)

Consider only the contribution of one of the trapped states (l = 1) to the time

evolution of the symmetric state |B0⟩. Taking only the l = 1 term in Eq. (3.24), we

have (
∂β0
∂t

)
i,j

= −RVph
πV

1√
2N

∫ ∞

0

dkg2k

∫ t

0

dt′e−ic(k−k0)(t−t
′)

×
N∑
n=1

ei(k−k0)rn
(
e−i(k−k0)ri − e−i(k−k0)rj

)
β1(t

′). (3.25)

For simplicity we further assume that atoms are uniformly distributed along the radial

direction from r = 0 to r = R so that rn = n∆, where n = 1, 2, ..., N and ∆ is the

spacing between consecutive atoms. It can be verified that

N∑
n=1

[ei(k−k0)∆]n =
1− ei(k−k0)N∆

e−i(k−k0)∆ − 1
= −

∞∑
n=0

e−i(k−k0)n∆(1− ei(k−k0)R). (3.26)

Plugging (3.26) into (3.25), we obtain(
∂β0
∂t

)
i,j

= −RVph
πV

1√
2N

∑
k

g2k

∫ t

0

dt′e−ic(k−k0)(t−t
′)

∞∑
n=0

[
e−i(k−k0)n∆ − ei(k−k0)(R−n∆)

]
×
(
e−i(k−k0)ri − e−i(k−k0)rj

)
β1(t

′). (3.27)

Evaluating the coupling constant gk at k0, Eq. (3.27) takes the form(
∂β0
∂t

)
i,j

=
3γ

2π(k0R)2
c√
2N

∞∑
n=0

∫ t

0

dt′
∫ ∞

−k0
dκ

{(
e−iκ[c(t−t

′)+n∆+ri]

− e−iκ[c(t−t
′)+(n∆−R)+ri]

)
− (ri → rj)

}
β1(t

′), (3.28)
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where κ = k− k0. Noting that k0 = ω/c≫ γ/c the limit of integration over κ can be

extended to −∞. Thus performing the integration over κ gives(
∂β0
∂t

)
i,j

=
3γ

(k0R)2
1√
2N

∞∑
n=0

∫ t

0

dt′
{
δ

[
t+

n∆

c
+
ri
c
− t′

]
− δ

[
t+

n∆−R

c
+
ri
c
− t′

]
− (ri → rj)]

}
β1(t

′). (3.29)

Considering the ri integral and writing ri = ni∆, we have

∞∑
n=0

∫ t

0

dt′
{
δ

[
t+

(n+ ni)∆

c
− t′

]
− δ

[
t− (N − n− ni)∆

c
− t′

]}
β1(t

′). (3.30)

Performing the integration, one readily obtains

∞∑
n=0

∫ t

0

dt′
{
δ

[
t− (n+ ni)∆

c
− t′

]
− δ

[
t− (N − n− ni)∆

c
− t′

]}
β1(t

′)

= −niβ1. (3.31)

Therefore, in the limit ct > R, Eq. (3.29) takes the form(
∂β0
∂t

)
i,j

∼= − 3γ

2(k0R)2
1√
2N

(ni − nj)β1.

We can then write Eq. (3.24) as

β̇0 ∼= −Γ00β0 −
N−1∑
l=1

Γ0lβl, (3.32)
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where

Γ00
∼=

3Nγ

2(k0R)2
,

Γ01 =
3γ

2(k0R)2
1√
2N

(n2 − n1)

...

Γ0l =
3γ

2(k0R)2
1√

Nl(l + 1)

l∑
j=1

(nl − nj). (3.33)

The atom label ni tells us which site (not which atom).

Keeping only the first two terms in Eq. (3.32), we have

β̇0(t) ∼= −Γ00β0(t)− Γ01β1(t). (3.34)

In similar way one can establish that

β̇1(t) ∼= −Γ11β1(t)− Γ10β0(t),

where Γ10 = Γ01 ∝ 1/
√
N and Γ11 ∝ 1. Solving for β1, we obtain

β1(t) ∼= Γ10
e−Γ00t − e−Γ11t

Γ00 − Γ11

≃ −Γ10

Γ00

e−Γ11t. (3.35)

Substituting Eq. (3.35) into the formal solution of Eq. (3.34) and using the initial

condition β0(0) = 1, we find

β0(t) ∼= e−Γ00t +
Γ2
10

Γ00(Γ00 − Γ11)
(e−Γ00t − e−Γ11t) ∼= e−Γ00t +

1

N
e−Γ11t. (3.36)

We immediately notice that the contribution of the first nonsymmetric state |B1⟩ to

the time evolution of the initial state |B0⟩ goes like 1/N which is negligible for large

N . Therefore, the |B0⟩ state decays exponentially as in the small sample limit with

an enhanced rate Γ00.
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Fig. 20. Relevant Dicke states for calculation of collective Lamb shift in single photon

Dicke superradiance. The solid arrows describe the coupling between degen-

erate states, that is, between |B0⟩ and |Bl⟩ (l ≥ 1) and the dashed arrows

indicate the virtual processes which arise due to the counter-rotating terms

going as exp[i(νk + ω)t] in the Hamiltonian [Eq. (3.37)].

Rigorous consideration, however, must take into account possible coupling to all

other states and include counter-rotating terms in the interaction Hamiltonian. As

shown in [14, 65], Eq. (3.36) remains valid only approximately and other states are

excited with about 10 − 20% probability in the large sample limit. For small time

the state |B0⟩ decays exponentially with a rate Γ00 = 3Nγ/2(k0R)
2. In the long time

limit, the state |B0⟩ exhibits power-law decay [14].

C. The effect of virtual processes on single photon Dicke superradiance

Frequency or Lamb shift arises due to repeated emission and absorption of short-

lived virtual photons. It was originally observed by Lamb and Retherford between

two ”degenerate” states 2p1/2 and 2s1/2 of a hydrogen atom [68]. Here we discuss the

effect of virtual processes on the time evolution of the |B0⟩ (see Fig. 20) state for atoms

distributed in a spherical cloud of radius R following Ref. [13]. We focus on evolution

of the |B0⟩ state in the large sample limit R ≫ λ (but R ≪ c/Γ, where Γ is the

state decay rate). The Hamiltonian (B) written in the rotating wave approximation

cannot fully describe virtual processes. One should rather go beyond the rotating wave

approximation in order to properly account for both the real and virtual processes.
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To this end, we write the Hamiltonian beyond rotating wave approximation as

V (t) =
∑
j,k

h̄gk

(
σja

†
ke

−ik·rjei(νk−ω)t + σ†
ja

†
ke

−ik·rjei(νk+ω)t
)
+H.c. (3.37)

For the system initially prepared in the |B0⟩ state, an atom may emit a photon

in the k mode and decay to the ground state |C0⟩ which is described by the term in

the Hamiltonian σa†k. An equally possible transition, represented by akσ
†, is when

an atom in the ground state absorbs a photon and jumps to the next excited states,

i.e., either of the |Bl⟩ states. These two processes are real and energy conserving in

a sense that the atom absorbs some energy and get excited to higher energy level

or vice versa. On the other hand, the term σ†a†k describes a process in which an

atom makes a transition to the next excited state, i.e., |Al⟩, by emitting a short-lived

virtual photon in the k mode. Then one of the atoms absorbs this photon and decays

back to either of |Bl⟩ states in a short time, which is described by the term σak in the

Hamiltonian. These processes, opposed to the former ones, are virtual and energy

non-conserving. As we will demonstrate below both processes contribute to evolution

of the initial state |B0⟩.

In the limit R ≫ λ, the state vector at time t can be written as

|Ψ(t)⟩ =
m∑
n=0

∑
k

αn,k|An, 1k⟩+
N−1∑
l=0

βl|Bl, 0⟩+
∑
k

γk|C0, 1k⟩, (3.38)

where m = (N−1)(N−2)/2. Applying Schrödinger equation and using the Hamilto-

nian (3.37) and the state vector (3.38), one can readily obtain equations of evolution

for probability amplitudes to be

β̇l = −i
∑
j,k

gk⟨Bl|σ+
j |C0⟩eik·rje−i(νk−ω)tγk(t)

− i
∑
j,k

gk
∑
n′

⟨Bl|σj|An′⟩eik·rje−i(νk+ω)tαn′,k(t), (3.39)
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γ̇k = −i
∑
j,l′

gk′⟨C0|σj|Bl′⟩e−ik·rjei(νk−ω)tβl′(t), (3.40)

α̇n,k = −i
∑
j,l′

gk⟨An|σ†
j |Bl′⟩e−ik·rjei(νk+ω)tβl′(t). (3.41)

Now plugging formal solutions of Eqs. (3.41) and (3.40) into (3.39) we get

β̇l = −
∑
k

g2k
∑
l′

∑
i,j

⟨Bl|σ†
j |C0⟩⟨C0|σi|Bl′⟩eik·(rj−ri)

∫ t

0

dt′e−i(νk−ω)(t−t
′)βl′(t

′)

−
∑
k

g2k
∑
l′

∑
i,j

⟨Bl|σj
∑
n′

|An′⟩⟨An′ |σ†
i |Bl′⟩eik·(rj−ri)

∫ t

0

dt′e−i(νk+ω)(t−t
′)βl′(t

′).

(3.42)

We are interested in the time evolution of the initial state |B0⟩. Thus setting l = 0

in Eq. (3.42), noting that |An′⟩⟨An′| = 1 and performing the summation we readily

establish that (see Appendix A for detailed calculation)

β̇0(t) = −
∑
k

g2k

∫ t

0

dt′

[
R00(t, t

′)β0(t
′) +

N−1∑
l=1

R0l(t, t
′)βl(t

′)

]
, (3.43)

where R00 and R0l are given by Eqs. (B.9) and (B.13), respectively. Further, applying

Markov approximation and performing the integration over time, we obtain

β̇0(t) = −Γ00β0 −
N−1∑
i=1

Γ0lβl, (3.44)

where

Γ00(t) =
∑
k

g2k

(
1 +

1

N

∑
i̸=j

ei(k−k0)·(rj−ri)
) e−ic(k−k0)t
ic(k − k0)

+
∑
k

g2k

(
N − 1 +

1

N

∑
i̸=j

ei(k+k0)·(rj−ri)
) e−ic(k+k0)t
ic(k + k0)

, (3.45)
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Γ0l(t, t
′) =

1√
Nl(l + 1)

∑
k

g2k
∑
j

ei(k−k0)·rj

×
[ l∑
i=1

e−i(k−k0)·ri − le−i(k−k0)·rl+1

] e−ic(k−k0)t
ic(k − k0)

+
1√

Nl(l + 1)

∑
k

g2k
∑
j

e−i(k+k0)·rj

×
[ l∑
i=1

ei(k+k0)·ri − lei(k+k0)·rl+1

] e−ic(k+k0)t
ic(k + k0)

. (3.46)

As per the result of Appendix B, all terms in Γ0l vanish and only the Γ00 term in

(3.44) survives. Calculating the expression for Γ00, Eq. (3.44) becomes

β̇0 = −γβ0 −
(
γ

2π

N − 1

V
λ2R

)
β0(t) + i

γ

πk0

∫ K

0

kdk
[ 1

k − k0
+
N − 1

k + k0

]
β0(t)

+ i
γ

k0

N − 1

V

∫ ∞

0

dk

k

∫ R

−R
dr ei(k−k0)r

[ 1

k − k0
+

1

k + k0

]
β0(t), (3.47)

where K is the cutoff wave vector. We proceed to carry out the first integral by

subtracting off the electron self energy terms, i.e., replace (k±k0)−1 by (k±k0)−1−k−1
0

as it appears in the square bracket. The third integral is finite due to the exponential

factor exp[i(k − k0)r] and yields a simple result in the limit k0R ≫ 1 (see Appendix

B). Thus using the results in Appendix B, Eq. (3.47) takes the form

β̇0 = −(γ + Γ)β0 +
i

π

(
γ ln

K2 − k20
k20

−Nγ ln
K + k0
k0

− Γ

π

λ

4R
S

)
β0, (3.48)

where

Γ =
3γ(N − 1)

2(k0R)2
(3.49)

and the shape factor

S = 1− 2 cos k0R

πk0R
.
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A similar calculation for the ground state yields

γ̇0 = −i
(
γ

π
N ln

K + k0
k0

)
γ0 (3.50)

so that the frequency shift between |B0⟩ and |C0⟩ is

δωβ − δωγ = −γ
π
ln
K2 − k20
k20

+
Γ

π

λ

4R
S. (3.51)

In the above equation, the first term is the single atom Lamb shift while the second

term is the collective Lamb shift due to the many particle effect. The amplitude of

the |B0⟩ state (4.1) has been shown to decay exponentially even though the collective

Lamb shift can be large. In addition, when the sample is large enough, |B0⟩ decays

to |C0⟩ with a high probability. The many particle contribution to the Lamb shift,

LN ∼ Γλ/4R ∼ Nγ(λ/R)3 can be much larger than the single particle shift (which is

of order γ); for example, for a gas at one torr N/R3 ∼ 1016atom/cm3 and wavelength

λ = 1µm yields LN ∼ 104γ.

One should mention that results obtained in this section are only approximate

because replacement of summation over atoms by delta function (in Appendix B) is

not rigorous for a finite size of the atomic cloud. Proper treatment of the problem

shows that the |B0⟩ state decays exponentially only for t ∼ 1/Γ, for large time the

decay becomes power-law [14].

D. Conclusion

We have analyzed evolution of cooperative spontaneous emission from a collection of

N identical two-level atoms which are uniformly distributed in a sphere and initially

prepared by absorption of a single photon–timed Dicke state. In particular, we have

discussed the time evolution this state in both small and large sample limits. We have
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also calculated the frequency or Lamb shift associated with the timed Dicke state for

the large sample limit.

It turns out that if one takes into account energy conserving processes only,

the timed Dicke state, to a good approximation, decays exponentially to the ground

state. On the other hand, when the virtual processes are taken into account the result

depends crucially on the initial state of the system. For instance, if a large atomic

cloud is initially prepared in the rapidly decaying timed Dicke state, virtual processes

lead to excitation of the other states with 10-20 % probability. This relatively small

but intersecting effect can be observed experimentally. However, when the system

is initially in a trapped state then virtual processes qualitatively change the time

evolution yielding new decay channels. As a consequence, the initial trapped state is

no longer trapped and slowly decays via photon emission.
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CHAPTER IV

PROTECTING FAST DECAY OF ENTANGLEMENT BETWEEN

DIPOLE-COUPLED QUBITS VIA QUANTUM INTERFERENCE ∗

A. Introduction

Quantum interference (QI), an intriguing consequence of the superposition principle

has led to numerous fascinating phenomena [1, 4, 69, 70, 71]. Application of QI in

generation of bipartite entanglement both in discrete [72, 73] and continuous-variable

[9, 10, 74] settings has been the focus of current investigation. Note that bipartite

entanglement involving two atoms, extensively used for implementations of various

quantum information protocols [75, 76, 77, 78, 79, 80], is known to be quite fragile

in the face of decoherence [75, 81]. In view of this, in the past few years considerable

effort has been devoted to the study of dynamical aspect of two-atom entanglement

in presence of decoherence [16, 82, 83, 84, 85, 86, 87, 88, 89]. In one such study [16],

it was found that in contrary to the adverse effect of spontaneous emission on atomic

entanglement [87], cooperative spontaneous emission in two atom systems can gener-

ate entanglement between the atoms. It is worth mentioning here that the problem

of cooperative spontaneous emission first addressed by Dicke [7] is known to exhibit

several counter-intuitive phenomena [66] namely, directed spontaneous emission [11],

Lamb shift [13], and single-photon Dicke superradiance [15] as discussed in previous

Chapter. In recent times, with the discovery of atom like behavior of semiconductor

quantum dots [90, 91] and their utilization towards solid state quantum computing

[90, 91, 92], we have a new class of systems where the phenomenon of cooperative

∗ Reprinted with permission from ”Quantum interference in timed Dicke basis
and its effect on bipartite entanglement” by Eyob A. Sete and S. Das, 2011. Phys.
Rev. A, 83, 042301, Copyright [2011] by American Physical Society.
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spontaneous emission can be of immense importance from the context of quantum

information sciences.

As pointed out in Chapter III, the state of an atom acquires a phase shift

exp(ik0 · rj) when it is excited by a photon of wave vector k0. The term k0 · rj = ν0tj

encodes the information that when and where the atom is excited. Such a position-

dependent phase factor in a system of large number of atoms was shown to exhibit

fascinating features. For example, it can lead to Fano-Agarwal-type coupling be-

tween degenerate levels and creates coherence between them [66, 67]. Moreover, it

determines the directionality of the emitted radiation in single-photon Dicke superra-

diance [11]. Recently, Ooi and co-workers [93] studied the effect of position-dependant

excitation phase on the population dynamics, intensity, and spatial and angular cor-

relations in two two-level atoms interacting via their dipoles. The results show that

the excitation phase considerably modifies the dynamics of the system. Later, Das

et al. [94] investigated the effect of the position-dependent excitation phase on the

Dicke cooperative emission spectrum. A strong quantum correlation among the atoms

was reported in presence of the excitation phase. This was attributed to a vacuum

mediated QI generated in the two-atom system. The result of [94] qualitatively in-

dicates that the spatial variation of the excitation phase can affect the generation

and evolution of entanglement in the system. It may be added that, such vacuum

mediated QI and its effect has been earlier studied in atomic systems [66, 95, 96, 97].

While these earlier works utilize the quantum interference that comes about due to

the configuration of the atomic system, we are motivated at studying the effect of

quantum interference induced by the position-dependent excitation phase.

To understand the effects of such QI on the two atom entanglement, we present

a systematic study of the time evolution of entanglement measure for two strongly

dipole-coupled atoms undergoing a cooperative spontaneous emission. We consider
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Fig. 21. Energy level diagram for two two-level atoms in bare basis (a) and in the

timed Dicke basis (b). The frequency shift ∆ = Ω12 cosφ occurs as a result of

dipole-dipole interaction between the two atoms. The collective states |s⟩ and
|a⟩ decays at a rate of Γ+ and Γ−, respectively, where Γ± = 2(γ ± γ12 cosφ).

various initial quantum states in which the two atoms can be prepared and explore

the effects on the dynamical behavior of entanglement due to the quantum interfer-

ence. We explicitly take into account the position-dependent excitation of the atoms

by introducing timed Dicke basis [11]. It is important to understand that the entan-

glement in a two-atom system crucially depends on the cooperative decay rates, the

initial conditions, and the dipole-dipole interactions [84], all of which get modified

due to the quantum interference. We show that for the system initially prepared in

the symmetric timed Dicke state, a coherence between the symmetric and antisym-

metric states is dynamically generated as a result of the QI between the two pathways

leading to the ground state. This coherence considerably slows down decay of the

entanglement between the qubits.

B. Model and equations of evolution

We consider a system of two qubits formed by the excited states |ei⟩ and ground

states |gi⟩ (i = 1, 2) of two identical two level atoms, see Fig. 21a. The qubits are
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fixed at positions r1 and r2 and the interqubit distance is less than the wavelength of

the radiation field, λ. We further assume that the qubits are coupled to one another

by a dipole-dipole interaction and are coupled to the environment via an interaction

with a common vacuum reservoir. The time evolution of the density operator for such

a two-qubit system is given by [66]

d

dt
ρ = −iω0

2∑
i=1

[σzi , ρ]− i
2∑
i̸=j

Ωij[σ
†
iσj, ρ]−

2∑
i,j=1

γij(ρσ
†
iσj + σ†

iσjρ− 2σjρσ
†
i ). (4.1)

Here

ω0 = ω + ωL (4.2)

is the normalized atomic transition frequency with ω being the bare atomic transition

frequency and ωL = −(γ/π) ln[|ωc/ω − 1|(1 + ωc/ω)] the relative single-atom Lamb

shift between the bare levels; ωc is the cut-off frequency. σzi = (σ†
iσi − σiσ

†
i )/2 is

the energy operator with σ†
i (σi) being the raising (lowering) operator for ith atom,

Ωij and γij for i ̸= j are, respectively, the dipole-dipole interaction term and the

cooperative decay rate given by

Ωij =
3

2
γ

[
(1− 3 cos2 θ)

(
sin(k0rij)

(k0rij)2
+

cos(k0rij)

(k0rij)3

)
− (1− cos2 θ)

sin(k0rij)

k0rij

]
(4.3)

and

γij =
3

2
γ

[
(1− cos2 θ)

sin(k0rij)

k0rij
+ (1− 3 cos2 θ)

(
cos(k0rij)

(k0rij)2
− sin(k0rij)

(k0rij)3

)]
, (4.4)

where 2γ ≡ 2γ11 = 2γ22 = 2|℘⃗eg|2ω3/3πε0h̄c
3 is the spontaneous decay rate of the

individual qubits. ℘⃗eg is the dipole moment, k0 = 2π/λ with λ being the wavelength

of the emitted radiation and θ is the angle between the direction of the dipole moment

and the line joining the ith and the jth qubits, and rij = |ri − rj| is the interqubit

distance. In this work, we assume that the orientation of the dipole moment is random
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and hence Eqs. (4.3) and (4.4) simplifies considerably and take a simple form

Ωij = −γ cos(k0rij)/k0rij, (4.5)

γij = γ sin(k0rij)/k0rij. (4.6)

We next consider the preparation of initial state of the qubits. For this purpose,

we assume that the qubits interacts with a very weak laser field (almost at a single-

photon level) propagating with a wave vector k0. The interaction with the weak field

can lead to a resonant single photon absorption process. It is important to note that

we consider the direction of the wave vector to be different to that of the interqubit

axis. This thus generate a position-dependent excitation phase of the qubits whenever

a photon is absorbed. The excitation process, with the laser field treated classically

and in the rotating wave approximation, can be described by the Hamiltonian

V = −h̄Ω
2∑
j=1

(σ+
j e

ik0·rj e−i(ν0−ω)t +H.c.), (4.7)

where Ω = de1g1 ·E/h̄ = de2g2 ·E/h̄ is the Rabi frequency and ν0 is the frequency of the

incident radiation. Note that the position-dependent phase factors in the Hamiltonian

would substantially affect the dynamical behavior of the correlation in the two-qubit

system. We except that this in turn will lead to modification of entanglement between

the qubits. The investigation of such modification in the entanglement feature is the

key focus of this work. To study the effect of position-dependent excitation phase

on the dynamics, it proves to be convenient to work in a basis defined by the phase

factors. Such a basis was introduced in Ref. [11] in context to directed spontaneous

emission from an ensemble of atoms and is also known as the timed Dicke basis. To
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this end, for our system of two qubits there are four timed Dicke states:

|e⟩ = |e1e2⟩eik0·r1+ik0·r2 , (4.8a)

|s⟩ = 1√
2
(|e1g2⟩eik0·r1 + |g1e2⟩eik0·r2), (4.8b)

|a⟩ = 1√
2
(|e1g2⟩eik0·r1 − |g1e2⟩eik0·r2), (4.8c)

|g⟩ = |g1g2⟩. (4.8d)

In terms of this basis the equations of evolution for the elements of the density

operator read:

ρ̇ee = −4γρee, (4.9a)

ρ̇es = −[3γ + γ12 cosφ+ i(ω0 − Ω12 cosφ)]ρes + i sinφ(γ12 − iΩ12)ρea, (4.9b)

ρ̇ea = −[3γ − γ12 cosφ+ i(ω0 + Ω12 cosφ)]ρea + i sinφ(γ12 + iΩ12)ρes, (4.9c)

ρ̇eg = −2(γ + iω0)ρeg, (4.9d)

ρ̇ss =− 2(γ + γ12 cosφ)ρss − i sinφ(γ12 + iΩ12)ρas + i sinφ(γ12 − iΩ12)ρsa

+ 2(γ + γ12 cosφ)ρee, (4.9e)

ρ̇aa =− 2(γ − γ12 cosφ)ρaa − i sinφ(γ12 − iΩ12)ρas + i sinφ(γ12 + iΩ12)ρsa

+ 2(γ − γ12 cosφ)ρee, (4.9f)
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ρ̇as =− 2(γ − iΩ12 cosφ)ρas + i sinφ(γ12 + iΩ12)ρss + i sinφ(γ12 − iΩ12)ρaa

− 2iγ12 sinφρee, (4.9g)

ρ̇gs =− [γ + γ12 cosφ− i(ω0 + Ω12 cosφ)]ρgs + i sinφ(γ12 − iΩ12)ρga

+ 2(γ + γ12 cosφ)ρse + 2iγ12 sinφρae, (4.9h)

ρ̇ga =− [γ − γ12 cosφ− i(ω0 − Ω12 cosφ)])ρga − i sinφ(γ12 − iΩ12)ρgs

− 2(γ − γ12 cosφ)ρae + 2iγ12 sinφρse, (4.9i)

ρ̇gg = 2(γ + γ12 cosφ)ρss + 2(γ − γ12 cosφ)ρaa + 2iγ12 sinφ(ρas − ρsa), (4.9j)

where φ = k0 · (ri − rj) = 2π
λ
rij cos ξ with ξ being the angle between the laser

propagation direction and the line joining the two atoms.

Inspection of Eqs. (4.9b) and (4.9c) shows that the presence of dipole-dipole

interaction gives rise to collective frequency (Lamb) shift, which is as a result of

repeated emission and absorption of short-lived virtual photons [13, 15, 98]. The shifts

are only observed for symmetric and antisymmetric states. The former is shifted up

while the later shifted down by an equal amount ∆ = Ω12 cosφ from the single photon

resonance line as shown in Fig. 21b. It is interesting to note that one can manipulate

the frequency shift by only orienting the laser field appropriately with respect to the

line joining the two atoms. For example, φ = π/2, i.e., when the angle between the

laser propagation direction and the line joining the two atoms is ξ = π/3 and the

interatomic distance equal to half of the radiation wavelength, r12 = λ/2, the level

shift vanishes. Thus it is possible to control the level shift by applying a laser field in

a particular direction without turning off the dipole-dipole interaction.

Furthermore, we note that the transition probability from the excited state |e⟩
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to the one photon states, |s⟩ and |a⟩, is the sum of the probability of each transition.

Since it is the probability, not the probability amplitudes that add up we don’t expect

quantum interference phenomenon to occur. However, the transition probability from

the one photon states, |s⟩ and |a⟩ to the ground state |g⟩ is obtained by squaring the

sum of the amplitude of each transition. When there is a coherence between the two

states (|s⟩ and |a⟩), this can lead to quantum interference yielding coherent population

transfer between |s⟩ and |a⟩. Indeed, the populations in |s⟩ and |a⟩ are coupled to

the coherence ρas as per Eqs. (4.9e)-(4.9g). It is worth to note that this coupling

disappears when the direction of propagation of the laser field is perpendicular to

the interqubit axis ξ = π/2 (φ = 0). Therefore, a nonzero ϖ result in creation of

two-photon coherence ρas. In this work, we explore the extent to which this coherence

affects the dynamical evolution of bipartite entanglement between the qubits.

C. Entanglement measure

In general a state of a quantum system is said to be entangled when the density oper-

ator of the composite system cannot factorize into that of the individual subsystems.

There are several entanglement measures for two-qubit system in the literature. How-

ever, we use the concurrence, a widely used entanglement monotone, for our purpose.

The concurrence, first introduced by Wooters [99], is defined as

C(t) = max(0,
√
λ1 −

√
λ2 −

√
λ3 −

√
λ4), (4.10)

where λ1 > λ2 > λ3 > λ4. {λi} are the eigenvalues of the matrix ρρ̃ in which

ρ̃ = σy ⊗ σyρ
∗σy ⊗ σy with σy being the Pauli matrix. The concurrence takes values

ranging from 0 to 1. For maximally entangled state C(t) = 1 and for separable state

C(t) = 0.
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For a dissipative system, without any external driving field, the density matrix

of the qubits system has the form

ρ(t) =



ρ11 0 0 ρ14

0 ρ22 ρ23 0

0 ρ32 ρ33 0

ρ41 0 0 ρ44


(4.11)

in the basis set |1⟩ = |e1e2⟩eik0·(r1+r2), |2⟩ = |e1g2⟩eik0·r1 , |3⟩ = |g1e2⟩eik0·r2 , and

|4⟩ = |g1g2⟩. Note that for a quantum state initially prepared in a block form of

(4.11), the time-evolved density matrix will have the same block form, i.e., the zeros

remain zero and the nonzero components evolve in time [84, 89].

We next proceed to calculate the concurrence for the qubits initially prepared in

the form of (4.11). To do so, one has to determine the matrix ρ̃ in the basis where ρ

is expressed. Using the definition of the density matrix ρ̃, we obtain

ρ̃(t) =



ρ44 0 0 ρ14

0 ρ33 ρ23 0

0 ρ32 ρ22 0

ρ41 0 0 ρ11


. (4.12)

Thus the square root of the eigenvalues of the matrix ρρ̃ are:

{
√
λi} = {√ρ22ρ33 ± |ρ23|,

√
ρ11ρ44 ± |ρ14|}. (4.13)

There are two possible expressions for the concurrence, depending on the values of

the eigenvalues. The first case is that when |ρ23|+
√
ρ22ρ33 be the largest eigenvalue.

This leads to a concurrence

C1(t) = 2(|ρ23| −
√
ρ11ρ44). (4.14)
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While if |ρ14|+
√
ρ11ρ44 is the largest eigenvalue then the concurrence takes the form

C2(t) = 2(|ρ14| −
√
ρ22ρ33). (4.15)

Depending on the initial condition used, one of the concurrence expressions suffices

to quantify the entanglement between the qubits. Further, inspection of (4.14) and

(4.15) shows that C1(t) would be positive and hence the measure of entanglement

when the two-photon coherence ρ23 is larger than the square root of the product of

the populations in the excited and ground states. On the other hand, for C2(t) to be

a measure of entanglement for the system the two-photon coherence ρ14 should be

greater than the square root of the product of the populations in one-photon excited

states.

In order to gain insight into the physics it is convenient to express the concur-

rences in terms of timed Dicke basis introduced earlier. To do so, one has to apply a

unitary transformation UρU † on the density matrix given by (4.11). The matrix U is

given by

U =



1 0 0 0

0 1√
2

− 1√
2

0

0 1√
2

1√
2

0

0 0 0 1


. (4.16)

The elements of the density matrix UρU † is related to that of ρ by

ρee = ρ11, ρeg = ρ14,

ρaa =
1

2
(ρ22 + ρ33 − (ρ23 + ρ32)), ρss =

1

2
(ρ22 + ρ33 + ρ23 + ρ32),

ρas =
1

2
(ρ22 − ρ33 + ρ23 − ρ32), ρsa =

1

2
(ρ22 − ρ33 − (ρ23 − ρ32)). (4.17)
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Therefore the concurrence can be expressed in terms of the timed Dicke basis as

C(t) = max(0, C1(t), C2(t)), (4.18)

where

C1(t) =
√

(ρss − ρaa)2 + 4[Im(ρas)]2 − 2
√
ρeeρgg, (4.19)

C2(t) = 2|ρeg| −
√
(ρss + ρaa)2 + 4[Re(ρas)]2. (4.20)

This expression for concurrence will be used in the following section to study the

dynamical evolution of entanglement in the two-qubit system by considering various

initial conditions.

D. Entanglement dynamics of two identical qubits

1. Initial pure state

In the two-qubit system one might consider a pure separable or entangled state as

an initial condition. For instance, for pure separable state, one can take the two

atom excited state, |e⟩. Even though this is unentangled state at the initial time, the

interaction of the atoms with the environment leads to weak transient entanglement

[16, 84]. The effect of quantum interference induced by position-dependent excitation

phase is unimportant in this case we thus instead focus on pure entangled state as an

initial condition.

We take the initial state of the two-qubit system to be the symmetric state |s⟩.

This state is a pure maximally entangled state and can be prepared using correlated

pair of photons generated from a parametric down-conversion process in which one

of the photons is sent to a detector D1 and the other is directed towards the atoms.

A click on the detector D1 tells us that the other photon is sent to the atoms. If

the second detector D2 registrars a count then no atom is excited. However, if D1
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Fig. 22. A scheme illustrating a proposed method to prepare symmetric timed Dicke

state |s⟩. A similar scheme has been proposed to excite one atom in a cloud of

N atoms [11]. The two-photon down conversion crystal converts the a pump

photon into signal-idler pair of photons of wave vectors k0 and q0. A click on

detector D1 indicates generation of the pair and hence no click on the second

detector D2–assuming a perfect detector–means the photon of wave vector k0

conditionally excite one of the atoms.

registers a click and D2 does not then we know that one of the atoms is excited,

but we don’t know which one (see Fig. 22). This leads to a superposition state |s⟩.

Recently, Thiel et al. [100] proposed a method to prepare all the symmetric states

using a linear optical tools.

In terms of the timed Dicke basis the initial density matrix has only one nonzero

element namely, ρss(0) = 1; all other matrix elements are zero. Since there is no

initial two-photon coherence, ρeg(0) = 0, according to Eq. (4.9d), it remains zero

all the times. As a consequence the expression given by (4.20) will be negative and

hence cannot be used as an entanglement measure. Moreover, it is easy to see that
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for initial condition that, the population in the doubly excited state is zero, i.e.,

ρee(t) = 0. Thus Eq. (4.19) is the entanglement measure for the initial condition

considered here. In view of this, expression given by (4.19) takes the form

C1(t) =
√

(ρss − ρaa)2 + 4[Im(ρas)]2 > 0 (4.21)

and thus the concurrence can be written as

C(t) = max(0, C1(t)). (4.22)

This expression shows that the concurrence is unity at t = 0 as it should be.

To clearly see the effect of the position-dependent excitation phase on the entan-

glement, we first consider the case for which φ = 0. In this respect, disregarding the

relative phase shift (φ = 0) the solutions of the elements of the density matrix in Eq.

(4.21) turn out to be ρss(t) = exp[−2(γ + γ12)t], ρaa(t) = 0, and ρas = 0, which leads

to

C(t) = max(0, e−2(γ+γ12)t). (4.23)

We immediately see that the concurrence depends only on the symmetric state popu-

lation, ρss(t). As there is no single photon coherence generated in this case, population

transfer between levels |s⟩ and |a⟩ does not occur. As a result the initial entangle-

ment experiences an enhanced decay due to the collective decay rate (γ12) and goes

asymptotically to zero as t → ∞. For nonidentical atoms, however, even though the

entanglement has the same behavior as identical atoms at the initial time, it exhibits

revival at later times [16]. Here the detuning plays an important role in creating

coherence between the symmetric and antisymmetric states, which is the basis for

entanglement in the two-qubit system. In the following we rather show, by taking

into account the spatial phase dependence of the atomic states, that quantum in-
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terference in the system leads to a population transfer between the symmetric and

antisymmetric states and hence generation of coherence, ρas.

As mentioned in the Introduction, the phase shift that an atom experiences

during the excitation process contain physical information about the excited atom.

For example, in the phase factor associated with an excited atom exp(ik0 · rj) the

term k0 ·rj = ν0n̂ ·rj/c ≡ ν0tj indicates that the atom located at position rj is excited

at time tj. This has been discussed in the context of directed spontaneous emission

and collective Lamb shift in recent years [11, 13]. Here, we present how this phase

factor can be used to improve the entanglement at later times.

In one photon subspace [ρss(0) = 1] and for nonzero position-dependent excita-

tion phase the important equations read

ρ̇ss = −2(γ + γ12 cosφ)ρss − i sinφ(γ12 + iΩ12)ρas + i sinφ(γ12 − iΩ12)ρsa, (4.24)

ρ̇aa = −2(γ − γ12 cosφ)ρaa − i sinφ(γ12 − iΩ12)ρas + i sinφ(γ12 + iΩ12)ρsa, (4.25)

ρ̇as =− 2(γ − iΩ12 cosφ)ρas + i sinφ(γ12 + iΩ12)ρss + i sinφ(γ12 − iΩ12)ρaa. (4.26)

These equations fully describe the dynamical behavior of the population transfer be-

tween the symmetric and antisymmetric states and the coherence developed between

them under the given initial condition. We particularly note that the coherence criti-

cally depends on the position-dependent excitation phase (φ). It is not difficult to see

from these equations that for a laser propagating perpendicular to the interqubit axis

(φ = 0) there will be no coherence, which in turn implies the initial population in the

symmetric state directly decays to the ground state without ever being transferred to

the antisymmetric state. In this decay process, the maximum entanglement present

at the initial time will be washed out in short time. Therefore, for this particular
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Fig. 23. Plots of the time evolution of concurrence C1(t) with initial condition

ρss(0) = 1, for interatomic distance r12 = λ/8 (γ12/γ = 0.9,Ω12/γ = −0.9)

for different values of the position-dependent phase φ.

initial condition, one has to play around with the position-dependent excitation phase

to avoid enhanced decay of the entanglement.

Using the analytical solutions of the Eqs. (4.24)-(4.26), the concurrence can be

expressed as

C(t) = max(0, C1(t)), (4.27)

where

C1(t) = e−2γt[(cosφ cosh 2γ12t− sinh 2γ12t)
2 + sin2 φ cos2 2Ω12t]

1/2. (4.28)

Inspection of (4.28) shows that the presence of the excitation phase brings in the

dipole-dipole interaction (Ω12) into the dynamics. This is in contrast to the case where

φ = 0, in which the concurrence is independent of the interqubit interaction. Note

that it is, in part, the initial preparation of the state that determines the dynamical

behavior of the two-qubit system.
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Fig. 24. Plots of the population in the symmetric (blue curve) and asymmetric (red

curve) states versus γt when the excitation phase is maximum ξ = 0(φ = π/4)

and r12 = λ/8.

In Fig. 23, we show the evolution of the concurrence as a function of the position-

dependent excitation phase which is determined by the angle between the direction

of propagation of the laser and the line joining the two atoms (ξ) for the two-qubit

system prepared initially in the symmetric state |s⟩ and for interatomic distance

r12 = λ/8. As mentioned earlier, the concurrence corresponding to φ = 0 exhibits

a sharp decrease and ultimately goes to zero for t → ∞. The situation for nonzero

excitation phase is different; the concurrence sharply diminishes during the decay time

of the symmetric state [2γ + γ12 cosφ]
−1 and shows a bit of revival and decays slowly

before it goes to zero as t→ ∞. This can be understood by looking at Fig. 24, where

we plotted the time evolution of populations in the symmetric and antisymmetric

states. As can be clearly seen from this figure, for φ ̸= 0(ξ = 0), quantum interference

leads to coherent transfer of population from the initially populated state |s⟩ to

antisymmetric state |a⟩ and hence generation of coherence between these levels as
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Fig. 25. Plots the imaginary part of coherence between the symmetric and antisym-

metric states ρas with initial condition ρss(0) = 1, for interatomic distance

r12 = λ/8 (γ12/γ = 0.9,Ω12/γ = −0.9) and for ξ = 0. The coherence ρas is

generated only when φ ̸= 0 for case of identical atoms.

illustrated in Fig. 25. This coherence is responsible for the entanglement observed

between the qubits.

2. Initial mixed state

We next consider an initial state in which the two qubits are prepared in a mixed

entangled state [87] given by the density matrix

ρ(0) =
1

3
(a|1⟩⟨1|+ (1− a)|4⟩⟨4|+ (b+ c)|Φ⟩⟨Φ|) (4.29)

in which |Φ⟩ = 1√
b+c

(
√
b|2⟩+eiχ

√
c|3⟩) and the normalization condition reads (1+b+

c)/3 = 1. Here a, b, c and χ are independent parameters which determine the initial

state of the two entangled qubits. Note that the above state is a form of generalized

Werner state. The initial condition given by (4.29) can be written in the basis of
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(4.11) as

ρ(0) =
1

3



a 0 0 0

0 b z 0

0 z∗ c 0

0 0 0 1− a


, (4.30)

where z =
√
bc eiχ is some initial two-photon coherence in the system and χ is the

respective phase of the coherence. Now applying the transformation given by (4.17),

the initial density matrix elements for b = c = |z| = 1 become

ρee(0) = a/3, ρaa(0) = (1− cosχ)/3, ρgg(0) = (1− a)/3,

ρss(0) = (1 + cosχ)/3, ρas(0) =
i

3
sinχ.

Since ρes(0) = ρea(0) = ρgs(0) = ρga(0) = 0, the form of the initial density matrix

remain the same, i.e., all the zero elements remain zero and the all the rest evolves in

time. Under this scenario the expression given by (4.20) will be negative and hence

cannot be an entanglement measure for the two-qubit system. Therefore, (4.19)

is the only candidate left to quantify the entanglement between the qubits. For

φ = 0 the system of equations governing the dynamics of the two qubits can be

solved analytically. Using these solutions, solved under the initial condition (4.30),

the expression that describes the entanglement between the qubits, C1(t), turns out

to be

C1(t) =
2

3
e−2γt

{[
(cosχ cosh 2γ12t− sinh 2γ12t+ aη1(t))

2

+ sin2 χ cosh 2Ω12t
]1/2 −√

3a(1− η2(t))
}
, (4.31)
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Fig. 26. Plots of the time evolution of concurrence C(t) with initial condition

b = c = |z| = 1 and for a = 0.6, r12 = λ/8, and for different values of

the initial phase χ.

where

η1(t) =
(γ2 + γ212)

γ212 − γ2
sinh 2γ12t+

2γγ12
γ212 − γ2

(e−2γt − cosh 2γ12t), (4.32)

η2(t) =
a

3
e−4γt +

2

3
e−2γt

[
cosh 2γ12t− cosχ sinh 2γ12t

+ a
(γ2 + γ212)

γ212 − γ2
(e−2γt − cosh 2γ12t)− a

2γγ12
γ212 − γ2

sinh 2γ12t)
]
. (4.33)

We immediately see from this result that the concurrence depends on the parameters

a, which characterizes the initial populations of the doubly excited state and on the

phase parameter χ which determines the initial populations in the symmetric and

antisymmetric states as well as the coherence between them. If we assume that the

qubits are coupled independently to their respective vacuum environment (γ12 = 0)

and are well separated in position (r12 ≫ λ) so that the dipole-dipole interaction
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Fig. 27. Plots of the time evolution of concurrence with initial condition

b = c = |z| = 1 and for χ = π/2, r12 = λ/8 (γ12/γ = 0.9,Ω12/γ = −0.9), and

for different values of the initial population a.

(Ω12 → 0), C1(t) reduces to

C1(t) =
2

3
e−2γt

[
1−

√
a(1− a+ 2α2 + α4a)

]
,

where α(t) =
√
1− exp(−2γt). Note that C1(t) is independent of the initial phase χ.

This coincides with the earlier results of Yu and Eberly [87]. In the following we study

the dependence of the concurrence and hence the entanglement between the qubits

on various system parameters. Figure 26 shows the time evolution of the concurrence

for r12 = λ/8 and a = 0.6 and for different values of the initial phase angle, χ. We

observe from this figure that the initial entanglement between the qubits vanishes and

exhibits revival. The amplitude of revival and the revival time (the time at which the

entanglement revive in the system) are directly related to the initial coherence in the

system. The higher the initial coherence the higher the amplitude of revival and the

shorter the revival time is. Not surprisingly the magnitude of revival diminishes when
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Fig. 28. Plots of the evolution of concurrence with initial condition b = c = |z| = 1

and for r12 = λ/8 (γ12/γ = 0.9,Ω12/γ = −0.9), χ = π/2 and for φ = π/4 (red

curve) and φ = 0 (green curve).

the initial coherence decreases. Now keeping the initial coherence at its maximum

value (χ = π/2), we investigate the influence of the population distribution between

the excited and ground states on the concurrence. Figure 27 shows the evolution of

the concurrence for χ = π/2 and for different values of a. This figure indicates that

when the initial population in the excited state grows the transient entanglement falls

sharply and even disappears for a = 0.8 (ρee(0) ≈ 0.27) in the short time window.

The entanglement then shows revival and a slowly damping behavior afterwards for

all values of initial populations.

We next analyze the evolution of entanglement in the system by introducing the

position-dependent excitation phase φ into the dynamics. By comparing the previous

results for φ = 0 with the numerical plots for φ = π/4, we discuss the effect of the

excitation phase on the entanglement dynamics. Our results are summarized in Figs.

28 and 29. In Fig. 28, we present a comparison of concurrence taking into account the
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Fig. 29. Plots of the imaginary part of the one photon coherence ρas with initial condi-

tion b = c = |z| = 1 and for r12 = λ/8 (γ12/γ = 0.9,Ω12/γ = −0.9), χ = π/2

and for φ = 0 (red curve) and φ = π/4 (blue curve).

excitation phase φ = π/4 (ξ = 0) and in the absence of excitation phase, φ = 0 (ξ =

π/2) for interatomic distance less than the radiation wavelength, r12 = λ/8. Recall

that φ = (2π/λ)r12 cos ξ, where ξ is the angle between the laser propagation direction

and the line joining the two atoms. These plots clearly show that the excitation

phase effectively protects the initial entanglement from experiencing a sudden death

and even enhances the entanglement from its initial value during the revival period.

The amount of entanglement then drops gradually and approaches zero as t → ∞.

It is worth noting that the position-dependent excitation phase creates additional

coherence and hence improves the revival magnitude over that observed for the case

φ = 0. This enhanced coherence, as shown in Fig. 29, is a signature of stronger

entanglement between the qubits.
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E. Conclusion

We have investigated the effect of quantum interference induced by position-dependent

excitation phase on the evolution of entanglement between two dipole-coupled qubits

and undergoing a cooperative spontaneous emission. Our results show that for the

atoms initially prepared in a symmetric state, the excitation phase induces quantum

interference in the two-qubit system that leads to coherent population transfer be-

tween the symmetric and antisymmetric states. This thus creates a coherence which,

in effect, slows down the otherwise fast decay of two-qubit entanglement consider-

ably. We find that the evolution of entanglement crucially depends on the coherence

between the symmetric and antisymmetric states. Furthermore, when the qubits are

prepared in a Werner-type mixed entangled state the entanglement is known to suf-

fer sudden death. However, if one takes into account the excitation phase into the

dynamics the entanglement exhibits revival. This revival is attributed to the strong

coherence dynamically developed between the symmetric and antisymmetric states.

A viable candidate for realization of our findings would be semiconductor quantum

dots. Note that coupled quantum dots with interdot distance less than the radiation

wavelength has already been investigated in context to photoluminescence spectra

[90] and quantum gates [101].
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CHAPTER V

ENTANGLEMENT OF TWO SPATIALLY SEPARATED QUBITS VIA

CORRELATED PHOTONS ∗

A. Introduction

In the Chapter IV we have discussed how the quantum interference induced by po-

sition dependent excitation phase affects entanglement between two dipole-coupled

qubits undergoing cooperative spontaneous emission. Here we consider an alterna-

tive scheme to create entanglement between two initially uncoupled qubits in a cavity

QED setup.

In discrete variable entanglement, a key aspect has been the dependence of en-

tanglement on the direct coupling of the qubits, whose physical origin differs from

one system to other. For example, dipolar coupling plays an important role in atoms,

ions, molecules and quantum dots [16, 17, 102], whereas waveguides are coupled by

evanescent waves [71] and superconducting qubits via their mutual inductance [103].

An essential drawback of the schemes dependent in particular on dipolar coupling is

that the entanglement relies on the interqubit separations and is prominent only when

separation is less than the operational wavelength [84]. For quantum computing ap-

plications and quantum networks, one however needs entanglement between qubits to

be long-lived for separations more than the operational wavelength. In recent years,

schemes based on cavity quantum electrodynamics (QED) [104, 105], virtual photons

[106], and nonclassical radiation in superconducting charge qubits [107, 108] has been

proposed in achieving this.

∗ Reprinted with permission from ”Entanglement of two spatially separated qubits
via correlated photons” by Eyob A. Sete and S. Das, 2012. Opt. Lett., in press,
Copyright [2012] by Optical Society of America.
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Fig. 30. (a) Schematic of interaction of two qubits with squeezed light in a cavity.

When the pump laser of amplitude ε and frequency ν drives the nonlinear

crystal of susceptibility χ(2) correlated signal-idler photon pairs of frequency

ν1, ν2 (ν = ν1 + ν2) are generated. The two-photon correlation is then trans-

ferred to the two-qubit system mediated by the cavity (b) Collective state

energy level diagram for the two-qubit system including incoherent pumping

rates (w1 and w2).

In this Chapter, we propose an alternative scheme for generating steady state

entanglement between two uncoupled qubits via interaction with squeezed light in

a cavity QED setup. The two-photon correlation properties of the squeezed light

is found to be effective in generating two-qubit entanglement even for interqubit

separations more than the operational wavelength. Incoherently pumping the less

dissipative qubit [109] then leads to significant steady state concurrence [99]. In our

scheme the optimum concurrence turns out to be ∼ 0.8 for asymmetric and ∼ 0.6 for

identical qubits in realistic parameter regime.

B. Model and master equation

We consider two qubits in a nondegenerate optical parametric oscillator cavity as

shown in Fig. 30a. It is well known that in a parametric oscillator a pump photon

of frequency ν impinging on a nonlinear crystal of susceptibility χ(2) is down con-
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verted into two photons of lower frequencies ν1 and ν2 so that ν = ν1 + ν2. The

down converted photons are known to show strong correlation, which translates into

nonclassical properties such as squeezing and entanglement. The idea is to exploit

the correlation between the photons to create entanglement between the qubits in the

cavity. We assume that the qubits are spatially separated more than a wavelength so

that the dipole-dipole interaction is unimportant. Effectively, the qubits are initially

uncoupled and has no correlation between them. In this work, we investigate how the

correlation between the photons is transferred to the qubits and realize light-to-matter

entanglement transfer in such a scheme.

The interaction Hamiltonian of the qubit-cavity field system can be written, in

rotating wave and dipole approximations, as

ĤI =
2∑

j=1,k ̸=j

∆jσ̂
†
j σ̂j + gj(cσ̂

†
j âj + sσ̂†

j â
†
k +H.c.), (5.1)

where H.c. stands for hermitian conjugate, c ≡ cosh(εt) and s ≡ sinh(εt) with ε

being the coupling strength proportional to the nonlinear susceptibility χ(2) of the

nonlinear crystal and the strength of the coherent drive field. The operators σj and

aj represent the lowering operator for jth qubit and annihilation operator for the jth

cavity mode, respectively. gj and ∆j are the jth qubit-cavity mode coupling constant

and detuning, respectively. Note that the above Hamiltonian is obtained by applying

the transformation

ĤI = eiĤ1tĤ2e
−iĤ1t, (5.2)

where

Ĥ1 = iε(â†1â
†
2 − â1â2), (5.3)

Ĥ2 =
2∑
j=1

[∆j|ej⟩⟨ej|+ gj(σ̂
†
j âj + σ̂j â

†
j)]. (5.4)

For our scheme the third term and its hermitian conjugate in (5.1) are of utmost
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importance and is the basis for the present work. Note that these terms are propor-

tional to sinh εt and disappear when we turn off the two-photon source or squeezing

(ε = 0). The physical interpretation of these terms will become clearer in the master

equation.

To study the dynamics of the cavity-qubit system we write down a master equa-

tion for qubit-field operator ρAF

˙ρAF = −i[HI , ρAF ] + L1AρAF + L2AρAF + La1ρAF + La2ρAF , (5.5)

where

LjAρAF =
γj
2
(2σjρAFσ

†
j − σ†

jσjρAF − ρAFσ
†
jσj),

LajρAF = κj(2ajρAFa
†
j − a†jajρAF − ρAFa

†
jaj),

and γj and 2κj (j = 1, 2) are spontaneous emission rate of the jth qubit and damping

rate of the jth cavity mode, respectively. The master equation (5.5) can be solved

exactly using numerical methods. However, in order to obtain a closed from analytical

solution for the concurrence and elucidate the physics of light-to-matter entanglement

transfer, we make the bad-cavity approximation (κ ≫ g, γ). In this limit, the cavity

field reaches steady state faster than the qubits. This permits one to adiabatically

eliminate the field variables and obtain an exactly solvable master equation for the

qubits. Following the procedure outlined in [110] the master equation for the qubits

alone (in the bad-cavity limit) reads

ρ̇ = −i
2∑
j=1

∆j[σ
†
jσj, ρ]−

2∑
j=1

Γj
2

(
[σ†
j , σjρ] + [ρσ†

j , σj]
)

− ε

2κ

√
γ1cγ2c

{
[σ†

1, ρσ
†
2] + [σ†

2, ρσ
†
1] + H.c.

}
, (5.6)

where Γj = γj + γjc and γjc = γ0j/(1− ε2/κ2) are the total decay rate and modified
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cavity-induced (due to squeezed field) decay rate of the jth qubit with γ0j = 2g2j/κ

being the unmodified cavity-induced qubit decay rate. The second line in Eq. (5.6)

is due to the squeezed light and describes two-qubit excitation by absorption of two-

correlated photons emerging from the nonlinear crystal. This leads to creation of

coherence between the doubly excited and ground states, which as we will show later,

is crucial for entanglement generation between the qubits. We thus investigate how

the non-local correlations between photons in the squeezed light is transferred to the

qubits. To quantify the entanglement, we use concurrence [99] as the measure of

entanglement in this work. The relevant concurrence expression in the basis of the

two-qubit collective state (see Fig. 30b): |e⟩ = |e1e2⟩, |g⟩ = |g1g2⟩, |s⟩ = (|e1g2⟩ +

|g1e2⟩)/
√
2, and |a⟩ = (|e1g2⟩ − |g1e2⟩)/

√
2) is given by

C = 2|ρeg| −
√
(ρss + ρaa)2 − (ρas + ρsa)2. (5.7)

This expression clearly shows that for entanglement to exist there has to be strong

two-photon coherence ρeg between the qubits. Note that even though the qubits in

our scheme are separated by more than a wavelength, we do consider the two qubit

collective basis for the theoretical analysis. The justification of this lies in the fact

that the qubits do get coupled eventually via interaction with the cavity modes.

C. Transient entanglement

To elucidate the physics of entanglement transfer from continuous to discrete variables

or light-to-matter, we first consider a simplest case of identical qubits (Γ1 = Γ2 = Γ),

and equal cavity damping rates (κ1 = κ2 = κ) and qubit-cavity detunings ∆ = ∆1 =

∆2. We further assume that the two qubits are initially in a pure product state |e1g2⟩.
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Fig. 31. Time dependent concurrence [Eq. (5.10)] for various values of ε, at resonance

(∆ = 0), and for γ/γ0 = 0.05 [κ = 80MHz,g = 35MHz,γ = 1.5MHz].

For this initial condition we readily obtain

ρaa = ρss = ρas =
e−Γt

2α2

[
∆2 −

(εγc
2κ

)2

cos 2αt

]
, (5.8)

ρeg =
εγc e

−Γt

4κα2
[i∆(cos 2αt− 1) + α sin 2αt] , (5.9)

where

α =
√

∆2 − (εγc/2κ)2.

The concurrence (5.7) then only depends on the two-photon coherence, i.e., C = 2|ρeg|

and take a simple form

C =
εγce

−Γt

2
√
2κ

{[
2∆2 −

(εγc
2κ

)2

(1 + cos 2αt)

]
sin2 αt

α4

} 1
2

. (5.10)

We immediately see from Eq. (5.10) that the two qubits remain disentangled (C = 0)

in absence of the squeezed light (ε = 0). Figure 31 shows the temporal behavior

of C as a function of the amplitude of the pump laser ε and for realistic parameter
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Fig. 32. Concurrence [Eq. (5.10)] versus γ0t and detuning ∆/γ0 for γ/γ0 = 0.05 and

ε/κ = 0.92.

γ/γ0 = 0.05. We see that the concurrence increases with increasing ε for initial times

and then decays exponentially in the long time limit. As the degree of squeezing in

a subthreshold parametric down conversion depends on the pump laser amplitude ε,

it thus means that the degree of entanglement between the qubits is directly pro-

portional to degree of squeezing (correlation between the photons) in the transient

regime. This behavior hence clearly demonstrate the transfer of entanglement from

light to matter. Furthermore, as illustrated in Fig. 32, the entanglement depends on

the qubit-cavity detuning. Strong entanglement is achieved when the qubits are at

resonance with the cavity modes. For larger detunings, the entanglement decreases

and shows damped oscillation as given by (5.10) as shown in Fig. 32.
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Fig. 33. Steady-state concurrence versus w/γ0, at resonance, for γ/γ0 = 0.02 and

various values of ε.

D. Steady-state entanglement

In practical implementation of many quantum information processing, achieving steady-

state entanglement is sometimes important. In light of this, we next focus on genera-

tion of steady-state entanglement. For this purpose, we consider incoherent pumping

of the qubits, for example, by means of a flash lamp. The effect of the incoherent

pump can be included by adding the following term to the master equation (5.6):

Lpρ = −
2∑

m=1

wm
2

(σ̂mσ̂
†
mρ̂+ ρ̂σ̂mσ̂

†
m − 2σ̂†

mρ̂σ̂m), (5.11)

where w1 and w2 are incoherent pumping rates for qubits 1 and 2, respectively. Note

that creation of steady-state entanglement between two qubits using incoherent pump

has been recently proposed for initially coupled qubits through their electric dipoles.

It was shown that optimum entanglement is obtained when the less dissipative qubit

is pumped [109]. Here we explore the effect of incoherent pump in creating steady-
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Fig. 34. Concurrence (C) versus ε/κ and ∆/γ01 for γ1/γ01 = 0.01, γ2/γ02 = 0.05,

γ02 = 1.08γ01 and w1 = 3.5γ01, w2 = 0.

state entanglement between two spatially separated and initially uncoupled qubits

interacting with nonclassical radiation.

We first consider, for simplicity, identical qubits with one qubit incoherently

pumped and the other dissipates. The concurrence in this case at resonance has a

simple form:

C =
2wεγc
κ

1

|(w + Γ)(w + 2Γ)− 2(εγc/κ)2|
. (5.12)

Figure 33 shows the steady-state concurrence versus w/γ0 for various values of ε.

This figure clearly shows that the two qubits exhibit substantially high steady-state

entanglement, C ≈ 0.6. As previously noted, strong entanglement is achieved close

to the threshold (ε/κ = 1). The incoherent pump works in such a way that for

higher squeezing source, the qubit should be pumped at stronger rate in order to

reach the optimum entanglement. Since the source of entanglement in our scheme is

two-photon coherence, the generated entanglement in the steady state is of the form
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Fig. 35. Plot of concurrence C versus linear entropy for randomly generated points

using realistic parameters for the present system (red-dashed curve) and for

maximally entangled mixed state (blue-solid curve).

(α|e1e2⟩+ β|g1g2⟩) with α and β being complex amplitudes.

In line with the previous studies [109] we next consider asymmetric qubits with

the less dissipative qubit pumped incoherently. The steady-state concurrence now

becomes

C = 4w1Λ

[
υ2 + 4∆2

[(υ2 + 4∆2)(w1 + Γ1)− 8υΛ2)]2

] 1
2

(5.13)

where υ = w1 + Γ1 + Γ2(Γ1 < Γ2),Λ = (ε/2κ)
√
γ1cγ2c. Here we observe that the

steady-state entanglement only exists when both the pump rate (w1) and squeezed

pump field amplitude (ε) are non zero. As can be seen from Fig. 34, entanglement

is maximum at resonance and increases when one approaches to the threshold point.

The optimum entanglement achieved in this case is quite high, C ≈ 0.8 for ε =

0.99κ. In order to get further insight into the formation of entangled state of the
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Fig. 36. Concurrence (C) versus ∆/γ01 for ε/κ = 0.99 and for various values of w2:

w2 = 0, 0.5, 1.5, 2.5, 3.5γ01 from top to bottom. All other parameters are the

same as in Fig. 34.

two qubits, we examine the region of concurrence-linear entropy plane accessible to

our scheme. The shaded region in Fig. 35 represent randomly generated points of C

and linear entropy SL = 4
3
[1 − Tr(ρ2)] [75] for realistic system parameters (SL = 0

and 1 corresponds to pure and maximally mixed states, respectively). The dashed

line gives the upper bound on C and SL achievable in our scheme. It is interesting

to note that maximum entanglement is achieved when the state of the qubits is

pure, which is markedly different from earlier models based on coupled qubits [109].

Another interesting question is whether the entanglement exists when both qubits

are pumped incoherently. As shown in Fig. 36, the entanglement is optimum when

the less dissipative system is pumped (at a rate w1) and gradually decreases as the

pump rate (w2) approaches w1. It is however important to mention here that for

equal pumping rates, the entanglement only exists at high degree of squeezing.
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E. Conclusion

In conclusion, we have shown effective entanglement transfer from squeezed light to

two spatially separated and initially uncoupled qubits via a two photon coherence in

a cavity. An incoherent pump then assist in attaining a substantial steady state value

for the transferred entanglement. Furthermore, we find that strongest entanglement is

achieved for asymmetric qubits when the less dissipative one is incoherently pumped.

This is encouraging in particular for quantum dot qubits, where such asymmetry is

quite natural. Given the advancement in cavity QED [111] and effective coupling of

atoms with squeezed light in a cavity [112], experimental realization of our proposal

is quite feasible.
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CHAPTER VI

PHASE-CONTROLLED ENTANGLEMENT IN A QUANTUM-BEAT LASER:

APPLICATION TO QUANTUM LITHOGRAPHY ∗

A. Introduction

Quantum coherence induced by an external laser field is responsible for many fasci-

nating optical phenomena in atomic and molecular systems [20]. In this Chapter, we

exploit quantum coherence induced my external field to generate entangled radiation

in continuous variables.

Continuous-variable (CV) entanglement based on the amplitude or phase of the

quadrature of the electromagnetic field has received great attention in connection

with its accessibility to experiment. In this regard, there have been large number of

proposals for generating CV entanglement in general and bipartite entanglement in

particular. In a seminal work, Zubairy and co-workers [9] proposed a source for an

entanglement amplifier based on correlated spontaneous emission laser. Subsequent

studies [10, 113, 114] showed variety of schemes for generation of CV entanglement

in the steady state regime and in the presence of losses.

From application standpoint, entanglement between optical photons has been

widely used for fundamental tests of quantum mechanics [115]. Numerous experi-

ments demonstrated quantum entanglement of optical photons in trapped ions [116],

atoms [117, 118], and atomic ensembles [119, 120]. Beyond fundamental applications,

entanglement has been used for secure communication [121] and quantum informa-

∗ Reprinted with permission from ”Phase-controlled entanglement in a quantum-
beat laser: Application to quantum lithography” by Eyob A. Sete, K. E. Dorfman,
and J. P. Dowling, 2011. J. Phys. B.: At. Mol. Opt. Phys., 44, 225504, Copyright
[2011] by Institute of Physics.
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tion processing [122]. In recent times, several proposals [123, 124, 125] have been

suggested to improve the spatial resolution of interferometric lithography beyond the

diffraction limit utilizing entangled photons.

Quantum-beat laser concept was originally used as a means of quenching of spon-

taneous emission noise [126, 127, 128, 129, 130] and later for demonstration of lasing

without population inversion [6]. Moreover, quantum-beat lasers are well-studied in

context of quantum-statistical description of radiation [131]. More recently, schemes

based on three-and four-level quantum-beat lasers have been proposed as a source

for continuous-variable entanglement with the coherence induced by external lasers

[132, 133]. However, in most of the previous studies involving quantum-beat lasers

the generated entanglement is short-lived and exists only in the transient regime. For

certain quantum information processing protocols entanglement that survives for long

time is desirable.

In this Chapter, we propose a scheme that can generate controllable steady-

state entanglement in continuous variables. In particular, we study a two-photon

quantum-beat laser coupled to a two-mode squeezed vacuum reservoir that was shown

to enhance entanglement between two cavity modes [113]. Our scheme consists of

an ensemble of three-level atoms in a V configuration injected into a cavity at a

constant rate and interacts with quantized cavity modes. A microwave field induces

coherence by coupling the two upper levels of each atom. We treat the amplitude

of the microwave driving field to all orders keeping its phase as an external control

parameter. We explore how the entanglement can be controlled using the phase of the

driving field and other system parameters. We also consider the effect of decoherence

in our analysis. We show that the steady-state entanglement survives in the presence

of decoherence due to interaction with the environment, making our scheme a robust

entanglement source. A possible application of our scheme to quantum lithography
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with externally controlled resolution is also suggested.

B. Hamiltonian and equations of motion

We consider a two-photon quantum-beat laser coupled to a squeezed light through

the partially transmitting mirror of the cavity. Atoms, in a so-called V configuration,

are injected into the cavity at rate ra and are removed after time τ longer than the

spontaneous emission time. During this time interval each atom interacts with the

cavity modes of frequency ν1 and ν2. Our scheme is depicted in Fig. 37. The upper

two levels are coupled by a microwave field of frequency νµ. In addition, the atomic

transition |a1⟩ → |b⟩ and |a2⟩ → |b⟩ are off-resonant with the cavity modes.

The interaction picture Hamiltonian for the system plus the reservoir is given by

Ĥ = Ĥ1 + Ĥ2 + Ĥ3, (6.1)

Ĥ1 = −h̄Ω(eiϕ|a1⟩⟨a2|+ e−iϕ|a2⟩⟨a1|), (6.2)

Ĥ2 = −h̄g(|a1⟩⟨b|â ei∆t + |a2⟩⟨b|b̂ ei∆t) + H.c., (6.3)

Ĥ3 = âΓ̂†
a + Γ̂aâ

† + b̂Γ̂†
b + Γ̂bb̂

†, (6.4)

where Ω and ϕ are the Rabi frequency and the phase of the microwave field, re-

spectively; â and b̂ are the annihilation operators for cavity modes, g is the atom-

cavity mode coupling constant assumed to be the same for the two cavity modes,

∆ = ω1 − ν1 = ω2 − ν2, ω1 and ω2 are the atomic transition frequencies for |a1⟩ → |b⟩

and |a2⟩ → |b⟩ transitions, respectively. Γ̂a and Γ̂b are the reservoir operators re-

sponsible for the damping of the cavity modes by the squeezed vacuum reservoir.

We next transform the microwave field away to obtain a new interaction Hamil-

tonian which treats Ω to all orders. The new Hamiltonian can be derived using the
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M
 

Fig. 37. Schematic of a quantum-beat laser coupled to a squeezed reservoir (N,M) in

which atoms are injected into the cavity at a rate ra. The energy level diagram

for a three-level atom is shown on the right. The upper two levels are coupled

by a microwave field of frequency νµ. The transition between levels |a1⟩ and
|b⟩, and |a2⟩ and |b⟩ at frequencies ω1 and ω2 are detuned by the same amount

∆ from the cavity modes.

transformation

ĤI = eiĤ1t/h̄Ĥ2e
−iĤ1t/h̄ (6.5)

which gives

ĤI = −h̄g
{(

cosΩt− ieiϕ sinΩt
)
ei∆t|a1⟩⟨b|â

+
(
cosΩt− ie−iϕ sinΩt

)
ei∆t|a2⟩⟨b|b̂

}
+H.c. (6.6)

Under secular approximation [6], neglecting highly oscillating terms e±i(∆+Ω)t com-

pared to e±i(∆−Ω)t and at resonance, Ω = ∆, the Hamiltonian takes the form

ĤI =− h̄g

2

{
(|a1⟩⟨b|+ e−iϕ|a2⟩⟨b|)â+ (|a2⟩⟨b|+ |a1⟩⟨b|eiϕ)b̂

}
+H.c. (6.7)

We note that the Hamiltonian only depends on the coupling constant g and the phase

of the microwave field ϕ. The strength of the microwave field is determined by the

amount of detuning. Thus, through out this paper, we treat the amplitude of the
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driving field as a constant and vary the phase. This allows us to coherently control

the entanglement in the system.

We further assume that atoms are injected into the laser cavity in a coherent

superposition of the two upper levels. Thus the initial state of a single atom can be

written as

|ψ(0)⟩ = a1|a1⟩+ a2|a2⟩, (6.8)

where a1 and a2 are probability amplitudes. Therefore, the density operator for

the atom at the initial time may be written as ρA(0) = ρ
(0)
11 |a1⟩⟨a1| + ρ

(0)
22 |a2⟩⟨a2| +

ρ
(0)
12 |a1⟩⟨a2| + ρ

(0)
21 |a2⟩⟨a1|, in which ρ

(0)
11 = |a1|2, ρ(0)22 = |a2|2, and ρ(0)12 = ρ

(0)∗
21 = a∗1a2.

We study the properties of the entanglement between the cavity modes as a function

of initial population and atomic coherence.

Following the standard laser theory methods [20, 134], we obtain the master

equation for the cavity radiation to be

d

dt
ρ̂ =

1

2
[Aξ + κN ](2â†ρ̂â− ââ†ρ̂− ρ̂aâ†) +

1

2
[Aξ + κN ](2b̂†ρ̂b̂− b̂b̂†ρ̂− ρ̂b̂b̂†)

+
Aξ

2
e−iϕ(2b̂†ρ̂â− âb̂†ρ̂− ρ̂âb̂†) +

Aξ

2
eiϕ(2â†ρ̂b̂− b̂â†ρ̂− ρ̂b̂â†)

+
κ

2
(N + 1)(2âρ̂â† − â†âρ̂− ρ̂â†â+ 2b̂ρ̂b̂† − b̂†b̂ρ̂− ρ̂b̂†b̂)

+ κM(ρ̂âb̂+ âb̂ρ̂− b̂ρ̂â− âρ̂b̂) + κM∗(ρ̂â†b̂† + â†b̂†ρ̂− â†ρ̂b̂† − b̂†ρ̂â†), (6.9)

where

A = 2g2ra/γ
2

is the linear gain coefficient and

ξ =
γ

4Γ

[
1 +

γ

Γ

√
1− η2 cos(α− ϕ)

]
.

We introduce new variable η related to initial condition as ρ
(0)
11 = (1 − η)/2, ρ

(0)
22 =
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(1+η)/2 and ρ
(0)
12 = eiα

√
1− η2/2, where α is the phase of the initial atomic coherence.

We assume that the cavity mode decay rate κ is the same for both modes. Parameters

N present the mean number of photons in the squeezed field and M = |M |eiθ =√
N(N + 1) with θ being the phase of the squeezed vacuum, characterize the two-

mode squeezed vacuum reservoir. Here we have included spontaneous emission rate

γ, assumed to be the same for all the three levels, and dephasing rate Γ. Note that

the effect of the microwave field is manifested in the master equation via its phase ϕ

which can be used to control the entanglement properties (see Sec. C).

The master equation is used to derive the evolution equations for the moments

of the cavity mode operators. The steady-state solutions of these equations are used,

in the following sections, to analyze the entanglement and correlation properties of

the cavity radiation.

C. Phase-controlled entanglement

Numerous entanglement measures have been proposed for Gaussian states [135, 136],

which are only sufficient for non-Gaussian states. We employ the entanglement mea-

sure proposed by Duan-Giedke-Cirac-Zoller (DGCZ) [136], which is sufficient and nec-

essary condition for gaussian states and necessary condition for non-Gaussian states.

According to DGCZ a state of a system is said to be entangled if the quantum fluc-

tuations of the two Einstein-Podolsky-Rosen-like operator û and v̂ of the two modes

satisfy the inequality

∆u2 +∆v2 < 2, (6.10)

where

û = x̂a − x̂b, v̂ = p̂a + p̂b (6.11)
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Fig. 38. Density plot of ∆u2+∆v2 vs ϕ and η for a linear gain coefficient A/Γ = 0.25,

κ/Γ = 0.8, γ/Γ = 1, N = 0.04, α = 0, θ = 0.

in which x̂j = (ĵ† + ĵ)/
√
2, p̂j = i(ĵ† − ĵ)/

√
2 (with j = a, b) are the quadrature

operators of the two modes of the cavity field. These operators can be measured

by the method of homodyne detection [137]. Taking into account (6.11), Eq. (6.10)

yields

∆u2 +∆v2 = 2(1 + ⟨â†â⟩+ ⟨b̂†b̂⟩ − ⟨âb̂⟩ − ⟨â†b̂†⟩). (6.12)

Using the steady state expression for the average quantities that appear in Eq. (6.12),

we readily obtain

∆u2 +∆v2 =− 2− 4κ(κ− Aξ)
[ M cos θ

(κ− Aξ)2 − 2A2ξ2

− 2(1 +N)

2(κ− Aξ)2 − A2ξ2(1 + cos 2ϕ)

]
. (6.13)
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Fig. 39. Plots of ∆u2+∆v2 vs ϕ for the linear gain coefficient A/Γ = 0.25, κ/Γ = 0.8,

Γ/γ = 1, N = 0.04, α = 0, θ = 0 and for various initial conditions.

We note that the entanglement measure depends on the relative phase shift between

the phase of injected atomic coherence and that of the microwave field. In the fol-

lowing we discuss possible cases in which one can control the entanglement between

the cavity modes by manipulating these phases and other system parameters.

We begin by examining the entanglement between the cavity modes as a function

of the phase of the microwave field ϕ and the initial coherence. In Fig. 38 we plot

the function (6.13) versus the microwave phase and initial population distribution η

for a fixed phases of the atomic coherence and input squeezed field (α = θ = 0).

Figure 38 illustrates that the entanglement condition (6.10) is satisfied for certain

values of η and ϕ in the absence of decoherence (Γ = γ), indicating entanglement of

the two cavity modes. Moreover, the degree of entanglement depends on the phase ϕ.

For instance, stronger entanglement is observed when the microwave phase is an odd

multiple of π, while the entanglement gradually disappears when the phase changes

from ϕ = (2n + 1)π to ϕ = 2πn, where n is an integer. The parameters in Fig. 38
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Fig. 40. Plots of ∆u2 + ∆v2 vs η for various values of the microwave phase ϕ. All

parameters are the same as in Fig. 39.

are chosen to satisfy condition κ−Aξ > 0, a condition for a well-defined steady-state

solutions for the equations of the moments of the cavity mode operators. One might

interpret κ = Aξ as the threshold condition for the system.

To clearly see to what extent the initial atomic coherence influences the degree

of entanglement, we plot the function (6.13) versus ϕ by considering various initial

conditions (see Fig. 39). For maximum initial atomic coherence (η = 0), which

corresponds to equal populations distribution between the two upper levels, the sum

of the variances shows oscillatory behavior with a period of 2π and with a maximum

value a little over 2. The optimum entanglement is obtained when ϕ = ±π. This

optimum value decreases as one decreases the coherence, that is, when one increases

|η|. It is interesting to note that despite a decrease on the optimum value, the cavity

modes remain entangled for all values of the microwave field phase at higher values of

|η|. Furthermore, a simple observation of the plots reveals that for η = ±1 (no initial

coherence), the system exhibits fairly constant entanglement. Therefore, the system



107

Γ � G = 0.1

A � G = 2.0

Γ � G = 1.0

A � G = 0.25

-2 Π- 3 Π
2
-Π -

Π

2
0 Π

2
Π 3 Π

2
2 Π

1.4
1.5
1.6
1.7
1.8
1.9

2

Φ

D
u2 +
D

v2

Fig. 41. Plots of the ∆u2 +∆v2 vs ϕ for η = 0 in the absence (A/Γ = 0.25, γ/Γ = 1

blue solid curve) and in the presence (A/Γ = 2 and γ/Γ = 0.1 red dashed

curve) of decoherence. The rest of the parameters are the same as in Fig. 39.

can exhibit steady-state entanglement even without initial atomic coherence.

Figure 40 shows the entanglement measure versus η for different values of ϕ. For

fixed η the amount of entanglement decreases when the phase increases from ϕ = π

to ϕ = 3π/2 with its maximum being at ϕ = π. Moreover, the entanglement exists

for all values of η.

So far, we have considered two types of losses in our system: the spontaneous

emission γ and the cavity decay κ. Given that our system involves coherence it is

imperative to include decoherence into the analysis. To this end, we assume that the

decoherence rate Γ is greater than the spontaneous emission rate γ. In the following

we show that the entanglement can still survive in the presence of decoherence at

the expense of high pumping rate of atoms into the cavity. In Fig. 41, we plot

∆u2 + ∆v2 versus the phase of the microwave field in the presence and absence of

decoherence. This figure shows that for a decoherence rate 10 times stronger that the
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spontaneous emission rate the system still exhibits entanglement. However, it comes

at the expense of higher pump rate, A due to the steady state condition κ−Aξ > 0,

which is necessary for steady state solution to exist. That is for a given κ one has to

increase A accordingly for larger ξ to keep the inequality satisfied. We thus conclude

here that–for our parameters–it is possible to overcome the effect of decoherence by

pumping atoms into the cavity at higher rates.

The cavity mode entanglement properties analyzed above allows us to study the

output mode which is accessible to experiment. In this regard, we use the standard

input-output relation:

âout =
√
κâ− âin, (6.14)

b̂out =
√
κb̂− b̂in, (6.15)

where âin and b̂in represent the input two-mode squeezed field. Up on using these

equations, we obtain the relation between the input and output mode entanglement

condition to be

(∆u2 +∆v2)out = ∆u2 +∆v2 + 2(1− κ)(N − |M |). (6.16)

For ideal squeezed vacuum |M | =
√
N(N + 1). We note that the last term in Eq.

(6.16) is always negative for nonzero mean photon numbers N . Thus the output mode

entanglement is stronger than the cavity modes.

Next we consider the total mean photon number in the cavity n̄ = ⟨a†a⟩+ ⟨b†b⟩

given by

n̄ = −2 +
4(1 +N)κ(κ− Aξ)

2(κ− Aξ)2 − A2ξ2(1 + cos 2ϕ)
. (6.17)

Equation (6.17) shows that the total mean photon number of the two cavity modes is

maximum for ϕ = π. On the other hand, for ϕ = π/2 the denominator of the second
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term in (6.17) becomes relatively large and hence the total mean photon number gets

smaller. Therefore, a better entanglement is achieved at the expense of weaker signal.

D. Application to quantum lithography

A possible application of the proposed scheme is quantum interferometric optical

lithography. Proposed by Dowling and co-workers [123] and later demonstrated ex-

perimentally [125], this lithographic method allows one to obtain sub-diffraction limit

resolution (see Fig. 42). Depending on the order N or the NOON state [138], it allows

one to print features of minimum size λ/2N , where λ is the wavelength of light. This

method is based on the properties of the multiphoton absorption probability. For the

simple case of two-photon processes, where the atomic lifetime is much shorter than

the decoherence time, the probability is given by [139]

W2 = 2|g|2G(2)(0)
γ/2

(γ/2)2 + (2ω − ω0)2
. (6.18)

For the two-mode squeezed vacuum field generated by spontaneous parametric down

conversion (SPDC), the second-order correlation as a function of mean photon number

n̄ = n̄a + n̄b is given by

G
(2)
ab (0) = ⟨nanb⟩ =

1

2

(
n̄2 + n̄

)
(6.19)

which gives for n̄ ≪ 1 a linear intensity dependence versus quadratic for coherent

light. In the present model, for n̄ ≪ 1 and |κ − ξA| ≪ κ the leading term in two-

photon correlation function reads

G
(2)
ab (0) =

[
1 + cos 2ϕ

κ− ξA

(
κ2

2(κ− ξA)
+ 1

)
+

1

16
(cos 4ϕ+ 24 cos 2ϕ− 1)

]
n̄. (6.20)
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Thus, for ϕ = 0, π Eq. (6.20) yields super-poissonian statistics

G
(2)
ab (0) ≈

κ2n̄

(κ− ξA)2
≫ n̄

2
, (6.21)

which has much more rapid rate compare to the SPDC result. However, by tuning ϕ

to π/2, we obtain sub-poissonian result

G
(2)
ab (0) ≈ −3n̄

2
. (6.22)

Therefore, intensity of the laser field used for quantum lithography printing can be

controlled by the external phase.

Furthermore, in order to determine the resolution of printing we can calculate

the two-photon exposure dosage ∆2γ = 1
2
⟨ê†2ê2⟩ [123], where the average is taken

over the initial states at the arms A and B. For the interference experiment at the

substrate, the two photons should have the same frequency. This, in principle, can

be realized by introducing an optical frequency modulator in one of the arms of the

interferometer just before the beam splitter. The exposure dosage is proportional to

the two-photon absorption at the imaging surface. The operator ê is the combination

of modes resulting from the beam splitter (see Fig. 42). The phase shift induced by a

phase plate (PS) is represented by single parameter 2φ = 2kx, where k = 2π/λ with

λ and x being the optical wavelength and the lateral dimension on the substrate,

respectively. The mode that emerges from the arm that has a phase shifter (PS)

experience a phase shift of 2kx while other mode emerges without phase shift. The

output field operators ĉ, d̂ are related to input field operators â, b̂ through beam

splitter and phase plate by ĉ = (â − ib̂)e2ikx/
√
2, d̂ = (−iâ + b̂)/

√
2. Two-photon

correlation function at the output is G(2)(0) = ⟨ê†2ê2⟩, where ê = ĉ+ d̂. The resulting

expression for two-photon exposure dosage is given by
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Fig. 42. Interferometric lithography setup utilizing input photons entering ports A and

B. Here DM is a dichroic mirror, OFM is optical frequency modulator, BS is

symmetric lossless beam splitter, and M represents the mirrors. Upper arm

of the interferometer experiences a phase shift 2φ at the phase shifter (PS)

before both branches interfere on the substrate S.

2∆2γ =[1− sin(2kx)]2⟨â†2â2⟩o + [1 + sin(2kx)]2⟨b̂†2b̂2⟩o

+ 2 cos(2kx)[1− sin(2kx)][⟨â†2âb̂⟩o + ⟨â†â2b̂†⟩o]

+ 2 cos(2kx)[1 + sin(2kx)][⟨âb̂†2b̂⟩o + ⟨â†b̂†b̂2⟩o]

+ cos2(2kx)[4⟨â†âb̂†b̂⟩o + ⟨â†2b̂2⟩o + ⟨â2b̂†2⟩o], (6.23)

where ⟨Ô⟩o ≡ ⟨Ôout⟩. Inspection of Eq. (6.23) shows that depending on the expec-

tation values of output mode operators the period of the imprinted structure can

be either determined by the classical Rayleigh limit λ/2 or quantum limit λ/4.In

this regard, we calculate the steady state solutions of equations of the cavity mode
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Fig. 43. Plots of the exposure dosage versus path-difference phase shift for γ/Γ = 1,

κ/Γ = 0.8, A/γ = 2, α = 0, N = 0.1, η = 0, and for ϕ = 0 (red dotted

curve) and ϕ = π/2 (blue solid curve 5∆2γ). Note here that dotted curve

corresponds to a classical Rayleigh limit of resolution λ/2 and the solid curve

shows the quantum limit with a resolution improvement of 100%.

moments. For instance, for ξA≪ 1, Eq. (6.23) reads

∆2γ ≈N [5N + 1 + 10(N + 1)q] +N(N + 1)

×[12q cosϕ cos(2kx) + (2q + 1) cos(4kx)], (6.24)

where q = ξA. Equation (6.24) yields λ/4 resolution for ϕ = π/2 and classical result

λ/2 for ϕ = 0 (see Fig. 43). Therefore, as shown in Fig. 43 the resolution of imprinted

profile can be controlled by varying the single parameter–phase of the microwave field

ϕ. While quantum lithography as originally proposed remains challenging due to the

lack of suitable N-photon absorbing resists, quantum light sources can still be used

successfully in a non-lithographic setting where number-resolving detector arrays and

centroid measurements are deployed [140, 141].
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E. Conclusion

In conclusion, we have shown steady state entanglement induced by quantum co-

herence via a driving microwave field in a two-photon quantum beat laser coupled

to a squeezed field. The entanglement can be controlled by adjusting the phases of

the microwave and the squeezed input fields. Our results show that the entangle-

ment is robust against cavity losses and decoherence and thus can be used for various

applications. For instance, the output mode of the generated light can be used to

enhance resolution beyond the Rayleigh limit. More importantly one can switch from

classical resolution λ/2 to quantum limit λ/4 by adjusting the phase of the driving

field. Experimentally, our system can be realized along the lines of similar previously

successful microwave experiments [142, 143, 144].
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CHAPTER VII

EFFECT OF DEPHASING ON TRANSIENT AND STEADY-STATE

ENTANGLEMENT IN A QUANTUM-BEAT LASER ∗

A. Introduction

Quantum properties of cavity radiation strongly relies on the dissipation processes

that the system is subjected to. Among all dissipation processes, dephasing–the decay

of atomic coherence due to its interaction with the surrounding environment–might

lead to adverse effects on the quantum features of the cavity field. In particular,

quantum entanglement is one which is fragile in the face of decoherence. Recently,

entanglement generation using two-photon lasers such as correlated emission lasers

[9, 10, 113] and quantum-beat lasers (QBL) [133, 145, 146, 147] has received a re-

newed interest. In these types of lasers, the entanglement is dependent on quantum

coherence and is susceptible to dephasing processes. Here we address the role of

dephasing on entanglement generated by quantum-beat lasers.

As mentioned in the previous Chapter, QBLs are shown to be a source for en-

tangled radiation [133, 145, 146, 147]. In such lasers, the generated entanglement is

attributed to atomic coherence induced via coupling the upper two levels of a V-type

three-level atoms by strong laser field or driven coherence. This coherence translates

into correlations between two modes of the cavity field due to interference between

two pathways that lead to the lower level. Note that since the generated coherence

crucially depends on the amplitude of the laser field [133, 145, 146], the time for which

the cavity exhibits entanglement strongly relies on the strength of the driving field.

∗ Reprinted with permission from ”Effect of dephasing on transient and steady-
state entanglement in a quantum-beat laser” by Eyob A. Sete, 2011. Phys. Rev. A,
84, 063808, Copyright [2011] by American Physical Society.
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It has also been shown that the entanglement created via driven coherence only exist

in the transient regime and hence depends on the initial condition of the cavity field.

Besides, almost all previous studies in QBLs neglected dephasing processes which

otherwise lead to fast decay of coherence and hence entanglement. For a practical

application of quantum information processing, it is desirable to have entanglement

which can survive for longer times and robust against decoherence.

This Chapter is thus devoted to the formulation and analysis of the role of

dephasing on entanglement properties of the cavity modes of a QBL. We present a

detailed derivation of the pertinent master equation in the good-cavity limit by taking

into account all dissipation processes namely, spontaneous emission, cavity losses, and

dephasing. Unlike earlier studies, where driven coherence is used as a primary way of

inducing coherence in the system, our scheme includes coherence induced via initial

coherent superposition of the two upper levels of a V-type atoms or injected coherence.

We investigate to what extent the dephasing rate modifies the entanglement between

the cavity modes for the cases of injected coherence as well as driven coherence using

Hillery-Zubairy entanglement criterion [148]. We also discuss the interplay between

the cavity mode detunings and pumping rates in optimizing the entanglement. Our

results show that when the coherence is induced by initial coherent superposition of

atomic levels, the resulting entanglement exists both in transient and steady state

regimes and is more sensitive to dephasing processes. In particular, the steady-state

entanglement is achieved when only cavity mode detunings are different. We also show

that it is possible to reduce the effect of dephasing on entanglement by injecting atoms

at higher rates and tuning the cavity modes at far-off resonances (large detunings).

In contrast, when coherence is induced by coupling the upper two levels by strong

laser field, we obtain only transient entanglement which is relatively robust against

decoherence.
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B. Hamiltonian and master equation

We consider a two-photon QBL coupled to a vacuum reservoir through the partially

transmitting mirror of the cavity. Atoms, in a V configuration, are injected into the

laser cavity at rate ra and are removed after time τ longer than the spontaneous

emission time. During this time interval each atom nonresonantly interacts with

the cavity mode of frequencies ν1 and ν2. Moreover, to externally induce coherence,

a strong laser field of Rabi frequency Ω and phase ϕ is resonantly coupled to the

|a1⟩ ↔ |a2⟩ transition. The energy level diagram for the atom is shown in Fig. 44.

The interaction picture Hamiltonian for the system, in the rotating wave and dipole

approximations, is given by (h̄ = 1)

ĤI =
2∑
j=1

∆j|aj⟩⟨aj|+ gj(âj|aj⟩⟨b|+ |b⟩⟨aj|â†j)−
Ω

2
(e−iϕ|a1⟩⟨a2|+ eiϕ|a2⟩⟨a1|). (7.1)

Here â1(â
†
1) and â2(â

†
2) are the annihilation (creation) operators for the cavity modes

1 and 2, respectively. gi are atom-cavity mode coupling constants. The modes of the

cavity are detuned from the transitions |a1⟩ ↔ |b⟩ and |a2⟩ ↔ |b⟩ by ∆1 = ω1b − ν1

and ∆2 = ω2b − ν2, respectively.

We next derive the master equation for the cavity radiation by applying the

Hamiltonian (7.1). While there are several approaches for obtaining the master equa-

tion, we here employ the procedure outlined in [20, 134]. Suppose that ρ̂AR(t, tj)

represent the density operator for the radiation plus an atom in the cavity at time t

that is injected at earlier time tj. Since the atom stays in the cavity for time τ , it

easy to see that t− τ ≤ tj ≤ t. Then the density operator for all atoms in the cavity

plus the two-mode radiation at time t can be written as

ρ̂AR(t) = ra
∑
j

ρ̂AR(t, tj)∆t
′
j, (7.2)



117

Fig. 44. Energy level diagram for a three-level atom in a V configuration with the

cavity modes interacting with the atoms nonresonantly.

where ra∆t
′
j is the total number of atoms injected into the cavity in a small time

interval ∆t′j. Assuming that large number of atoms are injected in a time interval

∆t′j, we change the summation by integration. Thus, differentiating both sides of the

resulting equation, we arrive at

d

dt
ρ̂AR(t) = ra

d

dt

∫ t

t−τ
ρ̂AR(t, t

′)dt′. (7.3)

In order to incorporate the initial preparation of the atoms into the dynamics, we

transform the above equation into

d

dt
ρ̂AR(t) = ra

{
[ρ̂AR(t, t)− ρ̂AR(t, t− τ)] +

∫ t

t−τ

∂

∂t
ρ̂AR(t, t

′)dt′
}
. (7.4)

Here ρ̂AR(t, t) represents the density operator for atom plus radiation at time t for

an atom injected at an earlier time t. Since the atomic and radiation variables are

uncorrelated at the instant the atom is injected into the cavity, one can write

ρ̂AR(t, t) ≡ ρ̂(t)ρ̂A(0), (7.5)

where ρ̂(t) is the filed density operator and ρ̂A(0) is the initial density operator for an
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atom. For simplicity, we further assume that the atomic and radiation variables are

uncorrelated just after the atom is removed from the cavity, which allows as to write

ρ̂AR(t, t− τ) ≡ ρ̂(t)ρ̂A(t− τ), (7.6)

where ρ̂A(t − τ) is the density operator for an atom injected at t − τ . In this work

we assume that atoms are initially injected into the cavity in coherent superposition

of the upper two levels. The corresponding initial density operator then reads

ρ̂A(0) = ρ
(0)
11 |a1⟩⟨a1|+ ρ

(0)
22 |a2⟩⟨a2|+ ρ

(0)
12 |a1⟩⟨a2|+ ρ

(0)
21 |a2⟩⟨a1|, (7.7)

where ρ
(0)
ii and ρ

(0)
ij are initial population and coherence, respectively. Using Eqs.

(7.5) and (7.6), Eq. (7.4) becomes

d

dt
ρ̂AR(t) = ra

{
[ρ̂A(0)− ρ̂A(t− τ)]ρ̂+

∫ t

t−τ

∂

∂t
ρ̂AR(t, t

′)dt′
}
. (7.8)

Furthermore, it is obvious that the time evolution of the density operator ρ̂AR(t, t
′)

has a form ∂ρ̂AR(t, t
′)/∂t = −i[HI , ρ̂AR(t, t

′)] which together with

∂

∂t
ρ̂AR(t) = ra

∫ t

t−τ

∂

∂t
ρ̂AR(t, t

′)dt′

gives

d

dt
ρ̂AR(t) = ra[ρ̂A(0)− ρ̂A(t− τ)]ρ̂− i[HI , ρ̂AR(t)]. (7.9)

We are interested in the dynamics of the cavity radiation. In this regard, we trance

the atom-plus-radiation density operator over atomic variables. This yields

d

dt
ρ̂(t) = −iTrA[HI , ρ̂AR(t)], (7.10)

where we have used the fact that TrA[ρ̂A(0)] = TrA[ρ̂A(t − τ)] = 1. Substituting the
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Hamiltonian in Eq. (7.10), we obtain

d

dt
ρ̂(t) =− ig1(a1ρ̂b1 − ρ̂b1a1 + a†1ρ̂1b − ρ̂1ba

†
1)

− ig2(â2ρ̂b2 − ρ̂b2â2 + â†2ρ̂2b − ρ̂2bâ
†
2). (7.11)

Here for typographical convenience we set ρ̂ba1 ≡ ρ̂b1 and ρ̂ba2 ≡ ρ̂b2. The next task is

to obtain ρ̂b1, ρ̂b2 and their complex conjugates. To this end, multiplying Eq. (7.9)

on the left by ⟨α| and on the right by |β⟩, one gets

d

dt
ρ̂αβ(t) = ra⟨α|[ρ̂A(0)− ρ̂A(t, t− τ)]|β⟩ρ̂− i⟨α|[HI , ρ̂AR(t)]|β⟩ − γαβ ρ̂αβ, (7.12)

where α, β = a1, a2, b. We phenomenologically included the last term to account for

spontaneous emission and dephasing processes. γαα is the spontaneous emission rate

and γαβ(α ̸= β) is the dephasing rate. The equations of motion for the elements of

the density operator that appear in Eq. (7.11) read

˙̂ρ1b = −(Γ1 + i∆1)ρ̂1b + ig1(ρ̂11â1 − â1ρ̂bb) + ig2ρ̂12â2 +
iΩ

2
e−iϕρ̂2b, (7.13)

˙̂ρ2b = −(Γ2 + i∆2)ρ̂2b + ig2(ρ̂22â2 − â2ρ̂bb) + ig1ρ̂21â1 +
iΩ

2
eiϕρ̂2b, (7.14)

where ρ̂11 ≡ ρ̂a1a1 , ρ̂22 ≡ ρ̂a2a2 , and Γ1 and Γ2 are the dephasing rate for single-photon

coherence terms ρ̂1b and ρ̂2b, respectively.

To proceed further we adopt certain approximation schemes. The first is the

good cavity limit where the cavity damping rate is much smaller than the dephasing

and spontaneous emission rates. In this limit, the cavity mode variables slowly varies

than the atomic variables, and thus the atomic variables reach steady state in short

time. The time derivatives of such variables can be set to zero keeping the cavity

mode variables at time t, which is also called adiabatic approximation. Moreover, we

apply linearization scheme which amounts to keeping terms up to second order in the
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cavity-atom coupling constant, g in the master equation. To do so, we first write the

equations of motion for ρ̂11, ρ̂22, ρ̂12, and ρ̂bb in the zero order in the coupling constant:

˙̂ρ11 = raρ
(0)
11 ρ̂+

iΩ

2
(exp−iϕ ρ̂21 − eiϕρ̂12)− γ1ρ̂11, (7.15)

˙̂ρ22 = raρ
(0)
22 ρ̂+

iΩ

2
(expiϕ ρ̂12 − e−iϕρ̂21)− γ2ρ̂22, (7.16)

˙̂ρ12 = raρ
(0)
12 ρ̂+

iΩ

2
exp−iϕ(ρ̂22 − ρ̂11)− Γ12ρ̂12, (7.17)

˙̂ρbb = 0, (7.18)

where γ1 and γ2 are spontaneous emission decay rates of levels |a1⟩ and |a2⟩ to lower

level |b⟩, respectively; Γ12 is the two-photon dephasing rate. Now we apply the

adiabatic approximation, that is, we set the time derivatives in Eqs. (7.15)-(7.17) to

zero to obtain

ρ̂11 =
raρ̂

χ
[γ2(1− η)Γ12 + Ω2 + γ2Ω

√
1− η2 sinϕ], (7.19)

ρ̂22 =
raρ̂

χ
[γ1(1 + η)Γ12 + Ω2 − γ1Ω

√
1− η2 sinϕ], (7.20)

ρ̂12 =
raρ̂

2Γ12χ

[√
1− η2(χ cosϕ− 2iΓ12γ1γ2 sinϕ)

+ iΓ12[γ1 − γ2 + (γ1 + γ2)η]Ω
]
e−iϕ, (7.21)

where

χ = 2γ1γ2Γ12 + (γ1 + γ2)Ω
2. (7.22)

We have introduced a useful notation to describe the initial condition with a single

variable η such that ρ
(0)
11 = (1 − η)/2, ρ

(0)
22 = (1 + η)/2 and |ρ(0)12 | = 1

2

√
1− η2. It

is easy to see that ρ
(0)
12 = [0, 1/2] with 0 being no coherence and 1/2 corresponds to

maximum coherence. In section 1, we will show that this coherence is responsible for

entanglement between the cavity modes. Applying adiabatic approximation in Eqs.
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(7.13) and (7.14) and using the solutions for ρ̂11, ρ̂22, ρ̂12, we obtain

−ig1ρ̂1b = ζ11ρ̂â1 + ζ12ρ̂â2, (7.23)

−ig2ρ̂2b = ζ22ρ̂â2 + ζ21ρ̂â1, (7.24)

where

ζ11 =
g21ra
D

{
Γ12

[
4γ2Γ12(Γ2 + i∆2)(1− η) + [γ1 − γ2 + 4Γ2 + 4i∆2 + (γ1 + γ2)η]Ω

2
]

+ Ω
√
1− η2

[
iχ cosϕ+ 2γ2Γ12(γ1 + 2Γ2 + 2i∆2) sinϕ

]}
, (7.25)

ζ12 =
2g1g2ra

D

{
iΓ12Ω

[
− γ2(Γ2 + i∆2)(1− η) + γ1(Γ2 + Γ12 + i∆2)(1 + η) + Ω2

]
+
√
1− η2

[
(Γ2 + i∆2)χ cosϕ+ iγ1Γ12(2γ2Γ2 + 2iγ2∆2 − Ω2) sinϕ

]}
, (7.26)

ζ21 =
2g1g2ra

D

{
iΓ12Ω

[
− γ1(Γ1 + i∆1)(1 + η) + γ2(Γ1 + Γ12 + i∆1)(1− η) + Ω2

]
+
√
1− η2

[
(Γ1 + i∆1)χ cosϕ− iγ2Γ12(2γ1Γ1 + 2iγ1∆1 − Ω2) sinϕ

]}
, (7.27)

ζ22 =
g22ra
D

{
Γ12

[
4γ1Γ12(Γ1 + i∆1)(1 + η) + [γ2 − γ1 + 4Γ1 + 4i∆1 − (γ1 + γ2)η]Ω

2
]

+ Ω
√
1− η2

[
iχ cosϕ− 2γ1Γ12(γ2 + 2Γ1 + 2i∆1) sinϕ

]}
, (7.28)

where

D = Γ12χ[4(Γ1 + i∆1)(Γ2 + i∆2) + Ω2], (7.29)

χ = 2γ1γ2Γ12 + (γ1 + γ2)Ω
2. (7.30)

Therefore, using Eqs. (7.23), (7.24), and (7.11), the master equation for the cavity

radiation, taking into account the damping of cavity modes by vacuum reservoir,
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becomes

˙̂ρ = ζ∗11(â
†
1ρ̂â1 − â1â

†
1ρ̂) + ζ11(â

†
1ρ̂â1 − ρ̂â1â

†
1)

+ ζ∗22(â
†
2ρ̂â2 − â2â

†
2ρ̂) + ζ22(â

†
2ρ̂â2 − ρ̂â2â

†
2)

+ [ζ∗21(â
†
1ρ̂â2 − â†1â2ρ̂) + ζ12(â

†
1ρ̂â2 − ρ̂â†1â2)]e

−iϕ

+ [ζ∗12(â
†
2ρ̂â1 − â1â

†
2ρ̂) + ζ21(â

†
2ρ̂â1 − ρ̂â1â

†
2)]e

iϕ

+
2∑
j=1

κj
2
(2âj ρ̂â

†
j − â†j âj ρ̂− ρ̂â†j âj), (7.31)

where kj is the damping rate of the jth cavity mode. The terms proportional to ζ11

and ζ22 represent gain for cavity mode 1 and mode 2, respectively whereas terms

proportional to ζ12 and ζ∗21 are phase sensitive and are due to atomic coherence.

C. Entanglement of cavity modes

We analyze the entanglement properties of the cavity field when the coherence is

induced by initial coherent superposition of atoms. In general, criteria proposed to

detect bipartite entanglement rely on the nature of the field, whether field exhibit

Gaussian statistics or not, and the form of the entanglement created. For instance,

in three-level QBL, since there are two possible pathways for an atom in coherent

superposition of the upper two levels to decay to the lower level |b⟩ the entanglement

created in our system is of the form: α|0112⟩ + β|1102⟩. Such type of entanglement

can only be detected by certain class of inseparability criteria [148, 149, 150]. In

order to detect entanglement between the cavity modes, we employ Hillery-Zubairy

(HZ) entanglement criterion [148], which is sufficient test for two mode non-Gaussian

states. This criterion relies on a combination of second-and fourth-order correlations

among the cavity mode variables. According to this criterion, the two modes are
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entangled if the following inequality is satisfied

EHZ ≡ ⟨n̂1n̂2⟩ − |⟨â†1â2⟩|2 < 0. (7.32)

where n̂1 = â†1â1 and n̂2 = â†2â2 are photon number operators for the cavity modes.

1. Entanglement via injected coherence

In order to clearly see the contribution of the injected coherence in creating entangle-

ment between the cavity modes, we switch off the driving field (Ω = 0). The master

equation corresponding to the injected coherence obtained by setting Ω = 0 in the

coefficients ζij in Eq. (7.31) reads

˙̂ρ = α∗
11(â

†
1ρ̂â1 − â1â

†
1ρ̂) + α11(â

†
1ρ̂â1 − ρ̂â1â

†
1)

+ α∗
22(â

†
2ρ̂â2 − â2â

†
2ρ̂) + α22(â

†
2ρ̂â2 − ρ̂â2â

†
2)

+ [α∗
21(â

†
1ρ̂â2 − â†1â2ρ̂) + α12(â

†
1ρ̂â2 − ρ̂â†1â2)]e

−iϕ

+ [α∗
12(â

†
2ρ̂â1 − â1â

†
2ρ̂) + β21(â

†
2ρ̂â1 − ρ̂â1â

†
2)]e

iϕ

+
2∑
j=1

κj
2
(2âj ρ̂â

†
j − â†j âj ρ̂− ρ̂â†j âj), (7.33)

where

α11 =
g21raΓ12γ2(1 + η)

(Γ1 + i∆1)χ
, (7.34)

α12 =
g1g2ra

√
1− η2(χ cosϕ+ 2iγ1Γ12γ2 sinϕ)

2Γ12(Γ1 + i∆1)χ
, (7.35)

α21 =
g1g2ra

√
1− η2(χ cosϕ− 2iγ2Γ12γ1 sinϕ)

2Γ12(Γ2 + i∆2)χ
, (7.36)

α22 =
g22raΓ12γ1(1− η)

(Γ2 + i∆2)χ
. (7.37)

It is worth to note that when atoms are pumped into the cavity in state |a1⟩ or |a2⟩,

i.e., when η = ±1 the off diagonal terms α12 and α21 vanishes. This implies that the
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Fig. 45. Plots of EHZ versus γ2t for g1 = 50kHz, g2 = 43kHz, ra = 22kHz, γ1 = 25kHz,

γ2 = 20kHz, κ1 = 1.5kHz, κ2 = 2kHz, Γ12 = Γ1 = Γ2 = γ1 (no dephasing

condition), ϕ = π/2 in the absence of the driving field (Ω = 0) and when

cavity mode 1 is initially in number state with 5 photons and mode 2 in

vacuum state and for η = 0 (maximum injected coherence) and for various

values of detunings.

cross correlation terms in the master equation disappear and results in disentangle-

ment of the cavity modes.

a. Transient regime

Since the HZ criterion involves forth-order correlation and many coupled differen-

tial equations, obtaining analytical solutions is rather an involved problem. We

thus present the results of our numerical simulations. We begin by investigating

the dependence of the entanglement on the detuning. Figure 45 illustrates the HZ

criterion as a function of dimensionless time γ2t for various values of detunings ∆1

and ∆2. Here other parameters are chosen so as to comply with the micromaser

experiments [143, 144]. We assume that the cavity modes are initially in a prod-
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Fig. 46. Plots of EHZ versus γ2t for ∆1 = 20γ2,∆2 = 80γ2 and for various initial

conditions for the atoms (various values of η). All other parameters are the

same as in Fig. 45.

uct state: cavity mode 1 in number state with 5 photons and mode 2 in a vac-

uum state, i.e., |Ψ(0)⟩F = |5102⟩ and atoms are injected into the cavity in a state

|Ψ(0)⟩A = 1
2
(|a1⟩+ |a2⟩) or η = 0. As can be seen from Fig. 45, the quantity EHZ is

negative for short time for all cases indicating creation of entanglement between the

cavity modes in the transient regime. We also observe that the transient entangle-

ment vanishes at longer time scale for identical detunings ∆1 = ∆2 = 80γ2. However,

steady-state entanglement is obtained when the cavity detunings are different. This

is quite interesting and markedly different from the result reported when one induces

the coherence via strong laser field [133, 145, 146]. We thus note that in order to

create a steady-state entanglement, which is more attractive and robust for quantum

information processing protocols, one should induce coherence by initially preparing

atoms in a coherent superpositions states.

Next, we explore how the initial populations and coherences influence the entan-
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Fig. 47. Plots of EHZ versus γ2t for ∆1 = 20γ2,∆2 = 80γ2, η = 0 and for various values

of dephasing rates Γ ≡ Γ1 = Γ2 = Γ12. All other parameters are the same as

in Fig. 45.

glement dynamics. Figure 46 shows the plot of EHZ versus γ2t for fixed detunings:

∆1 = 20γ2 and ∆2 = 80γ2 and for various values of η. Recall that η = ±1 corresponds

to no coherence whereas other values of η gives non zero coherence. Figure 46 reveals

that whenever there is coherence, the system exhibit transient as well as steady state

entanglement. Moreover, as the coherence decreases from maximum value η = 0 to no

coherence η = −1 the quantity EHZ approaches to zero faster. That means for weak

coherence the generated entanglement is more susceptible to dephasing processes.

So far we have assumed no dephasing in the system, that is, the dephasing

rate is the same as the spontaneous emission rate Γ = γ2. However, the dephasing

rates are in general higher than the spontaneous emission and cavity decay rates and

may alter the entanglement behavior substantially. The dephasing rates Γ1 and Γ2

corresponding to the single-photon lasing transitions |a1⟩ ↔ |b⟩ and |a2⟩ ↔ |b⟩ are,

in general, smaller than the two-photon dephasing rate Γ12. We, however, assume,
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Fig. 48. Plots of EHZ for g1 = 5γ2, g2 = 2.15γ2, γ1 = 1.25γ2,Γ12 = Γ1 = Γ2 = 5γ2,

∆1 = 500γ2,∆2 = 100γ2, κ1 = 0.2γ2, κ2 = 0.075γ2, η = 0, ϕ = π/2,

γ2 = 20kHz, in the absence of the driving field (Ω = 0) and for various

values of the pumping rate ra. The initial condition for the cavity field is the

same as in Fig. 45.

for the sake of simplicity, all dephasing rates to be the same, Γ = Γ12 = Γ1 = Γ2.

Now keeping the initial atomic coherence at maximum value (η = 0), we explore

the effect of dephasing on the dynamics of the entanglement in the system. Figure

47 shows the plots of EHZ versus γ2t for ∆1 = 20γ2,∆2 = 80γ2, and for various

values of dephasing rate. This figure indicates that the entanglement is sensitive to

dephasing. For instance, when the dephasing rate is increased to Γ = 4γ2, only the

transient entanglement survives. When one further increases the dephasing rate to

Γ = 5γ2 the entanglement condition is no longer satisfied. To keep the entanglement

intact even in the presence of dephasing one can, in principle, tune other system

parameters. To produce a robust steady state entanglement one has to choose a

parameter range for which the system operates in large detuning condition. In Fig.

48, we plot EHZ versus γ2t for g1 = 5γ2, g2 = 2.15γ2,Γ = Γ12 = Γ1 = Γ2 = 5Γ2,
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Fig. 49. Plots of EHZ in the steady state versus η for ∆2 = 80γ2 and for various values

of ∆1. All other parameters as the same as in Fig. 45.

γ1 = 1.25γ2,∆1 = 500γ2,∆2 = 100γ2, η = 0, and for various values of pumping

rate ra. As can be seen from this figure, for ra = 1.1γ2 the quantity EHZ is always

positive. However, if one gradually increases the pumping rate, the system starts to

exhibit transient entanglement for short times. Steady-state entanglement can also

be obtained by further increasing the pumping rate of the atoms into the cavity. It

is noteworthy to mention here that since the pumping rate is externally controllable,

it is experimentally feasible to control the effect of dephasing on the entanglement

at least for dephasing rates as high as Γ = 5γ2. In essence, the adverse effect of

dephasing can be counterbalanced by tuning the pumping rate accordingly.

b. Steady state regime

As pointed out in the previous section, the cavity radiation exhibits steady-state

entanglement. We here explore the entanglement as a function of system parameters

and effect of dephasing. Analytical solution for this case is also non-trivial; we thus
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Fig. 50. Plots of EHZ in the steady state versus η for dephasing rate Γ = 5γ2 and for

various values of pumping rates . All other parameters as the same as in Fig.

48.

solve the coupled equation and evaluate the function EHZ numerically. In order to

see the entanglement behavior as a function of the initial coherence, we then plot

EHZ as a function of η (see Fig. 49). This figure reveals that the cavity radiation

exhibits steady-state entanglement for all values of η but, η = ±1, which confirms our

previous assertion. We also observe that the entanglement exists only when the two

cavity detunings are different. For example, for ∆1 = ∆2 = 80γ2, no entanglement

observed. Besides, it is counterintuitive to see that the minima for the EHZ function

does not occur at maximum initial coherence, η = 0. They rather appear for values of

η between 0 and 0.5, depending on the value of the detuning ∆1. It appears that, for

this range of detunings, robust steady-state entanglement can be obtained by initially

injecting more atoms in the level |a2⟩ than |a1⟩.

To clearly see the effect of dephasing on steady state entanglement, we plot in Fig.

50, the HZ criterion as a function of η for dephasing rate Γ = 5γ2, ∆1 = 500γ2,∆2 =

100γ2 and other parameters the same as in Fig. 48. As can be seen from this figure,
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by increasing the pumping rates, one can counterbalance the dephasing effect. This

however only works for strong coherence condition, that is when η ≈ [−0.5, 0.5]. We

also note that the entanglement is relatively robust at maximum coherence η = 0.

We thus note that when the system is far detuned and at higher pumping rates only

strong initial coherence can create entanglement that is robust against decoherence.

2. Entanglement via driven coherence

In this section the role of dephasing on entanglement dynamics when the atomic co-

herence is induced by coupling of the upper two levels by external laser is investigated.

We assume that atoms are injected in their excited state |a1⟩, i.e., no coherence at the

initial time. The evolution of entanglement in quantum-beat laser when coherence

is induced by strong laser field has been previously considered without taking into

account the dephasing process [133, 145, 146]. Here we focus on how the generated

entanglement is modified by the dephasing rate.

The master equation corresponding to driven coherence and when atoms injected

into the cavity at level |a1⟩ can be obtained by setting η = −1 in Eqs. (7.31). This

yields

˙̂ρ = β∗
11(â

†
1ρ̂â1 − â1â

†
1ρ̂) + β11(â

†
1ρ̂â1 − ρ̂â1â

†
1)

+ β∗
22(â

†
2ρ̂â2 − â2â

†
2ρ̂) + β22(â

†
2ρ̂â2 − ρ̂â2â

†
2)

+ [β∗
21(â

†
1ρ̂â2 − â†1â2ρ̂) + β12(â

†
1ρ̂â2 − ρ̂â†1â2)]e

−iϕ

+ [β∗
12(â

†
2ρ̂â1 − â1â

†
2ρ̂) + β21(â

†
2ρ̂â1 − ρ̂â1â

†
2)]e

iϕ

+
2∑
j=1

κj
2
(2âj ρ̂â

†
j − â†j âj ρ̂− ρ̂â†j âj), (7.38)

where

β11 =
2g21ra
Υ

[4γ2Γ12(Γ2 + i∆2) + (−γ2 + 4Γ2 + 4i∆2)Ω
2], (7.39)
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Fig. 51. Temporal behavior of EHZ when the cavity modes are initially in a product

state |Ψ(0)⟩ = |25102⟩ and when atoms are injected in their excited state |a1⟩
and for ∆1 = ∆2 = 0, Γ = γ2. The curves correspond to various values of

Rabi frequencies. All other parameters are the same as in Fig. 45.

β12 =
2ig1g2ra

Υ
[Ω2 − 2γ2(Γ2 + i∆2)], (7.40)

β21 =
2ig1g2ra

Υ
[Ω2 + 2γ2(Γ1 + Γ12 + i∆1)], (7.41)

β22 =
2g22ra
Υ

[2Γ1 + γ2 + 2i∆1]Ω
2, (7.42)

where

Υ ≡ χ[4(Γ1 + i∆1)(Γ2 + i∆2) + Ω2].

We note that this master equation has the same form as that of the injected coherence

but, with different interpretation. When the driving laser field is switched off (Ω = 0),

the cross terms does not vanish. However, a close inspection of Eq. (7.42) shows that

when we turn off the driving laser field, the gain for mode a2 vanishes. This implies

that population transfer from the initially populated level |a1⟩ to level |a2⟩ will not

occur and hence no build up of coherence between these two levels. As analytical
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Fig. 52. Temporal behavior of EHZ for laser field of Rabi frequency Ω = 200γ2. The

curves correspond to various values of dephasing rates. All other parameters

are the same as in Fig. 51.

solutions are rather nontrivial, we only present numerical results.

We consider an initial condition for the cavity field to be |25102⟩. In Fig. 51, we

plot the EHZ versus dimensionless time γ2t when the cavity modes are tuned with

their respective atomic transitions and for various values of the Rabi frequency of the

laser field. This figure shows that an initially product state evolves to an entangled

state even in the presence of cavity losses [145]. However, the time of entanglement

is limited by the strength of the applied driving laser. This can be understood by

recalling that the coherence, which is responsible for the creation of entanglement in

this model, strongly relies on the strength of laser field. For this reason, the existence

of entanglement crucially depends of the field strength.

Furthermore, a natural question that follows is how this transient entanglement

behaves in the presence of dephasing. In Fig. 52, we present the effect of dephasing

on dynamical behavior of entanglement for Ω = 200γ2, ∆1 = ∆2 = 0, and for various
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values of the dephasing rate Γ. It is worth to note that the requirement of non zero

detuning for having well-behaved solution is now relaxed due to the presence of a

strong laser field. As illustrated in Fig. 52, in the presence of dephasing, the initial

product state gets entangled after short time. However, when the dephasing rate

increases, the two cavity modes remain disentangled for sometime and get entangled

for a window of time before they become disentangled again. In addition, the time for

which the modes remain entangled gets shorter with increasing dephasing rate. For

parameters given in Fig. 52, the transient entanglement eventually vanishes when the

dephasing rate becomes more than two order of magnitude stronger than the spon-

taneous emission rate. Furthermore, comparison of Figs. 48 and 52 shows that the

entanglement generated via driven coherence is more robust against dephasing than

that created via injected coherence. This might be explained in terms of the nature

of the coherence induced by the two methods. It is clear that the coherence induced

by the driving laser field is strong and controllable while the injected coherence is

rather weak and fixed once the atoms are pumped into the cavity.

D. Conclusion

We have studied the effect of dephasing on the entanglement generated in a quantum-

beat laser via quantum coherence induced either by initially preparing injected atoms

in a coherent superposition of atomic levels or coupling the same levels by strong

laser field. It turns out that the injected coherence give rise to transient as well as

steady state entanglement for realistic parameters. The steady state entanglement

only exists when the cavity detunings are different and relies strongly on the amount

of detunings and pumping rates. Moreover, the entanglement is more sensitive to

dephasing processes. We also show that the adverse effect of dephasing on the entan-
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glement can be circumvented by injecting atoms into the cavity at higher pumping

rates. On the other hand, the entanglement created through coherence induced by

coupling of atomic levels by strong laser field is relatively robust against dephasing.

The formulation outlined in this work will help better understand the inevitable effect

of dephasing processes on quantum features exhibited by two-photon lasers.
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CHAPTER VIII

SUMMARY

In summary we have studied quantum coherence effects and their applications in

many quantum optical systems. In particular, we have considered lasing without in-

version, cooperative spontaneous emission, and generation of quantum entanglement

in discrete as well as continuous variable settings. Using the concept of cancelation

of absorption via quantum interference we proposed lasing without inversion in the

x-ray regime which otherwise is difficult to achieve under traditional lasing condition.

We demonstrated transient Raman lasing at 58.4 nm in Helium gas and transient

lasing without inversion at 6.1 nm in Helium-like Boron (triply ionized). As another

application of quantum coherence, we considered cooperative spontaneous emission

from large number of atoms initially prepared in a collective state and showed that

even though one atom is excited from out of the N atoms, the emission rate of such a

system is enhanced by a factor N. The virtual processes that involves rapid emission

and absorption of virtual photon appears to influence the dynamics of the one-atom

excited state and lead to large infinite-free collective Lamb (frequency) shift as op-

posed to single-atom Lamb shift which otherwise involves cut-off to avoid infinities.

Furthermore, we have studied the effect of quantum interference induced by

position-dependent excitation phase in protecting a rapid decay of entanglement in a

two-qubit system. We showed that the coherence created between the symmetric and

antisymmetric state protects the entanglement from decaying with an enhanced rate.

We also propose a scheme to create entanglement between two spatially separated and

initially uncoupled qubits via interaction with correlated photons in a cavity QED

setup. In continuous-variable setting, we put forward a scheme based of microwave

driven three-level quantum beat laser to generate robust bipartite entanglement be-
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tween two modes of a cavity field and proposed application to phase-controlled quan-

tum lithography. We also addressed the inevitable effect of decoherence in the same

model and discussed the possibility of generating steady-state entanglement.



137

REFERENCES

[1] G. Alzetta, A. Gozzini, L. Moi, and G. Orriols, Nuovo Cimento B 36, 5 (1976).

[2] R. M. Whitley and C. R. Stroud, Jr., Phys. Rev. A 14, 1498 (1976).

[3] E. Arimondo and G. Orriols, Lett. Nuovo Cimento 17, 333 (1976).

[4] O. Kocharovskaya and Ya. I. Khanin, JETP Lett. 48, 581 (1988).

[5] S. E. Harris, Phys. Rev. Lett. 62, 1033 (1989).

[6] M. O. Scully, S. -Y. Zhu, and A. Gavrielides, Phys. Rev. Lett. 62, 2813 (1989).

[7] R. Dicke, Phys. Rev. 93, 99 (1954).

[8] R. Horodecki, P. Horodecki, M. Horodecki, and K.Horodecki, Rev. Mod. Phys.

81, 865 (2009).

[9] H. Xiong, M. O. Scully, and M. S. Zubairy, Phys. Rev. Lett. 94, 023601 (2005).

[10] E. Alebachew, Phys. Rev. A 76, 023808 (2007).

[11] M. O. Scully, E. S. Fry, C. H. Raymond Ooi, and K. Wodkiewicz, Phys. Rev.

Lett. 96, 010501 (2006).

[12] M. O. Scully, Laser Phys. 17, 635 (2007).

[13] M. O. Scully, Phys. Rev. Lett. 102, 143601 (2009).

[14] A. A. Svidzinsky and M. O. Scully, Opt. Commun. 282, 2894 (2009).

[15] E. A. Sete, A. A. Svidzinsky, H. Eleuch, Z. Yang, R. D. Nevels, and M. O. Scully,

J. Mod. Opt. 57, 1311 (2010).



138

[16] Z. Ficek and S. Swain, J. Mod. Opt. 49, 3 (2002).

[17] E. A. Sete and S. Das, Phys. Rev. A 83, 042301 (2011).

[18] T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger, Phys. Rev.

Lett. 84, 4729 (2000).

[19] T. S. -Manderbach, H. Weier, M. Fürst, R. Ursin, F. Tiefenbacher, Th. Scheidl,

J. Perdigues, Z. Sodnik, J. G. Rarity, A. Zeilinger, and H. Weinfurter, Phys. Rev.

Lett. 98, 010504 (2007).

[20] M. O. Scully and M. S. Zubairy, Quantum Optics (Cambriage University Press,

Cambridge, 1997).

[21] F. A. Hopf, P. Meystre, M. O. Scully, and J. F. Seely, Phys. Rev. Lett. 35, 511

(1975).

[22] R. Bonifacio, F. A. Hopf, P. Meystre, and M. O. Scully, Phys. Rev. A. 12, 2568

(1975).

[23] F. A. Hopf and M.O. Scully, Phys. Rev. 179, 399 (1969).

[24] V. Kocharovsky, S. Cameron, K. Lehmann, R. Lucht, R. Miles, Y. Rostovtsev,

W. Warren, G. R. Welch, and M. O. Scully, Proc. Natl. Acad. Sci. U.S.A. 102,

7806 (2005).

[25] A. S. Zibrov, M. D. Lukin, D. E. Nikonov, L. Hollberg, M. O. Scully, V. L.

Velichansky, and H. G. Robinson, Phys. Rev. Lett. 75, 1499 (1995).

[26] G. Padmabandu, G. R. Welch, Ivan N. Shubin, E. S. Fry, D. E. Nikonov, M. D.

Lukin, and M. O. Scully, Phys. Rev. Lett. 76, 2053 (1996).



139

[27] S. -Y. Zhu, D. E. Nikonov, and M. O. Scully, Found. of Phys. 28, 611 (1998).

[28] D. Braunstein and R. Shuker, Phys. Rev. A 68, 013812 (2003).

[29] S. E. Harris and J. J. Macklin, Phys. Rev. A 40, 4135 (1989).

[30] M. O. Scully, in Advances in multi-photon processes and spectroscopy, proceed-

ings of the US-Japan Workshop, Honolulu, USA, edited by R. J. Gordon and Y.

Fujimura (Wolrd Scientific, Singapore, 1999), vol. 14, p. 126.

[31] S. Ya. Kilin, K. T. Kapale, and M. O. Scully, Phys. Rev. Lett. 100, 173601

(2008).

[32] E. A. Sete, A. A. Svidzinsky, Y. V. Rostovtsev, H. Eleuch, P. K. Jha, S. Suckewer,

and M. O. Scully, IEEE J. Sel. Top. Quantum Electron. 18, 541 (2012).

[33] G. W. F. Drake and D. C. Morton, ApJSS 170, 251 (2007).

[34] L. V. Keldysh, Soviet Phys. JETP 20, 1307 (1965).

[35] N. H. Burnett and P. B. Corkum, J. Opt. Soc. Am. B 6, 1195 (1989).

[36] Y. Avitzour, S. Suckewer, and E. Valeo, Phys. Rev. E 69, 046409 (2004).

[37] Y. Avitzour and S. Suckewer, JOSA B 24, 819 (2007).

[38] K. Bergmann, H. Theuer, and B. W. Shore, Rev. Mod. Phys. 70, 1003 (1998).

[39] S. -Y. Zhu, D. E. Nikonov, and M. O. Scully, Found. of Phys. 28, 611 (1998).

[40] G. W. F. Drake, Phys. Rev. A 19, 1387 (1979).

[41] W. R. Johnson, I. M. Savukov, U. I. Safronova, A. Dalgarno, and Argon, ApSS

141, 543 (2002).



140

[42] J. J. Rocca, V. Shlyaptsev, F. G. Tomasel, O. D. Cortázar, D. Hartshorn, and
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APPENDIX A

TOPICS RELATED TO CHAPTER II

LWI in Λ scheme for optically thin sample

For an optically thin sample the density of the medium may approximately be written

as

η ≃ αδ(z), (A.1)

where α is proportional to the absorption coefficient. Assuming that the off diagonal

terms ρca and ρcb are slowly varying function of retarded time µ = t − z/c, we set

∂
∂µ
ρca = 0 and ∂

∂µ
ρcb = 0. By doing so we obtain the corresponding steady state

expressions:

ρca = i
Ωγbc

γacγbc + |Ωl|2
(ρaa − ρbb) +

ΩΩlρab
γacγbc + |Ωl|2

, (A.2)

ρcb = i
Ωγac

γacγbc + |Ωl|2
ρab +

ΩΩl(ρaa − ρbb)

γacγbc + |Ωl|2
, (A.3)

where γac = γab = (γ + Γ)/2. If we assume the fields to be real, then ρca and ρab will

be pure imaginary numbers and ρcb real number. Thus on account of this and using

the steady state expressions for ρca and ρcb, we obtain

∂

∂µ
ρcc = Γρcc +

2Ω2

γac
(ρaa − ρcc) +

2Ω2Ωl

γac
Im(ρab), (A.4a)

∂

∂µ
ρaa = −(γ + Γ)ρaa −

2Ω2

γac
(ρaa − ρcc) + 2Ωl

1− Ω2

γacγcb
Im(ρab), (A.4b)

∂

∂µ
ρaa = γρbb − 2ΩlIm(ρab), (A.4c)
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∂

∂µ
Im(ρab) = −

(
γab +

2Ω2

γcb

)
Im(ρab) + Ωl

[
ρbb − ρaa +

Ω2(ρaa − ρcc)

γacγcb

]
, (A.4d)

where we have dropped higher order terms in Ωl assuming the input field is very weak.

Further, we treat the driving field as a constant assuming it is strong and doesn’t

change appreciably during the time of interaction with the medium. To this end, we

have only the wave equation for the lasing field:

∂

∂z
Ωl = −αδ(z)Im(ρab). (A.5)

The formal solution of Eq. (A.4d) has the form

Im(ρab) =

∫ µ

0

dµ′e−Γab(µ−µ′)Ωl(z
′, µ′)

(
ρbb − ρaa +

Ω2(ρaa − ρcc)

γacγcb

)
, (A.6)

where Γab = (γab +
2Ω2

γcb
). Substituting (A.6) into Eq. (A.5) and making use of (A.1),

we get

Ωl(z, µ) =Ωl(0, µ)− α

∫ µ

0

dµ′

×
∫ z

0

dz′δ(z′)e−Γab(µ−µ′)Ωl(z
′, µ′) (ρ̃aa(z

′, µ′)− ρ̃bb(z
′, µ′)) , (A.7)

where

ρ̃aa = ρaa +
Ω2

γacγcb
ρcc,

ρ̃bb = ρbb +
Ω2

γacγcb
ρaa.

Now performing the integration over z′, we easily get

Ωl(z, µ) =Ωl(0, µ)− α

∫ µ

0

dµ′e−Γab(µ−µ′)Ωl(0, µ
′) (ρ̃aa(0, µ

′)− ρ̃bb(0, µ
′)) . (A.8)

Taking a delta function input pulse say Ωl(0, µ) = Ω0δ(µ), one finds

Ωl(z, µ) = Ωl(0, µ)− αΩ0e
−Γabµ (ρ̃aa(0, 0)− ρ̃bb(0, 0)) . (A.9)
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We immediately notice from Eq. (A.9) that amplification of the lasing field is pos-

sible when ρ̃aa(0, 0) < ρ̃bb(0, 0). If the population is initially distributed between

levels |c⟩ and |b⟩ then the condition for the amplification of the lasing field reads

Ω2ρcc(0)/γacγbc < ρbb(0). Thus lasing in the |a⟩ → |b⟩ transition is possible in the

absence of population inversion as well as Raman inversion.

Spectral line broadening in plasma

It is well known that broadening of spectral lines occurs mainly due to the interaction

of the radiating atoms or ions with the surrounding particles and depends notably on

pressure and temperature. There are various line-broadening mechanisms. In what

follows we discuss the two major broadening mechanisms.

Doppler broadening

The motion of a radiating particle away or from an observer leads to a wavelength

shift of the emitted line–also called the Doppler shift. At low density, besides natural

broadening, Doppler broadening is always present and dominates the shapes near the

line center. For example, in the case of thermal Doppler broadening where the velocity

distribution is Maxwellian P (v)dv =
√
m/2πkBT exp[−mv2/2kBT ]dv the full width

at half maximum (FWHM) is given by

∆λDoppler = λ

√
(8 ln 2)kBT

mc2
(A.10)

where λ is the wavelength of center of the absorption line (m), T is the temperature,

kB is the Boltzmann constant, m is mass of the atoms or ion, and c is the speed of

light. Inspection of Eq. (A.10) shows that the thermal Doppler broadening is most

pronounced for the lines of light elements at high temperature.
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Pressure broadening

In dense plasma, however, natural and Doppler line broadenings are usually neg-

ligible. The line profiles emitted by atoms or ions, predominately depends on the

interactions between the emitters and the surrounding particles. These interaction

brings in frequency disturbance and phase shifts. This type of line broadening is

generally called pressure broadening.

Pressure broadening theory was developed from two different point of views,

which essentially are based on two extreme approximations–impact and quasi-static

approximations. In impact approximation, the light emitted from an ion or an atom

is momentarily perturbed by fast impacts, which disrupts completely the emission

process. This effect depends on both the density and temperature of the gas. On

other hand, in quasi-static approximation, the emitters are continuously under the

influence of the perturbers during the whole emission process. Furthermore, the

perturbing particles are assumed to move slowly during the time of emission that

the perturbing field may be thought of as quasi-static. This effect is insensitive to

temperature but depends on the density of the gas.

Pressure broadening of spectral lines emitted from a plasma can be subdivided

based on range of interaction. In general the phase shift obeys the inverse power law

∆ω = C/rp, where C is a constant and r is the distance of the perturber from the

emitter.

• Linear Stark broadening, p = 2, occurs through the linear Stark effect which

is a result of interaction of the emitter with an electric field. The change in

frequency is linear in the electric field, i.e. ∆ω ∼ 1/r2. This types of shift

occurs only in hydrogen due to degeneracy in l [151].

• Resonance broadening results due to the interaction between identical emitters
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and has the form of dipole-dipole interaction, which introduces the possibility

of an energy exchange, ∆ω ∼ 1/r3. Here the lines are symmetrically broadened

but unshifted.

• Quadratic stark broadening, p = 4 occurs via quadratic Stark effect which

results from interaction of an emitter with an electric field. The change in fre-

quency is quadratic in electric field, that is, ∆ω ∼ 1/r4. All atoms or ions ex-

perience quadratic Stark effect except hydrogen. The formula given by Griem

[152] were obtained in the impact approximation and also incorporated qua-

sistatic line broadening due to ions. They can be used together with calculated

parameters for several spectral lines to estimate the FWHM (∆λStark width) and

the line shift (∆λStark shift) using the following formula [153]:

∆λStark width = 2[1 + 5.53× 10−6n1/4
e α(1− 0.0068n1/6

e T−1/2)]10−22wne (A.11)

∆λStark shift = [d/w + 6.32× 10−6n1/4
e α(1− 0.0068n1/6

e T−1/2)]10−22wne,

(A.12)

where ne is the electron number density in m−3, w is the electron impact half

width in m, d/w is the ratio of shift to width (dimensionless), T is the absolute

temperature in K, and α is the ion broadening parameter. These empirical

formulae are valid only for neutral or singely ionized atoms. All the parameters

are given in Ref. [152] for different elements.

In plasmas with ions and electrons present in sufficiently high concentration–say at

least one percent of the total density–the long range Coulomb forces are dominant

and we are concerned with the quadratic Stark broadening.
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For example, for electron density ne = 1016cm−3, plasma temperature, kBTe =

1eV the parameters that appears in Eqs. (A.13) and (A.14) for 1S to 2P transition

in neutral Helium atom is given in Ref. [152] as: the electron broadening parameter

α = 0.01, electron impact width w = 1.58 × 10−14m, and shift d = −5.67 × 10−16m.

Therefore, using these values the Stark width becomes ∆λStark width = 3.2 × 10−14m

which gives a width in frequency domain ∆νStark = c∆λStark width/λ
2 = 2.9× 109s−1.

The corresponding Stark shift is ∆λStark shift = −3.8× 10−16m.

For multiply ionized atoms such as in our case, B3+ and C4+, the collision rate

can be calculated using the formula derived below.

Consider an electron moving with velocity ve and an ion containing Z number

of electrons. If b is the impact parameter, the collision time (the order of time that

electron feels the Coulomb force) is given by

∆t ≈ 2b

ve
. (A.13)

The Coulomb force that the electron experience is

F = me
∆ve
∆t

=
Ze2

4πε0b2
(A.14)

and hence

∆ve ≈
Ze2

2πε0bveme

. (A.15)

In order to calculate the collision time we determine how fast ∆v2e changes in

time. Note that the rate at which the electron encounters ions is niσve where ni is

the ion density, dσ = 2πbdb is the cross section. Thus the rate at which ∆v2e changes

is given by
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d

dt
⟨∆v2e⟩ =

∫ bmax

rs

2πnibve∆v
2
edb

=
niZ

2e4

2πε20m
2
eve

∫ bmax

rs

db

b
. (A.16)

Obviously the size of the impact parameter is finite. The electron feels the action of

the ions up to certain range due to the Debye shielding. Thus we take the upper limit

for the integral to be the Debye length: bmax = rD =
√
εkBTe/nee2. Care should

also be taken when one takes the minimum value of the impact parameter. This

simple way gives infinite change in velocity for the head-on collision (b = 0)–which

is not the case. We rather expect the change in velocity to be ∼ ve. Equating the

centripetal force with the Coulomb force one can find the lower limit of the integral

to be rs = Ze2/2πε0mv
2
e , which is the distance of closest approach.

Note that during the collision time, τ the change in velocity is of the order of

the velocity, thus from (A.16) we have

νei = 1/τ =
niZ

2e4

2πε20m
2
ev

3
e

ln Λ, (A.17)

where

Λ = rD/rs =

√
ε0kBT

nee2
2πε0mv

2
e

Ze2
. (A.18)

Fig. 53. Schematic of scattering of an electron by an ion containing Ze charge.
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Table III. Spontaneous decay rates, and collision rates without external field and ra-

diation wavelengths for B3+ and C4+.

Ion Z Γ(s−1) γ(s−1) νei(s
−1) λac (nm) λab(nm)

B3+ 3 4.5× 107 4.2× 106 2.0× 1011 282 6.1

C4+ 4 5.7× 107 2.7× 107 3.3× 1011 227 4.1

In the following table we summarize the collision frequency for a plasma tem-

perature kBTe = 1eV (ve = 3× 105m/s) and electron density ne = ni = 1020m−3 for

Helium-like ions.

We note from Table III that the collision rate between ions and electrons is larger

than the spontaneous decay rates. Thus one has to cleverly reduce the collision rates.
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APPENDIX B

DERIVATION OF SOME OF THE RESULTS IN CHAPTER III

Derivation of R00(t, t
′) and R0l(t, t

′) in Eq. (3.43)

Setting l = 0 in Eq. (3.42) we get

β̇0(t) = −
∑
k

g2k

∫ t

0

dt′
[
R0,0(t, t

′)β0(t
′) +

N−1∑
l=1

R0,l(t, t
′)βl(t

′)
]
, (B.1)

in which

R00(t, t
′) =

∑
i,j

⟨B0|σ+
j |C0⟩⟨C0|σi|B0⟩eik·(rj−ri)e−ic(k−k0)(t−t

′)

+
∑
i,j

⟨B0|σjσ†
i |B0⟩eik·(rj−ri)e−ic(k+k0)(t−t

′), (B.2)

R0l(t, t
′) =

∑
i,j

⟨B0|σ+
j |C0⟩⟨C0|σi|Bl⟩eik·(rj−ri)e−ic(k−k0)(t−t

′)

+
∑
i,j

⟨B0|σjσ†
i |Bl⟩eik·(rj−ri)e−ic(k+k0)(t−t

′) (B.3)

with

|C0⟩ = | ↓↓ ... ↓N⟩, |B0⟩ =
1√
N

N∑
m=1

eik0·rm | ↓↓ ... ↑m ... ↓N⟩, (B.4)

|Bl⟩ =
1√

l(l + 1)

[ l∑
m=1

eik0·rm | ↓↓ ... ↑m ... ↓l+1⟩−leik0·rl+1| ↓↓ ... ↑l+1⟩
]
, 1 ≤ l ≤ N−1.

(B.5)

Now using Eq. (B.4) one can easily verify that

∑
i

e−ik·rj⟨C0|σi|B0⟩ =
1√
N

∑
i

e−i(k−k0)·ri (B.6)
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and hence

∑
i,j

⟨B0|σ+
j |C0⟩⟨C0|σi|B0⟩eik·(rj−ri) =

1

N

∑
i,j

ei(k−k0)·(rj−ri)

= 1 +
1

N

∑
i ̸=j

ei(k−k0)·(rj−ri). (B.7)

Applying Eq. (B.4) one can similarly find that

∑
i,j

⟨B0|σjσ†
i |B0⟩eik·(rj−ri) = N − 1 +

1

N

∑
i̸=j

ei(k+k0)·(rj−ri). (B.8)

Therefore in view of Eqs. (B.7) and (B.8), Eq. (B.2) takes the form

R00(t, t
′) =

(
1 +

1

N

∑
i ̸=j

ei(k−k0)·(rj−ri)
)
e−ic(k−k0)(t−t

′)

+
(
N − 1 +

1

N

∑
i̸=j

ei(k+k0)·(rj−ri)
)
e−ic(k+k0)(t−t

′). (B.9)

Further, making use of Eq. (B.4) and (B.5), we obtain

∑
i

⟨C0|σi|Bl⟩e−ik·ri =
1√

l(l + 1)

[ l∑
i=1

e−i(k−k0)·ri − le−i(k−k0)·rl+1

]
. (B.10)

Replacing i by j in Eq. (B.6) and taking the complex adjoint and multiplying the

resulting expression by Eq. (B.10) yields

∑
i,j

⟨B0|σ+
j |C0⟩⟨C0|σi|Bl⟩eik·(rj−ri) =

1√
Nl(l + 1)

∑
j

ei(k−k0)·rj

×
[ l∑
i=1

e−i(k−k0)·ri − le−i(k−k0)·rl+1

]
. (B.11)

In a similar fashion, we obtain

∑
i,j

⟨B0|σjσ+
i |Bl⟩eik·(rj−ri) =

1√
Nl(l + 1)

∑
j

e−i(k+k0)·rj
[ l∑
i=1

ei(k+k0)·ri−lei(k+k0)·rl+1

]
.

(B.12)
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With the help of Eqs. (B.11) and (B.12), one can put Eq. (B.3) in the form

R0l(t, t
′) =

1√
Nl(l + 1)

∑
j

ei(k−k0)·rj
[ l∑
i=1

e−i(k−k0)·ri

− le−i(k−k0)·rl+1

]
e−ic(k−k0)(t−t

′)

+
1√

Nl(l + 1)

∑
j

e−i(k+k0)·rj
[ l∑
i=1

ei(k+k0)·ri

− lei(k+k0)·rl+1

]
e−ic(k+k0)(t−t

′). (B.13)

Discussion of Γ0l terms under certain approximations

Here we calculate Γ0l given by

Γ0l =
∑
k

g2k

∫ t

0

dt′R0l(t, t
′)

=
1√

Nl(l + 1)

∑
k

g2k

∫ t

0

dt′
{∑

j

ei(k−k0)·rj

×
[ l∑
i=1

e−i(k−k0)·ri − le−i(k−k0)·rl+1

]
e−ic(k−k0)(t−t

′)

+
∑
j

e−i(k+k0)·rj
[ l∑
i=1

ei(k+k0)·ri − lei(k+k0)·rl+1

]
e−ic(k+k0)(t−t

′)
}
. (B.14)

Using the transformation

∑
k

→ Vph

(2π)3

∫
k2dkdΩ̂k, (B.15)

where Ω̂k is the angular unit vector and noting that for large enough N ,

∑
j

ei(k0±k)·rj → δ(k± k0),

should be a good approximation for some problems. One should note, however, that

replacement of the summation over atoms by delta function is not rigorous for the
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finite size of atomic cloud. The results thus obtained will be only approximate even

for large atomic sample.

Now rewriting the δ function as

δ(k± k0) =
1

2πk2

∫ R

−R
dr ei(k−k0)rδ

(
Ω̂k − Ω̂±k0

)
. (B.16)

equation (B.14) becomes

Γ0,l =
ω2℘2

2π2h̄ε0c
√
Nl(l + 1)

∫
dk

k
δ(k − k0)

×
{[ l∑

j=1

ei(k0−k)xj − lei(k0−k)xl+1

]1− eic(k0−k)

ic(k − k0)

+
[ l∑
j=1

ei(k0+k)xj − lei(k0+k)xl+1

]1− e−ic(k0+k)

ic(k + k0)

}
, (B.17)

where xj = k0 · rj. The Sokhotsky’s formula allows us to write

1− e−ic(k±k0)t

ic(k ± k0)
=

1− cos(c(k ± k0)t)

ic(k ± k0)
+

sin(c(k ± k0)t)

c(k ± k0)

≡ −i
c
P

1

k ± k0
+
π

c
δ(k ± k0), (B.18)

where P represents the Cauchy principal part. The expression for Γ0l then becomes

Γ0l =
ω2℘2

2π2h̄ε0c
√
Nl(l + 1)

∫
dk

k
δ(k − k0)

×
{[ l∑

j=1

ei(k0−k)xj − lei(k0−k)xl+1

]
[
−i
c
P

1

k − k0
+
π

c
δ(k − k0)]

+
[ l∑
j=1

(ei(k0+k)xj − lei(k0+k)xl+1

][−i
c
P

1

k + k0
+
π

c
δ(k + k0)

]}
. (B.19)

Performing the integration over k and keeping the principal part term in the first
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integral, we obtain

Γ0l =
ω2℘2

2π2h̄ε0c
√
Nl(l + 1)

∫
dk

k
δ(k − k0)

×
[ l∑
j=1

ei(k0−k)xj − lei(k0−k)xl+1

][−i
c
P

1

k − k0

]
. (B.20)

Some care is required in dealing with the factor P [1/(k− k0)]. It is convenient to use

the original form

1− cos(c(k − k0)t)

ic(k − k0)
=

−i
c
P

1

k − k0
(B.21)

so that Eq. (B.20) yields

Γ0l =
ω2℘2

2π2h̄ε0c
√
Nl(l + 1)

∫
dk

k
δ(k − k0)

[ l∑
j=1

ei(k0−k)xj − lei(k0−k)xl+1

]
×

[1− cos(c(k − k0)t)

ic(k − k0)

]
= lim

k→k0

ω2℘2/(2π2h̄ε0c)√
Nl(l + 1)

[ l∑
j=1

ei(k0−k)xj − lei(k0−k)xl+1

](1− cos[c(k − k0)t]
)

ic(k − k0)k

(B.22)

which goes to zero for a very large number of atoms.

Calculation of the integral in Eq. (3.47)

Consider the integral

I3 = P

∫ ∞

0

dk

k

∫ r

−R
drei(k−k0)r

[ 1

k − k0
+

1

k − k0

]
. (B.23)

Performing the radial integration, we obtain

I3 = 2P

∫ ∞

0

dk

k

[ 1

k − k0
+

1

k + k0

]sin [(k − k0)R
]

(k − k0)
. (B.24)
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This integral can be rewritten using the partial fraction decomposition as

I3 =
1

k20

{∫ ∞

k0R

dy
sin(y − 2k0R)

y
−
∫ ∞

−k0R

sin(y)

y
dy + 2k0P

∫ ∞

−k0R

sin(y)

y2

}
(B.25)

and can be transformed to

I3 =
1

k20

[ ∫ ∞

k0R

dy
sin(y)

y
(cos(2k0R)− 1)− P

∫ ∞

k0R

dy
cos(y)

y
(sin(2k0R))

]
+

2

k0

[sin(k0R)
k0

+RP

∫ ∞

−k0R
dy

cos(y)

y

]
. (B.26)

Let us now determine the principal value of
∫∞
−k0R dy

cos(y)
y

P

∫ ∞

−k0R
dy

cos(y)

y
= lim

ε→0

[ ∫ −ε

−k0R
dy

cos(y)

y
+

∫ ∞

ε

dy
cos(y)

y

]
= lim

ε→0

[ ∫ ε

k0R

dy
cos(y)

y
+

∫ ∞

ε

dy
cos(y)

y

]
= −Ci(k0R).

I3 has then the exact result

I3 =
1

k20
[−Si(k0R)(1 + cos(2k0R)) + Ci(k0R)(sin(2k0R)− 2k0R)]

+
1

k20

[π
2
cos(2k0R)−

π

2
+ 2 sin(k0R)

]
, (B.27)

where ∫ ∞

0

dy
sin(y)

y
=
π

2
, (B.28)

and

Si(x) =

∫ x

0

sin(t)

t
dt, (B.29)

Ci(x) = −
∫ ∞

x

cos(t)

t
dt (B.30)

are the sine and cosine integrals, respectively. For k0R ≫ 1 the asymptotic of the
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sine and cosine integrals are

Si(x) ≈ π

2
− cos(x)

x
, (B.31)

Ci(x) ≈ sin(x)

x
, (B.32)

and we finally obtain

I3 ≈ − π

k20

[
1− 2

πk0R
cos(k0R)

]
. (B.33)
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