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ABSTRACT

Bayesian Gaussian Graphical Models Using Sparse Selection Priors and Their Mixtures. 

(August 2011)

Rajesh Talluri, B.Tech., Indian Institute of Technology, Guwahati

Co-Chairs of Advisory Committee: Dr. Bani K. Mallick
Dr. Veerabhadran Baladandayuthapani

We propose Bayesian methods for estimating the precision matrix in Gaussian 

graphical models. The methods lead to sparse and adaptively shrunk estimators of the 

precision matrix, and thus conduct model selection and estimation simultaneously. Our 

methods are based on selection and shrinkage priors leading to parsimonious 

parameterization of the precision (inverse covariance) matrix, which is essential in 

several applications in learning relationships among the variables. In Chapter I, we 

employ the Laplace prior on the off-diagonal element of the precision matrix, which is 

similar to the lasso model in a regression context. This type of prior encourages sparsity 

while providing shrinkage estimates. Secondly we introduce a novel type of selection 

prior that develops a sparse structure of the precision matrix by making most of the 

elements exactly zero, ensuring positive-definiteness.

In Chapter II we extend the above methods to perform classification. Reverse-

phase protein array (RPPA) analysis is a powerful, relatively new platform that allows 

for high-throughput, quantitative analysis of protein networks. One of the challenges that 

currently limits the potential of this technology is the lack of methods that allows for 

accurate data modeling and identification of related networks and samples. Such models 

may improve the accuracy of biological sample classification based on patterns of 

protein network activation, and provide insight into the distinct biological relationships 

underlying different cancers. We propose a Bayesian sparse graphical modeling 
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approach motivated by RPPA data using selection priors on the conditional relationships 

in the presence of class information. We apply our methodology to an RPPA data set 

generated from panels of human breast cancer and ovarian cancer cell lines. We 

demonstrate that the model is able to distinguish the different cancer cell types more 

accurately than several existing models and to identify differential regulation of 

components of a critical signaling network (the PI3K-AKT pathway) between these 

cancers. This approach represents a powerful new tool that can be used to improve our 

understanding of protein networks in cancer.

In Chapter III we extend these methods to mixtures of Gaussian graphical models 

for clustered data, with each mixture component being assumed Gaussian with an 

adaptive covariance structure. We model the data using Dirichlet processes and finite 

mixture models and discuss appropriate posterior simulation schemes to implement 

posterior inference in the proposed models, including the evaluation of normalizing 

constants that are functions of parameters of interest which are a result of the restrictions 

on the correlation matrix. We evaluate the operating characteristics of our method via 

simulations, as well as discuss examples based on several real data sets.
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lasso” model and “Bayesian lasso selection” model in terms of Kullback-

Leibler loss (K-L) for the simulated simulated matrices for different

types of structures for precision matrix for p = 25. Lower is better. . . . . 26

4 This figure shows the comparison between 4 methods “glasso” -Friedman

et al. (2008), “MB”- Meinshausen and Búhlmann (2006), “Bayesian
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CHAPTER I

INTRODUCTION TO BAYESIAN ADAPTIVE GAUSSIAN GRAPHICAL MODELS

A. Introduction

Consider the p dimensional random vector Y = (Y (1), · · · , Y (p)), which follows a multi-

variate normal distribution Np(μ,Σ) where both the mean μ and the variance-covariance

matrix Σ are unknown. Flexible modelling of the covariance matrix, Σ, or equivalently the

precision matrix, Ω = Σ−1, is one of the most important tasks in analysing Gaussian mul-

tivariate data. Furthermore, it has a direct relationship to constructing Gaussian graphical

models (GGMs) by identifying the significant edges. Of particular interest in this structure

is the identification of zero entries in the precision matrix Ω. An off-diagonal zero entry

Ωij = 0 indicates conditional independence between the two random variables Y (i) and

Y (j), given all other variables. This is the covariance selection problem or the model selec-

tion problem in the Gaussian graphical models (Dempster, 1972; Speed and Kiiveri, 1986;

Wong et al., 2003; Yuan and Lin, 2007), which provides a framework for the exploration

of multivariate dependence patterns.

GGMs are tools for modelling conditional independence relationships. Among the

practical advantages of using GGMs in high-dimensional problems is their ability to (i)

make computations more efficient by alleviating the need to handle large matrices, (ii)

yield better predictions by fitting sparser models, and (iii) aid scientific understanding by

breaking down a global model into a collection of local models that are easier to search.

Estimating the precision matrix efficiently and understanding its graphical structure is chal-

lenging, however, due to a variety of reasons that we discuss hereafter.

A GGM for a random vector Y can be represented by an undirected graph G =

This dissertation follows the style of Journal of the American Statistical Association.



2

(V ,E), where V contains p vertices corresponding to the p variates and the edges E =

(eij)(1≤i<j≤p) describe the conditional independence relationships among Y (1), . . . , Y (p).

The edge between Y (i) and Y (j) is absent if and only if Y (i) and Y (j) are independent, con-

ditional on the other variables, which corresponds to Ωij = 0. Thus, parameter estimation

and model selection in the Gaussian graphical model are equivalent to estimating param-

eters and identifying zeros in the precision matrix. The two main difficulties are that the

number of unknown elements in the covariance matrix increases quadratically with p, and

that it is difficult to deal directly with individual elements of the covariance matrix because

it is necessary to keep the estimated matrix positive definite. Yang and Berger (1994) and

Dempster (1969) pointed out that estimators based on scalar multiples of the sample co-

variance matrix tend to distort the eigenstructure of the true covariance matrix unless p/n

is small. In this paper, we address these modelling and inferential challenges as we explore

methods to adaptively estimate the precision matrix in a Gaussian graphical model setting.

There have been many approaches to Gaussian graphical modelling. In a Bayesian

setting, modelling is based on hierarchical specifications for the covariance matrix (or pre-

cision matrix) using global priors on the space of positive-definite matrices, such as an

inverse Wishart prior or its equivalents. Dawid and Lauritzen (1993) introduced an equiva-

lent form as the hyper-inverse Wishart distribution. Although that construction enjoys many

advantages, such as computational efficiency due to its conjugate formulation and exact cal-

culation of marginal likelihoods (Scott and Carvalho, 2008), it is sometimes inflexible due

to its restrictive form. Unrestricted graphical model determination is challenging unless the

search space is restricted to decomposable graphs, where the marginal likelihoods are avail-

able up to the overall normalizing constants (Giudici, 1996; Roverato, 2000). The marginal

likelihoods are used to calculate the posterior probability of each graph, which gives an ex-

act solution for small datasets, but a prohibitively large number of graphs for a moderately

large p. Moreover, extension to a nondecomposable graph is nontrivial and computation-
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ally expensive using reversible-jump algorithms (Giudici and Green, 1999; Brooks et al.,

2003). There have been several attempts to shrink the covariance/precision matrix via

matrix factorizations for unrestricted search over the space of both decomposable and non-

decomposable graphs. Barnard et al. (2000) factorized the covariance matrix in terms of

standard deviations and correlations, proposed several shrinkage estimators and discussed

suitable priors. Wong et al. (2003) expressed the inverse covariance matrix as a product

of the inverse partial variances and the matrix of partial correlations, then used reversible-

jump-based Markov chain Monte Carlo (MCMC) algorithms to identify the zeros among

the diagonal elements. Liechty et al. (2004) proposed flexible modelling schemes using

decompositions of the correlation matrix.

Alternate approaches for more adaptive estimation and/or selection of the graphical

models are based on priors/penalties that enforce sparsity. In a regression context for vari-

able selection problems such priors have been proposed by George and McCulloch (1993,

1997); Kuo and Mallick (1998); Dellaportas et al. (2000, 2002). However the context of

covariance selection in graphical models is inherently a different problem with additional

complexity arising due to the additional constraints of positive definiteness and the num-

ber of parameters to estimate being on the the order of p2 instead of p. An alternate class

of penalties that have received considerable attention in recent times have been lasso-type

penalties (Tibshirani (1996)) that have the ability to promote sparseness, and have been

used for variable selection in regression problems. In a frequentist graphical model context,

Meinshausen and Búhlmann (2006), Yuan and Lin (2007) and Friedman et al. (2008) pro-

posed methods to estimate the precision or covariance matrix based on lasso-type penalties

that yield only point estimates of the precision matrix. Lasso-based penalties are equivalent

to Laplace priors in a Bayesian setting (Figueiredo, 2003; Bae and Mallick, 2004; Park and

Casella, 2008). However, in a Bayesian setting, lasso penalties do not produce absolute

zeros as the estimates of the precision matrix, and thus cannot be used to conduct model
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selection simultaneously in such settings.

In this paper, we propose novel Bayesian methods for GGMs that allow for simul-

taneous model selection and parameter estimation. We introduce a novel type of prior in

Subsection C that can be decomposed into selection and shrinkage components in which

lasso-type priors are used to accomplish shrinkage and variable selection priors are used for

selection. We allow for local exploration of graphical dependencies that leads to a sparse

structure of the precision matrix by enforcing most of the non-required elements to be ex-

actly zero with positive probability while ensuring the estimate of the precision matrix is

positive definite. More importantly, as a significant methodological innovation, we extend

these methods to mixtures of GGMs for clustered data, with each mixture component as-

sumed to be Gaussian with an adaptive covariance structure. For some kinds of data, it is

reasonable to assume that the variables can be clustered or grouped based on sharing sim-

ilar connectivity or graphs. Our motivation for this model arises from a high-throughput

gene expression data set, for which it is of interest not only to cluster the patients (samples)

into the correct subtype of cancer but also to learn about the underlying characteristics of

the cancer subtypes. Of interest is differentiating the structure of the gene networks in the

cancer subtypes as a means of identifying biologically significant differences that explain

the variations between the subtypes. The modelling and inferential challenges are related to

determining the number of components, as well as estimating the underlying graph for each

component. We present a hierarchical extension of our adaptive methods for such settings,

which, to the best of our knowledge, has not been addressed previously in the literature.

In this chapter, we propose novel Bayesian methods using shrinkage and selection

priors for Gaussian graphical models that allow model selection and parameter estimation

simultaneously. In Subsection B, we employ the Laplace prior on the off-diagonal element

of the precision matrix, which is similar to the lasso model in a regression context. This type

of prior encourages sparsity while providing shrinkage estimates. We introduce a novel
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type of selection prior in Subsection C which will develop a sparse structure of the precision

matrix by making most of the elements exactly zero, ensuring the estimate of the precision

matrix is positive-definite. In Subsection D we describe about a naive Bayesian model

for precision selection. In Subsection E we perform simulations to assess the operating

characteristics of our methods and apply the model to real datasets.

B. The Bayesian Lasso Model for Sparse Graphical Models

Let Yp×n = (Y1, . . . ,Yn) be a p × n matrix with n independent samples and p variates,

where each sample Yi = (Y
(1)
i , . . . , Y

(p)
i ) is a p dimensional vector corresponding to the

p variates. We assume Y follows a matrix normal distribution N (μ,Σ, σ2In) with mean

μ and nonsingular covariance matrix Σ between the p variates (Y (1), . . . , Y (p)) and σ2

works as a scaling factor for the covariance matrix which without loss of generality can be

assumed to be equal to one. Given a random sample Y1, . . . ,Yn , we wish to estimate the

precision/concentration matrix Ω = Σ−1. The maximum likelihood estimator of (μ,Σ) is

(Ȳ , Ā) where Ā = 1
n

∑n
i=1 (Yi − Ȳ )(Yi − Ȳ )

T
. The commonly used sample covariance

matrix is Ŝ = nĀ/(n − 1). The concentration matrix Ω can be estimated by Ā−1 or

Ŝ−1. However, if the dimension is p, we need to estimate p(p+ 1)/2 numbers of unknown

parameters, which even for a moderate size p, might lead to unstable estimates of Ω. In

addition, given our main aim is to explore the conditional relationships among the variables,

our main interest is the identification of zero entries in the concentration matrix, because

a zero entry Ωij = 0 indicates the conditional independence between the two covariates

Y (i) and Y (j) given all other covariates. We propose different kinds of priors over Ω to

explore these zero entries. Here and throughout the paper we follow the notation, θ1|θ2 to

represent the conditional distribution of the random variable θ1 given θ2. The likelihood of



6

the Gaussian graphical model is written as

Y |G ∼ N (0,Ω−1, σ2In)

= (2πσ2)−
np
2 |Ω|n2 exp{− 1

2σ2
tr{ΩY Y T }}.

Modeling the entire p × p covariance matrix is more complicated, so it is helpful to start

by breaking it down into components. In our modeling framework, we directly work with

standard deviations and a correlation matrix (Barnard et al. (2000)), which do not corre-

spond to any type of parameterization (e.g. Cholesky, etc). This separation has a strong

practical motivation as most practitioners are trained to think in terms of standard devia-

tions and correlations. In this procedure, we would like to use partial correlations and the

inverse of partial standard deviations to model the precision matrix instead of modeling the

covariance matrix (Wong et al. (2003)).

To this end, we can parameterize the precision matrix as Ω = S ×C × S, where S

is a diagonal matrix and C is a correlation matrix. The partial correlation coefficients are

related to Cij as

ρij =
−Ωij

(ΩiiΩjj)
1
2

= −Cij.

To develop the Bayesian lasso (Blasso) model, we assign a Laplace prior on Cij, i < j. We

need an additional constraint that C ∈ Cp, where Cp is the space of all correlation matrices

of dimension p, leading to the prior for Cij as,

Cij ∼ Laplace(0, τij)I(C ∈ Cp), i < j

where the indicator function I(•) ensures that the correlation matrix is positive-definite and

introduces dependence among the Cij’s.

Laplace priors have the ability to promote sparseness and have been used for variable

selection in regression problems (Figueiredo (2003); Yuan and Lin (2005); Park and Casella
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(2008)) and especially in high-dimensional settings (Bae and Mallick (2004)). It is well-

known that the MAP estimates using the Laplace prior are the same as those produced by

applying the lasso algorithm that minimizes the usual sum of squared errors, with a bound

on the sum of the absolute values of the coefficients. We induce sparsity in our model by

using this Laplace prior where the prior on τij tunes the level of sparsity. To complete

the hierarchical formulation, we choose inverse gamma (IG) priors for the inverse of the

partial standard deviations Si , Laplace shrinkage parameter τij and σ2.

The hierarchical model can be summarized as follows:

Y |Ω, σ2 ∼ N (0,Ω−1, σ2In)

Ω = SCS

Cij ∼ Laplace(0, τij)I(C ∈ Cp), i < j

τij ∼ IG(e, f), i < j

Si ∼ IG(g, h)

σ2 ∼ IG(k, l)

for i = 1, . . . , p, j = 1, . . . , p.

1. Posterior inference and conditionals for the Bayesian Lasso Model

In this model, as the posterior is not of explicit form, we perform the posterior inference

using MCMC methods. We derive the full conditionals for all the parameters, and as they

are not of closed form, we employ the Metropolis-Hastings (MH) algorithm to draw those

parameters.
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The joint distribution of all parameters C, τ ,S, σ2|Y ∝

(2πσ2)−
np
2 |Ω|n2 exp{− 1

2σ2
tr{ΩY Y T}} ×

∏
i<j

K(τij)
1

2τij
exp(−|Cij|

τij
)I(C ∈ Cp)

×
∏
i<j

τ−e−1
ij exp(− f

τij
)×

p∏
i=1

S−g−1
i exp(

−h

Si

)× (σ2)−k−1exp(
−l

σ2
).

The unnormalized joint posterior can be computed using the above expression. For each

MCMC run we can compute the unnormalized joint posterior by evaluating the expression

by substituting the values of the parameters at that particular MCMC iteration. Here Ω =

SCS and K(τij) is the normalizing constant for τij , which has a complicated expression

due to the truncated range of C and constraint of positive definiteness. If Cp is the space

of all correlation matrices of dimension p, then I(C ∈ Cp) ensures that C is a correlation

matrix which is an additional constraint on the lasso solution. Subsequently, we derive the

conditional distribution of all the parameters to pursue our MCMC algorithm.

Sampling of Cij:

The full conditional for Cij is

Cij|C−ij, σ
2, τij ∝ |Ω|n/2exp{ −1

2σ2
tr{ΩY Y T} − 1

τij
|Cij|}I(C ∈ Cp).

where C−ij contains all other off diagonal elements of C except the ijth one. While draw-

ing each Cij , we have to ensure the positive definiteness of the matrix C. We choose to

use the approach proposed by Barnard et al. (2000). We compute the range from which Cij

should be sampled so that C is positive-definite. Details of this procedure are given in the

Appendix. The range can be found out from the roots of a simple quadratic equation as

outlined in Barnard et al. (2000). These roots depend only on C−ij . Hence after using this

approach, the constraint of positive definiteness is equivalent to I[uij ,vij ](Cij) where uij , vij
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are functions of C−ij . Accordingly, the full conditional distribution is

Cij|C−ij, σ
2, τij ∝ |Ω|n/2exp{ −1

2σ2
tr{ΩY Y T} − 1

τij
|Cij|}I[uij ,vij ](Cij)I[−1,1](Cij),

As this distribution is not in a closed form, we can employ the MH algorithm to sample

from this distribution. However, Cij lies within an interval, so rather than using the MH al-

gorithm, we discretize this interval in grids and then evaluate the conditional distribution at

these grid values. The next step is to normalize the grid values and make a discrete draw of

Cij from the grid values using those normalized values as the corresponding probabilities.

This is similar to performing discrete bootstrap sampling from the conditional distribution.

Furthermore, we used this discrete grid based method with resolution .001.

Sampling τij:

The full conditional distribution for τij is

τij|Cij,C−ij ∝ K(τij)
1

τij
exp(

−|Cij|
τij

)× τ−g−1
ij exp(− h

τij
)I(C ∈ Cp),

where K is the normalizing constant constrained by the truncation and positive definiteness

constraint on C. First, based on C−ij we can identify the largest possible interval of Cij ,

say uij and vij , which will keep C positive-definite. Then, we evaluate K(τij) as

K−1(τij) =

∫ 1

−1

1

2τij
exp{−|Cij|

τij
}I[uij ,vij ](Cij)dCij

=
1

2
[sgn(vij){1− exp{−|vij|

τij
}} − sgn(uij){1− exp{−|uij|

τij
}}],

where sgn is the sign function

sgn(x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
−1 if x < 0,

0 if x = 0,

1 if x > 0.
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We draw τij’s from this distribution using the MH algorithm.

Sampling σ2:

The full conditional distribution of σ2 is in a closed form so we directly draw from the

inverse gamma distribution as

k∗ = k + np/2, l∗ = l +
1

2
tr(ΩY Y T )

σ2|Ω,Y ∼ IG(k∗, l∗).

Sampling S:

The full conditional distribution of Si is

Si|S−i,Y , σ2 ∝ |SCS|n/2exp{− 1

2σ2
tr{SCSY Y T}}S−g−1

i exp(
−h

Si

)

∝ Sn
i exp{−

1

2σ2
tr{SCSY Y T}}S−g−1

i exp(
−h

Si

).

We use MH algorithm to sample Si from this distribution.

The conditionals for the model which are not in closed form are limited to an interval.

So we can use griding to calculate the exact distribution and draw from it directly. We use

a Metropolis Hastings step for drawing Si and τij , which converges quickly with a vague

prior. All other conditionals are directly drawn from their distributions.

2. Posterior thresholding for sparse solutions in Bayesian Lasso Models

The Bayesian lasso model yields (adaptively) shrunk estimates of the precision matrix,

whose entries are close to zero but not exactly zero i.e. the Laplace prior induces sparsity by

shrinking the off-diagonal elements Cij close to zero depending on the shrinkage parameter

τij , but they will not be exactly zero. . To explore the zero entries in the precision matrix, we

introduce a thresholding rule based on the variability of the estimates. We show this for the

cork boring dataset example. The posterior kernel density estimates of the MCMC chains
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for coefficients that were determined to be nonzero and determined to be exactly zero are

as shown in Figures 1(a) and 1(b), respectively. To achieve sparsity, we compute the 95%

bootstrap confidence interval for the mode of Cij from the MCMC samples of Cij . The

mode for each data set of the bootstrap sample is computed by finding the kernel density

for the sample and finding the mode of the estimated density. We use the method used in

Botev et al. (2010) to automatically select the optimal bandwidth for density estimation.

If zero is contained in the interval then the corresponding Cij is zero, and if zero is not
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(a) Posterior distribution for
nonzero correlation
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(b) Posterior distribution for zero cor-
relation

Fig. 1.: Shows the kernel density estimate of the empirical distributions of the MCMC

samples of the correlations.

contained in the interval then the corresponding Cij is the estimate of the mode. Generally

the empirical distributions of the MCMC samples are unimodal, but in rare cases when they

are multi-modal, the mode of the sample set is defined as the highest point in the empirical

p.d.f. By using the method described above we get a graphical model that corresponds to
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the model averaging of the best models, containing zero entries.

C. The Bayesian Lasso Selection Model for Sparse Graphical Models

In this section, we develop a selection model to identify the off-diagonal elements of the

precision matrix that are exactly zero. We have a likelihood function for this model that is

similar to the previous one as,

Y |G ∼ N (0,Ω−1, σ2In)

= (2πσ2)−
np
2 |Ω|n2 exp{− 1

2σ2
tr{ΩY Y T }},

where Ω = SCS is similarly structured as in the Bayesian lasso model, but the correlation

matrix C is now modeled as

C = A�R

where � is the Hadamard operator that does the element-wise multiplication.

1. Modelling the shrinkage matrix R

In order to achieve adaptive shrinkage of the partial correlations, we assign a Laplace prior

to the off-diagonal elements of R, Rij’s for i < j, where the Laplace prior is defined as

f(Rij|τij) ∝ 1

2τij
exp(−|Rij|

τij
),

with each individual element having its own scale parameter, τij , that controls the level

of sparsity. As discussed previously, Laplace priors have been widely used for shrinkage

applications.

Since R is a correlation matrix with elements that lie between [-1, 1], we incorporate

this fact as an additional constraint on the overall convolution matrix, C ∈ Cp, where Cp is

the space of all correlation matrices of dimension p. Hence the prior for Rij can be written
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as,

Rij|A ∼ Laplace(0, τij)I(C ∈ Cp),

where the indicator function ensures that the correlation matrix is positive definite. The full

specification of the constraints on the Rij’s to ensure the positive definiteness are discussed

in Appendix A.

In this setting, the shrinkage parameter τij controls the degree of sparsity, i.e., de-

termines how much the ijth element of R will be shrunk towards zero. We assign an

exchangeable inverse gamma prior as

τij ∼ IG(e, f), i < j,

where (e, f) are the shape and scale parameters, respectively. Note that if we set τij =

τ ∀i, j along with A = 1n (i.e., a matrix of all 1’s), this gives rise to the special case of

the Bayesian version of the graphical lasso of Friedman et al. (2008) and Yuan and Lin

(2007), where the single penalty parameter (τ ) controls the sparsity of the graph and is

estimated via cross-validation or by using a criterion similar to the Bayesian information

criterion (BIC). By allowing the penalty parameter to vary locally for each node, we allow

for additional flexibility, which has been shown to result in better properties than those of

the lasso prior and which also satisfies the oracle property (consistent model selection),

as shown by Griffin and Brown (2007) in the variable selection context. This fact is also

illustrated in our data analysis and simulations studies.

2. Modelling the selection matrix A

Since A is the selection matrix that performs the variable selection on the elements of

the correlation matrix R, it thus consists of only binary variables with the off-diagonal

elements being either zeros or ones. The most general prior is an exchangeable Bernoulli
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prior on the off-diagonal elements of A, given as

Aij|qij ∼ Bernoulli(qij), i < j,

where qij is the probability that the ijth element will be selected as 1; and

qij is assigned a beta prior as

qij ∼ Beta(a, b), i < j.

In this construction the hyperparameters qij control the probability that the ijth ele-

ment will be selected as a non-zero element. To evaluate a highly sparse model the hyper-

parameters should be specified such that the beta distribution is skewed towards zero, and

for a dense model the hyper-parameters should be specified such that the beta distribution

is skewed towards one. Furthermore, prior beliefs about the existence of edges can be in-

corporated at this stage of the hierarchy by giving greater weights to important edges while

down-weighting redundant edges.

In conclusion, the joint specification of A and R above gives us the graphical lasso

selection that performs simultaneous shrinkage and selection. To complete the hierarchical

specification of the graphical lasso selection, we use an inverse gamma prior on the inverse

of the partial standard deviations Si:

Si ∼ IG(g, h), i = 1, 2, . . . , p.
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The complete hierarchical model can be succinctly summarized as

Y |Ω, σ2 ∼ N (0,Ω−1, σ2In)

Ω = S(A�R)S

Aij|qij ∼ Bernoulli(qij), i < j

R|A ∼
∏
i<j

Laplace(0, τij)I(C ∈ Cp)

τij ∼ IG(e, f), i < j

qij ∼ Beta(a, b), i < j

Si ∼ IG(g, h)

σ2 ∼ IG(k, l),

where i = 1, . . . , p, j = 1, . . . , p and � is the Hadamard product.

3. Conditional distributions and the posterior sampling for the selection model

We again use MCMC methods for posterior inference as the joint posterior is not of ex-

plicit form. All the full conditional distributions of the parameters are not in closed form,

so we employ the MH algorithm to draw those parameters. For simplicity, let θij =

{R−ij,A−ij, qij,Y } where R−ij and A−ij contain all other off-diagonal elements of R

and A, respectively, except the ijth one.

Joint sampling of [Aij, Rij]:

First, we consider the complete conditional distribution of Rij as

[Rij|Aij, θij] ∝ |Ω|n/2exp{ −1

2σ2
tr{ΩY Y T} − 1

τij
|Rij|}I(C ∈ Cp)

We use this conditional distribution to draw Rij . We use the discrete bootstrap method to

draw Rij similarly to drawing Cij in the Bayesian lasso model. To sample Aij , we need to
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evaluate its complete conditional distribution

[Aij|Rij, θij] ∝ |Ω|n/2exp{ −1

2σ2
tr{ΩY Y T}}qAij

ij (1− q
1−Aij

ij )I(C ∈ Cp)

and use it to draw the binary variable Aij .

An alternative way to sample Aij is to marginalize Rij from the joint distribution of

Aij and Rij and use the marginal distribution for sampling Aij . As the marginalization is

not explicitly available, we use a Riemann approximation of this integral. We take M grid

points within the interval [uij, vij], which is the range of values Rij can take, and use the

approximation

P (Aij = 0|θij) ∝ (1− qij)
M∑
k=1

|Ω(Rij(k),Aij=0)|n2 exp{ −1

2σ2
tr{Ω(Rij(k),Aij=0)Y Y T}}

P (Aij = 1|θij) ∝ qij

M∑
k=1

|Ω(Rij(k),Aij=1)|n2 exp{ −1

2σ2
tr{Ω(Rij(k),Aij=1)Y Y T}}

Consequently, we draw Aij as a discrete binary variable using these probabilities as weights.

Sampling τij, qij:

The full joint conditional distribution for τij and qij is

τij, qij|Aij, Rij, θij ∝ K(τij, qij)
1

τij
exp(

−|AijRij|
τij

)× τ−g−1
ij exp(− h

τij
)

× q
Aij

ij (1− qij)
(1−Aij)I(C ∈ Cp),

where K is the normalizing constant constrained by the truncation and positive definiteness

constraint on C(= A � R). First, based on R−ij we can identify the largest possible

interval of Rij , say uij and vij (Barnard et al. (2000)), which will keep C positive-definite.
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Then, we evaluate K(τij, qij) :

K−1(τij, qij) =
∑

Aij={0,1}
q
Aij

ij (1− qij)
(1−Aij)

∫ 1

−1

1

2τij
exp{−|AijRij|

τij
}I[uij ,vij ](AijRij)dRij

=
(1− qij)

2

(vij − uij)

τij
I[uij ,vij ](0)IAij

(0) +
qij
2
CLap(uij, vij)I[uij ,vij ](Rij)IAij

(1)

where CLap(uij, vij) = [sgn(vij){1− exp{−|vij |
τij

}}− sgn(uij){1− exp{−|uij |
τij

}}]and sgn

is the sign function

sgn(x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
−1 if x < 0,

0 if x = 0,

1 if x > 0.

Now we can draw τij and qij from their conditional distributions :

τij|qij, Aij, Rij,Y ∝ K(τij, qij)
1

τij
exp(

−|AijRij|
τij

)× τ−g−1
ij exp(− h

τij
)

qij|τij, Aij, Rij,Y ∝ K(τij, qij)q
aij
ij (1− qij)

(1−aij)qα−1
ij (1− qij)

(β−1).

Both of these conditionals do not have an explicit form, so we need to use the Metropolis

Hastings algorithm to draw τij and qij from their conditionals.

Sampling σ2:

The full conditional distribution of σ2 is in a closed form so we directly draw from the

inverse gamma distribution as

k∗ = k + np/2, l∗ = l +
1

2
tr(ΩY Y T )

σ2|Ω,Y ∼ IG(k∗, l∗).
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Sampling Si The full conditional distribution of Si is

Si|S−i,Y , σ2 ∝ |S(A�R)S|n/2exp{− 1

2σ2
tr{S(A�R)SY Y T}}S−g−1

i exp(
−h

Si

)

∝ Sn
i exp{−

1

2σ2
tr{S(A�R)SY Y T}}S−g−1

i exp(
−h

Si

).

We use the Metropolis Hastings algorithm to sample Si from this distribution.

4. Model selection using marginal probabilities

In this subsection, we propose a metric using marginal probabilities to compare different

graphs visited by the MCMC chains. The marginal posterior probability of a given graphi-

cal (G) structure can be expressed as,

p(G|Y ) ∝
∫

p(Y |θ,G)p(θ|G)p(G)dθ, (1.1)

where Y denotes the data and G encodes the variables that define the graphical structure

and θ represents all the other parameters in the model. In standard graphical models p(θ|G)

is usually assigned a conjugate prior such as hyper Inverse-Wishart (Jones et al. (2004);

Carvalho et al. (2007)) and hence the integral in (1.1) can be obtained explicitly. Although,

making computations tractable, the conjugate priors restricts the search to to small classes

of graphical models like decomposable graphical models (Giudici and Green (1999); Scott

and Carvalho (2008)). In our framework, we explore a larger class of graphical models in

addition to inducing sparsity which comes with an added computational complexity – the

marginal density (1.1) is not available in explicit form.

However, one method to approximate the marginal posterior probability using our

MCMC samples is as below.

1. We rank the top graphs based on some model selection criteria. For our examples

we choose Bayes Information Criteria(BIC) which penalizes the complex models in



19

favor of balanced models and is defined as,

−2 log p(Y |G) + const ≈ −2L(Y, θ̂) +mMlog(n) ≡ BIC

where p(Y |G) is the (integrated) likelihood of the data for the graph G, L(Y, θ̂)

is the maximized mixture log likelihood for the model, and mG is the number of

independent parameters to be estimated in the model. The number of parameters to

be estimated in the model is considered as the number of nonzero edges and all the

other parameters in the model.

2. Select top K (say 200) graphs in accordance with the BIC values.

3. Re-run the MCMC (for M iterations) to get sufficient samples to approximate the

marginal probabilities using the Harmonic mean estimate (Newton and Raftery (1994);

Gelfand and Dey (1994)).

4. Use the Harmonic mean estimate P (G|Y ) ≈ (M−1
∑M

i=1 p(Y |θi)−1)−1 and normal-

ize it to calculate the posterior probabilities of the models.

The resulting marginal posterior probabilities now come with appropriate uncertainty

bounds and can be used for inference.

This approach has a major drawback which is the volatility of the harmonica mean

estimators. This has been criticized widely in literature and we chose to use an alternative

method to approximate posterior probabilities based on the frequency of appearance of

models in the MCMC. We obtain the Monte-Carlo estimates of these posterior probabilities

by counting the proportion of MCMC samples to have the specific graphical structure.

Hence, if I(A = A∗) denote the indicator function for the graphical model A = A∗ , then
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the ergodic average or the Monte Carlo frequency estimator of this model A∗ is given by

π(A∗|Y ) =
1

K

K∑
b=1

I(Ab = A∗),

where Ab is graphical model visited on the bth MCMC draw and K is the total number of

draws from the Markov chain.

D. A Naive Bayesian Model

We also develop a naive Bayesian model expressing C as

C = A� R̂,

where � is the Hadamard operator that does element wise multiplication. Here R̂ is a plug-

in estimate of the correlation matrix obtained from factorizing the estimate of the precision

matrix Ω̂ = ŜR̂Ŝ where R̂ is a correlation matrix and Ŝ is a diagonal matrix. The relation

of R̂ to partial correlation is described in Subsection C. For a relatively large sample size,

the inverse of the sample correlation matrix is an obvious choice for this estimate. A is the

shrinkage matrix such that the elements of A will shrink the elements in R̂. In this way

some of the elements of R̂ will be shrunk towards 0. This approach is similar in spirit to

the nonnegative garrote estimator proposed by Breiman (1995) and Yuan and Lin (2007).

We assign a Laplace prior on the off-diagonal elements of A

Aij ∼ Laplace(0, τ), i < j.

The posterior inference is similar to previous analyses, hence we skip the details.
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E. Simulations

In this subection we compare different methods to assess the performance of the Bayesian

lasso models. We simulate five types of concentration matrices, in order of increasing

structural complexity:

1. Identity matrix

2. Banded diagonal matrix.

3. Block diagonal matrix

4. Sparse unstructured matrix.

5. Dense unstructured matrix.

An identity matrix is a simple matrix with ones in its diagonal and zeros in its off diagonal.

Banded diagonal matrix is a tridiagonal matrix with ones in its diagonal and all the elements

in the diagonals adjacent to the main diagonal set to 0.5. Before explaining simulations of

more complex matrix structures, we describe the process used for generating a random

positive definite correlation matrix. A random lower triangular matrix L was generated

with ones in its diagonal and normal random numbers in its lower triangle. Then LLT gave

us a positive definite matrix. The matrix was then factored as QΩQ, where Q is a diagonal

matrix and Ω is a correlation matrix with ones in its diagonal which is the desired positive

definite correlation matrix. A block diagonal matrix was generated as follows. Two positive

definite matrix correlation matrices of sizes p−k and k were generated, where k is a random

number between 1 and p, and were concatenated in the diagonals to create a matrix of size

p×p as shown in Figure 2(c). the sparse unstructured matrix was simulated as follows: Let

Σ = B + δIp where each off-diagonal entry in B is generated independently and equals

a random number between [−1,−.5] and [.5, 1] with probability π or 0 with probability
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Fig. 2.: This figure shows the simulated matrices for different types of structures for pre-

cision matrix. The colorbar is same for all the matrices. White indicates a zero in the

precision matrix whereas colored cells indicate non-zero elements.

1 − π, all diagonal entries of B are zero and δ is chosen such that the resulting matrix is

positive definite. In the end we do the factorization of Σ as QΩQ, where Q is a diagonal

matrix and Ω is a correlation matrix with ones in its diagonal, which is the desired sparse

positive definite correlation matrix. We can vary the sparsity of the matrices generated by

changing the value of π. We chose π = 0.1 for the sparse unstructured matrix. The dense

unstructured matrix is the full matrix that is a random positive definite correlation matrix of

size p generates using the method described above. The simulated matrices for size p = 10
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are shown in Figure 2. In Figure 2 the white blocks in the off diagonal are the zeros in the

matrices, the colors correspond to the magnitude of nonzero off-diagonal elements in the

matrices as represented by the colorbar at the end of the figure.

We compare our methods with the “glasso” approach of Friedman et al. (2008) and the

method (“MB”) proposed by Meinshausen and Búhlmann (2006) as both these methods use

the L1- regularization and are closest to our approach using Laplace priors. We try to assess

the performance of these methods in terms of the Kullback-Leibler loss (KL), the number

of false positives (FP; incorrectly identified edges) and the number of false negatives (FN;

incorrectly missed edges). Both the methods were implemented using the glasso package

in R. We implemented them using Matlab-R link to call the the functions in Matlab.

It should be noted that both these methods are frequentist methods and they give a

point estimate for the precision matrix, whereas the Bayesian methods can also provide

the uncertainty estimates for the covariance matrix, so we are comparing the performance

regarding the final estimate of the precision matrix. For the Bayesian lasso model and the

Bayesian lasso selection model we use the estimate of the precision matrix as the matrix

that has the highest joint log posterior of all of the unique models visited in the MCMC

simulation. The joint log posterior is computed at every iteration of the MCMC simulation,

and the sample with the highest joint log posterior is the most likely map estimate, which

can be compared with the estimates of the above two frequentist methods.

The Kullback -Leibler Loss is defined as ΔKL(Ω̂,Ω) = trace(ΩΩ̂−1)− log|ΩΩ̂−1|−
p , whose ideal value should be zero when Ω̂ = Ω. Figures 3, 4 and 5 show the means and

standard errors for the KL, FP and FN for sample size n = {25} and number of covariates

p = {5, 10, 15, 25} averaged over 10 data sets.

The “glasso” method and the “MB” method were performed using ρ = 0.1 which is

the tuning parameter for the lasso penalty in both the methods because this setting gave

good results for all the scenarios. As shown in Figure 3, the proposed Bayesian methods
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perform better than the other methods in some of the cases while in others all the methods

are competitive with each other. The Bayesian Lasso model does better than the Bayesian

lasso selection model in simpler correlation structures as the Bayesian lasso is a shrinkage

model from which the zeros were selected post-MCMC. As it is a continuous model it has

a better probability to get to good estimate of the precision matrix in simpler models such

as the identity matrix structures, where as the Bayesian lasso selection model is more of a

model searching method which searches over all the models of the precision matrix to find

which are the probable models. The Bayesian lasso has a higher probability of getting stuck

in a local mode than the Bayesian lasso selection model. As the Bayesian lasso selection

model makes discrete jumps in the model space, it is more likely to explore the whole

space.

We can see that all the methods perform more or less the same in Identity and Dense

Matrix structures. In sparse unstructured matrices and banded diagonal matrices the Bayesian

models outperform the “glasso” and “MB” methods. This is because of the adaptive regu-

larization on the partial correlations in Bayesian models. If “glasso” and “MB” did adaptive

regularization the methods would have been competitive with each other in these scenarios.
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To compute the false positive and false negative rate for the Bayesian lasso model we

need to use the bootstrap confidence intervals to find the zeros in the model. This is not

necessary for the Bayesian lasso selection model as the zeros are directly incorporated in

the model. We also computed the false negative and false positive rates for the methods

and compared them in Figures 5 and 4 respectively. This is mostly dependent on the

parameter for tuning the sparsity. If you want more sparser models you are more likely

to get false negatives and less likely to get false positives. All the methods have similar

false negative rates except for dense and block diagonal matrices. Both these scenarios

are dense matrices so there are a lot of elements in the matrix which have small partial

correlations but not exactly zero, so all the models are likely to make them zero as they are

small enough. So there is a higher chance of getting a false negative in these scenarios than

others. For the scenario of Identity matrices there is no chance of getting a false negative

as all elements are zeros.

The false positive rates tell us how likely you are to make an error by changing an

element which was actually zero to a nonzero one. We can see that the Bayesian models

have smaller false positive rates compare to the “glasso” and “MB” methods.



26

0 5 10 15 20 25 30
−1

0

1

2

3

4

5

No of covariates p

K
ul

lb
ac

k−
Le

ib
le

r L
os

s

Comparison between methods for Identity Matrices

Bayesian Lasso
Bayesian Lasso Selection
glasso
MB

(a) Identity Matrix

0 5 10 15 20 25 30
0

5

10

15

20

25

30

35

40

No of covariates p

K
ul

lb
ac

k−
Le

ib
le

r L
os

s

Comparison between methods for Banded Tridiagonal Matrices

Bayesian Lasso
Bayesian Lasso Selection
glasso
MB

(b) Banded Diagonal Matrix

0 5 10 15 20 25 30
0

2

4

6

8

10

12

14

16

18

20

No of covariates p

K
ul

lb
ac

k−
Le

ib
le

r L
os

s

Comparison between methods for Block Diagonal Matrices

Bayesian Lasso
Bayesian Lasso Selection
glasso
MB

(c) Block Diagonal Matrix
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0 5 10 15 20 25 30
0

2

4

6

8

10

12

14

16

18

20

No of covariates p

K
ul

lb
ac

k−
Le

ib
le

r L
os

s

Comparison between methods for Dense Unstructured Matrices

Bayesian Lasso
Bayesian Lasso Selection
glasso
MB

(e) Dense Matrix

Fig. 3.: This figure shows the comparison between 4 methods “glasso” -Friedman et al.

(2008), “MB”- Meinshausen and Búhlmann (2006), “Bayesian lasso” model and “Bayesian

lasso selection” model in terms of Kullback-Leibler loss (K-L) for the simulated simulated

matrices for different types of structures for precision matrix for p = 25. Lower is better.
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(b) Banded Diagonal Matrix
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(c) Block Diagonal Matrix
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(d) Sparse Matrix
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Fig. 4.: This figure shows the comparison between 4 methods “glasso” -Friedman et al.

(2008), “MB”- Meinshausen and Búhlmann (2006), “Bayesian lasso” model and “Bayesian

lasso selection” model in terms of false positive rates for the simulated simulated matrices

for different types of structures for precision matrix for p = 25. Lower is better.
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(b) Banded Diagonal Matrix
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(c) Block Diagonal Matrix
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(d) Sparse Matrix
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Fig. 5.: This figure shows the comparison between 4 methods “glasso” -Friedman et al.

(2008), “MB”- Meinshausen and Búhlmann (2006), “Bayesian lasso” model and “Bayesian

lasso selection” model in terms of false negative rates for the simulated simulated matrices

for different types of structures for precision matrix for p = 25. Lower is better.
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F. Model Comparison with Benchmark Data

We chose to compare our methods with three existing methods that were earlier used in

different papers. The Lasso and non negative type garrotte estimator are used in Yuan

and Lin (2007) and Mixed Interaction Modeling (MIM) is one of the leading softwares for

graphical modeling. For determining the best models for Bayesian lasso model we use the

model obtained with the bootstrap confidence intervals. For the Bayesian lasso selection

model we compute the joint log posterior for all of the unique models visited in the MCMC

simulation and we select the model with the highest joint log posterior as the best model.

Lasso Model: The Lasso model is a penalized-likelihood method that does model

selection and parameter estimation simultaneously in the Gaussian concentration graph

model and uses an L− 1 penalty on the off-diagonal elements of the concentration matrix

that encourages encourages sparsity and simultaneously shrinks the estimates.

Non-Negative Garrote Model: This model is similar to the Lasso model but the

fact that we have a relatively reliable estimate of the concentration matrix changes the

penalty function by incorporating the estimate into it (Yuan and Lin (2007)). This approach

is similar to the non-negative garrote estimator proposed by Breiman (1995) for linear

regression.

MIM: MIM is the only available software supporting graphical modeling with both

discrete and continuous variables. MIM is designed for graphical modeling using undi-

rected graphs, directed acyclic graphs and chain graphs. It is based on a comprehensive

class of statistical models for discrete and continuous data. The dependence properties

of the models can be displayed in the form of a graph. The backward stepwise selection

method in Edward‘s MIM package with the option of unrestricted selection, wherein both

decomposable and non-decomposable models are considered, is used. Implementation of

the stepwise model selection procedure in MIM is based on removing only one edge, the
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least significant one, at a time.

1. Examples

We consider two benchmark real datasets and a stock market dataset to compare our meth-

ods

a. Example 1: Cork borings data set

Cork borings data are presented in Whittaker (1990)(Exercise 8.6.5) and were originally

used by Rao (1948). The p = 4 measurements are the weights of cork borings on n = 28

trees in four directions: north, east, south and west.

(a) (b)

Fig. 6.: (A) was selected by Lasso, Garrote and Naive Bayes Models and (B) was selected

by Bayesian lasso, Bayesian lasso selection and MIM Models.

Figure 6 depicts the best graphs for the cork borings data set. We can see that the

Bayesian lasso, Bayesian lasso selection and MIM models select the same graph, Figure

6(b) as the best graph. This graph had the highest joint posterior value for both the Bayesian

lasso and Bayesian lasso selection models. Whereas the graph in Figure 6(a) is selected as

the best graph by Lasso, Garrote and Naive Bayes models. As these are benchmark datasets
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with small number of covariates, the results for all the models are very similar because the

models that best describe the data are the same. We confirm that we get the same models

that best describe the data as in Yuan and Lin (2007).

b. Example 2: The mathematics marks data set

The Mathematics marks dataset (Mardia et al. (1979)) contains the marks of n = 88 stu-

dents in the p = 5 examinations in mechanics, vectors, algebra, analysis and statistics,

(a) (b)

Fig. 7.: (A) was selected by the Lasso model and (B) was selected by Bayesian lasso,

Bayesian lasso selection, MIM, garrote and Naive Bayes Models.

Figure 7 depicts the best graphs for the mathematics marks data set. Here Bayesian

lasso, Bayesian lasso selection, Garrote, Naive Bayes and MIM models select the same

graph, Figure 7(b) as the best graph. This graph had the highest joint posterior value for

both the Bayesian lasso and Bayesian lasso selection models. The graph in Figure 7(a) is

selected as the best model by the Lasso model. As these are benchmark datasets with small

number of covariates, the results for all the models are very similar because the models

that best describe the data are the same. We confirm that we get the same models that best

describe the data as in Yuan and Lin (2007).
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c. Example 3: Enron stock market data example

We take a motivating example from a stock market data set Liechty et al. (2004), which

may be used by the finance community to group and analyze companies according to their

areas of operation. This grouping requires knowledge of the companies and is determined

by people who are experts in the field. Grouping companies according to the services

or products they offer may be complicated by companies redirecting their efforts, e.g., in

response to changing economic situations or consumer demands.

Enron was a company that provided a good illustration of this type of change. En-

ron began as an energy company, but changed its business focus and transformed itself

into a finance company. It was not known whether Enron provided more service to energy

clients or to finance clients; therefore, the category into which Enron fit was uncertain. One

approach to resolving this uncertainty is to examine the behavior of a companys stock to

determine its primary service. We undertook such an analysis using the same data set that

was used by Liechty et al. (2004), which consists of data on nine companies. Four of the

companies were known to provide energy services, four were known to provide financial

services, and the ninth was Enron. The energy companies were Reliant, Chevron, British

Petroleum and Exxon. The finance companies were Citi-Bank, Lehman Brothers, Merrill

Lynch and Bank of America. The data included monthly stock data for each company over

a period of 73 months. This example is also motivated by the need for accurate estimates of

pairwise correlations of assets in dynamic portfolio-selection problems. Graphical models

offer a potent tool for regularization and stabilization of these estimates, leading to portfo-

lios with the potential to uniformly dominate their traditional counterparts in terms of risk,

transaction costs, and overall profitability.

We report the best graphs supported by the data by computing the posterior proba-

bilities for the graphs using the following scheme. The MCMC samples obtained from
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the analysis explore the distribution of possible graphical configurations suggested by the

data, with each configuration represented by the selection matrix A encoding the indica-

tors of the possible edges. To explore the space of valid graphs, we follow the strategy of

selecting the model with the highest marginal posterior probability over the space of all

possible graphs. We obtain the Monte-Carlo estimates of these posterior probabilities by

counting the proportion of MCMC samples to have the specific graphical structure. Hence,

if I(A = A∗) denote the indicator function for the graphical model A = A∗ , then the

ergodic average or the Monte Carlo frequency estimator of this model A∗ is given by

π(A∗|Y ) =
1

K

K∑
b=1

I(Ab = A∗),

where Ab is graphical model visited on the bth MCMC draw and K is the total number of

draws from the Markov chain.

The top six graphs identified using our lasso selection model are shown in Figure 8

sorted by the posterior probabilities. It is clear from the illustrated network (e.g Figure

8(a)) that Enron is grouped with the energy companies and was not successful, in terms of

stock performance, in transitioning from an energy company to a finance company. Liechty

et al. (2004) also found Enron to be more closely related to the energy companies than the

finance companies.

For comparison with our proposed method, we selected two methods that use L1-

regularization and are similar to our approach using Laplace priors: the “glasso” approach

of Friedman et al. (2008) and the method (“MB”) proposed by Meinshausen and Búhlmann

(2006). As both approaches are frequentist, hence they incorporate no notion of marginal

likelihoods and posterior probabilities, we used prediction performance to compare the

methods. We split the 73-month data sample into a 60-month training set and a 13-month

prediction set. Using the training set to find the top 10 graphs (where top graphs are ranked
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Fig. 8.: This figure shows the top 6 graphical models for the stock market data, sorted by

the marginal posterior probabilities of the models.

by marginal posterior probabilities), we applied the Bayesian lasso selection model and

found the estimates of the precision matrix for each graph. We then predicted the stock

value of each sample of the test set given all other stocks for each of the test samples and

averaged them over the 10 graphs – thus employing Bayesian model mixing. For the glasso

and MB methods, we used the estimate for the precision matrix derived by these methods

to predict the test samples using ρ = 0.1, where ρ is the tuning parameter for the lasso

penalty in both methods. For the sake of a fair comparison of the frequentist methods,

we also included a Bayesian model with a single penalty parameter, making τij = τ and
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Table I.: Predictive squared error comparison for Enron stock data

Bayesian lasso selection Bayesian lasso (single penalty) glasso MB

30.6764 31.9765 32.1968 32.7445

qij = q to make it equivalent to the frequentist models with a single penalty parameter. The

results are shown in Table I.

We can see that the Bayesian lasso selection model has the lowest (better) predictive

squared error compared to the frequentist methods, thus showing how Bayesian model

mixing can help improve prediction accuracy. Of interest is that the performance of the

Bayesian lasso model with the single penalty parameter was worse than that of the lasso

selection model with a locally varying penalty, and its prediction performance was close

to those of the glasso and MB methods. We show the graphs derived from the glasso

and MB methods in Figure 9. The inferences are similar using these approaches in the

sense that Enron is linked more with oil companies than finance companies. However,

these approaches show more connections than are shown in our selection models. Thus

the methods seem to differ in imparting sparse solutions, with the Bayesian lasso selection

models giving sparser outputs, which is reflected in the prediction performance.

In addition, we compared our graphical method to a simple cluster analysis to see

how the companies cluster together in terms of their stock performance. We clustered the

data using the model-based clustering software MCLUST (Fraley and Raftery, 2002). We

used the “VVV” parameterization to estimate the unconstrained covariance matrix for the
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Fig. 9.: The graphical models for the stock market data obtained using (a) the glasso method

and (b) the MB method.

data and used BIC to find the optimal number of clusters. The optimal number of clusters

found by BIC was one cluster, which grouped all nine companies together. In contrast,

the graph with the highest posterior probability as determined by our method, Figure 8(a),

detected two distinct subgraphs, those of energy companies and finance companies, with

Enron being connected to the energy companies. This clustering also appeared in the other

graphs in Figure 8. In essence, cluster analysis missed this relationship and was unable to

distinctly answer the scientific question that was posed.
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CHAPTER II

BAYESIAN SPARSE GRAPHICAL MODELS FOR CLASSIFICATION WITH

APPLICATION TO PROTEIN EXPRESSION DATA

A. Introduction

1. Protein signaling pathways in cancer

The treatment of cancer is rapidly evolving due to an improved understanding of the signal-

ing pathways that are activated in tumors. Global profiling of DNA mutations, chromoso-

mal copy number changes, DNA methylations, and expression of mRNA and miRNA have

greatly improved our appreciation of the heterogeneity of cancer [Nishizuka et al. (2003);

Blower et al. (2007); Gaur et al. (2007); Shankavaram et al. (2007); Ehrich et al. (2008)].

However, the characterization of protein signaling networks has proven to be much more

challenging. Several reasons underscore the critical importance of overcoming this chal-

lenge: First, changes in cellular DNA and RNA both ultimately result in changes in protein

expression and/or function; thus, protein networks represent the summation of changes that

happen at the DNA and RNA levels. Second, research has demonstrated that many of the

most common oncogenic genetic changes activate proteins in kinase signaling pathways.

Examples include activating mutations of PIK3CA, EGFR, and RAS family members; am-

plification of HER2/neu; and a loss of the PTEN function.

Numerous studies of protein networks and expression analysis have shown promis-

ing results. Due to the hyper-activation of kinase signaling pathways, numerous kinase

inhibitors have been used in clinical trials, frequently with dramatic clinical activity. In-

hibitors that target protein signaling pathways are now FDA-approved in a variety of can-

cers, including chronic myelogenous leukemia, breast cancer, colon cancer, renal cell car-

cinoma, and gastrointestinal stromal tumors [reviewed in Davies et al. (2006)]. While
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most of these treatments directly target prevalent genetic changes, or the downstream ef-

fectors of the mutated proteins, there is emerging evidence that carcinogenesis frequently

involves the concurrent activation of multiple pathways. This is clinically important, as

these events may cause resistance to targeted therapies. For example, EGFR inhibitors are

FDA-approved for the treatment of metastatic colon cancer. However, research has demon-

strated that this treatment is ineffective in colon cancer patients with an RAS mutation in

their tumor [Linardou et al. (2008); Siena et al. (2009)]. There is also evidence that con-

current activation of the PI3K-AKT signaling pathway reduces the efficacy of trastuzumab

in breast cancer patients who have an amplified level of the HER2/neu gene [Nagata et al.

(2004)].

Protein networks need to be assessed directly, as DNA or RNA analyses often do not

accurately reflect or predict the activation status of protein networks. Many proteins are

regulated by post-translational modifications, such as phosphorylation or cleavage events

that are not detected by the analysis of DNA or RNA. Several studies have also demon-

strated marked discordance between mRNA and protein expression levels, particularly for

genes in kinase signaling and cell cycle regulation pathways [Varambally et al. (2005);

Shankavaram et al. (2007)]. Recently, it has been demonstrated, in both cancer cell lines

and tumors that different genetic mutations in the same signaling pathway can result in

significant differences in the quantitative activation levels of downstream pathway effec-

tors [Stemke-Hale et al. (2008); Davies et al. (2009); Vasudevan et al. (2009); Park et al.

(2010)]. While these observations support that direct measurements are essential to mea-

sure protein network activation, a number of studies have demonstrated that signaling path-

ways are frequently regulated by complex feed-forward and feedback regulatory loops, as

well as cross-talk between different pathways [Mirzoeva et al. (2009); Zhang et al. (2009);

Halaban et al. (2010)]. Thus, developing an accurate understanding of the regulation of

protein signaling networks will be optimized by approaches that (1) assess multiple path-
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ways simultaneously for different tumor types and/or conditions, and (2) allow for the use

of rigorous statistical approaches to identify differential functional networks.

2. Graphical models for network analysis

A convenient and coherent statistical representation of protein networks is accorded by

graphical models [Lauritzen (1996)]. By “protein network” we mean any graph with pro-

teins as nodes, where the edges between proteins may code for various biological informa-

tion. For example, an edge between two proteins may represent the fact that their products

interact physically (protein-protein interaction network), the presence of an interaction such

as a synthetic-lethal or suppressor interaction [Kelley and Ideker (2005)], or the fact that

these proteins code for enzymes that catalyze successive chemical reactions in a pathway

[Vert and Kanehisa (2003)]. An example plot of the PI3K-AKT signaling pathway, a pro-

tein interaction network that is a focus of our study, is shown in Figure 12.

Our focus is on undirected graphical models and on Gaussian graphical models (GGM)

in particular [Whittaker (1990)]. These models provide representations of the conditional

independence structure of the multivariate distribution – to develop and infer protein net-

works. In such models, the nodes represent the variables (proteins) and edges represent

pairwise dependencies, with the edge set defining the global conditional independence

structure of the distribution. We develop an adaptive modeling approach for the covari-

ance structure of high-dimensional distributions with a focus on sparse structures, which

are particularly relevant in our setting in which the number of variables (p) can exceed the

number of observations (n).

GGMs have been under intense methodological development over the past few years

in both frequentist [Meinshausen and Búhlmann (2006); Chaudhuri et al. (2007); Yuan and

Lin (2007); Friedman et al. (2008); Bickel and Levina (2008) ] and Bayesian settings [Giu-

dici and Green (1999); Roverato (2002); Carvalho and Scott (2009)] . In high-dimensional
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settings, Dobra et al. (2004) used regression analysis to find directed acyclic graphs and

converted them to undirected (sparse) graphs to explore the underlying network structure.

However, most of the approaches we cited focused on inferring the conditional indepen-

dence structure of the graph and did not consider classification, which is one of the foci

of our article. Rapaport et al. (2007) used spectral decomposition to detect the underlying

network structure and classify genetic data using support vector machines (SVM). More

recently Monni and Li (2010) proposed a graph-based regression approach incorporating

pathway information as a prior for classification procedures, but their method does not de-

tect differential networks based on available data. In this article, we propose a constructive

method for sparse graphical models using selection priors on the conditional relationships

in the presence of class information. Our method has several advantages over classical

approaches. First, we incorporate (integrate) the uncertainty of the parameters in deriv-

ing the optimal rule via Bayesian model mixing. Second, our network model provides an

adaptively regularized estimate of the covariance matrix and hence is capable of handling

n < p situations. More importantly, our model uses this information in deriving the optimal

classification boundary.

With available online databases containing tens of thousands of reactions and interac-

tions, there is a pressing need for methods integrating a priori pathway knowledge in the

proteomic data analysis models. This challenge has been addressed in several studies. Vert

and Kanehisa (2003) developed a method for correlating interaction graphs and different

types of quantitative data. For gene expression data, Rahnenfhrer et al. (2004) showed

that explicitly taking into account the pathway distance between pairs of genes enhances

the statistical scores when identifying activated pathways. Hanisch et al. (2002) proposed

co-clustering of gene expression and gene networks, and Galbraith et al. (2006) proposed

constructing linear models of gene regulation based on a priori known network informa-

tion. Sivachenko et al. (2002) proposed a method to find significantly affected pathway
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regulators when a priori network topology information was used jointly with microarray

data. In our approach, we integrate prior network information directly in the model in an

intuitive way such that the presence of an edge can be specified by providing the probabil-

ity of an edge to be present in the correlation matrix. Our method is fully Bayesian and

allows for posterior inference on the network topologies both within and between groups.

After fitting the Bayesian model, we obtain the posterior probabilities of the edge inclusion,

which leads to false discovery rate (FDR)-based calls on significant edges.

B. Model

Our data construct for modeling is as follows. We observe a tuple: (Zi,Yi), where Zi is a

categorical outcome denoting the type or subtype of cancer (binary or multicategory) and

Yi is a vector of p proteins for the ith sample/patient/array. We proceed by modeling the

tuple using the following conditional representation: P (Yi|Zi)P (Zi), where the first term

defines a sampling model on the network via a Bayesian GGM. In combination with the

second term, this provides the classification scheme.

1. Bayesian Sparse Gaussian Graphical Model with selection priors

Let Yp×n = (Y1, . . . ,Yn) be a p × n matrix with n samples and p covariates (proteins).

Each sample Yi = (Y
(1)
i , . . . , Y

(p)
i ) is a p dimensional vector. We associate each vertex

of the graph G with a covariate in Y and assume that the graphical model is a family

of probability distributions that is Markov in G [Lauritzen (1996)]. Y follows a matrix

normal distribution, N (μ,Σ, σ2In), where μ is the mean, Σ is a nonsingular covariance

matrix between the covariates, and σ2 is a scaling factor for the covariance. For ease of

exposition, we set μ = 0 in the ensuing discussion, assuming that the mean effects have

been accounted for either via centering or integration.
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Given a random sample Y1, . . . ,Yn , we wish to estimate the concentration matrix Ω =

Σ−1, which encodes the conditional dependencies between the proteins. The likelihood of

the Gaussian graphical model can then be written as

Y|G ∼ N (0,Ω−1, σ2In) (2.1)

∝ (2πσ2)−
np
2 |Ω|n/2exp{ −1

2σ2
tr{ΩY Y T }}

The key idea behind GGMs is the modeling of the concentration (precision) matrix

Ω = Σ−1, which will dictate the network structure. In this framework, of particular inter-

est is the identification of zero entries in the concentration matrix Ω. A zero entry at the

ijth element of Ω indicates conditional independence between the two random variables Yi

and Yj , given all other variables. This is the covariance selection problem in the Gaussian

graphical models [Dempster (1972); Cox and Wermuth (2002)]. Typical estimation is car-

ried out either via shrinkage estimation [Yuan and Lin (2007)] or using continuous priors

such as hyper-inverse Wishart priors [Carvalho and West (2007)], which yields estimates

that are close to zero (but not exactly zero) entries, and thus results in many non-zero en-

tries. We propose a different kind of selection prior over Ω to explore these zero entries in

the next subsection.

a. Parameterization of the concentration matrix

Due to the complicated structure of the covariance matrix, it is helpful to start by breaking it

down into components. For some applications (e.g., shrinkage modeling), it is desirable to

work directly with standard deviations and a correlation matrix [Barnard et al. (2000)] that

do not correspond to any type of parameterization (e.g., Cholesky, etc.). This separation

has a strong practical motivation, as most practitioners are trained to think in terms of

standard deviations and correlations, thus easing prior elicitation. In this model we would
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like to use partial correlations and the inverse of the partial standard deviations to model

the concentration matrix instead of modeling the covariance matrix [Wong et al. (2003)].

To this end, we parameterize the concentration matrix as Ω = S ×C × S, where S

is a diagonal matrix and C is a correlation matrix. The partial correlation coefficients are

related to Cij as

ρij =
−Ωij

(ΩiiΩjj)
1
2

= −Cij

To aid a more intuitive interpretation for the model, we model the correlation matrix

C as

C = A�R,

where � is the Hadamaard operator indicating element-wise multiplication between the

two matrices. Here A can be defined as a selection matrix that consists of only binary

(0/1) variables as its elements. The off-diagonal elements of A are zeros or ones only.

By a selection matrix we mean that the elements in A select which of the elements in R

are zeros or not. In other words, A performs variable selection on the elements of the

correlation matrix R. This parameterization is intuitive in the sense that we work with

individual elements of the correlation matrix to determine if each is a zero or not.

We assign a Bernoulli prior on the off-diagonal elements of A as they are binary vari-

ables as

Aij|qij ∼ Bernoulli(qij), i 	= j

where qij is the probability of the ijth element being selected as 1.

Since R is a correlation matrix, all of its off-diagonal elements are in the range [−1, 1].

Hence, we can assign an independent uniform prior over [−1, 1] for all Rijs for i < j. Note

that all the values of R in this range do not guarantee that C(= A �R) will be positive-

definite. For that we need the additional constraint that C ∈ Cp where Cp is the space of



44

all correlation matrices of dimension p. Hence a coherent prior for R is

R|A ∼
∏
i<j

Uniform(−1, 1)I(C ∈ Cp),

where I(•), the indicator function, ensures that the correlation matrix is positive-definite

and introduces dependence among the Rij’s.

Instead of defining a joint prior on the space of the correlation matrices, it is simpler

to work with the individual elements Rij . Following the method of Barnard et al. (2000),

we find the range [uij, vij] on the individual elements of R that will guarantee the positive

definiteness of C = A � R. The resulting prior on the off-diagonal elements Rij can be

written as

Rij|aij, A−ij, R−ij ∼ Uniform(uij, vij)I(−1 < Rij < 1), i 	= j, i < j,

where R−ij contains all other off-diagonal elements of R except the ijth element and A−ij

contains all elements of A except the ijth element. In the calculations, uij and vij have to

be chosen such that C = A �R remains positive-definite and (conditionally) uij and vij

are functions of R−ij and A−ij .

The parameter qij is the probability that the ijth element will be selected as a non-zero

element; it controls the degree of sparsity in an adaptive manner by element-wise selection

of the entries of the correlation matrix. We assign a beta hyper-prior for the probabilities

qij as

qij ∼ Beta(aij, bij), i 	= j,

where the hyper-parameters aij, bij can be set to induce prior information on the graph

structure . To complete the hierarchical specification, we choose an (exchangeable) inverse-

gamma prior on the inverse of the partial standard deviations S, which is a diagonal matrix

containing entries Si = Ω
1
2
ii as Si ∼ IG(g, h), i = 1, 2, . . . , p., and on the error variance,
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σ2 ∼ IG(k, l).

All the above parameters described are different for each of the groups. So there will

be two A’s (i.e.A1 and A2 one for each group) as is the case with all the above parameters.

But the main advantage of Bayesian methodology lies in borrowing strength between the

groups. This can be accomplished by having a variable which connects the groups. We

introduce a latent variable λ which is defined as

λij =

⎧⎪⎨⎪⎩ 1 if A1
ij 	= A2

ij

0 if A1
ij = A2

ij

The parameter λij signifies the presence or absence of the same edge in the graphical

model of both the groups. In other words λij = 1 signifies a differential edge (i.e. the rela-

tion between the covariates i, j is significant in only one group but not the other) whereas

λij = 0 signifies a common edge( i.e. the relation between the covariates i, j is significant

in both the groups). This information is vital for understanding the biological processes

and inferring conclusions from the analysis.

As λij are binary random variables we propose a Bernoulli prior on λij as

λij ∼ Bernoulli(πij), i < j

The parameter πij is the probability that the relation between ith and jth covariate is

differential. We assign a beta hyper-prior for the probabilities πij as

πij ∼ Beta(eij, fij), i 	= j,

The complete hierarchical formulation of the network component of the model can be
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succinctly summarized as follows for k = 1, 2:

Y (k)|Ω(k), σ2(k) ∼ N (0,Ω−1(k), σ2(k)In)

Ω(k) = S(k)(A(k) �R(k))S(k)

A
(1)
ij , λij|q(1)ij , πij ∼ Bernoulli(q

(1)
ij )Bernoulli(πij), i < j

R(k)|A(k) ∼
∏
i<j

Uniform(−1, 1)I(C(k) ∈ Cp)

q
(1)
ij ∼ Beta(α

(1)
ij , β

(1)
ij )

πij ∼ Beta(eij, fij), i 	= j,

S
(k)
i ∼ IG(g, h)

σ2(k) ∼ IG(m, l)

where i, j = 1, . . . , p.

An important thing to note is that by the introduction of the latent variable λ we are

actually reparameterizing the model by making one of the A matrices fixed, i.e. given A(1)

and λ, A(2) is fixed. So we only need 2 priors one on λ and A(1) as A(2) is no longer a

random variable. Because of the same reason we also dont need to draw q
(2)
ij .

b. Incorporating prior pathway information

As we mentioned before, there exists a huge amount of literature (prior knowledge) on

pathways and other functional behaviors of proteins such as metabolic, signaling or other

regulation pathways. We formally incorporate this a priori knowledge in our model through

the prior specification on qij , the probability that the edge between protein (i, j) will be

selected as shown in Figure 10. In particular, we impose an informative prior on (qij) ∼
Beta(aij, bij), and set the hyper-parameters aijand bij such that the distribution has a higher

mean to reflect our prior knowledge of the presence of an edge. For example we set the,
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Fig. 10.: This figure shows the how the prior information is incorporated in the model.
qij is the model parameter which is the probability of there being an edge between protein
i and protein j . If no information is available , prior on qij is Beta(2,2) with mean 0.5,
reflecting no prior information about the edge and the prior on qij is Beta(10,2) with mean
0.83, if there is biological evidence that the edge plays an important role in the pathway.

• prior on qij as Beta(2,2) with mean 0.5, in absence of prior information and

• prior on qij is Beta(10,2) with mean 0.83, if there is biological evidence that the edge

plays an important role in the pathway.

The prior information incorporated in qij is the pathway information which is when

the biological process is normal, whose information is available in on-line databases. The

information on which relations between proteins are affected when there is a mutation is not

readily available and is one of the goals of our methodology. We can get this information

using expert opinion from the biologists who can tell us which relations are perturbed due

to mutation and we can incorporate that information to draw λ. As πij is the probability

of a differential edge, we can incorporate the information about perturbed relations during

mutations in a similar way as above.

we set the,

• prior on πij as Beta(2,2) with mean 0.5, if the relationship between i, j proteins is

not perturbed by a mutation.
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• prior on πij is Beta(10,2) with mean 0.83, if there is biological evidence that the

relationship between i, j proteins is perturbed by a mutation .

2. Conditionals

Sampling of R(k)
ij , k = 1, 2:

First, we consider the complete conditional distribution of R
(k)
ij as

[R
(k)
ij |A(k)

ij , R
(k)
−ij, A

(k)
−ij,Y

(k)] ∝ |Ω(k)|n(k)/2exp{ −1

2σ2
tr{Ω(k)Y (k)Y (k)T}}

I{u(k)
ij ,v

(k)
ij }(A

(k)
ij R

(k)
ij ).

We use this conditional distribution to draw R
(k)
ij . We use the discrete bootstrap

method to draw R
(k)
ij

Joint Sampling of A(1)
ij and λij:

To sample A
(1)
ij and λij , we need to evaluate its complete conditional distribution which is

[A
(1)
ij , λij|others] ∝ |Ω(1)|n(1)/2exp{ −1

2σ2(1)
tr{Ω(1)Y (1)Y (1)T}}I{u(1)

ij ,v
(1)
ij }(A

(1)
ij R

(1)
ij )

|Ω(2)|n(1)/2exp{ −1

2σ2(2)
tr{Ω(2)Y (2)Y (2)T}}I{u(2)

ij ,v
(2)
ij }(A

(2)
ij R

(2)
ij )

q
(1)
ij

A
(1)
ij
(1− q

(1)
ij )1−A

(1)
ij π

λij

ij (1− πij)
(1−λij)π

eij−1
ij (1− πij)

(fij−1)

and use it to jointly draw the binary variable A
(1)
ij and λij . Lets label this equation as

FA,λ(.).

Note here that there are only 4 cases we need to draw for A
(1)
ij and λij

( i.e. [{0, 0}, {0, 1}, {1, 0}, {1, 1}]). So we directly find the probabilities for each of the

states .

P (A
(1)
ij = 0, λij = 0|others) ∝ FA,λ(A

(1)
ij = 0, λ = 0, A

(2)
ij = 0)

P (A
(1)
ij = 0, λij = 1|others) ∝ FA,λ(A

(1)
ij = 0, λ = 1, A

(2)
ij = 1)

P (A
(1)
ij = 1, λij = 0|others) ∝ FA,λ(A

(1)
ij = 1, λ = 0, A

(2)
ij = 1)
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P (A
(1)
ij = 1, λij = 1|others) ∝ FA,λ(A

(1)
ij = 1, λ = 1, A

(2)
ij = 0) Consequently, we sample

one of the configurations A
(1)
ij , λij as a discrete binary variable using these probabilities as

weights.

Complete conditional for Q(1),πij:

q
(1)
ij |A(1)

ij ∝ q
(1)
ij

A
(1)
ij
(1− q

(1)
ij )(1−A

(1)
ij )q

(1)
ij

αij−1
(1− q

(1)
ij )(βij−1)

q
(1)
ij |A(1)

ij ∼ Beta(A
(1)
ij + αij, βij + 1− A

(1)
ij ).

Similarly

πij|λij ∼ Beta(λij + eij, fij + 1− λij).

Complete conditional for σ2(k)

m∗ = m+ n(k)p/2, l∗ = l +
1

2
tr{Ω(k)Y (k)Y (k)T}

σ2(k)|Ω(k),Y (k) ∼ IG(m∗, l∗).

Complete conditional for S(k)

S
(k)
i |S(k)

−i ,Y
(k), σ2(k) ∝ |S(k)(A(k) �R(k))S(k)|n(k)/2

exp{ −1

2σ2(k)
tr{S(k)(A(k) �R(k))S(k)Y (k)Y (k)T}}

S
(k)
i

−g−1
exp(

−h

S
(k)
i

)

∝ S
(k)
i

n
exp{ −1

2σ2(k)
tr{S(k)(A(k) �R(k))S(k)Y (k)Y (k)T}}

S
(k)
i

−g−1
exp(

−h

S
(k)
i

).
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3. Bayesian classification based on posterior predictive probabilities

We develop a Bayesian classification procedure based on posterior predictive probabilities

using the network information obtained from the previous subsection. Our task here is to

build a predictor or classifier for K tumor classes/subtypes that partitions the space into

K disjoint subsets, (B1, . . . , BK), such that if a sample with protein expression profile

Yi = (y1, . . . , yp) ∈ Bk, the predicted class is k. This utilizes the fact that the proteins in

the kth class share a common network profile.

We propose a model-based Bayesian classification procedure for this problem. In

particular, given a training data set, {(ZT
i ,Y

T
i ), i = 1, . . . , N}, we wish to build a dis-

crimination rule that we can use to classify future samples based on their protein ex-

pression Y new, i.e., predict Znew based on the posterior predictive probabilities. Suppose

pk ≡ P (Znew = k|Y new,Y T ,ZT ) is the posterior predictive probability of the new sample

belonging to the kth class, which is defined as

pk ∝
[∫

θ

P (Y new|Znew = k,M)P (M|Y T ,ZT )dM
]
P (Znew = k) (2.2)

and is known up to a proportionality constant. Here M encodes all the unknown model

parameters (from the previous subsection), P (M|•) denotes the posterior distribution of

M based on the current model, and P (Znew = k) is the prior probability of the new

samples belonging to the kth class.

In our framework, due to the construction of our network model, this posterior predic-

tive density is not available in closed form. We numerically evaluate this integral based on

Markov chain Monte Carlo (MCMC) techniques. Suppose M̂m is the mth random sample

from our MCMC chain, then we can approximate (2.2) as

pk ∝
[
1

M

M∑
m=1

P (Y new|Znew = k,M̂m)

]
P (Znew = k), (2.3)
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where M is the total number of MCMC samples, and the approximation (2.3) converges to

the true value in (2.2) as M −→ ∞.

A Bayesian classification scheme assigns the new sample to the kth class as k∗ =

arg maxk(pk). This is akin to the usual Bayes discriminant rule under a 0/1 loss function.

Under a Bayesian GGM framework, P (Y new|Znew = k, θ) is a Gaussian distribution,

hence our classification rule is similar to a (quadratic) discriminant analysis. Discriminant

analysis is a well-studied problem in classical multivariate statistics, in which the data are

projected onto a low-dimensional space providing the maximum class separability [Duda

et al. (2000)] and includes linear discriminant analysis (LDA) and quadratic discriminant

analysis (QDA) as special cases. The LDA and QDA differ in the form of the optimal de-

cision boundaries, which is linear in the former and nonlinear in the latter. Our Bayesian

discriminant rule has three key advantages over the classical approach. First, we incorpo-

rate (integrate) the uncertainty of the parameters in deriving the optimal rule via Bayesian

model mixing. Second, our network model provides an adaptively regularized estimate of

the covariances and hence is capable of handling n < p situations. Third, our network

model uses this information in deriving the optimal classification boundary.

To illustrate the underpinnings of our network-based classifier, we illustrate a simple

case using k = 2 groups. Assume

Y ∼ f1 = N(μ1,Σ1) with probability π1

Y ∼ f2 = N(μ2,Σ2) with probability π2,

where (π1, π2) are the prior odds of belonging to the classes and N(μ,Σ) is the normal dis-

tribution with mean μ and variance Σ, which in our context codes for the network/pathway

information. In this framework the classical decision boundary for discrimination is given

by λ(Y ) = log f1(Y )
f2(Y )

, which also happens to be the a posteriori log-odds ratio for popu-
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lation 1 versus 2 (assuming equal prior odds for both populations, i.e., π1 = π2). Using

simple algebraic manipulations of the multivariate normal densities given previously, one

can show that

λ(Y ) = β0 + βLY + Y TβQY

where β0 is the intercept component, βL is the linear component (inY ), and βQ is the

quadratic component of the discriminant function.

β0 =
1

2
{−log|Σ1|+ log|Σ2| − μT

1Σ
−1
1 μ1 + μT

2Σ
−1
2 μ2}

βL = −μT
1Σ

−1
1 + μT

2Σ
−1
2

βQ =
1

2
{Σ−1

1 −Σ−1
2 }

Therefore, we can see that β0 and βL are functions of (μ1,μ2,Σ1,Σ2) and βQ is a function

of(Σ−1
1 ,Σ−1

2 ) only. Note that the nonlinear classification decision boundary is only because

of the presence of the term Y TβQY , which is a sole function of the covariances. Hence,

network information from each of the classes is used to decide the boundary. We exploit

this advantage of using the precision matrix information, which has been estimated using

prior pathways of the proteins, to determine the optimal boundaries .

C. Estimation Via MCMC

This subsection sets up the framework to carry out the Markov chain Monte Carlo (MCMC)

calculations for our model parameters. The parameters and random variables to be esti-

mated in the model are M ≡ {A,R, q,S, σ2}. The conditional distribution of all the

parameters except q and σ2 are not available in closed form, hence we resort to a hybrid

of the Gibbs and Metropolis-Hastings algorithms to explore the posterior distribution. We

train the model using the training data set and use the classification scheme to predict the

class of a new observation. In addition to this classification scheme, we can perform poste-
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rior inference on the network parameters for significant graphs using MCMC samples, as

outlined hereafter.

D. FDR-based Determination of Significant Networks

Once we apply the MCMC methods, we are left with posterior samples of the model pa-

rameters that we can use to perform Bayesian inference. Our objective is twofold: to detect

the “best” network/pathway based on the significance of the edges and also to detect differ-

ential networks between treatment groups/classes. Given p proteins, our network consists

of p(p + 1)/2 unique edges, which could be large even for a moderate number of pro-

teins. Therefore we need a mechanism that will control for these large scale comparisons,

discover edges that are significant, and also detect differential edges between groups. We

accomplish this in a statistically coherent manner using false discovery rate (FDR)-based

thresholding to find significant networks and also to differentiate networks across samples.

The MCMC samples explore the distribution of possible network configurations sug-

gested by the data, with each configuration leading to a different topology of the network

based on the model parameters. Some edges that are strongly supported by the data may

appear in most of the MCMC samples, whereas others with less evidence may appear less

often. There are different ways to summarize this information in the samples. One could

choose the most likely (posterior mode) network configuration and conduct conditional

inference on this particular network topology. The benefit of this approach would be the

yielding of a single set of defined edges, but the drawback is that the most likely configu-

ration may still appear only in a very small proportion of MCMC samples. Alternatively,

one could use all of the MCMC samples and, applying Bayesian model averaging (BMA)

[Hoeting et al. (1999)], mix the inference over the various configurations visited by the

sampler. This approach better accounts for the uncertainty in the data, leads to estimators
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of the precision matrix with the smallest mean squared error, and should lead to better pre-

dictive performance in class predictions [Raftery et al. (1997)]. We will use this Bayesian

model averaging approach.

From our MCMC method, suppose we have M posterior samples of the corresponding

parameter set {A(m)
ij ,m = 1, . . . ,M}, for which the selection indicator of the ijth edge is

in the model. Suppose further that the model averaged set of posterior probabilities is set

P , the ijth element of which Pij = M−1
∑

m A
(m)
ij and is a p×p dimensional matrix. Note

that 1− Pij can be considered Bayesian q-values, or estimates of the local false discovery

rate [Storey and Tibshirani (2003); Newton et al. (2004)] as they measure the probability

of a false positive if the ijth edge is called a “discovery” or is significant. Given a desired

global FDR bound α ∈ (0, 1), we can determine a threshold φα to flag a set of edges

Xφ = {(i, j) : Pij ≥ φα} as significant edges.

The significance threshold φα can be determined based on classical Bayesian utility

considerations such as those described in Muller et al. (2004) and based on the elicited

relative costs of false-positive and false-negative errors or can be set to control the average

Bayesian FDR, as in Morris et al. (2008). The latter is the process we follow here. For

example, suppose we are interested in finding the value φα that controls the overall aver-

age FDR at some level α, meaning that we expect that only 100α% of the edges that are

declared significant are in fact false positives. Let vec(P) = [Pt; t = 1, . . . , p2] be the vec-

torized probability of the set P , stacked columnwise. We first sort Pt in descending order

to yield P(t), t = 1, . . . , p2. Then φα = P(ξ), where ξ = max{j∗ : j∗−1
∑j∗

j=1 P(t) ≤ α}.

The set of regions Xφα then can be claimed to be significant edges based on an average

Bayesian FDR of α.

This FDR-based thresholding procedure can also be extended to find differential net-

works between different populations (tumor classes/subtypes), for example, to identify

edges that are significantly different between tumor types. To this end, we use the cor-
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responding parameter set {λ(m)
ij ,m = 1, . . . ,M}, for which the selection indicator of the

differential edge between the ijth covariates in the model. The model averaged set of pos-

terior probabilities is set Pd, the ijth element of which Pd
ij = M−1

∑
m λ

(m)
ij . We this same

procedure to arrive at a set of differential edges Xφ = {(i, j) : Pd
ij ≥ φα} with φα chosen

to control the Bayesian FDR at level α. We use a similar procedure on the parameter set

{1 − λ
(m)
ij ,m = 1, . . . ,M}, to arrive at a set of common edges Xφ = {(i, j) : Pc

ij ≥ φα}
with φα chosen to control the Bayesian FDR at level α.

1. Application of the methodology to reverse-phase protein lysate arrays

As explained, there is a strong rationale for methods that will directly assess the activation

status of protein signaling networks in cancer. Traditional protein assays include immuno-

histochemistry (IHC), Western blotting, enzyme-linked immunosorbent assay (ELISA),

and mass spectroscopy. Although IHC is a very powerful technique for the detection of

protein expression and location, it is critically limited in network analyses by its non- to

semi-quantitative nature. Western blotting can also provide important information, but due

to its requirement for relatively large amounts of protein, it is difficult to use when compre-

hensively assessing protein networks, and also is semi-quantitative in nature. The ELISA

method provides quantitative analysis, but is also limited by requirements of relatively high

amounts of specimen and by the high cost of analyzing large pools of specimens. Mass

spectroscopy is a powerful, quantitative approach, but its utility is mainly limited by the

cost and time required to analyze individual samples, which limits the ability to run large

sets that are needed to appropriately assess characteristics of disease heterogeneity and pro-

tein networks. Reverse-phase protein array (RPPA) analysis is a relatively new technology

that allows for quantitative, high-throughput, time- and cost-efficient analysis of protein

networks using small amounts of material [Paweletz et al. (2001); Tibes et al. (2006)]. In or-

der to perform RPPA, proteins are isolated from cell lines, tumors, or serum using standard
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methods. The protein concentrations are determined for samples. The concentrations of the

samples are normalized and then the samples are denatured. Serial dilutions prepared from

each specimen are then arrayed on a nitrocellulose-coated slide. Due to the small amount

of protein spotted on each slide, 30 μg of protein (comparable to the amount used on a

single Western blot) can be printed on ≥ 150 slides. Each slide is probed with an antibody

that recognizes a specific protein epitope, including phosphorylated residues that reflect the

activation state of the protein. A visible signal is then generated through the use of HRP-

conjugated secondary antibodies, a signal amplification system, and staining. The signal

reflects the relative amount of that epitope in each spot on the slide, as shown in Figure 11.

The arrays are then scanned and the resulting images are analyzed with MicroVigene, imag-

ing software specifically designed for the quantification of RPPA analysis (VigeneTech Inc.,

Carlisle, MA). The relative signal intensities are used to determine background correction,

to quantitate the relative concentration of each sample, and then to normalize loading differ-

ences [Hu et al. (2007); Neeley et al. (2009); Zhang et al. (2009)]. Background correction is

used to separate the signal from the noise by subtracting the extracted background intensity

from the foreground intensity. The quantification step determines the amount of protein

present in a dilution series relative to other samples in the array. There are various ways

to quantify the proteins in the sample depending on the underlying statistical model. For

example, MicroVigene fits a four-parameter logistic model to each dilution series, whereas

the method of Mircean et al. (2005) models the log intensity of the spots as a linear func-

tion of the dilution series. Both of these methods work on one sample at a time. Tabus

et al. (2006) discussed a joint estimation method that used a logistic model in which a

sigmoid shape is consistent with the observed intensity of a spot and the true protein con-

centration. This is due to quenching at high levels and background noise at low levels. An

R package, SuperCurve, developed to use with this joint estimation method is available

at http://bioinformatics.mdanderson.org/Software/OOMPA. As with
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most high-throughput technologies, the normalization of the resulting intensities is con-

ducted before any downstream analysis in order to adjust for sources of systematic varia-

tion not attributable to biological variation. We refer the reader to Paweletz et al. (2001)

for more biological and technical details concerning RPPAs. The efficient, sensitive and

Fig. 11.: An example of a reverse-phase protein array (RPPA) slide with 40 samples shown

as the 40 batches on the slide. Each batch represents one individual sample with 16 spots,

which are the results of duplicates of 8-step dilutions.
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quantitative nature of the RPPA technology allows for detailed and integrated analyses of

protein signaling networks. We and other investigators have used RPPA to study kinase

signaling pathways in multiple tumor types, including breast, ovarian, lung, and skin can-

cer [Sheehan et al. (2005); Stemke-Hale et al. (2008); Agarwal et al. (2009); Davies et al.

(2009); O’Reilly et al. (2009); Park et al. (2010)]. We have used RPPA to characterize

time-dependent changes in signaling networks in response to growth factor stimulation

[Amit et al. (2007)]. We have also used RPPA to characterize signaling events that corre-

late with sensitivity and resistance to therapeutic agents [Hennessy et al. (2007); Mirzoeva

et al. (2009)]. While these exploratory analyses have provided valuable information, the

large amounts of novel data generated by the production of RPPAs provide us with the op-

portunity to develop and test rigorous statistical approaches to identify functional protein

networks.

The scientific aims we address using RPPA data in this paper are three-fold: to utilize

a priori information in inferring protein network topology within tumor classes/subtypes;

to infer differential networks between tumor classes/subtypes; and finally to utilize net-

work information in designing optimal classifiers for tumor classification. We believe this

will improve our understanding of the regulation of protein signaling networks in cancer.

Understanding the differences in protein networks between various cancer types and sub-

types may allow for improved therapeutic strategies for each specific type of tumor. Such

information may also be relevant when determining the origin of a tumor, which is clin-

ically important in cases with indeterminate histologic analysis, particularly for patients

who have more than one type of cancer.
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E. Data Analysis
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y

Fig. 12.: The PI3K-AKT Signaling Pathway. The pathway was generated through the use

of Ingenuity Pathways Analysis (www.ingenuity.com).
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Fig. 13.: Significant edges for the proteins in the PI3K-AKT kinase pathway for breast (left

panel) and ovarian cancer cell lines (right panel) computed using Bayesian FDR of 0.10.

The red (green) lines between the proteins indicate a negative (positive) correlation between

the proteins. The thickness of the edges corresponds to the strength of the associations, with

stronger associations having greater thickness.

1. Classification of breast and ovarian cancer cell lines

Breast and ovarian cancer are two of the leading causes of cancer-related deaths in women

[Jemal et al. (2008)]. Both of these diseases are frequently affected by mutations in kinase

signaling cascades, particularly those involving components of the PI3K-AKT pathway

[Mills et al. (2003); Hennessy et al. (2008); Yuan and Cantley (2008); Bast et al. (2009)].

The PI3K-AKT pathway is one of the most important signaling networks in carcinogen-

esis [Vivanco and Sawyers (2002)]. Our previous data have demonstrated that different

mutations in the PI3K-AKT pathway may result in the activation of and functional depen-

dence upon different effectors in this pathway [Vasudevan et al. (2009)]. PI3K is lipid

kinase, which is activated by a number of different signals in carcinogenesis, including the

stimulation of growth factors and other proteins that are frequently mutated in cancer tis-
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Fig. 14.: Conserved and differential networks for the proteins in the PI3K-AKT kinase

pathway between breast and ovarian cancer cell lines computed using Bayesian FDR set

to 0.10. In the conserved network (top panel), the red (green) lines between the proteins

indicate a negative (positive) correlation between the proteins. In the differential network

(bottom panel) the blue lines between the proteins indicate a relationship significant in

ovarian cell lines that was not significant in the breast cell lines; the orange lines between

the proteins indicate a significant relationship in the breast cell lines that was not significant

in the ovarian cell lines. The thickness of the edges corresponds to the strength of the

associations, with stronger associations having greater thickness.
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sue. The importance of the PI3K-AKT pathway in carcinogenesis is supported by findings

that this pathway is affected by activating mutations in cancer tissues more than any other

signaling pathway[Yuan and Cantley (2008)]. This pathway may also be activated by the

loss of function of the PTEN gene, which has been detected in many cancers (i.e., glioblas-

toma multiforme, and breast and ovarian cancer) and results in constitutive activation of the

pathway [Davies et al. (1998, 1999)]. Broad genomic characterization of various cancers

has demonstrated that while the prevalence of the individual mutations varies significantly

among different cancer types, it is very common for tumors to have at least one genetic

event that will activate the PI3K-AKT pathway. For example, the Cancer Genome Atlas

analysis of mutations and copy number changes in glioblastoma multiforme identified at

least one activating genetic event in genes in or immediately upstream of the PI3K-AKT

pathway in 86% of the tumors [Cancer Genome Atlas Research Network (2008)]. Due to

the body of evidence that the PI3K-AKT pathway plays a critical role in many cancers,

this pathway has also been the subject of aggressive drug development efforts. Inhibitors

of multiple different components of this pathway have been developed and are in various

stages of preclinical and clinical testing [Hennessy et al. (2005); Courtney et al. (2010)].

We applied our methodology to identify differences in the regulation of the PI3K-

AKT signaling network in breast and ovarian cancers. For this analysis, we used data for

the expression of p = 50 protein markers in signaling pathways from an RPPA analysis

of human breast (n1 = 51) and ovarian (n2 = 31) cancer cell lines grown under normal

tissue culture conditions [Stemke-Hale et al. (2008)]. We used the known connections in

the PI3K-AKT pathway (Figure 12) as a priori information in our model, by replacing the

directed edges with undirected edges.

The significant networks based on a Bayesian FDR cutoff of α =0.1 for breast and

ovarian cancer samples are shown in Figures 13(a) and 13(b), respectively. The red

edges indicate a negative association (regulation) and the green edges indicate a positive
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interaction between the proteins. The edges are represented by lines of varying degrees

of thickness based on the strength of the association (correlation), with higher weights

having thicker edges and lower weights having thinner edges. In order to identify biological

similarities and differences between breast and ovarian cancers, we compared the results

of our network analyses of the two cancer types. Plotted in Figure 14(a) are the conserved

(common) edges between the two cancer types. The differential network between the two

cancer types, controlling for a Bayesian FDR cutoff of α = 0.1, is shown in Figure 14(b).

A number of protein-protein relationships demonstrated significant similarity between

the two cancer types. For example, both breast cancer and ovarian cancer cell lines ex-

hibited a marked negative association between the levels of PTEN and phosphorylated

AKT (Akt.pT308). This relationship was expected due to the critical regulation of 3-

phopshatidylinositols by the lipid phosphatase activity of PTEN, and has previously been

demonstrated as a significant interaction in multiple tumor types [Davies et al. (1998,

1999); Stemke-Hale et al. (2008); Vasudevan et al. (2009); Davies et al. (2009); Park et al.

(2010)]. Although this concordance was expected, our analysis also identified a large net-

work of differential protein interactions in breast and ovarian cancers (Figure 14(b)). In

this figure, the edges in blue indicate relationships between proteins that were present in

the ovarian cancer cell lines but not in the breast cancer cell lines using our FDR cutoff,

and the orange edges indicate relationships present in the breast cancer cell lines but not

in the ovarian cancer cell lines. In addition, the thickness of the edges corresponds to

the strength of the association. Notable differential connections in this analysis include

the association of phosphorylated AKT (Akt.pS473) with BCL-2 (Bcl2) and phosphory-

lated MAPK (MAPK.pT202.Y204) in breast cancer. Both of these, BCL-2(Bcl2) and

phosphorylated (activated) MAPK (MAPK.pT202.Y204), may contribute to tumor pro-

liferation and survival, and are therapeutic targets with available inhibitors. The associ-

ation of different proteins with the expression of the estrogen receptor, phosphorylated
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PDK1 (PDK1.pS241) and MAPK (MAPK.pT202.Y204) in breast cancer and phosphory-

lated AMPK (AMPK.pT172) in ovarian cancer, may also have therapeutic implications,

as the estrogen-receptor blockade is a treatment used in both advanced breast and ovarian

cancers.

We used this network information to build a classifier to distinguish between breast

cancer and ovarian cancer samples using the predictive probabilities approach, as explained.

We assessed the performance of the classifiers using cross-validation techniques. In par-

ticular, we generated 100 random selections of test and training data sets with 66% and

33% splits of training and test data, respectively. We fit our Bayesian graph-based clas-

sifier (BGBC) and compared our method to four other methods: the K-nearest neighbor

(KNN), linear discriminant analysis (LDA), diagonal linear discriminant analysis (DLDA)

and diagonal quadratic discriminant analysis (DQDA) methods. The average misclassifi-

cation errors (along with standard errors) across all splits for all the methods on the test

set are shown in Table II. The BGBC method had much lower misclassification rates com-

pared to the other methods (the other methods ignore the underlying network structure of

the proteins). We believe that this improved precision is due to the fact that the mean ex-

pression profiles of the breast and ovarian cancers are very similar so there is not enough

information in the mean to classify the two cases. So means-based classifiers, especially

KNN and LDA (both of which use identity and diagonal covariances), underperform as

compared to our method. The results of the DQDA method could be a bit closer to that

of the BGBC method, but the former method ignores the cross-connections, i.e., network

information, and hence results in a higher misclassification rate. The QDA could not be

performed because the estimation of different covariance matrices for different classes is

an ill-posed problem for n < p.

Nonlinear (quadratic) boundaries are obtained by using network information whereas

linear boundaries are obtained by ignoring the network information. Figure 15 exemplifies
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Table II.: Misclassification error rates for different classifiers for ovarian and breast can-

cer data sets. The methods compared here are LDA (linear discriminant analysis), KNN

(K-nearest neighbor), DQDA (diagonal quadratic discriminant analysis), DLDA (diago-

nal linear discriminant analysis) and BGBC (Bayesian graph-based classifier), which is

the method studied in this paper. The mean and the standard deviation are values of the

percentage misclassification over 100 random splits of the data.

Ovary Vs Breast LDA KNN DQDA DLDA BGBC

Mean 23.74 14.89 12.67 9.89 5.89

Standard deviation 11.64 5.81 5.70 5.40 4.41

our intuition and approach. We have a p(= 50)-dimensional quadratic classification bound-

ary. In order to visualize this we projected the boundary and the data onto two randomly

selected dimensions/covariates. Two of those projections are shown in Figure 15. We can

see how a nonlinear boundary is more effective than a linear boundary in classifying the

data.

2. Effects of tissue culture conditions on network topology

Cell lines derived from tumors are a powerful research tool, as they allow for detailed

characterization and functional testing. Genetic studies support the concept that cell lines

generally mirror the changes that are detected in tumors, particularly at the DNA and RNA

levels [Neve et al. (2006)]. However, the activation status of proteins can be impacted by

the use of different environmental conditions in the culturing of cells. A key scientific

question in the analysis of protein networks in cancer cell lines is the variability of network

topologies due to differing tissue culture conditions. In order to test if different network

connectivity is observed under varying culture conditions, we used three different tissue
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Fig. 15.: Nonlinear classification boundaries for two randomly selected covariates. Green

points represent breast data and red points represent ovarian data. The blue line is the

classification boundary determined by the model, which tries to differentiate between breast

and ovarian data.
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culture conditions to grow the 31 ovarian cancer cell lines used in the previous analysis.

For condition “A”, the cells were grown in tissue culture media that was supplemented

with growth factors in the form of fetal calf serum (5% of the total volume), which is

a standard condition for the culturing of cancer cells. For condition “B”, the cells were

harvested after being cultured in the absence of growth factors (serum) for 24 hours. For

condition “C”, cells were grown in the absence of growth factors for 24 hours, then they

were stimulated acutely (20 minutes) with growth factors (5% fetal calf serum). Proteins

were harvested from each cell line for each tissue culture condition. The samples were

then analyzed by RPPA. The RPPA data for each condition were then analyzed for protein-

protein interactions using the GGM method. The topology maps for the ovarian cancer

cells for the A, B, and C tissue culture conditions are shown in Figures 16(a), 16(b),

and 16(c), respectively. We then performed comparisons of the results based on each of

the three conditions in order to identify protein topology networks that were similar and

different between each of the tissue culture conditions.
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Fig. 16.: Significant edges for the proteins in the PI3K-AKT kinase pathway for ovarian

cell lines grown in three different tissue culture conditions: A, B and C (see main text)

computed using Bayesian FDR set to 0.10. The red (green) lines between the proteins

indicate a negative (positive) correlation between the proteins. The thickness of the edges

corresponds to the strength of the associations, with stronger associations having greater

thickness.
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Fig. 17.: Conserved and differential networks for the proteins in the PI3K-AKT kinase

pathway between ovarian cell lines grown in three different tissue culture conditions: A,

B and C computed using Bayesian FDR set to 0.10. In the conserved network , the red

(green) lines between the proteins indicate a negative (positive) correlation between the

proteins. In the differential network, the blue lines between the proteins indicate a rela-

tionship significant in ovarian cell lines that was not significant in the breast cell lines; the

orange lines between the proteins indicate a significant relationship in the breast cell lines

that was not in the ovarian cell lines. The thickness of the edges corresponds to the strength

of the associations, with stronger associations having greater thickness.
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As conditions A (growth-factor replete media) and B (growth-factor starved media)

both represented steady-state tissue culture conditions, we initially compared these protein

networks using a Bayesian FDR of 10%. The networks that are shared between the two

conditions are shown in Figure 17(a); the differential associations are presented in Figure

17(d). We detected 21 significant protein interactions that were common for conditions A

and B, and 4 interactions that were different. Thus, the overwhelming majority of protein-

protein associations that were observed were maintained regardless of the presence or ab-

sence of growth factors (serum) in the tissue culture media. We then compared the signifi-

cant relationships identified for condition B (growth-factor starved media) versus condition

C (starvation followed by acute stimulation). This comparison showed increased discor-

dance of results, as we detected 20 associations that were common for conditions B and

C [Figure 17(b)], but 11 associations that differed significantly [Figure 17(e)]. Similarly,

the comparison of networks between the A and C conditions identified 22 shared protein

interactions [Figure 17(c)] and 12 differential interactions [Figure 17(f)]. Of the differen-

tial interactions noted for the comparisons of conditions B versus C and A versus C, only 2

were observed in both comparisons (c-KIT and P38; VEGFR2 and MAPK.pT202.Y204).

Neither of these 2 relationships was among the differential protein interactions in the analy-

sis of condition A versus condition B. Of the 4 relationships that differed in the comparison

of condition A versus condition B, 3 of the relationships were also identified as differing

significantly when comparing condition B versus condition C (eIF4E and P38.pT180.Y182;

c-Kit and PARP.cleaved; PARP.cleaved and ER.alpha), and the fourth differed significantly

for the comparison of condition A versus condition C (AMPK.pT172 and eIF4E). This

analysis suggests that protein-protein relationships are largely maintained under steady-

state tissue culture conditions. However, these interactions may differ significantly in the

setting of acute growth factor stimulation.
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F. Discussion and Conclusions

We present methodology to model sparse graphical models in the presence of class vari-

ables in high-dimensional settings, with a particular focus on protein signaling networks.

Our method allows for the effective use of prior information about signaling pathways that

is already available to us from various sources to help in decoding the complex protein

networks. We also emphasize the differential and common networks between the classes

of cancers/tumor conditions. Improved understanding of the differential networks can be

crucial for biologists when designing their experiments, by allowing them to concentrate

on the most important factors that distinguish tumor types. Such information may also help

to narrow the drug targets for specific cancers. Knowledge of the common networks can

be used to develop a drug for two different cancers that targets proteins that are active in

both cancers. Data on the differential edges may be used as a good screening analysis,

allowing researchers to eliminate unimportant proteins and concentrate on effective pro-

teins when designing advanced patient-based translational experiments. In this article we

focused on undirected graphical models and not on directed (casual) networks. Directed

graphical models, such as Bayesian networks and directed acyclic graphs (DAGs), have

explicit causal modeling goals that require further modeling assumptions. In our formula-

tion, we provide a natural and useful technical step in the identification of high posterior

probability undirected graphical models, assuming a random sampling paradigm. In addi-

tion, our models infer network topologies that assume a steady-state network. Some of the

protein networks may be dependent on causal relations between the nodes, which would

require us to model data over time to infer the complete dynamics of the network. We leave

this task for future consideration.

With regard to computation time, our MCMC chains are fairly fast for a high-dimensional

data set like those we considered, with a 5000-iteration run taking about 15 minutes. The
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source code, in MATLAB (The Mathworks, Inc., Natick, MA), takes advantage of sev-

eral matrix optimizations available in that language environment. The computationally-

involved step is the imposition of a positive definiteness on the correlation matrix. Opti-

mizations to the code have been made by porting some functions into C. The software is

available by emailing the first author.
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CHAPTER III

MIXTURES OF GAUSSIAN GRAPHICAL MODELS

A. Finite Mixtures of Gaussian Graphical Models

1. Introduction

One of the strengths of the proposed methods is it can be employed in a more complex

modeling framework in a hierarchical manner. We use it to develop finite mixture graphical

models, where in each each mixture component is assumed to follow a Gaussian graphical

model with a adaptive covariance structure. Thus we model the dependencies of variables

within the mixture components in a flexible manner in addition as opposed to traditional

mixture models (Mclachlan and Peel, 2000), which typically assume independence.

Our motivation for this model arises from a high-throughput genomics example. Sup-

pose we have a gene expression data set with n samples and g genes. We are interested in

detecting k sub-types of cancer among the n samples. Furthermore, we assume a different

network structure of these g genes for each cancer sub-type and it is our primary goal to

use this information efficiently to cluster the samples into the correct sub-type of cancer.

Additionally, we wish to learn about these networks for different sub-types of cancer to

identify biologically significant differences among them that explain the variation between

the sub-types.

2. The hierarchical model

Let Yp×n = (Y1, . . . ,Yn) be a p× n matrix with n samples and p covariates. Here each of

the n samples belongs to one of the K hidden groups or strata. Each sample Yi follows a

multivariate normal distribution N (θj,Σj) if it belongs to the jth group. Given a random

sample Y1, . . . ,Yn , we wish to estimate the number of mixtures k as well as the precision
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matrices Ωj = Σ−1
j , j = 1, · · · , k. Conditional on the number of mixtures (K) we fit a

finite mixture model, then vary the number of mixtures and select the optimal number of

mixtures using BIC, as explained in Appendix.

We introduce the latent indicator variable Li ∈ 1, 2, . . . , K, which corresponds to

every observation Yi that indicates which component of the mixture is associated with Yi,

i.e., Li = j if Yi belongs to the jth group. A priori, we assume P (Li = j) = pj such that

p1 + p2 + . . . + pK = 1. We can then write the likelihood of the data conditional on the

latent variables as

Yi|Li = j,θ,Ω ∼ N(θj,Ω
−1
j ).

The latent indicator variables are allowed a priori to follow a multinomial distribution with

probabilities p1, . . . , pK as

Li ∼ Multinomial(1, [p1, p2, . . . , pK ]),

and the associated class probabilities follow a Dirichlet distribution as

p1, p2, . . . , pK |α ∼ Dirichlet(α1, α2, . . . , αK).

We allow the individual means of each group to follow a Normal distribution as

θj|B ∼ N(0,B),

We assign a common inverse Wishart prior for covariance matrix B across groups as B ∼
IW (ν0,B0), where ν0 is the shape parameter and B0 is the scale matrix.

The hierarchical specification of the GGM structure for each group Ωj parallels the de-

velopment of the previous subsection, with each GGM indexed by its own mixture-specific

parameters to allow the sparsity to vary within each cluster component. The hierarchical
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model for finite mixture GGMs can be summarized as follows:

Yi|Li = j,θ,Ω ∼ N(θj,Ω
−1
j )

Li ∼ Multinomial(1, [p1, p2, . . . , pK ])

p1, p2, . . . , pK |α ∼ Dirichlet(α1, α2, . . . , αK)

θj|B ∼ N(0,B)

B ∼ IW (ν0,B0)

Ωj = Sj(Aj �Rj)Sj

Aj(lm)
|qj(lm)

∼ Bernoulli(qj(lm)
), i < j

Rj |Aj ∼
∏
l<m

Laplace(0, τj(lm)
)I(Cj ∈ Cp)

τj(lm)
∼ IG(e, f)

Sj(l) ∼ IG(g, h),

where i denotes the sample, j denotes the mixture component, i = 1, 2, . . . , n and j =

1, 2, . . . , K. In addition, Aj(lm)
and τj(lm)

denote the lmth component of the Aj and the τj ,

l = 1, 2, . . . , p , m = l, . . . , p.

3. Posterior inference and the conditional distributions

We perform the posterior inference using MCMC methods; hence we derive the full con-

ditionals for all the parameters. Not all the full conditionals are in a closed form; and in

those situations we employ the MH algorithm to simulate those parameters.

Sampling probabilities pj .

We draw the probabilities from a Dirichlet distribution, which can be done by drawing

each probability from a gamma distribution with the corresponding Dirichlet parameter
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and normalizing them so that their sum is equal to 1.

p1, p2, . . . , pK |Others ∝
K∏
j=1

p
αj−1
j

K∏
j=1

p
nj

j

∼ Dirichlet(n1 + α1, n2 + α2, . . . , nK + αK).

Sampling Class Indicators Li.

The full conditional of Li is

P (Li = j|Others) =
pjφYi

(θj,Ω
−1
j )∑K

j=1 pjφYi
(θj,Ω

−1
j )

.

Each of the class indicators Li can be drawn from a multinomial distribution with the above

probability.

Sampling class means θj .

The conditionals for the means of the corresponding mixtures are from a multivariate nor-

mal distribution, so we can directly sample them:

θj|Others ∝ Nθj(0,B)×
nj∏
i=1

NYi
(θj,Ω

−1
j )

∝ exp(−1

2
θT
j B

−1θj)× exp(−1

2

nj∑
i=1

(θj − Yi)
TΩj(θj − Yi))

∝ exp(−1

2
θT
j [njΩj +B−1]θj − 2θjΩj

nj∑
i=1

Yi

+ (

nj∑
i=1

Yi)
TΩj[njΩj +B−1]−1Ωj

nj∑
i=1

Yi)

∼ Nθj([njΩj +B−1]−1Ωj

nj∑
i=1

Yi, [njΩj +B−1]−1).

Sampling Correlation and Other Parameters Related to the Precision Matrix:

The sampling of all these conditionals is similar to sampling from the previous selection
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model with slightly different expressions as we have to sample from each cluster

[Rj(lm)
|Aj(lm)

, others] ∝ |Ωj|
nj
2 exp{−1

2

nj∑
i=1

{(Yi − θj)
TΩj(Yi − θj)− 1

τj(lm)

|Rj(lm)
|}}

I(C ∈ Cp)

[Aj(lm)
|Rj(lm)

, others] ∝ |Ωj|
nj
2 exp{−1

2

nj∑
i=1

{(Yi − θj)
TΩj(Yi − θj)}}

q
Aj(lm)

j(lm)
(1− q

1−Aj(lm)

j(lm)
)I(C ∈ Cp)

Here we use the similar approaches as used in the selection model by griding the conditional

distribution between {uj(lm)
, vj(lm)

} and drawing directly from the conditional.

We draw τj(lm)
’s and qj(lm)

’s using the MH algorithm. The expression for the normal-

izing constant K(τj(lm)
, qj(lm)

) is similar to the expression given before

τj(lm)
|qj(lm)

, Aj(lm)
, Rj(lm)

,Y ∝ K(τj(lm)
, qj(lm)

)
1

τj(lm)

exp(
−|Aj(lm)

Rj(lm)
|

τj(lm)

)

× τ−g−1
j(lm)

exp(− h

τj(lm)

)

qj(lm)
|τj(lm)

, Aj(lm)
, Rj(lm)

,Y ∝ K(τj(lm)
, qj(lm)

)q
Aj(lm)

j(lm)
(1− qj(lm)

)
(1−Aj(lm)

)

qα−1
j(lm)

(1− qj(lm)
)(β−1).

Similarly we draw Sj(l) using the MH algorithm from the conditional distribution:

Sj(l) |Sj(−l)
, Y ∝

nj∏
i=1

|Sj(Cj)Sj|1/2exp{−1

2
{(Yi − θj)

T (Sj(Cj)Sj)(Yi − θj)}}

× S−g−1
j(l)

exp(
−h

Sj(l)

).
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4. Real data example

We used the leukaemia data from Golub et al. (1999) as a case study to illustrate our graph-

ical mixture model. In this study, the authors measured the human gene expression signa-

tures of acute leukaemia. They used supervised learning to predict the type of leukaemia

and used unsupervised learning to discover new classes of leukaemia. The motivation for

this work was to improve cancer treatment by distinguishing between subclasses of cancers

or tumors. The data are available from http://www.genome.wi.mit.edu/MPR.

The data set includes 6817 genes and 72 patient samples. We selected the 50 most relevant

genes, identified using a Bayesian gene selection algorithm (Lee et al., 2003). The heat

map of the top 50 genes in the data set is shown in Figure 18. In the heat map, which shows

the expression profiles of the genes, we can observe distinct groups of genes that behave

concordantly. We wanted to explicitly explore the dependence patterns that vary by group.

We fit our Bayesian mixture of graphical models to this data set using Bayesian lasso

selection models and used the methods detailed in chapter 1 to find the top graphs for

the data. We ran the MCMC simulation for 100000 samples and removed the first 20000

samples as burn-in. We selected the number of mixtures using BIC, as described in Ap-

pendix B. Using this criterion and without a priori knowledge, we determined two clusters

as corresponding best to two subtypes of leukaemia: (1) acute lymphoblastic leukaemia

(ALL) and (2) acute myelogenous leukaemia (AML). The respective networks correspond-

ing to the two clusters are shown in Figure 19 and Figure 20. As shown in the figures,

the networks for these two clusters are quite different, which suggests possible interactions

between genes that differ depending on the subtype of leukaemia.

We further explored the biological ramifications of our findings using the gene anno-

tations also used by Golub et al. (1999). Most of the genes active in the ALL network are

inactive in the AML network and vice versa. It is known that ITGAX and CD33 encode
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cell surface proteins for which monoclonal antibodies have been demonstrated to be useful

in distinguishing lymphoid from myeloid lineage cells. We can see in the networks of the

clusters that CD33 and ITGAX are active in the AML network but inactive in the ALL

network. The zyxin gene has been shown to encode a LIM domain protein important in

cell adhesion in fibroblasts, but a role for zyxin in haematopoiesis has not been reported.

Zyxin is also active in the AML network but not in the ALL network. In general, the genes

most useful in distinguishing AML vs. ALL class prediction are markers of haematopoi-

etic lineage, which are not necessarily related to cancer pathogenesis. However, many of

these genes encode proteins critical for S-phase cell cycle progression (CCND3, STMN1,

and MCM3), chromatin remodelling (RBBP4 and SMARC4), transcription (GTF2E2), and

cell adhesion (zyxin and ITGAX), or are known oncogenes (MYB, TCF3 and HOXA9).

The genes encoding proteins for S-phase cell cycle progression (CCND3, STMN1, and

MCM3) were all found to be active in the ALL network but inactive in the AML network.

This suggests a connection of ALL with the S-phase cell cycle. Genes responsible for

chromatin remodelling and transcriptional factors were present in both networks, indicat-

ing they are common to both types of cancer. This information can be used to discover a

common drug for both types of leukaemia. Among the oncogenes, MYB was related to the

ALL network, whereas TCF3 and HOXA9 were related to the AML network. HOXA9 is

rearranged by a t(7;11)(p15;p15) chromosomal translocation in a rare subset of individuals

with AML who tend to have poor outcomes. Furthermore, HOXA9 overexpression has

been shown to transform myeloid cells in vitro and to cause leukaemia in animal models.

A general role for the HOXA9 expression in predicting AML outcomes has been suggested

by Golub et al. (1999). We also confirmed that HOXA9 is active in the AML network, but

not in the ALL network.



80

10 20 30 40 50 60 70

5

10

15

20

25

30

35

40

45

50

Fig. 18.: Heat map of top 50 genes in leukaemia data set.

MYB

PSMA6 CD79A

CCND3MYL6B

RBBP4

SMARCA4(D)

ZNF22

TCF3

CYFIP2

DYNLL1

TOP2B

IRF2

GTF2E2

ACADM

SMARCA4

ATP2A3

SRP9

MCM3

DHPS

STMN1

NUP88

CBX1 IL7R

ADA

FAH ZYX LTC4S LYN HOXA9 CD33 CFD LEPROT CST3 SRGN IL8(M96326) AZU1 SQSTM1 PPIF MCL1 ATP6V0C

IL8(M28130)

CTSD

LGALS3

NFKBIA

ITGAX

STOM

LYZ CFP

CAT

Fig. 19.: Significant edges for the genes in the ALL cluster. The red (green) lines between

the proteins indicate a negative (positive) correlation between the proteins.
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Fig. 20.: Significant edges for the genes in the AML cluster. The red (green) lines between

the proteins indicate a negative (positive) correlation between the proteins.
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5. Simulations

We performed a posterior predictive simulation study to evaluate the operating character-

istics of our methodology for mixtures of graphical models. We simulated data from our

fitted model of the leukaemia data set using the estimated precision matrices for the two

groups, ALL and AML. The simulation was conducted as follows. Let (μ̂j , Ω̂
−1
j ) denote

the estimates of the mean and precision matrices corresponding to the ALL (j = 1) and

AML (j = 2) groups, respectively, as obtained in the previous subsection. We generated

data under the convolution of the following multivariate normal likelihood,

Yj ∼ N(μ̂j , Ω̂
−1
j ),

with 100 samples and 50 covariates.

We (re-)fitted our models to the simulated data and compared the estimates of the co-

variance matrices obtained from a non-adaptive finite mixture model (MCLUST) of Fraley

and Raftery (2007). We used the “VVV” setting, which implies the use of an unconstrained

covariance estimation method in their procedure. We completed 100000 runs of the MCMC

simulation and removed the first 10000 runs as burn-in. The true and corresponding esti-

mates of the precision matrices using the two methods are shown in Figure 21, where the

absolute values of the precision matrix excluding the diagonal are plotted.

As shown in the figure, fitting our adaptive model to the data (middle row of images)

yields estimates that are closer (sparser) to the true data generating precision matrices,

whereas fitting the non-adaptive model to the data (bottom row of images) yields noisier

estimates, with less local shrinkage of the off-diagonal elements. In addition to a visual

inspection, we compared the performance of both methods using the K-L distance. The

corresponding estimates of the K-L distances were 3.5592 and 7.2210 for the adaptive and

non-adaptive model fits, respectively. For the AML cluster we obtained respective K-L
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Fig. 21.: Simulation study (p=50). The true and estimated precision matrices for two sub-

types of leukaemia: (a) ALL and (b) AML. The top row of images shows the true data

generating precision matrix; the middle row shows the estimated precision matrix using

our adaptive Bayesian model; and the bottom row shows the estimated precision matrix

using a non-adaptive fit. Note that the absolute values of the partial correlations are plotted

in the above figures without the diagonal. The colorbars are shown to the right of each

image.
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distances of 4.0836 and 7.7881 for the two methods. In addition, we also compared the

false positive and false negative rates for finding true edges using each method. It should

be noted that the purpose of the MCLUST approach is not covariance selection, hence we

imposed selection on the elements of the estimated precision matrix by thresholding the

coefficients to zero if they were less than a defined constant. We chose a fairly generous

thresholding constant so that the false negatives and false positives were minimized. We

applied the thresholding constant of 0.15 to the coefficients of the precision matrices that

were estimated for the two clusters. For the AML cluster, we found false positive rates

of (0.0049, 0.0645) and false negative rates of (0.0106, 0) for our adaptive model and the

MCLUST approach, respectively. For the ALL cluster, we found false positive rates of

(0.0041, 0.0661) and false negative rates of (0.0131, 0) for the adaptive and non-adaptive

model fits, respectively. In summary, our adaptive method performs substantially better in

recovering the true sparse precision matrix compared to the simple (non-adaptive) cluster-

ing approaches.
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To explore how the method scales with the number of covariates, we ran another sim-

ulation with 100 covariates and 200 samples. The results are plotted in Figure 22. We

find a similar pattern of performance from fitting our adaptive model to the data (middle

row of images), which yields estimates that are closer to the true data generating precision

matrices. By contrast, fitting the non-adaptive model to the data (bottom row of images)

yields noisier estimates, with less local shrinkage of the off-diagonal elements. Again we

compared the performance of both methods using the K-L distance and determined that

the corresponding estimates were 10.1241 and 25.3378 for the adaptive and non-adaptive

model fits, respectively. For the AML cluster, we obtained K-L distances of 12.1244 and

27.4851 for the respective methods. We chose a thresholding constant of 0.15 and applied

that to the coefficients of the precision matrices that were estimated for the two clusters. For

the AML cluster we found false positive rates of (0.0063, 0.2822) and false negative rates

of (0.0222, 0.0081) for our adaptive model and the MCLUST approach, respectively. For

the ALL cluster, we found false positive rates of (0.0044, 0.2497) and false negative rates

of (0.101, 0.0372) for the adaptive and non-adaptive fits, respectively. Thus, compared to

the non-adaptive approaches, our adaptive method performed substantially better in recov-

ering the true sparse precision matrix. We found that our methods scale reasonably until we

reach around 500 covariates but above that level the high computational complexity did not

allow for a reasonable computation time. Parallel computation in cluster machines can be

used to speed up the process when the number of covariates extremely high. Alternatively,

we plan to explore faster deployments of our algorithm through variational approach or

other approximations.
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Fig. 22.: Simulation study(p=100). True and estimated precision matrices for two subtypes

of leukaemia: (a) ALL and (b) AML. The top row of images shows the true data generating

precision matrix; the middle row shows the estimated precision matrix using our adaptive

Bayesian model; and the bottom row shows the estimated precision matrix using a non-

adaptive fit. Note that the absolute values of the partial correlations are plotted in the above

figures without the diagonal. The colorbars are shown to the right of each image.
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B. Infinite Mixtures of Graphical Models

When the number of mixtures is unknown, the parameters γi of the model are specified

by Dirichlet process priors for clustering. The Dirichlet Process (DP) is a non-parametric

two-parameter conjugate family in the sense that there is a positive probability that a sam-

ple distribution will approximate arbitrarily well any distribution that is dominated by the

base distribution Hφ. DPs are also a.s. discrete and comprise a certain partitioning of the

parameter space. These properties allow us to model clustering configurations of a set of

variables by DP priors without fixing the number of clusters beforehand.

In a sequence of draws γ1, γ2, . . . from the Polya urn representation of the Dirichlet

process (Blackwell and MacQueen, 1973), the nth sample is either distinct with a small

probability α/(α + n− 1) or is tied to previous sample with positive probability to form a

cluster. Let γ−n = {γ1, . . . , γn} − {γn} and dn−1= number of preexisting clusters of tied

samples in γ−n at the nth draw, then we have

f(γn|γ−n, α, φ) =
α

α + n− 1
Hφ +

dn−1∑
j=1

nj

α + n− 1
δγ̄j , (3.1)

where Hφ is the base prior, and the jth cluster has nj tied samples that are commonly

expressed by γ̄j subject to
∑dn−1

j=1 nj = n − 1. After n sequential draws from the Polya

urn, there are several ties in the sampled values and we denote the set of distinct samples

by {γ̄1, . . . , γ̄dn}, where dn is essentially the number of clusters.

Let Yp×n = (Y1, . . . ,Yn) be a p × n matrix with n samples and p covariates. Each

sample Yi follows a multivariate normal distribution N (θj,Σj). Given a random sample

Y1, . . . ,Yn , we wish to estimate the number of mixtures k as well as the precision matrices

for each cluster Ωj = Σ−1
j , j = 1, · · · , k. We can write the likelihood of the data as

Yi|θi,Ωi ∼ N(θi,Ω
−1
i ),
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Let γi = (θi,Ω
−1
i ). We propose a Dirichlet process prior on γ = (γ1, γ2, . . . , γn)

which can be written as

γ = (γ1, γ2, . . . , γn) ∼ DP (α,Hφ),

Here Hφ is the base distribution of the DP. We induce sparsity into the model using the base

distribution which defines the cluster configuration. We allow the individual means of each

group to follow a Normal distribution as

θj|Ω ∼ N(0,Ω−1),

The hierarchical specification of the GGM structure for each group Ωj parallels the de-

velopment of the previous subsection, with each GGM indexed by its own mixture-specific

parameters to allow the sparsity to vary within each cluster component. The hierarchical

model for the baseline prior can be summarized as follows:

Hφ ∝ Nθ(.)FΩ

Ω = S(A�R)S

FΩ ∝ FA(.)FR(.)FS(.)

R|A ∼ Uniform(0, 1)I(Cj ∈ Cp)

A|Q ∼ Bernoulli(Q)

Q ∼ Beta(νc, νd)

S ∼ IG(να, νβ),

The parameters are similar to the models detailed in the previous chapters. The base prior

is not in conjugate form so the base prior is not integrable with the likelihood to draw from

the posterior using Gibbs sampling framework ( Escobar and West(1995)). We need to use

Metropolis Hastings framework to handle the non-conjugate priors(Neal(2000)).
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Let us introduce a latent variable, the class indicator for the ith sample ci for ease of

notation. We need to update all the ci’s for each MCMC draw. The MCMC state then

consists of c = (c1, c2, . . . , cn). Let FY (.) be the data likelihood and nc be the number if

samples in cluster c. We use the following algorithm to update the clustering configuration.

• New Cluster Creation: For i = 1, . . . , n. If ci is not a singleton (i.e. ci = cj for

some j 	= i) , let c∗i be the new cluster indicator. Draw φc∗i = [A,R, S, θ,Q] from the

base prior Hφ. Probability that a new cluster is created is

p(ci = c∗i ) = min{1, α

n− 1

FY (Yi, φc∗i )

FY (Yi, φci)
},

otherwise, if ci is a singleton, draw c∗i from c−i with probability Pr(c∗i = c) =

nc/(n− 1). The the probability of the sample belonging to the cluster c is

p(ci = c∗i ) = min{1, n− 1

α

FY (Yi, φc∗i )

FY (Yi, φci)
},

• Existing Clusters: For i = 1, . . . , n. If ci is not a singleton, choose a new value for

ci using the following probabilities,

Pr(ci = c) ∝ nc

n− 1
FY (Yi, φc),

• Cluster Parameters: Update φc for each cluster c = 1, . . . , dn using φc|Yc where

Yc are the samples in the cluster c. The sampling procedure for updating the cluster

parameters is similar to the posterior inference of the Bayesian lasso selection model.

1. Sampling from Hφ

When a new cluster is formed we need to draw the new cluster parameters γi = (θi,Ω
−1
i )

from the base prior Hφ which can accomplished as follows:
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• The mean of the cluster θ can be drawn from the distribution p(θ|Ω) which is a

multivariate normal distribution.

• Drawing Ω is complicated as we do not have a closed form distribution to draw Ω

from. As Ω = {A,R,S,Q}, we need to draw each of these to get a draw for Ω.

• The probabilities Q can be sampled directly from the beta prior.

• S can be sampled directly from the Inverse Gamma prior specified.

• Sampling A,R is complicated due to the condition of positive definiteness . We use

a metropolis hastings algorithm to sample these variables because they do not have a

closed form distribution.

2. Real data example

We use the leukemia data from Golub et al. (1999) as an case study to illustrate our Dirichlet

process mixture model. In this study, the authors measured the gene expression signatures

of human acute leukemia and included prediction of the type of leukemia using supervised

learning and the discovery of new classes of leukemia using unsupervised learning. The

motivation for this work was to improve cancer treatment by distinguishing between sub-

classes of cancers or tumors. The data is available from http://www.genome.wi.mit.edu/MPR.

The data was first classified into two groups: (1) data from lymphoid precursors and (2)

data from myeloid precursors. The first one is known as acute lymphoblastic leukemia

(ALL) and the second one is known as acute myelogenous leukemia (AML). The data has

6817 genes and 72 patient samples. We selected the top 10 genes to do the analysis to clus-

ter the data and found different graphs of relations between genes for different cancers. The

top genes were selected using the Bayesian gene selection algorithm (Lee et al. (2003)).

We fit our Dirichlet processes model to this data. We ran the MCMC simulation
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for 100000 samples and remove the first 20000 samples as burn-in. The Dirichlet pro-

cess found two clusters with one cluster corresponding to ALL and the other one cor-

responded to AML. The networks corresponding to the two clusters ALL and AML are

shown in Figure 23 and Figure 24, respectively. As can be seen the networks for these

two clusters were quite different, which suggests possible interactions between genes is

different depending on the sub-type of cancer. The biological conclusions based on the

data are similar to the ones described above in the finite mixture model where the genes

PSMA,TCF3,CCND3,CD79A and MYL6B play a major role in pathways related to ALL

whereas CD33,LYN,ATP6V0C,SRGN and ZYX play a major role in AML pathways.

 0.073723 

 0.33625 
 0.42626  0.0965 

 0.29015 

 0.27804 

 0.039269 

 0.017943  0.11969 

 −0.0020105  0.096245 

PSMA6
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CCND3

CD79A MYL6B

CD33 LYN

ATP6V0CSRGN

ZYX

Fig. 23.: Graph for ALL Group.
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Fig. 24.: Graph for AML Group.

3. Simulations

We performed a posterior predictive simulation study to evaluate the operating characteris-

tics of our methodology for Dirichlet process mixture of graphical models. We simulated

data from our fitted model of the leukaemia data set using the estimated precision matri-

ces for the two groups, ALL and AML. The simulation was conducted as follows. Let

(μ̂j , Ω̂
−1
j ) denote the estimates of the mean and precision matrices corresponding to the

ALL (j = 1) and AML (j = 2) groups, respectively, as obtained above. We generated data

under the convolution of the following multivariate normal likelihood,

Yj ∼ N(μ̂j , Ω̂
−1
j ),



92

with 100 samples and 10 covariates.

We compared the accuracy of the method using the K-L distance. The estimates of

the K-L distances was 0.9584 for the ALL and 1.2689 for the AML cluster. In addition,

we also compared the false positive and false negative rates for finding true edges For the

AML cluster, we found false positive rates of 0.0222 and false negative rates of 0.0000 and

for the ALL cluster, we found false positive rates of 0.0444 and false negative rates of 0 for

the Dirichlet process model.

C. Discussion and Conclusions

In this dissertation a Bayesian framework for adaptive estimation of precision matrices in

Gaussian graphical models has been developed. We propose sparse estimators using L1-

regularization and use lasso-based selection priors to obtain sparse and adaptively shrunk

estimators of the precision matrix that conduct simultaneous model selection and estima-

tion. We extend these methods to mixtures of Gaussian graphical models for clustered

data, with each mixture component assumed to be Gaussian with an adaptive covariance

structure. We discuss appropriate posterior simulation schemes for implementing posterior

inference in the proposed models, including the evaluation of normalizing constants that

are functions of the parameters of interest which result from constraints on the correlation

matrix. We compare our methods with several existing methods from the literature using

both real and simulated examples. We found our methods to be very competitive and in

some cases to substantially outperform the existing methods.

Our simulations and analysis suggest that it is feasible to implement adaptive GGMs

and mixtures of GGMs using MCMC for a reasonable number of variables. Applications

to more high-dimensional settings may require more refined sampling algorithms and/or

parallelized computations for our method to run in a reasonable time.
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One nice feature of our modelling framework is that it can be generalized to other

contexts in a straightforward manner. As opposed to the unsupervised setting we consid-

ered, another context would be that of supervised learning or classification using GGMs

and showed that using GGM’s improves the misclassification rate. Another interesting set-

ting would be to extend our methods for situations in which the variables are observed over

time and our models are used to develop time-dependent sparse dynamic graphs. We leave

these tasks for future consideration.
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APPENDIX A

CHECKING FOR POSITIVE DEFINITENESS

The drawing of a particular Rij(i > j) given the other correlations and S (as well as

whatever other parameters are in the model) is complicated by the requirement that R be

positive definite. We need to know what values of Rij keep C = A �R positive definite

given that the other correlations are fixed. It should be noted that R and C are equivalent

in the MCMC sampling as Rij = 0 when Aij = 0. We follow the approach of Barnard

et al. (2000), as shown below.

Start with a correlation matrix R, which is positive definite. Assume R(r) as the

matrix obtained by replacing i, jth element of R by r and let f(r) = |R(r)| which is the

determinant of R. f(r) > 0 is a necessary and sufficient condition for R(r) to be positive

definite. The determinant of R is a quadratic function in r which is f(r) = ar2 + br + c.

The coefficients a, b and c can be calculated from the value of the determinant for different

values of r. By finding the range of r in which the matrix is positive definite we continue

to keep the correlation matrix positive definite in subsequents iterations of the MCMC.
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APPENDIX B

COMPUTING BIC VALUES FOR THE GRAPHS

The Bayesian information criterion (BIC) is widely used for model selection problems.

BIC penalizes the complex models in favor of balanced models. BIC can be computed as

−2 log p(Y |G) + const ≈ −2L(Y, θ̂) +mGlog(n) ≡ BIC,

where p(Y |G) is the likelihood of the data for the model G, L(Y, θ̂) is the maximized log

likelihood for the model, mG is the number of independent parameters to be estimated in

the model, and n is the number of samples. Given any two estimated models, G1 and G2,

the model with the lower value of BIC is the preferred model. The number of parameters

to be estimated in the model is considered to be the number of non-zero edges and all the

other parameters in the model. In the finite mixture model the number of clusters is not

considered an independent parameter for the purpose of computing the BIC. If each model

is equally likely a priori, then p(Y |G) is proportional to the posterior probability that the

data conform to the model G.
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