
PROBABILISTIC SIMHASH MATCHING

A Thesis

by

SADHAN SOOD

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

August 2011

Major Subject: Computer Science

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&M Repository

https://core.ac.uk/display/13641954?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

PROBABILISTIC SIMHASH MATCHING

A Thesis

by

SADHAN SOOD

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Approved by:

Chair of Committee, Dmitri Loguinov
Committee Members, Narasimha Annapareddy

James Caverlee
Head of Department, Valerie Taylor

August 2011

Major Subject: Computer Science

iii

ABSTRACT

Probabilistic Simhash Matching. (August 2011)

Sadhan Sood, B.Tech., Cochin University of Science and Technology-Kochi

Chair of Advisory Committee: Dr. Dmitri Loguinov

Finding near-duplicate documents is an interesting problem but the existing

methods are not suitable for large scale datasets and memory constrained systems. In

this work, we developed approaches that tackle the problem of finding near-duplicates

while improving query performance and using less memory. We then carried out an

evaluation of our method on a dataset of 70M web documents, and showed that our

method works really well. The results indicated that our method could achieve a

reduction in space by a factor of 5 while improving the query time by a factor of 4

with a recall of 0.95 for finding all near-duplicates when the dataset is in memory.

With the same recall and same reduction in space, we could achieve an improvement

in query-time by a factor of 4.5 while finding first the near-duplicate for an in memory

dataset. When the dataset was stored on a disk, we could achieve an improvement in

performance by 7 times for finding all near-duplicates and by 14 times when finding

the first near-duplicate.

iv

To my parents, brother and Sheethal

v

ACKNOWLEDGMENTS

I would like to sincerely thank Dr. Loguinov for giving me the opportunity to

work with him in the Internet Research Lab. I believe that working here has prepared

me to deal with future challenges in a much better way. I would like to thank Dr.

Annapareddy and Dr. Caverlee for being on my committee.

I would also like to thank my colleagues at Internet Research lab, especially

Siddhartha and Rock. Finally, all my achievements were impossible without the

support of my parents and Sheethal.

vi

TABLE OF CONTENTS

CHAPTER Page

I INTRODUCTION . 1

A. Our Contributions . 3

II RELATED WORK . 5

A. SIMHASH . 7

III MOTIVATION . 12

A. Naive Solution . 13

IV PROBABILISTIC SIMHASH MATCHING 14

A. Main Idea . 14

B. Bit-Combination Generation 18

V IMPLEMENTING PSM . 22

A. Algorithm for Online Queries 22

B. Algorithm for Batch Queries 24

VI PERFORMANCE MODELING 25

A. Modeling Previous Method 25

1. Online Mode . 27

2. Batch Mode . 28

B. Modeling Our Method . 30

1. Online Mode . 30

2. Batch Mode . 31

3. Linear Scan vs Bit-flip 32

VII EXPERIMENTS . 34

A. Dataset . 34

B. Near-Duplicate Search Using Simhash 34

C. Implementation Details . 36

D. Hardware . 37

E. Preprocessing . 39

F. Online Mode . 39

vii

CHAPTER Page

G. Batch Mode . 42

VIII CONCLUSION . 44

REFERENCES . 45

VITA . 48

viii

LIST OF TABLES

TABLE Page

I An example computation of simhash on a document containing

six words using four bit hash values. 9

II Comparison between 64-bit fingerprints and word feature vectors

while computing all-pair Hamming distance H(x, y) and cosine

similarity cos(x, y) on 1000 web pages and their storage space required. 13

ix

LIST OF FIGURES

FIGURE Page

1 Distribution of distj calculated with 45M document pairs for j = 0. . 16

2 Comparison of the number of bit-flip attempts needed between a

near-duplicate fingerprint pair by flipping weak bits and random bits. 18

3 An example computation of function next for three bits given a

bit-combination index vector {1,2,3} which represent first three

bits in the list of top-k weakest bits. 19

4 Working of PSM for f = 10 and p = 4. Weak bits are flipped

to generate modified queries and then matched in sorted table

followed by linear scan. 23

5 Efficiency of bit-flip over linear scan. 33

6 Simhash performance at various hamming distance. 35

7 (a)The preprocessing time with increasing k at p = 21 and p = 34

(which is needed when dataset size becomes ≈ 8B). (b)The #

of query matches with increasing number of tables for d = 26.

(c)The time in seconds with increasing number of tables. 38

8 (a)Recall of PSMF at increasing size of the dataset with different

values of k. (b)Recall of PSMA at increasing size of the dataset

with different values of k. (c)Time efficiency with varying dataset

size at constant memory size of 4|T |. (d)Time efficiency with

varying dataset size at constant memory size of 10|T |. 40

9 Working of the batch-mode. 42

10 Efficiency of query performance in batch mode. 43

1

CHAPTER I

INTRODUCTION

Web crawl often results in a huge amount of data download [1] and finding useful data

during runtime which can affect crawl behavior is a challenge. Learning to find data

patterns can free the crawling resources for more unique pages and make crawl more

responsive to decision made by the crawl administrator. For instance, a crawler can

choose to follow/not follow a newly downloaded page if it is similar to an already seen

page or clusters the downloaded data in real time such that a crawl administrator

can reduce the priority of the links from spam pages, direct the crawl towards certain

topics or assign lower budgets to forums and blogs.

This can be done if there is a way to efficiently and accurately determine similar

document(s) in a dataset and cluster them together. Clustering data streams require

knowing near neighbors of an incoming document [2] to make fast decisions about

cluster membership or to create new clusters if none of the existing ones are a good

match. The most critical problem with this approach is to find near neighbors of a

new arriving document in the least possible time. This is however similar to finding

near-duplicates of the new arriving document in the existing data set and therefore

in this paper, we propose ideas to efficiently solve this problem. Two documents

can be termed near-duplicates if degree of similarity between them is greater than a

similarity threshold using a similarity function. Mathematically, it can be said that:

Given a set of existing n documents D = {d1, d2, . . . , dn}, a similarity function ω ∈
[0, 1] and a new arriving document dq, find all document d ∈ D such that:

ω(d, dq) ≥ t, (1.1)

The journal model is IEEE Transactions on Automatic Control.

2

where t is the similarity threshold for near-duplicates on similarity function ω. The

similarity functions often used for evaluation are cosine similarity between document

feature vectors, Jaccard similarity between k-grams, hamming distance between doc-

ument signatures, Lp norm, etc.

Two near-duplicate documents share similar topic and content but differ in small

number of words and html tags and if clustered as part of a data set will almost

always share the same cluster. Near-duplicates on the internet exist as spam, forums

and blogs generated from automated templates, plagiarized content [3], similar news

stories, typing errors, mirrored web sites, etc. Fetterly et al. in their research [4]

on evolving web document clusters found that 29.2% pages on the web are very

similar and 22.2% are virtually identical. Recently, hash-based methods are proved

promising for near-duplicate search. The idea is to embed document information into

small binary strings such that semantically similar documents have almost similar

binary strings differing in few bit positions. The general idea is based on approximate

nearest-neighbor algorithms where the objective is to find points which are at most

(1+ε) times away from the actual nearest-neighbor. This speeds-up the search but

returns an approximation of the exact query results according to a similarity measure.

A common technique for approximate nearest-neighbor search in high-dimensional

space is Locality Sensitive Hashing (LSH) which was introduced by Indyk and Mot-

wani [5]. The method uses a family of hash functions to hash similar documents

to same buckets with high probability and while doing nearest-neighbor search on

a given query document, searches only those buckets to which query document is

hashed to in multiple tables generated using different hash functions. This requires

a large number of hash tables for maintaining a good search quality which leads to

duplication of data and is not efficient in terms of memory usage. In [6], Manku et

al. used simhash [7] a version of LSH which approximates cosine similarity between

3

nearest-neighbors in their implementation of near-duplicate search on 8B web-pages.

The method was first proposed by Charikar [7] and later evaluated on web-documents

by Henzinger [8] for the first time.

Their idea requires multiple permuted copies of existing fingerprints F be main-

tained in memory and to find near-duplicate of a query fingerprint q with a maximum

allowed hamming distance h, a binary search followed by linear scan is performed in

all tables until at least one fingerprint p ∈ F is found such that hamming distance

between p and q is at most h or no more matching fingerprints exist in the data set.

A large number of permutations increase the space requirement while reducing the

number of fingerprints being checked and vice-versa. This duplication of data limits

the number of fingerprints that can be stored in main-memory S in online mode al-

though we found that increasing the number of tables not always result in improved

performance. In batch mode, the existing fingerprints F are stored on disk and for

a new batch of queries Q for which the near-duplicates are to be found, search goes

from F → Q by creating permuted copies of Q. While this does not pose a limita-

tion on the size of Q if |Q| << |S|, we show that this technique is sub-optimal and

limits the performance. The method because of its high space requirement is not

suitable for memory constrained systems and hence we propose our new method for

near-duplicate search on large data sets.

A. Our Contributions

In this paper, we present a system to fast detect near-duplicate matches for a new

arriving page in an existing data set which is more space efficient and achieves better

query speed for both online and batch queries by sacrificing a small percentage of

recall. For a crawler, to decide to follow/not follow a newly downloaded page, just

4

one match in the existing dataset is enough whereas for deciding its cluster member-

ship, all near-duplicate matches are needed. Therefore we present our solution, the

Probabilistic Simhash Matching (PSM) system for both the problems: first where

search finds all near-duplicate documents (PSMA) and second where search stops

after finding the first near-duplicate document (PSMF). We compare our results

with the solution proposed by Manku et al. [6] in terms of gain in query speed and

reduction in space requirement for both cases.

In our experiments on a crawl data set of 60M documents in online mode, we

could achieve a reduction in space by factor of 5 while improving the query time by a

factor of 4 with a recall of 0.95 for PSMA. With same recall and same reduction in

space, we could achieve an improvement in query-time by a factor of 4.5 for PSMF .

For batch mode, PSMA can perform ≈ 7 times better and PSMF can perform ≈
14 times better than [6]. We propose a solution that given a fingerprint can predict

with reasonable accuracy the set of bits that have a higher probability than others of

getting flipped between a near-duplicate document pair and term them as weak bits.

Using this information for any f bit fingerprint q and a maximum hamming distance

h, we iteratively flip a combination of weak bits and combine it with linear scan to

find near duplicate matches in the existing data set. Our method does not require

any extra copies of permuted fingerprints to be maintained and is better scalable for

large data sets. We also show that for two document x,y and their 64-bit fingerprints

p,q: hamming distance H(p, q) ≤ 3 is as good a similarity measure as cosine similarity

with cos(x, y) ≥ 0.9 and use this as similarity threshold for near-duplicates in all of

our experiments.

5

CHAPTER II

RELATED WORK

Identical duplicates are easier to find in constant time by normal hashing techniques

whereas finding almost similar pages of a newly downloaded page is an O(n) oper-

ation which require comparisons with every other document in the data set. This

is not efficient and scalable if done for crawled documents which are in scale of bil-

lions and is therefore a challenge. Data structure like R-tree [9] and Kd-tree [10]

solve the problem of finding k-Nearest-Neighbors(kNN) [11] but their performance

degrades with increasing number of dimensions. For example, Kd-tree hierarchically

decomposes space along different dimensions and answers nearest neighbor queries

in logarithmic time but performs no better than linear scan even if the number of

dimensions become greater than eight [12]. Finding exact near-duplicate web doc-

uments in a high dimensional space is difficult because of the inherent sparsity of

the data points. Besides computational complexities involved with high dimensional

data, analysis has shown that every data point tends to be equidistant from all other

data points in high dimension for all practical data loads and the amount of data

required for maintaining a given spatial density increases exponentially with increase

in dimensions. Because of such high cost, common approach is to solve the problem

of finding approximate near-duplicate.

Several signature based schemes have been proposed in this direction. LSH is

one such popular technique which can map data points close together in Euclidean

space(or Cosine space) to a smaller dimension hamming space. To improve the perfor-

mance of LSH techniques, data aware hashing techniques have been proposed which

uses machine learning to improve near neighbor search. In [13], the authors proposed

a two step stacked Restricted Boltzman Machine (RBM) to generate compact binary

6

codes with low hamming distance between similar documents. In Forgiving Hashing

technique [14], an AdaBoost classifier is first trained on positive and negative similar

pairs and output of all weak learners on a given document is taken as its binary code.

These techniques though are proven to perform better than LSH are not suitable for

real-time systems sice they need training and the performance is dependent on the

training dataset used during classification.

One of the earliest technique for near-duplicate detection is Shingling where

for a given document d and a positive integer k, k shingles are defined as the set

of all consecutive sequence of k tokens in d S(d). The shingles are further encoded

into 64-bit hash values H(d) and Jaccard coefficient is calculated between shingle

vectors of two documents as similarity measure. The technique still needed to check

pairwise Jaccard coefficient and this problem was solved in [15], by Broder et al. who

introduced a technique called Min-wise independent permutations. For a document

dj, a random permutation π is used to permute H(dj) into π(dj) and if xπ
j is the

smallest integer in π(dj), then:

J(S(di), S(dj)) = Pr(xπ
i = xπ

j). (2.1)

A document sketch ψ(dj) is computed over multiple random permutations and two

documents are termed near-duplicates if their sketch overlap with a preset thresh-

old. Near-duplicates with document sketches can be found much faster than between

their shingles. Hoad and Zobel [16] study different ideas for selecting k-grams for

calculating shingles effectively.

In I-Match algorithm given by Chowdhry et al. [17] first define a lexicon L

which is constructed as the union of all terms in the document corpus. The lexicon

is then pruned using different collection statistics, the common being the inverse

document frequency (IDF) where terms with high and low IDF values are removed

7

from the collection. Each document vector is then modified by removing terms which

no longer exist in the lexicon and a document signature is generated using SHA1

hashing algorithm. The general idea of the algorithm is that two documents will be

near-duplicates if and only if their signatures match. The algorithm generates a lot

of false-positives for near-duplicate search and therefore in a modified paper, authors

propose to create multiple randomized lexicons. They create multiple signatures and

two documents are termed near-duplicates only if certain number of signatures match.

In another paper by Theobald et al. [18] on detecting near-duplicate new articles,

authors propose the idea of generating ”localized signatures” generated from text

around stop words in a document. The basic idea is that stop words are uniformly

distributed in an English text but occur very rarely in banners or ads. Hence, they

define ”spot signature” of a document as a collection of all k-tokens after a stop word

in the document. They also propose a collection partitioning and pruned inverted

index technique for efficiently computing Jaccard similarities on spot signatures.

A. SIMHASH

Charikar’s simhash [7] is a locality sensitive hashing (LSH) based fingerprinting tech-

nique which uses random projections to generate compact representation of a high

dimension vector. It has a special property that hamming distance between two doc-

ument fingerprints is small if the cosine similarity between their feature vectors is

high and vice-versa. LSH scheme was first introduced by Indyk and Motwani [5] who

showed that such hashing scheme can be used to build efficient data structures for

solving approximate near-neighbor queries on the collection of objects. This section

gives an overview of this method. An LSH scheme is given as [5]:

Definition 1 For a given similarity function ω(x, y) and family of hash functions F

8

operating on a universe of objects U such that ω : U2 → [0, 1] , a locality sensitive

hash function is a distribution on F such that x,y ∈ U and h ∈ F :

Prh∈F [h(x) = h(y)] = ω(x, y), (2.2)

where F is called hash function family for given similarity function ω(x, y). The

similarity functions for which hash function families we know are: Jaccard function,

cosine similarity and Lp norms for p = {1,2}. Cosine similarity based LSH scheme

proposed by Charikar [7] works as follows: for a collection of vectors in n dimension, a

random hyperplane defined by a normal unit vector r is chosen from a n-dimensional

Gaussian distribution to hash an input vector u into hr such that hr(u) = 1 if r.u ≥
0 and 0 otherwise. Different choices of r defines different such hash functions and for

two input vectors u and v, this hashing scheme has the property that [7]:

Pr[hr(u) = hr(v)] = 1− θ

π
, (2.3)

where θ is the angle between the vectors u and v. since this hashing produces single

bit for every hash function, this shows that the probability that two vector’s signa-

tures match in different bit locations is directly proportional to the cosine of angle

between them. Henzinger [8] applied this technique on term vectors to web document

domain. Algorithm 1 shows how to compute simhash of a document containing n

words t1,d, t2,d, . . . , tn,d with feature vector d = (w1,d, w2,d, . . . wn,d) using a f -bit

standard hash function θ. To compute a f -bit simhash, the intermediate step is to

compute a f dimension weight vector Wd, each of whose dimension is initialized to

zero. The hash function θ is applied on each feature ti,d iteratively and wi,d is added

or subtracted from each dimension of Wd depending on the bit values of hash θ(ti,d)

as follows: if the jth bit of hash is 1, then jth dimension of Wd is incremented by

wi,d else jth dimension of Wd is decremented by wj,d. When all n weights have been

9

Table I. An example computation of simhash on a document containing six words

using four bit hash values.

Feature Hash weight
word1 0101 0.05 -0.05 +0.05 -0.05 +0.05
word2 1101 0.02 +0.02 +0.02 -0.02 +0.02
word3 0001 0.01 -0.01 -0.01 -0.01 +0.01
word4 1110 0.03 +0.03 +0.03 +0.03 -0.03
word5 0100 0.05 -0.05 +0.05 -0.05 -0.05
word6 0011 0.09 -0.09 -0.09 +0.09 +0.09∑

weight -0.15 +0.05 -0.01 +0.09
simhash 0 1 0 1

added/subtracted based on the bits at specific index for each feature hash, then doc-

ument simhash is computed as follows: jth bit of simhash is 1 if jth dimension of

Wd is greater than zero and 0 otherwise. Mathematically, the jth dimension of Wd

can be given as:

Wj,d =
n∑

i=1

(2bi,j − 1)wi,d, (2.4)

where bi,j = jth bit of θ(ti,d) and bi,j ∈ {0, 1}. Table I shows an example computation

of simhash on a document with six words and using a four bit hash function. Manku

et al. [6] proposed a scheme to find near-duplicates using simhash in which they

create sorted tables of permuted fingerprints to find matching fingerprints within the

hamming distance threshold. The idea behind their approach is as follows: Using

multiple permutation schemes πi, create copies of the existing fingerprints and store

them in different sorted tables. Given a data set of 2d f -bit truly random fingerprints,

choose d′ such that d − d′ is a small positive number and for a query fingerprint q,

identify fingerprints in different tables such that they match πi(q) in d′ most-significant

bit positions. The matching fingerprints are then checked if they match πi(q) in at

most h bit-positions. If d− d′ is small, the number of matching fingerprints is small

10

Algorithm 1 Calculate simhash

W [f] = {0};
for i = 1 to n do

X ← θ(ti)

for j = 1 to f do

if X[j] = 1 then

W [j] ← W [j] + wi

else

W [j] ← W [j]− wi

end if

end for

end for

for i = 1 to f do

if W [i] > 0 then

S[i] ← 1

else

S[i] ← 0

end if

end for

return S

11

but the number of tables needed is more and vice-versa. For instance, 8B 64-bit

fingerprints require 1024K fingerprint matches in 4 tables, 5120 fingerprint matches

in 10 tables and 1024 matches in 16 tables in worst-case. First matching fingerprint

is found using a binary search and rest are matched with linear scan. Increasing

the number of tables not always leads to improved performance due to increased

number of binary search operations and additional query permutations which are

more expensive than linear scan. Another drawback of this method is that in batch

mode the near-neighbor search is performed on query fingerprints instead of existing

data set which leads to sub-optimal performance as we show in later sections.

We have implemented this method and chose the number of tables needed and

parameter d′ based on the size of our data set and tune these parameters to most

optimal performance for this algorithm.

12

CHAPTER III

MOTIVATION

Problem Definition: Given a collection of f -bit fingerprints C, query fingerprint q

and a maximum hamming distance h, find a near-duplicate fingerprint q′ ∈ C such

that:

H(q, q′) ≤ h. (3.1)

When the existing fingerprints are stored on disk, instead of single query fingerprint

a batch of fingerprints are expected to find near-duplicate neighbors. The ham-

ming distance H between two f bit fingerprints p = (x1,p, x2,p, . . . , xf,p) and q =

(x1,q, x2,q, . . . , xf,q) where xi,j ∈ {0, 1} is:

H(p,q) =
f∑

i=1

||xi,p − xi,q||. (3.2)

Hamming distance between two document fingerprints is computationally less

expensive than cosine similarity between their feature vectors and fingerprints also

require much lesser space to store. Table II compares 1000 64-bit fingerprints and fea-

ture vectors in terms of time it takes to compute all-pair hamming distance vs. cosine

similarity and the space needed to store them. Hamming distance can be computed

efficiently by just two operations: bit XOR between fingerprints and counting the

number of set bits [19, 20] whereas for calculating cosine similarity we must perform

n multiplications and n − 1 additions for two n dimensional vectors and is an O(n)

operation. Hamming distance also benefits from the small size of fingerprint which

can be read into cache more number of times than the feature vectors.

13

Table II. Comparison between 64-bit fingerprints and word feature vectors while com-

puting all-pair Hamming distance H(x, y) and cosine similarity cos(x, y) on

1000 web pages and their storage space required.

Method Time(s) RAM

H(x, y) 0.04 8000

cos(x, y) 1.914 2.7 x 107

A. Naive Solution

A naive solution to this problem would be to match fingerprint q with every other

fingerprint in the collection C and check to see if we can find a q′ which matches with it

in at least f−h bits. This is very expensive for large sized data sets and is not feasible

for making fast cluster membership decisions. For example, with an existing data set

of 70M fingerprints, a new arriving set of 10M fingerprints would approximately take

10 days to finish doing near-duplicate search based on the processing time quoted in

Table II.

14

CHAPTER IV

PROBABILISTIC SIMHASH MATCHING

We propose a new method, the Probabilistic Simhash Matching (PSM) system which

does not need to maintain multiple copies of data for near-duplicate search while

still maintaining a good recall percentage. For a given query fingerprint, we explore

different existing fingerprints based on the probability of finding a near-duplicate

match and limit our number of attempts to achieve good query speed. We show

experimentally that our probability estimation of near-duplicate fingerprint match

works well by implementing this technique on our data set of 70M web documents

collected from IRLbot [1] crawl.

A. Main Idea

Consider a table T that can accommodate all possible f -bit fingerprints contains 2d

(d ≤ f) f -bit fingerprints in the sorted order. For uniformly distributed fingerprints,

the expected distance between two fingerprints is 2f−d. It is easy to see that for a

query fingerprint q in the table if there exists a near-duplicate q′ also in the table,

it has to be different from q in at least one of the d most significant bit-positions.

The general idea to find near-duplicate for a given query q and maximum allowed

hamming distance h is: flip i (0 ≤ i ≤ h) bits in q in top d bit-positions iteratively

in different combinations to generate modified queries qm and for all fingerprints in

T which match qm in top d bit-positions, check if they differ with qm in at most h− i

bits in least-significant f − d bit-positions.

The procedure described above can locate all fingerprints which differ from q in

at most h bit-positions. But generating modified queries is expensive for large d and

even small h. The total possible modified queries M that can be generated for a given

15

f and h is:

M =

(
f

1

)
+

(
f

2

)
+ . . . +

(
f

h

)
. (4.1)

For example, the total number of modified queries that can be generated for 70M

64-bit fingerprints for h = 3 is = 2951 queries. Alternatively, one can choose d′

such that d− d′ is a small positive number and generate modified query fingerprints

by flipping bits in top d′ bit-positions. This will return an expected 2d′−d matches

per attempt which have to be checked to see if they differ with q in at most h bit-

positions. Although this will lead to an overall more number of query fingerprints

getting checked in worst-case, one can find a match while linear scanning the sorted

data which is inherently faster than random memory lookups.

The procedure is still not suitable for real time clustering which needs fast cluster

membership decisions since it generates a lot of modified query attempts as shown

earlier. Ideally, one would want to optimize the number of modified queries getting

generated by flipping bit-combinations and number of fingerprints getting checked

with linear scanning. A large d−d′ wastes time checking large number of fingerprints

with linear scanning but will require small number of random memory lookups and

vice-versa. We therefore need to optimize the number and order of modified queries

getting generated during the process.

The near-duplicate q′ of fingerprint q is likely to flip only a few bits of it. The

components of intermediate weight vector of a simhash are potentially useful in de-

termining which bits to flip. Recall that while generating simhash q for document d,

the jth component Wj,d of the intermediate weight vector Wd was given as:

Wj,d =
n∑

i=1

(2bi,j − 1)wi,d, (4.2)

where bi,j = jth bit of θ(ti,d), j ∈ [1, f] and n is the total number of feature in the

16

−5 0 5
0

0.01

0.02

0.03

0.04

0.05

0.06

dist
0

P
ro

ba
bi

lit
y

D
en

si
ty

Fig. 1. Distribution of distj calculated with 45M document pairs for j = 0.

document. For two near-duplicate documents d and d′, the distance distj,d−d′ between

their weight vectors Wd and Wd′ in jth dimension can given:

Wj,d′ = Wj,d + distj,d−d′

= Wj,d −
a∑

i=1

(2bi,j − 1)wi,d +
b∑

i=1

(2bi,j − 1)wi,d′ ,

(4.3)

where a is the number of features which are present in d but not in d′, b is the number

of features present in d′ but not in d and distj,d−d′ is the distance between Wd and

Wd′ in the jth dimension. The probability that q′ flips the jth bit of q is directly

dependent on how far away distj,d−d′ is from Wj,d on the number line. We can prove

this by plotting the distribution of distj,d−d′ which intuitively should follow a normal

distribution with mean 0. Figure 1 shows the plot of dist0 for a random sample of 45M

document pairs which proves the correctness of our assumption. The distribution

17

of dist for other bit-positions follow similar curve. Therefore, the probability that

fingerprint q′ flips the jth bit bj of q can be estimated as:

P (bj(f) 6= bj(f
′)) =

P (X ≥ −Wj,d) Wj,d ≤ 0

P (X ≤ −Wj,d) Wj,d > 0

(4.4)

which is nothing but the area between under the probability distribution curve of a

normal distribution with mean 0 and we can say that the probability of a bit-flip is

greater for a bit whose weight Wj,d is closer to 0. Mathematically, the probability of

bit-flip for jth bit (j ∈ [1, f]) can be estimated as:

Pr(bj(f) 6= bj(f
′)) = 1−

∣∣∣∣
Wj,d

|Wd|
∣∣∣∣, (4.5)

where we divide every weight component Wj,d by size of the vector |Wd| to get a value

between 0 and 1. We term the top-k most probable bits of a fingerprint to get flipped

by a near-duplicate document fingerprint as the k weakest bits of the fingerprint.

Assuming that bits of a fingerprint f are independent, the probability of a com-

bination of h bits represented as a bit-vector B = (bp1 , bp2 , . . . , bph
) where pi ∈ [1, f]

getting flipped by a fingerprint f ′ can be given as:

Pr(B(f) 6= B(f ′)) =
h∏

i=1

Pr(bpi
(f ′) 6= bpi

(f)). (4.6)

We will see in the experiments that assumption of bit independence works well and is

an acceptable hypothesis. The position vector of a bit-combination of size l is given

as Bp = (p1, p2, . . . , pl) where pi ∈ [1, f].

Figure 2 plots the distribution of the number of h bit flip attempts needed be-

tween near-duplicate fingerprint pairs which differ in h bit-positions. The graph was

generated by random sampling of 8M fingerprint pairs. It is apparent that concept

of weak bit flips works well and has an advantage over random flipping of bits.

18

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

Number of one bit flips

C
D

F

random bits
weak bits

(a) h = 1

10
1

10
2

10
3

10
4

0

0.2

0.4

0.6

0.8

1

Number of two bit flips

C
D

F

random bits
weak bits

(b) h = 2

10
2

10
3

10
4

10
5

0

0.2

0.4

0.6

0.8

1

Number of three bit flips

C
D

F

random bits
weak bits

(c) h = 3

Fig. 2. Comparison of the number of bit-flip attempts needed between a near-duplicate

fingerprint pair by flipping weak bits and random bits.

B. Bit-Combination Generation

We now present an algorithm to generate top-k weakest bit-combinations B of a

fingerprint of maximum size h. Assuming that we flip bits only in the leading p

(p ∈ [1, f]) bit positions of a f -bit fingerprint and given the simhash weight vector W,

finding top-k weakest individual bits of a fingerprint in sorted order of probabilities

can be done efficiently in O(p log k) time. But from equation 4.1, we know that finding

weak bit-combinations is expensive because there are a lot of options to choose from.

Since the probability of a bit combination is a product of its individual probabilities

19

Fig. 3. An example computation of function next for three bits given a bit-combination

index vector {1,2,3} which represent first three bits in the list of top-k weakest

bits.

which is a number between 0 and 1, we know that a bit combination of size i will

always have a probability lower than all its components of size ¡ i. And we can easily

say that top-k bit-combinations of maximum size h will only contain top-k weakest

bits of the fingerprint as their individual component. Effectively to find the maximum

number of size i bit-combinations in the top-k list, one can solve this equation for

min(ki): (
ki

1

)
+

(
ki

2

)
+

(
ki

3

)
+ . . . +

(
ki

i

)
≥ k. (4.7)

Then in a list of top-k bit-combinations, maximum number of size i bit-combinations

is given as max(L1, L2) where:

L1 = k −
(
ki

1

)
−

(
ki

2

)
− . . .−

(
ki

i− 1

)
, (4.8)

and

L2 =

(
ki − 1

i

)
, (4.9)

An efficient way to generate top-k weakest bit combinations of a maximum size h is:

• Create a max-heap M and initialize it with highest probability bit-combinations

20

of all sizes ≤ h with bit-combination position vector and its probability being

the key,value pair. Note that highest probability bit-combination of size i is the

first i bits in the top-k list of weakest bits.

• Perform Extract on M and for any bit-combination of size i getting extracted,

replace it with next size i bit-combination candidates of highest probability.

• Repeat Extract k times.

If we represent a bit-combination by the index of its individual bits (in sorted order)

in top-k list of weakest bits, we know that for a combination of size two represented

by (i, j) the next bit-combination candidate with highest probability is either (i +

1, j) or (i, j + 1). Generalizing this for different sized bit combinations, for a bit-

combination of size l represented as (i1, i2, . . . , il) the next set of candidates with

highest probabilities can be generated by adding 1 to individual components one at

a time and leaving out candidates for which ij = ik for any j, k ∈ [1, l]. However, this

can lead to a maximum of h bit-combinations getting generated for every Extract

and certain combinations getting repeated multiple times. For example, (1,3) can be

generated while extracting (0,3) and (1,2). To avoid generating large values and to

restrict repeated values, function next generates a maximum of two candidates given

a bit-combination of any size and always makes sure that generated combinations

are of highest probabilities. Please note that instead of bit-combination position

vector which contains position of individual bits in the fingerprint, function next

takes as input the bit-combination index vector whose components are the index

of its individual bits in the list of top-k weakest bits. For example, the highest

probability bit-combination of size 2 will be represented by an index vector of (1,2),

highest probability bit-combination of size 3 will be represented by an index vector of

(1,2,3), and so on. We define the working of function next, given a bit-combination

21

Algorithm 2 Generate highest probability bit-combinations using function next

Input: B = (p1, p2, . . . , pl) bit-combination position vector of size l

Output: B1,B2 = position vectors of size l

B1 ← (p1, p2, . . . , pl + 1)

B2 ← null

j ← 1

while pl−j − pl−j+1 ≤ 2 and j < l do

if pl−j - pl−j+1 = 2 then

B2 ← (p1, p2, . . . , pl−j−1, pl−j + 1, pl−j+1, . . . , pl)

return

end if

j ← j + 1

end while

index vector of size l in algorithm 2. An example output of function next for size

three bit-combinations is shown in figure 3. The maximum size of heap M will never

go beyond k +h−1 and therefore, total time complexity of this method once the tree

using next function has been created is: O((p + k) log (k + h)).

22

CHAPTER V

IMPLEMENTING PSM

In this section we present our algorithm for near-duplicate search in both online and

batch mode using the ideas presented in previous section.

A. Algorithm for Online Queries

Online mode is characterized by a data set of existing fingerprints stored in memory

and where near-duplicates for the new arriving fingerprints are to be found. These

new fingerprints are later added to the existing data set in case of a crawler. We

first build a sorted table T of existing f -bit fingerprints and also determine a global

value p which we define as the most-significant p bits of the fingerprints from which

different weak bit-combinations are flipped for generating modified queries. Further,

a hash table is created with 2p entries such that each entry points to a fingerprint

which is the first instance of p most-significant bits in Table T . Given a new arriving

query fingerprint q and a maximum hamming distance h, to find its near-duplicate :

• Identify the weakest bit-combination to flip in fingerprint q using a max-heap

as described in previous section.

• Using the bit-combination generated from previous step, generate the modified

query q′ by flipping the bits from bit-combination position vector. Identify all

such fingerprints in T which match q′ in most-significant p bits.

• For each of the fingerprint match identified, check if it differs from q in at most

h bit -positions.

• If no match is found, push the next bit-combinations of highest probability

23

Fig. 4. Working of PSM for f = 10 and p = 4. Weak bits are flipped to generate

modified queries and then matched in sorted table followed by linear scan.

generated with function next and repeat step one k times.

Figure 4 explains this design in different steps. Identification of first matching finger-

prints is done using the hash table and rest ones are matched with linear scanning.

Different choices of p and k can lead to difference in query times. Ideally, the design

goals are to: minimize query time and minimize the space requirement. A large value

of p can avoid checking too many fingerprints with linear scan but will requires extra

number of modified queries k for maintaining a good recall. The size of the hash table

24

required is also dependent on p and needs 2p entries.

B. Algorithm for Batch Queries

Batch mode is characterized by a batch of new arriving query fingerprints Q stored

in memory and where number of existing fingerprints are large enough to be stored in

a file F on disk. In this case, the task of near-duplicate search will be performed by

chunks of file F getting read sequentially into memory and hamming distance problem

solved for queries Q on each chunk separately. The query batch Q after processing

is appended to the file F in case of a web crawl dataset. The query chunk is sorted

before appending and hence file F is a collection of sorted chunk of fingerprints of

size equal to the size of query batch.

We stop reading chunks from file F as soon as we are done finding one near-

duplicate for all fingerprints in the query batch. Since we have to read the whole

file in worst-case every time a new batch arrives, ideally we would want to maximize

the batch size while keeping the query time minimum. In a multi-core system, the

task could be divided into multiple threads where each thread will read subsequent

chunks and process near-duplicate search for batch query Q separately. After pro-

cessing a chunk, threads can share the information about query fingerprints for which

near-duplicate has been found such that those fingerprints could be removed in the

processing of the next chunks. An important difference in batch mode is that finding

top-k weakest bit-combinations for query fingerprints should be done as a separate

preprocessing step which is unlike online mode where it is done for every fingerprint

during the near-duplicate search. This is to avoid wasting time in generating weak

bit-combinations for fingerprints every time a new chunk is loaded into memory.

25

CHAPTER VI

PERFORMANCE MODELING

We describe previous approach used by Manku et al. [6], evaluate its performance

and model our own approach for both online and batch mode.

A. Modeling Previous Method

For finding near duplicates at most h hamming distance away, Manku et al’s [6] algo-

rithm build multiple tables: T1, T2,, Tt of fingerprints by applying different permu-

tations given as: π1, π2,, πt over the f bit-positions. Permutation corresponds to

dividing the fingerprint into multiple blocks and making the bits in a certain number

of blocks as leading bits of the fingerprint. With each table Ti is stored an integer pi

such that for any query fingerprint q: all the fingerprints which match the permuted

query fingerprint πi(q) in the top pi bit-positions are first identified and then checked

to see if they differ with πi(q) in at most h bit-positions. The identification of the

first permuted fingerprint is done using binary search and hamming distance with

other fingerprints is computed as liner scan. The value for number of tables(t) and

permutation(pi) is selected keeping in mind the fact that a large pi would increase

the space requirement while reducing the number of fingerprints being checked and

vice-versa.

For f bit truly random fingerprints, maximum allowed hamming distance = h

and n = 2d existing fingerprints, assume that:

The fingerprint is split into z blocks of size ∆1, ∆2,. . . , ∆z such that:

∆1 + ∆2 + . . . + ∆z = f. (6.1)

26

For permutation πi, top pi bits are aligned with top x blocks such that:

∆1 + ∆2 + . . . + ∆x = pi. (6.2)

Further assume that for simplicity, fingerprints are divided into blocks of similar size

and therefore:

pi =
xf

z
. (6.3)

Near-duplicates which are at most h hamming distance also require:

z − x ≥ h. (6.4)

The absolute minimum number of tables t needed is dependent on h and is determined

as tmin:

tmin = h + 1. (6.5)

Theorem 1 For a given query fingerprint, the expected number of fingerprints that

have to be checked is given as:

α(f, d, z, x) = L2d− f
z/x , (6.6)

where L is the number of tables and upper-bound on x is given from equation 6.4.

The theorem shows that α(f, d, z, x) is a product of two elements: the number

of tables created and the expected number of fingerprints in each table that will be

checked. It is important how z and x are chosen because a small z/x can exponentially

reduces the number of fingerprints getting checked. The minimum x is 1 and therefore

maximum z/x is: 1 + h. To further reduce z/x we need to increment both z and x

while maintaining the upper bound on x from equation 6.4. Incrementing z and x

also leads to increasing left term of the equation and hence the next best values of

z/x are: (2 + h)/2,(3 + h)/3 and so on. Increasing z and x also leads to a blowup in

27

space requirement with number of tables LT given as:

LT =

(
z

x

)
. (6.7)

Reducing z/x below f/d will lead to empty table lookups and higher query time

because of wasted binary searches in many tables. Also note that if z/x is less than

f/d, then for each table binary search is given as O(d) instead of O(pi). For f =

64, h = 3, d = 34 and an optimal z = 6 and x = 3, the number of tables needed is

20 and expected number of fingerprints that will be checked in each table is 2d−xf/z

= 8. Alternatively, one could choose a sub-optimal z and x and reduce the space

requirement with lesser number of tables at the cost of extra number of fingerprints

getting checked. When the search is for finding all near-duplicate matches, the number

of tables which are checked for query matches is given as:

L = LT . (6.8)

and when the search is for only one near-duplicate match, the number of tables

checked for query match is given as:

1 ≤ L ≤ LT . (6.9)

The number of tables that are checked for finding one match is less than the total

number of tables since the search stops after first near-duplicate match.

1. Online Mode

We now discuss the performance of this algorithm in online mode. The running time

is decided by the time it takes to find at least one near-duplicate of the new arriving

fingerprint. The formulation is done assuming the existing data set of fingerprints F

is stored in main-memory and multiple tables of permuted fingerprints are already

28

sorted. The time it takes to search for a near-duplicate of the new arriving fingerprint

q in one table is given as:

ρ1 = fc1 +
xf

z
c2 + 2d− f

z/x c3, (6.10)

where x, z, d and f are as defined earlier and c1, c2 and c3 are computational constants.

First term of the above equation is the time it takes to permute an f bit fingerprint in

any order, second term is the time needed to perform binary search for a fingerprint

in one table and the third term is the time spent linear scanning on average in one

table. Also note that if z/x is less than f/d, then binary search is given as O(d).

Total time to perform near-duplicate search for one document in all the tables is given

as:

ρ = Lρ1. (6.11)

The total number of fingerprints that can be stored in memory is limited by RAM

size s (in bytes) such that:

s ≥
(

z

x

)
2d f

8
. (6.12)

Assuming for a RAM size of s = 16 GB, using the absolute minimum number of h+1

= 4 tables needed for h = 3 and ignoring other data structures needed to be kept

in main-memory, for f = 64 bit fingerprints this allows for a maximum d = 29 or

229 fingerprints that can be processed in online mode with an expected number of

fingerprints getting checked per query = 2d−16.

2. Batch Mode

Batch mode is run on a batch of new arriving query fingerprints Q which are stored

in main-memory and the dataset of existing fingerprints F stored on disk. After

processing, the batch is appended to the existing dataset of fingerprints in case of

29

a crawler. The technique for near-duplicate detection here is different from online

mode since tables are built for query batch Q and near-duplicate search runs from

F → Q. Important thing to note is that for a query fingerprint q ∈ Q, near-duplicate

search can stop as soon as one match is found in online mode but the same is not

true for a fingerprint q′ ∈ F in batch mode because we are finding potential queries

for existing answers, so we should keep searching for near-duplicates even if there is

one fingerprint in Q which has not been matched.

Assume that file F on disk has n fingerprints and near-duplicates of a batch of

m query fingerprints in main-memory from file Q is to be found. F is read in sim-

ilar chunks of size l fingerprints/chunk and therefore, the time for disk I/O is given as:

ρ1 = δ1 +
nf

δ2

, (6.13)

where δ1 is the disk seek-time in seconds and δ2 is the read speed in bits/sec. This

is computed assuming the file is read sequentially with only one disk seek required.

The time taken for near-duplicate search for one fingerprint from F on one table is

given as:

ρ2 = (n + m)fc1 + m log mc2 + n
xf

z
c3 + nm2−xf/zc4, (6.14)

where x, z and f are as defined earlier and c1, c2, c3 and c4 are computational

constants. First term of the equation is the time needed to permute n+m fingerprints,

second term is time needed to sort a table before search starts, third term is the time

required for binary search of n fingerprints, and the last term is time needed to linear

scan n fingerprints. Also note that if z/x is less than f/d, then binary search is given

as O(d). Total time taken when disk I/O is done in parallel with CPU processing is

given as:

ρ = max(Lρ1, ρ2). (6.15)

30

B. Modeling Our Method

To find near-duplicate for a f bit fingerprint which is at most h hamming distance

away, we first define p as the leading p bits of the fingerprint from which different

weak bit-combinations to flip are generated. A l sized weak bit-combination B is

represented by its position vector Bp = (p1, p2, . . . , pl) where pi ∈ [1, p] and 1 ≤ i ≤ l.

Note that we are assuming that bit-position is calculated from its most-significant

bit. For a given query fingerprint q and a given weak bit-combination Bp of size i, we

iteratively flip bits at positions given by Bp to generate q′ and all such fingerprints

in the existing dataset which match it in most-significant p bits are checked if they

differ it in at most h bits with q.

1. Online Mode

Existing fingerprints F are assumed stored in the memory in a sorted table and near-

duplicate of a new arriving fingerprint q is to be found. The number of fingerprints

in existing dataset is n = 2d and the RAM size is assumed s. We create an index of

the sorted table such that a pointer to the fingerprint with first instance of unique

leading p is stored. This accounts for a index size of 2p entries. The formulation

is done assuming that index on the existing dataset is already created. The time it

takes to find a near-duplicate of the new arrived document q is given as:

ρ = (p + k) log (k + h)c1 + k2d−pc2, (6.16)

where k is the maximum number of weakest bit-combinations to be flipped and d and p

are as defined earlier and c1,c2 are computational constants. The first term determines

the time that is needed to find top k weakest bit-combinations of the fingerprint and

the second term is the time needed to perform linear scan on the table. It is important

31

how we choose p and k which determines the number of fingerprints getting checked.

Increasing p exponentially reduces the time spent with linear scanning but increases

the index size and time spent in finding the weakest bit-combinations. Increasing p

also requires increasing k for maintaining a particular recall and hence it is important

to find the rate of increase of k with p. If k increase at a rate much slower than

exponential, then it is always better to have p = d to achieve the best performance.

The maximum number of fingerprints that can be processed is limited by RAM

size s such that:

s ≥ (2d + 2p)
f

8
. (6.17)

Assuming for a RAM size of 16 GB, maximum size of index that is possible with p = d

and ignoring other data structures needed to be stored in memory, this allows for a

maximum data size of d = 30 or 230 fingerprints that can be processed in online mode

which is double the number of fingerprints that could be processed with previous

method and an expected fingerprints getting checked per query = k.

2. Batch Mode

Batch mode is run on a batch of new arriving query fingerprints Q kept in memory

while existing fingerprints in a file F are stored on disk. Queries are received in a

batch of size m fingerprints/batch and the number of existing fingerprints can be

assumed n. After the processing is over, query batch is sorted and appended to F .

Thus existing fingerprints are pre-sorted in chunks of size equal to the query batch.

Important thing to note here is that we run our batch process from Q → F and try

to find near-duplicate matches for new queries unlike previous method which tries to

find query matches for existing fingerprints. Hence, we are not constrained to run the

near-duplicate search after the first match for a query fingerprint is found.

32

The time it takes to read fingerprints from disk in chunks of m fingerprints/chunk

is given as:

ρ1 = δ1 +
nf

δ2

, (6.18)

where δ1 is the disk seek-time in seconds and δ2 is the read speed in bits/sec. This is

computed assuming the file is read sequentially with only one disk seek.

Processing time is given as:

ρ2 = m(p + k) log (k + h)c1 + nm2−pkc2 + m log mc3, (6.19)

where f ,k and p are as defined earlier and c1, c2 are computational constants. First

term of the equation is the time needed to find top k weak bit-positions of m finger-

prints, second term is the time needed to search near-duplicates for m fingerprints

in n/m chunks and the third term is the time needed to sort m fingerprints before

appending it to the file. Total time taken when disk I/O is done parallel with CPU

processing is given as:

ρ = max(ρ1, ρ2). (6.20)

3. Linear Scan vs Bit-flip

We evaluate the effectiveness of linear scan vs bit-combination flips in terms of query

time and space requirement for near-duplicate search. Expected number of finger-

prints getting checked at any p,k can be given as X:

X = k2d−p. (6.21)

For a fixed dataset size given by 2d, incrementing p by 1 leads to halving the number of

queries getting checked by linear scanning but to maintain a certain recall, number of

bit-combination flips k also increases. Hence incrementing p is useful only if required

33

16 18 20 22 24 26
0

5

10

15

20

25

p

k

PSM
F

PSM
A

(a) k vs p

16 18 20 22 24 26
0

20

40

60

80

p

tim
e(

s)

PSM
F

PSM
A

(b) time vs p

Fig. 5. Efficiency of bit-flip over linear scan.

k does not double with every step of incrementing p by 1. Figure 5(a) shows the

required number of bit-combination flips k for both PSMA and PSMF is almost sub-

exponential with p for d = 26 and hence we see a dramatic improvement in query time

with increasing p in figure 5(b). Since, the reduction in linear scan is exponential,

the improvement in performance gets smaller as p approaches d.

34

CHAPTER VII

EXPERIMENTS

We first show that simhash is useful for finding near duplicates in our web document

data set. We found that f = 64-bit simhash with a maximum hamming distance

of h = 3 is good enough for finding near-duplicates with high precision and recall.

This section also presents the evaluation results of our method in comparison with

previous method on the web document data set.

A. Dataset

All our experiments were done on a small subset of the web document data set

downloaded using the IRLbot [1] crawler containing 100M web pages. We removed

all such pages which were of size less than 5 Kb or had no URL present or had an exact

duplicate also present in the data set identified using a standard hash function. We

also removed pages which contained non-English words and this returned us a total of

70M pages after pruning. In the first step of processing, we parsed the html documents

and created feature vectors for word TF-IDF after stemming (using standard porter

stemming algorithm) and stop-word removal. For calculating simhash fingerprints,

we used the 64-bit murmur hash function.

B. Near-Duplicate Search Using Simhash

We randomly sampled 100M document pairs from our data set and calculated cosine

similarity between their document feature vectors and hamming distance between

their simhash fingerprints. For our experiments, we tagged a document pair x,y as

similar using their cosine similarity cos(x, y) and based on the following definition of

35

0 5 10 15
0

0.2

0.4

0.6

0.8

1

H(x,y)

pr
ec

is
io

n
an

d
re

ca
ll

recall
precision

(a) Precision/Recall vs h

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

H(x,y)

co
s(

x,
y)

(b) cosine similarity vs h

Fig. 6. Simhash performance at various hamming distance.

similarity ω(x, y):

ω(x, y) =

1 if cos(x, y) ≥ θ0

0 if cos(x, y) < θ0

(7.1)

where θ0 = minimum cosine similarity for pages to be similar. We used a θ0 value of 0.9

for our experiments. To compute precision and recall, we partitioned the document

pairs based on the hamming distance between their respective fingerprints. Precision

at hamming distance h is defined as the fraction of document pairs which are found

similar with hamming distance at most h.

Precision at hamming distance h is written as Ph:

Ph =

∑h
i=1 ns,i∑h
i=1 ni

, (7.2)

and Recall at hamming distance h is calculated as Rh: the fraction of the total number

of similar document pairs that are found with hamming distance at most h.

Rh =

∑h
i=1 ns,i

Ts

, (7.3)

where
∑h

i=1 ns,i is the total number of similar documents found with hamming distance

36

at most h,
∑h

i=1 ni is the total number of document pairs found with hamming distance

at most h and Ts is the total number of similar document pairs in the data set. Figure

6(a) shows the plots for precision and recall calculated for our data set for varying

hamming distance. We can see notice the low false-positive and high false-negative

rate at smaller hamming distances. Therefore, h = 3 would be a sensible choice for

balancing the trade-off between precision and recall.

In Figure 6(b), the expected cosine similarity E[cos(x, y)] between document

pairs at different hamming distance is shown. To calculate this, we partitioned doc-

ument pairs based on the hamming distance between their fingerprints and then

computed the average cosine similarity of documents at every hamming distance. We

can clearly see the 0.95 expected cosine similarity for document pairs at hamming

distance 1, 0.93 for documents at hamming distance 2 and 0.89 for documents at

hamming distance 3. Clearly, more similar documents are closer in hamming space

than less similar ones.

C. Implementation Details

We implemented our method and the method proposed by Manku et al [6] in C++

programming language. We tested both the methods in online and batch mode for

recall, query time and space requirement. Our implementation of Manku et al’s [6]

method follows the idea presented in their paper as we could not find an existing

implementation. An ideal near-duplicate detection algorithm should take less time

with less space and be able to identify all near-duplicates in the data set. The recall

for our experiments is defined differently for PSMA and PSMF . Given a fingerprint

data set D with N existing fingerprints and a new arriving M query fingerprints, let

L be the total number of query fingerprints which have at least one near-duplicate

37

match present in D. Then for a near-duplicate detection technique which finds one

match for F query fingerprints, the recall is given as RPSMF
:

RPSMF
=

F

L
. (7.4)

and let Z be the total number of near-duplicate matches for all query fingerprints

M , then for a near-duplicate detection technique which finds X ⊆ Z matches, recall

RPSMA
is given as:

RPSMA
=

X

Z
. (7.5)

An ideal search algorithm should have a recall of 1.0. In all our experiments we

target to achieve a recall of 0.95 with our method unless otherwise specified. Since,

it is impossible to compute all-pair hamming distance between fingerprints for our

large data set, we take the number of near-duplicates found using Manku et al’s

method [6] as the ground truth for recall computations. For each fingerprint and

its near-duplicate, the hamming distance should be at least 1 and at most 3. For

comparing our results with [6], we use: Manku − A where search finds all near-

duplicate documents and Manku−F where search stops after finding the first near-

duplicate document. For each experiment, we divided the data set of 70M fingerprints

by random sampling into two parts: 10M fingerprints to be used as query fingerprints

and 60M fingerprints to be used as the existing data set. We then try to find at least

one match for the query fingerprints in the existing data set.

D. Hardware

We used an AMD Phenom(tm) II 2.8 GHz six-core desktop machine with 3MB L2

Cache for all our experiments. The machine runs Windows Server 2008 R2 with 16

GB of RAM support and 5 TB of disk space available.

38

0 10 20 30 40
1.5

2

2.5

3

3.5

4

4.5

k

tim
e(

s)

p=21
p=34

(a) preprocessing time

10
0

10
1

0

2000

4000

6000

8000

number of tables
E

[n
um

be
r

of
 q

ue
ry

 c
he

ck
s]

Manku
A

PMS
A

Manku
F

PMS
F

(b) # of query matches

10
0

10
1

0

20

40

60

80

number of tables

tim
e(

s)

Manku
A

PMS
A

Manku
F

PMS
F

(c) query time

Fig. 7. (a)The preprocessing time with increasing k at p = 21 and p = 34 (which is

needed when dataset size becomes ≈ 8B). (b)The # of query matches with

increasing number of tables for d = 26. (c)The time in seconds with increasing

number of tables.

39

E. Preprocessing

The process of finding top-k weakest bit-combinations is already discussed in section

4. The time it takes to find top-k weakest bit-combinations depends on the number

of leading bits from which the bit-combinations are to be found p and the number of

bit-combinations to be found k. Figure 7(a) shows the expected preprocessing time

for 10M fingerprints for different values of p and k. Note that the preprocessing step

is needed before near-duplicate search starts for queries in batch mode whereas for

online mode, preprocessing is done at the run-time. To make preprocessing more

efficient, we took the log of individual bit weights and solved the problem in a similar

way using a max-heap for sum of numbers instead of their product.

F. Online Mode

Our method is very efficient in terms of number of tables required and query time

while achieving a maximum of 0.95 recall. Figure 7(b) compares the expected number

of fingerprints getting checked for our method and Manku et al’s method [6] with

increasing number of tables. In our method, hash-table size increases with increasing

p and can grow to a maximum of 2d entries. Therefore, the maximum number of

tables in our method can never go beyond 2 for any size of the data set. Please note

that number of tables t in our method is computed with equation:

t = 1 +
1

2d−p
, (7.6)

where 2d is the number of fingerprints in the existing dataset. Maximum value of p

that we use is d and hance number of tables can never go beyond 2. Increasing p

requires more number of bit-combinations k to be flipped for maintaining a particular

recall but leads to an overall lesser number of fingerprints getting checked. Manku et

40

16 18 20 22 24 26
0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

d

re
ca

ll

k=5
k=10
k=15

(a) PSMF

16 18 20 22 24 26
0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

d
re

ca
ll

k=10
k=15
k=25

(b) PSMA

16 18 20 22 24 26
0

10

20

30

40

50

60

70

d

tim
e(

s)

Manku
F

PMS
F

Manku
A

PMS
A

(c) Memory = 4|T |

16 18 20 22 24 26
0

10

20

30

40

50

60

d

tim
e

(s
)

Manku
F

Manku
A

PMS
F

PMS
A

(d) Memory = 10|T |

Fig. 8. (a)Recall of PSMF at increasing size of the dataset with different values of k.

(b)Recall of PSMA at increasing size of the dataset with different values of k.

(c)Time efficiency with varying dataset size at constant memory size of 4|T |.
(d)Time efficiency with varying dataset size at constant memory size of 10|T |.

41

al’s method [6] method can lead to marginally lesser number of fingerprints getting

checked by using 5 times more space than our method. However in figure 7(c), which

compares the time taken for near-duplicate search between our method and Manku

et al’s method [6] method we can see that this does not guarantee a lesser query time

as our method can perform at least 3.5 times better than their method for all near-

duplicate search. With increasing number of tables in [6], the cost of binary search

in extra tables for each query fingerprint offsets the reduction in cost with reduced

hamming distance computations to an extent which is not the case with our system.

The results show that our method is significantly better than previous method

in terms of space usage and query time both with 0.95 recall. This is much suitable

for real-time systems which are memory constrained and need faster performance but

are ready to sacrifice a small recall percentage.

Figure 8(a) and 8(b) shows the change in recall with increasing dataset size. We

can see that for PSMF decreases much slower than PSMA. For a recall of 0.95,

PSMA needs k = 23 and PSMF needs k = 15. Figure 8(c) and 8(d) shows the

relationship between increasing dataset size and query time at constant memory size

of 4|T | and 10|T |. Each dataset is built by random sampling of a subset of the existing

fingerprints. The value of p was set as p = d for every subset and hence the total

number of tables required by our method is 2 at all times. The recall is maintained

at 0.95. The results show that at constant memory size, the increase in query time

with our method is much lower than the previous method. Also note that in previous

method, time required is more with 10|T | as compared to 4|T | until d = 25 because

of the increased cost of binary searches with empty table lookups.

42

Fig. 9. Working of the batch-mode.

G. Batch Mode

Experiments for batch mode are done for an existing dataset of 60M fingerprints

which are read from the disk and a query batch of 10M fingerprints stored in the

memory. The task is to find near-duplicates of batch queries in minimum possible

time. Batch mode is expensive since every time a new batch arrives, the existing

fingerprints have to be read into memory and then near-duplicate search runs over

it. Therefore, it is important to be able to process queries of larger batch size at

minimum possible time.

Figure 9 shows the working of batch mode in case of a web-crawler. The data is

input in batches and when the processing is over, is appended to the disk file after

sorting. Every time a new batch arrives, the disk file is read into memory sequentially

and near-duplicate search is run. Figure 10 shows the relation of processing speed with

increasing query batch size and increasing disk file size. In figure 10(a), the experiment

43

0 2 4 6 8 10

x 10
6

0

2

4

6

8
x 10

5

m

sp
ee

d
(s

im
ha

sh
/s

)

PMS
F

PMS
A

Manku

(a) speed vs m

1 2 3 4 5 6

x 10
7

10
4

10
5

10
6

10
7

n

sp
ee

d
(s

im
ha

sh
/s

)

PMS
F

PMS
A

Manku

(b) speed vs n

Fig. 10. Efficiency of query performance in batch mode.

of finding processing speed with increasing batch size is done with constant disk file

size of 60M fingerprints and in figure 10(b), experiment with increasing disk file size

is done at constant batch size of 10M fingerprints. Please note that Manku’s method

[6] is similar for finding first near-duplicate and all-near duplicates since it matches

fingerprints in disk file to fingerprints in the batch and hence cannot stop after the

first match. In the first graph, the difference in speed between PSMA and Manku

et al’s [6] method keeps growing starting from 3.7 times at 1M fingerprint to 7.72

times at batch size of 10M fingerprints. The difference between PSMF and [6] grows

to ≈ 14 times at batch size of 10M fingerprints. In the second graph, the difference

in query time between our method and Manku et al’s [6] method remains constant

at ≈ 7 times at different sizes of the disk file size. Therefore, we can say that our

method will perform increasingly better at even bigger batch sizes and maintain that

performance advantage over at any size of the disk file. For Manku et al’s [6] method,

since near-duplicate search runs over query batch of 10M fingerprints, we used the 4

table design which proved to be performing better than 10 table design from previous

experiments.

44

CHAPTER VIII

CONCLUSION

In this thesis, we presented a way to find near-duplicates using simhash in large

datasets which takes less space and performs faster by sacrificing a small recall per-

centage. For both online and batch mode, our method consistently outperformed

[6] in terms of query speed and memory requirement. We also showed with our ex-

periments that our probabilistic method works quite well and is significantly able to

reduce the number of fingerprints getting checked with a maximum of two tables.

Future work involves studying feature selection for web pages to effectively use our

method and cluster our collection of web pages. We would like to work on paral-

lel clustering of large datasets and make it faster and more scalable by using this

technique of near-duplicate detection.

45

REFERENCES

[1] H.-T. Lee, D. Leonard, X. Wang, and D. Loguinov, “IRLbot: Scaling to 6 billion

pages and beyond,” Proc. ACM WWW, pp. 427–436, 2008.

[2] M. Ester, H.-P. Kriegel, J. Sander, M. Wimmer, and X. Xu, “Incremental clus-

tering for mining in a data warehousing environment,” Proc. Intl Conf. Very

Large Data Bases (VLDB), pp. 323–333, 1998.

[3] B. Stein, S. M. zu Eissen, and M. Potthast, “Strategies for retrieving plagiarized

documents,” Proc. ACM SIGIR, pp. 825–826, 2007.

[4] D. Fetterly, M. Manasse, and M. Najork, “On the evolution of clusters of near-

duplicate web pages,” 1st Latin American Web Congres, pp. 37–45, 2003.

[5] P. Indyk and R. Motwani, “Approximate nearest neighbors: Towards removing

the curse of dimensionality,” Proc. ACM STOC, pp. 604 613, 1998.

[6] G. S. Manku, A. Jain, and A. Das Sarma, “Detecting near-duplicates for web

crawling,” Proc. ACM WWW, pp. 141–150, 2007.

[7] M. S. Charikar, “Similarity estimation techniques from rounding algorithms,”

Proc. ACM STOC, pp. 380–388, 2002.

[8] M. Henzinger, “Finding near-duplicate web pages: A large-scale evaluation of

algorithms,” Proc. ACM SIGIR, pp. 284–291, 2006.

[9] A. Guttman, “R-trees: A dynamic index structure for spatial searching,” Proc.

ACM SIGMOD, pp. 47–57, 1984.

[10] J. L. Bentley, “K-d trees for semi-dynamic point sets,” ACM Symposium on

Computational Geometry (SCG), pp. 187–197, 1990.

46

[11] T. Mitchell, Machine Learning, New York, McGraw Hill, 1997.

[12] R. Weber, H.-J. Schek, and S. Blott, “A quantitative analysis and performance

study for similarity-search methods in high-dimensional spaces,” Proc. Intl Conf.

Very Large Data Bases (VLDB), pp. 194–205, 1998.

[13] R. Salakhutdinov and G. Hinton, “Semantic Hashing,” Int. J. Approx. Reasoning,

vol. 50, pp. 969–978, 2009

[14] S. Baluja and M. Covell, “Learning forgiving hash functions: Algorithms and

large scale tests,” Proc. 20th international joint conference on Artifical intelli-

gence, pp. 2663–2669, 2007.

[15] A. Z. Broder, M. Charikar, A. M. Frieze, and M. Mitzenmacher, “Min-wise

independent permutations,” Journal of Computer and System Sciences, vol. 60,

pp. 327–336, 1998.

[16] T. C. Hoad and J. Zobel, “Methods for identifying versioned and plagiarised

documents,” J. Am. Soc. Inf. Sci. Technol., vol. 54, pp. 203–215, February 2003.

[17] A. Chowdhury, O. Frieder, D. Grossman, and M. C. McCabe, “Collection statis-

tics for fast duplicate document detection,” ACM Trans. Inf. Syst., vol. 20, pp.

171–191, April 2002.

[18] M. Theobald, J. Siddharth, and A. Paepcke, “Spotsigs: Robust and efficient near

duplicate detection in large web collections,” Proc. ACM SIGIR, pp. 563–570,

2008.

[19] P. Wegner, “A technique for counting ones in a binary computer,” Commun.

ACM, vol. 3, pp. 322–322, May 1960.

47

[20] D. Knuth, The Art of Computer Programming, Boston, MA, Addison-Wesley

3rd edition, 1997.

48

VITA

Sadhan Sood received his Bachelor of Technology degree in mechanical engineer-

ing from Cochin University of Science & Technology-Kochi, India in June 2006. He

received his Masters of Science degree in computer science in August 2011 at Texas

A&M University, College Station.

His research interests include computer networks and information retrieval. He

can be reached at:

c/o Department of Computer Science and Engineering

Texas A&M University

College Station

Texas - 77843-3128

The typist for this thesis was Sadhan Sood.

