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ABSTRACT

Cost, Precision, and Task Structure in Aggression-based

Arbitration for Minimalist Robot Cooperation. (August 2011)

Tanushree Mitra, B.Tech., Sikkim Manipal Institute of Technology

Chair of Advisory Committee: Dr. Dylan Shell

Multi-robot systems have the potential to improve performance through paral-

lelism. Unfortunately, interference often diminishes those returns. Starting from the

earliest multi-robot research, a variety of arbitration mechanisms have been proposed

to maximize speed-up. Vaughan and his collaborators demonstrated the effective-

ness of an arbitration mechanism inspired by biological signaling where the level of

aggression displayed by each agent effectively prioritizes the limited resources. But

most often these arbitration mechanisms did not do any principled consideration

of environmental constraints or task structure, signaling cost and precision of the

outcome. These factors have been taken into consideration in this research and a tax-

onomy of the arbitration mechanisms have been presented. The taxonomy organizes

prior techniques and newly introduced novel techniques. The latter include theoret-

ical and practical mechanisms (from minimalist to especially efficient). Practicable

mechanisms were evaluated on physical robots for which both data and models are

presented. The arbitration mechanisms described span a whole gamut from implicit

(in case of robotics, entirely without representation) to deliberatively coordinated

(via an established Biological model, reformulated from a Bayesian perspective).

Another significant result of this thesis is a systematic characterization of system

performance across parameters that describe the task structure: patterns of interfer-

ence are related to a set of strings that can be expressed exactly. This analysis of the

domain has the important (and rare) property of completeness, i.e., all possible ab-
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stract variations of the task are understood. This research presents efficiency results

showing that a characterization for any given instance can be obtained in sub-linear

time. It has been shown, by construction, that: (1) Even an ideal arbitration mech-

anism can perform arbitrarily poorly; (2) Agents may manipulate task-structure for

individual and collective good; (3) Task variations affect the influence that initial

conditions have on long-term behavior; (4) The most complex interference dynamics

possible for the scenario is a limit cycle behavior.
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CHAPTER I

INTRODUCTION

Spatial interference is a common and important phenomenon in navigation tasks

involving multiple robots. When autonomous robots have an incentive to cooperate,

a worthwhile question is how best to mitigate the negative effects of this contention.

Motivated by the methods which animals employ to compete for resources, Vaughan

and his collaborators (cf. [1], [2], and [3]) have shown how displays of stylized ag-

gression can effectively resolve resource conflicts in a multi-robot transportation task.

That work has produced increasingly effective methods for assessing the level of ag-

gression that an individual agent should exhibit in order to prioritize the limited re-

source effectively. One way of determining the amount of aggression to be displayed

is to make it proportional to the amount of investment an agent does in traversing a

shared region. The level of aggression displayed shows how fit an agent is to win the

resource. The fitness of an agent may depend on one or several factors. For example,

it could be proportional to the amount of investment done in the shared resource,

or the priority of the task being performed or may even depend on the past perfor-

mance of an agent. In our study of robotic spatial interference scenario the fitness is

proportional to the amount of investment done in crossing the shared region before

a robot encounters an opponent robot from the opposite direction.

However, determining the correct fitness of an individual at a particular time is

just one aspect of effective conflict resolution. Results of this thesis demonstrate that

additional factors also contribute to conflict resolution and its effectiveness depends

on them in a critical way:—

The journal model is IEEE Transactions on Automatic Control.
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• Cost versus precision of the arbitration mechanism—when agents locally esti-

mate their own fitness and try to communicate it during resource arbitration,

some communication cost is incurred. The mechanics of this procedure influence

the utility of communicating an agent’s fitness in the first place. The analogous

biological mechanism is directly concerned with the interplay of signal precision

and cost: aggressive displays allow animals to assess the strength of their re-

source competitors before they decide to engage in a costly fight [4]. There is

also the question of how long the communication should last in order to make

a good enough estimate of the opponent’s fitness and how good (or accurate)

the estimate is.

• Static versus dynamic conflict resolution—Static arbitration need not have any

cost involved in communicating fitness levels, since the abilities of agents are

pre-determined and fixed and the level of fitness does not change during the

course of navigation. On the other hand, dynamic conflict resolution can have

varying levels of fitness and there is an inherent cost for communicating an

agent’s fitness.

• Properties of the shared resource for which the agents are competing—this can

affect, among other things, the cost of communicating its fitness and what

constitutes a worthwhile investment.

• The task which each agent is assigned to perform—this can be coupled through

the shared resource. This coupling, effects individual and collective dynamics.

• The inherent noise in the communication channel—the role of noise comes into

play in dynamic arbitration mechanisms when agents try to communicate their

fitness level through a noisy channel. This may cause inaccuracies in estimating
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an opponent’s communicated level of fitness. This in turn may lead to extended

conflicts till an agent is confident enough in its estimate. However, noise can

be beneficial in breaking symmetry, a situation which often occurs when agents

have identical fitness levels.

In fact our results show that the properties of the resource influence the cost

of arbitration with aggressive displays, so much so that it might not be worth it

for an agent to display its fitness at all. Instead it might be worthwhile to follow

a static strategy. Varying the properties of assigned task, the frequency of spatial

interference and the cost incurred in resolving it varies significantly. Even memory

of past interactions with respect to the task structure and properties of the resource

can be used to improve future task performance. Moreover, inherent noise in the

communication channel can influence the accuracy of fight outcome, in terms of who

would be the rightful winner given their true abilities.

Apart from identifying the significant factors influencing robotic spatial interfer-

ence, this thesis also categorizes different arbitration mechanisms ranging from the

most implicit minimalist arbitration where arbitration hardly has any representa-

tion to the most informed and coordinated explicit arbitration. Further more, this

research also characterizes system performance across parameters that describe the

task structure, specifically, patterns of interference which can be expressed exactly as

a set of strings. This analysis of the domain has the important (and rare) property

of completeness, i.e., all possible abstract variations of the task are understood.

A. Research Questions

Broadly, the research questions which this thesis addresses are as follows:—

• What are the chances that any interference will occur?
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• Given some spatial interaction, how likely is it that the subsequent interference

will result in interference?

• Are there favorable conditions that prevent or ameliorate the cost of future

interference?

• What factors should be taken into consideration while choosing an arbitration

mechanism for interference resolution?

• Can the choice of arbitration mechanism decide the frequency of interference

for subsequent interactions?

• Can we identify interference patterns for any given arbitration mechanism?

• Can we model the arbitration mechanisms both as implicit with very little

representation and as explicit with higher information communication and co-

ordination?

In the next section we present the work done by roboticists in the domain of

robotic spatial interference and also by biologists in the domain of animal conflicts

over shared resources.
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CHAPTER II

RELATED WORK

Goldberg and Matarić [5] have suggested using interference as a tool for evaluat-

ing multi-robot controllers, viz. identifying trade-offs between performance time and

interference. Beyond identifying the general importance of interference in robot sys-

tems, their work showed that a dominance hierarchy is one strategy that can reduce

interference in some foraging scenarios.

Vaughan et.al [1] inspired by Konrad Lorenz’s [6] work on aggressive behaviors

in animals used “aggressive display” strategies to resolve a shared resource conflict,

without causing any physical damage to the robots. In order to prevent intra-species

physical fights over a shared resource, animals have evolved several strategies. One

such strategy is to cue the opponent about its strength and make it submit without

engaging in a physical combat. Such displays of an animal’s aggressiveness can be

termed as “aggressive displays” and is the key to Vaughan et.al ’s method of arbi-

tration. For the robots there are several alternative methods of choosing the level

of aggression. They performed simulation experiments of robotic spatial navigation,

choosing different methods for setting aggression levels. They compared the perfor-

mance of these methods by measuring the number of task traversals completed in

each case, where a higher number denoted better performance. Their data showed

that the performance is same no matter how the aggression level is set, be it fixed

linear dominance hierarchy where aggression level is preset beforehand or dynami-

cally set aggression level, based on the amount of free space behind the robot or even

when aggression is determined at random. However in all these methods the robots

completed more transportation trips than when the system lacked any arbitration. In

contrast our data show that one strategy can be preferable to the other, but exactly
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which will depend on the shared resource and also on the individual task dynamics.

Brown [2] introduced the concept of “rational aggression” where the level of ag-

gression is determined by the amount of time spent by the robot in performing its

task, also called the investment made by a robot. Under certain conditions, deter-

mining the level aggression on the basis of a robot’s global task investment provides

a significant performance improvement over a randomly selected outcome.

Zuluaga and Vaughan [3] further improved this performance by basing the level of

aggression on the investment in the shared resource, also called the local investment.

In terms of robots navigating in an environment this would be equivalent to the

amount of time spent in crossing the shared space before bumping into an opponent

robot.

Additionally, in their work Goldberg and Matarić [5] suggested that changing

the environment could play a role in altering interference properties. This manifests

itself in [2], where changes in the (simulated) environment produced large standard

deviations in their results. Part of our work is an attempt to analyze and mitigate

interference under systematic variation of the environment.

On the other hand biologists such as Enquist and Leimar [7], [4] proposed a

“Sequential Assessment Model” (SAM) to model the fighting behavior in animals

when they engage in extended contests. SAM consists of repeated interactions where

in each interaction the animal obtains some information about the true fighting ability

of its opponent. At the very start of the contest an animal has an initial estimate of

the fighting ability of its opponent and this estimate gets better and closer to the true

fighting ability with each successive interaction. Additionally at each interaction step

the animal computes its expected utility based on the information acquired so far and

thereby takes the decision whether to continue further interactions or retreat from

the contest. The decision is made so as to maximize the expected utility. We draw
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inspiration from Enquist and Leimar’s work to come up with deliberately coordinated

arbitration mechanism where a robot estimates the fitness of its opponent in repeated

interactions.

Thus on one hand an aggression method can be as simple and uninformed as in

the case of a randomly set aggression level or it can be as highly coordinated and well

informed as an assessment based arbitration method. This motivates our study of

this entire spectrum of arbitration mechanisms and propose a taxonomy of arbitration

methods. The taxonomy is presented in the next section.
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CHAPTER III

TAXONOMY OF ARBITRATION METHODS

A. Problem Domain

The focus of this thesis is binary robot interference and physical interference

takes place when multiple robots try to access the same floor space at the same

time. Such interferences fall into the category of same place (SP), same time (ST)

[5]. Figure 1 shows the sketch of an environment where such types of interferences

occur. The common traversal region is not wide enough for both robots to pass

through it from opposite directions at the same time. Figure 2 shows an instance of

spatial interference when two robots try to pass through a narrow corridor, resulting

in spatial interference.

In the event of spatial interference there should be some way to arbitrate the

resource without causing physical damage to the robots. Several methods of resource

arbitration have been proposed. The following section discusses some of these earlier

methods. We have also devised some new methods which are unique from the earlier

methods either in a way of being more sophisticated or more simple and minimalistic.

B. Arbitration Methods

A resource arbitration method determines how the level of aggression of a robot

should be set, which in turn determines how the resource will be arbitrated. The

following lists some arbitration methods:—

Vaughan’s random aggression: Agents pick a random aggression at each encounter,

resulting in a random outcome.

Vaughan’s personal space method: The level of aggression is determined by the
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amount of free space visible to the robot behind it in the event of spatial inter-

ference.

Rational aggression based on local task investment: Modeled after [3] this is an

aggressive interaction based on local task investment, where the robot “displays

its aggression” by moving backward a distance inversely proportional to the

distance traveled so far in the constrained region, and then moving forward until

it bumps again. The robot behavior follows the steps shown in Figure 3(a).

Linear dominance hierarchy: A fixed aggression level is assigned to each robot in a

way that one of them dominates the other. The assignment of aggression level is

done even before they start their spatial navigation. The dominant robot gains

access to the resource while the non-dominant robot submits to its opponent as

soon as an encounter takes place. Figure 3(c) shows this.

Cutting your Losses: Some amount of memory of local task performance is added

to the rational aggression method. When a robot meets an opponent inside

the girdle, it displays its level of aggression for at most φ attempts. At the

same time it measures the lose or gain in the shared space distance from the

time it starts its aggressive display and remembers the cost it incurs during

this display. In our current problem domain cost can be considered as the time

spent in arbitration. Figure 3(d) shows this mechanism.

Random walk: As soon as a robot encounters an opponent, it backs a random

distance. It then moves forward and if the opponent is still in the girdle, it

again moves back by a random distance. The opponent also follows the same

protocol. Eventually one of the robots is pushed out of the girdle. Figure 3(b)

illustrates this mechanism.
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Fig. 1. Sketch of the task environment navigated by the robots. The arrows show the

direction of motion of the robots RA and RB. The flags mark the start and end

points for completing one traversal tasks by each robot. The common traversal

region of the robots is a narrow corridor, which we term as the “girdle”. Spatial

interference takes place when both RA and RB attempt to move through the

girdle from the opposite directions in the same time.

C. Taxonomy of Spatial Conflict Resolution Methods

We propose a taxonomy of spatial conflict resolution methods based on the fol-

lowing axes:–

• Dynamic (D) vs. Static (S): An arbitration method is static if and only if it does

not employ information about a particular encounter to resolve that resource

conflict.

Arbitration Method is “Static”, if ∀xA, x
′

A, p(xA) ≡ p(x
′

A),

Arbitration Method is “Dynamic”, otherwise.

• Deterministic (DET) vs. Probabilistic (PROB): A method is deterministic if

and only if, given the same scenario, the resource is always awarded to the same

agent.



11

Fig. 2. Physical robots traversing a narrow corridor at the same time results in spatial

interference.

Arbitration Method is “Deterministic”, if p(xA) = (1, 0),

Arbitration Method is “Probabilistic”, otherwise.

• High outcome accuracy (HOA) vs. Low outcome accuracy (LOA): The former

has higher probability of selecting the rational winner. A rational winner is the

robot which has put in more local investment in crossing a shared space and

hence gets the right of way in the event of an encounter. Such an arbitration

mechanism would be termed as rational. Consider an ideal rational arbitration

method, where robot RA wins the interaction if it is at least half way down the

girdle, otherwise it loses. We assume that for x = 0.5, the boundary condition

when the encounter is exactly at the center, RA can either win or lose. We

denote the probability of RA being the winner of such an ideal interaction by a
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Fig. 3. Four different arbitration mechanisms.
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probability distribution P (x) as follows:

P (x) =


1 if 0 ≤ x < 0.5

0.5 if x = 0.5

0 if 0.5 < x ≤ 1.

Here x is the distance measured from RA’s girdle entry point. We quantify the

outcome accuracy of a non-ideal arbitration method by comparing its probabil-

ity distribution with that of the ideal method. Let Q(x) denote the probability

distribution of a non-ideal arbitration method. Then the extent to which a

non-ideal arbitration differs from ideal arbitration is:∫ 1

0

|P (x)−Q(x)| dx. (3.1)

We call this the “score” of an arbitration method and it measures how close a

non-ideal arbitration method is to an ideal arbitration method. A score greater

than 0.5 denotes that the arbitration method has high outcome accuracy.

Arbitration Method is “HOA”, if score > 0.5

Arbitration Method is “LOA”, otherwise.

Below are the calculated scores of a few non-ideal arbitration methods:—

1. Vaughan’s random arbitration—In Vaughan’s random arbitration at every

encounter the winner is determined by the flip of a coin. Thus every agent

has a probability of 0.5 to win an encounter with respect to its position of

encounter. Hence we have:

Q(x) = 0.5, 0 ≤ x ≤ 1. (3.2)
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Using equation 3.1 and 3.2, the following score is obtained:

Score = 0.5.

2. Aggressive interaction—The empirical data from physical robot experi-

ments were used to obtain the score for an aggressive interaction. The

probability with which a robot wins an encounter with respect to its po-

sition of encounter in a normalized girdle length is fitted to the following

equation and is shown by the green curve in Figure 4.

Q(x) =
1

1 + e−55.4(x−.510)
, 0 ≤ x ≤ 1. (3.3)

Using equation 3.1 and 3.3 we obtain the following score:

Score = 0.97368.

3. Random Walk—The random walk arbitration was simulated on a girdle

space of 5 meters, sampled at 1000 different positions. These positions

served as encounter positions for the robots. Figure 5 shows the probability

of a robot winning an encounter with respect to its encounter position. The

plotted data lie in a straight line. Hence we can say that:

Q(x) ∝ x,where x is the position of encounter.

One simplifying assumption while generating this plot is the absence of

noise in the simulation model. We purposely simulated random walk arbi-

tration rather than physical robot data, because the extended duration of

random arbitration in physical robot experiments makes substantial data

collection impractical. Figure 6 shows the corresponding time taken to re-
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Fig. 4. Robot RB’s wins with respect to the position of encounter is plotted. The

data was obtained by running physical robot experiments for different girdle

lengths. The vertical axis is the probability that RB wins the encounter. Thus

the vertical axis value is 1 when RB wins an encounter and is 0 when it loses.

While plotting, all girdle lengths are normalized across a (0,1] scale. We then

obtain the best fit of this data as shown by the green curve.
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Fig. 5. The random walk arbitration was done over 1000 different positions inside the

girdle of length 5meters. The fit of the probability of winner with respect to

the encounter position was found to be linear.

solve each of these 1000 encounters. We see that the duration of arbitration

increases when encounter is at the center of the girdle.

The accuracy of the random walk arbitration is obtained as follows:∫ 1

0

|P (x)−Q(x)| dx =

∫ 0.5

0

(1− x)dx+

∫ 0.5

0.5

(0.5− x)dx+

∫ 1

0.5

(1− x)dx

= 0.375 + 0 + .125 = 0.5

• Costly (HCOST) vs. cheap (LCOST): Time, energy and other resources may be

involved in an arbitration mechanism. Their utility depends on the comparative

saving and/or trade-off of these costs. The cost of an arbitration mechanism

increases as it spends more and more time in arbitrating the resource and deter-

mining the winner of the encounter. Clearly all static arbitration mechanisms

waste almost no time in resource arbitration since the winner of any encounter
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Fig. 6. Time taken for random walk arbitration with respect to the position of en-

counter.
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Table I. Summary of arbitration methods

Arbitration Method Classification

Linear dominance hierarchy s-det-loa-lcost

Vaughan’s random aggression s-prob-loa-lcost

Random walk d-prob-loa-hcost

Vaughan’s Personal space d-det-hoa-hcost

Rational aggression d-prob-hoa-hcost

Cutting your losses d-prob-hoa-lcost

is pre-determined. On the other hand dynamic arbitration mechanisms where

there is repeated interactions without any assessment of the cost of the inter-

action needs long time for resource arbitration, resulting in high arbitration

cost. In case of “Cutting your Losses” dynamic arbitration mechanism there is

an assessment involved in each interaction and an earlier arbitration decision

based on a fewer interactions is less costly though it might not have very high

outcome accuracy.

Hence the different arbitration methods can be summarized by a quadruplet as

shown in Table I.

We also present the calculation of the cost of an interference pattern for any

arbitration method later in Chapter VIII.
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CHAPTER IV

EXPERIMENTAL DESIGN

This chapter presents details of physical robot experiments done to induce spatial

interference. The data collected from real robot experiments gave way to the design

of a simulator which enabled the study of the arbitration mechanisms over a range of

environmental parameters.

A. Physical Robot Interference

Spatial interference on physical robots was imposed by making them navigate

through an environment as shown in Figure 9. Interference is induced when two

iRobot Creates, RA and RB, ∼33cm in diameter attempt to cross a girdle ∼53cm wide

from opposite directions as shown by the arrows in Figure 9. RB’s transportation task

length is almost half that of RA. RA does 10 traversals, while RB covers 20. These

numbers are purposely assigned so as to avoid situations where the robot performing

the shorter task finishes all its trips while the other one continues to traverse an

encounter-free region. Each robot detects the presence of an opponent inside the

girdle with its left bumper sensor. Right bumper and wall following sensors are used

to wall follow through the environment. The girdle is marked by placing white colored

strips, while corners are marked by reflective black strips as shown in Figure 9. The

strength of the cliff sensors return a value depending on the color of the floor the

robot moves over, enabling the robot detect the start of the corridor or a corner.

These built-in sensors are the only ones employed.

Player robot controller running on Linux PC is used. The client programs were

written in C. The following arbitration mechanisms as mentioned in the previous

chapter was implemented using this minimal set of sensors:—
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(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 7. Interference resolution in physical robots by aggressive interactions. (a). Two

robots approach each other in a narrow girdle, (b). Two robots bump into

each other (spatial interference), (c), (d). Each robot backs by a distance

inversely proportional to its local investment inside the girdle, (e). The robots

move forward after they backing, (f). They bump into each other again, (g),

(h). They back proportional to their local investment so far, (i). They move

forward and bump into each other again, (j), (k), (l). The losing robot is

pushed out of the girdle giving way to the winner.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 8. Interference resolution in physical robots by follow of linear dominance hierar-

chy. (a). Two robots approach each other in a narrow girdle, (b). Two robots

bump into each other (spatial interference), (c), (d), (e). The dominant robot

stands ground and the dominated robot turns around to move out of the girdle,

(f), (g), (h). The dominated robot leaves the girdle giving right of way to the

dominator.
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G

Fig. 9. Task Environment navigated by the robots. The initial positions correspond

to the positions from where the robots start their traversal for the first time.

The flags mark the start and end points for completing one traversal. For the

very first traversal, IA and IB are the initial distances from the start point.

A single traversal includes traveling in the non-shared region, (marked as TA

and TB for robots RA and RB respectively) and moving in the shared common

space (termed as the girdle and marked as G).

1. Rational aggression based on local task investment.

2. Linear dominance hierarchy.

3. Cutting your losses.

4. Random walk.

Figure 7 shows the snapshot of an aggressive interaction while Figure 8 shows the

same for a dominance based arbitration.

B. Simulated Interference

Based on physical robot data collected from the above setup, a custom simulator

was designed to model dominance and aggressive robot interactions for different girdle

lengths, across a range of task ratios. The purpose was to perform a macroscopic study

of the navigation environment. The simulator used the following information from

physical robot data to generate the dominance and aggressive interaction models.
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1. Characteristics of the task behavior outside of the shared space. This is called

the task model.

2. Characteristics of the task behavior inside of the shared space when no inter-

fering robot is present.

3. Characteristics of the robot’s behavior inside the shared space when two robots

interact. This is the fight model.

1. Models of motion without interference

Both (1.) and (2.) are treated in a unified way because in this particular problem

domain the robot follows a wall with essentially the same speed whether outside or

inside the girdle when no other robot is encountered. Figure 10 shows that there is

comparatively little variation in the task performance time in both the cases (both are

for different sized tasks, but have standard deviation, σ ≈ 1.3 once egregious outliers

have been removed.) The distance plot for unhindered movements across the shared

space is shown in Figure 11. The variation appears to be invariant of the magnitude

of the space.

(1.) and (2.) are modeled by fitting a velocity to the recorded data: v = 0.05m/s,

but with a time that includes additive noise with σ = 1.3 seconds. Figures 12 and 13

shows the qualitative correspondence between data collected and generated.

2. Model of interference

Two aspects need to be considered in arbitration models. First, the decision as

to which robot is the “victor” and gains right of way. The second (which may depend

on the first) is the time taken to exit the shared space. Both the dominance and the

aggression model is simulated to analyze the influence of resource and task properties
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Fig. 12. Physical robot data.
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Fig. 13. Simulated using the parameters described above.
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Fig. 14. Time (length normalized) to resolve an interaction with the dominance model.

of aggressive interaction. For each of these models simulations were run by varying

the girdle lengths from 10 to 150 and for each girdle length task lengths covered by

each robot was varied from 15 to 150. Data from each of these runs were collected

and analyzed. The following section discusses each of these models and the analysis

of the collected simulation data.

a. Dominance model

A single robot is marked as “dominator” and always wins the aggressive inter-

action. Figure 14 shows the time of a dominance fight model, along with a straight

line fit. Figure 15 shows the residual and a normal distribution that describes all

but extreme outliers. The result (with coefficients correct to four significant digits)

is time = 20.00 gird% + 2.896, along with additive zero mean Gaussian noise with

σ = 0.320. Figure 16 shows data generated using this approach.
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Fig. 16. Simulated length normalized time for dominance interactions .
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Fig. 17. Time (length normalized) to resolve an interaction with the aggression fight

model.

b. Aggression model

In this model, each robot displays its aggression levels based on the local invest-

ment made by the robots [3]. The data collected from robot experiments across three

girdle lengths were analyzed (Figure 17). By normalizing the data by the length of

the girdle and taking the ratio of robot 1 to robot 2 victories, a linear fit was obtained.

The following expression for the probability of the first robot (marked in red) winning

is produced:

Pr(Winner = Robot1|GirdlePos = x)

=


1 if x ≤ 0.4725,

0.54750−x
0.075

if x ≤ 0.54750,

0 if x > 0.54750.

(4.1)

This is shown as the colored bar along the bottom of Figure 17.

The time that aggressive fight takes (normalized by girdle length, which must be
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Fig. 18. Simulated length normalized time for aggressive fights.

performed due to the mechanics of the fight procedure) is described by a good fit to

the following line:

1

time
= −0.29 gird% + 0.1609.

The figure also illustrates that the noise can be reasonably represented by uniformly

sampling between the lines:

1

time
= −0.29 gird% + 0.1609± 0.0065.

Figure 18 shows the result of the simulated aggressive fights.
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CHAPTER V

COMPARATIVE STUDY OF INTERFERENCE MODELS

In this chapter we show the results from our physical robot experiments and

draw comparisons among the different arbitration methods. Our results refute the

previous claim in literature that dynamic aggressive interaction is always better than

following a fixed dominance hierarchy. Among others this is one of the contributions

of this thesis work.

A. Aggressive Interaction and Linear Dominance

Both these models were executed in environments with different girdle lengths.

The aim is to assess the role the shared resource plays on arbitration outcomes.

1. Varying Girdle Length — We empirically found that in a transportation en-

vironment as in Figure 9, when the ratio of individual task times of RA and

RB is 25:38 it results in substantial interference. We purposely chose an inter-

ference ratio where there is frequent interference, in order to draw meaningful

comparisons between the different arbitration mechanisms.

From Figure 19 we see that the utility of aggressive interaction is reduced when

both robots have large, almost equal aggression levels, a phenomenon which

happens when encounters are at the center of a large enough girdle. Following

a dominance hierarchy proves to be a better arbitration method in such a sce-

nario. However for encounters at the ends of the girdle, the short aggressive

interactions coupled with the ability to produce a rational winner makes dy-

namic aggression based arbitration beneficial over dominance. [1] provides an

instance where dynamic choice of aggression level proves no better than random
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Fig. 19. Average task times of RA and RB with varying girdle lengths, fixed task ratio

25:38.
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selection of aggression (Vaughan’s random aggression). In linear dominance the

winner is pre-determined and is independent of encounter position. Random

arbitration determines a winner of an encounter by the flip of a coin and is

independent of the position of encounter. In other words for every coin flip,

the winning robot is the dominant agent of that encounter and for an unbiased

coin there is equal probability of either of the two agents to be picked up as

the winner of an encounter. The two agents winning an encounter represents

the two extremes of a linear dominance hierarchy. Thus the outcome of such a

random mechanism is an average drawn from the outcomes of following either

extremes of the linear dominance hierarchy, namely RA or RB being the dom-

inator. Thus Vaughan’s work in [1] shows that dynamic choice of aggression

level is no better than following the average case of the fixed linear dominance

hierarchy.

An important question is “how precisely can the outcome of the arbitration be

predicted given the initial position of encounter?” If the aggression level is a

function of the local investment then in case of equal local investments the noise

in the robot’s interactions breaks the symmetry and determines the winner. In

such a scenario the winner might not be a perfectly rational winner. In Figure 17



33

the mixed red and blue region near the center of the girdle (girdle proportion

∼0.5) shows that there are situations when RA’s local investment is slightly

less than RB, but RA wins or vice-versa. These are the few instances when the

outcome of the aggressive encounter is neither particularly accurate nor rational

and there is high cost involved, decreasing their utility in such situations. A

low cost, less accurate dominance arbitration method will be more meaningful.

In the next section we also present a new arbitration method which has the

benefits of low cost as well as high outcome accuracy.

Moreover, in instances where encounters occur at girdle ends, the inaccuracy of

dominance hurts only when the less dominant robot has higher local investment

and still retreats. If the task ratios are carefully chosen, then such scenarios

may occur only rarely, making dominance arbitration the superior arbitration

model for such environments.

2. Varying Task Ratio — We examine how the properties of the task assigned to

each agent influence aggressive encounters. This factor dictates the time when

a robot starts its journey inside the girdle relative to the other and, in-turn, the

initial position where they end up meeting. There is also a chance that they do

not meet at all.

The variation of the duration of aggressive interactions as shown in Figure 20

indicates the importance of task structure in aggression based arbitration. Task

structure is reexamined in further detail when we present our simulator results

in the next chapter.
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Fig. 21. The intuition behind the “cutting your losses” strategy is illustrated via an

example of the aggression-based interaction. The sign of the single-time gain

(denoted ∆ in the graphs) indicates a likely win or loss. Waiting longer before

measuring sgn(∆) reduces the estimate in the error due to the “escalation”

dynamics.

B. Cutting Your Losses

In the earlier section we saw that the benefit from aggressive interactions is

significantly reduced with the increase in cost. This happens for encounters with

similar aggression levels. The usefulness of aggressive interactions can be improved

by adding memory of recent performance. The robot measures and remembers the

loss or gain in the shared space distance from the time it starts its aggressive display.

If it repetitively loses distance, then it is unlikely to win the whole interaction. In

such a situation it is beneficial to retreat. The greater the number of confirmations

about the gain/loss in distance, the more accurate its decision.

Figure 21 shows a decrease in error with an increase in the number of confirma-

tions. The trade off here is whether to take an early decision incurring less cost but
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throughout the duration of interaction.

higher error percentages or whether to go for repeated confirmations incurring high

cost but less error.

C. Random Walk

The attraction of random walk arbitration is its minimalism compared to other

arbitration methods: robots do not need to sense or estimate their positions, since

the position where the encounter takes place implicitly encodes the dynamic vari-

able. Theoretical analysis is straight-forward providing an estimate of the likelihood

that a robot will be given the right of way, given the initial position of encounter.

Conducting sufficient physical robot experiments to observe this, however, is tedious.

(Figure 22 illustrates four encounters as executed on our physical robots). We ob-

serve long arbitration duration when encounters occur at the center of the girdle: a

phenomenon observed in all dynamic arbitration mechanisms. Yet this method is

the most simple, has no explicit representation of aggression levels and still solves

the purpose of arbitration without any physical damage to the agents. In terms of

simplicity and informedness of arbitration methods random walk lies at one extreme
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of the spectrum. Later we also witness the other extreme when we introduce the

Bayesian approach to resource arbitration in Chapter IX.

In the next chapter we take a closer look at the performance of dynamic and static

arbitration methods with changing task structure. We selected rational aggression

and linear dominance methods for comparison.
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CHAPTER VI

INTERFERENCE — VARYING TASK RATIO AND GIRDLE LENGTH

In order to compare the performance of dynamic and static arbitration methods

across different task structure, we use our custom simulator. The simulator is de-

signed to choose a particular task ratio, girdle length and an arbitration method. For

dynamic arbitration, rational aggression method is chosen while linear dominance is

the choice for static arbitration method. The custom simulator was run varying girdle

lengths from 10 meters to 150 meters and, for each girdle length, task lengths covered

by each robot was varied from 15 meters to 150 meters. The results represent com-

plementary foci: either minimizing absolute arbitration cost via a static arbitration,

or incurring whatever cost to ensure a dynamic arbitration.

A. Dominance Model

Figure 23 shows the performance in a girdle length of 30m when RA is the

dominator.

Observations– Interesting regions from these plots were selected to investigate the

interaction dynamics for the first 20,000 seconds (long enough to overcome initial

transient and long-term behavior). These are marked with A—F in Figure 24.

1. A, B—Every time RB makes an attempt to cross the girdle, it meets the dom-

inator RA and is pushed out of the girdle, making no progress whereas RA

finishes more than 15 laps during the alloted time. This is clearly a model of

resource starvation. (Figure 24(a) and 24(b)).

2. E—In this case, RA and RB meet frequently and with RA being the dominator,

RB is able to complete fewer trips than RA with such frequent spatial interfer-
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RA’s task length, vertical-axis that of RB. (a)Color bars shows the relative

number of encounters,(b),(c) Color bar shows the relative number of laps

finished when at least one of the robots completes 150 laps. Points A to F are

detailed in Figure 9.
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Fig. 24. Dominance for girdle length = 30m, RA is dominator. The girdle proportions

are with respect to the position of robot RA. TA corresponds to the task

length of RA, and TB to that of RB.
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ence.

3. C—The encounter position is close to RB’s girdle entry point, so even if RB

retreats (RA being the dominator) the local investment made by RB is less. RA

is the rational winner with aggression but at the cost of aggressive interaction

time. Also they do not encounter one other every time RB enters the girdle.

But RB’s shorter task allows it to complete more trips than RA. This explains

the gap between the two lines in Figures 24(c).

4. F, D—The number of task iterations completed by both robots are almost

equal. D belongs to the region where the number of encounters are less frequent

(Figure 23(a)) and, if they occur at all, they are at the girdle end when RA is

about to exit (see Figure 24(d)). In such a situation RA is the rational winner

and the dominance hierarchy (with dominator RA) is the best model to follow.

From these results we see the variation in the task performance for different task

ratios in a given girdle. Also task ratios can be grouped into sets and the behavior

within a set is equivalent but there is significant difference in behavior as we move

to a different set. This can be explained with an example. Consider the case where

the task length of RA ranges from 20m to 30m but that of RB ranges from 20m

to 150m. The task performance of the robots for this entire set of task ratios is

equivalent to what is shown in Figure 24(b) and is marked by the maroon vertical

strip in Figure 23(a). The performance of each of the robots changes when the task

lengths belong to a different set. The difference can be seen in the different colored

regions of Figure 23. Another important conclusion that can be drawn from these

results is that, there is no fixed best case arbitration mechanism to follow for every

combination of task lengths. Going back to our previous example, where RA’s task

length varied from 20m to 30m and RB from 20m to 150m, we see resource starvation
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for RB as it is stopped in each of its attempts to cross the girdle and finish its

task. Clearly in this scenario, dominance arbitration mechanism with RA being the

dominator is detrimental to RB’s performance and for the cooperative system as a

whole. Choosing RB as the dominator or following rational arbitration mechanism are

better alternative arbitration mechanisms. The symmetrically opposite case occurs

when RA’s task length ranges from 140m to 150m and RB’s from 20m to 150m . RA

being the dominator is a good arbitration mechanism to follow since either there are

very few interferences or if there are frequent interferences, then they occur closer to

RB’s girdle entry point. Even rational aggression method would have also resulted in

RA being the winner but with an additional arbitration time.

B. Aggression Model

The aggression model of the simulator was run to do comparative study with the

dominance model.

Collective best performance across varying girdle lengths: From Figure 25 it can

be seen that for certain combinations of task lengths it takes significantly longer to

complete 100 tasks traversals. One might think that this is due to frequent inter-

ferences for these task ratios. However, on plotting the interference count it was

found that this is not always true. Thus the increased time duration is result of the

increased time taken to resolve spatial interference occurring along these task ratios.

Below we discuss the scenario for a particular girdle length.

Collective vs. individual best performance for fixed girdle length: Consider the

system performance when girdle length is 30m by comparing Figures 26(a) and 26(b).

There are regions of high interference corresponding to regions of low task completion

times. These are the instances where the robots met often but engaged in less costly
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aggressive interactions (cheap spots). On the other hand, there also exist regions

of low interference but high task times. These regions correspond to high cost of

aggressive interactions (high cost spots).

From Figure 26(c) and 26(d) we observe that in cheap spot regions each of RA

and RB wins 50% of the encounters. We can conclude that these cheap spots are

the regions of best collective performance, with a fair chance of right of way given

to each robot. For the high cost regions it is beneficial to either follow the cheaper

dominance arbitration mechanism or to add some wait time in the task lengths and

shift the task ratios to the cheap regions.

Further investigation was done as to what happens for certain combinations of

task lengths, similar to what was done for dominance model. Spots are marked by

the letters in Figure 26(a) and positions of first encounter for every task iteration

completed in the first 20,000 seconds are shown (Figure 27).

Observations —

1. A — RA and RB meet frequently (Figure 26(b)). The position of encounter

inside the girdle (Figure 27(a)) results in costly interactions, which is also illus-

trated by the time plots (Figure 26(a)). The number of task iterations completed

by RA and RB is almost equal for the first 20,000 seconds of simulation and ev-

ery time a rational winner is chosen. Figure 26(c) and 26(d) further show that

both robots win an equal number of interactions and their wins have a partic-

ular dynamic structure: viz. they alternate in a zigzag pattern as Figure 27(a)

illustrates. Compare this with how RB performs when RA is the dominator

(Figure 24(a) and 24(b)). RB did not make any progress during the time allot-

ted. Here the trade-off is to, either to engage in costly aggressive interactions

obtaining a rational winner, giving a fair chance of winning to each robot or to
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resort to (cheap) dominance and bias towards one agent.

2. B — RA and RB do not meet as frequently here, but whenever they do, long

aggressive interactions result: RB is the rational winner in all cases. Compare

this with Figure 24(b) where RB hardly made any progress. The best resolution

mechanism would be with RB as dominator so that no aggression cost needs be

paid.

3. C — This is the reciprocal of case B and the earlier conclusion (but for RA)

holds true.

4. D — The number of task iterations completed by RA and RB are almost equal.

We notice that D belongs to the region where the number of encounters are less

frequent (Figure 26(b)) and they occur at the ends of the girdle when RA is about

to exit (Figure 24(d)). We had earlier concluded that, in such a situation RA is

the rational winner and the dominance hierarchy (with RA being the dominator)

is the best interference model to follow. With these results one can conclude that

aggressive arbitration is also a reasonable interference resolution mechanism.

The reason being that these regions have cheap aggressive interactions.

5. E — Compare Figure 27(e) with Figure 24(e). The number of laps which RB

completes with aggressive signaling doubles compared with when it is domi-

nated. However, the decrease in the number of laps of RA is not that significant

in both these modes of arbitration. One can observe frequent encounters in

case of aggressive interactions, but all of these take place at the very ends of

the girdle resulting in cheap arbitration, making it beneficial.

Another interesting observation from Figures 27(a) and 27(e) is that, there exists a

limit cycle in terms of the position of encounter and with variation of the task ratio

a new limit cycle emerges with a period almost double that of the earlier one.
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The observations outlined in this chapter addresses some of the major contribu-

tions of this thesis. Firstly the performance variation for different sets of task ratios

signifies that if the agents can manipulate the task structure (example increase their

task length by inducing a wait time while traversing the non-shared region), might

be able to shift the system performance towards individual and collective good. Also,

for certain combinations of task lengths we found rational arbitration to take long

arbitration times whereas dominance arbitration gave the same result as rational

arbitration but with no extra arbitration time. This clearly shows that an ideal ar-

bitration mechanism can perform poorly due to high cost of arbitration. Another

observation is that the most complex interference dynamics possible for a scenario is

the limit cycle behavior.



45

113.65

165.73

217.8

269.87

321.95

374.02
Time for both robots to perform 100 tasks

20

40

60

80

100

120

140

20 40 60 80 100 120 140

(a) Girdle Length = 20

120.51

203.37

286.24

369.1

451.96

534.83
Time for both robots to perform 100 tasks

20

40

60

80

100

120

140

20 40 60 80 100 120 140

(b) Girdle Length = 30

127.25

253.06

378.86

504.66

630.46

756.26
Time for both robots to perform 100 tasks

20

40

60

80

100

120

140

20 40 60 80 100 120 140

(c) Girdle Length = 40

135

311.73

488.45

665.18

841.9

1018.6
Time for both robots to perform 100 tasks

20

40

60

80

100

120

140

20 40 60 80 100 120 140

(d) Girdle Length = 50

142.16

372.71

603.26

833.81

1064.4

1294.9
Time for both robots to perform 100 tasks

20

40

60

80

100

120

140

20 40 60 80 100 120 140

(e) Girdle Length = 60

156.6

510.67

864.74

1218.8

1572.9

1926.9
Time for both robots to perform 100 tasks

20

40

60

80

100

120

140

20 40 60 80 100 120 140

(f) Girdle Length = 80

Fig. 25. Collective performance varying girdle length. The horizontal-axis shows RA’s

task length and vertical-axis that of RB. Color bars show the relative time to

complete 100 navigation tasks in a row.
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Fig. 26. Collective vs. individual performance for girdle length = 30m. The horizon-

tal-axis shows RA’s task length and vertical-axis that of RB. Color bars show
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Fig. 27. Aggression GL30. The girdle proportion are with respect to the position of

robot RA.
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CHAPTER VII

AN ANALYSIS OF SHARED GIRDLE INTERFERENCE PROPERTIES

This chapter addresses one of our main research questions of what environmental

conditions causes spatial interference. It also answers the question of how many

encounter free passes are needed to be checked before the next pass can be said to

have spatial interference. The computational complexity for determining this is also

formulated.

Definition 1. An idealized, noise-free interference scenario can be represented with

a tuple S = 〈G, TA, TB, IA, IB,m〉. The first five elements G, TA, TB, IA, IB ∈ R+

are distances in some common unit: the girdle length, agent A’s task, agent B’s

task, agent A’s initial position (IA ≤ TA) and agent B’s initial position (IB ≤ TB),

respectively. The last element is the arbitration function m : R+×R+×R+ → R+×R+.

The final element of the tuple can be written as m(xi) 7→ pi where xi is the

position of encounter in a girdle normalized to have a unit length for an interference

i. After the arbitration, the outcome of the arbitration pi is provided by m and

0 ≤ pi ≤ 1 for a probabilistic model and pi ∈ {0, 1} for deterministic model. As an

example of arbitration in deterministic model, if pi = 1 and outcome is RA(pi) then

RA is the winner but if it is RA(1−pi) then RA would have lost and RB is the winner

with outcome RB(pi). The resulting position of the agents is given by the function:

POS(G, pi) 7→ (pos′A, pos
′
B). Here G is the girdle length and pos′A and pos′B are the

positions of the two agents after the arbitration. If the arbitration model does not

use position information for arbitrating the shared resource as in the case of a static

model, then it is denoted by m(.) = pi.

The homogeneous agents are assumed to travel with the same velocity v both
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inside and outside the girdle. For interference scenario S = 〈G, TA, TB, IA, IB,m〉,

agents begin at positions IA and IB in their own reference frame, which is considered

to have origin at the girdle so that movement forward results in task performance.

That is to say, the first JA = TA − IA units that agent RA proceeds forward involves

executing the first task. Thereafter the next G units denote space within the shared

girdle, which may induce interference if agent RB attempts to proceed forward within

the same space. The point at the end of the girdle (in the coordinate frame of

each agent) is identified with the beginning of the agent’s task. Analogously let

JB = TB − IB. Without loss of generality, assume TB ≥ TA.

Definition 2. A ‘cycle’ is defined as the distance traveled from its position at t = t0,

to this same position, having moved through the girdle once.

Let k denote the encounter-free cycle completions by RA and let b denote the

same for RB. In other words, k = TA +G and b = TB +G.

Definition 3. Agent RB is termed the clock, and the durations provided by cycles of

RB are used to find the segment distances moved by the other agent RA during those

regular time intervals.

Let robot RB start at time t = 0, then it is evident that at time t = 1
v
JB it will

be at a position just about to enter the girdle for the first time. Denote this time

by t0. Assuming that the robot RB does not encounter robot RA in the girdle, it

will next be at this same threshold of the girdle at time t1 = t0 + 1
v
(G + TB). Let

∆t = 1
v
(G+ TB) = t1 − t0.

Now suppose that robots RA and RB encounter each other in the girdle at some

time. Consider the first such time: tc. If robot RB has performed n complete task

rotations, then t0 + n∆t ≤ tc ≤ t0 + n∆t + 1
v
G. (Here n is a natural number, or
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possibly zero.) Let m denote the number of cycles that robot RA has completed until

time t = tc. Note that from the assumption on task lengths, above, n ≤ m.

Definition 4. Let IA and IB be the initial positions of RA and RB, then a necessary

condition for them to encounter even before completing their first cycle is

|JA − JB| ≤ G for n = 0 and m = 0.

It can be easily observed that if JA ≤ JB, and if the above condition is true, then

by the time RB starts entering the girdle, RA is already traversing through the girdle

in the direction opposite to that of RB. Thus, both would face each other inside the

shared space resulting in spatial interference. By symmetry, the converse is also true

when JB ≤ JA.

Lemma 1. If at time t robot RB is at a position such that it is just about to enter

the girdle, then a necessary and sufficient condition for both robots to encounter one

another in next passing through the girdle, is for robot RA to be positioned at a distance

which is at most 2G units away from RB’s position at time t.

Proof. While navigating through the environment if at any point in time t, RB is in

a position where it is just about to enter the G long common traversal region and if

RA is positioned at a distance which is less than G from RB’s position at time t, then

RA would enter the girdle before RB exits, causing interference. Thus interference

occurs when both are 2G distance apart at a point in time when one of them is about

to enter the G long girdle.

Bézout’s lemma Let a, b ∈ Z such that a and b are not both zero. Let gcd(a, b)

be the greatest common divisor of a and b. Then:

∃x, y ∈ Z : ax+ by = gcd(a, b).
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Theorem 2. Given the task lengths TA and TB for robots RA and RB respectively

and the girdle length G, if g = gcd(b, k), then an encounter takes place when either

of the following conditions is true:

1. If g < 2G,

2. If g ≥ 2G and r′g + a ≤ (r′ + 1)g ≤ r′g + a+ g, where r′ =
⌊
TA−G−a

g

⌋
.

Again consider robot RB as the clock providing us with the timings for robot

RA’s movement. Let robot RB start at time t = 0 and robot RA start from an initial

position IA. Consider a scenario when both travel encounter-free until RB finishes i

cycles of length TB +G. Robot RA’s traversal with respect to RB as the clock can be

listed as follows:

1. At time t0 = JB
v

, RA is at distance

IA + JB,

2. At time t1 = t0 + TB+G
v

, RA is at distance

IA + JB +G+ TB,

3. At time ti = t0 + i(TB+G
v

), RA is at distance

IA + JB + i(G+ TB).

Let IA + JB = a, G+ TB = b and TA +G = k. Robot RA covers distance a+ i.b

by moving in cycles of length k.

When RB finishes i cycles, let RA be about to complete its jth cycle of length

k = TA + G. Robots RA and RB will meet if at jth cycle of RA and ith cycle of RB

both are inside the girdle. Given only the lengths of the individual tasks and girdle,
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one can determine if such an interference scenario exists or not. This is a two-step

process.

1. First, one needs to determine if there exists any linear combination of the cycle

counts i and j of RA and RB, such that after doing their respective ith and jth

cycles they come to the same position from where they had started.

2. Next one also needs to determine if this same time same place SPST position

falls within a common traversal region.

The former can be determined using Bézout’s lemma and the later follows from

Lemma 1.

• Step 1 : RA and RB will be at the same place after traversing for the same

lengths of time, but each covering a different cycle length only if there exists a

greatest common divisor of their cycle lengths. This is termed as g = gcd(b, k),

where b = TB + G and k = TA + G. Existence of the greatest common divisor

ensures that any linear combination of the cycle counts, i and j of RA and RB

respectively, can be covered in steps of length g. If they meet they will meet

after RA covers distance:

a+ i · b− j · k,∀i, j.

Applying Bézout’s lemma the above expression becomes:

⇒ a+ r · g ,where r = 0, 1 . . . (
b

g
− 1) and g = gcd(b, k).

Once the existence of ‘g’ is determined the next thing is to find out if after

traversing the above distance the next ‘g’ steps makes them meet each other

inside the girdle causing interference.
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• Step 2 : There can be two distinct cases for the next ‘g’ step to fall within the

common traversal region. In each of these cases RB is considered to be the clock

and RA is moving with respect to the clock.

1. g < 2G — If this condition is true then after every g steps that RA takes

there will be encounter, since each of these steps will fall inside the 2G

interference region.

2. If g ≥ 2G — In this case, there is a chance that RA takes its next g

steps from a position which makes it fall inside the 2G interference region,

resulting in an encounter. Let RA travel in step sizes of g for r′ times before

it first passes through the girdle. So far it was traveling in the non-shared

region and there is no chance of encounter. The length of the non-shared

region is TA −G− a . Hence,

r′ =

⌊
TA −G− a

g

⌋
.

Now what can happen when RA takes the r′ + 1th step of size g? If this

step falls inside the 2G interference region then there will certainly be an

encounter. In other words, the r′ + 1th step needs to falls within TA − G

and TA +G for interference to happen. Thus the condition for occurrence

of encounter is the following:–

TA −G ≤ (r′ + 1)g ≤ TA +G.

A maximum of r′ =
⌊
TA−G−a

g

⌋
passes of RA through the girdle needs to

be checked to find out if r′ encounter free iterations have taken place.

Thereafter one may determine whether the next (r′ + 1)th pass will result

in an interference or not. If the cycle lengths k and b of RA and RB
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respectively are co-prime, then gcd(b.k) = 1. Hence r′ = TA − G. Thus a

relatively large number of checks of encounter free passes needs to be done

to determine when the next encounter will take place.

Thus, given any girdle and task lengths, and the initial starting positions of two

robots, it is possible to determine how many encounter-free attempts are needed to

find out if there will be an interference in the next pass through the girdle. An

obvious question is how fast can this be determined? The gcd of two numbers can

be found out by Euclid’s algorithm which in the worse case O(h) divisions where h is

the number of digits in the smallest of the two numbers. Thereafter the calculation

of r′ takes constant time with a single division operation, followed by r′ checks of

encounter free iterations. Thus the entire computation is linear with either h or r′

dominating the worse case time, depending on whichever is larger.

Definition 5. If the conditions of Lemma 1 and 2 are satisfied, and the robots

meet then the state of the system after the resolution of interference by the function

m(xi) 7→ pi can be modelled as POS(g, pi)→ (pos′A, pos
′
B)

With our present interference model, two cases follow:

1. Aggressive interference — In an aggressive encounter robot RA will win the

fight with a probability dependent on the position of encounter x, where x is the

position inside a normalized girdle length. Considering a noise free interference

scenario the state of the system can be modeled after the aggressive encounter

as follows:

m(x) = pi, POS(g, pi) =


(0, TB) if x > 0.5,

(TA, 0) if x < 0.5,

(7.1)

where probability of RA being the winner is:
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Pr(Winner = Robot1|Girdle Pos = y)

=


1 if x < 0.5,

0 if x > 0.5.

(7.2)

However in a noise free scenario the outcome of the arbitration cannot be de-

termined for center position, i.e. when x = 0.5. We can refer to our empirically

determined noise (Chapter IV) to define the winner when x ≈ 0.5:

Pr(Winner = Robot1|Girdle Pos = y)

=


1 if x ≤ 0.4725,

0.54750−x
0.075

if x ≤ 0.54750,

0 if x > 0.54750.

(7.3)

2. Dominance interference — In a dominance hierarchy model, the outcome is

deterministic and the winner is always the dominant robot. The state of the

system after dominance interference can be modeled as follows:

m(.) = pi, POS(g, pi) =


(0, TB) if A is dominant,

(TA, 0) otherwise

The state of the system will be the same in both a noise free scenario and when

noise is present.
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CHAPTER VIII

DECISION TREE ENCODING OF ARBITRATION MODELS

A. Definitions

Interference Switch — Given the tuple 〈G, TA, TB, IA, IB,m〉 as input, Theorem

2 can answer the question of whether there will be an interference when two robots

attempt to pass through the shared girdle space. Whenever the tuple input changes

this question needs to be re-evaluated. Such evaluation points during the course of

an interaction can be represented as switches where ‘ON’ denotes that an encounter

will take place while ‘OFF’ is an indication of no encounter.

Interference Point — An encounter takes place when an interference switch is

turned ‘ON’. This is termed as the interference point and the outcome from an in-

terference is the decision as to which agent should get access to the resource. This

decision is based on the arbitration mechanism used to arbitrate the shared resource.

Any particular interference point visited during a course of interaction depends on

two factors – (a).How the preceding interference switches are set and, (b). If it is not

the very first interference then it also depends on how the preceding interference was

resolved.

Termination Path — An interaction sequence can follow a path in the decision

model which eventually leads to a ‘Never Meet’ state. Once this state is reached it

guarantees that there will be no future interferences when an agent makes a pass

through the shared region. Such a path is termed as a termination path.

Non Termination Path — An interaction sequence can follow a path in the

decision model which does not take it to the ‘Never Meet’ states. If the decision path

misses all the ’Never Meet’ states then all future traversals will loop forever along the
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paths of the interference points. Such a path is termed as a non-termination path.

String of interference pattern — Every distinct interference point can be labeled

with a particular character. A sequence of characters during the course of task traver-

sal represents the sequence of interference points visited. Such a string of characters

represents an interference pattern.

These can be broadly divided into two categories depending on whether they are

finite or not.

• Terminating strings — The string of interference pattern which results from a

terminating path has finite length and are termed as terminating strings. A ter-

minating path which repeatedly visits an interference point i will be represented

by the terminating string ‘· · · i∗’.

• Non-terminating strings – The ones which follow the non-terminating path keeps

visiting interference points forever and these are termed as non-terminating

strings. These are represented by assigning the ∞ symbol to all the charac-

ter/characters corresponding to the interference point/points visited infinitely.

Example of such a sequence is α(β)∞ where interference point represented by

character β will be visited infinitely for all future interactions.

The following theorem results from the analysis of the shared girdle interference

properties and the generated patterns of interference of any interaction sequence.

Theorem 3. The corresponding decision tree model of all arbitration models (men-

tioned so far) for any given girdle and task ratio can have a maximum of three unique

interference points. All possible interference patterns are generated by visiting just

these three interference points.

Proof. The theorem can be proved using the simple fact that the number of possible

unique interference points depends on the number of possible ways the preceding
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interference switch can be turned ON. This in turn depends on the number of possible

unique inputs to the interference switch. An input to an interference switch is defined

by the tuple 〈G, TA, TB, IA, IB,m〉. First we need to determine the number of variables

in this tuple in order to find all possible tuple combinations. For any given girdle

length and task ratio G, TA, TB,m are constant for an arbitration model. The only

variables are the initial conditions IA, IB. These have a value at the very start of the

robot traversal task. This forms the input to the first interference switch. Since the

robots can start anywhere in the non-shared region, we have 0 ≤ IA ≤ TA − G and

0 ≤ IB ≤ TB − G for the very first traversal. Thereafter for subsequent traversals,

IA, IB needs to be recalculated every time they are positioned at the origin. For an

arbitration model, the only positioning which are of interest are those which results

from an encounter. If the first interference point was turned ‘ON’, then the following

interference can have two outcomes:—

1. RA wins and finishes the traversal through the shared space and is ready to

begin the next task traversal. Thus, IA = 0. RB loses and is pushed at the

other end of the girdle and is yet to finish traversing through the girdle. Its

position at the girdle origin is reset to TB − G. At this instance the question

of whether a future interference is possible needs to be re-evaluated. Theorem

2 takes the new tuple 〈G, TA, TB, 0, TB − G,m〉 as the input to evaluate this

question and this represents the second unique interference point.

2. RB wins and the result is symmetrical to RA’s win. This forms the third unique

interference point.

Hence any arbitration model for a sequence of interactions can have three inter-

ference points. If each of these points is represented with a character, then a sequence
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of interferences in any arbitration model can be represented as a combination of just

these three characters. The most important result which follows from this is that,

given any string of interference pattern one can determine the exact sequence of in-

terferences in the interaction and also the outcome of these encounters for any given

arbitration model. An arbitration model can also produce strings which are unique

to the model. If such strings are reported one can even determine the arbitration

mechanism used by the agents to resolve an encounter.

The interference switches along with the resulting interference points can be

listed as follows:—

1. (S0, α) - S0 is always the first interference switch that any interaction sequence

has to go through. S0 takes as input the tuple 〈G, TA, TB, IA, IB,m〉, where

IA and IB denote the initial positions of RA and RB even before they have

started their respective traversal tasks. If S0 is turned ‘ON’ then the subsequent

encounter will be the very first encounter in the entire interaction sequence. This

interference point is denoted by α.

2. (S1, β) - If S0 is turned ‘ON’, then the robots will meet for the first time when

both simultaneously attempt to pass through the shared girdle. If this encounter

results in RA’s win, then the resulting tuple 〈G, TA, TB, 0, TB−G,m〉 is a unique

pre-condition where the question of a possible future encounter needs to be re-

evaluated. Hence, this is fed as the input to the next interference switch S1 to

answer the question of whether there will be any more future encounters. If S1

is ‘ON’ then the subsequent interference forms the next interference point β.

3. (S2, γ) - S2 behaves symmetrical to that of S1. If S0 is turned ‘ON’ and on

encounter RB wins, then the resulting tuple 〈G, TA, TB, TA − G, 0,m〉 is fed as

input to the interference switch S2 to answer the question of future encounters.



60

Fig. 28. Decision tree encoding when the arbitration is dynamic deterministic or dy-

namic probabilistic.

B. Decision Tree Encodings of Arbitration Models

The taxonomy of arbitration models identifies four categories of arbitration mod-

els and each of these can be represented with a corresponding decision tree model:—

1. Dynamic deterministic — A dynamic deterministic model utilizes the informa-

tion of an encounter to arbitrate the shared resource.

Given a particular interference scenario there is a definitive answer as to who

should be awarded the resource. Thus pα, pβ, pγ ∈ {0, 1}. Figure 28 shows

the decision paths of such an arbitration. Since dynamic arbitration utilizes

encounter information to arbitrate the shared resource there is one interference

point corresponding to each interference switch. Which interference point will

be visited depends on how the interference switches are set and how a preceding

interference is arbitrated (provided it is not the first interference).

Table II shows the string of interference patterns generated for all possible valid

combinations of switches and arbitration results. The values of pα, pβ, pγ govern

the arbitration results. This forms the complete set of interference patterns that

a dynamic deterministic model could possibly generate. Both terminating and

non-terminating strings are generated by this model.
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Table II. Strings generated from a dynamic deterministic model

S0 pα S1 pβ S2 pγ Strings

— — — — — λ

1 — — — α

1 1 — αβ

1 0 — — α(β)∞

1 1 0 αβ(γ)∞

1 1 1 α(βγ)∞

0 — — — α

0 — 1 αγ

0 — — 0 α(γ)∞

0 0 1 αγ(β)∞

0 1 1 α(γβ)∞
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There are four possible termination paths generating terminating strings and

the remaining six non-termination paths generate the infinite patterns. There

is just one possible way by which interaction proceeds with no encounter and

this is represented with an empty string. Thus given any string of interference

pattern we can say how the interference took place, both in terms of the sequence

of interference points visited and the outcome of the encounter at this points.

2. Dynamic probabilistic — A dynamic probabilistic model utilizes the information

of an encounter to decide its outcome. Also, given a particular interference

scenario there is a chance for an agent to win the encounter. Hence, 0 ≤

pα, pβ, pγ ≤ 1. Figure 28 shows the possible decision paths taken by a dynamic

probabilistic arbitration model. The difference between the probabilistic and

static models of dynamic arbitration is in the probabilities with which a robot

can gain access to a shared resource. This in turn determines the resulting

patterns of interference. The strings in Table III show the possible patterns of

interference in a dynamic probabilistic model. These are no longer unique as is

the case with the earlier model, but they belong to a set of strings and there

can be just four such sets.

3. Static deterministic — Figure 29, shows the decision tree encoding of a static

deterministic arbitration model. As per the definition, static arbitration uses

no information from the current encounter to resolve a resource conflict. The

winner is pre-determined since deterministic arbitration always awards the re-

source to the same agent, given the same interference scenario. The interference

points of the corresponding decision model does not use any information from

the encounter to arbitrate the shared resource. All three interference points

have the same characteristics. Hence in Figure 29 we have α = β = γ = ρ.
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Fig. 29. Decision tree encoding when arbitration mechanism is static deterministic.

There can be only two possible decision tree encodings depending upon which

agent is the pre-determined winner. It can be observed from Figure 29 that in

each of these encodings there are only two possible termination paths :—

• S0 is OFF, i.e. answers ‘NO’ encounter.

• S0 is ON but S1 is OFF (answers ‘NO’ encounter) when RA is the prede-

termined winner or S2 is OFF (answers ‘NO’ encounter) when RB is the

predetermined winner.

Whenever the interaction sequence misses the above termination paths it will

enter into an infinite sequence of future interferences. The non-termination

paths will be followed when the following conditions are true:—

• S0 is ON

• S1 is ON and RA is the pre-determined winner, or S2 is ON and RB is the

pre-determined winner.
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Fig. 30. Decision tree encoding when the arbitration mechanism is static probabilistic.

4. Static probabilistic — Figure 30 represents the decision tree encoding of a static

probabilistic arbitration model. The only difference from the previous model is

that here the winner is not pre-determined for the entire sequence of interaction,

rather it is determined at every occurrence of an encounter. Since the arbitration

is static, by definition no information from the current encounter is utilized in

determining the winner and there is some constant probability for a robot to

gain access to the girdle. This is denoted by p in Figure 30.

One important point to note in all static models is that there is just one in-

terference point, because every time an encounter takes place the resource is

arbitrated the same way, independent of any encounter information. Thus

α = β = γ = ρ. However, there are three distinct interference switches be-

cause of the same reason as is outlined in the proof of Theorem 3.

It can be observed from Table IV that in case of a static deterministic model the

terminating strings can have a maximum length of one, while static probabilistic

model can generate a terminating string of maximum length two. Also, the

strings generated from static arbitration is a subset of those generated from

dynamic deterministic arbitration and their corresponding mapping is shown in

Table IV.
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Table III. Strings generated from a dynamic probabilistic model

S0 S1 S2 Strings

— — λ

{α, αβ, αββ · · · , · · · } = αβ∗

{α, αγ, αγγ · · · , · · · } = αγ∗

αβββ · · · , αβγββ · · · , αβγγ · · · ,

αγβγ · · · , αγγβ · · · , · · · = α(β + γ)∞

C. Interference Patterns Generated from Models of Interference

After obtaining strings of interference patterns the next question to ask is —

Can we predict the relative likelihood of occurrence of a string of interference pattern

given a set of such patterns and the state of the interference switches? In other

words, given the state of the interference switches and a set of strings representing

interference patterns, can we evaluate the relative likelihood of occurrence of each of

these strings? It was found that such questions can be answered.

A fact about the arbitration models discussed so far is that all of them are

memoryless. This means that any future interference just depends on how the current

interference is resolved and is independent of the way how past interferences occurred.

Thus the probability of occurrence of any character in an interference pattern obeys

the Markovian property. This property is fundamental in finding the probability of

occurrence of any string of interference pattern. The following theorem results:—

Theorem 4. Given an arbitration model, the relative likelihood of occurrence of any

string of interference pattern is equal to the product of the probabilities of occurrence

of the characters in that string.
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Table IV. Strings generated from a static arbitration model

Static arbitra-

tion

S0 S1 S2 Strings String mapping

from dynamic de-

terministic model

Deterministic /

probabilistic

— — λ λ

Deterministic /

probabilistic

— ρ α

Deterministic /

probabilistic

— ρ α

Probabilistic ρρ αβ

Probabilistic ρρ αγ

Deterministic /

probabilistic

— ρ∞ αβ∞, αβ(γ)∞, α(βγ)∞

Deterministic /

probabilistic

— ρ∞ α(γ)∞, αγ(β)∞, α(γβ)∞
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Table V. String mapping between dynamic deterministic and dynamic probabilistic

models

Strings from

dynamic prob-

abilistic

Strings from dynamic deterministic

λ λ

αβ∗ α, αβ, αβ∞

αγ∗ α, αγ, αγ∞

α(β + γ)∞ αβ(γ)∞, α(βγ)∞, αγ(β)∞, α(γβ)∞

Proof. Any single interference arbitrated at an interference point is represented by

a character. Because occurrence of an encounter follows Markovian property, no

information from past interferences is used to arbitrate the current encounter. Hence

every interference is an independent event. Thus the overall probability of a series of

independent interferences is equal to the product of their individual probabilities.

Using Theorem 4, the probability of occurrence of any string, say αβn is given

by Pr(αβn) = 1.pα.(1− pβ)n−1, where pα, pβ are the probabilities with which a robot

will be selected as the winner for α and β encounters respectively and n is the length

of the string. As long as the probability of a winner at an interference point is in the

range 0 < p < 1, the probability of occurrence of a string of interference pattern tends

to 0 as the length ‘n’ of the string tends to infinity. A longer interference pattern is

less likely to occur compared to a shorter one. However on comparing strings from

different arbitration models a paradoxical result follows. In a deterministic model

probability p ∈ {0, 1}. Thus if p = 1, then the probability of the interference pattern

tends to infinity when n → ∞, however when p = 0, this probability tends to zero
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as n→∞. Thus the probability of occurrence of any string varies at the limit when

n→∞ for the two arbitration models.

These differences are outlined below. Moreover the reason why we only take

dynamic deterministic and dynamic probabilistic models into consideration is be-

cause strings generated from a static deterministic and static probabilistic models are

subsets of those from a dynamic deterministic model. The strings mentioned below

correspond to those in Table VI. The mapping of the strings from the dynamic prob-

abilistic model to those generated by the dynamic deterministic model can be seen

in Table V.

1. String αβ∗

Dynamic Probabilistic

lim
n→∞

Pr(αβn) = lim
n→∞

1.pα.(1− pβ)n−1 = 0,∀pα, pβ where 0 < {pα, pβ} < 1

Dynamic Deterministic

lim
n→∞

Pr(αβn) = lim
n→∞

1.pα.(1− pβ)n−1 =


0 if pα = 0, pβ ∈ {0, 1}

1 if pα ∈ {0, 1}, pβ = 0

2. String αγ∗

Dynamic probabilistic

lim
n→∞

Pr(αγn) = lim
n→∞

1.(1− pα).(1− pγ)n−1 = 0,∀pα, pγ

where 0 < pα < 1and 0 < pγ < 1
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Dynamic deterministic

lim
n→∞

Pr(αγn) = lim
n→∞

1.(1− pα).(1− pγ)n−1 =


0 if pα = 1, pβ ∈ {0, 1}

0 if pα ∈ {0, 1}, pγ = 1

1 if pα = 0, pγ = 0

3. String α(β + γ)∞ — Comparing one of the mapped strings of the dynamic

deterministic model with those of the dynamic probabilistic model, we find

similar differences at the limits of n → ∞. Considering one such mapped

string, say αβ(γ)∞, we get:

Dynamic probabilistic —

lim
n→∞

Pr(αβγn) = lim
n→∞

1.pα.pβ.(1− pγ)n−2 = 0,∀pα, pβ, pγ

where 0 < pα < 1, 0 < pβ < 1and 0 < pγ < 1

Dynamic deterministic —

lim
n→∞

Pr(αβγn) = lim
n→∞

1.pα.pβ.(1− pγ)n−2 =



0 if pα = 0, (pβ, pγ) ∈ {0, 1}

0 if pβ = 0, (pα, pγ) ∈ {0, 1}

0 if pγ = 1, (pα, pγ) ∈ {0, 1}

1 if (pα, pβ) = 1, pγ = 0

Thus for a probabilistic model the probability of occurrence of a string always

tends to 0 when the length of the string tends to infinity. However in a de-

terministic model for certain probability combinations of individual characters

(representing an interference), the probability of occurrence of the entire string

tends to 1 even when string length tends to infinity.
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Another important result for strings belonging to the set α(β + γ)∞ is the

relative probability of occurrence of one string over another. To find this we

will first give the following definition:—

Common suffix — Two strings of characters x1, x2, · · · , xi−1, xi, · · ·xm and

y1, y2, · · · , yi−1, yi, · · · yn are said to have a common suffix Q, if xi−1, xi, · · ·xm ≡

yi−1, yi, · · · yn = Q.

The probability of occurrence of a string with a common suffix Q can be defined

as follows:—

Pr(s0, s1, · · · , si+1) = Pr(s0, · · · , si−1).P r(si, si+1,···sm)

= Pr(s0, · · · , si−1).P r(Q)

where Pr(Q) =
∏m

k=i−1 Pr(sk) and

Pr(sk) =



1− pβ if sk = sk+1 = β,

pβ if sk = β and sk+1 = γ,

1− pγ if sk = sk+1 = γ,

pγ if sk = γ and sk+1 = β.

Thus if we can identify such a common suffix Q between any two strings, we

can express the relative probability of occurrences of these strings as:

Pr(x0, x1, · · · , xi+1)

Pr(y0, y1, · · · , yi+1)
=
Pr(x0, · · · , xi−1).P r(xi, xi+1)

Pr(y0, · · · , yi−1).P r(yi, yi+1)
=
Pr(x0, · · · , xi−1)
Pr(y0, · · · , yi−1)

.
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A few interesting examples are shown below to illustrate the significance of this

result.

(a) Given two strings a = αβββ · · ·m characters and b = αγββ · · · n characters,

where m ≥ n find the relative probability of occurrence of the two strings.

Pr(a) = 1.pα.(1− pβ)n−1 = 1.pα.(1− pβ)m−(n−2).(1− pβ)n−2.

Pr(b) = 1.(1− pα).pγ.(1− pβ)n−2.

Hence,

Pr(a)

Pr(b)
=
pα.(1− pβ)m−(n−2)

(1− pα).pγ
.

(b) Give strings a = α(ββ)(ββ) · · · and b = αγγ · · · , can their relative prob-

ability of occurrence be equal although they have different symbols? If

Pr(ββ) = Pr(γ), then their probabilities of occurrence will be equal. This

is equivalent to saying that for every two occurrence of the symbol (visiting

interference point) β there will be only one occurrence of symbol γ.

D. Relative Cost of an Interference Pattern

Cost of an interference can be defined as the time spent in arbitrating an en-

counter.

Cost ∝ Arbitration time.

Thus the cost of an interference pattern is the sum of the costs of all the individual

interferences, each of which is represented by a character. Let cost of an individual

interferences i be denoted by the functions C(xi), where xi is the girdle percentage

of encounter, then the cost for any interference pattern say, αβ∞ is:

Cost(αβ∞) = C(xα) + C(xβ) + [C(xβ)∞ + · · · ].
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Table VI. Relative likelihood of occurrence of a string generated from a dynamic prob-

abilistic model

Strings Probabilities

λ —

αβ∗ Pr(αβn) = 1.pα.(1− pβ)n−1

αγ∗ Pr(αγn) = 1.(1− pα).(1− pγ)n−1

α(β + γ)∞

Pr(s0, s1, · · · , si+1) = Pr(s0, · · · , si−1).P r(si, si+1)

= Pr(s0, · · · , si−1).Q

where Q =



1− pβ if si = si+1 = β

pβ if si = β and si+1 = γ

1− pγ if si = si+1 = γ

pγ if si = γ and si+1 = β
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Fig. 31. Cost of an interference when arbitration mechanism is dynamic is proportional

to the arbitration time and is at its maximum when the encounter is near the

center of the girdle.

The cost function C(xi) for an interference i is evaluated based on how the en-

counter is arbitrated. For example, a static arbitration takes a constant amount of

time to select the winner, while the cost function of a dynamic arbitration might have

some probability distribution on the position of encounter. In case of rational aggres-

sion it was found that the time taken for arbitration, hence the cost has a probability

distribution as shown in Figure 31. The time of arbitration can be empirically fitted

to the following line and this can be used for evaluating C(xi):—

1

time
= −0.29xi% + 0.1609.

Details of this fit is mentioned in Chapter IV.
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CHAPTER IX

BAYESIAN APPROACH TO RESOURCE ARBITRATION

A. Motivation for Bayesian Approach to Assessment

The motivation for designing the various forms of binary robot arbitration mech-

anisms came from biological contests by animals. Several game theoretic models in

literature are applicable to such contests. As per [8] game theory is the study of

the ways in which strategic interactions among agents produce outcomes which max-

imizes the utility of each agent. In a game an agent assesses how an opponent will

respond to its actions. Among all possible actions that an agent can take in response

to every possible strategy used by the opponent, an agent chooses an action which is

best suited for its own welfare. In none of the binary robot arbitration models seen so

far there is any explicit assessment involved, nor do they make any choice of strategy

based on assessment. Hence, clearly none of our binary robot arbitrations can be

termed as a game. Thus none of the game theoretic models can be used to model

such arbitration. However since all these models were inspired by models of animal

contests we would still be interested in exploring the similarities between some of the

characteristics of game theoretic models and our binary robot arbitration models.

Devi Stuart-Fox [9] provides a comparison between the main types of game the-

oretic models applicable to extended animal contests. She also outlines the factors

which go about in deciding which model is most suitable for predicting the relation-

ship between contestants’ fighting ability and the duration, intensity and structure of

the contest. The factors to consider are:–

1. Whether the behaviors of contestants match in terms of intensity, rate, energy

expenditure or other factors.
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2. Whether the individual fighting ability or asymmetries in fighting ability deter-

mines the duration and outcome of the contest, where asymmetry is determined

by assessing the opponent’s ability to put up a fight.

3. Whether there is escalation within contest phases, where a phase is defined as

certain periods in the contest characterized by similar intensity behavior.

We do see the existence of some of these characteristics in our current robot

arbitration models – both ‘rational aggression’ and ‘cutting your losses’ mechanisms

involve implicit escalation when competing for shared resource. In case of robots

traversing a shared space the amount of local task investment can be considered

proportional to its ability to compete for shared space. We saw that a difference in

the amount of task investment which is analogous to asymmetry in fighting abilities

determines the duration of the contest. Moreover, there is a negative correlation

between these two factors. This characteristic was observed when the robots met at

the center of the girdle and it took increasingly more time for one of them to get right

of way. The lesser the difference in the local investment of the robots, more is the

time taken to arbitrate the resource.

An aspect of game theoretic models which is not investigated in any of the robot

arbitration models discussed so far is arbitration through assessment of opponent’s

fighting ability. One such example of a game theoretic model where an assessment is

done to decide the outcome of an extended animal contest is the ‘sequential assessment

model’. SAM was first proposed by Enquist and Leimar [7], [10]. It obeys the

characteristics proposed by Devi Stuart-Fox as follows:—

• The behavior of contestants are unmatched in rate, intensity or other factors.

• The decision to continue fighting is based on the assessment of opponents rela-

tive fighting ability.
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• There is no escalation between contest phases.

B. Assessment of Local Investment in Binary Robot Arbitration

The idea behind the SAM model is that every time an agent interacts with its

opponent it obtains information about its opponent’s fighting ability. The agent also

has a prior knowledge of its opponent’s fighting ability, which is equivalent to its

belief of the opponent’s strength, even before the contest has started. This belief gets

better and closer to the true fighting ability of the opponent as more observations of

the opponent’s actions are made during the course of the fight. Because of the error

associated with any observation an agent cannot accurately assess its opponent’s

ability at the very first interaction and the only way to enhance the accuracy is

repeated observations. Thus the two main factors based on which an agent determines

whether to continue the contest are: the estimated fighting ability of the opponent

and the error in the observations which in turn determines the uncertainty associated

with the current estimate. Based on the information acquired, the agent then makes

a decision so as to maximize its expected utility.

Based on the characteristics of the SAM model, we wanted to explore the idea

of how well can the minimalist robots assess their opponent’s fighting ability during

a binary interaction. In case of the present robot navigation task, fighting ability is

defined as the amount of local investment a robot makes while crossing through the

shared girdle space. If the robots RA and RB have traversed distances xA and xB

respectively inside the girdle before encounter, then their respective local investments

are xA and xB. Thus the difference in their fighting abilities is xA - xB. The robots

do not have a notion of its opponent’s local investment. However in each successive

interactions it can measure the distance gained or lost with respect to its first bump
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position in that particular interaction sequence. After the first bump at positions

xA and xB by the two robots RA and RB respectively, they back a distance 1
xA

and

1
xB

. Thereafter they move forward again until they bump into each other. The local

investment xA and xB will almost never be equal even if they meet at the center of

the girdle, this is because of the inherent noise in the sensors. Thus one of the robots

will back more compared to the other. This difference is: 1
xA
− 1

xB
and they will

bump exactly at the mid point of this difference, assuming there is no noise. This

measurement is termed as ∆ and because of the way ∆ is computed it encodes the

asymmetries in the local investments of the robots. In an ideal noise free scenario,

True ∆ = 1
2
· ( 1

xA
− 1

xB
). From henceforth true ∆ will be represented as ∆T and any

observed ∆ as ∆O. ∆T is the ground truth for comparison with ∆O.

The steps in obtaining ∆O observations with each successive interactions can be

outlined as follows:—

1. Each robot records their first bump positions b1A or b1B with respect to their

own reference frames. Thereafter all measurements of loss or gain in distance

during arbitration is done with respect to this first recorded bump position.

2. Each robot then backs a distance inversely proportional to their initial bump

position. Next they move forward until they bump into each other. This new

bump position is recorded as biA and biB respectively for both RA and RB for

bump i. The gain or loss in the distance with respect to b1 is also calculated.

Thus ∆O = biA − b1A or ∆O = biB − b1B . In an ideal noise free scenario, ∆O

= ∆T . A positive ∆O denotes a gain in distance and a higher local investment

than its opponent. The converse is true for a negative ∆O observation.

3. When ∆O measured is positive, the robot moves back 2∆O distance. The oppo-

nent then waits for a time equal to what it takes to cover 2∆O distance by the
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other robot. This step ensures that the effects of the ∆Os are nullified before

the next interaction, that is before the next observation of ∆O.

4. From their respective positions each robot now backs a distance inversely pro-

portional to their initial bump positions.

5. Next they navigate forward till they meet each other again. This new bump

position is recorded and the steps from 2 onwards are repeated.

Because of the noise in the communication channel the ∆O 6= ∆T . Thus each

robot needs to take repeated measurements in order to reduce the error in its obser-

vation.

An important aspect to be noted is that in case of the SAM model the measure

of asymmetries in the fighting ability is based on the information about the fighting

abilities transmitted during the contest. However our minimalist robots do not have

any direct communication of their local investments (their fighting abilities). They

still can assess the asymmetries in their local investments by measuring ∆Os. In that

sense our model is more general compared to SAM. In case of SAM, the error in

the observed asymmetries would follow a Gaussian distribution centered around the

true asymmetry in the fighting ability with large enough observations. The standard

deviation depends on the error in the observations. In our model, the error in the ∆O

measurements follow a Gaussian distribution centered around the true ∆T and with

a standard deviation depending on the amount of error in the observations. Figure

32 shows this probability distribution.

In addition to the ∆O observations, the robots also have a prior knowledge of

the possible values of ∆O. They start with a uniform probability distribution over all

possible a priori values of ∆O. This initial probability distribution is updated as the

interaction sequence proceeds and successive values of ∆O are measured. Baye’s rule
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is used as follows to update the probability distribution of the measured ∆O:

Prob(∆T |∆O) =
Prob(∆O|∆T ) · Prob(∆T )

Prob(∆O)

Each application of Baye’s rule answers the question - what is the most likelihood ∆T

given an observation ∆0i for the ith interaction?

The local investment of the opponent is computed from the observations by using

the same equation used for ∆ calculations. Hence the observed local investment can

be calculated from the observed ∆ as follows:

RA’s estimate =
1

1
b1A
− 2∆OA

RB’s estimate =
1

1
b1B
− 2∆OB

,

where ∆OA
= ∆O of RA and ∆OB

= ∆O of RB.

However the error in the estimates of the local investments do not follow a Gaussian

distribution. This is because ∆ is not directly proportional to the difference in the

local investments, rather it is equal to the difference in the inverse of the investments.

Figures 33, 34 show the changing probability distribution of the estimates with

each subsequent ∆O measurements. In both cases the probability distribution gets

peaked with increasing number of observations, re-enforcing the robot’s belief about

its opponent’s local task investment. There is a subtle difference in the figures 33 and

34. From figure 33 we see that the estimates get closer to the true local investment

of its opponent and with a higher probability. However in Figure 34 we see a bias in

the measurement and although the probability gets peaked with more observations,

it is not very close to the true local investment of RA.

Figures 35(a) and 35(a) show how the estimates get closer to the true mean (true
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Fig. 32. Probability distribution of measured ∆ for a given true ∆. The distributions

over a set of 11 observations are shown. The observed ∆ gets closer to the

true ∆ with lesser standard deviation with each successive observation.



81

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

2 2.5 3 3.5 4 4.5

P
ro

b
a
b
ili

ty

Other’s investiment

Distribution of Estimated Investment

Fig. 33. Probability distribution of estimated local investment. Here RA estimates

its opponent RB’s local investment. The distributions are over a set of 11

observations of ∆ and the probability distribution of the estimate is updated

with each successive observations.
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Fig. 34. Probability distribution of estimated local investment. Here RB estimates

its opponent RA’s local investment. The distributions are over a set of 11

observations of ∆ and the probability distribution of the estimate is updated

with each successive observations.
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Fig. 35. Error in the estimation decreases with increased observation of ∆O.

local investment) with successive observations. The error in the estimates decreases

by a factor of σ√
n
, where n is the number of ∆O observations and σ is the standard

deviation from the mean. Since the decrease in the error is related by a factor of
√
n

to the number of observations, the return in terms of the decrease in the error from

repeated observations decreases as the arbitration progresses. On the other hand

the cost increases as the arbitration proceeds. Thus the factors which determines

the decision to continue arbitration are the estimate of the difference in the local

investment, the accuracy of the estimate and the cost associated with improving

the accuracy. Figure 35(a) and 35(a) shows how the first two factors change as the

arbitration proceeds. If we also consider the cost of each interaction then a decision

could be made whether to switch to a retreat behavior given the current estimate and

the associated error in its observation, or whether to continue arbitration trying to

get more accurate estimate at the cost of increasing time of arbitration. A detailed

analysis of this decision making process so as to maximize its utility is beyond the

scope of the current research. Our main aim has been to introduce the concept of

assessment in such minimalist binary robot arbitration process.
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CHAPTER X

DISCUSSION AND FUTURE WORK

A. Overview

In this work we saw a whole gamut of arbitration mechanisms starting from

the most implicit one where arbitration is entirely without representation, to the

deliberative coordinated ones, where the robots assess the asymmetries in their local

task investments. In Chapter III we saw the categorization of arbitration mechanisms

and a proposed taxonomy of binary robot arbitration mechanisms, such that any

arbitration model can be represented as a quadruplet. We also saw the importance of

outcome accuracy in rational arbitration and how different arbitration mechanisms

can be scored on the accuracy scale. Chapter IV details the experimental framework

for carrying out the study of arbitration models on physically grounded robots. We

also extended this work to a simulation environment so as to analyze the effects

of environment on spatial interference as we tune the environmental parameters. In

Chapter V we did a comparative study of aggressive interaction and linear dominance.

The results showed that the environment plays a key role in determining the ideal

arbitration mechanism to follow so as to reduce arbitration time. In Chapter VI the

comparative study was done on the simulation environment tweaking the task ratio

and the girdle length parameters. The results from these experiments showed that a

slight change in the task dynamics can drastically change the timings needed for task

completion, which in turn is effected by the number of encounters and the arbitration

time during each encounter. Chapter VII is one of the most conceptually challenging

work where we mention about how an entire interference pattern can be encoded as a

string with just three distinct symbols representing unique interference points. Finally
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in Chapter IX we came up with a deliberatively coordinated arbitration mechanism

inspired by animal contests.

B. Bayesian Inference Model

Although we were able to show how our minimalist robots can assess the local

investment of its opponent by the use of the Bayesian filter, there are several aspects

yet to be considered in this model. We do not know when or how exactly the robots

should decide to switch from continuing to arbitration behavior to the retreat behav-

ior. What factors needs to be considered for maximizing the utility of an agent? To

answer these questions further research is needed. Moreover, we saw that there was

a bias in the estimations done by one of the robots (refer Figure 34). We conjecture

that the bias might be an environmental property or might be due to an offset in the

sensor readings of that particular robot. More runs of the assessment model might be

able to answer this question. But at least we were successful in proposing an assess-

ment based model inspired by a biological game theoretic model and reformulated

from a Bayesian perspective.

C. Cooperation versus Coordination

A question which is worth asking is whether these arbitration mechanisms are

cooperative or competitive? By definition ‘cooperation’ is the act of working together

so as to achieve a common goal. In case of robots this would be to act together so as

to minimize time or maximize the total number of tasks performed in a given time.

‘Competition’ on the other hand denotes selfishly working towards a goal which can-

not be shared. In case of the robot navigation task, this arises when they try crossing

the shared girdle space. In the arbitration models where the robots make a decision
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based on their local investment, we saw reduced backing when investment is higher.

Although there is no communication between the robots during the arbitration pro-

cess, this behavior to stand ground is conceptually equivalent to implicit escalation for

gaining ground, a flavor of selfish behavior for individual welfare. However, since the

outcome of the arbitration models is a rational winner, on a global level the robots

work towards the common goal of improving overall task performance. Thus at a

local level they are competing for the shared resource, but on a global level they are

cooperating to maximize their task performance.
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CHAPTER XI

CONCLUSION

Spatial interference is a commongly observed phenomena in robot navigation

task. There has been several studies in the literature suggesting arbitration models.

This research apart from suggesting arbitration models, identifies the key factors

which determines the selection of an arbitration model. Our results demonstrate that

several factors contribute to conflict resolution and its effectiveness:–

Cost vs. precision of the arbitration mechanism—Time and energy cost are incurred

in resolving resource conflicts. This influences the utility of aggressive displays

in the first place.

Properties of the shared resource for which the agents are competing—this affects,

among other things, the cost of communicating its aggression and what consti-

tutes a worthwhile investment.

The task which each agent is assigned to perform—this can be coupled through the

shared resource. This coupling, effects individual and collective dynamics.

The inherent noise in the “communication” channel—noise plays a role in dynamic

arbitration mechanisms: it can be beneficial in breaking symmetry, a situation

which occurs when agents have identical aggression.

From all these facts we can conclude that there cannot be just one single best ar-

bitration mechanism catering to all situations. We have also shown instances where

a small variation of task ratio may cause a significant change in the task dynamics.

With a prior knowledge of this entire task performance space, a single unfavorable

interaction can be predicted beforehand, and by adding a wait to its task navigation,
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the robot can shift its performance to a more favorable region.

One of the main contributions of this work is representing patterns of interfer-

ence as sets of strings with symbols drawn from a set of only three distinct symbols

representing three distinct interference points. We provide decision tree encodings of

the arbitration models and show how the choice of a particular path in the decision

tree determines the string of interference pattern generated. Moreover, given a string

of interference pattern we can also say the probability of its occurence and also its

relative probabiltiy with respect to other strings of interference patterns. Morever

cost of the interference pattern can be easily computed from these strings. Finally

we also present a Bayesian approach for assessing an opponent robot’s local task

investment. Our method is inspired by the biological signaling behavior witnessed

in extended animal contests. However our method is more general compared to the

biological model which inspired its design.

A. Contributions

A complete understanding of a simple binary robot interference scenario will

be beneficial to robotics research since spatial interference is ubiquitous in mobile

robotics. Moreover a complete understanding of the dynamics of spatial interference

in a simple domain can be extended to physical interference even in complex domains.

When more than two robots are involved in spatial interference, interference can be

considered to take place between two teams of robots, each team having one or more

robots. Thus a multi-robot interference problem simplifies to a binary team of robot

interference scenario which can be treated as a binary robot interference problem.

The main contributions of this research are:–

1. A taxonomy of arbitration mechanisms for two-agent spatial interference, in-
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cluding a characterization of conflict resolution models is developed.

2. The notion of outcome accuracy and explicit consideration of interaction cost

is introduced.

3. Previous claims in the literature have been refuted by showing that aggressive

mode of arbitration is not always better than dominance and that environment

plays a key role in interference and in determining the choice of the best mode

of arbitration by agents.

4. It has been shown that memory of past interactions with respect to the task

structure and properties of the resource can result in improved future task per-

formance.

5. The research results also show that varying the properties of assigned task, the

frequency of spatial interference and the cost incurred in its resolution varies

significantly.

6. A new “minimalist” resource arbitration method is introduced which produces

dynamic outcomes—albeit with comparatively high costs—suitable for simpler

robots (with fewer sensors) than heretofore known.

7. An assessment model has been proposed whereby the robots by assesses its op-

ponent’s local investment by repeated observation in the gain or loss of distance

in the shared space and by updating the probability of its estimate by applying

Baye’s rule.

8. Characterization of system performance have been provided where patterns of

interference can be exactly expressed as sets of strings drawn from a set of just

three symbols. The probability of occurrence of a string as well as its relative

probability with respect to another string can be computed. Moreover, given

a string of interference pattern one can predict the cost associated with that

sequence of interaction. This analysis of the domain has the important (and
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rare) property of completeness, i.e., all possible abstract variations of the task

are understood.
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