

MODIFIED NICHED PARETO MULTI-OBJECTIVE GENETIC ALGORITHM

FOR CONSTRUCTION SCHEDULING OPTIMIZATION

A Thesis

by

KYUNGKI KIM

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

August 2011

Major Subject: Civil Engineering

Modified Niched Pareto Multi-objective Genetic Algorithm for Construction Scheduling

Optimization

Copyright 2011 Kyungki Kim

MODIFIED NICHED PARETO MULTI-OBJECTIVE GENETIC ALGORITHM

FOR CONSTRUCTION SCHEDULING OPTIMIZATION

A Thesis

by

KYUNGKI KIM

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Approved by:

Chair of Committee, John Walewski
Committee Members, Julian (Ho-Yeong) Kang
 Emily Zechman
Head of Department, John Niedzwecki

August 2011

Major Subject: Civil Engineering

 iii

ABSTRACT

Modified Niched Pareto Multi-objective Genetic Algorithm for Construction Scheduling

Optimization. (August 2011)

Kyungki Kim, B.S., Dongguk University

Chair of Advisory Committee: Dr. John Walewski

This research proposes a Genetic Algorithm based decision support model that

provides decision makers with a quantitative basis for multi-criteria decision making

related to construction scheduling. In an attempt to overcome the drawbacks of similar

efforts, the proposed multi-objective optimization model provides insight into

construction scheduling problems. In order to generate optimal solutions in terms of the

three important criteria which are project duration, cost, and variation in resource use, a

new data structure is proposed to define a solution to the problem and a general Niched

Pareto Genetic Algorithm (NPGA) is modified to facilitate optimization procedure.

The main features of the proposed Multi-Objective Genetic Algorithm (MOGA)

are:

 A fitness sharing technique that maintains diversity of solutions.

 A non-dominated sorting method that assigns ranks to each individual solution in

the population is beneficial to the tournament selection process.

 An external archive to prevent loss of optimal or near optimal solutions due to

the random effect of genetic operators.

 iv

 A space normalization method to avoid scaling deficiencies.

The developed optimization model was applied to two case studies. The results

indicate that a wider range of solutions can be obtained by employing the new approach

when compared to previous models. Greater area in the decision space is considered and

tradeoffs between all the objectives are found. In addition, various resource use options

are found and visualized. Most importantly, the creation of a simultaneous optimization

model provides better insight into what is obtainable by each option.

A limitation of this research is that schedules are created under the assumption of

unlimited resource availability. Schedules created with this assumption in real world

situations are often infeasible given that resources are commonly constrained and not

readily available. As such, a discussion is provided regarding future research as to what

data structure has to be developed in order to perform such scheduling under resource

constraints.

 v

DEDICATION

This work is dedicated to my beloved family. Without their support and love, I

would never been able to complete this work.

 vi

ACKNOWLEDGEMENTS

I would like to express my appreciation to my committee chair, Dr. Walewski

and my committee members, Dr. Zechman and Dr. Julian Kang, for their guidance and

support throughout the course of this research. To my colleagues, Minsoo Kim and

Hessam Sadatsafavi, I give my thanks for being together during my struggling times at

Texas A&M University. Finally, thanks to my parents and sister for their

encouragement.

 vii

TABLE OF CONTENTS

Page

ABSTRACT ... iii

DEDICATION .. v

ACKNOWLEDGEMENTS .. vi

TABLE OF CONTENTS ... vii

LIST OF FIGURES .. ix

LIST OF TABLES .. xi

1. INTRODUCTION AND PROBLEM DEFINTION.. 1

2. CONSTRUCTION SCHEDULING AND OPTIMIZATION FOR DECISION
SUPPORT .. 3

 2.1 Construction Scheduling .. 3

 2.1.1 Elements .. 3

 2.1.2 Objectives Employed in Construction Scheduling 4

 2.2 Invention and Technical Development of Critical Path Method: Literature
 Review .. 5

 2.3 Multi-objective Optimization for Scheduling Decision Support 8

 2.3.1 Decision Making .. 8

 2.3.2 Multi-objective Optimization ... 10

 2.3.3 Genetic Algorithms .. 16

 2.3.4 Niched Pareto Genetic Algorithm .. 19

3. CURRENT NEEDS AND RESEARCH SIGNIFICANCE 23

 3.1 Previous Approaches ... 23

 3.2 Research Significance.. 27

 3.3 Research Limitation... 28

4. PROPOSED OPTIMIZATION MODEL ... 29

 4.1 Objectives and Approach ... 29

 4.2 Modified Niched Pareto Genetic Algorithm ... 31

 4.2.1 Chromosome Structure .. 31

 viii

Page

 4.2.2 Objective Space Normalization .. 36

 4.2.3 External Archive .. 42

 4.2.4 Optimization Process ... 43

5. CASE STUDY AND ANALYSIS OF FINDINGS .. 46

 5.1 Case 1: Bi-objective Scheduling with 11 Activities 47

 5.2 Case 2: Three-objective Scheduling with 9 Activities 49

6. SUMMARY AND CONCLUSION ... 57

7. FUTURE RESEARCH ... 60

REFERENCES .. 61

APPENDIX A ... 63

APPENDIX B .. 65

APPENDIX C.. 80

VITA ... 100

 ix

LIST OF FIGURES

 Page

Figure 1 Pareto front for bi-objective minimization problem .. 11

Figure 2 A chromosome with 20 decision components ... 12

Figure 3 Function D3 (source: Jie, Kharma et al, 2010) .. 14

Figure 4 Optimization procedure of genetic algorithms .. 17

Figure 5 Pareto domination tournament of NPGA .. 20

Figure 6 Pseudo code of niched pareto genetic algorithm ... 22

Figure 7 Optimum solution search by previous methods .. 25

Figure 8 Desired optimum solution search ... 25

Figure 9 Tradeoffs between three objectives .. 26

Figure 10 Schedules generation from chromosome structure of previous model 32

Figure 11 Schedules generation from chromosome structure of proposed model 32

Figure 12 Chromosome representation of proposed model ... 32

Figure 13 Reduced activity duration chromosome .. 35

Figure 14 Starting date chromosome .. 35

Figure 15 Proposed chromosome structure ... 36

Figure 16 Original search space ... 37

Figure 17 Normalized search space .. 37

Figure 18 NNC method process ... 38

 x

Page

Figure 19 Space normalization for bi-objective optimization .. 40

Figure 20 Optimization process of proposed model .. 43

Figure 21 Cost-duration tradeoff found by proposed model .. 46

Figure 22 11 activity CPM network ... 47

Figure 23 Time-cost tradeoff for case 1 .. 49

Figure 24 9-activity CPM network ... 50

Figure 25 Hypervolume by generation runs .. 52

Figure 26 Optimum solutions in 3-dimension ... 54

Figure 27 Cost-duration tradeoff .. 54

Figure 28 Duration-leveling tradeoff .. 55

Figure 29 Cost-leveling tradeoff .. 55

Figure 30. Resource allocation ... 56

Figure 31 Demonstration of cost-duration tradeoff and obtainable resource leveling 59

Figure 32 Proposed chromosome structure for future research 60

 xi

LIST OF TABLES

Page

Table 1 Optimal solutions generated by 200 runs ... 50

 1

1. INTRODUCTION AND PROBLEM DEFINTION

For large construction projects, managing the efforts of project participants and

activities towards the goal of completion is of utmost importance for successful delivery.

Because of that, schedulers or modelers should create schedules taking into account

multidisciplinary goals and various project conditions. With the coordinated plans with

accurately predicted consequences, decision makers can make a scheduling decision that

satisfies multiple requirements. However, it is very difficult to generate guaranteed

optimal schedules since most construction scheduling problems are complex especially

when there are many objectives to achieve.

The Critical Path Method (CPM) is one of the most well-known scheduling

methods that were invented to achieve greater activity coordination. CPM‟s invention

was prompted by prevailing deficiencies in existing project planning and scheduling

systems and has been in wide use. Many scheduling systems were later developed based

on the CPM technique in order to accommodate the needs arising from enhanced

scheduling objectives and the sheer number projects that are often more complex.

Among the techniques, the heuristics is a category that has advantages over other

approaches such as analytical method and exhaustive enumeration. In addition to the

basic function of generating better solutions, such methods have the capacity to support

decision making by providing a wide range of alternative solutions when applied to

This thesis follows the style of Economics and Mathematical Systems.

 2

problems with multiple objectives. The capacity to deal with multi-attribute problems is

an essential part for a model for complex construction schedule with many activities and

objectives.

As well as supporting decision making, multi-attribute scheduling makes

schedules realistic. For multidisciplinary construction projects, multiple participants and

objectives need to be integrated into a model. Important criteria may include minimum

project duration, cost and variation in resource use. Previous approaches attempted to

optimize these objectives while figuring out relationships between them. However, some

of the relationships are not revealed by the models as the approaches adopted traditional

approaches that perform resource leveling only after optimal tradeoffs between cost and

duration are found.

 3

2. CONSTRUCTION SCHEDULING AND OPTIMIZATION FOR DECISION

SUPPORT

2.1 Construction Scheduling

2.1.1 Elements

2.1.1.1 Activities (Tasks)

Activities are components of a project that should be completed before the

project deliverable is considered to be completed. Also, a construction schedule can be

defined by its activities and relations between them. The performance criteria of

activities can be estimated in terms of duration, cost, and resource use.

2.1.1.2 Precedence Relations

For technical and managerial reason, a set of activities should be completed for

another activity to start. For example, concrete placement can be performed only after

the form is placed [10].

Also there are generalized relationships such as start-start (SS), finish-finish

(FF), finished-start (FS), and start-finish (SF) that explain other types of relationship

between activities. Minimal and maximal time lags describe the activity precedence

relationship between multiple activities.

When s(A) is the start time of activity a and f(B) is the finish times of activity b,

generalized relationships between two activities can be expressed as:

 4

 s(B) ≥ s(A) + d (SS; demotes, activity B can start d time after activity A starts)

 s(B) ≥ f(A) + d (FS; denotes, activity B can start d time after activity A finishes)

 f(B) ≥ f(A) + d (FF; denotes, activity B can finish d time after activity A finishes)

 f(B) ≥ s(A) + d (SF; denotes, activity B can finish d time after activity A starts)

2.1.1.3 Resources

Resources include construction material, labor, and money that are needed in

order to perform the activities of the project. Since the availability of resources often

define the problems associated with construction projects, it is very important to

properly consider resource in the scheduling process.

2.1.2 Objectives Employed in Construction Scheduling

For construction, there are several objectives to be achieved such as duration

minimization, net present value minimization, quality maximization, cost minimization,

total earliness of activities minimization, and total tardiness of activities minimization.

The objectives to be optimized in this thesis are construction duration minimization,

construction cost minimization, and minimum resource use variation.

2.1.2.1 Duration Minimization

Total construction duration is the duration between the starting time of the first

activity and the finishing time of the last activity. When the duration is minimized, a

time-critical path is generated.

 5

2.1.2.2 Cost Minimization

Construction project cost involves minimization of direct cost of project

activities, minimization of cost resulting from fluctuation in resource use and

minimization of penalties from earliness/tardiness.

2.1.2.3 Optimal Resource Requirements

Fluctuation in resource use should be reduced to avoid the difficulties of frequent

hiring and firing and loss of learning effects of labors. Optimal resource requirements

can be achieved by resource smoothing that adjusts activity dates without changing the

total construction duration.

2.2 Invention and Technical Development of Critical Path Method: Literature

Review

Before the Critical Path Method was invented in the late 1950s, existing planning

systems had deficiencies such as lack of coordination and oversimplification that

prompted an invention of a method to obtain a higher degree of coordination of project

activities toward a single goal [12]. At that time, project groups had worked

independently with their own plans and schedules, and detailed planning and scheduling

were developed based on gross estimates of entire project and past experiences.

Critical Path Method had been intensively used for various forms of projects for

more than two decades after its invention. However, as surveys conducted in the UK and

 6

Egypt by Allam (1988) showed [1], there were growing doubts about applying this

analytical method to real projects due to its arithmetic complexity. Therefore, many

methods were developed based on this technique to deal with this issue. The approaches

can be categorized into analytical (mathematical) and heuristic methods. Mathematical

methods aim to calculate optimal solutions with accuracy and heuristic methods generate

optimal or near optimal solutions depending on assigned priorities such as cost and

duration. Although both mathematical and heuristic methods have their strengths and

weaknesses according to a review conducted by Leu, et al. [14, 15], heuristic methods

work better and are more in use for multi-objective scheduling because of their multiple

advantages. Large scale, multi-objective construction scheduling problem is a kind of

NP-hard problems, which stands for non-deterministic polynomial-time hard problem.

For an NP-hard problem there is no known method of finding optimal solutions in

polynomial time. Complexity and limited resources make it hard to solve real scheduling

problems with mathematical methods. Heuristic models are capable of solving this kind

of complexity more easily because of the simple format and easy application. The

disadvantage of using this method is that it is problem-dependent and it does not always

guarantee optimal solutions [1, 15].

Mathematical models to generate optimal schedules and optimal solutions were

developed [8, 13]. Later, mathematical programming formulations were developed and

discussed by Easa and Harris [4, 9]. However, it was only applicable to small projects

with few activities because a great deal of computation effort was needed to create the

mathematical formula.

 7

Due to this limitation, the majority of efforts to date have been heuristic

scheduling methods. Senouci and Eldin (2004) developed a single-objective genetic

algorithm, and its objective is to find a schedule with the minimum project cost under

resource and duration constraints. The solution encoding structure is composed of

activity duration part and start date part. Although multiple resources, time-cost tradeoffs

were integrated considering all possible activity relationships, this method did not

provide any insight into decision options and the obtainable consequence because its

objective was to generate a single solution [20]. In 2008, Senouci and Al-Derham used

Multi-objective Genetic Algorithm to minimize project duration and total project cost.

Construction material, crew and overtime were combined to create resource utilization

options. This model shows optimal and near optimal trade-offs between cost and

duration, however resource leveling did not take place in this model [19]. Leu and Yang

(1999) proposed a model to search optimal combinations of project cost and duration

under limited quantities of resources. It is a multi-objective scheduling model under

resource constraint using Genetic Algorithm-based searching technique. Leu and Yang

(1999) also proposed a computational multi-criteria scheduling optimization model that

integrates a time/cost tradeoff model, limited resource allocation model, and resource

leveling model. Though this is an advanced model compared to their previous model, it

failed to consider relationships between the degree of resource leveling and other

objectives. Later in 2000 these researchers, added a decision support system to the

previous research in order to assist scheduling decision makers with the optimization

 8

result. However, the inability to consider the relationships between the degree of

resource leveling and other objectives was not solved in this research [16].

The heuristic methods developed for construction scheduling often claim to have

integrated important scheduling criteria into a single optimization. However, the

relationship between all the competing objectives and provide a clear insight into the

problem have not been a focus of these models. Understanding that this limitation arises

from the traditional scheduling procedure where resource leveling is performed after

optimizing cost and duration, this research aims to propose a heuristic model that

supplements the drawbacks. The focus of this research is on developing an advanced

heuristic scheduling model that can be applied to complex scheduling problems.

2.3 Multi-objective Optimization for Scheduling Decision Support

2.3.1 Decision Making

The role of a scheduler or a modeler can be distinguished from that of a decision

maker (DM). The scheduler is responsible for informing the DM with enough

information about what is obtainable from alternative solutions. Based on the

information, the DM makes a decision using specific criteria and makes modifications to

the schedule as needed. Taking that into account, it is of critical importance that a

scheduler provides the DM with best alternatives with the prediction of obtainable

results. With that insight, the DM understands what is obtainable and what tradeoffs

between objectives have to be considered.

 9

Conventional decision making methods for project scheduling have three steps to

reach a decision:

1. Requirements of multidisciplinary stakeholders are studied by a participant such

as designer, scheduler to generate options.

2. Professions from different disciplines build models to conduct analysis and

determine feasibility of the options.

3. Decision is made according to effectiveness of each solution.

Taking into account the role of a scheduler as a decision supporter, following this

procedure for decision making has some drawbacks. Most of all, sufficient options are

not guaranteed since only a limited number of options can be generated and evaluated

due to limited time and resource using such a procedure. In this case, decision makers

have to make decisions from a limited set of options and then implement it. Furthermore,

evaluating options one by one is an ineffective and significantly time-consuming task

when requirements are not pre-integrated while alternatives are created. It depends

heavily on a person‟s insight into the problem since options are generated based on

perceived requirements from stakeholders.

Since generating and evaluating enough solutions for a large construction project

using traditional decision making procedure is not efficient, it is greatly beneficial if

scheduling requirements can be pre-integrated when schedule options are generated

relying on a computer‟s process speed. As introduced in the literature review section,

various kinds of scheduling techniques have been developed in order to make the

schedule more realistic and satisfactory. They have been developed in a way that more

 10

requirements are integrated and rely less on mathematical computation. Major criteria

for scheduling decision may include project duration, cost, resource leveling and other

considerations such as safety and distance resource consideration [5].

2.3.2 Multi-objective Optimization

Optimization is a type of modeling method to determine the best solutions from

available alternatives. For each solution, a quantitative evaluation is provided rather than

a subjective one. When it is used for optimization for a multi-objective decision making

support, the aim can be to find a group of non-dominated solutions forming trade-offs

called the Pareto frontier, as opposed to single-objective optimization which is to find a

single best solution.

In the Figure 1 below, the concept of Pareto optimal for bi-objective

minimization optimization is demonstrated. Pareto frontier is the line that links five

individual solutions from P1 to P5. A solution is Pareto optimal when one fitness value

of the solution cannot be upgraded without degrading another fitness value.

 11

Figure 1 Pareto front for bi-objective minimization problem

P1, P2, P3, P4 and P5 are optimal solutions because there is no solution that has

objective values f1 and f2 both are better (lower) than one of the five solutions, and a

fitness value of one solution cannot be reduced without increasing the other. As can be

seen, no solution is found under the dotted line that links the optimal solutions. On the

upper right corner of the figure, four solutions are found to have worse values for both f1

and f2 than solution P3. In this case, P3 dominates the four solutions while P3 is a non-

dominated solution. By using Pareto frontier, we can concentrate on this optimal trade-

off without having to consider any inferior solutions.

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

f1

f2

Solutions
Dominated
by P3

P1

P2

P3

P4

P5

 12

In this regards, decision making can benefit from using multi-objective

optimization techniques when solving complex scheduling problems that usually

involves coordination of many activities and evaluation in terms of multiple objectives.

The need for optimization for scheduling arises from the huge number of possible

solutions to a problem. Each solution is composed of many decision components, and

there are alternatives for each component forming a decision space for a problem. The

size becomes exponentially larger as more decision components are added as seen in

Figure 2. A scheduler cannot choose and evaluate all possible alternatives in the space

due to limited time and resource. It becomes even complex when each possibility is

evaluated by multiple criteria.

5

Figure 2 A chromosome with 20 decision components

In Figure 2, a chromosome is presented to explain the complexity of problems

and difficulty of evaluation related to scheduling. In general, a chromosome is

representation of a solution that is composed of a set of parameters or decision elements.

A wide variety of data structure such as binary arrays or real values can be used for each

chromosome component. A more detailed explanation about chromosome will be given

in the Genetic Algorithm section. In the array of cells, the number in each cell represents

a component of a decision. Assuming that each cell can have one of six integer values

between 0 and five, there are 620 (3,656,158,440,062,980) possibilities scattered in the

 13

decision space. Evaluating each point is exhaustive, and solutions selected and evaluated

by subjective opinion are apt to be sub-optimal. Evaluation and selection become more

difficult in situations of multi-objective optimization because a change in one criterion

may degrade others.

There are single objective optimization and multi-objective optimization

depending on the number of criteria the optimization algorithm aims to minimize or

maximize. Construction scheduling problems often involve many criteria. Though there

are ways single-objective optimization can deal with multi-objective problems - such as

constraint method and weighting method - they have disadvantages as a decision support

model. Constraint methods need to pre-specify levels of constraints before performing

several runs which is infeasible because we do not know the ranges of solutions before

optimization and the size of decision space is too large. It is also necessary for weighting

methods to assign weights for objectives before optimization which can be classified as

decision making not decision supporting. Implementation of the two single-objective

optimization requires decision making supporters to make some decisions which are a

decision makers‟ responsibility. However, Multi-Objective Optimization has a capacity

generate many non-inferior solutions that provide the decision maker with the insight

into the problem.

 14

Figure 3 Function D3 (source: Jie, Kharma et al, 2010)

The idea of presenting a group of Pareto points for decision making is to provide

the decision maker a clear sight of what is achievable in what area of decision space thus

leading the decision maker focus on a certain region rather than spending time and

resource in assessing solutions in an area without best solutions or randomly exploring

the solution space. Figure 3 provides a search space for one objective optimization

considering two factors optimized by Jie, et al. [11]. The fitness values are difficult to

predict and formularize since there are multiple maximum and minimum points. The

formula of function D3 is shown below:

4

2 2 2 2

3(,) 4 2.1 (4)
3

x
D x y x x xy y y

  
         

  
 (2.1)

 15

    1.9,1.9 , 1.1,1.1 .x y   

Since multi-objective optimization does not make any modification to the

solutions and helps to develop a family of best solutions, by using this method, decision

supporters can provide alternatives that are not dominated by any other solutions, and

decision makers can avoid choosing an inferior solution in their managerial decision

making. One of the distinguishing advantages of multi-objective optimization is its

mechanism considering tradeoffs among several objectives in selecting solutions. In

order words, multi-objective optimization evaluates candidate solutions for all the

objectives thus treating the objectives equally important while single objective

optimization method concentrate on finding one point in the decision space setting other

values fixed.

By integrating several objectives into optimization model, models become

realistic and capable of providing better information for decision making. A decision for

a complex problem such as construction scheduling entails consideration from

viewpoints of different stakeholders with various objectives. Taking many objectives

into the decision making process makes analysis more practical, but doing so adds

complexity to it at the same time [2]. Furthermore, due to the characteristics of real

world problems that is becoming more complex, there is a number of sub-decisions and

following consequences related to a decision that make it harder to evaluate an impact of

a decision component on the overall result. Evaluating the results is not simple and easy

because of interrelations between several objectives.

 16

2.3.3 Genetic Algorithms

 Genetic algorithms were invented in the 1960s by John Holland is search of a

heuristic method that mimics the mechanism of natural adaptation. The procedure begins

by generating a population of randomly generated candidate solutions that evolves

towards an optimal solution through genetic iteration. The population is composed of

string arrays each of which contains information on a single solution which is called

chromosome. In each generation, candidate solutions are evaluated and selected based

on fitness function which indicates how well the solution solves the problem. After a

portion of the population is selected based on the fitness values, remaining solutions are

combine and mutated by genetic operators such as crossover and mutation. Crossover

operator combines candidate solutions and a mutation operator randomly mutates them.

This process continues for each generation until a solution of a certain value is obtained

or it is iterated by a predetermined times. The operation of Genetic Algorithms is

visualized in Figure 4.

 17

Start

Randomly

generate the initial

population

Evaluation

Selection

Termination

condition

satisfied?

Solution

Produce

population for next

generation

No

Genetic Operator

(Mutation, Crossover)

Yes

Figure 4 Optimization procedure of genetic algorithms

A distinctive strength of Genetic Algorithms is its ability to enable a solution

search without having to know so much about the domain of a problem. With little

knowledge and information about the problem domain, this approach relies on the

computer‟s process speed for finding solutions from the entire search space using

constraints and fitness functions. Genetic Algorithms have been used because of the

advantages in exploring the possible solutions. They have been applied to science,

 18

engineering problems such as large CPM problems and proved to be efficient for

searching optimal solutions in a large solution space [6]. Those advantages make genetic

algorithms one of the most effective search methods for a complex problem with a large

search space [20].

Genetic Algorithms can be used for one optimum value search or

multidisciplinary optimization where tradeoff occurs among multiple objective

functions. The latter is useful especially for a complex problem that has to meet the

requirements of multiple participating disciplines. In this case, a group of optimal

solutions are provided by the algorithm and the matter of selecting one decision from

alternatives can be left to a decision maker. Genetic Algorithm can guide the search

towards the Pareto frontier in order to enable a decision maker to be informed of the best

trade-off possible and avoid excessive effort for evaluating sub-optimal points in the

space.

Since mechanism of generating initial population is constructed and then the GA

algorithm improves the population towards the Pareto optimum, it is important to have a

proper chromosome structure that encodes solutions. If too much information on the

problem domain is included in the algorithm like most analytical methods do, the genetic

algorithm becomes too problem specific. Genetic algorithms have to be structured in a

way that relies on capacity of computer more than problem specific formula.

 19

2.3.4 Niched Pareto Genetic Algorithm

Genetic algorithms have been applied almost exclusively to single-attribute

problems. However, many real-world problems are revealed as that their objective

functions are multi-attribute. And, solutions do not spread linearly as can be seen in

Figure 3. In general, solution space has several local maximums and minimums. GA

methods with constraints and weights have been used as tools for combining multiple

attributes. However, these methods are very sensitive to variations in the penalty

function coefficients and weighting factors. Here, the need arises for Multi-objective

Genetic Algorithms (MOGA) that finds good solutions overcoming this defect.

The purpose of Niched Pareto Genetic Algorithm is to generate optimal solutions

called Pareto optimal while maintaining diversity at the same time. It produces

optimized tradeoffs between conflicting objectives by finding non-dominated samples all

along the Pareto front. According to a study comparing eight diversity-maintaining

methods for multi-modal problems, sharing method can find out all the peaks although

suboptimal solutions are included in the final population [21]. In addition to this strength

of NPGA, the proposed model for this research supplements deficiencies of it by

integrating effective features such as search space normalization method and external

archive. Search space normalization technique is adopted in order to avoid scaling

deficiency occurring while integrating multiple objectives of different scales. External

archive is included in the model to prevent loss of good solutions due to random effects

of genetic operators (crossover and mutation operators). Detailed explanations for them

are provided in Sections 4.2.2 and 4.2.3, respectively.

 20

In each generation in genetic algorithm iteration, a selection mechanism is used

to select solutions in the population. Chosen solutions form a mating pool where

crossover and mutation occur and provide the basis for the next generation. Tournament

selection has been one of the most widely used selection mechanisms. In tournament

selection, individual solutions of a predetermined size are selected at random, and a

solution with the best fitness value is selected as a winner. The process is repeated until

the desired size of mating pool is formed. Though the tournament selection has benefits

such as efficiency in coding and easiness in adjusting the tournament size, solutions in a

population tend to converge to a uniform solution after a large number of generation

iterations [7]. Since NPGA intends to generate multiple points along the Pareto front the

attribute space, it has to avoid convergence to a single point and maintain multiple

solutions. Thus, two mechanisms were created: Pareto domination tournament and

Sharing on the non-dominated frontier.

Pareto domination tournament is used since more domination pressure and

control of that pressure are needed to know an individual‟s true domination ranking. The

sampling scheme of NPGA is as follows.

1. Randomly select two candidate solutions and a comparison set.

2. Each candidate is compared against individuals in the comparison set.

3. Comparing candidates with comparison set.

3.1 Non-dominated solution is selected for reproduction if one candidate is dominated

by the comparison set and the other is not.

3.2 „Sharing‟ is used when neither or both are dominated by the comparison set.
Figure 5 Pareto domination tournament of NPGA

 21

In this process, sample size tdom maintains the domination (selection) pressure.

The goal of sharing that appears in 3.2 in Figure 5 is to distribute the solutions over

different local optimums in the search space allocating individual solutions in the

population in proportion to the magnitude of the peak. Shared fitness is calculated as

following equation.

 i

i

f
shared fitness

m
 (2.2)

where,
if is individual i‟s objective fitness and

im is niche count (how crowded is the

neighborhood of individual i)

  ,i j Pop
m Sh d i j


    (2.3)

where,  ,d i j is distance between individual i and j.  Sh d is sharing function and

defined as below.

  
1 /

0

share shared if d
Sh d

else

  
 


 (2.4)

Based on equation1, 2, and 3, individuals with share distance of each other

degrade each other‟s fitness. Thus, the convergence occurs within a niche. Figure 6

shows the pseudo code for NPGA. Sharing distance can be determined by “dividing the

search space into a number of equal sized hyper-space equal to the number of sought out

optima [3].” This selection mechanism of NPGA prevents generation of similar solutions

after generation runs and thus well-distributed solutions can be obtained. When a

decision maker is provided with a well distributed Pareto front, a decision can be made

 22

effectively considering greater space of solutions that could be ignored without having to

explore any dominated solutions.

Initialize Population P

Evaluate Objective Value

For i=1 to g do

 Specialized Binary Tournament Selection

 Begin

 if Only Candidate 1 dominated then

 Select Candidate 2

 else if Only Candidate 2 dominated then

 Select Candidate 1

 else if Both are Dominated or Non-dominated then

 Perform specialized fitness sharing

 Return Candidate with lower niche count

 end if

 End

 Single Point Crossover

 Mutation

 Evaluate Objective Values

End for

Figure 6 Pseudo code of niched pareto genetic algorithm

 23

3. CURRENT NEEDS AND RESEARCH SIGNIFICANCE

3.1 Previous Approaches

As stated in the previous sections, many multi-objective genetic algorithm

models (MOGA) were proposed to solve scheduling problems. Important scheduling

criteria were minimum duration, minimum cost and minimum variation in resource use

and so on. However, none of the previous construction scheduling models has capability

to thoroughly explore the entire solution space because of their sequential optimization

process. The purpose of applying optimization methods is to solve complex scheduling

problems using the useful traits: developing best possible solutions considering the

tradeoffs between conflicting objectives. Though resource leveling is an importance

criterion for a successful construction execution because of the negative impacts of

variation in resource use on cost and productivity, previous approaches did not take into

account the relationships between resource leveling and other objectives. Reducing

variation in resource use promotes workers‟ loyalty and captures the benefits of learning,

and ultimately saves cost by enhanced productivity and improved morale. Cyclic hiring

and firing destroys workers‟ morale. Thus, resource leveling has to be considered

equally important as other optimization criteria.

Resource leveling becomes important when there are sufficient amount of

resource while it is important to minimize project duration extension for fixed-limits

scheduling [4]. Then, for unlimited resource scheduling, fluctuations or deviations from

 24

desired resource use can be minimized without constraints of resource availability in

order to avoid undesirable loss.

When a schedule is generated by traditional Critical Path Analysis, resource

leveling is not incorporated when selecting shortest schedules. After a schedule is

selected, manpower leveling starts and smoothing is performed until the desired curves

are obtained [12]. The deficiency of this traditional method is that it is impossible to find

different solutions other than initially found schedules after the schedule selection based

on shortest time and lowest cost.

None of previous approaches has overcome this deficiency. Resource leveling

model improvised by Leu also takes three steps as following [14]:

1. Analyze a time/cost trade-off model

2. Non-dominated solutions with project duration and cost are found

3. Another system receives information about non-dominated schedules from the

process 2 and perform resource leveling process

 25

Figure 7 Optimum solution search by previous methods

Figure 8 Desired optimum solution search

 26

Figure 9 Tradeoffs between three objectives

Optimization process using this method is divided into two phases. This makes it

impossible to optimize resource leveling simultaneously with cost and duration

optimization. Here, optimal solutions are restricted to solutions above optimal tradeoff

initially found on the XY-plain (time-cost tradeoff) in the objective space as seen in

Figure 7. From that, it can be seen that combinations of costs and durations have to

change depending on different level of resource leveling as seen in Figure 8. In order

words, all the tradeoffs between objectives should be presented can be seen in Figure 9

that visualizes tradeoffs between three optimization criteria which past approaches could

not achieve.

 27

The new model proposed in this research addresses this drawback under the

unlimited resource assumption. The model is capable of simultaneous generation of

optimal or near optimal schedules in terms of multiple objectives (minimum duration,

cost and resource leveling index) and thus better exploration into the solution space.

Optimizing objectives one by one results in solution search that is not enough to provide

the decision makers (DMs) with the insight into the best available alternatives because

this is misses some part of the objective space and does not consider possible trade-off

relations between conflicting objectives. Simultaneous optimization for all objectives is

important for thorough objective space exploration and non-dominated solution search

as visualized in Figure 9.

3.2 Research Significance

When creating schedules with the three criteria, all of them have to be pre-

integrated into the model and all the tradeoffs between objectives have to be revealed.

However, due to the drawbacks of previous approaches, it has not been possible to

explore whole possible area in search space. From this research, a programming solution

will be presented that enables simultaneous optimization. More importantly, an informed

decision making related to construction scheduling problems will be enabled by

searching a larger solution space.

 28

3.3 Research Limitation

 The proposed model does not account for resource limitation. Schedules

generated under unlimited resource constraints may be unrealistic because there are few

cases resource is available at any time in construction period in the real world. Though

this model is intended to present a possibility to explore decision space better than

previous approaches, it is not practically applicable because of this limitation that has to

be solved by a future research.

 29

4. PROPOSED OPTIMIZATION MODEL

4.1 Objectives and Approach

The aim of this new optimization model is to enable a simultaneous optimization

in terms of three important scheduling criteria which has not been achieved by similar

approaches. The objectives are minimizing project duration, cost, and resource use

variation. For the purpose of quantitative assessment, they were formularized as

objective functions in the equation (4.1), (4.2), and (4.3).

1

_
N

i
i

Total Duration D


 (4.1)

  

1

2

3

1 2 3
._

.

.

n

n

Additional Cost

c
c
c

d d d d

c

 
 
 
 
 

  
 
 
 
 
 

 (4.2)

1

()
m

k k

k

RLI w l


  (4.3)

1 _

T

kk ik

q all i

l r r


 
  

 
  (4.4)

  
_

() /
n

k ik io i

all i

r r d d T   (4.5)

 30

Total_Duration is an objective function which is sum of durations in the critical

path.

Additional_Cost is an objective function that calculates additional project cost

caused by crash.

RLI is an objective function that shows how the resource allocation of a project

deviates from average resource use during the project duration.

doi is the original duration of activity i.

di is the durations reduced from original project activity durations.

dio is the original duration of activity i.

ci is the additional cost per one day of crash for activity i.

rik is a daily needed of resource k for activity i.

n is the total number of activities in the project.

m is the number of resources.

Di is the durations of critical activities.

N is the number of activities on the critical path.

RLI is resource leveling index for multiple resource leveling.

In an effort to incorporate the three objective functions into a single phase of

optimization and obtain a decent result, modifications were made in two ways:

 A new type of chromosome structure

 modified NPGA optimization process

 31

4.2 Modified Niched Pareto Genetic Algorithm

Previous approaches need multiple chromosome forms [14, 15, 16]. Creation of

those chromosomes are dependent on others; ordering chromosome is created based on

data from activity duration chromosome, starting date chromosome needs scheduling

and resource data generated by the cost – duration tradeoff in the earlier optimization

stage. Because of this dependency between chromosomes, those chromosomes cannot be

integrated in to a single structure that yields cost, duration, and resource leveling index

at the same time. The discrete optimization stages make it impossible to fully explore the

design space. Since the method follows the optimization process that finds out the near

optimal time – cost tradeoff first and performs resource leveling on the Pareto front only

in terms of cost and duration. This has a serious defect as an optimization process

because it did not account for cost – RLI tradeoff and time – RLI tradeoff that may exist

in the problem.

4.2.1 Chromosome Structure

In this section, a different kind of chromosome structure is proposed to construct

an aggregate objective function (AOF). It is a basic approach in order to optimize multi-

objective problems that all the objective functions are combined into a single form.

However, previous approaches failed to create a single AOF due to the limitation in their

chromosome structures. The absence of an AOF is the reason previous multi-objective

scheduling optimization models could not perform simultaneous optimization. With

 32

AOF, genetic algorithm can combine important attributes of scheduling such as project

cost, duration, and evenly distributed resource allocation into a single process.

Resource LevelingCost, Duration Tradeoff

Additional Cost

Project DurationOrdering chromosome

Activity duration chromosome Optimized ScheduleCost

Starting date chromosome

Schedule

Schedule &

Resource

Figure 10 Schedules generation from chromosome structure of previous model

Cost, Duration, RLI Tradeoff

Additional Cost Project Duration

Chromosome

Activity Duration

Use of Float Resource Leveling Index

Optimized Schedule

 Figure 11 Schedules generation from chromosome structure of proposed model

 Reduced activity duration Activity order

 1 3 6 1 7 1 2 4 3 5 6

Activity start date

(Resource Leveling)

Cost Time

 0 1 4 10 11 18 . . 5000 55

Figure 12 Chromosome representation of proposed model

 33

The optimization procedure is compared to the proposed model of the same

purpose in Figures 10 and 11. Dark boxes in the diagrams represent chromosomes. Since

this research focuses on scheduling under unlimited resource leveling, „ordering

chromosome‟ can be ignored from the process in Figure 10 as its role is activity

sequencing under the limited resource availability. The „activity duration chromosome‟

defines how many days out of maximum reducible duration of each activity while the

„starting date chromosome‟ indicates when the activities start. Additional cost and total

project duration are calculated from the reduced activity duration part, and activity start

date part is used for calculating fluctuation in resource use [20]. Taking that into

account, the chromosome structure of this approach is divided into two parts: cost-

duration tradeoff phase and resource leveling phase while the proposed process has a

single process with an integrated chromosome [16, 20].

The reason optimization process is divided into two phases as in the Figure 10 is

that the „starting date chromosome‟ for resource leveling process can be created only

after the first optimization phase, cost-duration tradeoff, is completed. Due to this

dependency, combinations of costs and durations do not change depending on how well

resource distributed. Also, offspring chromosomes created by crossover or mutation

operation have discrepancies between „activity duration chromosome‟ and „starting date

chromosome‟ if we try to combine these three types into a single form. From this

perspective, it can be seen that recent scheduling models still follow the scheduling

approach of early Critical Path Method where resource leveling optimization takes place

only after best time-cost tradeoff for a problem is found.

 34

The drawback of this approach is its limited ability to search into the objective

space. In Figure 7, time-cost tradeoff is found in XY axis and resource leveling takes

place. Accordingly, tradeoffs between resource leveling and other objectives are not

found by previous methods. However, ideal optimization for three-objective

optimization should present tradeoffs between all the objectives as in Figure 9. This

deficiency can be solved by proposing a genetic algorithm chromosome structured for

direct generation of three fitness functions.

In order to enable simultaneous optimization showing all the existing tradeoffs, a

chromosome structure is proposed in this thesis as can be seen in the Figure 12. From

literature review section, it can be seen that, in general, different kinds of chromosome

structure are applied for optimization for different objectives as following:

 Activity duration chromosome generates cost-duration tradeoff.

 Ordering chromosome decides the sequence of activities when resource is not

available for multiple activities.

 Starting date chromosome performs resource leveling using available floats.

Unlike the previous model, „reduced activity duration‟ part of the chromosome

generates cost-duration tradeoff and both „use of float‟ part and „reduced activity

duration‟ are integrated to calculate resource leveling index. The chromosome structure

is composed of percentage values for „use of float‟ instead of integer values to enable

crossover operations between different solutions in the population thereby enabling

simultaneous optimization of three objectives as seen in Figure 9. As the same percent

values can be translated into different number of days within total float within different

 35

time-cost tradeoffs, the limitation that occurs when activity start days are used for

resource leveling can be solved.

1 3 6 1 7

Figure 13 Reduced activity duration chromosome

Chromosome of reduced durations in the Figure 13 enables time-cost tradeoff.

Additional cost is calculated using formula 1.1, and conventional Critical Path Method is

applied to calculate find critical path and activity floats. Then, for conventional model,

another chromosome in the Figure 14 representing starting dates is created to decide how

many days within float are to be used for resource leveling while the second part

represents move of starting dates of activities within float by percentages instead of

starting dates. In a traditional CPM analysis, activities are assumed to start on the fastest

possible date. However, in a real construction project, non-critical activities can shift

within float times in order to have even resource profiles [16].

By using a certain percentage for a float in the chromosome as in Figure 15,

genetic mechanisms can be used without error and one chromosome can produce cost,

duration, and resource leveling information at the same time.

0 5 13 21

Figure 14 Starting date chromosome

 36

Reduced activity duration Use of float time

1 3 6 1 7 20% 10% 90%

Figure 15 Proposed chromosome structure

4.2.2 Objective Space Normalization

The necessity to normalize objective space arises in order to find out well-

distributed Pareto front for multi-objective problem. In general, weights are assigned to

account for subjective preferences. But this is only applicable to the case of the

comparability of all components.

By conducting objective space normalization, 0 and 1 are assigned respectively

to the minimum and maximum fitness values of each objective. Therefore, the search

space for this problem will become a cube as a result. Finding optimal solutions in the

normalized space is greatly beneficial in performing NPGA‟s sharing function that

preserves solution diversity. Furthermore, doing so strengthens visibility of relationship

between conflicting objectives. The advantages of 0 and 1 instead of its real values can

be seen in Figures 16 and 17. Taking into account that sharing function of NPGA

essential in the optimization process, the objective space in Figures 17 has an advantage

over the space in the Figures 16. In the space with real scale, it is very difficult to set a

sharing distance because of different scales of objectives, and in that case sharing

function does not work effectively. Since sharing functions in the algorithm in a way that

distributes solutions by dividing search space into spaces of the same size, sharing may

 37

not occur well for all the objectives in a space with different scales. However, radius

setting becomes easier and sharing function works well in the normalized space in

Figure 17. Thus, in the proposed model, objective space is normalized before

optimization process starts in order to define an appropriate sharing radius.

0

20

40

60

80

0

500

1000

1500

2000
0

0.2

0.4

0.6

0.8

1

Project DurationCost

R
L
I

Figure 16 Original search space

0
0.2

0.4
0.6

0.8
1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

Project DurationCost

R
L
I

Figure 17 Normalized search space

 38

The method of normalizing objective space is adopted from Normalized Normal

Constraint (NNC) Method [17, 18]. This method is in line with efforts to develop a

method of generating uniformly distributed Pareto front using Genetic Algorithms. It is

an enumeration of single objective optimization with constraints occurring in the

normalized objective space. From seven steps in the NNC method explained by the

pseudo code in Figure 18, only the first two steps for space normalization method is

selected because the proposed optimization model does not use single objective method

as NNC.

Step -1: Anchor Points. Obtain anchor points

Step -2: Objective Mapping/Normalization

Step -3: Utopia Line Vector

Step -4: Normalized Increments

Step -5: Generate Utopia Line Points

Step -6: Pareto Points Generation

Step -7: Pareto Design Metrics Values

Figure 18 NNC method process

 39

The theoretical introduction to the procedure focuses on bi-objective problem for

simplicity in explanation. The mathematical representation is shown below:

  1 2min () ()x x x  (4.6)

subject to:

 () 0,(1)qg x q r  

 () 0,(1)kh x k s   (4.7)

 , (1)li i ui xx x x i n   

where x represents the dimension vector of variables

gq(x) is the r inequality constraints.

hk(x) is the s equality constraints.

xli, xui are the lower and upper limitation constraints in the dimension i.

Then, essential elements in Figure 19 are:

 Anchor points (µi*) are obtained by minimizing each objective independently.

These points are deemed as both ends of the Pareto front.

 Utopia point (µu) is a point with components that are the optimum values of

anchor points.

 40

Figure 19 Space normalization for bi-objective optimization (Martínez et al., 2009)

The normalization steps that transform the space from a to b in Figure 19 are:

Step 1: Anchor Points (µ
1*

, µ
2*

, µ
3*

)

By minimizing each objective individually, obtain three anchor points since this

is a problem with three objectives.

 ()(1,2,3)x iMin x i  (4.8)

These points are end points of the Pareto front, and Utopian point is defined by

the optimized points of anchor points.

µ1
 = project duration

µ2
 = project cost

 41

µ3
 = resource leveling index (RLI)

Step 2: Objective Mapping/Normalization

Optimization takes place in the normalized space in order to avoid scaling

deficiencies. µ is the normalized form of µ. L is defined as the maximum distance of

each objective component. In this objective mapping of three-objective space, both the

Utopia point (µu) and Nadir point (µN) are obtained as in equations (4.9) and (4.10):

 1* 2* 3*

1 2 3(), (), ()
T

u x x x       , (4.9)

where

µ1* = optimum project duration

µ2* = optimum project cost

µ3* = optimum resource leveling index (RLI)

 1 2 3, ,
T

N N N N       , (4.10)

where

 1* 2* 3*max (), (), ()N

i i i ix x x       (4.11)

  1,2,..., .i n

Maximum distances L are defined as:

1

2

3

,N u

l

L l

l

 

 
 

   
 
 

 (4.12)

 42

which normalizes the metrics as:

*()

, 1,2,3.
i

i i
i

i

x
i

l

 



  (4.13)

4.2.3 External Archive

The proposed optimization model incorporates an archive that copies best

solutions found from each generation. From each generation run, non-dominated

solutions are copied from the population to the external archive. Since individual

solutions in this external archive can avoid generation cycles of genetic algorithm, it is

not under the influence generation operators (crossover and mutation operators). Thus,

optimal solutions can be preserved by avoiding the random effects. However, a part of

Pareto optimal solutions from the external archive are also copied and sent to the mating

pool to facilitate generation of better solutions. In the last run of optimization runs, the

external archive is incorporated into the final population. Then, again, non-dominated

Pareto solutions are selected from the individuals of both external archive and the final

population by using the selection method of non-dominated sorting.

 43

4.2.4 Optimization Process

Start

Randomly

generate the initial

population

Evaluation

Normalization

Pareto Domination

Tournament

Selection

CPM algorithm

Start Iteration

Termination

condition

satisfied?

Produce new

population

No

Genetic Operator

(Crossover, Mutation)

Copy best

solutions in

External Archive

No

Copy best solutions

from external archive

CPM algorithm

Combine Final

Population with

External Archive

Yes

Select non-

dominated

solutions

Solutions

Evaluation Normalization

Figure 20 Optimization process of proposed model

 44

Original NPGA optimization procedure was modified to increase efficiency of

sharing function and to prevent optimal solutions from disappearing due random effects

of genetic operations by using external archive. First of all, objective space is normalized

to overcome scaling deficiency. External archive is adopted in the optimization process

to preserve optimal solutions that may disappear due to random characteristic of genetic

operators. External archive contributes to search toward Pareto front as the best solutions

from the archive compose certain part of population for next generation.

The first step in Figure 20 is random generation of initial population.

Chromosomes of predefined number are generated and each of them has reduced activity

duration part and use of float time part. When there are X number of activities in the

project, each chromosome is composed of X×2 number of decision elements. This

information is sent to CPM engine. Then, the CPM engine calculates project cost and

duration using information from reduced activity duration part and resource leveling

index is calculated using both parts of chromosome. Since float use is represented by

certain percentages instead of days, resource leveling index can be calculated using data

in a chromosome without additional method. Therefore, it is possible to obtain three

fitness values from each individual chromosome. Iterations start after the first population

is generated, evaluated and normalized. Before the Pareto domination tournament

selection stage, all the solutions are ranked. Then, elite solutions sorted by the

tournament selection are sent to the pool of next generation. Remaining solutions are

combined into the pool after they are transformed by crossover and mutation operators.

In each generation, best solutions are selected by non-dominated sorting method and sent

 45

to the external archive. When termination condition is met, iteration stops and the final

population are combined with solutions in the external archive. Pareto optimal solutions

are found from the combined solutions by non-dominated sorting method.

 46

5. CASE STUDY AND ANALYSIS OF FINDINGS

Before the model is applied to the construction schedule data sets, its

performance is demonstrated using a pilot schedule with 30 activities. Its purpose is to

show how much the solutions in the initial population improve in the final population

and to show optimal solutions are preserved by the external archive. Figure 21 shows the

time-cost tradeoff of the pilot project. Red stars in the figure represent the Pareto optimal

solutions obtained from the external archive. Blue and red circles are the solutions in the

initial and final population, respectively. From the result, it can be seen that the final

population has better solutions than the initial population and the external archive

prevents loss of optimal solutions from random effect of genetic operators.

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Conctruction Period(days)

A
d
d
e
d
 C

o
s
t

Final Population

Figure 21 Cost-duration tradeoff found by proposed model

 47

Then, the algorithm was applied to two cases. Case 1 is a scheduling of 11

activities with two objectives: minimum project cost and duration. Case 2 is a 9-activity

scheduling optimization with three objectives: minimum cost, duration and resource

leveling index. The activity CPM networks are taken from a similar research carried out

to solve time-cost tradeoff problem and three-objective optimization problem,

respectively [14].

5.1 Case 1: Bi-objective Scheduling with 11 Activities

This case study is to demonstrate the performance of this algorithm on time-cost

tradeoff problem. Activity network is shown in Figure 22.

A

B

C

E

G

F M

L P

N

Q

(2, 3)

[580, 450]

(4, 5)

[1700, 1250]

(2, 6)

[2800, 2200]

(3, 4)

[3780, 3460]

(4, 7)

[6030, 4125]

(4, 7)

[6730, 5500]

(2, 3)

[2030, 1830]

(2, 4)

[3020, 2720]

(2, 4)

[1100, 900]

(1, 1)

[620, 620]

(5, 5)

[1500,1500]

Legend: (Crash Duration, Normal Duration)

[Crash Cost, Normal Cost]

Figure 22 11 activity CPM network

There are 11 activities for this construction scheduling problem. Activity A

should start first; other activities follow according to the activity relationship and activity

 48

Q is the last activity. Related to determining the duration of each activity, a decision can

be made as days between normal duration and crash duration. And, the activity cost

increases when the activity duration decreases. For example of activity G which has

normal duration of 7 and crash duration of 4, duration options are 4, 5, 6, and 7. The

activity cost will become 6,730 instead of the normal cost (5,500) if the activity duration

is crashed into 4 days.

Optimal solutions were generated by the proposed algorithm considering this

conflicting relationship between cost and duration. In Figure 23, the red stars are Pareto

frontier points generated by the proposed algorithm and are compared to the green

circles obtained by random generation of 100,000 solutions. For each duration option,

the algorithm tried to generate a solution with minimum cost. And, the relationship

between the two objectives was revealed where the project costs tend to increase as the

project durations decrease. The near-optimal solutions were comparatively better than

the randomly generated solutions.

However, this algorithm could not overcome the disadvantage of heuristic

method that generation of real optimum solutions is not guaranteed. It often could not

generate all the existing optimal solutions and Figure 23 shows the result from one

optimization where only partial optimal solutions were obtained. The algorithm

generated 8 optimal solutions while the actual number of optimal solutions is 9

according to Leu, et al. [16].

 49

16 17 18 19 20 21 22 23 24 25
2.4

2.5

2.6

2.7

2.8

2.9

3
x 10

4

X = 20

Y = 2.524e+004

Figure 23 Time-cost tradeoff for case 1

5.2 Case 2: Three-objective Scheduling with 9 Activities

The case study 2 is to demonstrate the proposed optimization model on a three-

objective scheduling problem. Thus, in addition to project cost and duration

minimization, resource leveling index minimization was integrated into the optimization

process. Figure 24 describes the activity precedence relations with normal duration,

crash duration, normal cost and crash cost for each activity. In Table 1, activity cost and

daily resource use settings for each duration option for each activity are presented.

 50

A

B

D

F

C

E

H

G

I

(9, 9)

[450, 450]

(12, 13)

[850, 600]

(7, 8)

[950, 640]

(9, 9)

[560, 560]

(13, 14)

[1900, 1200]

(16, 19)

[3860, 2000]

(15, 15)

[420, 420]

(12, 14)

[1860, 1050]

Figure 24 9-activity CPM network

Table 1 Optimal solutions generated by 200 runs

Activity Duration Cost Resource 1 Resource 2 Resource 3

A 5 480 5 4 5

 6 300 3 4 5

B 9 450 4 5 2

C 12 850 4 6 6

 13 600 3 6 5

D 15 420 5 2 4

E 12 1860 1 5 6

 13 1450 1 5 4

 14 1050 1 5 2

F 16 3860 6 4 4

 17 3220 5 3 3

 18 2600 4 2 2

 19 2000 3 1 1

G 13 1900 3 3 6

 14 1200 3 2 5

H 7 950 6 4 3

 8 640 6 3 2

I 9 560 5 5 5

Like the case study 1, project cost and project duration have conflicting relation

where one increases when the other decreases. Also, the amount of the resource used for

 51

each activity increases when an attempt is made to reduce the activity duration. Thus, it

can be seen that activity crash contributes to increase in resource use peak. And, there is

a higher chance of obtaining better resource leveling index when less number of activity

durations are reduced by fewer days.

The preferences of minimizing the three objective values were pre-integrated into

the model, and 30 solutions were obtained as a result of 100 generations. During the

optimization process, hyper volume was calculated for each generation. Hyper volume is

the volume of the space in the search space that is dominated by the Pareto optimal

solutions. This presents a quantified measurement of improvements of best solutions as

seen in the first figure on page 54. Although the model was run for 100 times, the

algorithm started to generate the same or similar solutions from 80th generation. Because

of high chances of mutation and crossover, high variability was observed until the

generation approached 80 when the changes decreased gradually and stayed almost the

same.

 52

0 10 20 30 40 50 60 70 80 90 100
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

Generation

H
y
p
e
rv

o
lu

m
e

Figure 25 Hypervolume by generation runs

In Appendix B, actual solution data on chromosome, duration, cost and resource

leveling index are attached. The solutions are visualized in the 3-dimension space as in

Figure 25. The three axes denote project cost, project duration, and resource leveling

index of solutions.

Figure 26 demonstrates time-cost tradeoff for this scheduling problem. Figures

27 and 28 show duration-resource leveling tradeoff and cost-resource leveling tradeoff,

respectively. In general, project cost and project duration are conflicting since project

cost tends to become greater when the project duration becomes shorter by using

reduced activity durations instead of normal activity durations. Also, better resource

 53

leveling index is obtained when project duration becomes longer. However, seen from

the Figure 29, resource leveling index becomes smaller (better resource leveling

performed) when less total project cost is needed. This cost-resource leveling tradeoff is

non-conflicting, indirect and can be interpreted by the relationship between project

duration and resource leveling index. There is no direct relation between project cost and

resource leveling in the problem. Resource leveling index is negatively influenced by the

project duration, and activity durations determine activity costs too. Since the project

duration and cost are in conflicting relation, both project cost and resource leveling

index increase when project duration decreases. In Figure 30, resource allocation of a

solution in the final population is shown.

The distribution of solutions in the cost-duration tradeoff in Figure 26 differs

from that of the bi-objective optimization in case 1. In case 1, only one solution exists

for one construction duration. However, multiple solutions were found for one

construction duration or cost. Wider range of solution was obtained by integrating

resource leveling index in the optimization. Even inferior solutions in terms of cost and

duration tradeoff could be selected when resource leveling index was superior. In

Appendix A, detailed data on optimal solutions are given. The data includes

chromosome, objective values, and resource allocation of the solutions.

 54

48

50

52

54

56

7000

8000

9000

10000

11000
10

11

12

13

14

15

16

Project CostProject Duration

R
e
s
o
u
rc

e
 L

e
v
e
lin

g
 I

n
d
e
x

Figure 26 Optimum solutions in 3-dimension

49 50 51 52 53 54 55 56
7000

7500

8000

8500

9000

9500

10000

10500

11000

P
ro

je
c
t

C
o
s
t

Project Duration

Figure 27 Cost-duration tradeoff

 55

49 50 51 52 53 54 55 56
10

11

12

13

14

15

16

Project Duration

R
e
s
o
u
rc

e
 L

e
v
e
lin

g
 I

n
d
e
x

Figure 28 Duration-leveling tradeoff

7000 7500 8000 8500 9000 9500 10000 10500 11000
10

11

12

13

14

15

16

Project Cost

R
e
s
o
u
rc

e
 L

e
v
e
lin

g
 I

n
d
e
x

Figure 29 Cost-leveling tradeoff

 56

0 10 20 30 40 50 60 70
0

5

10

15

20

25

30

35

40

Time

R
e
s
o
u
rc

e

Figure 30 Resource allocation (blue: resource 1, green: resource2, red: resource 3)

 57

6. SUMMARY AND CONCLUSION

The Critical Path Method (CPM) was invented to achieve a higher level of

scheduling coordination and has been in wide use for several decades. However, it is

becoming obsolete because of limitations such as arithmetic complexity. Because using

CPM for large construction projects requires excessive computational efforts, many

methods have been developed based on traditional CPM. Most of these efforts were to

develop heuristic scheduling methods because of its simple format effectively

overcomes the computational complexity. Also, heuristic methods are usable for

scheduling large and complex construction projects.

Like many heuristic methods, the optimization model in this thesis attempts to

solve a complex scheduling problem with multiple objectives. The proposed model goes

a step further and attempts to achieve a simultaneous optimization in terms of three

objectives, whereas previous approaches used sequential optimization processes.

Expected benefits by enabling a simultaneous optimization include more thorough

search space exploration, wider range of optimal solutions, and better performance of a

heuristic method as a decision support tool for complex construction scheduling

problems. Thus, in the proposed scheduling model presented in this thesis, a new data

structure was developed to enable an integrated optimization process. Also, a search

space normalization method and external archive were used to avoid scaling deficiencies

and to prevent solutions from disappearing.

 58

Since every objective was integrated when solutions were generated, the model

was able to find all existing tradeoffs between the three objectives in the scheduling

problems. Thus, compared to similar attempts, the proposed model provided more

thorough information; wider insight into the scheduling problem, and clear consequences

of the solutions as illustrated in Figure 31. Alternative solutions generated by the

existing models were very limited when compared to the proposed model. Since there is

only one optimal solution for one project duration using traditional methods, a decision

maker has to select and modify it before actually applying it.

However, the proposed model provides multiple options that are optimal. For

example, when the project has to be 51 days as shown in Figure 31, there are five

alternative solutions. Within the five candidate solutions provided by the decision

supporting tool, a decision maker can implement the optimal schedule according to his

or her judgment between cost and resource use. This is a very important point for a

decision maker since a decision can be made among alternative solutions that are non-

inferior to any other solution.

 59

Figure 31 Demonstration of cost-duration tradeoff and obtainable resource leveling

0 10 20 30 40 50 60 70
0

5

10

15

20

25

30

35

40

Time

R
e
s
o
u
rc

e

49 50 51 52 53 54 55 56
7000

7500

8000

8500

9000

9500

10000

10500

11000

11500

Project Duration

P
ro

je
c
t

C
o
s
t

0 10 20 30 40 50 60 70
0

5

10

15

20

25

30

35

40

Time

R
e
s
o
u
rc

e

0 10 20 30 40 50 60 70
0

5

10

15

20

25

30

35

Time

R
e
s
o
u
rc

e

0 10 20 30 40 50 60 70
0

5

10

15

20

25

30

35

40

Time

R
e
s
o
u
rc

e

0 10 20 30 40 50 60 70
0

5

10

15

20

25

30

35

40

Time

R
e
s
o
u
rc

e

0 10 20 30 40 50 60 70
0

5

10

15

20

25

30

35

40

Time

R
e
s
o
u
rc

e

0 10 20 30 40 50 60 70
0

5

10

15

20

25

30

35

Time

R
e
s
o
u
rc

e

0 10 20 30 40 50 60 70
0

5

10

15

20

25

30

35

40

Time

R
e
s
o
u
rc

e

0 10 20 30 40 50 60 70
0

5

10

15

20

25

30

35

Time

R
e
s
o
u
rc

e

0 10 20 30 40 50 60 70
0

5

10

15

20

25

30

35

Time

R
e
s
o
u
rc

e

 60

7. FUTURE RESEARCH

The algorithm associated with this research was developed to propose a

methodology to generate multiple scheduling options considering objectives equally

important. To achieve this however, the model generates schedules assuming there are

unlimited resources available. Applied to real-world construction projects, this can

generate schedules that are unrealistic. Therefore, taking into account that any

construction scheduling has to be done under limited resource availability, the

scheduling model in this thesis needs further development to represent real world

scheduling problems. Resource-constrained scheduling optimization may be realized in

future research by using the chromosome structure shown in Figure 32. In addition to

reduced activity duration and the use of float, ordering chromosomes will be integrated

into the model. Ordering the chromosome‟s function will determine the order of

activities under limited resources. As such, the expectation is the generation of more

realistic schedules.

Reduced Activity Duration Ordering Use of Float

2 1 3 4 2 1 1 3 2 4 5 6 10% 20% 5% 90% 15% 5%
Figure 32 Proposed chromosome structure for future research

In addition, more diverse activity relationships should be used in the model. This

research uses the dominate Finish-to-Start relationship between construction activities.

In typical construction schedules, there are also Start-to-Start, Start-to-Finish, and

Finish-to-Finish relations. By including these relationships, real-world construction

scheduling problems can be optimized by the proposed modeling approach.

 61

REFERENCES

1. Allam SI (1988) Multi-Project Scheduling: A New Categorization for Heuristic

Scheduling Rules in Construction Scheduling Problems. Constr Manag and
Econ 6(2): 93-115

2. Cohon JL (2003) Multi-objective Programming and Planning. Dover

Publications, Mineola, NY

3. Deb K, Goldberg DE (1989) An Investigation of Niche and Species Formation
in Genetic Function Optimization. Proc of the 3rd Int Conf on Gen Algo
Morgan Kaufmann Publishers Inc: 42-50

4. Easa S (1989) Resource Leveling in Construction by Optimization. J Constr Eng

and Manag 115(2): 302-16

5. F Märki, Fischer M, Kunz J, Haymaker J (2007) Decision Making for Schedule
Optimization. Tech Rep of Ctr for Integ Fac Eng (169): 1-23

6. Feng, Chung-Wei (1997) Using Genetic Algorithms to Solve Construction Time-

Cost Trade-Off Problems. J Comp in Civil Eng 11(3): 184-89

7. Goldberg DE, Miller B (1995) Genetic Algorithms, Tournament Selection, and
the Effects of Noise. Comp Syst 9(3): 493-212

8. Gray CF (1981) Essential of Project Management. Petrocelli Books, UK

9. Harris H (1990) Packing Method for Resource Leveling. J Constr Eng and

Manag 116(2): 331-350

10. Hartmann S (1999) Project Scheduling under Limited Resources. Springer,
Berlin

11. Jie Y, Kharma N, Grogono P (2010) Bi-Objective Multipopulation Genetic

Algorithm for Multimodal Function Optimization. IEEE Trans Evol Comput
14(1): 80-102

12. Kelley JE, Walker M R (1959) Critical-Path Planning and Scheduling. Papers

presented at the December 1-3, 1959, Eastern Joint IRE-AIEE-ACM Comp
Conf ACM, Boston, MA

 62

13. Kurtulus I, Davis EW (1982) Multi-Project Scheduling: Categorization of
Heuristic Rules Performance. Manag Sci 28(2): 161-72

14. Leu Sou-Sen, Yang C (1999) Ga-Based Multicriteria Optimal Model for

Construction Scheduling. J Constr Eng and Manag 125(6): 420-27

15. Leu Sou-Sen, Yang C (1999) A Genetic-Algorithm-Based Resource-Constrained
Construction Scheduling System. Constr Manag and Econ 17(6): 767-76

16. Leu Sou-Sen, Yang C, Huang J (2000) Resource Leveling in Construction by

Genetic Algorithm-Based Optimization and Its Decision Support System
Application. Auto in Constr 10(1): 27-41

17. Martínez M, et al. (2009) Genetic Algorithms Optimization for Normalized

Normal Constraint Method under Pareto Construction. Adv in Eng Softw 40(4):
260-67

18. Messac A, Ismail-Yahaya A, Mattson C (2003) The Normalized Normal

Constraint Method for Generating the Pareto Frontier. Struct and Multi Optim
25(2): 86-98

19. Senouci A, Al-Derham H (2008) Genetic Algorithm-Based Multi-Objective

Model for Scheduling of Linear Construction Projects. Adv in Eng Softw
39(12): 1023-28

20. Senouci A, Eldin N (2004) Use of Genetic Algorithms in Resource Scheduling of

Construction Projects. J Constr Eng and Manag 130(6): 869-77

21. Singh G (2006) Comparison of Multi-Modal Optimization Algorithms Based on
Evolutionary Algorithms. Proc of the 8th Ann Conf on Gene and Evol Comp:
1305-12

63

APPENDIX A

solution

Chromosome Result

Reduced Activity Duration Use of Float Duration Cost RLI

1 0 2 0 0 2 1 0 1 0 0.72 0.84 0.56 0.33 0.91 0.73 0.05 0.92 0.02 51 9810 14.85

2 1 3 0 0 2 0 1 1 0 0.78 0.75 0.10 0.39 0.85 0.49 0.59 0.64 0.83 49 11080 15.36

3 0 0 0 0 1 0 0 1 0 0.01 0.19 0.58 0.58 0.49 0.80 0.41 0.54 0.51 54 7930 12.62

4 1 1 0 0 2 1 0 1 0 0.42 0.97 0.13 0.56 0.42 0.22 0.00 0.47 0.93 51 9370 14.11

5 1 0 0 0 2 0 0 0 0 0.52 0.84 0.72 0.74 0.10 0.34 0.87 0.71 0.33 53 8210 12.45

6 1 2 0 0 2 1 1 1 0 0.33 0.93 0.69 0.28 0.80 0.24 0.82 0.26 0.48 50 10690 14.50

7 1 0 0 0 0 0 0 1 0 0.45 0.72 0.87 0.74 0.88 0.73 0.53 0.89 0.55 54 7710 11.99

8 0 0 0 0 1 1 0 1 0 0.38 0.02 0.81 0.47 0.46 0.37 0.90 0.33 0.57 54 8180 12.22

9 0 0 0 0 1 0 0 0 0 0.31 0.88 0.41 0.46 0.11 0.91 0.08 0.35 0.28 55 7620 12.94

10 0 1 0 0 0 0 0 1 0 0.22 0.23 0.47 0.69 0.17 0.97 0.80 0.49 0.97 54 8130 12.29

11 1 1 0 0 2 0 0 1 0 0.80 0.88 0.68 0.75 0.94 0.39 0.39 0.72 0.14 51 9120 13.66

12 1 2 0 0 1 1 0 1 0 0.65 0.98 0.28 0.69 0.99 0.23 0.96 0.08 0.86 51 9580 13.32

13 1 1 0 0 0 0 0 1 0 0.30 0.93 0.61 0.50 0.84 0.95 0.49 0.29 0.35 53 8310 12.68

14 1 2 0 0 2 0 0 1 0 0.32 0.73 0.58 0.17 0.06 0.88 0.88 0.43 0.89 50 9740 14.19

15 1 2 0 0 2 1 1 0 0 0.50 0.19 0.83 0.27 0.28 0.75 0.80 0.51 0.56 51 10380 14.34

16 1 0 0 0 1 0 0 1 0 0.97 0.90 0.52 0.50 0.43 0.30 0.77 0.07 0.35 53 8110 11.94

17 1 0 0 0 2 0 0 1 0 0.60 0.86 0.02 0.39 0.80 0.18 0.57 0.95 0.33 52 8520 12.77

18 0 2 0 0 1 0 0 1 0 0.75 0.93 0.76 0.34 0.61 0.19 0.82 0.49 0.89 52 9150 13.44

19 0 1 0 0 0 0 0 0 0 0.22 0.85 0.40 0.24 0.49 0.86 0.43 0.90 0.57 55 7820 12.35

20 1 3 0 0 2 0 0 1 0 0.61 0.78 0.46 0.42 0.57 0.98 0.96 0.09 0.94 49 10380 14.77

21 1 3 0 0 2 0 0 1 0 0.23 0.74 0.18 0.67 0.69 0.30 0.93 0.38 0.30 49 10380 14.77

64

solution

Chromosome Result

Reduced Activity Duration Use of Float Duration Cost RLI

22 1 3 0 0 2 0 0 1 0 0.81 0.42 0.59 0.38 0.80 0.42 0.97 0.75 0.77 49 10380 14.77

23 1 3 0 0 2 0 0 1 0 0.46 0.92 0.93 0.91 0.16 0.94 0.98 0.13 0.84 49 10380 14.77

24 1 3 0 0 2 0 0 1 0 0.79 0.31 0.69 0.03 0.47 0.80 0.96 0.58 0.99 49 10380 14.77

25 1 3 0 0 2 0 0 1 0 0.36 0.44 0.06 0.33 0.61 0.39 0.95 0.58 0.44 49 10380 14.77

26 1 3 0 0 2 0 0 1 0 0.64 0.66 0.86 0.39 0.92 0.39 0.92 0.51 0.93 49 10380 14.77

27 1 0 0 0 0 0 0 0 0 0.43 0.35 0.78 0.03 0.48 0.40 0.99 0.27 0.44 55 7400 10.53

28 0 0 0 0 0 0 0 0 0 0.53 0.78 0.16 0.38 0.28 0.20 0.80 0.95 0.88 56 7220 10.71

29 1 3 0 0 2 0 0 1 0 0.62 0.78 0.64 0.16 0.09 0.63 0.93 0.24 0.19 49 10380 14.77

30 1 3 0 0 2 0 0 1 0 0.26 0.70 0.80 1.00 0.99 0.25 0.93 0.68 0.10 49 10380 14.77

65

APPENDIX B

0 10 20 30 40 50 60 70
0

5

10

15

20

25

30

35

40

Time

R
e
s
o
u
rc

e

0 10 20 30 40 50 60 70
0

5

10

15

20

25

30

35

40

Time

R
e
s
o
u
rc

e

66

0 10 20 30 40 50 60 70
0

5

10

15

20

25

30

35

Time

R
e
s
o
u
rc

e

0 10 20 30 40 50 60 70
0

5

10

15

20

25

30

35

40

Time

R
e
s
o
u
rc

e

67

0 10 20 30 40 50 60 70
0

5

10

15

20

25

30

35

40

Time

R
e
s
o
u
rc

e

0 10 20 30 40 50 60 70
0

5

10

15

20

25

30

35

40

Time

R
e
s
o
u
rc

e

68

0 10 20 30 40 50 60 70
0

5

10

15

20

25

30

35

Time

R
e
s
o
u
rc

e

0 10 20 30 40 50 60 70
0

5

10

15

20

25

30

35

40

Time

R
e
s
o
u
rc

e

69

0 10 20 30 40 50 60 70
0

5

10

15

20

25

30

35

Time

R
e
s
o
u
rc

e

0 10 20 30 40 50 60 70
0

5

10

15

20

25

30

35

Time

R
e
s
o
u
rc

e

70

0 10 20 30 40 50 60 70
0

5

10

15

20

25

30

35

40

Time

R
e
s
o
u
rc

e

0 10 20 30 40 50 60 70
0

5

10

15

20

25

30

35

40

Time

R
e
s
o
u
rc

e

71

0 10 20 30 40 50 60 70
0

5

10

15

20

25

30

35

Time

R
e
s
o
u
rc

e

0 10 20 30 40 50 60 70
0

5

10

15

20

25

30

35

40

Time

R
e
s
o
u
rc

e

72

0 10 20 30 40 50 60 70
0

5

10

15

20

25

30

35

40

Time

R
e
s
o
u
rc

e

0 10 20 30 40 50 60 70
0

5

10

15

20

25

30

35

Time

R
e
s
o
u
rc

e

73

0 10 20 30 40 50 60 70
0

5

10

15

20

25

30

35

40

Time

R
e
s
o
u
rc

e

0 10 20 30 40 50 60 70
0

5

10

15

20

25

30

35

40

Time

R
e
s
o
u
rc

e

74

0 10 20 30 40 50 60 70
0

5

10

15

20

25

30

35

Time

R
e
s
o
u
rc

e

0 10 20 30 40 50 60 70
0

5

10

15

20

25

30

35

40

Time

R
e
s
o
u
rc

e

75

0 10 20 30 40 50 60 70
0

5

10

15

20

25

30

35

40

Time

R
e
s
o
u
rc

e

0 10 20 30 40 50 60 70
0

5

10

15

20

25

30

35

40

Time

R
e
s
o
u
rc

e

76

0 10 20 30 40 50 60 70
0

5

10

15

20

25

30

35

40

Time

R
e
s
o
u
rc

e

0 10 20 30 40 50 60 70
0

5

10

15

20

25

30

35

40

Time

R
e
s
o
u
rc

e

77

0 10 20 30 40 50 60 70
0

5

10

15

20

25

30

35

40

Time

R
e
s
o
u
rc

e

0 10 20 30 40 50 60 70
0

5

10

15

20

25

30

35

40

Time

R
e
s
o
u
rc

e

78

0 10 20 30 40 50 60 70
0

5

10

15

20

25

30

35

Time

R
e
s
o
u
rc

e

0 10 20 30 40 50 60 70
0

5

10

15

20

25

30

35

Time

R
e
s
o
u
rc

e

79

0 10 20 30 40 50 60 70
0

5

10

15

20

25

30

35

40

Time

R
e
s
o
u
rc

e

0 10 20 30 40 50 60 70
0

5

10

15

20

25

30

35

40

Time

R
e
s
o
u
rc

e

80

APPENDIX C

Main file

clear all
close all
clc

% Variable setting

tournamentSize = 10;
r_num_comp=5;
pop=100;
pool_size=pop;
tour_size=3;
gen=500;
cross_rate=0.9;
mutation_rate=0.5;
n_solution=30;
M=3;
V=18;
% sharing 1 is abs comparison, 2 is m comparison
sharing=1;
ut=2;

% for duration, cost and leveling index, ancor points are found
durationPF
costPF
levelingPF
% step 1 - find anchor points
anchor_cost
anchor_duration
anchor_leveling
%step 2 - objective mapping

utopia=[elite_duration,elite_cost,elite_leveling];
anchors=[anchor_duration;anchor_cost;anchor_leveling];

max_its_duration=max(anchors(:,1));
max_its_cost=max(anchors(:,2));
max_its_leveling=max(anchors(:,3));

l_1= max_its_duration-elite_duration;
l_2= max_its_cost-elite_cost;
l_3= max_its_leveling-elite_leveling;

% inital scheduling poopulation is generated

81

problem_setting
initialize_va

% space ormalization is performed
normalized=[population,(result_duration-elite_duration)/l_1,(plus_cost-

elite_cost)/l_2,(leveling_idx'-elite_leveling)/l_3];

nor_anchor_cost=[(max_its_duration-elite_duration)/l_1,0];
nor_anchor_duration=[0,(max_its_cost-elite_cost)/l_2];
nor_anchor_leveling=[0,0,(max_its_leveling-elite_leveling)/l_3];

clear plus_cost
clear result_duration
clear population
clear new_population
clear xoverKids

r_num_comp=3;
pop=100
pool_size=pop;
tour_size=3;
gen=200;
cross_rate=0.9;
M=3;
V=18;

% sharind redius is defined
sharing=1;
% Before generation loop is started, initial population is generated

again
problem_setting
initialize_va

% Individuals in the population are normalized using the outcome

obtained
% from anchor point search
norm_result_duration=(result_duration-elite_duration)/l_1;
norm_plus_cost=(plus_cost-elite_cost)/l_2;
norm_leveling=(leveling_idx-elite_leveling)/l_3;

result_duration=norm_result_duration;
plus_cost=norm_plus_cost;
leveling_idx=norm_leveling;

% to the population, the results are attached for coding convenience
chromosome=[population,result_duration,plus_cost,leveling_idx'];

82

% Non-dominated solutions are selected from population and sent to

external
% archive
chromosome_sort = non_domination_sort_mod(chromosome);
g=find(chromosome_sort(:,end-1)==1);
for i=1:size(g,1)
gt1(i)=chromosome_sort(i,end-4);
gt2(i)=chromosome_sort(i,end-3);
gt3(i)=chromosome_sort(i,end-2);
end
external=chromosome_sort(g,:)

% generation run starts
for ut=1:gen

 if ut~=1
norm_result_duration=(result_duration-elite_duration)/l_1;
norm_plus_cost=(plus_cost-elite_cost)/l_2;
norm_leveling=(leveling_idx-elite_leveling)/l_3;

result_duration=norm_result_duration;
plus_cost=norm_plus_cost;
leveling_idx=norm_leveling;

not_sorted=[population,result_duration,plus_cost,leveling_idx'];
chromosome_sort = non_domination_sort_mod(not_sorted);
g=find(chromosome_sort(:,end-1)==1);
external=[external;chromosome_sort(g,:)];
 end

if ut==gen
g=find(chromosome_sort(:,end-1)==1);
for i=1:size(g,1)
gt1(i)=chromosome_sort(i,end-4);
gt2(i)=chromosome_sort(i,end-3);
gt3(i)=chromosome_sort(i,end-2);
end

% best solutions are sent to external archive
external_pareto=non_domination_sort_mod(external(:,1:end-2));
h=find(external_pareto(:,end-1)==1);
external_to_pool=external_pareto(h,:);

for i=1:size(h,1)
ht1(i)=external_pareto(i,end-4);
ht2(i)=external_pareto(i,end-3);
ht3(i)=external_pareto(i,end-2);
end

end

83

iu=1;
while iu<pop+1
% pareto domination tournament selection starts
jj=find(chromosome_sort(:,end-1)<=4);
chromosome_high_rank=chromosome_sort(jj,:);
high_rank_duration=chromosome_high_rank(:,end-3);
high_rank_plus_cost=chromosome_high_rank(:,end-2);

r_num_indi=randsample(size(jj,1),2);
candidate=chromosome_high_rank(r_num_indi,:);
%candidate and comparison set define
candidate_duration=chromosome_high_rank(r_num_indi,end-3);
candidate_cost=chromosome_high_rank(r_num_indi,end-2);

comparison_count=randsample(size(jj,1),r_num_comp);
comparison_duration=chromosome_high_rank(comparison_count,end-3);
comparison_cost=chromosome_high_rank(comparison_count,end-2);

% candidate 1 comparison
a=length(find(candidate_duration(1)>comparison_duration));
b=length(find(candidate_cost(1)>comparison_cost));
% candidate 2 comparison
c=length(find(candidate_duration(2)>comparison_duration));
d=length(find(candidate_cost(2)>comparison_cost));

if a==0 & b==0
 if c~=0 | d~=0
 new_population(iu,:)=candidate(1,:);
% chromosome_high_rank(r_num_indi(1),:)=[];
 iu=iu+1;
 else

 sharing_r

 iu=iu+1;
 end

elseif a~=0 | b~=0
 if c==0 && d==0
 new_population(iu,:)=candidate(2,:);
 iu=iu+1;
 else

 sharing_r

84

 iu=iu+1;
 end
 end
end

%crossover operator
nKids = pop;
iq=1;
while iq<nKids+1

 if rand()>=cross_rate
 xoverKids(iq,:)=new_population(iq,1:end-5)
 iq=iq+1;
 else
 % get parents
 parent1 = new_population(iq,1:end-5);

 if iq~=pop
 parent2 = new_population(iq+1,1:end-5);
 end

 p2num=iq+1;

 % cut point
 xOverPoint = ceil(rand * (size(taskprecedence,1) - 1));
 % make one child

 xoverKids(iq,:) = [parent1(1:xOverPoint),parent2((xOverPoint +

1):

size(taskprecedence,1)),parent1((size(taskprecedence,1)+1):(size(taskp

recedence,1))+xOverPoint),parent2((size(taskprecedence,1)+1)+xOverPoint

:end)];
 xoverKids(p2num,:) = [parent2(1:xOverPoint),parent1((xOverPoint +

1):

size(taskprecedence,1)),parent2((size(taskprecedence,1)+1):(size(taskp

recedence,1))+xOverPoint),parent1((size(taskprecedence,1)+1)+xOverPoint

:end)];
 iq=iq+2;
 end
end

% mutation
for iu=1:size(xoverKids,1)
 if rand()>=mutation_rate
 xoverKids(iu,:)=xoverKids(iu,:);
 else
 mutation_point=ceil(rand() * (size(taskprecedence,1) - 1));
 xoverKids(iu,mutation_point)=ceil(rand() *

(maxreduc(mutation_point) - 1));
 xoverKids(iu,mutation_point+size(taskprecedence,1))=rand;
 end
end

85

problem_setting
for ixo=1:pop
population(ixo)=xoverKids(ixo);
end
initialize_va

end

% Pareto optimal solutions are denormalized
tt1=ht1*l_1+elite_duration
tt2=ht2*l_2+elite_cost
tt3=ht3*l_3+elite_leveling

problem_setting.m

%problem setting
taskduration = [6;19;15;9;14;13;14;8;9];
taskprecedence = [0 0 0 0 0 0 0 0 0;...
 1 0 0 0 0 0 0 0 0;...
 1 0 0 0 0 0 0 0 0;...
 1 0 0 0 0 0 0 0 0;...
 0 1 1 0 0 0 0 0 0;...
 0 0 1 1 0 0 0 0 0;...
 0 1 0 0 0 0 0 0 0;...
 0 0 0 0 1 1 0 0 0;...
 0 0 0 0 1 0 1 1 0;];

maxreduc = [1;3;0;0;2;1;1;1;0];
 activity_cost_1 = [300;2000;420;450;1050;600;1200;640;560];
 activity_cost_2 = [480;2600;420;450;1450;850;1900;950;560];
 activity_cost_3 = [480;3220;420;450;1860;850;1900;950;560];
 activity_cost_4 = [480;3860;420;450;1860;850;1900;950;560];
activity_cost=

[activity_cost_1,activity_cost_2,activity_cost_3,activity_cost_4];

 resource_1_0day=[3;3;5;4;1;3;3;6;5]
 resource_1_1day=[5;4;5;4;1;4;3;6;5]
 resource_1_2day=[5;5;5;4;1;4;3;6;5]
 resource_1_3day=[5;6;5;4;1;4;3;6;5]
resource_1=[resource_1_0day,resource_1_1day,resource_1_2day,resource_1_

3day];

86

 resource_2_0day=[4;1;2;5;5;6;2;3;5]
 resource_2_1day=[4;2;2;5;5;6;3;4;5]
 resource_2_2day=[4;3;2;5;5;6;3;4;5]
 resource_2_3day=[4;4;2;5;5;6;3;4;5]
resource_2=[resource_2_0day,resource_2_1day,resource_2_2day,resource_2_

3day];

 resource_3_0day=[5;1;4;2;2;5;5;2;5]
 resource_3_1day=[5;2;4;2;4;6;6;3;5]
 resource_3_2day=[5;3;4;2;6;6;6;3;5]
 resource_3_3day=[5;4;4;2;6;6;6;3;5]
resource_3=[resource_3_0day,resource_3_1day,resource_3_2day,resource_3_

3day];

tot_duration = 0;
num_pre=zeros(size(taskprecedence,1),2);
pre_activity=zeros(size(taskprecedence,1),size(taskprecedence,1));

est = zeros(size(taskprecedence,1),1);
eft = zeros(size(taskprecedence,1),1);
lst = zeros(size(taskprecedence,1),1);
lft = zeros(size(taskprecedence,1),1);
c_p = zeros(size(taskprecedence,1),1);
inde = zeros(1,size(taskprecedence,1));

% output setting
plus_cost=zeros(1,pop);
result_duration=zeros(1,pop);

% initialize
for ik=1:pop
for cr=1:size(maxreduc)
 if maxreduc(cr)==0
 cromosome_s(cr)=0;
 end
 if maxreduc(cr)~=0
 cromosome_s(cr) = round((rand(1,1) * maxreduc(cr)) + 0);
 end
end

population(ik,:)=[cromosome_s,rand(1,size(maxreduc))];
end

initialize_va.m

plus_cost=zeros(pop,1);

87

for i=1:pop
 plus_cost(i)=0;
 for j=1:size(population,2)/2
 plus_cost(i)=plus_cost(i)+activity_cost(j,(population(i,j)+1));
 end
end

for kk=1:pop
new_duration(kk,:)=taskduration-population(kk,1:size(population,2)/2)';
end

resource_cumul_1=zeros(pop,70);
resource_cumul_2=zeros(pop,70);
resource_cumul_3=zeros(pop,70);
resource_cumul_total=zeros(pop,70);
% early duration
result_duration=zeros(pop,1);
for iu=1:pop
t=0;
%find number of predecessor
for i=1:size(taskprecedence,1)%18
 i;
 num_pre(i,1) = i;
 num_pre(i,2) = length(find(taskprecedence(i,:)==1));

 %no predecessor
 if(num_pre(i,2)==0)
 est(i,1)=0;
 eft(i,1)=est(i,1)+new_duration(iu,i);
 t=t+1;
 end

 %predecessor exist
 if(num_pre(i,2)~=0)
 i;
 tem = zeros(1,size(taskprecedence,1));
 tem = taskprecedence(i,:);
 c = find(tem==1);

 c;

 est(i,1) = max(eft(c));
 eft(i,1) = est(i,1) + new_duration(iu,i);
 end
end
result_duration(iu)=max(eft);

88

%late duration
 lft = zeros(size(taskprecedence,1),1);
 for i=size(taskprecedence,1):-1:1

 num_succ(i,1) = i;
 num_succ(i,2) = length(find(taskprecedence(:,i)==1));

 if (num_succ(i,2)==0)
 final_activity=find(eft==result_duration(iu));
 lft(i,1)=eft(final_activity);
 lst(i,1)=eft(final_activity)-new_duration(iu,final_activity);

 elseif (num_succ(i,2)~=0)

 tem2 = taskprecedence(:,i);
 c2 = find(tem2==1);

 lft(i,1)=min(lst(c2));
 lst(i,1)=lft(i,1) - new_duration(iu,i);
 end
 end
 iu;
 total_float=[lft-eft]';

use_float(iu,:)=round(total_float.*population(iu,size(population,2)/2+1

:end));
 start_date(iu,:)=est'+use_float(iu,:);

if ut==1
 init_resource_cumul_1=zeros(pop,70);
 init_resource_cumul_2=zeros(pop,70);
 init_resource_cumul_3=zeros(pop,70);
 init_resource_cumul_total=zeros(pop,70);

 for k=1:size(taskprecedence,1)
 resource_1_crash(k)=resource_1(k,population(iu,k)+1);
 end

 for l=1:size(taskprecedence,1)

 for aaa=start_date(iu,l)+1:start_date(iu,l)+new_duration(iu,l)

init_resource_cumul_1(iu,aaa)=init_resource_cumul_1(iu,aaa)+resource_1_

crash(l);

 end
 end

 for k=1:size(taskprecedence,1)
 resource_2_crash(k)=resource_2(k,population(iu,k)+1);

89

 end

 for l=1:size(taskprecedence,1)

 for aaa=start_date(iu,l)+1:start_date(iu,l)+new_duration(iu,l)

init_resource_cumul_2(iu,aaa)=init_resource_cumul_2(iu,aaa)+resource_2_

crash(l);

 end
 end

 for k=1:size(taskprecedence,1)
 resource_3_crash(k)=resource_3(k,population(iu,k)+1);
 end

 for l=1:size(taskprecedence,1)

 for aaa=start_date(iu,l)+1:start_date(iu,l)+new_duration(iu,l)

init_resource_cumul_3(iu,aaa)=init_resource_cumul_3(iu,aaa)+resource_3_

crash(l);

 end
 end

init_resource_cumul_total(iu,:)=init_resource_cumul_1(iu,:)+init_resour

ce_cumul_2(iu,:)+init_resource_cumul_3(iu,:);

init_leveling_idx(iu)=std(init_resource_cumul_1(iu,:))+std(init_resourc

e_cumul_2(iu,:))+std(init_resource_cumul_3(iu,:));

else
 for k=1:size(taskprecedence,1)
 resource_1_crash(k)=resource_1(k,population(iu,k)+1);
 end

 for l=1:size(taskprecedence,1)

 for aaa=start_date(iu,l)+1:start_date(iu,l)+new_duration(iu,l)

resource_cumul_1(iu,aaa)=resource_cumul_1(iu,aaa)+resource_1_crash(l);

 end
 end

 for k=1:size(taskprecedence,1)
 resource_2_crash(k)=resource_2(k,population(iu,k)+1);
 end

90

 for l=1:size(taskprecedence,1)

 for aaa=start_date(iu,l)+1:start_date(iu,l)+new_duration(iu,l)

resource_cumul_2(iu,aaa)=resource_cumul_2(iu,aaa)+resource_2_crash(l);

 end
 end

 for k=1:size(taskprecedence,1)
 resource_3_crash(k)=resource_3(k,population(iu,k)+1);
 end

 for l=1:size(taskprecedence,1)

 for aaa=start_date(iu,l)+1:start_date(iu,l)+new_duration(iu,l)

resource_cumul_3(iu,aaa)=resource_cumul_3(iu,aaa)+resource_3_crash(l);

 end
 end

resource_cumul_total(iu,:)=resource_cumul_1(iu,:)+resource_cumul_2(iu,:

)+resource_cumul_3(iu,:);

leveling_idx(iu)=std(resource_cumul_1(iu,:))+std(resource_cumul_2(iu,:)

)+std(resource_cumul_3(iu,:));
end

 w_i=resource_cumul_1(k,:);
 x_i=resource_cumul_2(k,:);
 y_i=resource_cumul_3(k,:);
 z_i=resource_cumul_total(k,:);
 plot(w_i,'DisplayName','w','YDataSource','w');hold

all;plot(x_i,'DisplayName','x','YDataSource','x');plot(y_i,'DisplayName

','y','YDataSource','y');plot(z_i,'DisplayName','z','YDataSource','z');

hold off;figure(gcf);
 xlabel('Time')
 ylabel('Resource')

end

durationPF.m

problem_setting

91

initialize_va

subplot(1,1,1)
scatter(result_duration, plus_cost, 'DisplayName', 'plus_cost vs

result_duration', 'XDataSource', 'result_duration', 'YDataSource',

'plus_cost'); figure(gcf)
xlabel('Conctruction Period(days)')
ylabel('Added Cost')
title('Initial Population')

elite_duration=min(result_duration);

for ut=1:gen

chromosome=[population,result_duration,plus_cost,leveling_idx'];

candidate_elite_duration=min(chromosome(:,end-2));
candidate_elite=chromosome(find(chromosome(:,end-

2)==candidate_elite_duration),:);
if candidate_elite_duration<=elite_duration
 elite_duration=candidate_elite_duration;
 elite=candidate_elite(1,:);
end
elite_duration_list(ut,:)=elite;

subplot(1,1,1)

playerlist = ceil(10 * rand(pop/2-1,tournamentSize));

playerSize = size(playerlist,1);

for i = 1:playerSize
 players = chromosome(playerlist(i,:),:);
 players_duration=players(:,end-2);

 winner = players(1,:); % Assume that the first player is the winner
 for j = 2:size(players,1) % Winner plays against each other

consecutively
 score1 = winner(end);
 score2 = players_duration(j);
 if score2(1) < score1(1)
 winner = players(j,:);
 elseif score2(1) == score1(1)
 try % socre(2) may not be present for single objective

problems
 if score2(2) < score1(2)
 winner = players(j,:);
 end
 catch

92

 end
 end
 end
 champions(i,:) = winner;
end
champions_plus = [champions;elite];

%crossover operator
new_population=[champions;elite];
nKids = pop/2;
% xoverKids = zeros(nKids,size(taskprecedence,1));
iq=1;
while iq<nKids

 if rand()>=cross_rate
 xoverKids(iq,:)=new_population(iq,1:end-3)
 iq=iq+1;
 else
 % get parents
 parent1 = new_population(iq,1:end-3)

 parent2 = new_population(iq+1,1:end-3)
 p2num=iq+1;

 % cut point
 xOverPoint = ceil(rand(1,1) * (size(taskprecedence,1) - 1));
 % make one child
 xoverKids(iq,:) = [parent1(1:xOverPoint),parent2((xOverPoint +

1):

size(taskprecedence,1)),parent1((size(taskprecedence,1)+1):(size(taskp

recedence,1))+xOverPoint),parent2((size(taskprecedence,1)+1)+xOverPoint

:end)];
 xoverKids(p2num,:) = [parent2(1:xOverPoint),parent1((xOverPoint +

1):

size(taskprecedence,1)),parent2((size(taskprecedence,1)+1):(size(taskp

recedence,1))+xOverPoint),parent1((size(taskprecedence,1)+1)+xOverPoint

:end)];
 iq=iq+2;
 end
end

% mutation
for iu=1:size(xoverKids,1)
 if rand()>=mutation_rate
 xoverKids(iu,:)=xoverKids(iu,:);
 else
 mutation_point=ceil(rand() * (size(taskprecedence,1) - 1));
 xoverKids(iu,mutation_point)=ceil(rand() *

(maxreduc(mutation_point) - 1));
 xoverKids(iu,mutation_point+size(taskprecedence,1))=rand;
 end
end

93

problem_setting
for ixo=1:pop
population(ixo)=xoverKids(ixo);
end
population=[xoverKids;champions_plus(:,1:end-3)];
if size(population,1)==99 |size(population,1)==999
 population=[population;elite(1:end-3)];
end
initialize_va

end
tt=elite_duration_list(find(elite_duration_list(:,end-

2)==min(elite_duration_list(:,end-2))),:)
its_cost=max(tt(:,end-1))
its_leveling=max(tt(:,end))
anchor_duration=[elite_duration,its_cost,its_leveling]

costPF.m

problem_setting
initialize_va

elite_cost=min(plus_cost);

for ut=1:gen

chromosome=[population,result_duration,plus_cost,leveling_idx'];

candidate_elite_cost=min(chromosome(:,end-1));
candidate_elite=chromosome(find(chromosome(:,end-

1)==candidate_elite_cost),:);
if candidate_elite_cost<=elite_cost
 elite_cost=candidate_elite_cost;
 elite=candidate_elite(1,:);
end

elite_cost_list(ut,:)=elite;
%
subplot(1,1,1)

94

scatter(elite(end-1),elite(end), 'DisplayName', 'plus_cost vs

result_duration', 'XDataSource', 'result_duration', 'YDataSource',

'plus_cost'); figure(gcf)
% hold on;

%tournament selection

% Choose the players
playerlist = ceil(10 * rand(pop/2-1,tournamentSize));
% Play tournament

playerSize = size(playerlist,1);
% champions = zeros(1,playerSize);
% For each set of players
for i = 1:playerSize
 players = chromosome(playerlist(i,:),:);
 players_cost=players(:,end-1);
 % For each tournament
 winner = players(1,:); % Assume that the first player is the winner
 for j = 2:size(players,1) % Winner plays against each other

consecutively
 score1 = winner(end);
 score2 = players_cost(j);
 if score2(1) < score1(1)
 winner = players(j,:);
 elseif score2(1) == score1(1)
 try % socre(2) may not be present for single objective

problems
 if score2(2) < score1(2)
 winner = players(j,:);
 end
 catch
 end
 end
 end
 champions(i,:) = winner;
end
champions_plus = [champions;elite];

%crossover operator
new_population=[champions;elite];
nKids = pop/2;
% xoverKids = zeros(nKids,size(taskprecedence,1));
iq=1;
while iq<nKids

 if rand()>=cross_rate
 xoverKids(iq,:)=new_population(iq,1:end-3);
 iq=iq+1;
 else
 % get parents

95

 parent1 = new_population(iq,1:end-3);

 parent2 = new_population(iq+1,1:end-3);
 p2num=iq+1;

 % cut point
 xOverPoint = ceil(rand(1,2) * (size(taskprecedence,1) - 1));
 % make one child
 xoverKids(iq,:) = [parent1(1:xOverPoint),parent2((xOverPoint +

1):

size(taskprecedence,1)),parent1((size(taskprecedence,1)+1):(size(taskp

recedence,1))+xOverPoint),parent2((size(taskprecedence,1)+1)+xOverPoint

:end)];
 xoverKids(p2num,:) = [parent2(1:xOverPoint),parent1((xOverPoint +

1):

size(taskprecedence,1)),parent2((size(taskprecedence,1)+1):(size(taskp

recedence,1))+xOverPoint),parent1((size(taskprecedence,1)+1)+xOverPoint

:end)]; iq=iq+2;

 end
end

% mutation
for iu=1:size(xoverKids,1)
 if rand()>=mutation_rate
 xoverKids(iu,:)=xoverKids(iu,:);
 else
 mutation_point=ceil(rand() * (size(taskprecedence,1) - 1));
 xoverKids(iu,mutation_point)=ceil(rand() *

(maxreduc(mutation_point) - 1));
 xoverKids(iu,mutation_point+size(taskprecedence,1))=rand;
 end
end

problem_setting
for ixo=1:pop
population(ixo)=xoverKids(ixo);
end
population=[xoverKids;champions_plus(:,1:end-3)];
if size(population,1)==99 |size(population,1)==999
 population=[population;elite(1:end-3)];
end
initialize_va

end

tt=elite_cost_list(find(elite_cost_list(:,end-

1)==min(elite_cost_list(:,end-1))),:);
its_duration=max(tt(:,end-2));

96

its_leveling=max(tt(:,end));
anchor_cost=[its_duration,elite_cost,its_leveling];

levelingPF.m

problem_setting
initialize_va

subplot(1,1,1)
scatter(result_duration, plus_cost, 'DisplayName', 'plus_cost vs

result_duration', 'XDataSource', 'result_duration', 'YDataSource',

'plus_cost'); figure(gcf)
xlabel('Conctruction Period(days)')
ylabel('Added Cost')
title('Initial Population')

elite_leveling=min(leveling_idx);

for ut=1:gen

chromosome=[population,result_duration,plus_cost,leveling_idx'];

candidate_elite_leveling=min(chromosome(:,end));
candidate_elite=chromosome(find(chromosome(:,end)==candidate_elite_leve

ling),:);
if candidate_elite_leveling<=elite_leveling
 elite_leveling=candidate_elite_leveling;
 elite=candidate_elite(1,:);
end
elite_leveling_list(ut,:)=elite;

subplot(1,1,1)
scatter(elite(end-1),elite(end), 'DisplayName', 'plus_cost vs

result_duration', 'XDataSource', 'result_duration', 'YDataSource',

'plus_cost'); figure(gcf)

% Choose the players
playerlist = ceil(10 * rand(pop/2-1,tournamentSize));
% Play tournament

playerSize = size(playerlist,1);
% champions = zeros(1,playerSize);
% For each set of players

97

for i = 1:playerSize
 players = chromosome(playerlist(i,:),:);
 players_leveling=players(:,end);
 % For each tournament
 winner = players(1,:); % Assume that the first player is the winner
 for j = 2:size(players,1) % Winner plays against each other

consecutively
 score1 = winner(end);
 score2 = players_leveling(j);
 if score2(1) < score1(1)
 winner = players(j,:);
 elseif score2(1) == score1(1)
 try % socre(2) may not be present for single objective

problems
 if score2(2) < score1(2)
 winner = players(j,:);
 end
 catch
 end
 end
 end
 champions(i,:) = winner;
end
champions_plus = [champions;elite];

%crossover operator
new_population=[champions;elite];
nKids = pop/2;
iq=1;
while iq<nKids

 if rand()>=cross_rate
 xoverKids(iq,:)=new_population(iq,1:end-3);
 iq=iq+1;
 else
 % get parents
 parent1 = new_population(iq,1:end-3);

 parent2 = new_population(iq+1,1:end-3);
 p2num=iq+1;

 % cut point
 xOverPoint = ceil(rand(1,2) * (size(taskprecedence,1) - 1));
 % make one child
 xoverKids(iq,:) = [parent1(1:xOverPoint),parent2((xOverPoint +

1):

size(taskprecedence,1)),parent1((size(taskprecedence,1)+1):(size(taskp

recedence,1))+xOverPoint),parent2((size(taskprecedence,1)+1)+xOverPoint

:end)];
 xoverKids(p2num,:) = [parent2(1:xOverPoint),parent1((xOverPoint +

1):

size(taskprecedence,1)),parent2((size(taskprecedence,1)+1):(size(taskp

98

recedence,1))+xOverPoint),parent1((size(taskprecedence,1)+1)+xOverPoint

:end)]; iq=iq+2;

 end
end

% mutation
for iu=1:size(xoverKids,1)
 if rand()>=mutation_rate
 xoverKids(iu,:)=xoverKids(iu,:);
 else
 mutation_point=ceil(rand() * (size(taskprecedence,1) - 1));
 xoverKids(iu,mutation_point)=ceil(rand() *

(maxreduc(mutation_point) - 1));
 xoverKids(iu,mutation_point+size(taskprecedence,1))=rand;
 end
end

problem_setting
for ixo=1:pop
population(ixo)=xoverKids(ixo);
end
population=[xoverKids;champions_plus(:,1:end-3)];
if size(population,1)==99 |size(population,1)==999
 population=[population;elite(1:end-3)];
end
initialize_va

end
tt=elite_leveling_list(find(elite_leveling_list(:,end)==min(elite_level

ing_list(:,end))),:);
its_cost=max(tt(:,end-1));
its_duration=max(tt(:,end-2));
anchor_leveling=[its_duration,its_cost,elite_leveling];

sharing.m

shared_dist=0.5;

candidate_1=candidate(1,:);
candidate_2=candidate(2,:);

result_duration=chromosome_sort(:,end-3);
plus_cost=chromosome_sort(:,end-2);

m_1=0;
for is=1:pop

99

 dist_1=sqrt(((candidate_duration(1)-

result_duration(is))/10)^2+((candidate_cost(1)-plus_cost(is))/1)^2);

 if dist_1==0
 sh_1=1;
 elseif dist_1<shared_dist
 sh_1=1-dist_1/shared_dist;
 else
 sh_1=0;
 end
 m_1=m_1+sh_1;
end
deg_duration_1=candidate_duration(1)/m_1;
deg_cost_1=candidate_cost(1)/m_1;
abs_dis_1=sqrt(((deg_duration_1-0)*2)^2+(deg_cost_1-0)^2);

m_2=0;
for iss=1:pop
 dist_2=sqrt(((candidate_duration(2)-

result_duration(iss))/10)^2+((candidate_cost(2)-plus_cost(iss))/1)^2);

 if dist_2==0
 sh_2=1;
 elseif dist_2<=shared_dist
 sh_2=1-dist_2/shared_dist;
 else
 sh_2=0;
 end
 m_2=m_2+sh_2;

end
deg_duration_2=candidate_duration(2)/m_2;
deg_cost_2=candidate_cost(2)/m_2;
abs_dis_2=sqrt(((deg_duration_2-0)*2)^2+(deg_cost_2-0)^2);

if abs_dis_2>=abs_dis_1
 tt=candidate_1(1:end);
 new_population(iu,:)=tt;
else
 tt=candidate_2(1:end);
 new_population(iu,:)=tt;
end

100

VITA

Name: Kyungki Kim

Address: Department of Civil Engineering,
 Texas A&M University, College Station, TX 77843-3136

Email Address: burning_k@naver.com

Education: B.S., Architectural Engineering, Dongguk University, 2009

 M.S., Civil Engineering, Texas A&M University, 2011

