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ABSTRACT 

 

Modified Niched Pareto Multi-objective Genetic Algorithm for Construction Scheduling 

Optimization. (August 2011) 

Kyungki Kim, B.S., Dongguk University 

Chair of Advisory Committee: Dr. John Walewski 

 

This research proposes a Genetic Algorithm based decision support model that 

provides decision makers with a quantitative basis for multi-criteria decision making 

related to construction scheduling. In an attempt to overcome the drawbacks of similar 

efforts, the proposed multi-objective optimization model provides insight into 

construction scheduling problems. In order to generate optimal solutions in terms of the 

three important criteria which are project duration, cost, and variation in resource use, a 

new data structure is proposed to define a solution to the problem and a general Niched 

Pareto Genetic Algorithm (NPGA) is modified to facilitate optimization procedure. 

The main features of the proposed Multi-Objective Genetic Algorithm (MOGA) 

are: 

 A fitness sharing technique that maintains diversity of solutions.  

 A non-dominated sorting method that assigns ranks to each individual solution in 

the population is beneficial to the tournament selection process. 

 An external archive to prevent loss of optimal or near optimal solutions due to 

the random effect of genetic operators. 
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 A space normalization method to avoid scaling deficiencies. 

The developed optimization model was applied to two case studies. The results 

indicate that a wider range of solutions can be obtained by employing the new approach 

when compared to previous models. Greater area in the decision space is considered and 

tradeoffs between all the objectives are found. In addition, various resource use options 

are found and visualized. Most importantly, the creation of a simultaneous optimization 

model provides better insight into what is obtainable by each option. 

A limitation of this research is that schedules are created under the assumption of 

unlimited resource availability. Schedules created with this assumption in real world 

situations are often infeasible given that resources are commonly constrained and not 

readily available. As such, a discussion is provided regarding future research as to what 

data structure has to be developed in order to perform such scheduling under resource 

constraints. 
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1. INTRODUCTION AND PROBLEM DEFINTION 

 

For large construction projects, managing the efforts of project participants and 

activities towards the goal of completion is of utmost importance for successful delivery. 

Because of that, schedulers or modelers should create schedules taking into account 

multidisciplinary goals and various project conditions. With the coordinated plans with 

accurately predicted consequences, decision makers can make a scheduling decision that 

satisfies multiple requirements. However, it is very difficult to generate guaranteed 

optimal schedules since most construction scheduling problems are complex especially 

when there are many objectives to achieve. 

The Critical Path Method (CPM) is one of the most well-known scheduling 

methods that were invented to achieve greater activity coordination. CPM‟s invention 

was prompted by prevailing deficiencies in existing project planning and scheduling 

systems and has been in wide use. Many scheduling systems were later developed based 

on the CPM technique in order to accommodate the needs arising from enhanced 

scheduling objectives and the sheer number projects that are often more complex.  

Among the techniques, the heuristics is a category that has advantages over other 

approaches such as analytical method and exhaustive enumeration. In addition to the 

basic function of generating better solutions, such methods have the capacity to support 

decision  making  by  providing  a wide  range  of  alternative  solutions  when  applied to  

____________ 
This thesis follows the style of Economics and Mathematical Systems. 
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problems with multiple objectives. The capacity to deal with multi-attribute problems is 

an essential part for a model for complex construction schedule with many activities and 

objectives. 

As well as supporting decision making, multi-attribute scheduling makes 

schedules realistic. For multidisciplinary construction projects, multiple participants and 

objectives need to be integrated into a model. Important criteria may include minimum 

project duration, cost and variation in resource use. Previous approaches attempted to 

optimize these objectives while figuring out relationships between them. However, some 

of the relationships are not revealed by the models as the approaches adopted traditional 

approaches that perform resource leveling only after optimal tradeoffs between cost and 

duration are found.  
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2. CONSTRUCTION SCHEDULING AND OPTIMIZATION FOR DECISION 

SUPPORT 

 

2.1  Construction Scheduling 

2.1.1  Elements 

2.1.1.1  Activities (Tasks) 

Activities are components of a project that should be completed before the 

project deliverable is considered to be completed. Also, a construction schedule can be 

defined by its activities and relations between them. The performance criteria of 

activities can be estimated in terms of duration, cost, and resource use. 

2.1.1.2  Precedence Relations 

For technical and managerial reason, a set of activities should be completed for 

another activity to start. For example, concrete placement can be performed only after 

the form is placed [10]. 

Also there are generalized relationships such as start-start (SS), finish-finish 

(FF), finished-start (FS), and start-finish (SF) that explain other types of relationship 

between activities. Minimal and maximal time lags describe the activity precedence 

relationship between multiple activities. 

When s(A) is the start time of activity a and f(B) is the finish times of activity b, 

generalized relationships between two activities can be expressed as:  
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 s(B) ≥ s(A) + d (SS; demotes, activity B can start d time after activity A starts) 

 s(B) ≥ f(A) + d (FS; denotes, activity B can start d time after activity A finishes) 

 f(B) ≥ f(A) + d (FF; denotes, activity B can finish d time after activity A finishes) 

 f(B) ≥ s(A) + d (SF; denotes, activity B can finish d time after activity A starts) 

2.1.1.3  Resources 

Resources include construction material, labor, and money that are needed in 

order to perform the activities of the project. Since the availability of resources often 

define the problems associated with construction projects, it is very important to 

properly consider resource in the scheduling process. 

2.1.2  Objectives Employed in Construction Scheduling 

For construction, there are several objectives to be achieved such as duration 

minimization, net present value minimization, quality maximization, cost minimization, 

total earliness of activities minimization, and total tardiness of activities minimization. 

The objectives to be optimized in this thesis are construction duration minimization, 

construction cost minimization, and minimum resource use variation. 

2.1.2.1  Duration Minimization 

Total construction duration is the duration between the starting time of the first 

activity and the finishing time of the last activity. When the duration is minimized, a 

time-critical path is generated.  
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2.1.2.2  Cost Minimization 

Construction project cost involves minimization of direct cost of project 

activities, minimization of cost resulting from fluctuation in resource use and 

minimization of penalties from earliness/tardiness. 

2.1.2.3  Optimal Resource Requirements 

Fluctuation in resource use should be reduced to avoid the difficulties of frequent 

hiring and firing and loss of learning effects of labors. Optimal resource requirements 

can be achieved by resource smoothing that adjusts activity dates without changing the 

total construction duration. 

 

2.2  Invention and Technical Development of Critical Path Method: Literature 

Review 

 
Before the Critical Path Method was invented in the late 1950s, existing planning 

systems had deficiencies such as lack of coordination and oversimplification that 

prompted an invention of a method to obtain a higher degree of coordination of project 

activities toward a single goal [12]. At that time, project groups had worked 

independently with their own plans and schedules, and detailed planning and scheduling 

were developed based on gross estimates of entire project and past experiences.  

Critical Path Method had been intensively used for various forms of projects for 

more than two decades after its invention. However, as surveys conducted in the UK and 
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Egypt by Allam (1988) showed [1], there were growing doubts about applying this 

analytical method to real projects due to its arithmetic complexity. Therefore, many 

methods were developed based on this technique to deal with this issue. The approaches 

can be categorized into analytical (mathematical) and heuristic methods. Mathematical 

methods aim to calculate optimal solutions with accuracy and heuristic methods generate 

optimal or near optimal solutions depending on assigned priorities such as cost and 

duration. Although both mathematical and heuristic methods have their strengths and 

weaknesses according to a review conducted by Leu, et al. [14, 15], heuristic methods 

work better and are more in use for multi-objective scheduling because of their multiple 

advantages. Large scale, multi-objective construction scheduling problem is a kind of 

NP-hard problems, which stands for non-deterministic polynomial-time hard problem. 

For an NP-hard problem there is no known method of finding optimal solutions in 

polynomial time. Complexity and limited resources make it hard to solve real scheduling 

problems with mathematical methods. Heuristic models are capable of solving this kind 

of complexity more easily because of the simple format and easy application. The 

disadvantage of using this method is that it is problem-dependent and it does not always 

guarantee optimal solutions [1, 15]. 

Mathematical models to generate optimal schedules and optimal solutions were 

developed [8, 13]. Later, mathematical programming formulations were developed and 

discussed by Easa and Harris [4, 9]. However, it was only applicable to small projects 

with few activities because a great deal of computation effort was needed to create the 

mathematical formula.  
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Due to this limitation, the majority of efforts to date have been heuristic 

scheduling methods. Senouci and Eldin (2004) developed a single-objective genetic 

algorithm, and its objective is to find a schedule with the minimum project cost under 

resource and duration constraints. The solution encoding structure is composed of 

activity duration part and start date part. Although multiple resources, time-cost tradeoffs 

were integrated considering all possible activity relationships, this method did not 

provide any insight into decision options and the obtainable consequence because its 

objective was to generate a single solution [20]. In 2008, Senouci and Al-Derham used 

Multi-objective Genetic Algorithm to minimize project duration and total project cost. 

Construction material, crew and overtime were combined to create resource utilization 

options. This model shows optimal and near optimal trade-offs between cost and 

duration, however resource leveling did not take place in this model [19]. Leu and Yang 

(1999) proposed a model to search optimal combinations of project cost and duration 

under limited quantities of resources. It is a multi-objective scheduling model under 

resource constraint using Genetic Algorithm-based searching technique. Leu and Yang 

(1999) also proposed a computational multi-criteria scheduling optimization model that 

integrates a time/cost tradeoff model, limited resource allocation model, and resource 

leveling model. Though this is an advanced model compared to their previous model, it 

failed to consider relationships between the degree of resource leveling and other 

objectives. Later in 2000 these researchers, added a decision support system to the 

previous research in order to assist scheduling decision makers with the optimization 
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result. However, the inability to consider the relationships between the degree of 

resource leveling and other objectives was not solved in this research [16].  

The heuristic methods developed for construction scheduling often claim to have 

integrated important scheduling criteria into a single optimization. However, the 

relationship between all the competing objectives and provide a clear insight into the 

problem have not been a focus of these models. Understanding that this limitation arises 

from the traditional scheduling procedure where resource leveling is performed after 

optimizing cost and duration, this research aims to propose a heuristic model that 

supplements the drawbacks. The focus of this research is on developing an advanced 

heuristic scheduling model that can be applied to complex scheduling problems. 

 

2.3  Multi-objective Optimization for Scheduling Decision Support 

2.3.1  Decision Making 

The role of a scheduler or a modeler can be distinguished from that of a decision 

maker (DM). The scheduler is responsible for informing the DM with enough 

information about what is obtainable from alternative solutions. Based on the 

information, the DM makes a decision using specific criteria and makes modifications to 

the schedule as needed. Taking that into account, it is of critical importance that a 

scheduler provides the DM with best alternatives with the prediction of obtainable 

results. With that insight, the DM understands what is obtainable and what tradeoffs 

between objectives have to be considered.  
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Conventional decision making methods for project scheduling have three steps to 

reach a decision:  

1. Requirements of multidisciplinary stakeholders are studied by a participant such 

as designer, scheduler to generate options. 

2. Professions from different disciplines build models to conduct analysis and 

determine feasibility of the options.  

3. Decision is made according to effectiveness of each solution. 

Taking into account the role of a scheduler as a decision supporter, following this 

procedure for decision making has some drawbacks. Most of all, sufficient options are 

not guaranteed since only a limited number of options can be generated and evaluated 

due to limited time and resource using such a procedure. In this case, decision makers 

have to make decisions from a limited set of options and then implement it. Furthermore, 

evaluating options one by one is an ineffective and significantly time-consuming task 

when requirements are not pre-integrated while alternatives are created. It depends 

heavily on a person‟s insight into the problem since options are generated based on 

perceived requirements from stakeholders.  

Since generating and evaluating enough solutions for a large construction project 

using traditional decision making procedure is not efficient, it is greatly beneficial if 

scheduling requirements can be pre-integrated when schedule options are generated 

relying on a computer‟s process speed. As introduced in the literature review section, 

various kinds of scheduling techniques have been developed in order to make the 

schedule more realistic and satisfactory. They have been developed in a way that more 



 10 

requirements are integrated and rely less on mathematical computation. Major criteria 

for scheduling decision may include project duration, cost, resource leveling and other 

considerations such as safety and distance resource consideration [5]. 

2.3.2  Multi-objective Optimization 

Optimization is a type of modeling method to determine the best solutions from 

available alternatives. For each solution, a quantitative evaluation is provided rather than 

a subjective one. When it is used for optimization for a multi-objective decision making 

support, the aim can be to find a group of non-dominated solutions forming trade-offs 

called the Pareto frontier, as opposed to single-objective optimization which is to find a 

single best solution.  

In the Figure 1 below, the concept of Pareto optimal for bi-objective 

minimization optimization is demonstrated. Pareto frontier is the line that links five 

individual solutions from P1 to P5. A solution is Pareto optimal when one fitness value 

of the solution cannot be upgraded without degrading another fitness value. 
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Figure 1 Pareto front for bi-objective minimization problem 

 

P1, P2, P3, P4 and P5 are optimal solutions because there is no solution that has 

objective values f1 and f2 both are better (lower) than one of the five solutions, and a 

fitness value of one solution cannot be reduced without increasing the other. As can be 

seen, no solution is found under the dotted line that links the optimal solutions. On the 

upper right corner of the figure, four solutions are found to have worse values for both f1 

and f2 than solution P3. In this case, P3 dominates the four solutions while P3 is a non-

dominated solution. By using Pareto frontier, we can concentrate on this optimal trade-

off without having to consider any inferior solutions. 
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In this regards, decision making can benefit from using multi-objective 

optimization techniques when solving complex scheduling problems that usually 

involves coordination of many activities and evaluation in terms of multiple objectives. 

The need for optimization for scheduling arises from the huge number of possible 

solutions to a problem. Each solution is composed of many decision components, and 

there are alternatives for each component forming a decision space for a problem. The 

size becomes exponentially larger as more decision components are added as seen in 

Figure 2. A scheduler cannot choose and evaluate all possible alternatives in the space 

due to limited time and resource. It becomes even complex when each possibility is 

evaluated by multiple criteria. 

 

5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 
 
Figure 2 A chromosome with 20 decision components 

 

In Figure 2, a chromosome is presented to explain the complexity of problems 

and difficulty of evaluation related to scheduling. In general, a chromosome is 

representation of a solution that is composed of a set of parameters or decision elements. 

A wide variety of data structure such as binary arrays or real values can be used for each 

chromosome component. A more detailed explanation about chromosome will be given 

in the Genetic Algorithm section. In the array of cells, the number in each cell represents 

a component of a decision. Assuming that each cell can have one of six integer values 

between 0 and five, there are 620 (3,656,158,440,062,980) possibilities scattered in the 
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decision space. Evaluating each point is exhaustive, and solutions selected and evaluated 

by subjective opinion are apt to be sub-optimal. Evaluation and selection become more 

difficult in situations of multi-objective optimization because a change in one criterion 

may degrade others.  

There are single objective optimization and multi-objective optimization 

depending on the number of criteria the optimization algorithm aims to minimize or 

maximize. Construction scheduling problems often involve many criteria. Though there 

are ways single-objective optimization can deal with multi-objective problems - such as 

constraint method and weighting method - they have disadvantages as a decision support 

model. Constraint methods need to pre-specify levels of constraints before performing 

several runs which is infeasible because we do not know the ranges of solutions before 

optimization and the size of decision space is too large. It is also necessary for weighting 

methods to assign weights for objectives before optimization which can be classified as 

decision making not decision supporting. Implementation of the two single-objective 

optimization requires decision making supporters to make some decisions which are a 

decision makers‟ responsibility. However, Multi-Objective Optimization has a capacity 

generate many non-inferior solutions that provide the decision maker with the insight 

into the problem. 

 



 14 

 

Figure 3 Function D3 (source: Jie, Kharma et al, 2010) 

 

The idea of presenting a group of Pareto points for decision making is to provide 

the decision maker a clear sight of what is achievable in what area of decision space thus 

leading the decision maker focus on a certain region rather than spending time and 

resource in assessing solutions in an area without best solutions or randomly exploring 

the solution space. Figure 3 provides a search space for one objective optimization 

considering two factors optimized by Jie, et al. [11]. The fitness values are difficult to 

predict and formularize since there are multiple maximum and minimum points. The 

formula of function D3 is shown below: 

 
4

2 2 2 2

3( , ) 4 2.1 ( 4 )
3

x
D x y x x xy y y

  
         

  
 (2.1) 
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    1.9,1.9 , 1.1,1.1 .x y     

Since multi-objective optimization does not make any modification to the 

solutions and helps to develop a family of best solutions, by using this method, decision 

supporters can provide alternatives that are not dominated by any other solutions, and 

decision makers can avoid choosing an inferior solution in their managerial decision 

making. One of the distinguishing advantages of multi-objective optimization is its 

mechanism considering tradeoffs among several objectives in selecting solutions. In 

order words, multi-objective optimization evaluates candidate solutions for all the 

objectives thus treating the objectives equally important while single objective 

optimization method concentrate on finding one point in the decision space setting other 

values fixed.  

By integrating several objectives into optimization model, models become 

realistic and capable of providing better information for decision making. A decision for 

a complex problem such as construction scheduling entails consideration from 

viewpoints of different stakeholders with various objectives. Taking many objectives 

into the decision making process makes analysis more practical, but doing so adds 

complexity to it at the same time [2]. Furthermore, due to the characteristics of real 

world problems that is becoming more complex, there is a number of sub-decisions and 

following consequences related to a decision that make it harder to evaluate an impact of 

a decision component on the overall result. Evaluating the results is not simple and easy 

because of interrelations between several objectives. 
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2.3.3  Genetic Algorithms 

 Genetic algorithms were invented in the 1960s by John Holland is search of a 

heuristic method that mimics the mechanism of natural adaptation. The procedure begins 

by generating a population of randomly generated candidate solutions that evolves 

towards an optimal solution through genetic iteration. The population is composed of 

string arrays each of which contains information on a single solution which is called 

chromosome. In each generation, candidate solutions are evaluated and selected based 

on fitness function which indicates how well the solution solves the problem. After a 

portion of the population is selected based on the fitness values, remaining solutions are 

combine and mutated by genetic operators such as crossover and mutation. Crossover 

operator combines candidate solutions and a mutation operator randomly mutates them. 

This process continues for each generation until a solution of a certain value is obtained 

or it is iterated by a predetermined times.  The operation of Genetic Algorithms is 

visualized in Figure 4. 
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Figure 4 Optimization procedure of genetic algorithms 

 

A distinctive strength of Genetic Algorithms is its ability to enable a solution 

search without having to know so much about the domain of a problem. With little 

knowledge and information about the problem domain, this approach relies on the 

computer‟s process speed for finding solutions from the entire search space using 

constraints and fitness functions. Genetic Algorithms have been used because of the 

advantages in exploring the possible solutions. They have been applied to science, 
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engineering problems such as large CPM problems and proved to be efficient for 

searching optimal solutions in a large solution space [6]. Those advantages make genetic 

algorithms one of the most effective search methods for a complex problem with a large 

search space [20]. 

Genetic Algorithms can be used for one optimum value search or 

multidisciplinary optimization where tradeoff occurs among multiple objective 

functions. The latter is useful especially for a complex problem that has to meet the 

requirements of multiple participating disciplines. In this case, a group of optimal 

solutions are provided by the algorithm and the matter of selecting one decision from 

alternatives can be left to a decision maker. Genetic Algorithm can guide the search 

towards the Pareto frontier in order to enable a decision maker to be informed of the best 

trade-off possible and avoid excessive effort for evaluating sub-optimal points in the 

space. 

Since mechanism of generating initial population is constructed and then the GA 

algorithm improves the population towards the Pareto optimum, it is important to have a 

proper chromosome structure that encodes solutions. If too much information on the 

problem domain is included in the algorithm like most analytical methods do, the genetic 

algorithm becomes too problem specific. Genetic algorithms have to be structured in a 

way that relies on capacity of computer more than problem specific formula. 
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2.3.4  Niched Pareto Genetic Algorithm 

Genetic algorithms have been applied almost exclusively to single-attribute 

problems. However, many real-world problems are revealed as that their objective 

functions are multi-attribute. And, solutions do not spread linearly as can be seen in 

Figure 3. In general, solution space has several local maximums and minimums. GA 

methods with constraints and weights have been used as tools for combining multiple 

attributes. However, these methods are very sensitive to variations in the penalty 

function coefficients and weighting factors. Here, the need arises for Multi-objective 

Genetic Algorithms (MOGA) that finds good solutions overcoming this defect. 

The purpose of Niched Pareto Genetic Algorithm is to generate optimal solutions 

called Pareto optimal while maintaining diversity at the same time. It produces 

optimized tradeoffs between conflicting objectives by finding non-dominated samples all 

along the Pareto front. According to a study comparing eight diversity-maintaining 

methods for multi-modal problems, sharing method can find out all the peaks although 

suboptimal solutions are included in the final population [21]. In addition to this strength 

of NPGA, the proposed model for this research supplements deficiencies of it by 

integrating effective features such as search space normalization method and external 

archive. Search space normalization technique is adopted in order to avoid scaling 

deficiency occurring while integrating multiple objectives of different scales. External 

archive is included in the model to prevent loss of good solutions due to random effects 

of genetic operators (crossover and mutation operators). Detailed explanations for them 

are provided in Sections 4.2.2 and 4.2.3, respectively. 
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In each generation in genetic algorithm iteration, a selection mechanism is used 

to select solutions in the population. Chosen solutions form a mating pool where 

crossover and mutation occur and provide the basis for the next generation. Tournament 

selection has been one of the most widely used selection mechanisms. In tournament 

selection, individual solutions of a predetermined size are selected at random, and a 

solution with the best fitness value is selected as a winner. The process is repeated until 

the desired size of mating pool is formed. Though the tournament selection has benefits 

such as efficiency in coding and easiness in adjusting the tournament size, solutions in a 

population tend to converge to a uniform solution after a large number of generation 

iterations [7]. Since NPGA intends to generate multiple points along the Pareto front the 

attribute space, it has to avoid convergence to a single point and maintain multiple 

solutions. Thus, two mechanisms were created: Pareto domination tournament and 

Sharing on the non-dominated frontier.  

Pareto domination tournament is used since more domination pressure and 

control of that pressure are needed to know an individual‟s true domination ranking. The 

sampling scheme of NPGA is as follows. 

 

1. Randomly select two candidate solutions and a comparison set. 

2. Each candidate is compared against individuals in the comparison set.  

3. Comparing candidates with comparison set.  

3.1 Non-dominated solution is selected for reproduction if one candidate is dominated 

by the comparison set and the other is not. 

3.2 „Sharing‟ is used when neither or both are dominated by the comparison set. 
Figure 5 Pareto domination tournament of NPGA 
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In this process, sample size tdom maintains the domination (selection) pressure. 

The goal of sharing that appears in 3.2 in Figure 5 is to distribute the solutions over 

different local optimums in the search space allocating individual solutions in the 

population in proportion to the magnitude of the peak. Shared fitness is calculated as 

following equation.  

 i

i

f
shared fitness

m
  (2.2) 

where, 
if  is individual i‟s objective fitness and 

im  is niche count (how crowded is the 

neighborhood of individual i) 

  ,i j Pop
m Sh d i j


     (2.3) 

where,  ,d i j  is distance between individual i and j.  Sh d  is sharing function and 

defined as below. 

  
1 /

0

share shared if d
Sh d

else

  
 


 (2.4) 

Based on equation1, 2, and 3, individuals with share  distance of each other 

degrade each other‟s fitness. Thus, the convergence occurs within a niche. Figure 6 

shows the pseudo code for NPGA. Sharing distance can be determined by “dividing the 

search space into a number of equal sized hyper-space equal to the number of sought out 

optima [3].” This selection mechanism of NPGA prevents generation of similar solutions 

after generation runs and thus well-distributed solutions can be obtained. When a 

decision maker is provided with a well distributed Pareto front, a decision can be made 
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effectively considering greater space of solutions that could be ignored without having to 

explore any dominated solutions. 

 

Initialize Population P 

Evaluate Objective Value 

For i=1 to g do 

       Specialized Binary Tournament Selection 

       Begin 

              if Only Candidate 1 dominated then 

                     Select Candidate 2 

              else if Only Candidate 2 dominated then 

                     Select Candidate 1 

              else if Both are Dominated or Non-dominated then 

                     Perform specialized fitness sharing 

                     Return Candidate with lower niche count 

              end if 

       End 

       Single Point Crossover 

       Mutation 

       Evaluate Objective Values 

End for 

Figure 6 Pseudo code of niched pareto genetic algorithm 
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3. CURRENT NEEDS AND RESEARCH SIGNIFICANCE 

3.1  Previous Approaches 

As stated in the previous sections, many multi-objective genetic algorithm 

models (MOGA) were proposed to solve scheduling problems. Important scheduling 

criteria were minimum duration, minimum cost and minimum variation in resource use 

and so on. However, none of the previous construction scheduling models has capability 

to thoroughly explore the entire solution space because of their sequential optimization 

process. The purpose of applying optimization methods is to solve complex scheduling 

problems using the useful traits: developing best possible solutions considering the 

tradeoffs between conflicting objectives. Though resource leveling is an importance 

criterion for a successful construction execution because of the negative impacts of 

variation in resource use on cost and productivity, previous approaches did not take into 

account the relationships between resource leveling and other objectives. Reducing 

variation in resource use promotes workers‟ loyalty and captures the benefits of learning, 

and ultimately saves cost by enhanced productivity and improved morale. Cyclic hiring 

and firing destroys workers‟ morale. Thus, resource leveling has to be considered 

equally important as other optimization criteria. 

Resource leveling becomes important when there are sufficient amount of 

resource while it is important to minimize project duration extension for fixed-limits 

scheduling [4]. Then, for unlimited resource scheduling, fluctuations or deviations from 
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desired resource use can be minimized without constraints of resource availability in 

order to avoid undesirable loss. 

When a schedule is generated by traditional Critical Path Analysis, resource 

leveling is not incorporated when selecting shortest schedules. After a schedule is 

selected, manpower leveling starts and smoothing is performed until the desired curves 

are obtained [12]. The deficiency of this traditional method is that it is impossible to find 

different solutions other than initially found schedules after the schedule selection based 

on shortest time and lowest cost.  

None of previous approaches has overcome this deficiency. Resource leveling 

model improvised by Leu also takes three steps as following [14]: 

1. Analyze a time/cost trade-off model 

2. Non-dominated solutions with project duration and cost are found 

3. Another system receives information about non-dominated schedules from the 

process 2 and perform resource leveling process 
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Figure 7 Optimum solution search by previous methods 

 

Figure 8 Desired optimum solution search 
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Figure 9 Tradeoffs between three objectives 

 

Optimization process using this method is divided into two phases. This makes it 

impossible to optimize resource leveling simultaneously with cost and duration 

optimization. Here, optimal solutions are restricted to solutions above optimal tradeoff 

initially found on the XY-plain (time-cost tradeoff) in the objective space as seen in 

Figure 7. From that, it can be seen that combinations of costs and durations have to 

change depending on different level of resource leveling as seen in Figure 8. In order 

words, all the tradeoffs between objectives should be presented can be seen in Figure 9 

that visualizes tradeoffs between three optimization criteria which past approaches could 

not achieve.  
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The new model proposed in this research addresses this drawback under the 

unlimited resource assumption. The model is capable of simultaneous generation of 

optimal or near optimal schedules in terms of multiple objectives (minimum duration, 

cost and resource leveling index) and thus better exploration into the solution space. 

Optimizing objectives one by one results in solution search that is not enough to provide 

the decision makers (DMs) with the insight into the best available alternatives because 

this is misses some part of the objective space and does not consider possible trade-off 

relations between conflicting objectives. Simultaneous optimization for all objectives is 

important for thorough objective space exploration and non-dominated solution search 

as visualized in Figure 9.  

3.2  Research Significance 

When creating schedules with the three criteria, all of them have to be pre-

integrated into the model and all the tradeoffs between objectives have to be revealed. 

However, due to the drawbacks of previous approaches, it has not been possible to 

explore whole possible area in search space. From this research, a programming solution 

will be presented that enables simultaneous optimization. More importantly, an informed 

decision making related to construction scheduling problems will be enabled by 

searching a larger solution space.   
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3.3  Research Limitation 

 The proposed model does not account for resource limitation. Schedules 

generated under unlimited resource constraints may be unrealistic because there are few 

cases resource is available at any time in construction period in the real world. Though 

this model is intended to present a possibility to explore decision space better than 

previous approaches, it is not practically applicable because of this limitation that has to 

be solved by a future research. 
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4. PROPOSED OPTIMIZATION MODEL 

4.1  Objectives and Approach 

The aim of this new optimization model is to enable a simultaneous optimization 

in terms of three important scheduling criteria which has not been achieved by similar 

approaches. The objectives are minimizing project duration, cost, and resource use 

variation. For the purpose of quantitative assessment, they were formularized as 

objective functions in the equation (4.1), (4.2), and (4.3).  
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Total_Duration is an objective function which is sum of durations in the critical 

path. 

Additional_Cost is an objective function that calculates additional project cost 

caused by crash. 

RLI is an objective function that shows how the resource allocation of a project 

deviates from average resource use during the project duration. 

doi is the original duration of activity i. 

di is the durations reduced from original project activity durations.  

dio is the original duration of activity i. 

ci is the additional cost per one day of crash for activity i. 

rik is a daily needed of resource k for activity i. 

n is the total number of activities in the project.  

m is the number of resources. 

Di is the durations of critical activities. 

N is the number of activities on the critical path. 

RLI is resource leveling index for multiple resource leveling. 

 

In an effort to incorporate the three objective functions into a single phase of 

optimization and obtain a decent result, modifications were made in two ways: 

 A new type of chromosome structure  

 modified NPGA optimization process  
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4.2  Modified Niched Pareto Genetic Algorithm 

Previous approaches need multiple chromosome forms [14, 15, 16]. Creation of 

those chromosomes are dependent on others; ordering chromosome is created based on 

data from activity duration chromosome, starting date chromosome needs scheduling 

and resource data generated by the cost – duration tradeoff in the earlier optimization 

stage. Because of this dependency between chromosomes, those chromosomes cannot be 

integrated in to a single structure that yields cost, duration, and resource leveling index 

at the same time. The discrete optimization stages make it impossible to fully explore the 

design space. Since the method follows the optimization process that finds out the near 

optimal time – cost tradeoff first and performs resource leveling on the Pareto front only 

in terms of cost and duration. This has a serious defect as an optimization process 

because it did not account for cost – RLI tradeoff and time – RLI tradeoff that may exist 

in the problem. 

4.2.1  Chromosome Structure 

In this section, a different kind of chromosome structure is proposed to construct 

an aggregate objective function (AOF). It is a basic approach in order to optimize multi-

objective problems that all the objective functions are combined into a single form. 

However, previous approaches failed to create a single AOF due to the limitation in their 

chromosome structures. The absence of an AOF is the reason previous multi-objective 

scheduling optimization models could not perform simultaneous optimization. With 
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AOF, genetic algorithm can combine important attributes of scheduling such as project 

cost, duration, and evenly distributed resource allocation into a single process.  

 
 
 

Resource LevelingCost, Duration Tradeoff

Additional Cost

Project DurationOrdering chromosome

Activity duration chromosome Optimized ScheduleCost

Starting date chromosome

Schedule

Schedule & 

Resource

 

Figure 10 Schedules generation from chromosome structure of previous model 

 

Cost, Duration, RLI Tradeoff

Additional Cost Project Duration

Chromosome

Activity Duration

Use of Float Resource Leveling Index

Optimized Schedule

 

 Figure 11 Schedules generation from chromosome structure of proposed model 

 

                                            

  Reduced activity duration Activity order   

  1 3 6 1 7 . . . . . 1 2 4 3 5 6 . . . .   

                        

                        

  
Activity start date  

(Resource Leveling) 
 
Cost Time           

  0 1 4 10 11 18 . . 5000 55           

                                            
 
Figure 12 Chromosome representation of proposed model 
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The optimization procedure is compared to the proposed model of the same 

purpose in Figures 10 and 11. Dark boxes in the diagrams represent chromosomes. Since 

this research focuses on scheduling under unlimited resource leveling, „ordering 

chromosome‟ can be ignored from the process in Figure 10 as its role is activity 

sequencing under the limited resource availability. The „activity duration chromosome‟ 

defines how many days out of maximum reducible duration of each activity while the 

„starting date chromosome‟ indicates when the activities start. Additional cost and total 

project duration are calculated from the reduced activity duration part, and activity start 

date part is used for calculating fluctuation in resource use [20]. Taking that into 

account, the chromosome structure of this approach is divided into two parts: cost-

duration tradeoff phase and resource leveling phase while the proposed process has a 

single process with an integrated chromosome [16, 20]. 

The reason optimization process is divided into two phases as in the Figure 10 is 

that the „starting date chromosome‟ for resource leveling process can be created only 

after the first optimization phase, cost-duration tradeoff, is completed. Due to this 

dependency, combinations of costs and durations do not change depending on how well 

resource distributed. Also, offspring chromosomes created by crossover or mutation 

operation have discrepancies between „activity duration chromosome‟ and „starting date 

chromosome‟ if we try to combine these three types into a single form. From this 

perspective, it can be seen that recent scheduling models still follow the scheduling 

approach of early Critical Path Method where resource leveling optimization takes place 

only after best time-cost tradeoff for a problem is found.  



 34 

The drawback of this approach is its limited ability to search into the objective 

space. In Figure 7, time-cost tradeoff is found in XY axis and resource leveling takes 

place. Accordingly, tradeoffs between resource leveling and other objectives are not 

found by previous methods. However, ideal optimization for three-objective 

optimization should present tradeoffs between all the objectives as in Figure 9. This 

deficiency can be solved by proposing a genetic algorithm chromosome structured for 

direct generation of three fitness functions. 

In order to enable simultaneous optimization showing all the existing tradeoffs, a 

chromosome structure is proposed in this thesis as can be seen in the Figure 12. From 

literature review section, it can be seen that, in general, different kinds of chromosome 

structure are applied for optimization for different objectives as following: 

 Activity duration chromosome generates cost-duration tradeoff. 

 Ordering chromosome decides the sequence of activities when resource is not 

available for multiple activities. 

 Starting date chromosome performs resource leveling using available floats. 

Unlike the previous model, „reduced activity duration‟ part of the chromosome 

generates cost-duration tradeoff and both „use of float‟ part and „reduced activity 

duration‟ are integrated to calculate resource leveling index. The chromosome structure 

is composed of percentage values for „use of float‟ instead of integer values to enable 

crossover operations between different solutions in the population thereby enabling 

simultaneous optimization of three objectives as seen in Figure 9. As the same percent 

values can be translated into different number of days within total float within different 
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time-cost tradeoffs, the limitation that occurs when activity start days are used for 

resource leveling can be solved. 

  

1 3 6 1 7 . . . . . . . . . . . . . . . 

 
Figure 13 Reduced activity duration chromosome 

 

Chromosome of reduced durations in the Figure 13 enables time-cost tradeoff. 

Additional cost is calculated using formula 1.1, and conventional Critical Path Method is 

applied to calculate find critical path and activity floats. Then, for conventional model, 

another chromosome in the Figure 14 representing starting dates is created to decide how 

many days within float are to be used for resource leveling while the second part 

represents move of starting dates of activities within float by percentages instead of 

starting dates. In a traditional CPM analysis, activities are assumed to start on the fastest 

possible date. However, in a real construction project, non-critical activities can shift 

within float times in order to have even resource profiles [16]. 

By using a certain percentage for a float in the chromosome as in Figure 15, 

genetic mechanisms can be used without error and one chromosome can produce cost, 

duration, and resource leveling information at the same time. 

 
 
 

0 5 13 21 . . . . . . . . . . . . . . . . 

 
Figure 14 Starting date chromosome 
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Reduced activity duration Use of float time 

1 3 6 1 7 . . . . . 20% 10% 90% . . . . . . . 

 
Figure 15 Proposed chromosome structure 

4.2.2  Objective Space Normalization 

The necessity to normalize objective space arises in order to find out well-

distributed Pareto front for multi-objective problem. In general, weights are assigned to 

account for subjective preferences. But this is only applicable to the case of the 

comparability of all components.  

By conducting objective space normalization, 0 and 1 are assigned respectively 

to the minimum and maximum fitness values of each objective. Therefore, the search 

space for this problem will become a cube as a result. Finding optimal solutions in the 

normalized space is greatly beneficial in performing NPGA‟s sharing function that 

preserves solution diversity. Furthermore, doing so strengthens visibility of relationship 

between conflicting objectives. The advantages of 0 and 1 instead of its real values can 

be seen in Figures 16 and 17. Taking into account that sharing function of NPGA 

essential in the optimization process, the objective space in Figures 17 has an advantage 

over the space in the Figures 16. In the space with real scale, it is very difficult to set a 

sharing distance because of different scales of objectives, and in that case sharing 

function does not work effectively. Since sharing functions in the algorithm in a way that 

distributes solutions by dividing search space into spaces of the same size, sharing may 
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not occur well for all the objectives in a space with different scales. However, radius 

setting becomes easier and sharing function works well in the normalized space in 

Figure 17. Thus, in the proposed model, objective space is normalized before 

optimization process starts in order to define an appropriate sharing radius.  
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Figure 16 Original search space 
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Figure 17 Normalized search space 
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The method of normalizing objective space is adopted from Normalized Normal 

Constraint (NNC) Method [17, 18]. This method is in line with efforts to develop a 

method of generating uniformly distributed Pareto front using Genetic Algorithms. It is 

an enumeration of single objective optimization with constraints occurring in the 

normalized objective space. From seven steps in the NNC method explained by the 

pseudo code in Figure 18, only the first two steps for space normalization method is 

selected because the proposed optimization model does not use single objective method 

as NNC.  

 

Step -1: Anchor Points. Obtain anchor points   

Step -2: Objective Mapping/Normalization 

Step -3: Utopia Line Vector 

Step -4: Normalized Increments 

Step -5: Generate Utopia Line Points 

Step -6: Pareto Points Generation 

Step -7: Pareto Design Metrics Values 

 

Figure 18 NNC method process 
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The theoretical introduction to the procedure focuses on bi-objective problem for 

simplicity in explanation. The mathematical representation is shown below: 

  1 2min ( ) ( )x x x   (4.6) 

subject to: 

 ( ) 0,(1 )qg x q r    

 ( ) 0,(1 )kh x k s    (4.7) 

 , (1 )li i ui xx x x i n     

where x represents the dimension vector of variables 

gq(x) is the r inequality constraints. 

hk(x) is the s equality constraints. 

xli, xui are the lower and upper limitation constraints in the dimension i. 

 

Then, essential elements in Figure 19 are: 

 Anchor points (µi*) are obtained by minimizing each objective independently. 

These points are deemed as both ends of the Pareto front. 

 Utopia point (µu) is a point with components that are the optimum values of 

anchor points. 
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Figure 19 Space normalization for bi-objective optimization (Martínez et al., 2009) 

 

The normalization steps that transform the space from a to b in Figure 19 are: 

 

Step 1: Anchor Points (µ
1*

, µ
2*

, µ
3*

) 

By minimizing each objective individually, obtain three anchor points since this 

is a problem with three objectives.  

 ( )( 1,2,3)x iMin x i   (4.8) 

These points are end points of the Pareto front, and Utopian point is defined by 

the optimized points of anchor points. 

µ1
 = project duration 

µ2
 = project cost 



 41 

µ3
 = resource leveling index (RLI) 

 

Step 2: Objective Mapping/Normalization 

Optimization takes place in the normalized space in order to avoid scaling 

deficiencies.  µ is the normalized form of µ. L is defined as the maximum distance of 

each objective component. In this objective mapping of three-objective space, both the 

Utopia point (µu) and Nadir point (µN) are obtained as in equations (4.9) and (4.10): 

 1* 2* 3*

1 2 3( ), ( ), ( )
T

u x x x       , (4.9) 

where 

µ1* = optimum project duration 

µ2* = optimum project cost 

µ3* = optimum resource leveling index (RLI) 

 

 1 2 3, ,
T

N N N N       , (4.10) 

where 

 1* 2* 3*max ( ), ( ), ( )N

i i i ix x x        (4.11) 

  1,2,..., .i n  

Maximum distances L are defined as: 
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which normalizes the metrics as: 
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4.2.3  External Archive 

The proposed optimization model incorporates an archive that copies best 

solutions found from each generation. From each generation run, non-dominated 

solutions are copied from the population to the external archive. Since individual 

solutions in this external archive can avoid generation cycles of genetic algorithm, it is 

not under the influence generation operators (crossover and mutation operators). Thus, 

optimal solutions can be preserved by avoiding the random effects. However, a part of 

Pareto optimal solutions from the external archive are also copied and sent to the mating 

pool to facilitate generation of better solutions. In the last run of optimization runs, the 

external archive is incorporated into the final population. Then, again, non-dominated 

Pareto solutions are selected from the individuals of both external archive and the final 

population by using the selection method of non-dominated sorting. 
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4.2.4  Optimization Process 
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Figure 20 Optimization process of proposed model 
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Original NPGA optimization procedure was modified to increase efficiency of 

sharing function and to prevent optimal solutions from disappearing due random effects 

of genetic operations by using external archive. First of all, objective space is normalized 

to overcome scaling deficiency. External archive is adopted in the optimization process 

to preserve optimal solutions that may disappear due to random characteristic of genetic 

operators. External archive contributes to search toward Pareto front as the best solutions 

from the archive compose certain part of population for next generation. 

The first step in Figure 20 is random generation of initial population. 

Chromosomes of predefined number are generated and each of them has reduced activity 

duration part and use of float time part. When there are X number of activities in the 

project, each chromosome is composed of X×2 number of decision elements. This 

information is sent to CPM engine. Then, the CPM engine calculates project cost and 

duration using information from reduced activity duration part and resource leveling 

index is calculated using both parts of chromosome. Since float use is represented by 

certain percentages instead of days, resource leveling index can be calculated using data 

in a chromosome without additional method. Therefore, it is possible to obtain three 

fitness values from each individual chromosome. Iterations start after the first population 

is generated, evaluated and normalized. Before the Pareto domination tournament 

selection stage, all the solutions are ranked. Then, elite solutions sorted by the 

tournament selection are sent to the pool of next generation. Remaining solutions are 

combined into the pool after they are transformed by crossover and mutation operators. 

In each generation, best solutions are selected by non-dominated sorting method and sent 
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to the external archive. When termination condition is met, iteration stops and the final 

population are combined with solutions in the external archive. Pareto optimal solutions 

are found from the combined solutions by non-dominated sorting method.   
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5. CASE STUDY AND ANALYSIS OF FINDINGS 

 

Before the model is applied to the construction schedule data sets, its 

performance is demonstrated using a pilot schedule with 30 activities. Its purpose is to 

show how much the solutions in the initial population improve in the final population 

and to show optimal solutions are preserved by the external archive. Figure 21 shows the 

time-cost tradeoff of the pilot project. Red stars in the figure represent the Pareto optimal 

solutions obtained from the external archive. Blue and red circles are the solutions in the 

initial and final population, respectively. From the result, it can be seen that the final 

population has better solutions than the initial population and the external archive 

prevents loss of optimal solutions from random effect of genetic operators. 
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Figure 21 Cost-duration tradeoff found by proposed model 
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Then, the algorithm was applied to two cases. Case 1 is a scheduling of 11 

activities with two objectives: minimum project cost and duration. Case 2 is a 9-activity 

scheduling optimization with three objectives: minimum cost, duration and resource 

leveling index. The activity CPM networks are taken from a similar research carried out 

to solve time-cost tradeoff problem and three-objective optimization problem, 

respectively [14]. 

5.1  Case 1: Bi-objective Scheduling with 11 Activities 

This case study is to demonstrate the performance of this algorithm on time-cost 

tradeoff problem. Activity network is shown in Figure 22.  
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Figure 22 11 activity CPM network 

 

There are 11 activities for this construction scheduling problem. Activity A 

should start first; other activities follow according to the activity relationship and activity 
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Q is the last activity. Related to determining the duration of each activity, a decision can 

be made as days between normal duration and crash duration. And, the activity cost 

increases when the activity duration decreases. For example of activity G which has 

normal duration of 7 and crash duration of 4, duration options are 4, 5, 6, and 7. The 

activity cost will become 6,730 instead of the normal cost (5,500) if the activity duration 

is crashed into 4 days.  

Optimal solutions were generated by the proposed algorithm considering this 

conflicting relationship between cost and duration. In Figure 23, the red stars are Pareto 

frontier points generated by the proposed algorithm and are compared to the green 

circles obtained by random generation of 100,000 solutions. For each duration option, 

the algorithm tried to generate a solution with minimum cost. And, the relationship 

between the two objectives was revealed where the project costs tend to increase as the 

project durations decrease. The near-optimal solutions were comparatively better than 

the randomly generated solutions.  

However, this algorithm could not overcome the disadvantage of heuristic 

method that generation of real optimum solutions is not guaranteed. It often could not 

generate all the existing optimal solutions and Figure 23 shows the result from one 

optimization where only partial optimal solutions were obtained. The algorithm 

generated 8 optimal solutions while the actual number of optimal solutions is 9 

according to Leu, et al. [16].  
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Figure 23 Time-cost tradeoff for case 1 

5.2  Case 2: Three-objective Scheduling with 9 Activities 

The case study 2 is to demonstrate the proposed optimization model on a three-

objective scheduling problem. Thus, in addition to project cost and duration 

minimization, resource leveling index minimization was integrated into the optimization 

process. Figure 24 describes the activity precedence relations with normal duration, 

crash duration, normal cost and crash cost for each activity. In Table 1, activity cost and 

daily resource use settings for each duration option for each activity are presented.  
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A

B

D

F

C

E

H

G

I

(9, 9)

[450, 450]

(12, 13)

[850, 600]

(7, 8)

[950, 640]

(9, 9)

[560, 560]

(13, 14)

[1900, 1200]

(16, 19)

[3860, 2000]

(15, 15)

[420, 420]

(12, 14)

[1860, 1050]

 

Figure 24 9-activity CPM network 

 

Table 1 Optimal solutions generated by 200 runs 

Activity Duration Cost Resource 1 Resource 2 Resource 3 

A 5 480 5 4 5 

 6 300 3 4 5 

B 9 450 4 5 2 

C 12 850 4 6 6 

 13 600 3 6 5 

D 15 420 5 2 4 

E 12 1860 1 5 6 

 13 1450 1 5 4 

 14 1050 1 5 2 

F 16 3860 6 4 4 

 17 3220 5 3 3 

 18 2600 4 2 2 

 19 2000 3 1 1 

G 13 1900 3 3 6 

 14 1200 3 2 5 

H 7 950 6 4 3 

 8 640 6 3 2 

I 9 560 5 5 5 

 

Like the case study 1, project cost and project duration have conflicting relation 

where one increases when the other decreases. Also, the amount of the resource used for 
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each activity increases when an attempt is made to reduce the activity duration. Thus, it 

can be seen that activity crash contributes to increase in resource use peak. And, there is 

a higher chance of obtaining better resource leveling index when less number of activity 

durations are reduced by fewer days.  

The preferences of minimizing the three objective values were pre-integrated into 

the model, and 30 solutions were obtained as a result of 100 generations. During the 

optimization process, hyper volume was calculated for each generation. Hyper volume is 

the volume of the space in the search space that is dominated by the Pareto optimal 

solutions. This presents a quantified measurement of improvements of best solutions as 

seen in the first figure on page 54. Although the model was run for 100 times, the 

algorithm started to generate the same or similar solutions from 80th generation. Because 

of high chances of mutation and crossover, high variability was observed until the 

generation approached 80 when the changes decreased gradually and stayed almost the 

same. 
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Figure 25 Hypervolume by generation runs 

 

In Appendix B, actual solution data on chromosome, duration, cost and resource 

leveling index are attached. The solutions are visualized in the 3-dimension space as in 

Figure 25. The three axes denote project cost, project duration, and resource leveling 

index of solutions.  

Figure 26 demonstrates time-cost tradeoff for this scheduling problem. Figures 

27 and 28 show duration-resource leveling tradeoff and cost-resource leveling tradeoff, 

respectively. In general, project cost and project duration are conflicting since project 

cost tends to become greater when the project duration becomes shorter by using 

reduced activity durations instead of normal activity durations. Also, better resource 
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leveling index is obtained when project duration becomes longer. However, seen from 

the Figure 29, resource leveling index becomes smaller (better resource leveling 

performed) when less total project cost is needed. This cost-resource leveling tradeoff is 

non-conflicting, indirect and can be interpreted by the relationship between project 

duration and resource leveling index. There is no direct relation between project cost and 

resource leveling in the problem. Resource leveling index is negatively influenced by the 

project duration, and activity durations determine activity costs too. Since the project 

duration and cost are in conflicting relation, both project cost and resource leveling 

index increase when project duration decreases. In Figure 30, resource allocation of a 

solution in the final population is shown.  

The distribution of solutions in the cost-duration tradeoff in Figure 26 differs 

from that of the bi-objective optimization in case 1. In case 1, only one solution exists 

for one construction duration. However, multiple solutions were found for one 

construction duration or cost. Wider range of solution was obtained by integrating 

resource leveling index in the optimization. Even inferior solutions in terms of cost and 

duration tradeoff could be selected when resource leveling index was superior. In 

Appendix A, detailed data on optimal solutions are given. The data includes 

chromosome, objective values, and resource allocation of the solutions. 
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Figure 26 Optimum solutions in 3-dimension 
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Figure 28 Duration-leveling tradeoff 
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Figure 29 Cost-leveling tradeoff 
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Figure 30 Resource allocation (blue: resource 1, green: resource2, red: resource 3) 
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6. SUMMARY AND CONCLUSION 

 

The Critical Path Method (CPM) was invented to achieve a higher level of 

scheduling coordination and has been in wide use for several decades. However, it is 

becoming obsolete because of limitations such as arithmetic complexity. Because using 

CPM for large construction projects requires excessive computational efforts, many 

methods have been developed based on traditional CPM. Most of these efforts were to 

develop heuristic scheduling methods because of its simple format effectively 

overcomes the computational complexity. Also, heuristic methods are usable for 

scheduling large and complex construction projects. 

Like many heuristic methods, the optimization model in this thesis attempts to 

solve a complex scheduling problem with multiple objectives. The proposed model goes 

a step further and attempts to achieve a simultaneous optimization in terms of three 

objectives, whereas previous approaches used sequential optimization processes. 

Expected benefits by enabling a simultaneous optimization include more thorough 

search space exploration, wider range of optimal solutions, and better performance of a 

heuristic method as a decision support tool for complex construction scheduling 

problems. Thus, in the proposed scheduling model presented in this thesis, a new data 

structure was developed to enable an integrated optimization process. Also, a search 

space normalization method and external archive were used to avoid scaling deficiencies 

and to prevent solutions from disappearing. 
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Since every objective was integrated when solutions were generated, the model 

was able to find all existing tradeoffs between the three objectives in the scheduling 

problems. Thus, compared to similar attempts, the proposed model provided more 

thorough information; wider insight into the scheduling problem, and clear consequences 

of the solutions as illustrated in Figure 31. Alternative solutions generated by the 

existing models were very limited when compared to the proposed model. Since there is 

only one optimal solution for one project duration using traditional methods, a decision 

maker has to select and modify it before actually applying it.  

However, the proposed model provides multiple options that are optimal. For 

example, when the project has to be 51 days as shown in Figure 31, there are five 

alternative solutions. Within the five candidate solutions provided by the decision 

supporting tool, a decision maker can implement the optimal schedule according to his 

or her judgment between cost and resource use. This is a very important point for a 

decision maker since a decision can be made among alternative solutions that are non-

inferior to any other solution. 
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Figure 31 Demonstration of cost-duration tradeoff and obtainable resource leveling 
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7. FUTURE RESEARCH 

 

The algorithm associated with this research was developed to propose a 

methodology to generate multiple scheduling options considering objectives equally 

important. To achieve this however, the model generates schedules assuming there are 

unlimited resources available. Applied to real-world construction projects, this can 

generate schedules that are unrealistic. Therefore, taking into account that any 

construction scheduling has to be done under limited resource availability, the 

scheduling model in this thesis needs further development to represent real world 

scheduling problems. Resource-constrained scheduling optimization may be realized in 

future research by using the chromosome structure shown in Figure 32. In addition to 

reduced activity duration and the use of float, ordering chromosomes will be integrated 

into the model. Ordering the chromosome‟s function will determine the order of 

activities under limited resources. As such, the expectation is the generation of more 

realistic schedules. 

Reduced Activity Duration Ordering Use of Float 

2 1 3 4 2 1 1 3 2 4 5 6 10% 20% 5% 90% 15% 5% 
Figure 32 Proposed chromosome structure for future research 

 
In addition, more diverse activity relationships should be used in the model. This 

research uses the dominate Finish-to-Start relationship between construction activities. 

In typical construction schedules, there are also Start-to-Start, Start-to-Finish, and 

Finish-to-Finish relations. By including these relationships, real-world construction 

scheduling problems can be optimized by the proposed modeling approach. 
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APPENDIX A 

 

solution 

Chromosome Result 

Reduced Activity Duration Use of Float Duration Cost RLI 

1 0 2 0 0 2 1 0 1 0 0.72 0.84 0.56 0.33 0.91 0.73 0.05 0.92 0.02 51 9810 14.85 

2 1 3 0 0 2 0 1 1 0 0.78 0.75 0.10 0.39 0.85 0.49 0.59 0.64 0.83 49 11080 15.36 

3 0 0 0 0 1 0 0 1 0 0.01 0.19 0.58 0.58 0.49 0.80 0.41 0.54 0.51 54 7930 12.62 

4 1 1 0 0 2 1 0 1 0 0.42 0.97 0.13 0.56 0.42 0.22 0.00 0.47 0.93 51 9370 14.11 

5 1 0 0 0 2 0 0 0 0 0.52 0.84 0.72 0.74 0.10 0.34 0.87 0.71 0.33 53 8210 12.45 

6 1 2 0 0 2 1 1 1 0 0.33 0.93 0.69 0.28 0.80 0.24 0.82 0.26 0.48 50 10690 14.50 

7 1 0 0 0 0 0 0 1 0 0.45 0.72 0.87 0.74 0.88 0.73 0.53 0.89 0.55 54 7710 11.99 

8 0 0 0 0 1 1 0 1 0 0.38 0.02 0.81 0.47 0.46 0.37 0.90 0.33 0.57 54 8180 12.22 

9 0 0 0 0 1 0 0 0 0 0.31 0.88 0.41 0.46 0.11 0.91 0.08 0.35 0.28 55 7620 12.94 

10 0 1 0 0 0 0 0 1 0 0.22 0.23 0.47 0.69 0.17 0.97 0.80 0.49 0.97 54 8130 12.29 

11 1 1 0 0 2 0 0 1 0 0.80 0.88 0.68 0.75 0.94 0.39 0.39 0.72 0.14 51 9120 13.66 

12 1 2 0 0 1 1 0 1 0 0.65 0.98 0.28 0.69 0.99 0.23 0.96 0.08 0.86 51 9580 13.32 

13 1 1 0 0 0 0 0 1 0 0.30 0.93 0.61 0.50 0.84 0.95 0.49 0.29 0.35 53 8310 12.68 

14 1 2 0 0 2 0 0 1 0 0.32 0.73 0.58 0.17 0.06 0.88 0.88 0.43 0.89 50 9740 14.19 

15 1 2 0 0 2 1 1 0 0 0.50 0.19 0.83 0.27 0.28 0.75 0.80 0.51 0.56 51 10380 14.34 

16 1 0 0 0 1 0 0 1 0 0.97 0.90 0.52 0.50 0.43 0.30 0.77 0.07 0.35 53 8110 11.94 

17 1 0 0 0 2 0 0 1 0 0.60 0.86 0.02 0.39 0.80 0.18 0.57 0.95 0.33 52 8520 12.77 

18 0 2 0 0 1 0 0 1 0 0.75 0.93 0.76 0.34 0.61 0.19 0.82 0.49 0.89 52 9150 13.44 

19 0 1 0 0 0 0 0 0 0 0.22 0.85 0.40 0.24 0.49 0.86 0.43 0.90 0.57 55 7820 12.35 

20 1 3 0 0 2 0 0 1 0 0.61 0.78 0.46 0.42 0.57 0.98 0.96 0.09 0.94 49 10380 14.77 

21 1 3 0 0 2 0 0 1 0 0.23 0.74 0.18 0.67 0.69 0.30 0.93 0.38 0.30 49 10380 14.77 
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solution 

Chromosome Result 

Reduced Activity Duration Use of Float Duration Cost RLI 

22 1 3 0 0 2 0 0 1 0 0.81 0.42 0.59 0.38 0.80 0.42 0.97 0.75 0.77 49 10380 14.77 

23 1 3 0 0 2 0 0 1 0 0.46 0.92 0.93 0.91 0.16 0.94 0.98 0.13 0.84 49 10380 14.77 

24 1 3 0 0 2 0 0 1 0 0.79 0.31 0.69 0.03 0.47 0.80 0.96 0.58 0.99 49 10380 14.77 

25 1 3 0 0 2 0 0 1 0 0.36 0.44 0.06 0.33 0.61 0.39 0.95 0.58 0.44 49 10380 14.77 

26 1 3 0 0 2 0 0 1 0 0.64 0.66 0.86 0.39 0.92 0.39 0.92 0.51 0.93 49 10380 14.77 

27 1 0 0 0 0 0 0 0 0 0.43 0.35 0.78 0.03 0.48 0.40 0.99 0.27 0.44 55 7400 10.53 

28 0 0 0 0 0 0 0 0 0 0.53 0.78 0.16 0.38 0.28 0.20 0.80 0.95 0.88 56 7220 10.71 

29 1 3 0 0 2 0 0 1 0 0.62 0.78 0.64 0.16 0.09 0.63 0.93 0.24 0.19 49 10380 14.77 

30 1 3 0 0 2 0 0 1 0 0.26 0.70 0.80 1.00 0.99 0.25 0.93 0.68 0.10 49 10380 14.77 
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APPENDIX C 

 

Main file 

clear all 
close all 
clc 

  
% Variable setting 

  
tournamentSize = 10; 
r_num_comp=5; 
pop=100; 
pool_size=pop; 
tour_size=3; 
gen=500; 
cross_rate=0.9; 
mutation_rate=0.5; 
n_solution=30; 
M=3; 
V=18; 
% sharing 1 is abs comparison, 2 is m comparison 
sharing=1; 
ut=2; 

  
% for duration, cost and leveling index, ancor points are found 
durationPF 
costPF 
levelingPF 
% step 1 - find anchor points 
anchor_cost 
anchor_duration 
anchor_leveling 
%step 2 - objective mapping 

  

utopia=[elite_duration,elite_cost,elite_leveling]; 
anchors=[anchor_duration;anchor_cost;anchor_leveling]; 

  

  
max_its_duration=max(anchors(:,1)); 
max_its_cost=max(anchors(:,2)); 
max_its_leveling=max(anchors(:,3)); 

  
l_1= max_its_duration-elite_duration; 
l_2= max_its_cost-elite_cost; 
l_3= max_its_leveling-elite_leveling; 

  
% inital scheduling poopulation is generated 
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problem_setting 
initialize_va 

  
% space ormalization is performed 
normalized=[population,(result_duration-elite_duration)/l_1,(plus_cost-

elite_cost)/l_2,(leveling_idx'-elite_leveling)/l_3]; 

  
nor_anchor_cost=[(max_its_duration-elite_duration)/l_1,0]; 
nor_anchor_duration=[0,(max_its_cost-elite_cost)/l_2]; 
nor_anchor_leveling=[0,0,(max_its_leveling-elite_leveling)/l_3]; 

  

  

  

  
clear plus_cost 
clear result_duration 
clear population 
clear new_population 
clear xoverKids 

  
r_num_comp=3; 
pop=100 
pool_size=pop; 
tour_size=3; 
gen=200; 
cross_rate=0.9; 
M=3; 
V=18; 

  
% sharind redius is defined 
sharing=1; 
% Before generation loop is started, initial population is generated 

again 
problem_setting 
initialize_va 

  
% Individuals in the population are normalized using the outcome 

obtained 
% from anchor point search 
norm_result_duration=(result_duration-elite_duration)/l_1; 
norm_plus_cost=(plus_cost-elite_cost)/l_2; 
norm_leveling=(leveling_idx-elite_leveling)/l_3; 

  

  
result_duration=norm_result_duration; 
plus_cost=norm_plus_cost; 
leveling_idx=norm_leveling; 

  
% to the population, the results are attached for coding convenience 
chromosome=[population,result_duration,plus_cost,leveling_idx']; 
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% Non-dominated solutions are selected from population and sent to 

external 
% archive 
chromosome_sort = non_domination_sort_mod(chromosome); 
g=find(chromosome_sort(:,end-1)==1); 
for i=1:size(g,1) 
gt1(i)=chromosome_sort(i,end-4); 
gt2(i)=chromosome_sort(i,end-3); 
gt3(i)=chromosome_sort(i,end-2); 
end     
external=chromosome_sort(g,:) 

  
% generation run starts 
for ut=1:gen 

  
    if ut~=1 
norm_result_duration=(result_duration-elite_duration)/l_1; 
norm_plus_cost=(plus_cost-elite_cost)/l_2; 
norm_leveling=(leveling_idx-elite_leveling)/l_3; 

  
result_duration=norm_result_duration; 
plus_cost=norm_plus_cost;   
leveling_idx=norm_leveling; 

  

not_sorted=[population,result_duration,plus_cost,leveling_idx']; 
chromosome_sort = non_domination_sort_mod(not_sorted); 
g=find(chromosome_sort(:,end-1)==1); 
external=[external;chromosome_sort(g,:)]; 
    end 

     

  
if ut==gen 
g=find(chromosome_sort(:,end-1)==1); 
for i=1:size(g,1) 
gt1(i)=chromosome_sort(i,end-4); 
gt2(i)=chromosome_sort(i,end-3); 
gt3(i)=chromosome_sort(i,end-2); 
end 

  
% best solutions are sent to external archive 
external_pareto=non_domination_sort_mod(external(:,1:end-2)); 
h=find(external_pareto(:,end-1)==1); 
external_to_pool=external_pareto(h,:); 

  
for i=1:size(h,1) 
ht1(i)=external_pareto(i,end-4); 
ht2(i)=external_pareto(i,end-3); 
ht3(i)=external_pareto(i,end-2); 
end 

  

  
end 
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iu=1; 
while iu<pop+1 
% pareto domination tournament selection starts 
jj=find(chromosome_sort(:,end-1)<=4); 
chromosome_high_rank=chromosome_sort(jj,:); 
high_rank_duration=chromosome_high_rank(:,end-3); 
high_rank_plus_cost=chromosome_high_rank(:,end-2); 

  

     

  
r_num_indi=randsample(size(jj,1),2); 
candidate=chromosome_high_rank(r_num_indi,:); 
%candidate and comparison set define 
candidate_duration=chromosome_high_rank(r_num_indi,end-3); 
candidate_cost=chromosome_high_rank(r_num_indi,end-2); 

  
comparison_count=randsample(size(jj,1),r_num_comp); 
comparison_duration=chromosome_high_rank(comparison_count,end-3); 
comparison_cost=chromosome_high_rank(comparison_count,end-2); 

  

  

  
% candidate 1 comparison 
a=length(find(candidate_duration(1)>comparison_duration)); 
b=length(find(candidate_cost(1)>comparison_cost)); 
% candidate 2 comparison 
c=length(find(candidate_duration(2)>comparison_duration)); 
d=length(find(candidate_cost(2)>comparison_cost)); 

  

if a==0 & b==0 
    if c~=0 | d~=0   
        new_population(iu,:)=candidate(1,:); 
% chromosome_high_rank(r_num_indi(1),:)=[]; 
        iu=iu+1; 
    else 

  

    sharing_r 

  
    iu=iu+1; 
   end 

     
elseif a~=0 | b~=0 
    if c==0 && d==0 
        new_population(iu,:)=candidate(2,:); 
        iu=iu+1; 
    else 

            
    sharing_r 
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    iu=iu+1; 
   end 
    end 
end 

  
%crossover operator 
nKids = pop; 
iq=1; 
while iq<nKids+1 

     
    if rand()>=cross_rate 
      xoverKids(iq,:)=new_population(iq,1:end-5) 
      iq=iq+1; 
    else 
    % get parents 
    parent1 = new_population(iq,1:end-5); 

  

    if iq~=pop 
    parent2 = new_population(iq+1,1:end-5); 
    end 

     
    p2num=iq+1; 

  
    % cut point 
    xOverPoint = ceil(rand * (size(taskprecedence,1) - 1)); 
    % make one child 

  
    xoverKids(iq,:)    = [ parent1(1:xOverPoint),parent2((xOverPoint + 

1 ):  

size(taskprecedence,1) ),parent1((size(taskprecedence,1)+1):(size(taskp

recedence,1))+xOverPoint),parent2((size(taskprecedence,1)+1)+xOverPoint

:end)]; 
    xoverKids(p2num,:) = [ parent2(1:xOverPoint),parent1((xOverPoint + 

1 ):  

size(taskprecedence,1) ),parent2((size(taskprecedence,1)+1):(size(taskp

recedence,1))+xOverPoint),parent1((size(taskprecedence,1)+1)+xOverPoint

:end)]; 
    iq=iq+2; 
        end 
end 

  
% mutation 
for iu=1:size(xoverKids,1) 
    if rand()>=mutation_rate 
        xoverKids(iu,:)=xoverKids(iu,:); 
    else 
        mutation_point=ceil(rand() * (size(taskprecedence,1) - 1)); 
        xoverKids(iu,mutation_point)=ceil(rand() * 

(maxreduc(mutation_point) - 1)); 
        xoverKids(iu,mutation_point+size(taskprecedence,1))=rand; 
    end 
end 
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problem_setting 
for ixo=1:pop 
population(ixo)=xoverKids(ixo); 
end 
initialize_va 

  

  
end 

  

  

  
% Pareto optimal solutions are denormalized 
tt1=ht1*l_1+elite_duration 
tt2=ht2*l_2+elite_cost 
tt3=ht3*l_3+elite_leveling 

  

  

problem_setting.m 

 
 

  
%problem setting 
taskduration   = [6;19;15;9;14;13;14;8;9]; 
taskprecedence = [0  0  0  0  0  0  0  0  0;... 
    1  0  0  0  0  0  0  0  0;... 
    1  0  0  0  0  0  0  0  0;... 
    1  0  0  0  0  0  0  0  0;... 
    0  1  1  0  0  0  0  0  0;... 
    0  0  1  1  0  0  0  0  0;... 
    0  1  0  0  0  0  0  0  0;... 
    0  0  0  0  1  1  0  0  0;... 
    0  0  0  0  1  0  1  1  0;]; 

  

  

  
maxreduc    = [1;3;0;0;2;1;1;1;0]; 
    activity_cost_1 = [300;2000;420;450;1050;600;1200;640;560]; 
    activity_cost_2 = [480;2600;420;450;1450;850;1900;950;560]; 
    activity_cost_3 = [480;3220;420;450;1860;850;1900;950;560]; 
    activity_cost_4 = [480;3860;420;450;1860;850;1900;950;560]; 
activity_cost= 

[activity_cost_1,activity_cost_2,activity_cost_3,activity_cost_4]; 

  

    resource_1_0day=[3;3;5;4;1;3;3;6;5] 
    resource_1_1day=[5;4;5;4;1;4;3;6;5] 
    resource_1_2day=[5;5;5;4;1;4;3;6;5] 
    resource_1_3day=[5;6;5;4;1;4;3;6;5] 
resource_1=[resource_1_0day,resource_1_1day,resource_1_2day,resource_1_

3day]; 
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    resource_2_0day=[4;1;2;5;5;6;2;3;5] 
    resource_2_1day=[4;2;2;5;5;6;3;4;5] 
    resource_2_2day=[4;3;2;5;5;6;3;4;5] 
    resource_2_3day=[4;4;2;5;5;6;3;4;5] 
resource_2=[resource_2_0day,resource_2_1day,resource_2_2day,resource_2_

3day]; 

  
    resource_3_0day=[5;1;4;2;2;5;5;2;5] 
    resource_3_1day=[5;2;4;2;4;6;6;3;5] 
    resource_3_2day=[5;3;4;2;6;6;6;3;5] 
    resource_3_3day=[5;4;4;2;6;6;6;3;5] 
resource_3=[resource_3_0day,resource_3_1day,resource_3_2day,resource_3_

3day]; 

  

  
tot_duration = 0; 
num_pre=zeros(size(taskprecedence,1),2); 
pre_activity=zeros(size(taskprecedence,1),size(taskprecedence,1)); 

  
est = zeros(size(taskprecedence,1),1); 
eft = zeros(size(taskprecedence,1),1); 
lst = zeros(size(taskprecedence,1),1); 
lft = zeros(size(taskprecedence,1),1); 
c_p = zeros(size(taskprecedence,1),1); 
inde = zeros(1,size(taskprecedence,1)); 

  
% output setting 
plus_cost=zeros(1,pop); 
result_duration=zeros(1,pop); 

  

% initialize 
for ik=1:pop 
for cr=1:size(maxreduc) 
    if maxreduc(cr)==0 
       cromosome_s(cr)=0; 
    end 
    if maxreduc(cr)~=0 
       cromosome_s(cr) = round((rand(1,1) * maxreduc(cr)) + 0); 
    end 
end 

  
population(ik,:)=[cromosome_s,rand(1,size(maxreduc))]; 
end 

 

 

initialize_va.m 

 

 
 
plus_cost=zeros(pop,1); 
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for i=1:pop 
    plus_cost(i)=0; 
    for j=1:size(population,2)/2 
        plus_cost(i)=plus_cost(i)+activity_cost(j,(population(i,j)+1)); 
    end 
end 

  
for kk=1:pop 
new_duration(kk,:)=taskduration-population(kk,1:size(population,2)/2)';     
end 

  

  
resource_cumul_1=zeros(pop,70); 
resource_cumul_2=zeros(pop,70); 
resource_cumul_3=zeros(pop,70); 
resource_cumul_total=zeros(pop,70); 
% early duration 
result_duration=zeros(pop,1); 
for iu=1:pop 
t=0; 
%find number of predecessor 
for i=1:size(taskprecedence,1)%18 
    i; 
    num_pre(i,1) = i; 
    num_pre(i,2) = length(find(taskprecedence(i,:)==1)); 

     
    %no predecessor 
    if(num_pre(i,2)==0) 
    est(i,1)=0; 
    eft(i,1)=est(i,1)+new_duration(iu,i); 
    t=t+1; 
    end 

     
    %predecessor exist 
    if(num_pre(i,2)~=0) 
        i; 
    tem = zeros(1,size(taskprecedence,1));  
    tem = taskprecedence(i,:); 
    c = find(tem==1); 

     
    c; 

  
    est(i,1) = max(eft(c)); 
    eft(i,1) = est(i,1) + new_duration(iu,i); 
    end 
end 
result_duration(iu)=max(eft); 

  

  



88 
 

 

%late duration 
    lft = zeros(size(taskprecedence,1),1); 
    for i=size(taskprecedence,1):-1:1 

         
        num_succ(i,1) = i; 
        num_succ(i,2) = length(find(taskprecedence(:,i)==1)); 

  
        if (num_succ(i,2)==0) 
        final_activity=find(eft==result_duration(iu)); 
        lft(i,1)=eft(final_activity); 
        lst(i,1)=eft(final_activity)-new_duration(iu,final_activity); 

         
        elseif (num_succ(i,2)~=0) 

         
        tem2 = taskprecedence(:,i); 
        c2 = find(tem2==1); 

         

        lft(i,1)=min(lst(c2)); 
        lst(i,1)=lft(i,1) - new_duration(iu,i); 
        end 
    end 
    iu; 
    total_float=[lft-eft]'; 
    

use_float(iu,:)=round(total_float.*population(iu,size(population,2)/2+1

:end)); 
    start_date(iu,:)=est'+use_float(iu,:); 

  

  
if ut==1 
    init_resource_cumul_1=zeros(pop,70); 
    init_resource_cumul_2=zeros(pop,70); 
    init_resource_cumul_3=zeros(pop,70); 
    init_resource_cumul_total=zeros(pop,70); 

     
    for k=1:size(taskprecedence,1) 
        resource_1_crash(k)=resource_1(k,population(iu,k)+1); 
    end 

     
    for l=1:size(taskprecedence,1) 

  
        for aaa=start_date(iu,l)+1:start_date(iu,l)+new_duration(iu,l) 
        

init_resource_cumul_1(iu,aaa)=init_resource_cumul_1(iu,aaa)+resource_1_

crash(l); 

  
        end 
    end 

  
    for k=1:size(taskprecedence,1) 
        resource_2_crash(k)=resource_2(k,population(iu,k)+1); 
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    end 

     
    for l=1:size(taskprecedence,1) 

  
        for aaa=start_date(iu,l)+1:start_date(iu,l)+new_duration(iu,l) 
        

init_resource_cumul_2(iu,aaa)=init_resource_cumul_2(iu,aaa)+resource_2_

crash(l); 

  
        end 
    end 

     

  
    for k=1:size(taskprecedence,1) 
        resource_3_crash(k)=resource_3(k,population(iu,k)+1); 
    end 

     
    for l=1:size(taskprecedence,1) 

  
        for aaa=start_date(iu,l)+1:start_date(iu,l)+new_duration(iu,l) 
        

init_resource_cumul_3(iu,aaa)=init_resource_cumul_3(iu,aaa)+resource_3_

crash(l); 

  

        end 
    end 
    

init_resource_cumul_total(iu,:)=init_resource_cumul_1(iu,:)+init_resour

ce_cumul_2(iu,:)+init_resource_cumul_3(iu,:); 
    

init_leveling_idx(iu)=std(init_resource_cumul_1(iu,:))+std(init_resourc

e_cumul_2(iu,:))+std(init_resource_cumul_3(iu,:)); 

  

  
else 
    for k=1:size(taskprecedence,1) 
        resource_1_crash(k)=resource_1(k,population(iu,k)+1); 
    end 

     
    for l=1:size(taskprecedence,1) 

  
        for aaa=start_date(iu,l)+1:start_date(iu,l)+new_duration(iu,l) 
        

resource_cumul_1(iu,aaa)=resource_cumul_1(iu,aaa)+resource_1_crash(l); 

  

        end 
    end 

  
    for k=1:size(taskprecedence,1) 
        resource_2_crash(k)=resource_2(k,population(iu,k)+1); 
    end 
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    for l=1:size(taskprecedence,1) 

  

        for aaa=start_date(iu,l)+1:start_date(iu,l)+new_duration(iu,l) 
        

resource_cumul_2(iu,aaa)=resource_cumul_2(iu,aaa)+resource_2_crash(l); 

  
        end 
    end 

     

  
    for k=1:size(taskprecedence,1) 
        resource_3_crash(k)=resource_3(k,population(iu,k)+1); 
    end 

     
    for l=1:size(taskprecedence,1) 

  
        for aaa=start_date(iu,l)+1:start_date(iu,l)+new_duration(iu,l) 
        

resource_cumul_3(iu,aaa)=resource_cumul_3(iu,aaa)+resource_3_crash(l); 

  
        end 
    end 
    

resource_cumul_total(iu,:)=resource_cumul_1(iu,:)+resource_cumul_2(iu,:

)+resource_cumul_3(iu,:); 
   

leveling_idx(iu)=std(resource_cumul_1(iu,:))+std(resource_cumul_2(iu,:)

)+std(resource_cumul_3(iu,:)); 
end 

  

  

  
  w_i=resource_cumul_1(k,:); 
  x_i=resource_cumul_2(k,:); 
  y_i=resource_cumul_3(k,:); 
  z_i=resource_cumul_total(k,:); 
  plot(w_i,'DisplayName','w','YDataSource','w');hold 

all;plot(x_i,'DisplayName','x','YDataSource','x');plot(y_i,'DisplayName

','y','YDataSource','y');plot(z_i,'DisplayName','z','YDataSource','z');

hold off;figure(gcf); 
   xlabel('Time') 
   ylabel('Resource') 

  
end 

 

 

durationPF.m 
 
problem_setting 



91 
 

 

initialize_va 

  
subplot(1,1,1) 
scatter(result_duration, plus_cost, 'DisplayName', 'plus_cost vs 

result_duration', 'XDataSource', 'result_duration', 'YDataSource', 

'plus_cost'); figure(gcf) 
xlabel('Conctruction Period(days)') 
ylabel('Added Cost') 
title('Initial Population') 

  
elite_duration=min(result_duration); 

  
for ut=1:gen 

  

    

     
chromosome=[population,result_duration,plus_cost,leveling_idx']; 

  
candidate_elite_duration=min(chromosome(:,end-2)); 
candidate_elite=chromosome(find(chromosome(:,end-

2)==candidate_elite_duration),:); 
if candidate_elite_duration<=elite_duration 
    elite_duration=candidate_elite_duration; 
    elite=candidate_elite(1,:); 
end 
elite_duration_list(ut,:)=elite; 

  
subplot(1,1,1) 

  
playerlist = ceil(10 * rand(pop/2-1,tournamentSize)); 

  

playerSize = size(playerlist,1); 

  
for i = 1:playerSize 
    players = chromosome(playerlist(i,:),:); 
    players_duration=players(:,end-2); 

  

    winner = players(1,:); % Assume that the first player is the winner 
    for j = 2:size(players,1) % Winner plays against each other 

consecutively 
        score1 = winner(end); 
        score2 = players_duration(j); 
        if score2(1) < score1(1)  
            winner = players(j,:); 
        elseif score2(1) == score1(1) 
            try % socre(2) may not be present for single objective 

problems 
                if score2(2) < score1(2) 
                    winner = players(j,:); 
                end 
            catch 
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            end 
        end 
    end 
    champions(i,:) = winner; 
end 
champions_plus = [champions;elite]; 

  
%crossover operator 
new_population=[champions;elite]; 
nKids = pop/2; 
% xoverKids = zeros(nKids,size(taskprecedence,1)); 
iq=1; 
while iq<nKids 

     
    if rand()>=cross_rate 
      xoverKids(iq,:)=new_population(iq,1:end-3) 
      iq=iq+1; 
    else 
    % get parents 
    parent1 = new_population(iq,1:end-3) 

  
    parent2 = new_population(iq+1,1:end-3) 
    p2num=iq+1; 

  

    % cut point 
    xOverPoint = ceil(rand(1,1) * (size(taskprecedence,1) - 1)); 
    % make one child 
    xoverKids(iq,:)    = [ parent1(1:xOverPoint),parent2((xOverPoint + 

1 ):  

size(taskprecedence,1) ),parent1((size(taskprecedence,1)+1):(size(taskp

recedence,1))+xOverPoint),parent2((size(taskprecedence,1)+1)+xOverPoint

:end)]; 
    xoverKids(p2num,:) = [ parent2(1:xOverPoint),parent1((xOverPoint + 

1 ):  

size(taskprecedence,1) ),parent2((size(taskprecedence,1)+1):(size(taskp

recedence,1))+xOverPoint),parent1((size(taskprecedence,1)+1)+xOverPoint

:end)]; 
    iq=iq+2; 
    end 
end 

  
% mutation 
for iu=1:size(xoverKids,1) 
    if rand()>=mutation_rate 
        xoverKids(iu,:)=xoverKids(iu,:); 
    else 
        mutation_point=ceil(rand() * (size(taskprecedence,1) - 1)); 
        xoverKids(iu,mutation_point)=ceil(rand() * 

(maxreduc(mutation_point) - 1)); 
        xoverKids(iu,mutation_point+size(taskprecedence,1))=rand; 
    end 
end 
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problem_setting 
for ixo=1:pop 
population(ixo)=xoverKids(ixo); 
end 
population=[xoverKids;champions_plus(:,1:end-3)]; 
if size(population,1)==99 |size(population,1)==999 
    population=[population;elite(1:end-3)]; 
end 
initialize_va 

  
end 
tt=elite_duration_list(find(elite_duration_list(:,end-

2)==min(elite_duration_list(:,end-2))),:) 
its_cost=max(tt(:,end-1)) 
its_leveling=max(tt(:,end)) 
anchor_duration=[elite_duration,its_cost,its_leveling] 

  

  

 

costPF.m 

 
 

  
problem_setting 
initialize_va 

  

  

elite_cost=min(plus_cost); 

  

  
for ut=1:gen 

  

   

     
chromosome=[population,result_duration,plus_cost,leveling_idx']; 

  
candidate_elite_cost=min(chromosome(:,end-1)); 
candidate_elite=chromosome(find(chromosome(:,end-

1)==candidate_elite_cost),:); 
if candidate_elite_cost<=elite_cost 
    elite_cost=candidate_elite_cost; 
    elite=candidate_elite(1,:); 
end 

  
elite_cost_list(ut,:)=elite; 
%  
subplot(1,1,1) 
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scatter(elite(end-1),elite(end),  'DisplayName', 'plus_cost vs 

result_duration', 'XDataSource', 'result_duration', 'YDataSource', 

'plus_cost'); figure(gcf) 
% hold on; 

  
%tournament selection 

  

  
% Choose the players 
playerlist = ceil(10 * rand(pop/2-1,tournamentSize)); 
% Play tournament 

  
playerSize = size(playerlist,1); 
% champions = zeros(1,playerSize); 
% For each set of players 
for i = 1:playerSize 
    players = chromosome(playerlist(i,:),:); 
    players_cost=players(:,end-1); 
    % For each tournament 
    winner = players(1,:); % Assume that the first player is the winner 
    for j = 2:size(players,1) % Winner plays against each other 

consecutively 
        score1 = winner(end); 
        score2 = players_cost(j); 
        if score2(1) < score1(1)  
            winner = players(j,:); 
        elseif score2(1) == score1(1) 
            try % socre(2) may not be present for single objective 

problems 
                if score2(2) < score1(2) 
                    winner = players(j,:); 
                end 
            catch 
            end 
        end 
    end 
    champions(i,:) = winner; 
end 
champions_plus = [champions;elite]; 

  
%crossover operator 
new_population=[champions;elite]; 
nKids = pop/2; 
% xoverKids = zeros(nKids,size(taskprecedence,1)); 
iq=1; 
while iq<nKids 

     
    if rand()>=cross_rate 
      xoverKids(iq,:)=new_population(iq,1:end-3); 
      iq=iq+1; 
    else 
    % get parents 
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    parent1 = new_population(iq,1:end-3); 

  
    parent2 = new_population(iq+1,1:end-3); 
    p2num=iq+1; 

  
    % cut point 
    xOverPoint = ceil(rand(1,2) * (size(taskprecedence,1) - 1)); 
    % make one child 
    xoverKids(iq,:)    = [ parent1(1:xOverPoint),parent2((xOverPoint + 

1 ):  

size(taskprecedence,1) ),parent1((size(taskprecedence,1)+1):(size(taskp

recedence,1))+xOverPoint),parent2((size(taskprecedence,1)+1)+xOverPoint

:end)]; 
    xoverKids(p2num,:) = [ parent2(1:xOverPoint),parent1((xOverPoint + 

1 ):  

size(taskprecedence,1) ),parent2((size(taskprecedence,1)+1):(size(taskp

recedence,1))+xOverPoint),parent1((size(taskprecedence,1)+1)+xOverPoint

:end)];    iq=iq+2; 

  
        end 
end 

  
% mutation 
for iu=1:size(xoverKids,1) 
    if rand()>=mutation_rate 
        xoverKids(iu,:)=xoverKids(iu,:); 
    else 
        mutation_point=ceil(rand() * (size(taskprecedence,1) - 1)); 
        xoverKids(iu,mutation_point)=ceil(rand() * 

(maxreduc(mutation_point) - 1)); 
        xoverKids(iu,mutation_point+size(taskprecedence,1))=rand; 
    end 
end 

  

  

  
problem_setting 
for ixo=1:pop 
population(ixo)=xoverKids(ixo); 
end 
population=[xoverKids;champions_plus(:,1:end-3)]; 
if size(population,1)==99 |size(population,1)==999 
    population=[population;elite(1:end-3)]; 
end 
initialize_va 

  

  
end 

  
tt=elite_cost_list(find(elite_cost_list(:,end-

1)==min(elite_cost_list(:,end-1))),:); 
its_duration=max(tt(:,end-2)); 
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its_leveling=max(tt(:,end)); 
anchor_cost=[its_duration,elite_cost,its_leveling]; 

 

 

levelingPF.m 

 
 

  

  

problem_setting 
initialize_va 

  
subplot(1,1,1) 
scatter(result_duration, plus_cost, 'DisplayName', 'plus_cost vs 

result_duration', 'XDataSource', 'result_duration', 'YDataSource', 

'plus_cost'); figure(gcf) 
xlabel('Conctruction Period(days)') 
ylabel('Added Cost') 
title('Initial Population') 

  
elite_leveling=min(leveling_idx); 

  

  
for ut=1:gen 

  

  
chromosome=[population,result_duration,plus_cost,leveling_idx']; 

  
candidate_elite_leveling=min(chromosome(:,end)); 
candidate_elite=chromosome(find(chromosome(:,end)==candidate_elite_leve

ling),:); 
if candidate_elite_leveling<=elite_leveling 
    elite_leveling=candidate_elite_leveling; 
    elite=candidate_elite(1,:); 
end 
elite_leveling_list(ut,:)=elite; 

  

subplot(1,1,1) 
scatter(elite(end-1),elite(end),  'DisplayName', 'plus_cost vs 

result_duration', 'XDataSource', 'result_duration', 'YDataSource', 

'plus_cost'); figure(gcf) 

  

  
% Choose the players 
playerlist = ceil(10 * rand(pop/2-1,tournamentSize)); 
% Play tournament 

  
playerSize = size(playerlist,1); 
% champions = zeros(1,playerSize); 
% For each set of players 
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for i = 1:playerSize 
    players = chromosome(playerlist(i,:),:); 
    players_leveling=players(:,end); 
    % For each tournament 
    winner = players(1,:); % Assume that the first player is the winner 
    for j = 2:size(players,1) % Winner plays against each other 

consecutively 
        score1 = winner(end); 
        score2 = players_leveling(j); 
        if score2(1) < score1(1)  
            winner = players(j,:); 
        elseif score2(1) == score1(1) 
            try % socre(2) may not be present for single objective 

problems 
                if score2(2) < score1(2) 
                    winner = players(j,:); 
                end 
            catch 
            end 
        end 
    end 
    champions(i,:) = winner; 
end 
champions_plus = [champions;elite]; 

  

%crossover operator 
new_population=[champions;elite]; 
nKids = pop/2; 
iq=1; 
while iq<nKids 

     
    if rand()>=cross_rate 
      xoverKids(iq,:)=new_population(iq,1:end-3); 
      iq=iq+1; 
    else 
    % get parents 
    parent1 = new_population(iq,1:end-3); 

  
    parent2 = new_population(iq+1,1:end-3); 
    p2num=iq+1; 

  
    % cut point 
    xOverPoint = ceil(rand(1,2) * (size(taskprecedence,1) - 1)); 
    % make one child 
    xoverKids(iq,:)    = [ parent1(1:xOverPoint),parent2((xOverPoint + 

1 ):  

size(taskprecedence,1) ),parent1((size(taskprecedence,1)+1):(size(taskp

recedence,1))+xOverPoint),parent2((size(taskprecedence,1)+1)+xOverPoint

:end)]; 
    xoverKids(p2num,:) = [ parent2(1:xOverPoint),parent1((xOverPoint + 

1 ):  

size(taskprecedence,1) ),parent2((size(taskprecedence,1)+1):(size(taskp
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recedence,1))+xOverPoint),parent1((size(taskprecedence,1)+1)+xOverPoint

:end)];    iq=iq+2; 

  
        end 
end 

  
% mutation 
for iu=1:size(xoverKids,1) 
    if rand()>=mutation_rate 
        xoverKids(iu,:)=xoverKids(iu,:); 
    else 
        mutation_point=ceil(rand() * (size(taskprecedence,1) - 1)); 
        xoverKids(iu,mutation_point)=ceil(rand() * 

(maxreduc(mutation_point) - 1)); 
        xoverKids(iu,mutation_point+size(taskprecedence,1))=rand; 
    end 
end 

  

  

  
problem_setting 
for ixo=1:pop 
population(ixo)=xoverKids(ixo); 
end 
population=[xoverKids;champions_plus(:,1:end-3)]; 
if size(population,1)==99 |size(population,1)==999 
    population=[population;elite(1:end-3)]; 
end 
initialize_va 

  
end 
tt=elite_leveling_list(find(elite_leveling_list(:,end)==min(elite_level

ing_list(:,end))),:); 
its_cost=max(tt(:,end-1)); 
its_duration=max(tt(:,end-2)); 
anchor_leveling=[its_duration,its_cost,elite_leveling]; 

  

 

sharing.m 
 
shared_dist=0.5; 

  

  
candidate_1=candidate(1,:); 
candidate_2=candidate(2,:); 

  
result_duration=chromosome_sort(:,end-3); 
plus_cost=chromosome_sort(:,end-2); 

  
m_1=0; 
for is=1:pop 
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   dist_1=sqrt(((candidate_duration(1)-

result_duration(is))/10)^2+((candidate_cost(1)-plus_cost(is))/1)^2); 

  
   if dist_1==0 
   sh_1=1;     
   elseif dist_1<shared_dist 
   sh_1=1-dist_1/shared_dist;     
   else 
   sh_1=0; 
   end 
   m_1=m_1+sh_1; 
end 
deg_duration_1=candidate_duration(1)/m_1; 
deg_cost_1=candidate_cost(1)/m_1; 
abs_dis_1=sqrt(((deg_duration_1-0)*2)^2+(deg_cost_1-0)^2); 

  
m_2=0; 
for iss=1:pop 
   dist_2=sqrt(((candidate_duration(2)-

result_duration(iss))/10)^2+((candidate_cost(2)-plus_cost(iss))/1)^2); 

    
   if dist_2==0 
       sh_2=1; 
   elseif dist_2<=shared_dist 
   sh_2=1-dist_2/shared_dist; 
   else 
   sh_2=0; 
   end 
   m_2=m_2+sh_2; 

  

  

end 
deg_duration_2=candidate_duration(2)/m_2; 
deg_cost_2=candidate_cost(2)/m_2; 
abs_dis_2=sqrt(((deg_duration_2-0)*2)^2+(deg_cost_2-0)^2); 

  
if abs_dis_2>=abs_dis_1  
    tt=candidate_1(1:end); 
    new_population(iu,:)=tt; 
else 
    tt=candidate_2(1:end); 
    new_population(iu,:)=tt; 
end 
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