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Abstract 
 

While the use of cardiovascular stents 
is internationally widespread re-stenosis 
remains a common problem. There are a 
number of different designs, and this 
project seeks for design improvements 
leading to a reduction in re-stenosis 
rates. The haemodynamics of the stent as 
used in a patient is viewed as one of the 
major concerns, and the authors have 
already applied Computational Fluid 
Dynamics in investigating this. In this 
more comprehensive study, however, the 
novel approach of applying two formal 
engineering design procedures is used, 
namely Genetic Algorithms (GA) and 
Robust Engineering Design (RED). In 
this paper, the two procedures are 
explained and compared in the context 
of their application to the design of 
stents. 
 

Introduction 
 
Design and science 

Engineering design can be viewed as 
an art and a science1, 2. By this it is 
meant that there are aspects of design 
process that rely upon learning by doing 
(art), and others concerned with 
developing method or procedure 
(science). The latter is the focus of this 
paper. 

Comparing scientific method with 
engineering design procedure draws out 
two important points: Firstly, the 
impetus for science is the thirst for 

knowledge and the impetus for design is 
the needs of society2. Secondly, in 
science problems are explored for their 
underlying rules, i.e. a problem-focused 
approach, whereas in design the quest is 
to suggest possible solutions, i.e. a 
solution-based approach3. In relation to 
cardiovascular stents this could be 
interpreted as 'scientific' activity 
concerned with understanding 
haemodynamics and 'design' activity 
concerned with employing this 
understanding in seeking to reduce rates 
of restenosis (Table 1). 

 
 impetus objective for stents 
science seek 

knowledge 
understand 
haemodynamics 

design satisfy 
demand 

reduce restenosis 

Table 1. Role of science and design in 
cardiovascular stent research 

 
Types of design problem 

Types of design problems may be 
described as original design, redesign or 
routine design4. 

Original design is concerned with 
radical new working principles or 
innovative features. 

The focus of redesign is on 
modifying an existing working principle 
or changing the arrangement of 
important features. 

Routine design is typified by the 
detail changes required to produce a new 
size within a common range of 
components. Thus the types of design 
problems are distinguished by the degree 
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of creative effort deployed on working 
principle as opposed to detailed 
refinements. In the context of this study 
stents are considered to be a redesign 
problem. This is by virtue of aiming to 
reduce restenosis through changes to the 
arrangement of important features of the 
stent rather than relying on a radically 
new working principle (Table 2). 

 
Original 
design 

Working principle = expanding 
structure that dilates the stenosis 
and allows blood to flow. 

Redesign Arrangement of structural 
elements in relation to 
interaction with artery wall 
and blood flow characteristics. 

Routine 
design 

Geometry values for different 
sizes of stent. 

Table 2. Stent design problem 
 
Design search 

The underlying rules uncovered in 
science are unique to certain aspects of 
the problem whereas in design there may 
be many solutions for satisfying a stated 
need. Thus the engineering design 
process is generally concerned with 
exploring design situations, exploring 
the problem structure, searching for 
ideas and evaluating solutions5. The 
rational aspects of such are more 
commonly regarded as design methods 
or procedures as they encourage a 
systematic approach. 

It is convenient to picture the 
engineering design process as a search in 
an imaginary space in which the goal is 
to find the solution(s) that satisfies 
specified needs. The search approach 
adopted depends to a large extent on the 
type of design problem. Conventionally, 
a random search is employed in original 
design, whilst redesign is accomplished 
in a heuristic fashion through improving 
understanding of the problem and in turn 
finding a better solution. Routine design 
however requires virtually no search 

activity. However, such trial-and-error 
described above is too uncertain. 

 
Illustrative engineering example 

Conventional engineering design is 
illustrated by the following example: 

In power plant there is a need to 
exchange heat between inlet air flow to 
the furnace and outlet flow of flue gases, 
by what are known as rotary air 
preheaters. Typical rates of heat transfer 
are of the order of Megawatts. The key 
performance measures of an air heater 
are high heat transfer rates, low pressure 
losses and low sensitivity to fouling. The 
rotary air preheater is a design concept, 
in which the working principle is based 
upon a rotating corrugated steel matrix 
(see Figure 1).  

Fig. 1. Symmetrical cross-corrugated 
heat transfer elements of a rotary air 
preheater (from Stasiek et al6). 

 
Despite the size of a preheater, it is 

composed of very many corrugated 
sheets of a relatively small unitary 
geometry. The symmetrical cross-
corrugated arrangement shown is one of 
a number developed on an empirical 
basis. An extensive investigation6 into 
the dependence of heat transfer and 
pressure drop on Reynolds Number (Re) 
and corrugation geometry limited to P, 
H, s and θ (Figure 1), aimed to reveal 
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new information on these relationships. 
Therefore this was redesign (Table 2). 
Original 
design 

Working principle = metal matrix 
rotating through hot and cold 
flow to exchange heat absorbed. 

Redesign Arrangement of structural 
elements in relation to heat 
transfer and pressure drop. 

Routine 
design 

Geometry values for different 
sizes of preheater. 

Table 3. preheater design problem 
 
Results indicated that the dependence 

of pressure drop on θ was stronger than 
that of heat transfer on θ. However, there 
was difficulty in separating the former 
relationship from those involving P/h 
and Re. 

Three aspects of this investigation are 
relevant to the current study. The first is 
that even a few parameters can generate 
large design space. Secondly and more 
importantly, that an unstructured search 
can result in inconclusive design 
information. Thirdly, that the symmetric 
design had been found to be more 
tolerant to fouling. 
 
Systematic design procedures 

A systematic engineering design 
procedure should not rely on chance and 
should facilitate the search for optimal 
solutions1. The use of analytical work at 
an early stage in order to understand the 
design problem is a common feature of 
systematic approaches5, 7, 8. Another 
common feature is to decompose the 
problem into smaller sub-problems for 
solving and subsequent clustering into 
an integrated solution - known as 
function decomposition 1, 9, 10, 11. 

This paper explains two methods for 
systematically searching design space 
and deciding parameter values for 
improved performance. Furthermore, the 
study goes beyond the deterministic 
approach of conventional design, which 
disregards the fact that material 

properties, component dimensions and 
application conditions are all statistical 
in their nature. 

 
 

Robust Engineering Design 
 

Parameter classification 
In Robust Engineering Design (RED) 

methodology there are three types of 
parameter considered to constitute a 
system12. These are represented in 
Figure 2 as a parameter diagram. 

 

Signal Factor
demand

Design Factors
set by the designer

Response
output

Noise Factors
not controllable by the designer

System

Fig. 2. Parameter diagram for a system 
 

Signal Artery size 
Response Flow and structural 

characteristics 
Design Stent geometry 
Noise Patient-to-patient variations, 

clinical deployment and 
manufacturing variability 

Table 4. Types of factor for stent 
design. 

 
The Signal Factor represents the 

performance expected of the system. 
This is assumed to be a constant value 
here and thus ignored. Design factors are 
parameters that are set or controlled by 
the designer. Noise factors are those that 
cannot be controlled by the designer but 
which have an influence on the 
behaviour of the system, such as 
conditions of operation and 
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manufacturing variation. RED is 
concerned with finding nominal values 
of the design factors that reduce the 
effects of the noise factors on the system 
output response. This improved 
robustness of the system is achieved 
through an ordered search for nominal 
values (levels) of design factors. 

 
Orthogonal search 

The systematic search is arranged 
according to an Orthogonal Array (OA), 
which specifies the design factor levels 
to be used in any given experiment. 
Table 5 shows the OA arrangement for a 
simple experiment involving 3 design 
factors of 2 levels each. 
 
 design 

factor A 
design 
factor B 

design 
factor C 

results 

Exp 1 1 1 1 SNR1
Exp 2 1 2 2 SNR2
Exp 3 2 1 2 SNR3
Exp 4 2 2 1 SNR4
Table 5. Simple Orthogonal Array (L4) 

 
The OA is a predetermined matrix in 

which each column of numbers signifies 
the values of a design factor assigned to 
it. Therefore each row represents the 
factor settings for an individual 
experiment. Note that between 
experiments (rows) more than one 
design factor level will be changed, 
which distinguishes this approach from 
the conventional one-factor-at-a-time 
method. Another feature to note is that 
the allocation of levels in each column is 
balanced, i.e. between any two columns 
each factor level is paired an equal 
number of times with the levels of the 
other column and vice versa. 

Figure 3 illustrates the 3D design 
space search specified by the OA in 
Table 5.  

 
 

 
A

 
 
 
 

B 
 

C 
Fig. 3. L4 OA search of 3D design space 

 
Only four experiments are required to 

gather sufficient information for 
evaluating the significance of the three 
design factors, compared with the 
necessity for eight experiments in the 
conventional 'full-factorial' one-factor-
at-a-time approach. The OA also tests 
each factor evenly against changes in the 
levels of the other factors, which is an 
important test of interaction effects 
between design factors. 

Each experiment is exposed equally 
to representative values of the noise 
factors in order to perturb the system 
function according to expected 
conditions. Typically this is conducted 
by means of collecting results under two 
noise groupings for each experiment, 
namely 'low noise' values and 'high 
noise' values. 

 
Performance evaluation 

The results of each experiment may 
be summarised by a noise performance 
measure such as a Signal-to-Noise 
Ratio12 (SNR) that uses a squared ratio 
of mean to variability. Thus what is 
desired in the output (mean value) is 
compared with what is not desired 
(effect of noise) in the output. 

From the OA (Table 5), the overall 
relative effect of each design factor level 
is evaluated by comparing the mean of 
the performance values for experiments 
incorporating that factor level. 
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For example, from Table 5 the 
relative effect of design factor A is 
calculated, according to the first column, 
by the difference between the mean SNR 
of the first two experiments and that of 
the last two. 

Rel. effect of A = abs(Ā1-Ā2) (1) 
Where: 
Ā1=½(SNR1+SNR2) and 
Ā2=½(SNR3+SNR4) 
 

Additivity and prediction 
The design factors are assumed to be 

independent and related to an estimate of 
the output by a simple linear model 
(Equation 2). 
E(y) = μ + aI + bj + ck   (2) 

Where ai, bj & ck are the 
modifications to the grand mean, μ, 
made by factors A, B & C at the levels i, 
j and k respectively of a given 
configuration. For example, a1 = Ā1 - μ 
and thus Equation (2) becomes: 
E(y) = μ−++ kji CBA   (3) 

The predictive accuracy of Equation 3 
relies upon the implicit additivity being 
true for the system under investigation. 
Additivity is undermined if there are any 
interaction effects between design 
factors, which renders the prediction 
unreliable. Thus design factor selection 
and experiment planning are important 
stages in RED for promoting 
improvements in the system design 
configuration. 

Statistical methods such as Analysis 
of Variance13 and half-normal plots14 are 
used to identify the significant factors 
for use in the prediction equation. 
Design factors considered to be 
insignificant are pooled together as an 
error term. The validity of the linear 
model is finally evaluated through a 
confirmation experiment on the chosen 
configuration. Close agreement between 
the results of this and the prediction 

opens the way for further experiments in 
which new design factors and levels are 
entered to replace insignificant items and 
thus continue the search of design space. 

 
 

Genetic Algorithms 
 

Reproduction 
Genetic Algorithms (GA) are founded 

on the theory of 'survival of the fittest' 
combined with the information exchange 
processes of natural genetics15. This 
information exchange, which is 
structured yet random, forms the basis of 
the search method. The random aspect 
renders the search much less 'balanced' 
than for the OA search in RED with a 
commensurate reduction in the need to 
carefully select design factors in order to 
avoid interactions. Indeed GA relies 
upon the assumption that in nature the 
complex non-linear relationships 
between design factors have to be 
efficiently processed. Therefore the 
system under investigation is considered 
to be a black box in which there are only 
two aspects of interest, namely the 
coding of the design configuration and 
its performance or 'fitness'. The GA 
procedure is illustrated in Figure 4. 

 
 
 
 
 
 
 

populationinitial sample

 
 
 
 
 
 

Fig. 4. General GA procedure 
 

reproduction

matching
crossover

mutation

improved 
 sample 
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The starting point is an initial random 
sample population. In comparison with 
RED 'coding', (Table 5 and Figure 3) an 
initial sample in a simple design 
experiment comprising three two-level 
design factors could be as shown in 
Table 6. 

 
 design 

factor A 
design 
factor B 

design 
factor C 

fitness 

Exp 1 1 2 2 31 
Exp 2 2 2 1 104 
Exp 3 1 2 1 48 
Exp 4 1 1 1 52 
Table 6. Initial random GA coding 

 
Reproduction progresses typically in 

terms of giving the design configuration 
('string') with a higher fitness a greater 
role in spawning a subsequent 
generation until fitness values converge 
at a maximum value. One method is to 
allocate a higher probability of 
contribution to a dominant string based 
on its percentage of the total fitness for 
the generation ('sample' in Figure 4), as 
shown in Table 7. 

 
 A B C fitness % of total 
Exp 1 1 2 2 31 13.2 
Exp 2 2 2 1 104 44.3 
Exp 3 1 2 1 48 20.4 
Exp 4 1 1 2 52 22.1 

 235 100 
Table 7. Probability of selection 

 
Strings selected for reproduction are 

entered into a mating pool. In Table 7, 
experiments 2 and 4 would have a 
relatively high probability of forming a 
mating pair based on their superior 
fitness. 

 
Crossover 

A position along the string is chosen 
as a crossover point, say between B and 

C in Table 7. Code either side of this 
crossover point is then swapped between 
the mating pair, as indicated below: 

 
 
First generation (parents) 
Exp 2 = 2 2 | 1 
Exp 4 = 1 1 | 2 
 
Second generation (offspring) 
Exp 2' = 2 2 | 2 
Exp 4' = 1 1 | 1 
 

Mutation 
This plays a secondary but important 

role in producing a 'random walk' 
through design space by virtue of an 
occasional alteration of the value of a 
design factor. For example if the first 
offspring in the second generation above 
underwent a random mutation of design 
factor B then perhaps Exp 2' = 2 1 2. The 
incidence of mutations is generally 
limited to the order of one per thousand 
crossover transfers. 

In general, further generations would 
be evaluated until the improvement in 
fitness converged to the desired level. As 
the generations unfold it enables the 
identification of successful combinations 
of design factors to be identified. These 
schema or building blocks can then be 
fixed, which focuses subsequent 
searches of design space. 

 
 

Discussion and conclusions 
 

The amount of deliberation required 
in selecting design factors is different 
between RED and GA. It hinges mainly 
on the issue of interactions. In RED the 
concern is that interactions will be 
antisynergistic (working against each 
other). Conversely, the GA method is 
considered to work best with medium to 
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high interactions amongst the design 
factors13, 14. To some extent interactions 
can be accommodated in RED using the 
sliding factor level technique13. 
Therefore, for complex systems two 
different sets of design factors are 
inevitable due to the differences in the 
preferred degree of interactions. In terms 
of design factor selection, this is perhaps 
best summed up as a bias towards 
insight and serendipity, respectively. 

The arbitrary selection of design 
factors in GA allows a wider search of 
design space. Mutation is an important 
aid to this as it avoids the premature loss 
of important interactions between design 
factors before they have had an 
opportunity to 'shine'. However, whilst 
the search might be wider with GA it is 
also of a more uncertain duration 
compared with the fixed approach of 
balanced OA in RED. Thus for 
expensive experiments the commitment 
to a known number of experiments, 
hence cost and time, might be favoured.  

Multiple objectives17 have not been 
included in this study in order to keep 
the focus on the basic method and the 
presentation concise. It should be noted 
however, that multiple objectives are 
inevitable in the study of stent design 
and are identified in the accompanying 
paper. 

The concept of robustness also 
appears to be different between RED and 
GA. In RED robustness is described 
explicitly in terms of reducing sensitivity 
to noise through incorporating 
representative values of noise in all 
experiments. Whereas in GA robustness 
is expressed as a central theme15 that 
appears to be a quality of the search 
mechanism in terms of how it converges 
on configurations of a higher fitness. 
That is, 'robustness' in RED is describing 
the performance of the solution in use 

and in GA it is describing the reliability 
of the method. However, we feel that the 
principle of noise inclusion should be 
incorporated into both approaches. 
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