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Abstract 

 

This paper presents an optimisation process for finding improved stent design using Genetic 

Algorithms. An optimisation criterion based on dissipated power is used which fits with the accepted 

principle that arterial flows follow a minimum energy loss. The GA shows good convergence and the 

solution found exhibits improved performance over proprietary designs used for comparison purposes.  

 

Introduction 

 

Stents are metallic cage like structures (Figure 1) that are inserted into an artery blocked by calcified 

plaque (stenosis). Stents differ significantly in shape, cross-sections, and other details, which affect the 

haemodynamics of the blood flow through the treated region. 

 
Fig. 1. Palmaz-Schatz stent 

 

Early designs were woven from round-section wire but current designs are laser-cut cylinders 

enabling a wider range of designs. In its unexpanded form a stent is delivered on an angioplasty 

balloon and receives its final shape after expansion beyond its elastic limit. 

 

Stent Pattern Description 

 

Stent design is deceptively simple but the degrees of freedom of the patterns mean there are thousands 

of potential solutions. Also these shapes can be rather complicated and therefore it is difficult to 

describe all the shapes using simple descriptions. In this study the stent patterns were represented by 

five main features as described below. 

From Figure 1 the stent is seen to comprised of strut arranged to make the patterns. Three 

values of strut thickness were used ranging form 0.08 to 0.10 mm (Figure 2). 
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Fig. 2. Strut Thickness, d 
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The shape of the strut cross-section was represented as a ratio of thickness to width (Figure 3) 

based upon the actual thickness value used from Figure 2. 

d x 1.5 d

d x 1.25 d

d x d

 
Fig. 3. Strut Thickness: Width ratio 

 

Generally the stent patterns are symmetrical therefore a skew parameter was introduced in 

order to explore asymmetry. A skew value of 0.5 represents symmetrical pattern and value of 0.9 

produces asymmetry through bringing the two peaks of the pattern closer together (Figure 4). 
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Fig. 4. Pattern Skew 

 

Repeating Pattern determines whether the next stents segment is merely a copy or it is a 

mirror image of the existing segment. If a segment is copied then an artificial link must be added to 

join the two segments together. A mirror operation does not need any linking elements because 

segments are joined naturally (Figure 5). 

copy mirror
 

Fig. 5. Repeating Pattern 

 

Shape Order (Figure 6) defines the degree of curvature of the segments. In this particular case 

‘1st order’ produces a sharp definition and ‘2nd order’ produces a smoother definition. 

second first
 

Fig. 6. Shape Order 
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The five variables described above allow to coverage of a relatively large design space. 

However it is only a simplification and one could imagine a more complex description. 

 

Table 1. Stent pattern description 

Name Range 

Strut Thickness d (mm) 0.08 - 0.10 

Strut Thickness:Width ratio 1:1 - 1:1.5 

Pattern Skew 0.5 - 0.9 

Repeating Pattern Copy/Mirror 

Shape Order 1st and 2nd 

 

As a first approximation, the design was parameterised according to Table 1 in order to 

simplify the search. For computational purposes, it is convenient to work with a partial model of a stent 

rather than a full 3D model 

 

Physics 

 

Blood flow behaviour may be described by Navier-Stokes and continuity equations (Equations 1). 
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The general form has too many unknown variables. We need another equation known as 

Newtonian hypothesis. It describes a linear relation between stress tensor σ  and strain rate tensor D  
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where strain rate tensor is given by 
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Having 10 scalar formulas (1 scalar + 1 vector + 1 symmetrical tensor) we still have 12 

unknown variables:  ,p,,,,,,,U,U,U, yzxzxyzzyyxxzyx . We may treat blood as an 

incompressible medium then 

var= ,const       (4) 

The 12 scalar formulas can be rewritten now as follows 
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There are 4 equations and 5 unknown variables: ,p,U,U,U zyx . It is necessary to decide whether 

to treat blood as Newtonian or non-Newtonian. A non-Newtonian behaviour allows a relationship 

between viscosity and velocity gradients according to the following power law 

   k n 1
     (6) 

where k and n are constants.  

e.g. blood   

 n  0 61 0 042. , . k  kg m  s-1 -1.39
 

and shear strain rate   for a general 3D case 

DD: 2      (7) 

Finally, the fifth non-linear equation is established, which describes the non-Newtonian 

behaviour of blood 



 4 

  2

1n

: 2k


 DD     (8) 

Formulas (5) and (8) may be solved numerically using Finite Volume Method or Finite Elements 

Method. However for either approach the stent geometry first must be created and then discretised 

(Figure 7). 

 

 
Fig. 7. CFD Mesh example 

 

The descretisation process and mesh quality are crucial to the accuracy of results. Therefore 

special care must be taken near the stent surfaces where velocity gradients are relatively high. Different 

types of element were implemented in order to improve mesh quality and the convergence. 

 

Objective Fitness Function 

 

One could imagine a lot of different fitness functions. It is believed that Wall Shear Stress plays the 

most important role in bio-medical flows [2]. However as WSS  is distributed along the surface it 

cannot be directly used as a performance measure in driving a search algorithm that needs a number(s). 

Indeed two different WSS distributions cannot be compared directly, yet it is possible to define such a 

performance based on that distribution. It should be borne in mind that if a number is generated from 

the 3D distribution then information is always lost. 

Dissipated power is introduced here as an alternative performance measure. Let us consider a 

form of the Gibbs equation that has the shape of an energy equation: 
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where T is temperature and 
+

mTs  is the intensity of entropy production. As blood is incompressible 

and we neglect the heat conductivity we have 

+
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In other words the dissipated energy causes an incremental change of internal energy. The 

effect of this energy dissipation is an increase of local temperature. Intensity of entropy production may 

be calculated from the velocity field (for an incompressible medium). 
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It can be proved that not all of the work in Equation 12 is converted into kinetic energy 
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The energy that is not converted, is dissipated. Therefore dissipated power is defined as follows 
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or dissipated energy 
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Minimising such an objective fitness function (Equation 13) helps us to search for a stent shape with 

the smallest possible energy losses. 
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Parameter Encoding 

 

Two alleles were used for both ‘ratio’ and ‘thickness’ in encoding the GA chromosome. As these 

variables have only three values and the alleles can represents four values (
22 ) then a dummy level 

was necessary. Therefore the fourth value in the allele combination was made equal to the third value. 

 

Table 2. 

Name Range Step Type Bits 

Strut Thickness d (mm) 0.08 - 0.11 mm 0.01 Floating 2 

Strut Thickness:Width ratio 1 - 1.75 0.25 Floating 2 

Pattern Skew 0.5 - 0.9 0.057143 Floating 3 

Repeating Pattern 0 - 1 - Boolean 1 

Shape Order 1 - 2 1 Integer 1 

 

The full parameter encoding for the stent chromosome is shown below. The total length of 

chromosome is 9, which represents 5 variables. 
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Fig. 8. Parameter encoding 

 

The above encoding presents us with 51229   possibilities. It is necessary to mention that 

not all of them are unique because of the dummy level, which means there are 288 unique cases. 

 

Optimisation Values and Results 

 

Due to the relatively short chromosome length and the high cost of calculation, the population size was 

chosen to be 10. Crossover probability was set at 0.75 and mutation probability at 0.02 to avoid local 

extreme convergence.  

 The total number of generations passed to convergence was 9. During the calculation process 

15 mutations and 38 crossovers were produced. The total number of unique stent shapes tested was 28, 

which is about 10% of the whole design space. 

 The tournament method of selecting individuals for crossover was used for two reasons. 

Firstly the roulette method was unsuitable for dealing with a minimised objective function and also it 

needed function scaling to avoid random wandering. Secondly our experience suggested it as the 

superior approach. A tournament size of 2 was used. 
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Fig. 9. Convergence 
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The optimal solution obtained from GA optimisation process is shown below. 

 
Fig. 10. The GA optimal solution 

 

The set of design variables defining the ‘optimal solution’ is shown in Table 3. 

 

Table 3.  

Name Value 

Strut Thickness d (mm) 0.08 

Strut Thickness:Width ratio 1:1.5 

Pattern Skew 0.5 

Repeating Pattern Mirror 

Shape Order 1st 

 

Discussion & Conclusions 

 

The GA is limited in terms of its inability to interpolate the discrete values of design variables 

explored. However, the big advantage of the GA method was seen to be in its quick convergence. One 

could ask if the GA found the true optimum, which of course cannot be answered without knowing all 

the possible solutions. Indeed the GA solution compared favourably with that from another solution. 

It is clean that optimal shape depends on the objective fitness function. Dissipated power 

prefers shape that looks similar to a Palmaz-Schatz design. Yet other performance measure would 

presumably give different results. To answer that question it is necessary to introduce a way of 

classifying shape performance based on WSS. This will be investigated in our future work. 
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